Ruiter, Marieke; Buijs, Ruud M; Kalsbeek, Andries
2006-05-01
Glucose is one of the most important energy sources for the body in general, and the brain in particular. It is essential for survival to keep glucose levels within strict boundaries. Acute disturbances of glucose homeostasis are rapidly corrected by hormonal and neuronal mechanisms. Furthermore, changes in energy expenditure associated with the light-dark cycle induce variations in the plasma glucose concentration that are more gradual. Organisms take advantage of adapting their internal physiology to the predictable daily changes in energy expenditure, because it enables them to anticipate these changes and to prevent unnecessary disturbance of homeostasis. The hypothalamic biological clock, located in the suprachiasmatic nucleus (SCN), receives light information from the eyes and transmits this information to the rest of the body to synchronize physiology to the environment. Here we review several studies providing evidence for biological clock control of the daily variation in several aspects of glucose metabolism. Although both hormones and the autonomic nervous system can stimulate glucose uptake or production by organs in the periphery, we have shown that the biological clock control of glucose metabolism mostly occurs through the autonomic nervous system. The critical involvement of the biological clock is also indicated by several studies, indicating that disturbance of the biological clock is often associated with metabolic diseases, such as obesity, diabetes mellitus and hypertension.
Qian, Jingyi; Thomas, Anthony P; Schroeder, Analyne M; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V
2017-08-01
Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1 ) behavioral circadian rhythms, 2 ) photic entrainment of circadian activity, 3 ) SCN and peripheral tissue molecular clock function, and 4 ) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM. Copyright © 2017 the American Physiological Society.
Corella, Dolores; Asensio, Eva M; Coltell, Oscar; Sorlí, José V; Estruch, Ramón; Martínez-González, Miguel Ángel; Salas-Salvadó, Jordi; Castañer, Olga; Arós, Fernando; Lapetra, José; Serra-Majem, Lluís; Gómez-Gracia, Enrique; Ortega-Azorín, Carolina; Fiol, Miquel; Espino, Javier Díez; Díaz-López, Andrés; Fitó, Montserrat; Ros, Emilio; Ordovás, José M
2016-01-07
Circadian rhythms regulate key biological processes influencing metabolic pathways. Disregulation is associated with type 2 diabetes (T2D) and cardiovascular diseases (CVD). Circadian rhythms are generated by a transcriptional autoregulatory feedback loop involving core clock genes. CLOCK (circadian locomotor output cycles protein kaput), one of those core genes, is known to regulate glucose metabolism in rodent models. Cross-sectional studies in humans have reported associations between this locus and obesity, plasma glucose, hypertension and T2D prevalence, supporting its role in cardiovascular risk. However, no longitudinal study has investigated the association between CLOCK gene variation and T2D or CVD incidence. Moreover, although in a previous work we detected a gene-diet interaction between the CLOCK-rs4580704 (C > G) single nucleotide polymorphism (SNP) and monounsaturated (MUFA) intake on insulin resistance, no interventional study has analyzed gene-diet interactions on T2D or CVD outcomes. We analyzed the association between the CLOCK-rs4580704 SNP and incidence of T2D and CVD longitudinally in 7098 PREDIMED trial (ISRCTN35739639) participants after a median 4.8-year follow-up. We also examined modulation by Mediterranean diet (MedDiet) intervention (high in MUFA) on these associations. We observed a significant association between the CLOCK-rs4580704 SNP and T2D incidence in n = 3671 non-T2D PREDIMED participants, with variant allele (G) carriers showing decreased incidence (dominant model) compared with CC homozygotes (HR: 0.69; 95 % CI 0.54-0.87; P = 0.002). This protection was more significant in the MedDiet intervention group (HR: 0.58; 95 % CI 0.43-0.78; P < 0.001) than in the control group (HR: 0.95; 95 % CI 0.63-1.44; P = 0.818). Moreover, we detected a statistically significant interaction (P = 0.018) between CLOCK-rs4580704 SNP and T2D status on stroke. Thus, only in T2D subjects was CLOCK-rs4580704 SNP associated with stroke risk, G-carriers having decreased risk (HR: 0.61; 95 % CI 0.40-0.94; P = 0.024 versus CC) in the multivariable-adjusted model. In agreement with our previous results showing a protective effect of the G-allele against hyperglycemia, we extended our findings by reporting a novel association with lower T2D incidence and also suggesting a dietary modulation. Moreover, we report for the first time an association between a CLOCK polymorphism and stroke in T2D subjects, suggesting that core clock genes may significantly contribute to increased CVD risk in T2D.
Molecular targets for small-molecule modulators of circadian clocks
He, Baokun; Chen, Zheng
2016-01-01
Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111
Global synchronization of parallel processors using clock pulse width modulation
Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.
2013-04-02
A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.
Daily Fasting Blood Glucose Rhythm in Male Mice: A Role of the Circadian Clock in the Liver.
Ando, Hitoshi; Ushijima, Kentaro; Shimba, Shigeki; Fujimura, Akio
2016-02-01
Fasting blood glucose (FBG) and hepatic glucose production are regulated according to a circadian rhythm. An early morning increase in FBG levels, which is pronounced among diabetic patients, is known as the dawn phenomenon. Although the intracellular circadian clock generates various molecular rhythms, whether the hepatic clock is involved in FBG rhythm remains unclear. To address this issue, we investigated the effects of phase shift and disruption of the hepatic clock on the FBG rhythm. In both C57BL/6J and diabetic ob/ob mice, FBG exhibited significant daily rhythms with a peak at the beginning of the dark phase. Light-phase restricted feeding altered the phase of FBG rhythm mildly in C57BL/6J mice and greatly in ob/ob mice, in concert with the phase shifts of mRNA expression rhythms of the clock and glucose production-related genes in the liver. Moreover, the rhythmicity of FBG and Glut2 expression was not detected in liver-specific Bmal1-deficient mice. Furthermore, treatment with octreotide suppressed the plasma growth hormone concentration but did not affect the hepatic mRNA expression of the clock genes or the rise in FBG during the latter half of the resting phase in C57BL/6J mice. These results suggest that the hepatic circadian clock plays a critical role in regulating the daily FBG rhythm, including the dawn phenomenon.
Flexible programmable logic module
Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.
2001-01-01
The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.
Cedernaes, Jonathan; Osler, Megan E; Voisin, Sarah; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Zierath, Juleen R; Schiöth, Helgi B; Benedict, Christian
2015-09-01
Shift workers are at increased risk of metabolic morbidities. Clock genes are known to regulate metabolic processes in peripheral tissues, eg, glucose oxidation. This study aimed to investigate how clock genes are affected at the epigenetic and transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD), mimicking shift work with extended wakefulness. In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men underwent two experimental sessions: x sleep (2230-0700 h) and overnight wakefulness. On the subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes (BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose concentrations were determined. In adipose tissue, acute sleep deprivation vs sleep increased methylation in the promoter of CRY1 (+4%; P = .026) and in two promoter-interacting enhancer regions of PER1 (+15%; P = .036; +9%; P = .026). In skeletal muscle, TSD vs sleep decreased gene expression of BMAL1 (-18%; P = .033) and CRY1 (-22%; P = .047). Concentrations of serum cortisol, which can reset peripheral tissue clocks, were decreased (2449 ± 932 vs 3178 ± 723 nmol/L; P = .039), whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 ± 1.63 vs 6.59 ± 1.32 mmol/L; P = .011). Our findings demonstrate that a single night of wakefulness can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.
Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock★
Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus S.; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo; Rizzuto, Rosario; Bicciato, Silvio; Pilegaard, Henriette; Blaauw, Bert; Schiaffino, Stefano
2013-01-01
Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. PMID:24567902
Apparatus and method for compensating for clock drift in downhole drilling components
Hall, David R [Provo, UT; Pixton, David S [Lehi, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Hall, Jr., H. Tracy
2007-08-07
A precise downhole clock that compensates for drift includes a prescaler configured to receive electrical pulses from an oscillator. The prescaler is configured to output a series of clock pulses. The prescaler outputs each clock pulse after counting a preloaded number of electrical pulses from the oscillator. The prescaler is operably connected to a compensator module for adjusting the number loaded into the prescaler. By adjusting the number that is loaded into the prescaler, the timing may be advanced or retarded to more accurately synchronize the clock pulses with a reference time source. The compensator module is controlled by a counter-based trigger module configured to trigger the compensator module to load a value into the prescaler. Finally, a time-base logic module is configured to calculate the drift of the downhole clock by comparing the time of the downhole clock with a reference time source.
Analyses of conversion efficiency in high-speed clock recovery based on Mach-Zehnder modulator
NASA Astrophysics Data System (ADS)
Dong, H.; Sun, H.; Zhu, G.; Dutta, N. K.
2006-09-01
In this paper, detailed analyses of the conversion efficiency in high-speed clock recovery based on Mach-Zehnder (MZ) modulator has been carried out. The theoretical results show the conversion efficiency changes with RF driving power and the mixing order. For high order clock recovery, the cascaded MZ modulator provides higher conversion efficiency. A study of clock recovery at 160 Gb/s using the cascaded MZ modulator has been carried out. The experimental results agree with the results of the analysis.
Circadian Rhythms in Diet-Induced Obesity.
Engin, Atilla
2017-01-01
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.
Vieira, Elaine; Marroquí, Laura; Figueroa, Ana Lucia C.; Merino, Beatriz; Fernandez-Ruiz, Rebeca; Nadal, Angel; Burris, Thomas P.; Gomis, Ramon; Quesada, Ivan
2013-01-01
Disruption of pancreatic clock genes impairs pancreatic beta-cell function, leading to the onset of diabetes. Despite the importance of pancreatic alpha-cells in the regulation of glucose homeostasis and in diabetes pathophysiology, nothing is known about the role of clock genes in these cells. Here, we identify the clock gene Rev-erb alpha as a new intracellular regulator of glucagon secretion. Rev-erb alpha down-regulation by siRNA (60–70% inhibition) in alphaTC1-9 cells inhibited low-glucose induced glucagon secretion (p<0.05) and led to a decrease in key genes of the exocytotic machinery. The Rev-erb alpha agonist GSK4112 increased glucagon secretion (1.6 fold) and intracellular calcium signals in alphaTC1-9 cells and mouse primary alpha-cells, whereas the Rev-erb alpha antagonist SR8278 produced the opposite effect. At 0.5 mM glucose, alphaTC1-9 cells exhibited intrinsic circadian Rev-erb alpha expression oscillations that were inhibited by 11 mM glucose. In mouse primary alpha-cells, glucose induced similar effects (p<0.001). High glucose inhibited key genes controlled by AMPK such as Nampt, Sirt1 and PGC-1 alpha in alphaTC1-9 cells (p<0.05). AMPK activation by metformin completely reversed the inhibitory effect of glucose on Nampt-Sirt1-PGC-1 alpha and Rev-erb alpha. Nampt inhibition decreased Sirt1, PGC-1 alpha and Rev-erb alpha mRNA expression (p<0.01) and glucagon release (p<0.05). These findings identify Rev-erb alpha as a new intracellular regulator of glucagon secretion via AMPK/Nampt/Sirt1 pathway. PMID:23936124
Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate.
Kalsbeek, Andries; Foppen, Ewout; Schalij, Ingrid; Van Heijningen, Caroline; van der Vliet, Jan; Fliers, Eric; Buijs, Ruud M
2008-09-15
The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the biological clock (sympathetic pre-autonomic neurons) or from non-clock areas (para-sympathetic pre-autonomic neurons), but the timing information is mainly provided by the GABAergic outputs of the biological clock.
Circadian Control of the Daily Plasma Glucose Rhythm: An Interplay of GABA and Glutamate
Kalsbeek, Andries; Foppen, Ewout; Schalij, Ingrid; Van Heijningen, Caroline; van der Vliet, Jan; Fliers, Eric; Buijs, Ruud M.
2008-01-01
The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the biological clock (sympathetic pre-autonomic neurons) or from non-clock areas (para-sympathetic pre-autonomic neurons), but the timing information is mainly provided by the GABAergic outputs of the biological clock. PMID:18791643
Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle
Perrin, Laurent; Hulo, Nicolas; Isenegger, Laura; Weger, Benjamin D; Migliavacca, Eugenia; Charpagne, Aline; Betts, James A; Walhin, Jean-Philippe; Templeman, Iain; Stokes, Keith; Thompson, Dylan; Tsintzas, Kostas; Robert, Maud; Howald, Cedric; Riezman, Howard; Feige, Jerome N; Karagounis, Leonidas G; Johnston, Jonathan D; Dermitzakis, Emmanouil T
2018-01-01
Circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. More extensive rhythmic transcription was observed in human skeletal muscle compared to in vitro cell culture as a large part of the in vivo mRNA rhythmicity was lost in vitro. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of ~8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin-stimulated glucose uptake were significantly reduced upon CLOCK depletion. Our findings suggest an essential role for the circadian coordination of skeletal muscle glucose homeostasis and lipid metabolism in humans. PMID:29658882
Takeda, Yukimasa; Kang, Hong Soon; Freudenberg, Johannes; DeGraff, Laura M.; Jothi, Raja; Jetten, Anton M.
2014-01-01
The hepatic circadian clock plays a key role in the daily regulation of glucose metabolism, but the precise molecular mechanisms that coordinate these two biological processes are not fully understood. In this study, we identify a novel connection between the regulation of RORγ by the clock machinery and the diurnal regulation of glucose metabolic networks. We demonstrate that particularly at daytime, mice deficient in RORγ exhibit improved insulin sensitivity and glucose tolerance due to reduced hepatic gluconeogenesis. This is associated with a reduced peak expression of several glucose metabolic genes critical in the control of gluconeogenesis and glycolysis. Genome-wide cistromic profiling, promoter and mutation analysis support the concept that RORγ regulates the transcription of several glucose metabolic genes directly by binding ROREs in their promoter regulatory region. Similar observations were made in liver-specific RORγ-deficient mice suggesting that the changes in glucose homeostasis were directly related to the loss of hepatic RORγ expression. Altogether, our study shows that RORγ regulates several glucose metabolic genes downstream of the hepatic clock and identifies a novel metabolic function for RORγ in the diurnal regulation of hepatic gluconeogenesis and insulin sensitivity. The inhibition of the activation of several metabolic gene promoters by an RORγ antagonist suggests that antagonists may provide a novel strategy in the management of metabolic diseases, including type 2 diabetes. PMID:24831725
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.
Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prdi-1smutantssiois an ATP-dependent RNA helicase, member ofmore » a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Thus PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.
2015-12-08
Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prdi-1smutantssiois an ATP-dependent RNA helicase, member ofmore » a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Thus PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less
An Adaptive Method for Reducing Clock Skew in an Accumulative Z-Axis Interconnect System
NASA Technical Reports Server (NTRS)
Bolotin, Gary; Boyce, Lee
1997-01-01
This paper will present several methods for adjusting clock skew variations that occur in a n accumulative z-axis interconnect system. In such a system, delay between modules in a function of their distance from one another. Clock distribution in a high-speed system, where clock skew must be kept to a minimum, becomes more challenging when module order is variable before design.
High-speed clock recovery with phase-locked-loop-based on LiNbO3 modulators
NASA Astrophysics Data System (ADS)
Zhu, Guanghao; Chen, Hongmin; Wang, Qiang; Dutta, Niloy K.
2003-08-01
In this paper, we present a scheme for recovering 10 GHz clock from 40 Gb/s and 80 Gb/s time division multiplexed (TDM) return to zero (RZ) data stream. The proposed clock recovery is successfully demonstrated using an electrical phase locked loop (PLL). The jitter of the recovered clock is estimated to be around 50 fs. The key part in the proposed clock recovery circuit is a LiNbO3 Mach-Zehnder modulator which is shown to be highly effective in optical to electrical down conversion.
Early sex-specific modulation of the molecular clock in trauma.
Mehraj, Vikram; Wiramus, Sandrine; Capo, Christian; Leone, Marc; Mege, Jean-Louis; Textoris, Julien
2014-01-01
Immune system biology and most physiologic functions are tightly linked to circadian rhythms. Time of day-dependent variations in many biologic parameters also play a fundamental role in the disease process. We previously showed that the genes encoding the peripheral molecular clock were modulated in a sex-dependent manner in Q fever. Here, we examined severe trauma patients at admission to the intensive care unit. Using quantitative real-time polymerase chain reaction, the whole-blood expression of the molecular clock components ARNTL, CLOCK, and PER2 was assessed in male and female trauma patients. Healthy volunteers of both sexes were used as controls. We observed a significant overexpression of both ARNTL and CLOCK in male trauma patients. We report, for the first time, the sex-related modulation of the molecular clock genes in the blood following severe trauma. These results emphasize the role of circadian rhythms in the immune response in trauma patients. Epidemiologic study, level IV.
NASA Astrophysics Data System (ADS)
Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-11-01
In this work, a four-level pulse amplitude modulation (4-PAM) format with a polarization-modulated pulse per second (PPS) clock signal using a single vertical cavity surface emitting laser (VCSEL) carrier is for the first time experimentally demonstrated. We propose uncomplex alternative technique for increasing capacity and flexibility in short-reach optical communication links through multi-signal modulation onto a single VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated onto a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by exploiting the inherent orthogonal polarization switching of the VCSEL carrier with changing bias in transmission of a PPS clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a polarization-based PPS clock signal using a single VCSEL carrier. It is the first time a signal VCSEL carrier is reported to simultaneously transmit a directly modulated 20 Gbps 4-PAM data signal and a polarization-based PPS clock signal. We further demonstrate on the design of a software-defined digital signal processing (DSP)-assisted receiver as an alternative to costly receiver hardware. Experimental results show that a 3.21 km fibre transmission with simultaneous 20 Gbps 4-PAM data signal and polarization-based PPS clock signal introduced a penalty of 3.76 dB. The contribution of polarization-based PPS clock signal to this penalty was found out to be 0.41 dB. Simultaneous distribution of data and timing clock signals over shared network infrastructure significantly increases the aggregated data rate at different optical network units (ONUs), without costly investment.
Oosterman, Johanneke E; Belsham, Denise D
2016-01-01
Specific neurons in the hypothalamus are regulated by peripheral hormones and nutrients to maintain proper metabolic control. It is unclear if nutrients can directly control clock gene expression. We have therefore utilized the immortalized, hypothalamic cell line mHypoE-37, which exhibits robust circadian rhythms of core clock genes. mHypoE-37 neurons were exposed to 0.5 or 5.5 mM glucose, comparable to physiological levels in the brain. Per2 and Bmal1 mRNAs were assessed every 3 hours over 36 hours. Incubation with 5.5 mM glucose significantly shortened the period and delayed the phase of Per2 mRNA levels, but had no effect on Bmal1. Glucose had no significant effect on phospho-GSK3β, whereas AMPK phosphorylation was altered. Thus, the AMPK inhibitor Compound C was utilized, and mRNA levels of Per2, Bmal1, Cryptochrome1 (Cry1), agouti-related peptide (AgRP), carnitine palmitoyltransferase 1C (Cpt1c), and O-linked N-acetylglucosamine transferase (Ogt) were measured. Remarkably, Compound C dramatically reduced transcript levels of Per2, Bmal1, Cry1, and AgRP, but not Cpt1c or Ogt. Because AMPK was not inhibited at the same time or concentrations as the clock genes, we suggest that the effect of Compound C on gene expression occurs through an AMPK-independent mechanism. The consequences of inhibition of the rhythmic expression of clock genes, and in turn downstream metabolic mediators, such as AgRP, could have detrimental effects on overall metabolic processes. Importantly, the effects of the most commonly used AMPK inhibitor Compound C should be interpreted with caution, considering its role in AMPK-independent repression of specific genes, and especially clock gene rhythm dysregulation.
Oosterman, Johanneke E.; Belsham, Denise D.
2016-01-01
Specific neurons in the hypothalamus are regulated by peripheral hormones and nutrients to maintain proper metabolic control. It is unclear if nutrients can directly control clock gene expression. We have therefore utilized the immortalized, hypothalamic cell line mHypoE-37, which exhibits robust circadian rhythms of core clock genes. mHypoE-37 neurons were exposed to 0.5 or 5.5 mM glucose, comparable to physiological levels in the brain. Per2 and Bmal1 mRNAs were assessed every 3 hours over 36 hours. Incubation with 5.5 mM glucose significantly shortened the period and delayed the phase of Per2 mRNA levels, but had no effect on Bmal1. Glucose had no significant effect on phospho-GSK3β, whereas AMPK phosphorylation was altered. Thus, the AMPK inhibitor Compound C was utilized, and mRNA levels of Per2, Bmal1, Cryptochrome1 (Cry1), agouti-related peptide (AgRP), carnitine palmitoyltransferase 1C (Cpt1c), and O-linked N-acetylglucosamine transferase (Ogt) were measured. Remarkably, Compound C dramatically reduced transcript levels of Per2, Bmal1, Cry1, and AgRP, but not Cpt1c or Ogt. Because AMPK was not inhibited at the same time or concentrations as the clock genes, we suggest that the effect of Compound C on gene expression occurs through an AMPK-independent mechanism. The consequences of inhibition of the rhythmic expression of clock genes, and in turn downstream metabolic mediators, such as AgRP, could have detrimental effects on overall metabolic processes. Importantly, the effects of the most commonly used AMPK inhibitor Compound C should be interpreted with caution, considering its role in AMPK-independent repression of specific genes, and especially clock gene rhythm dysregulation. PMID:26784927
NASA Astrophysics Data System (ADS)
Li, C.; Huang, X.; Cao, P.; Wang, J.; An, Q.
2018-03-01
RPC Super module (SM) detector assemblies are used for charged hadron identification in the Time-of-Flight (TOF) spectrometer at the Compressed Baryonic Matter (CBM) experiment. Each SM contains several multi-gap Resistive Plate Chambers (MRPCs) and provides up to 320 electronic channels in total for high-precision time measurements. Time resolution of the Time-to-Digital Converter (TDC) is required to be better than 20 ps. During mass production, the quality of each SM needs to be evaluated. In order to meet the requirements, the system clock signal as well as the trigger signal should be distributed precisely and synchronously to all electronics modules within the evaluation readout system. In this paper, a hierarchical clock and trigger distribution method is proposed for the quality evaluation of CBM-TOF SM detectors. In a first stage, the master clock and trigger module (CTM) allocated in a 6U PXI chassis distributes the clock and trigger signals to the slave CTM in the same chassis. In a second stage, the slave CTM transmits the clock and trigger signals to the TDC readout module (TRM) through one optical link. In a third stage, the TRM distributes the clock and trigger signals synchronously to 10 individual TDC boards. Laboratory test results show that the clock jitter at the third stage is less than 4 ps (RMS) and the trigger transmission latency from the master CTM to the TDC is about 272 ns with 11 ps (RMS) jitter. The overall performance complies well with the required specifications.
Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.; ...
2015-12-08
Mutants in the period-1 ( prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prd-1smutantssiois an ATP-dependent RNA helicase, membermore » of a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Furthermore PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less
Aspects of the optical system relevant for the KM3NeT timing calibration
NASA Astrophysics Data System (ADS)
Kieft, Gerard
2016-04-01
KM3NeT is a future research infrastructure in the Mediterranean Sea housing the large Cherenkov telescope arrays of optical modules for neutrino detection. The detector control and data transmission system is based on fibre optical technology. For timing calibration of the detector signals the optical system is used to send and fan-out an onshore clock signal, derived from a GPS receiver, to all optical modules in the deep sea. The optical modules use this clock signal to time stamp the light pulses detected by the photomultipliers inside the modules. The delay time between the GPS clock on shore and the clock in each optical module is measured with sub-nanosecond precision using a White Rabbit based timing calibration system. The aspects of the optical system relevant for the timing calibration and the quantification of their effect will be presented.
NASA Technical Reports Server (NTRS)
Eno, R. F.
1984-01-01
Clock switched on and off in response to data signal. Flip-flop modulator generates square-wave carrier frequency that is half clock frequency and turns carrier on and off. Final demodulator output logical inverse of data input.
Phase modulation for reduced vibration sensitivity in laser-cooled clocks in space
NASA Technical Reports Server (NTRS)
Klipstein, W.; Dick, G.; Jefferts, S.; Walls, F.
2001-01-01
The standard interrogation technique in atomic beam clocks is square-wave frequency modulation (SWFM), which suffers a first order sensitivity to vibrations as changes in the transit time of the atoms translates to perceived frequency errors. Square-wave phase modulation (SWPM) interrogation eliminates sensitivity to this noise.
Ribas-Latre, A; Baselga-Escudero, L; Casanova, E; Arola-Arnal, A; Salvadó, M J; Arola, L; Bladé, C
2015-02-01
Circadian rhythm plays an important role in maintaining homeostasis, and its disruption increases the risk of developing metabolic syndrome. Circadian rhythm is maintained by a central clock in the hypothalamus that is entrained by light, but circadian clocks are also present in peripheral tissues. These peripheral clocks are trained by other cues, such as diet. The aim of this study was to determine whether proanthocyanidins, the most abundant polyphenols in the human diet, modulate the expression of clock and clock-controlled genes in the liver, gut and mesenteric white adipose tissue (mWAT) in healthy and obese rats. Grape seed proanthocyanidin extracts (GSPEs) were administered for 21 days at 5, 25 or 50 mg GSPE/kg body weight in healthy rats and 25 mg GSPE/kg body weight in rats with diet-induced obesity. In healthy animals, GSPE administration led to the overexpression of core clock genes in a positive dose-dependent manner. Moreover, the acetylated BMAL1 protein ratio increased with the same pattern in the liver and mWAT. With regards to clock-controlled genes, Per2 was also overexpressed, whereas Rev-erbα and RORα were repressed in a negative dose-dependent manner. Diet-induced obesity always resulted in the overexpression of some core clock and clock-related genes, although the particular gene affected was tissue specific. GSPE administration counteracted disturbances in the clock genes in the liver and gut but was less effective in normalizing the clock gene disruption in WAT. In conclusion, proanthocyanidins have the capacity to modulate peripheral molecular clocks in both healthy and obese states. Copyright © 2015 Elsevier Inc. All rights reserved.
A Balanced Diet Is Necessary for Proper Entrainment Signals of the Mouse Liver Clock
Hirao, Akiko; Tahara, Yu; Kimura, Ichiro; Shibata, Shigenobu
2009-01-01
Background The peripheral circadian clock in mice is entrained not only by light-dark cycles but also by daily restricted feeding schedules. Behavioral and cell culture experiments suggest an increase in glucose level as a factor in such feeding-induced entrainment. For application of feeding-induced entrainment in humans, nutrient content and dietary variations should be considered. Principal Finding To elucidate the food composition necessary for dietary entrainment, we examined whether complete or partial substitution of dietary nutrients affected phase shifts in liver clocks of mice. Compared with fasting mice or ad libitum fed mice, the liver bioluminescence rhythm advanced by 3–4 h on the middle day in Per2::luciferase knock-in mice that were administered a standard mouse diet, i.e. AIN-93M formula [0.6–0.85 g/10 g mouse BW] (composition: 14% casein, 47% cornstarch, 15% gelatinized cornstarch, 10% sugar, 4% soybean oil, and 10% other [fiber, vitamins, minerals, etc.]), for 2 days. When each nutrient was tested alone (100% nutrient), an insignificant weak phase advance was found to be induced by cornstarch and soybean oil, but almost no phase advance was induced by gelatinized cornstarch, high-amylose cornstarch, glucose, sucrose, or casein. A combination of glucose and casein without oil, vitamin, or fiber caused a significant phase advance. When cornstarch in AIN-93M was substituted with glucose, sucrose, fructose, polydextrose, high-amylose cornstarch, or gelatinized cornstarch, the amplitude of phase advance paralleled the increase in blood glucose concentration. Conclusions Our results strongly suggest the following: (1) balanced diets containing carbohydrates/sugars and proteins are good for restricted feeding-induced entrainment of the peripheral circadian clock and (2) a balanced diet that increases blood glucose, but not by sugar alone, is suitable for entrainment. These findings may assist in the development of dietary recommendations for on-board meals served to air travelers and shift workers to reduce jet lag-like symptoms. PMID:19738906
Protein malnutrition after weaning disrupts peripheral clock and daily insulin secretion in mice.
Borck, Patricia Cristine; Batista, Thiago Martins; Vettorazzi, Jean Franciesco; Camargo, Rafael Ludemann; Boschero, Antonio Carlos; Vieira, Elaine; Carneiro, Everardo Magalhães
2017-12-01
Changes in nutritional state may alter circadian rhythms through alterations in expression of clock genes. Protein deficiency has a profound effect on body metabolism, but the effect of this nutrient restriction after weaning on biological clock has not been explored. Thus, this study aims to investigate whether the protein restriction affects the daily oscillation in the behavior and metabolic rhythms, as well as expression of clock genes in peripheral tissues. Male C57BL/6 J mice, after weaning, were fed a normal-protein (NP) diet or a low-protein (LP) diet for 8 weeks. Mice fed an LP diet did not show difference in locomotor activity and energy expenditure, but the food intake was increased, with parallel increased expression of the orexigenic neuropeptide Npy and disruption of the anorexigenic Pomc oscillatory pattern in the hypothalamus. LP mice showed disruption in the daily rhythmic patterns of plasma glucose, triglycerides and insulin. Also, the rhythmic expression of clock genes in peripheral tissues and pancreatic islets was altered in LP mice. In pancreatic islets, the disruption of clock genes was followed by impairment of daily glucose-stimulated insulin secretion and the expression of genes involved in exocytosis. Pharmacological activation of REV-ERBα could not restore the insulin secretion in LP mice. The present study demonstrates that protein restriction, leading to development of malnutrition, alters the peripheral clock and metabolic outputs, suggesting that this nutrient provides important entraining cues to regulate the daily fluctuation of biological clock. Copyright © 2017 Elsevier Inc. All rights reserved.
Constructive polarization modulation for coherent population trapping clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Peter, E-mail: enxue.yun@obspm.fr; Danet, Jean-Marie; Holleville, David
2014-12-08
We propose a constructive polarization modulation scheme for atomic clocks based on coherent population trapping (CPT). In this scheme, the polarization of a bichromatic laser beam is modulated between two opposite circular polarizations to avoid trapping the atomic populations in the extreme Zeeman sublevels. We show that if an appropriate phase modulation between the two optical components of the bichromatic laser is applied synchronously, the two CPT dark states which are produced successively by the alternate polarizations add constructively. Measured CPT resonance contrasts up to 20% in one-pulse CPT and 12% in two-pulse Ramsey-CPT experiments are reported, demonstrating the potentialmore » of this scheme for applications to high performance atomic clocks.« less
Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle.
Hardman, Jonathan A; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Paus, Ralf
2015-01-01
The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jing; Yun, Peter; Tian, Yuan
2014-03-07
A scheme for a Ramsey-coherent population trapping (CPT) atomic clock that eliminates the acousto-optic modulator (AOM) is proposed and experimentally studied. Driven by a periodically microwave modulated current, the vertical-cavity surface-emitting laser emits a continuous beam that switches between monochromatic and multichromatic modes. Ramsey-CPT interference has been studied with this mode-switching beam. In eliminating the AOM, which is used to generate pulsed laser in conventional Ramsey-CPT atomic clock, the physics package of the proposed scheme is virtually the same as that of a conventional compact CPT atomic clock, although the resource budget for the electronics will slightly increase as amore » microwave switch should be added. By evaluating and comparing experimentally recorded signals from the two Ramsey-CPT schemes, the short-term frequency stability of the proposed scheme was found to be 46% better than the scheme with AOM. The experimental results suggest that the implementation of a compact Ramsey-CPT atomic clock promises better frequency stability.« less
microRNA modulation of circadian clock period and entrainment
Cheng, Hai-Ying M.; Papp, Joseph W.; Varlamova, Olga; Dziema, Heather; Russell, Brandon; Curfman, John P.; Nakazawa, Takanobu; Shimizu, Kimiko; Okamura, Hitoshi; Impey, Soren; Obrietan, Karl
2007-01-01
microRNAs (miRNAs) are a class of small, non-coding, RNAs that regulate the stability or translation of mRNA transcripts. Although recent work has implicated miRNAs in development and in disease, the expression and function of miRNAs in the adult mammalian nervous system has not been extensively characterized. Here, we examine the role of two brain-specific miRNAs, miR-219 and miR-132, in modulating the circadian clock located in the suprachiasmatic nucleus. miR-219 is a target of the CLOCK/BMAL1 complex, exhibits robust circadian rhythms of expression and the in vivo knockdown of miR-219 lengthens the circadian period. miR-132 is induced by photic entrainment cues via a MAPK/CREB-dependent mechanism, modulates clock gene expression, and attenuates the entraining effects of light. Collectively, these data reveal miRNAs as clock- and light-regulated genes and provide a mechanistic examination of their roles as effectors of pacemaker activity and entrainment. PMID:17553428
Sun, Linjie; Wang, Yan; Song, Yu; Cheng, Xiang-Rong; Xia, Shufang; Rahman, Md Ramim Tanver; Shi, Yonghui; Le, Guowei
2015-02-27
Circadian rhythmic disorders induced by high-fat diet are associated with metabolic diseases. Resveratrol could improve metabolic disorder, but few reports focused on its effects on circadian rhythm disorders in a variety of studies. The aim of the present study was to analyze the potential effects of resveratrol on high-fat diet-induced disorders about the rhythmic expression of clock genes and clock-controlled lipid metabolism. Male C57BL/6 mice were divided into three groups: a standard diet control group (CON), a high-fat diet (HFD) group and HFD supplemented with 0.1% (w/w) resveratrol (RES). The body weight, fasting blood glucose and insulin, plasma lipids and leptin, whole body metabolic status and the expression of clock genes and clock-controlled lipogenic genes were analyzed at four different time points throughout a 24-h cycle (8:00, 14:00, 20:00, 2:00). Resveratrol, being associated with rhythmic restoration of fasting blood glucose and plasma insulin, significantly decreased the body weight in HFD mice after 11 weeks of feeding, as well as ameliorated the rhythmities of plasma leptin, lipid profiles and whole body metabolic status (respiratory exchange ratio, locomotor activity, and heat production). Meanwhile, resveratrol modified the rhythmic expression of clock genes (Clock, Bmal1 and Per2) and clock-controlled lipid metabolism related genes (Sirt1, Pparα, Srebp-1c, Acc1 and Fas). The response pattern of mRNA expression for Acc1 was similar to the plasma triglyceride. All these results indicated that resveratrol reduced lipogenesis and ultimately normalized rhythmic expression of plasma lipids, possibly via its action on clock machinery. Copyright © 2015 Elsevier Inc. All rights reserved.
Molusky, Matthew M.; Li, Siming; Ma, Di; Yu, Lei; Lin, Jiandie D.
2012-01-01
Hepatic gluconeogenesis is important for maintaining steady blood glucose levels during starvation and through light/dark cycles. The regulatory network that transduces hormonal and circadian signals serves to integrate these physiological cues and adjust glucose synthesis and secretion by the liver. In this study, we identified ubiquitin-specific protease 2 (USP2) as an inducible regulator of hepatic gluconeogenesis that responds to nutritional status and clock. Adenoviral-mediated expression of USP2 in the liver promotes hepatic glucose production and exacerbates glucose intolerance in diet-induced obese mice. In contrast, in vivo RNA interference (RNAi) knockdown of this factor improves systemic glycemic control. USP2 is a target gene of peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α), a coactivator that integrates clock and energy metabolism, and is required for maintaining diurnal glucose homeostasis during restricted feeding. At the mechanistic level, USP2 regulates hepatic glucose metabolism through its induction of 11β-hydroxysteroid dehydrogenase 1 (HSD1) and glucocorticoid signaling in the liver. Pharmacological inhibition and liver-specific RNAi knockdown of HSD1 significantly impair the stimulation of hepatic gluconeogenesis by USP2. Together, these studies delineate a novel pathway that links hormonal and circadian signals to gluconeogenesis and glucose homeostasis. PMID:22447855
Asaad, Sameh W; Bellofatto, Ralph E; Brezzo, Bernard; Haymes, Charles L; Kapur, Mohit; Parker, Benjamin D; Roewer, Thomas; Tierno, Jose A
2014-01-28
A plurality of target field programmable gate arrays are interconnected in accordance with a connection topology and map portions of a target system. A control module is coupled to the plurality of target field programmable gate arrays. A balanced clock distribution network is configured to distribute a reference clock signal, and a balanced reset distribution network is coupled to the control module and configured to distribute a reset signal to the plurality of target field programmable gate arrays. The control module and the balanced reset distribution network are cooperatively configured to initiate and control a simulation of the target system with the plurality of target field programmable gate arrays. A plurality of local clock control state machines reside in the target field programmable gate arrays. The local clock state machines are configured to generate a set of synchronized free-running and stoppable clocks to maintain cycle-accurate and cycle-reproducible execution of the simulation of the target system. A method is also provided.
Reciprocal interactions between circadian clocks and aging.
Banks, Gareth; Nolan, Patrick M; Peirson, Stuart N
2016-08-01
Virtually, all biological processes in the body are modulated by an internal circadian clock which optimizes physiological and behavioral performance according to the changing demands of the external 24-h world. This circadian clock undergoes a number of age-related changes, at both the physiological and molecular levels. While these changes have been considered to be part of the normal aging process, there is increasing evidence that disruptions to the circadian system can substantially impact upon aging and these impacts will have clear health implications. Here we review the current data of how both the physiological and core molecular clocks change with age and how feedback from external cues may modulate the aging of the circadian system.
RH1020 Single Event Clock Upset Summary Report
NASA Technical Reports Server (NTRS)
Katz, Richard B.; Wang, J. J.
1998-01-01
This report summarizes the testing and analysis of "single event clock upset' in the RH1020. Also included are SEU-rate predictions and design recommendations for risk analysis and reduction. The subject of "upsets" in the RH1020 is best understood by using a model consisting of a global clock buffer and a D-type flip-flop as the basic memory unit. The RH1020 is built on the ACT 1 family architecture. As such, it has one low-skew global clock buffer with a TTL-level input threshold that is accessed via a single dedicated pin. The clock signal is driven to full CMOS levels, buffered, and sent to individual row buffers with one buffer per channel. For low-skew performance, the outputs of all of the RH1020 row buffers are shorted together via metal lines, as is done in the A1020B. All storage in the RH1020 consists of routed flip-flops, constructed with multiplexors and feedback through the routing segments. A simple latch can be constructed from a single (combinatorial or C) module; an edge-triggered flip-flop is constructed using two concatenated latches. There is no storage in the I/O modules. The front end of the clock buffering circuitry, at a common point relative to the row buffer, is a sub-circuit that was determined to be the most susceptible to heavy ions. This is due, in part, to its smaller transistors compared to the rest of the circuitry. This conclusion is also supported by SPICE simulations and an analysis of the heavy ion data, described in this report. The edge triggered D flip-flop has two single-event-upset modes. Mode one, called C-module upset, is caused by a heavy ion striking the C-module's sensitive area on the silicon and produces a soft single bit error at the output of the flip-flop. Mode two, called clock upset, is caused by a heavy ion strike on the clock buffer, generating a runt pulse interpreted as a false clock signal and consequently producing errors at the flip-flop outputs. C-module upset sensitivity in the RH1020 is essentially the same as that of its ACT 1 siblings (A1020, A1020A and A1020B), which were well tested, analyzed, and documented in the literature.
Segregation of Clock and Non-Clock Regulatory Functions of REV-ERB.
Butler, Andrew A; Burris, Thomas P
2015-08-04
The molecular clock is a master controller of circadian cellular processes that affect growth, metabolic homeostasis, and behavior. A report in Science by Zhang et al. (2015) redefines our understanding of how Rev-erba acts as an internal feedback inhibitor that modulates activity of the core clock while simultaneously regulating tissue-specific metabolic processes. Copyright © 2015 Elsevier Inc. All rights reserved.
Multi-wavelength time-coincident optical communications system and methods thereof
NASA Technical Reports Server (NTRS)
Lekki, John (Inventor); Nguyen, Quang-Viet (Inventor)
2009-01-01
An optical communications transmitter includes a oscillator source, producing a clock signal, a data source, producing a data signal, a modulating circuit for modulating the clock signal using the data signal to produce modulating signals, optical drivers, receiving the modulating signals and producing optical driving signals based on the modulating signals and optical emitters, producing small numbers of photons based on the optical driving signals. The small numbers of photons are time-correlated between at least two separate optical transmission wavelengths and quantum states and the small number of photons can be detected by a receiver to reform the data signal.
USDA-ARS?s Scientific Manuscript database
The intracellular circadian clock consists of a series of transcriptional modulators that together allow the cell to perceive the time of day. Circadian clocks have been identified within various components of the cardiovascular system (e.g., cardiomyocytes, vascular smooth muscle cells) and possess...
Survey Probe Infrared Celestial Experiment (SPICE).
1985-01-01
amplitude modulation (PAM) Word clock Bit clock 3.1.2.3.2 Each signal shall be buffered and short- circuit proofed and capable of delivering a signal...TABLE OF CONTENTS I Appendix A I SPICE II Electronic Test Report Appendix B VC409-OOOl Pulse Code Modulator Specification - SPICE I VC409-OOOl-21 Pulse...Code Modulator Specification - SPICE II Appendix C - Specifications AA0209-103 Evacuation AA0209-104 Cryogen Filling AA0209-105 Leak Rate AA0209-106
Clock gene modulates roles of OXTR and AVPR1b genes in prosociality.
Ci, Haipeng; Wu, Nan; Su, Yanjie
2014-01-01
The arginine vasopressin receptor (AVPR) and oxytocin receptor (OXTR) genes have been demonstrated to contribute to prosocial behavior. Recent research has focused on the manner by which these simple receptor genes influence prosociality, particularly with regard to the AVP system, which is modulated by the clock gene. The clock gene is responsible for regulating the human biological clock, affecting sleep, emotion and behavior. The current study examined in detail whether the influences of the OXTR and AVPR1b genes on prosociality are dependent on the clock gene. This study assessed interactions between the clock gene (rs1801260, rs6832769) and the OXTR (rs1042778, rs237887) and AVPR1b (rs28373064) genes in association with individual differences in prosociality in healthy male Chinese subjects (n = 436). The Prosocial Tendencies Measure (PTM-R) was used to assess prosociality. Participants carrying both the GG/GA variant of AVPR1b rs28373064 and the AA variant of clock rs6832769 showed the highest scores on the Emotional PTM. Carriers of both the T allele of OXTR rs1042778 and the C allele of clock rs1801260 showed the lowest total PTM scores compared with the other groups. The observed interaction effects provide converging evidence that the clock gene and OXT/AVP systems are intertwined and contribute to human prosociality.
Atomic Clock Based on Opto-Electronic Oscillator
NASA Technical Reports Server (NTRS)
Maleki, Lute; Yu, Nan
2005-01-01
A proposed highly accurate clock or oscillator would be based on the concept of an opto-electronic oscillator (OEO) stabilized to an atomic transition. Opto-electronic oscillators, which have been described in a number of prior NASA Tech Briefs articles, generate signals at frequencies in the gigahertz range characterized by high spectral purity but not by longterm stability or accuracy. On the other hand, the signals generated by previously developed atomic clocks are characterized by long-term stability and accuracy but not by spectral purity. The proposed atomic clock would provide high spectral purity plus long-term stability and accuracy a combination of characteristics needed to realize advanced developments in communications and navigation. In addition, it should be possible to miniaturize the proposed atomic clock. When a laser beam is modulated by a microwave signal and applied to a photodetector, the electrical output of the photodetector includes a component at the microwave frequency. In atomic clocks of a type known as Raman clocks or coherent-population-trapping (CPT) clocks, microwave outputs are obtained from laser beams modulated, in each case, to create two sidebands that differ in frequency by the amount of a hyperfine transition in the ground state of atoms of an element in vapor form in a cell. The combination of these sidebands produces a transparency in the population of a higher electronic level that can be reached from either of the two ground-state hyperfine levels by absorption of a photon. The beam is transmitted through the vapor to a photodetector. The components of light scattered or transmitted by the atoms in the two hyperfine levels mix in the photodetector and thereby give rise to a signal at the hyperfine- transition frequency. The proposed atomic clock would include an OEO and a rubidium- or cesium- vapor cell operating in the CPT/Raman regime (see figure). In the OEO portion of this atomic clock, as in a typical prior OEO, a laser beam would pass through an electro-optical modulator, the modulated beam would be fed into a fiber-optic delay line, and the delayed beam would be fed to a photodetector. The electrical output of the photodetector would be detected, amplified, filtered, and fed back to the microwave input port of the modulator. The laser would be chosen to have the same wavelength as that of the pertinent ground-state/higher-state transition of the atoms in the vapor. The modulator/ filter combination would be designed to operate at the microwave frequency of the hyperfine transition. Part of the laser beam would be tapped from the fiberoptic loop of the OEO and introduced into the vapor cell. After passing through the cell, this portion of the beam would be detected differentially with a tapped portion of the fiber-optically-delayed beam. The electrical output of the photodetector would be amplified and filtered in a loop that would control a DC bias applied to the modulator. In this manner, the long-term stability and accuracy of the atomic transition would be transferred to the OEO.
Sweeney, Dylan; Mueller, Guido
2012-11-05
The Laser Interferometer Space Antenna (LISA) and other space based gravitational wave detector designs require a laser communication subsystem to, among other things, transfer clock signals between spacecraft (SC) in order to cancel clock noise in post-processing. The original LISA baseline design requires frequency synthesizers to convert each SC clock into a 2 GHz signal, and electro-optic modulators (EOMs) to modulate this 2 GHz clock signal onto the laser light. Both the frequency synthesizers and the EOMs must operate with a phase fidelity of 2×10(-4)cycles/√Hz. In this paper we present measurements of the phase fidelity of frequency synthesizers and EOMs. We found that both the frequency synthesizers and the EOMs meet the requirement when tested independently and together. We also performed an electronic test of the clock noise transfer using frequency synthesizers and the University of Florida LISA Interferometry (UFLIS) phasemeter. We found that by applying a time varying fractional delay filter we could suppress the clock noise to a level below our measurement limit, which is currently determined by timing jitter and is less than an order of magnitude above the LISA requirement for phase measurements.
Mugford, Sam T.; Fernandez, Olivier; Brinton, Jemima; Flis, Anna; Krohn, Nicole; Encke, Beatrice; Feil, Regina; Sulpice, Ronan; Lunn, John E.; Stitt, Mark; Smith, Alison M.
2014-01-01
Arabidopsis (Arabidopsis thaliana) leaves synthesize starch faster in short days than in long days, but the mechanism that adjusts the rate of starch synthesis to daylength is unknown. To understand this mechanism, we first investigated whether adjustment occurs in mutants lacking components of the circadian clock or clock output pathways. Most mutants adjusted starch synthesis to daylength, but adjustment was compromised in plants lacking the GIGANTEA or FLAVIN-BINDING, KELCH REPEAT, F BOX1 components of the photoperiod-signaling pathway involved in flowering. We then examined whether the properties of the starch synthesis enzyme adenosine 5′-diphosphate-glucose pyrophosphorylase (AGPase) are important for adjustment of starch synthesis to daylength. Modulation of AGPase activity is known to bring about short-term adjustments of photosynthate partitioning between starch and sucrose (Suc) synthesis. We found that adjustment of starch synthesis to daylength was compromised in plants expressing a deregulated bacterial AGPase in place of the endogenous AGPase and in plants containing mutant forms of the endogenous AGPase with altered allosteric regulatory properties. We suggest that the rate of starch synthesis is in part determined by growth rate at the end of the preceding night. If growth at night is low, as in short days, there is a delay before growth recovers during the next day, leading to accumulation of Suc and stimulation of starch synthesis via activation of AGPase. If growth at night is fast, photosynthate is used for growth at the start of the day, Suc does not accumulate, and starch synthesis is not up-regulated. PMID:25293961
Sample-Clock Phase-Control Feedback
NASA Technical Reports Server (NTRS)
Quirk, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy
2012-01-01
To demodulate a communication signal, a receiver must recover and synchronize to the symbol timing of a received waveform. In a system that utilizes digital sampling, the fidelity of synchronization is limited by the time between the symbol boundary and closest sample time location. To reduce this error, one typically uses a sample clock in excess of the symbol rate in order to provide multiple samples per symbol, thereby lowering the error limit to a fraction of a symbol time. For systems with a large modulation bandwidth, the required sample clock rate is prohibitive due to current technological barriers and processing complexity. With precise control of the phase of the sample clock, one can sample the received signal at times arbitrarily close to the symbol boundary, thus obviating the need, from a synchronization perspective, for multiple samples per symbol. Sample-clock phase-control feedback was developed for use in the demodulation of an optical communication signal, where multi-GHz modulation bandwidths would require prohibitively large sample clock frequencies for rates in excess of the symbol rate. A custom mixedsignal (RF/digital) offset phase-locked loop circuit was developed to control the phase of the 6.4-GHz clock that samples the photon-counting detector output. The offset phase-locked loop is driven by a feedback mechanism that continuously corrects for variation in the symbol time due to motion between the transmitter and receiver as well as oscillator instability. This innovation will allow significant improvements in receiver throughput; for example, the throughput of a pulse-position modulation (PPM) with 16 slots can increase from 188 Mb/s to 1.5 Gb/s.
Circadian Amplitude Regulation via FBXW7-Targeted REV-ERBα Degradation.
Zhao, Xuan; Hirota, Tsuyoshi; Han, Xuemei; Cho, Han; Chong, Ling-Wa; Lamia, Katja; Liu, Sihao; Atkins, Annette R; Banayo, Ester; Liddle, Christopher; Yu, Ruth T; Yates, John R; Kay, Steve A; Downes, Michael; Evans, Ronald M
2016-06-16
Defects in circadian rhythm influence physiology and behavior with implications for the treatment of sleep disorders, metabolic disease, and cancer. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms underpinning amplitude is limited. Here, we show that REV-ERBα, a core inhibitory component of clock transcription, is targeted for ubiquitination and subsequent degradation by the F-box protein FBXW7. By relieving REV-ERBα-dependent repression, FBXW7 provides an unrecognized mechanism for enhancing the amplitude of clock gene transcription. Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of REV-ERBα is necessary for FBXW7 recognition. Moreover, targeted hepatic disruption of FBXW7 alters circadian expression of core clock genes and perturbs whole-body lipid and glucose levels. This CDK1-FBXW7 pathway controlling REV-ERBα repression defines an unexpected molecular mechanism for re-engaging the positive transcriptional arm of the clock, as well as a potential route to manipulate clock amplitude via small molecule CDK1 inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.
FAD Regulates CRYPTOCHROME Protein Stability and Circadian Clock in Mice.
Hirano, Arisa; Braas, Daniel; Fu, Ying-Hui; Ptáček, Louis J
2017-04-11
The circadian clock generates biological rhythms of metabolic and physiological processes, including the sleep-wake cycle. We previously identified a missense mutation in the flavin adenine dinucleotide (FAD) binding pocket of CRYPTOCHROME2 (CRY2), a clock protein that causes human advanced sleep phase. This prompted us to examine the role of FAD as a mediator of the clock and metabolism. FAD stabilized CRY proteins, leading to increased protein levels. In contrast, knockdown of Riboflavin kinase (Rfk), an FAD biosynthetic enzyme, enhanced CRY degradation. RFK protein levels and FAD concentrations oscillate in the nucleus, suggesting that they are subject to circadian control. Knockdown of Rfk combined with a riboflavin-deficient diet altered the CRY levels in mouse liver and the expression profiles of clock and clock-controlled genes (especially those related to metabolism including glucose homeostasis). We conclude that light-independent mechanisms of FAD regulate CRY and contribute to proper circadian oscillation of metabolic genes in mammals. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Processing circuit with asymmetry corrector and convolutional encoder for digital data
NASA Technical Reports Server (NTRS)
Pfiffner, Harold J. (Inventor)
1987-01-01
A processing circuit is provided for correcting for input parameter variations, such as data and clock signal symmetry, phase offset and jitter, noise and signal amplitude, in incoming data signals. An asymmetry corrector circuit performs the correcting function and furnishes the corrected data signals to a convolutional encoder circuit. The corrector circuit further forms a regenerated clock signal from clock pulses in the incoming data signals and another clock signal at a multiple of the incoming clock signal. These clock signals are furnished to the encoder circuit so that encoded data may be furnished to a modulator at a high data rate for transmission.
Tick Tock: Circadian Regulation of Plant Innate Immunity.
Lu, Hua; McClung, C Robertson; Zhang, Chong
2017-08-04
Many living organisms on Earth have evolved the ability to integrate environmental and internal signals to determine time and thereafter adjust appropriately their metabolism, physiology, and behavior. The circadian clock is the endogenous timekeeper critical for multiple biological processes in many organisms. A growing body of evidence supports the importance of the circadian clock for plant health. Plants activate timed defense with various strategies to anticipate daily attacks of pathogens and pests and to modulate responses to specific invaders in a time-of-day-dependent manner (gating). Pathogen infection is also known to reciprocally modulate clock activity. Such a cross talk likely reflects the adaptive nature of plants to coordinate limited resources for growth, development, and defense. This review summarizes recent progress in circadian regulation of plant innate immunity with a focus on the molecular events linking the circadian clock and defense. More and better knowledge of clock-defense cross talk could help to improve disease resistance and productivity in economically important crops.
USDA-ARS?s Scientific Manuscript database
Background Circadian rhythms regulate key biological processes influencing metabolic pathways. Dysregulation is associated with type 2 diabetes (T2D) and cardiovascular diseases (CVD). Circadian rhythms are generated by a transcriptional autoregulatory feedback loop involving core clock genes. CLOCK...
The peripheral clock regulates human pigmentation.
Hardman, Jonathan A; Tobin, Desmond J; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Al-Nuaimi, Yusur; Grimaldi, Benedetto; Paus, Ralf
2015-04-01
Although the regulation of pigmentation is well characterized, it remains unclear whether cell-autonomous controls regulate the cyclic on-off switching of pigmentation in the hair follicle (HF). As human HFs and epidermal melanocytes express clock genes and proteins, and given that core clock genes (PER1, BMAL1) modulate human HF cycling, we investigated whether peripheral clock activity influences human HF pigmentation. We found that silencing BMAL1 or PER1 in human HFs increased HF melanin content. Furthermore, tyrosinase expression and activity, as well as TYRP1 and TYRP2 mRNA levels, gp100 protein expression, melanocyte dendricity, and the number gp100+ HF melanocytes, were all significantly increased in BMAL1 and/or PER1-silenced HFs. BMAL1 or PER1 silencing also increased epidermal melanin content, gp100 protein expression, and tyrosinase activity in human skin. These effects reflect direct modulation of melanocytes, as BMAL1 and/or PER1 silencing in isolated melanocytes increased tyrosinase activity and TYRP1/2 expression. Mechanistically, BMAL1 knockdown reduces PER1 transcription, and PER1 silencing induces phosphorylation of the master regulator of melanogenesis, microphthalmia-associated transcription factor, thus stimulating human melanogenesis and melanocyte activity in situ and in vitro. Therefore, the molecular clock operates as a cell-autonomous modulator of human pigmentation and may be targeted for future therapeutic strategies.
Clock and trigger synchronization between several chassis of digital data acquisition modules
NASA Astrophysics Data System (ADS)
Hennig, W.; Tan, H.; Walby, M.; Grudberg, P.; Fallu-Labruyere, A.; Warburton, W. K.; Vaman, C.; Starosta, K.; Miller, D.
2007-08-01
In applications with segmented high purity Ge detectors or other detector arrays with tens or hundreds of channels, the high development cost and limited flexibility of application specific integrated circuits outweigh their benefits of low power and small size. The readout electronics typically consist of multi-channel data acquisition modules in a common chassis for power, clock and trigger distribution, and data readout. As arrays become larger and reach several hundred channels, the readout electronics have to be divided over several chassis, but still must maintain precise synchronization of clocks and trigger signals across all channels. This division becomes necessary not only because of limits given by the instrumentation standards on module size and chassis slot numbers, but also because data readout times increase when more modules share the same data bus and because power requirements approach the limits of readily available power supplies. In this paper, we present a method for distributing clocks and triggers between 4 PXI chassis containing DGF Pixie-16 modules with up to 226 acquisition channels per chassis. The data acquisition system is intended to instrument the over 600 channels of the SeGA detector array at the National Superconducting Cyclotron Laboratory. Our solution is designed to achieve synchronous acquisition of detector waveforms from all channels with a jitter of less than 1 ns, and can be extended to a larger number of chassis if desired.
Circadian clock: linking epigenetics to aging
Orozco-Solis, Ricardo; Sassone-Corsi, Paolo
2015-01-01
Circadian rhythms are generated by an intrinsic cellular mechanism that controls a large array of physiological and metabolic processes. There is erosion in the robustness of circadian rhythms during aging, and disruption of the clock by genetic ablation of specific genes is associated with aging-related features. Importantly, environmental conditions are thought to modulate the aging process. For example, caloric restriction is a very strong environmental effector capable of delaying aging. Intracellular pathways implicating nutrient sensors, such as SIRTs and mTOR complexes, impinge on cellular and epigenetic mechanisms that control the aging process. Strikingly, accumulating evidences indicate that these pathways are involved in both the modulation of the aging process and the control of the clock. Hence, innovative therapeutic strategies focused at controlling the circadian clock and the nutrient sensing pathways might beneficially influence the negative effects of aging. PMID:25033025
NASA Astrophysics Data System (ADS)
Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-11-01
Optical fibre communication technologies are playing important roles in data centre networks (DCNs). Techniques for increasing capacity and flexibility for the inter-rack/pod communications in data centres have drawn remarkable attention in recent years. In this work, we propose a low complexity, reliable, alternative technique for increasing DCN capacity and flexibility through multi-signal modulation onto a single mode VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated on a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by modulating its phase attribute with a 2 GHz reference frequency (RF) clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a phase modulated 2 GHz RF signal using a single mode 10 GHz bandwidth VCSEL carrier. It is the first time a single mode 10 GHz bandwidth VCSEL carrier is reported to simultaneously transmit a directly modulated 4-PAM data signal and a phase modulated RF clock signal. A receiver sensitivity of -10. 52 dBm was attained for a 20 Gbps 4-PAM VCSEL transmission. The 2 GHz phase modulated RF clock signal introduced a power budget penalty of 0.21 dB. Simultaneous distribution of both data and timing signals over shared infrastructure significantly increases the aggregated data rate at different optical network units within the DCN, without expensive optics investment. We further demonstrate on the design of a software-defined digital signal processing assisted receiver to efficiently recover the transmitted signal without employing costly receiver hardware.
A novel simultaneous demultiplexing and clock recovery unit for high speed OTDM system
NASA Astrophysics Data System (ADS)
Zhong, Kangping; Jia, Nan; Li, Tangjun; Wang, Muguang; Chi, Jianfeng; Sun, Jian; Wang, Jingtian
2010-11-01
In this letter, a novel simultaneous demultiplexing and clock recovery unit based on EAMs and clock recovery module is presented and experimentally demonstrated for a high speed OTDM system. The 10GHz clock signal with low jitter is extracted from 80Gbit/s and 160Gbit/s OTDM signal, and every channel of the OTDM signal is successfully demultiplexed using this unit. The power penalty is lower than 3dB at BER of 10-9.
System-wide power management control via clock distribution network
Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.
2015-05-19
An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.
Shostak, Anton; Ruppert, Bianca; Ha, Nati; Bruns, Philipp; Toprak, Umut H; Eils, Roland; Schlesner, Matthias; Diernfellner, Axel; Brunner, Michael
2016-06-24
The circadian clock and the cell cycle are major cellular systems that organize global physiology in temporal fashion. It seems conceivable that the potentially conflicting programs are coordinated. We show here that overexpression of MYC in U2OS cells attenuates the clock and conversely promotes cell proliferation while downregulation of MYC strengthens the clock and reduces proliferation. Inhibition of the circadian clock is crucially dependent on the formation of repressive complexes of MYC with MIZ1 and subsequent downregulation of the core clock genes BMAL1 (ARNTL), CLOCK and NPAS2. We show furthermore that BMAL1 expression levels correlate inversely with MYC levels in 102 human lymphomas. Our data suggest that MYC acts as a master coordinator that inversely modulates the impact of cell cycle and circadian clock on gene expression.
Interrelationship between 3,5,3´-triiodothyronine and the circadian clock in the rodent heart.
Peliciari-Garcia, Rodrigo Antonio; Prévide, Rafael Maso; Nunes, Maria Tereza; Young, Martin Elliot
2016-01-01
Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day (TOD)-dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, oscillations in T3 sensitivity in the heart is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by real-time quantitative polymerase chain reaction (qPCR). Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2 and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g. Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes was interrogated at 3-h intervals over the subsequent 24-h period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed TOD-dependent sensitivity to T3 in the heart and its effects in the circadian clock genes expression.
Clock recovery PLL with gated PFD for NRZ ON-OFF Modulated Signals in a retinal implant system.
Brendler, Christian; Aryan, Naser Pour; Rieger, Viola; Rothermel, Albrecht
2013-01-01
A Clock Recovery Phase Locked Loop with Gated Phase Frequency Detector (GPLL) for NRZ ON-OFF Modulated Signals with low data transmission rates for an inductively powered subretinal implant system is presented. Low data transmission rate leads to a long absence of inductive powering in the system when zeros are transmitted. Consequently there is no possibility to extract any clock in these pauses, thus the digital circuitry can not work any more. Compared to a commonly used PLL for clock extraction, no certain amount of data transitions is needed. This is achieved by having two operating modes. In one mode the GPLL tracks the HF input signal. In the other, the GPLL is an adjustable oscillator oscillating at the last used frequency. The proposed GPLL is fabricated and measured using a 350 nm High Voltage CMOS technology.
Diurnal Variation in Vascular and Metabolic Function in Diet-Induced Obesity
Prasai, Madhu J.; Mughal, Romana S.; Wheatcroft, Stephen B.; Kearney, Mark T.; Grant, Peter J.; Scott, Eleanor M.
2013-01-01
Circadian rhythms are integral to the normal functioning of numerous physiological processes. Evidence from human and mouse studies suggests that loss of rhythm occurs in obesity and cardiovascular disease and may be a neglected contributor to pathophysiology. Obesity has been shown to impair the circadian clock mechanism in liver and adipose tissue but its effect on cardiovascular tissues is unknown. We investigated the effect of diet-induced obesity in C57BL6J mice upon rhythmic transcription of clock genes and diurnal variation in vascular and metabolic systems. In obesity, clock gene function and physiological rhythms were preserved in the vasculature but clock gene transcription in metabolic tissues and rhythms of glucose tolerance and insulin sensitivity were blunted. The most pronounced attenuation of clock rhythm occurred in adipose tissue, where there was also impairment of clock-controlled master metabolic genes and both AMPK mRNA and protein. Across tissues, clock gene disruption was associated with local inflammation but diverged from impairment of insulin signaling. We conclude that vascular tissues are less sensitive to pathological disruption of diurnal rhythms during obesity than metabolic tissues and suggest that cellular disruption of clock gene rhythmicity may occur by mechanisms shared with inflammation but distinct from those leading to insulin resistance. PMID:23382450
Lelito, Katherine R; Shafer, Orie T
2012-04-01
The relatively simple clock neuron network of Drosophila is a valuable model system for the neuronal basis of circadian timekeeping. Unfortunately, many key neuronal classes of this network are inaccessible to electrophysiological analysis. We have therefore adopted the use of genetically encoded sensors to address the physiology of the fly's circadian clock network. Using genetically encoded Ca(2+) and cAMP sensors, we have investigated the physiological responses of two specific classes of clock neuron, the large and small ventrolateral neurons (l- and s-LN(v)s), to two neurotransmitters implicated in their modulation: acetylcholine (ACh) and γ-aminobutyric acid (GABA). Live imaging of l-LN(v) cAMP and Ca(2+) dynamics in response to cholinergic agonist and GABA application were well aligned with published electrophysiological data, indicating that our sensors were capable of faithfully reporting acute physiological responses to these transmitters within single adult clock neuron soma. We extended these live imaging methods to s-LN(v)s, critical neuronal pacemakers whose physiological properties in the adult brain are largely unknown. Our s-LN(v) experiments revealed the predicted excitatory responses to bath-applied cholinergic agonists and the predicted inhibitory effects of GABA and established that the antagonism of ACh and GABA extends to their effects on cAMP signaling. These data support recently published but physiologically untested models of s-LN(v) modulation and lead to the prediction that cholinergic and GABAergic inputs to s-LN(v)s will have opposing effects on the phase and/or period of the molecular clock within these critical pacemaker neurons.
Polar cap photoionization and the ten-hour clock at Jupiter
NASA Technical Reports Server (NTRS)
Goertz, C. K.; Baker, D. N.
1985-01-01
It is shown that the clock-like modulation of the spectral index of energetic electrons (greater than 2 MeV) in the outer Jovian magnetosphere is due to a periodic shift of the particle energy spectrum toward higher and lower energies. This shift results in a modulation of the spectral index when the spectrum is not a pure power law in energy. It is suggested that the periodic energization is due to a periodic modulation of the magnetic field in the outer magnetosphere. This modulation is caused by a variation of the longitudinally averaged Pedersen conductivity due to the asymmetric solar illumination of the trace of the magnetodisk in the high-latitude ionospheres. Such a modulation requires the presence of a surface magnetic anomaly.
Effects of intermittent fasting on glucose and lipid metabolism.
Antoni, Rona; Johnston, Kelly L; Collins, Adam L; Robertson, M Denise
2017-08-01
Two intermittent fasting variants, intermittent energy restriction (IER) and time-restricted feeding (TRF), have received considerable interest as strategies for weight-management and/or improving metabolic health. With these strategies, the pattern of energy restriction and/or timing of food intake are altered so that individuals undergo frequently repeated periods of fasting. This review provides a commentary on the rodent and human literature, specifically focusing on the effects of IER and TRF on glucose and lipid metabolism. For IER, there is a growing evidence demonstrating its benefits on glucose and lipid homeostasis in the short-to-medium term; however, more long-term safety studies are required. Whilst the metabolic benefits of TRF appear quite profound in rodents, findings from the few human studies have been mixed. There is some suggestion that the metabolic changes elicited by these approaches can occur in the absence of energy restriction, and in the context of IER, may be distinct from those observed following similar weight-loss achieved via modest continuous energy restriction. Mechanistically, the frequently repeated prolonged fasting intervals may favour preferential reduction of ectopic fat, beneficially modulate aspects of adipose tissue physiology/morphology, and may also impinge on circadian clock regulation. However, mechanistic evidence is largely limited to findings from rodent studies, thus necessitating focused human studies, which also incorporate more dynamic assessments of glucose and lipid metabolism. Ultimately, much remains to be learned about intermittent fasting (in its various forms); however, the findings to date serve to highlight promising avenues for future research.
Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.
Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A
2015-04-01
The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner.
Shin, Jieun; Sánchez-Villarreal, Alfredo; Davis, Amanda M; Du, Shen-Xiu; Berendzen, Kenneth W; Koncz, Csaba; Ding, Zhaojun; Li, Cuiling; Davis, Seth J
2017-07-01
Plants generate rhythmic metabolism during the repetitive day/night cycle. The circadian clock produces internal biological rhythms to synchronize numerous metabolic processes such that they occur at the required time of day. Metabolism conversely influences clock function by controlling circadian period and phase and the expression of core-clock genes. Here, we show that AKIN10, a catalytic subunit of the evolutionarily conserved key energy sensor sucrose non-fermenting 1 (Snf1)-related kinase 1 (SnRK1) complex, plays an important role in the circadian clock. Elevated AKIN10 expression led to delayed peak expression of the circadian clock evening-element GIGANTEA (GI) under diurnal conditions. Moreover, it lengthened clock period specifically under light conditions. Genetic analysis showed that the clock regulator TIME FOR COFFEE (TIC) is required for this effect of AKIN10. Taken together, we propose that AKIN10 conditionally works in a circadian clock input pathway to the circadian oscillator. © 2017 John Wiley & Sons Ltd.
Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms
Atger, Florian; Mauvoisin, Daniel; Weger, Benjamin; Gobet, Cédric; Gachon, Frédéric
2017-01-01
Circadian clocks are endogenous timekeeping systems that adapt in an anticipatory fashion the physiology and behavior of most living organisms. In mammals, the master pacemaker resides in the suprachiasmatic nucleus and entrains peripheral clocks using a wide range of signals that differentially schedule physiology and gene expression in a tissue-specific manner. The peripheral clocks, such as those found in the liver, are particularly sensitive to rhythmic external cues like feeding behavior, which modulate the phase and amplitude of rhythmic gene expression. Consequently, the liver clock temporally tunes the expression of many genes involved in metabolism and physiology. However, the circadian modulation of cellular functions also relies on multiple layers of posttranscriptional and posttranslational regulation. Strikingly, these additional regulatory events may happen independently of any transcriptional oscillations, showing that complex regulatory networks ultimately drive circadian output functions. These rhythmic events also integrate feeding-related cues and adapt various metabolic processes to food availability schedules. The importance of such temporal regulation of metabolism is illustrated by metabolic dysfunctions and diseases resulting from circadian clock disruption or inappropriate feeding patterns. Therefore, the study of circadian clocks and rhythmic feeding behavior should be of interest to further advance our understanding of the prevention and therapy of metabolic diseases. PMID:28337174
THE mPER2 CLOCK GENE MODULATES COCAINE ACTIONS IN THE MOUSE CIRCADIAN SYSTEM
Brager, Allison J.; Stowie, Adam C.; Prosser, Rebecca A.; Glass, J. David
2014-01-01
Cocaine is a potent disruptor of photic and non-photic pathways for circadian entrainment of the master circadian clock of the suprachiasmatic nucleus (SCN). These actions of cocaine likely involve its modulation of molecular (clock gene) components for SCN clock timekeeping. At present, however, the physiological basis of such an interaction is unclear. To address this question, we compared photic and non-photic phase-resetting responses between wild-type (WT) and Per2 mutant mice expressing nonfunctional PER2 protein to systemic and intra-SCN cocaine administrations. In the systemic trials, cocaine was administered i.p. (20 mg/kg) either at midday or prior to a light pulse in the early night to assess its non-photic and photic behavioral phase-resetting actions, respectively. In the intra-SCN trial, cocaine was administered by reverse microdialysis at midday to determine if the SCN is a direct target for its non-photic phase-resetting action. Non-photic phase-advancing responses to i.p. cocaine at midday were significantly (~3.5-fold) greater in Per2 mutants than WTs. However, the phase-advancing action of intra-SCN cocaine perfusion at midday did not differ between genotypes. In the light pulse trial, Per2 mutants exhibited larger photic phase-delays than did WTs, and the attenuating action of cocaine on this response was proportionately larger than in WTs. These data indicate that the Per2 clock gene is a potent modulator of cocaine’s actions in the circadian system. With regard to non-photic phase-resetting, the SCN is confirmed as a direct target of cocaine action; however, Per2 modulation of this effect likely occurs outside of the SCN. PMID:23333842
Modeling the emergence of circadian rhythms in a clock neuron network.
Diambra, Luis; Malta, Coraci P
2012-01-01
Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.
Snider, Kaitlin H.; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E.; Hoyt, Kari; Obrietan, Karl
2017-01-01
A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. PMID:27091299
The Impact of Sleep and Circadian Disturbance on Hormones and Metabolism
Kim, Tae Won; Jeong, Jong-Hyun; Hong, Seung-Chul
2015-01-01
The levels of several hormones fluctuate according to the light and dark cycle and are also affected by sleep, feeding, and general behavior. The regulation and metabolism of several hormones are influenced by interactions between the effects of sleep and the intrinsic circadian system; growth hormone, melatonin, cortisol, leptin, and ghrelin levels are highly correlated with sleep and circadian rhythmicity. There are also endogenous circadian mechanisms that serve to regulate glucose metabolism and similar rhythms pertaining to lipid metabolism, regulated through the actions of various clock genes. Sleep disturbance, which negatively impacts hormonal rhythms and metabolism, is also associated with obesity, insulin insensitivity, diabetes, hormonal imbalance, and appetite dysregulation. Circadian disruption, typically induced by shift work, may negatively impact health due to impaired glucose and lipid homeostasis, reversed melatonin and cortisol rhythms, and loss of clock gene rhythmicity. PMID:25861266
Qian, Jingyi; Block, Gene D.; Colwell, Christopher S.; Matveyenko, Aleksey V.
2013-01-01
There is a correlation between circadian disruption, type 2 diabetes mellitus (T2DM), and islet failure. However, the mechanisms underlying this association are largely unknown. Pancreatic islets express self-sustained circadian clocks essential for proper β-cell function and survival. We hypothesized that exposure to environmental conditions associated with disruption of circadian rhythms and susceptibility to T2DM in humans disrupts islet clock and β-cell function. To address this hypothesis, we validated the use of Per-1:LUC transgenic rats for continuous longitudinal assessment of islet circadian clock function ex vivo. Using this methodology, we subsequently examined effects of the continuous exposure to light at night (LL) on islet circadian clock and insulin secretion in vitro in rat islets. Our data show that changes in the light–dark cycle in vivo entrain the phase of islet clock transcriptional oscillations, whereas prolonged exposure (10 weeks) to LL disrupts islet circadian clock function through impairment in the amplitude, phase, and interislet synchrony of clock transcriptional oscillations. We also report that exposure to LL leads to diminished glucose-stimulated insulin secretion due to a decrease in insulin secretory pulse mass. Our studies identify potential mechanisms by which disturbances in circadian rhythms common to modern life can predispose to islet failure in T2DM. PMID:23775768
Nozue, Kazunari; Harmer, Stacey L.; Maloof, Julin N.
2011-01-01
Plants exhibit daily rhythms in their growth, providing an ideal system for the study of interactions between environmental stimuli such as light and internal regulators such as the circadian clock. We previously found that two basic loop-helix-loop transcription factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, integrate light and circadian clock signaling to generate rhythmic plant growth in Arabidopsis (Arabidopsis thaliana). Here, we use expression profiling and real-time growth assays to identify growth regulatory networks downstream of PIF4 and PIF5. Genome-wide analysis of light-, clock-, or growth-correlated genes showed significant overlap between the transcriptomes of clock-, light-, and growth-related pathways. Overrepresentation analysis of growth-correlated genes predicted that the auxin and gibberellic acid (GA) hormone pathways both contribute to diurnal growth control. Indeed, lesions of GA biosynthesis genes retarded rhythmic growth. Surprisingly, GA-responsive genes are not enriched among genes regulated by PIF4 and PIF5, whereas auxin pathway and response genes are. Consistent with this finding, the auxin response is more severely affected than the GA response in pif4 pif5 double mutants and in PIF5-overexpressing lines. We conclude that at least two downstream modules participate in diurnal rhythmic hypocotyl growth: PIF4 and/or PIF5 modulation of auxin-related pathways and PIF-independent regulation of the GA pathway. PMID:21430186
Optoelectrical clock recovery with dispersion monitoring for high speed transmission
NASA Astrophysics Data System (ADS)
Wen, He; Liao, Jinxin; Zheng, Xiaoping; Zhang, Hanyi; Guo, Yili
2010-12-01
The proposed clock recovery scheme introduces electrooptical modulation to down convert the clock frequency facilitating succeeding narrow band filtering by a phase locked loop (PLL) with ordinary radio frequency (RF) devices, further, employs a quadrature phase detector in the PLL to provide an indication signal for monitoring residual dispersion. It was demonstrated in a polarization multiplexed 160-Gbit/s optical non-return to zero quadrature phase shift keying (NRZ-QPSK) transmission system.
Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver.
Guillaumond, Fabienne; Gréchez-Cassiau, Aline; Subramaniam, Malayannan; Brangolo, Sophie; Peteri-Brünback, Brigitta; Staels, Bart; Fiévet, Catherine; Spelsberg, Thomas C; Delaunay, Franck; Teboul, Michèle
2010-06-01
The circadian timing system coordinates many aspects of mammalian physiology and behavior in synchrony with the external light/dark cycle. These rhythms are driven by endogenous molecular clocks present in most body cells. Many clock outputs are transcriptional regulators, suggesting that clock genes primarily control physiology through indirect pathways. Here, we show that Krüppel-like factor 10 (KLF10) displays a robust circadian expression pattern in wild-type mouse liver but not in clock-deficient Bmal1 knockout mice. Consistently, the Klf10 promoter recruited the BMAL1 core clock protein and was transactivated by the CLOCK-BMAL1 heterodimer through a conserved E-box response element. Profiling the liver transcriptome from Klf10(-/-) mice identified 158 regulated genes with significant enrichment for transcripts involved in lipid and carbohydrate metabolism. Importantly, approximately 56% of these metabolic genes are clock controlled. Male Klf10(-/-) mice displayed postprandial and fasting hyperglycemia, a phenotype accompanied by a significant time-of-day-dependent upregulation of the gluconeogenic gene Pepck and increased hepatic glucose production. Consistently, functional data showed that the proximal Pepck promoter is repressed directly by KLF10. Klf10(-/-) females were normoglycemic but displayed higher plasma triglycerides. Correspondingly, rhythmic gene expression of components of the lipogenic pathway, including Srebp1c, Fas, and Elovl6, was altered in females. Collectively, these data establish KLF10 as a required circadian transcriptional regulator that links the molecular clock to energy metabolism in the liver.
Interrelationship between 3,5,3′-triiodothyronine and the circadian clock in the rodent heart
Peliciari-Garcia, Rodrigo Antonio; Prévide, Rafael Maso; Nunes, Maria Tereza; Young, Martin Elliot
2017-01-01
Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally-based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day- (TOD) dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, whether oscillations in T3 sensitivity in the heart occur is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by Real-Time qPCR. Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2, and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g., Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes were interrogated at 3-h intervals over the subsequent 24h-period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed time-of-day-dependent rhythms in cardiac T3 sensitivity, and that T3 alters the circadian clock in the heart. PMID:27661292
Nakamura, Koh-ichi; Inoue, Ikuo; Takahashi, Seiichiro; Komoda, Tsugikazu; Katayama, Shigehiro
2008-01-01
Feeding and the circadian system regulate lipid absorption and metabolism, and the expression of enzymes involved in lipid metabolism is believed to be directly controlled by the clock system. To investigate the interaction between the lipid metabolism system and the circadian system, we analyzed the effect of a CLOCK/BMAL1 heterodimer on the transcriptional regulation of PPAR-controlled genes through PPAR response elements (PPREs). Transcription of acyl-CoA oxidase, cellular retinol binding protein II (CRBPII), and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase was altered by CLOCK/BMAL1, and transcriptional activity via PPRE by PPARs/RXRα was enhanced by CLOCK/BMAL1 and/or by PPARs ligand/activators. We also found that CLOCK/BMAL1-mediated transcription of period (PER) and cryptochrome (CRY) was modulated by PPARα/RXRα. These results suggest that there may be crosstalk between the PPARs/RXRα-regulated system and the CLOCK/BMAL1-regulated system. PMID:18317514
Synchrony and desynchrony in circadian clocks: impacts on learning and memory
Krishnan, Harini C.
2015-01-01
Circadian clocks evolved under conditions of environmental variation, primarily alternating light dark cycles, to enable organisms to anticipate daily environmental events and coordinate metabolic, physiological, and behavioral activities. However, modern lifestyle and advances in technology have increased the percentage of individuals working in phases misaligned with natural circadian activity rhythms. Endogenous circadian oscillators modulate alertness, the acquisition of learning, memory formation, and the recall of memory with examples of circadian modulation of memory observed across phyla from invertebrates to humans. Cognitive performance and memory are significantly diminished when occurring out of phase with natural circadian rhythms. Disruptions in circadian regulation can lead to impairment in the formation of memories and manifestation of other cognitive deficits. This review explores the types of interactions through which the circadian clock modulates cognition, highlights recent progress in identifying mechanistic interactions between the circadian system and the processes involved in memory formation, and outlines methods used to remediate circadian perturbations and reinforce circadian adaptation. PMID:26286653
Krupp, Joshua J.; Billeter, Jean-Christophe; Wong, Amy; Choi, Charles; Nitabach, Michael N.; Levine, Joel D.
2014-01-01
Summary Social cues contribute to the circadian entrainment of physiological and behavioral rhythms. These cues supplement the influence of daily and seasonal cycles in light and temperature. In Drosophila, the social environment modulates circadian mechanisms that regulate sex pheromone production and mating behavior. Here we demonstrate that a neuroendocrine pathway, defined by the neuropeptide Pigment-Dispersing Factor (PDF), couples the central nervous system (CNS) to the physiological output of peripheral clock cells that produce pheromones, the oenocytes. PDF signaling from the CNS modulates the phase of the oenocyte clock. Despite its requirement for sustaining free-running locomoter activity rhythms, PDF is not necessary to sustain molecular rhythms in the oenocytes. Interestingly, disruption of the PDF signaling pathway reduces male sex pheromones and results in sex-specific differences in mating behavior. Our findings highlight the role of neuropeptide signaling and the circadian system in synchronizing the physiological and behavioral processes which govern social interactions. PMID:23849197
Multifunction audio digitizer for communications systems
NASA Technical Reports Server (NTRS)
Monford, L. G., Jr.
1971-01-01
Digitizer accomplishes both N bit pulse code modulation /PCM/ and delta modulation, and provides modulation indicating variable signal gain and variable sidetone. Other features include - low package count, variable clock rate to optimize bandwidth, and easily expanded PCM output.
SRC-2 is an essential coactivator for orchastrating metabolism and circadian rhythm
USDA-ARS?s Scientific Manuscript database
Synchrony of the mammalian circadian clock is achieved by complex transcriptional and translational feedback loops centered on the BMAL1:CLOCK heterodimer. Modulation of circadian feedback loops is essential for maintaining rhythmicity, yet the role of transcriptional coactivators in driving BMAL1:C...
Salomé, Patrice A; To, Jennifer P C; Kieber, Joseph J; McClung, C Robertson
2006-01-01
Light and temperature are potent environmental signals used to synchronize the circadian oscillator with external time and photoperiod. Phytochrome and cryptochrome photoreceptors integrate light quantity and quality to modulate the pace and phase of the clock. PHYTOCHROME B (phyB) controls period length in red light as well as the phase of the clock in white light. phyB interacts with ARABIDOPSIS RESPONSE REGULATOR4 (ARR4) in a light-dependent manner. Accordingly, we tested ARR4 and other members of the type-A ARR family for roles in clock function and show that ARR4 and its closest relative, ARR3, act redundantly in the Arabidopsis thaliana circadian system. Loss of ARR3 and ARR4 lengthens the period of the clock even in the absence of light, demonstrating that they do so independently of active phyB. In addition, in white light, arr3,4 mutants show a leading phase similar to phyB mutants, suggesting that circadian light input is modulated by the interaction of phyB with ARR4. Although type-A ARRs are involved in cytokinin signaling, the circadian defects appear to be independent of cytokinin, as exogenous cytokinin affects the phase but not the period of the clock. Therefore, ARR3 and ARR4 are critical for proper circadian period and define an additional level of regulation of the circadian clock in Arabidopsis.
Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl
2016-07-15
A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. Copyright © 2016 Elsevier B.V. All rights reserved.
Bunch, Richard H.
1986-01-01
A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.
Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration
Musiek, Erik S.; Lim, Miranda M.; Yang, Guangrui; Bauer, Adam Q.; Qi, Laura; Lee, Yool; Roh, Jee Hoon; Ortiz-Gonzalez, Xilma; Dearborn, Joshua T.; Culver, Joseph P.; Herzog, Erik D.; Hogenesch, John B.; Wozniak, David F.; Dikranian, Krikor; Giasson, Benoit I.; Weaver, David R.; Holtzman, David M.; FitzGerald, Garret A.
2013-01-01
Brain aging is associated with diminished circadian clock output and decreased expression of the core clock proteins, which regulate many aspects of cellular biochemistry and metabolism. The genes encoding clock proteins are expressed throughout the brain, though it is unknown whether these proteins modulate brain homeostasis. We observed that deletion of circadian clock transcriptional activators aryl hydrocarbon receptor nuclear translocator–like (Bmal1) alone, or circadian locomotor output cycles kaput (Clock) in combination with neuronal PAS domain protein 2 (Npas2), induced severe age-dependent astrogliosis in the cortex and hippocampus. Mice lacking the clock gene repressors period circadian clock 1 (Per1) and period circadian clock 2 (Per2) had no observed astrogliosis. Bmal1 deletion caused the degeneration of synaptic terminals and impaired cortical functional connectivity, as well as neuronal oxidative damage and impaired expression of several redox defense genes. Targeted deletion of Bmal1 in neurons and glia caused similar neuropathology, despite the retention of intact circadian behavioral and sleep-wake rhythms. Reduction of Bmal1 expression promoted neuronal death in primary cultures and in mice treated with a chemical inducer of oxidative injury and striatal neurodegeneration. Our findings indicate that BMAL1 in a complex with CLOCK or NPAS2 regulates cerebral redox homeostasis and connects impaired clock gene function to neurodegeneration. PMID:24270424
Physiological links of circadian clock and biological clock of aging.
Liu, Fang; Chang, Hung-Chun
2017-07-01
Circadian rhythms orchestrate biochemical and physiological processes in living organisms to respond the day/night cycle. In mammals, nearly all cells hold self-sustained circadian clocks meanwhile couple the intrinsic rhythms to systemic changes in a hierarchical manner. The suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master pacemaker to initiate daily synchronization according to the photoperiod, in turn determines the phase of peripheral cellular clocks through a variety of signaling relays, including endocrine rhythms and metabolic cycles. With aging, circadian desynchrony occurs at the expense of peripheral metabolic pathologies and central neurodegenerative disorders with sleep symptoms, and genetic ablation of circadian genes in model organisms resembled the aging-related features. Notably, a number of studies have linked longevity nutrient sensing pathways in modulating circadian clocks. Therapeutic strategies that bridge the nutrient sensing pathways and circadian clock might be rational designs to defy aging.
Vasculature on the clock: Circadian rhythm and vascular dysfunction.
Crnko, Sandra; Cour, Martin; Van Laake, Linda W; Lecour, Sandrine
2018-05-17
The master mammalian circadian clock (i.e. central clock), located in the suprachiasmatic nucleus of the hypothalamus, orchestrates the synchronization of the daily behavioural and physiological rhythms to better adapt the organism to the external environment in an anticipatory manner. This central clock is entrained by a variety of signals, the best established being light and food. However, circadian cycles are not simply the consequences of these two cues but are generated by endogenous circadian clocks. Indeed, clock machinery is found in mainly all tissues and cell types, including cells of the vascular system such as endothelial cells, fibroblasts, smooth muscle cells and stem cells. This machinery physiologically contributes to modulate the daily vascular function, and its disturbance therefore plays a major role in the pathophysiology of vascular dysfunction. Therapies targeting the circadian rhythm may therefore be of benefit against vascular disease. Copyright © 2018 Elsevier Inc. All rights reserved.
Barca-Mayo, Olga; Pons-Espinal, Meritxell; Follert, Philipp; Armirotti, Andrea; Berdondini, Luca; De Pietri Tonelli, Davide
2017-01-01
Circadian rhythms are controlled by a network of clock neurons in the central pacemaker, the suprachiasmatic nucleus (SCN). Core clock genes, such as Bmal1, are expressed in SCN neurons and in other brain cells, such as astrocytes. However, the role of astrocytic clock genes in controlling rhythmic behaviour is unknown. Here we show that ablation of Bmal1 in GLAST-positive astrocytes alters circadian locomotor behaviour and cognition in mice. Specifically, deletion of astrocytic Bmal1 has an impact on the neuronal clock through GABA signalling. Importantly, pharmacological modulation of GABAA-receptor signalling completely rescues the behavioural phenotypes. Our results reveal a crucial role of astrocytic Bmal1 for the coordination of neuronal clocks and propose a new cellular target, astrocytes, for neuropharmacology of transient or chronic perturbation of circadian rhythms, where alteration of astrocytic clock genes might contribute to the impairment of the neurobehavioural outputs such as cognition. PMID:28186121
Optical transmission modules for multi-channel superconducting quantum interference device readouts.
Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong
2013-12-01
We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.
NASA Technical Reports Server (NTRS)
Mccaskill, T. B.; Buisson, J. A.; Reid, W. G.
1984-01-01
An on-orbit frequency stability performance analysis of the GPS NAVSTAR-1 quartz clock and the NAVSTARs-6 and -8 rubidium clocks is presented. The clock offsets were obtained from measurements taken at the GPS monitor stations which use high performance cesium standards as a reference. Clock performance is characterized through the use of the Allan variance, which is evaluated for sample times of 15 minutes to two hours, and from one day to 10 days. The quartz and rubidium clocks' offsets were corrected for aging rate before computing the frequency stability. The effect of small errors in aging rate is presented for the NAVSTAR-8 rubidium clock's stability analysis. The analysis includes presentation of time and frequency residuals with respect to linear and quadratic models, which aid in obtaining aging rate values and identifying systematic and random effects. The frequency stability values were further processed with a time domain noise process analysis, which is used to classify random noise process and modulation type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, Karen S.; Hurley, Jennifer M.; Widom, Joanne
In the Neurospora crassa circadian clock, a protein complex of frequency (FRQ), casein kinase 1a (CK1a), and the FRQ-interacting RNA Helicase (FRH) rhythmically represses gene expression by the white-collar complex (WCC). FRH crystal structures in several conformations and bound to ADP/RNA reveal differences between FRH and the yeast homolog Mtr4 that clarify the distinct role of FRH in the clock. The FRQ-interacting region at the FRH N-terminus has variable structure in the absence of FRQ. A known mutation that disrupts circadian rhythms (R806H) resides in a positively charged surface of the KOW domain, far removed from the helicase core. Here,more » we show that changes to other similarly located residues modulate interactions with the WCC and FRQ. A V142G substitution near the N-terminus also alters FRQ and WCC binding to FRH, but produces an unusual short clock period. Finally, these data support the assertion that FRH helicase activity does not play an essential role in the clock, but rather FRH acts to mediate contacts among FRQ, CK1a and the WCC through interactions involving its N-terminus and KOW module.« less
Measurement Techniques for Transmit Source Clock Jitter for Weak Serial RF Links
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin A.; Schlesinger, Adam M.
2010-01-01
Techniques for filtering clock jitter measurements are developed, in the context of controlling data modulation jitter on an RF carrier to accommodate low signal-to-noise ratio thresholds of high-performance error correction codes. Measurement artifacts from sampling are considered, and a tutorial on interpretation of direct readings is included.
Circadian Modulation of Short-Term Memory in "Drosophila"
ERIC Educational Resources Information Center
Lyons, Lisa C.; Roman, Gregg
2009-01-01
Endogenous biological clocks are widespread regulators of behavior and physiology, allowing for a more efficient allocation of efforts and resources over the course of a day. The extent that different processes are regulated by circadian oscillators, however, is not fully understood. We investigated the role of the circadian clock on short-term…
NASA Astrophysics Data System (ADS)
Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-01-01
Access networks based on vertical cavity surface emitting laser (VCSEL) transmitters offer alternative solution in delivering different high bandwidth, cost effective services to the customer premises. Clock and reference frequency distribution is critical for applications such as Coordinated Universal Time (UTC), GPS, banking and big data science projects. Simultaneous distribution of both data and timing signals over shared infrastructure is thus desirable. In this paper, we propose and experimentally demonstrate a novel, cost-effective technique for multi-signal modulation on a single VCSEL transmitter. Two signal types, an intensity modulated 10 Gbps data signal and a polarization-based pulse per second (PPS) clock signal are directly modulated onto a single VCSEL carrier at 1310 nm. Spectral efficiency is maximized by exploiting inherent orthogonal polarization switching of the VCSEL with changing bias in transmission of the PPS signal. A 10 Gbps VCSEL transmission with PPS over 11 km of G.652 fibre introduced a transmission penalty of 0.52 dB. The contribution of PPS to this penalty was found to be 0.08 dB.
Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals
Montagner, Alexandra; Korecka, Agata; Polizzi, Arnaud; Lippi, Yannick; Blum, Yuna; Canlet, Cécile; Tremblay-Franco, Marie; Gautier-Stein, Amandine; Burcelin, Rémy; Yen, Yi-Chun; Je, Hyunsoo Shawn; Maha, Al-Asmakh; Mithieux, Gilles; Arulampalam, Velmurugesan; Lagarrigue, Sandrine; Guillou, Hervé; Pettersson, Sven; Wahli, Walter
2016-01-01
The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function. PMID:26879573
Riestra, Pia; Gebreab, Samson Y; Xu, Ruihua; Khan, Rumana J; Gaye, Amadou; Correa, Adolfo; Min, Nancy; Sims, Mario; Davis, Sharon K
2017-06-23
Circadian rhythms regulate key biological processes and the dysregulation of the intrinsic clock mechanism affects sleep patterns and obesity onset. The CLOCK (circadian locomotor output cycles protein kaput) gene encodes a core transcription factor of the molecular circadian clock influencing diverse metabolic pathways, including glucose and lipid homeostasis. The primary objective of this study was to evaluate the associations between CLOCK single nucleotide polymorphisms (SNPs) and body mass index (BMI). We also evaluated the association of SNPs with BMI related factors such as sleep duration and quality, adiponectin and leptin, in 2962 participants (1116 men and 1810 women) from the Jackson Heart Study. Genotype data for the selected 23 CLOCK gene SNPS was obtained by imputation with IMPUTE2 software and reference phase data from the 1000 genome project. Genetic analyses were conducted with PLINK RESULTS: We found a significant association between the CLOCK SNP rs2070062 and sleep duration, participants carriers of the T allele showed significantly shorter sleep duration compared to non-carriers after the adjustment for individual proportions of European ancestry (PEA), socio economic status (SES), body mass index (BMI), alcohol consumption and smoking status that reach the significance threshold after multiple testing correction. In addition, we found nominal associations of the CLOCK SNP rs6853192 with longer sleep duration and the rs6820823, rs3792603 and rs11726609 with BMI. However, these associations did not reach the significance threshold after correction for multiple testing. In this work, CLOCK gene variants were associated with sleep duration and BMI suggesting that the effects of these polymorphisms on circadian rhythmicity may affect sleep duration and body weight regulation in Africans Americans.
Joint CPT and N resonance in compact atomic time standards
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Hohensee, Michael; Xiao, Yanhong; Phillips, David; Walsworth, Ron
2008-05-01
Currently development efforts towards small, low power atomic time standards use current-modulated VCSELs to generate phase-coherent optical sidebands that interrogate the hyperfine structure of alkali atoms such as rubidium. We describe and use a modified four-level quantum optics model to study the optimal operating regime of the joint CPT- and N-resonance clock. Resonant and non-resonant light shifts as well as modulation comb detuning effects play a key role in determining the optimal operating point of such clocks. We further show that our model is in good agreement with experimental tests performed using Rb-87 vapor cells.
USDA-ARS?s Scientific Manuscript database
Flowering is an important trait in major crops like soybean due to its direct relation to grain production. The circadian clock mediates the perception of seasonal changes in day length and temperature to modulate flowering time. The circadian clock gene EARLY FLOWERING 4 (ELF4) was identified in Ar...
NASA Astrophysics Data System (ADS)
Parsons, Earl Ryan
In this dissertation I investigated a multi-channel and multi-bit rate all-optical clock recovery device. This device, a birefringent Fabry-Perot resonator, had previously been demonstrated to simultaneously recover the clock signal from 10 wavelength channels operating at 10 Gb/s and one channel at 40 Gb/s. Similar to clock signals recovered from a conventional Fabry-Perot resonator, the clock signal from the birefringent resonator suffers from a bit pattern effect. I investigated this bit pattern effect for birefringent resonators numerically and experimentally and found that the bit pattern effect is less prominent than for clock signals from a conventional Fabry-Perot resonator. I also demonstrated photonic balancing which is an all-optical alternative to electrical balanced detection for phase shift keyed signals. An RZ-DPSK data signal was demodulated using a delay interferometer. The two logically opposite outputs from the delay interferometer then counter-propagated in a saturated SOA. This process created a differential signal which used all the signal power present in two consecutive symbols. I showed that this scheme could provide an optical alternative to electrical balanced detection by reducing the required OSNR by 3 dB. I also show how this method can provide amplitude regeneration to a signal after modulation format conversion. In this case an RZ-DPSK signal was converted to an amplitude modulation signal by the delay interferometer. The resulting amplitude modulated signal is degraded by both the amplitude noise and the phase noise of the original signal. The two logically opposite outputs from the delay interferometer again counter-propagated in a saturated SOA. Through limiting amplification and noise modulation this scheme provided amplitude regeneration and improved the Q-factor of the demodulated signal by 3.5 dB. Finally I investigated how SPM provided by the SOA can provide a method to reduce the in-band noise of a communication signal. The marks, which represented data, experienced a spectral shift due to SPM while the spaces, which consisted of noise, did not. A bandpass filter placed after the SOA then selected the signal and filtered out what was originally in-band noise. The receiver sensitivity was improved by 3 dB.
VLSI Design Techniques for Floating-Point Computation
1988-11-18
J. C. Gibson, The Gibson Mix, IBM Systems Development Division Tech. Report(June 1970). [Heni83] A. Heninger, The Zilog Z8070 Floating-Point...Broadcast Oock Gen. ’ itp Divide Module Module byN Module Oock Communication l I T Oock Communication Bus Figure 7.2. Clock Distribution between
Shafer, Orie T; Kim, Dong Jo; Dunbar-Yaffe, Richard; Nikolaev, Viacheslav O; Lohse, Martin J; Taghert, Paul H
2008-04-24
The neuropeptide PDF is released by sixteen clock neurons in Drosophila and helps maintain circadian activity rhythms by coordinating a network of approximately 150 neuronal clocks. Whether PDF acts directly on elements of this neural network remains unknown. We address this question by adapting Epac1-camps, a genetically encoded cAMP FRET sensor, for use in the living brain. We find that a subset of the PDF-expressing neurons respond to PDF with long-lasting cAMP increases and confirm that such responses require the PDF receptor. In contrast, an unrelated Drosophila neuropeptide, DH31, stimulates large cAMP increases in all PDF-expressing clock neurons. Thus, the network of approximately 150 clock neurons displays widespread, though not uniform, PDF receptivity. This work introduces a sensitive means of measuring cAMP changes in a living brain with subcellular resolution. Specifically, it experimentally confirms the longstanding hypothesis that PDF is a direct modulator of most neurons in the Drosophila clock network.
Kudo, T; Akiyama, M; Kuriyama, K; Sudo, M; Moriya, T; Shibata, S
2004-08-01
An increase in PAI-1 activity is thought to be a key factor underlying myocardial infarction. Mouse Pai-1 (mPai-1) activity shows a daily rhythm in vivo, and its transcription seems to be controlled not only by clock genes but also by humoral factors such as insulin and triglycerides. Thus, we investigated daily clock genes and mPai-1 mRNA expression in the liver of db/db mice exhibiting high levels of glucose, insulin and triglycerides. Locomotor activity was measured using an infrared detection system. RT-PCR or in situ hybridisation methods were applied to measure gene expression. Humoral factors were measured using measurement kits. The db/ db mice showed attenuated locomotor activity rhythms. The rhythmic expression of mPer2 mRNA was severely diminished and the phase of mBmal1 oscillation was advanced in the db/db mouse liver, whereas mPai-1 mRNA was highly and constitutively expressed. Night-time restricted feeding led to a recovery not only from the diminished locomotor activity, but also from the diminished Per2 and advanced mBmal1 mRNA rhythms. Expression of mPai-1 mRNA in db/db mice was reduced to levels far below normal. Pioglitazone treatment slightly normalised glucose and insulin levels, with a slight reduction in mPai-1 gene expression. We demonstrated that Type 2 diabetes impairs the oscillation of the peripheral oscillator. Night-time restricted feeding rather than pioglitazone injection led to a recovery from the diminished locomotor activity, and altered oscillation of the peripheral clock and mPai-1 mRNA rhythm. Thus, we conclude that scheduled restricted food intake may be a useful form of treatment for diabetes.
NASA Astrophysics Data System (ADS)
Liu, Bo; Xin, Xiangjun; Zhang, Lijia; Wang, Fu; Zhang, Qi
2018-02-01
A new feedback symbol timing recovery technique using timing estimation joint equalization is proposed for digital receivers with two samples/symbol or higher sampling rate. Different from traditional methods, the clock recovery algorithm in this paper adopts another algorithm distinguishing the phases of adjacent symbols, so as to accurately estimate the timing offset based on the adjacent signals with the same phase. The addition of the module for eliminating phase modulation interference before timing estimation further reduce the variance, thus resulting in a smoothed timing estimate. The Mean Square Error (MSE) and Bit Error Rate (BER) of the resulting timing estimate are simulated to allow a satisfactory estimation performance. The obtained clock tone performance is satisfactory for MQAM modulation formats and the Roll-off Factor (ROF) close to 0. In the back-to-back system, when ROF= 0, the maximum of MSE obtained with the proposed approach reaches 0 . 0125. After 100-km fiber transmission, BER decreases to 10-3 with ROF= 0 and OSNR = 11 dB. With the increase in ROF, the performances of MSE and BER become better.
Circadian molecular clock in lung pathophysiology
Sundar, Isaac K.; Yao, Hongwei; Sellix, Michael T.
2015-01-01
Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology. PMID:26361874
A sense of time: how molecular clocks organize metabolism.
Kohsaka, Akira; Bass, Joseph
2007-01-01
The discovery of an internal temporal clockwork that coordinates behavior and metabolism according to the rising and setting of the sun was first revealed in flies and plants. However, in the past decade, a molecular transcription-translation feedback loop with similar properties has also been identified in mammals. In mammals, this transcriptional oscillator programs 24-hour cycles in sleep, activity and feeding within the master pacemaker neurons of the suprachiasmatic nucleus of the hypothalamus. More recent studies have shown that the core transcription mechanism is also present in other locations within the brain, in addition to many peripheral tissues. Processes ranging from glucose transport to gluconeogenesis, lipolysis, adipogenesis and mitochondrial oxidative phosphorylation are controlled through overlapping transcription networks that are tied to the clock and are thus time sensitive. Because disruption of tissue timing occurs when food intake, activity and sleep are altered, understanding how these many tissue clocks are synchronized to tick at the same time each day, and determining how each tissue 'senses time' set by these molecular clocks might open new insight into human disease, including disorders of sleep, circadian disruption, diabetes and obesity.
Syed, Naeem H; Prince, Silvas J; Mutava, Raymond N; Patil, Gunvant; Li, Song; Chen, Wei; Babu, Valliyodan; Joshi, Trupti; Khan, Saad; Nguyen, Henry T
2015-12-01
Circadian clocks are a great evolutionary innovation and provide competitive advantage during the day/night cycle and under changing environmental conditions. The circadian clock mediates expression of a large proportion of genes in plants, achieving a harmonious relationship between energy metabolism, photosynthesis, and biotic and abiotic stress responses. Here it is shown that multiple paralogues of clock genes are present in soybean (Glycine max) and mediate flooding and drought responses. Differential expression of many clock and SUB1 genes was found under flooding and drought conditions. Furthermore, natural variation in the amplitude and phase shifts in PRR7 and TOC1 genes was also discovered under drought and flooding conditions, respectively. PRR3 exhibited flooding- and drought-specific splicing patterns and may work in concert with PRR7 and TOC1 to achieve energy homeostasis under flooding and drought conditions. Higher expression of TOC1 also coincides with elevated levels of abscisic acid (ABA) and variation in glucose levels in the morning and afternoon, indicating that this response to abiotic stress is mediated by ABA, endogenous sugar levels, and the circadian clock to fine-tune photosynthesis and energy utilization under stress conditions. It is proposed that the presence of multiple clock gene paralogues with variation in DNA sequence, phase, and period could be used to screen exotic germplasm to find sources for drought and flooding tolerance. Furthermore, fine tuning of multiple clock gene paralogues (via a genetic engineering approach) should also facilitate the development of flooding- and drought-tolerant soybean varieties. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Honma, Kazue; Hikosaka, Maki; Mochizuki, Kazuki; Goda, Toshinao
2016-04-01
Peripheral clock genes show a circadian rhythm is correlated with the timing of feeding in peripheral tissues. It was reported that these clock genes are strongly regulated by insulin action and that a high-fat diet (HFD) intake in C57BL/6J mice for 21days induced insulin secretion during the dark phase and reduced the circadian rhythm of clock genes. In this study, we examined the circadian expression patterns of these clock genes in insulin-resistant animal models with excess secretion of insulin during the day. We examined whether insulin resistance induced by a HFD intake for 80days altered blood parameters (glucose and insulin concentrations) and expression of mRNA and proteins encoded by clock and functional genes in the liver using male ICR mice. Serum insulin concentrations were continuously higher during the day in mice fed a HFD than control mice. Expression of lipogenesis-related genes (Fas and Accβ) and the transcription factor Chrebp peaked at zeitgeber time (ZT)24 in the liver of control mice. A HFD intake reduced the expression of these genes at ZT24 and disrupted the circadian rhythm. Expression of Bmal1 and Clock, transcription factors that compose the core feedback loop, showed circadian variation and were synchronously associated with Fas gene expression in control mice, but not in those fed a HFD. These results indicate that the disruption of the circadian rhythm of insulin secretion by HFD intake is closely associated with the disappearance of circadian expression of lipogenic and clock genes in the liver of mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis
Masri, Selma; Papagiannakopoulos, Thales; Kinouchi, Kenichiro; Liu, Yu; Cervantes, Marlene; Baldi, Pierre; Jacks, Tyler; Sassone-Corsi, Paolo
2016-01-01
SUMMARY The circadian clock controls metabolic and physiological processes through finely tuned molecular mechanisms. The clock is remarkably plastic and adapts to exogenous zeitgebers, such as light and nutrition. How a pathological condition in a given tissue influences systemic circadian homeostasis in other tissues remains an unanswered question of conceptual and biomedical importance. Here we show that lung adenocarcinoma operates as an endogenous reorganizer of circadian metabolism. High-throughput transcriptomics and metabolomics revealed unique signatures of transcripts and metabolites cycling exclusively in livers of tumor-bearing mice. Remarkably, lung cancer has no effect on the core clock, but rather reprograms hepatic metabolism through altered pro-inflammatory response via the STAT3-Socs3 pathway. This results in disruption of AKT, AMPK and SREBP signaling, leading to altered insulin, glucose and lipid metabolism. Thus, lung adenocarcinoma functions as a potent endogenous circadian organizer (ECO), which rewires the pathophysiological dimension of a distal tissue such as the liver. PMID:27153497
Coherent Population Trapping and Optical Ramsey Interference for Compact Rubidium Clock Development
NASA Astrophysics Data System (ADS)
Warren, Zachary Aron
Coherent population trapping (CPT) and optical Ramsey interference provide new avenues for developing compact, high-performance atomic clocks. In this work, I have studied the fundamental aspects of CPT and optical Ramsey interference for Raman clock development. This thesis research is composed of two parts: theoretical and experimental studies. The theoretical component of the research was initially based on pre-existing atomic models of a three-level ?-type system in which the phenomena of CPT and Ramsey interference are formed. This model served as a starting point for studying basic characteristics of CPT and Ramsey interference such as power dependence of CPT, effects of average detuning, and ground-state decoherence on linewidth, which directly impact the performance of the Raman clock. The basic three-level model was also used to model pulsed CPT excitation and measure light shift in Ramsey interference which imposes a fundamental limit on the long-term frequency stability of the Raman clock. The theoretical calculations illustrate reduction (or suppression) of light shift in Ramsey interference as an important advantage over CPT for Raman clock development. To make the model more accurate than an ideal three-level system, I developed a comprehensive atomic model using density-matrix equations including all sixteen Zeeman sublevels in the D1 manifold of 87Rb atoms in a vapor medium. The multi-level atomic model has been used for investigating characteristics of CPT and Ramsey interference under different optical excitation schemes pertaining to the polarization states of the frequency-modulated CPT beam in a Raman clock. It is also used to study the effects of axial and traverse magnetic fields on the contrast of CPT and Ramsey interference. More importantly, the multi-level atomic model is also used to accurately calculate light shift in Ramsey interference in the D1 manifold of 87Rb atoms by taking into account all possible off-resonant excitations and the ground-state decoherence among the Zeeman sublevels. Light shift suppression in Ramsey interference with pulse saturation is also found to be evident in this comprehensive model. In the experimental component of the research, I designed a prototype of the Raman clock using a small (2 cm in length), buffer-gas filled, and isotopically pure 87Rb cell. A fiber-coupled waveguide electro-optic modulator was used to generate the frequency-modulated CPT beam for the experiments. The experimental setup was operated either by continuous excitation or pulsed excitation for experimentally characterizing CPT and Ramsey interference under different experimental conditions and for testing different optical excitation schemes which were investigated theoretically. Several iterations of the clock physics package were developed in order to attain better frequency stability performance in the Raman clock. The experimental work also provided a basis to develop a new repeated-query technique for producing an ultra-narrow linewidth central fringe with a high S/N ratio, and suppressing the side fringes in Ramsey interference. The above described research was carried out keeping in mind compact, high-performance clock development, which relies on technologies that can be miniaturized. Vapor cell based atomic clocks are ideal candidates for compact clock technology. The CPT phenomenon, observed by Raman excitation in a vapor medium, is a promising candidate for compact, high-performance Raman clock development. However, atom-field interaction involved in a vapor medium is often more complex than other media such as cold atom or atomic beam. It is difficult to model this interaction in order to predict its influence on CPT characteristics and, hence, the performance of the Raman clock. This dissertation addresses one such problem by developing a comprehensive atomic model to investigate light shift and modification of light shift in the Raman clock, particularly with pulsed excitation. It demonstrates a clear possibility of reducing (or suppressing) the light shift associated with Ramsey interference in a vapor medium for achieving higher frequency stability in the Raman clock. Additionally, theoretical comparisons of various optical excitation techniques have been calculated to demonstrate the relative strengths and weaknesses of different schemes for Raman clock development. (Abstract shortened by ProQuest.).
Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood.
Hampp, Gabriele; Ripperger, Jürgen A; Houben, Thijs; Schmutz, Isabelle; Blex, Christian; Perreau-Lenz, Stéphanie; Brunk, Irene; Spanagel, Rainer; Ahnert-Hilger, Gudrun; Meijer, Johanna H; Albrecht, Urs
2008-05-06
The circadian clock has been implicated in addiction and several forms of depression [1, 2], indicating interactions between the circadian and the reward systems in the brain [3-5]. Rewards such as food, sex, and drugs influence this system in part by modulating dopamine neurotransmission in the mesolimbic dopamine reward circuit, including the ventral tegmental area (VTA) and the ventral striatum (NAc). Hence, changes in dopamine levels in these brain areas are proposed to influence mood in humans and mice [6-10]. To establish a molecular link between the circadian-clock mechanism and dopamine metabolism, we analyzed the murine promoters of genes encoding key enzymes important in dopamine metabolism. We find that transcription of the monoamine oxidase A (Maoa) promoter is regulated by the clock components BMAL1, NPAS2, and PER2. A mutation in the clock gene Per2 in mice leads to reduced expression and activity of MAOA in the mesolimbic dopaminergic system. Furthermore, we observe increased levels of dopamine and altered neuronal activity in the striatum, and these results probably lead to behavioral alterations observed in Per2 mutant mice in despair-based tests. These findings suggest a role of circadian-clock components in dopamine metabolism highlighting a role of the clock in regulating mood-related behaviors.
Synthesizing genetic sequential logic circuit with clock pulse generator.
Chuang, Chia-Hua; Lin, Chun-Liang
2014-05-28
Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.
NASA Astrophysics Data System (ADS)
Liu, Xuan; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Zhang, Qi; Wang, Yong-jun; Tian, Qing-hua; Tian, Feng; Mao, Ya-ya
2018-01-01
Traditional clock recovery scheme achieves timing adjustment by digital interpolation, thus recovering the sampling sequence. Based on this, an improved clock recovery architecture joint channel equalization for coherent optical communication system is presented in this paper. The loop is different from the traditional clock recovery. In order to reduce the interpolation error caused by the distortion in the frequency domain of the interpolator and to suppress the spectral mirroring generated by the sampling rate change, the proposed algorithm joint equalization, improves the original interpolator in the loop, along with adaptive filtering, and makes error compensation for the original signals according to the balanced pre-filtering signals. Then the signals are adaptive interpolated through the feedback loop. Furthermore, the phase splitting timing recovery algorithm is adopted in this paper. The time error is calculated according to the improved algorithm when there is no transition between the adjacent symbols, making calculated timing error more accurate. Meanwhile, Carrier coarse synchronization module is placed before the beginning of timing recovery to eliminate the larger frequency offset interference, which effectively adjust the sampling clock phase. In this paper, the simulation results show that the timing error is greatly reduced after the loop is changed. Based on the phase splitting algorithm, the BER and MSE are better than those in the unvaried architecture. In the fiber channel, using MQAM modulation format, after 100 km-transmission of single-mode fiber, especially when ROF(roll-off factor) values tends to 0, the algorithm shows a better clock performance under different ROFs. When SNR values are less than 8, the BER could achieve 10-2 to 10-1 magnitude. Furthermore, the proposed timing recovery is more suitable for the situation with low SNR values.
Generalized Autobalanced Ramsey Spectroscopy of Clock Transitions
NASA Astrophysics Data System (ADS)
Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu.; Zanon-Willette, T.; Pollock, J. W.; Shuker, M.; Donley, E. A.; Kitching, J.
2018-05-01
When performing precision measurements, the quantity being measured is often perturbed by the measurement process itself. Such measurements include precision frequency measurements for atomic clock applications carried out with Ramsey spectroscopy. With the aim of eliminating probe-induced perturbations, a method of generalized autobalanced Ramsey spectroscopy (GABRS) is presented and rigorously substantiated. The usual local-oscillator frequency control loop is augmented with a second control loop derived from secondary Ramsey sequences interspersed with the primary sequences and with a different Ramsey period. This second loop feeds back to a secondary clock variable and ultimately compensates for the perturbation of the clock frequency caused by the measurements in the first loop. We show that such a two-loop scheme can lead to perfect compensation for measurement-induced light shifts and does not suffer from the effects of relaxation, time-dependent pulse fluctuations and phase-jump modulation errors that are typical of other hyper-Ramsey schemes. Several variants of GABRS are explored based on different secondary variables including added relative phase shifts between Ramsey pulses, external frequency-step compensation, and variable second-pulse duration. We demonstrate that a universal antisymmetric error signal, and hence perfect compensation at a finite modulation amplitude, is generated only if an additional frequency step applied during both Ramsey pulses is used as the concomitant variable parameter. This universal technique can be applied to the fields of atomic clocks, high-resolution molecular spectroscopy, magnetically induced and two-photon probing schemes, Ramsey-type mass spectrometry, and the field of precision measurements. Some variants of GABRS can also be applied for rf atomic clocks using coherent-population-trapping-based Ramsey spectroscopy of the two-photon dark resonance.
Pankin, Artem; Campoli, Chiara; Dong, Xue; Kilian, Benjamin; Sharma, Rajiv; Himmelbach, Axel; Saini, Reena; Davis, Seth J; Stein, Nils; Schneeberger, Korbinian; von Korff, Maria
2014-01-01
Phytochromes play an important role in light signaling and photoperiodic control of flowering time in plants. Here we propose that the red/far-red light photoreceptor HvPHYTOCHROME C (HvPHYC), carrying a mutation in a conserved region of the GAF domain, is a candidate underlying the early maturity 5 locus in barley (Hordeum vulgare L.). We fine mapped the gene using a mapping-by-sequencing approach applied on the whole-exome capture data from bulked early flowering segregants derived from a backcross of the Bowman(eam5) introgression line. We demonstrate that eam5 disrupts circadian expression of clock genes. Moreover, it interacts with the major photoperiod response gene Ppd-H1 to accelerate flowering under noninductive short days. Our results suggest that HvPHYC participates in transmission of light signals to the circadian clock and thus modulates light-dependent processes such as photoperiodic regulation of flowering. PMID:24996910
Coherent population trapping with polarization modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Peter, E-mail: enxue.yun@obspm.fr; Guérandel, Stéphane; Clercq, Emeric de
Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated is applied on an atomic medium. A high contrast CPT signal is observed in this so-called double-modulation configuration, due to the fact that the atomic population does not leak to the extreme Zeeman states, and that the two CPT dark states, which are produced successively by the alternate polarizations, add constructively. Here, we experimentally investigate CPT signal dynamics first in the usual configuration, a single circular polarization.more » The double-modulation scheme is then addressed in both cases: one pulse Rabi interaction and two pulses Ramsey interaction. The impact and the optimization of the experimental parameters involved in the time sequence are reviewed. We show that a simple seven-level model explains the experimental observations. The double-modulation scheme yields a high contrast similar to the one of other high contrast configurations like push-pull optical pumping or crossed linear polarization scheme, with a setup allowing a higher compactness. The constructive polarization modulation is attractive for atomic clock, atomic magnetometer, and high precision spectroscopy applications.« less
Schlichting, Matthias; Menegazzi, Pamela; Lelito, Katharine R; Yao, Zepeng; Buhl, Edgar; Dalla Benetta, Elena; Bahle, Andrew; Denike, Jennifer; Hodge, James John; Helfrich-Förster, Charlotte; Shafer, Orie Thomas
2016-08-31
A sensitivity of the circadian clock to light/dark cycles ensures that biological rhythms maintain optimal phase relationships with the external day. In animals, the circadian clock neuron network (CCNN) driving sleep/activity rhythms receives light input from multiple photoreceptors, but how these photoreceptors modulate CCNN components is not well understood. Here we show that the Hofbauer-Buchner eyelets differentially modulate two classes of ventral lateral neurons (LNvs) within the Drosophila CCNN. The eyelets antagonize Cryptochrome (CRY)- and compound-eye-based photoreception in the large LNvs while synergizing CRY-mediated photoreception in the small LNvs. Furthermore, we show that the large LNvs interact with subsets of "evening cells" to adjust the timing of the evening peak of activity in a day length-dependent manner. Our work identifies a peptidergic connection between the large LNvs and a group of evening cells that is critical for the seasonal adjustment of circadian rhythms. In animals, circadian clocks have evolved to orchestrate the timing of behavior and metabolism. Consistent timing requires the entrainment these clocks to the solar day, a process that is critical for an organism's health. Light cycles are the most important external cue for the entrainment of circadian clocks, and the circadian system uses multiple photoreceptors to link timekeeping to the light/dark cycle. How light information from these photorecptors is integrated into the circadian clock neuron network to support entrainment is not understood. Our results establish that input from the HB eyelets differentially impacts the physiology of neuronal subgroups. This input pathway, together with input from the compound eyes, precisely times the activity of flies under long summer days. Our results provide a mechanistic model of light transduction and integration into the circadian system, identifying new and unexpected network motifs within the circadian clock neuron network. Copyright © 2016 the authors 0270-6474/16/369084-13$15.00/0.
2014-01-01
Background The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. Results We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5′ splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Conclusion Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock and environmental stress adaptation in plants. It is also envisioned that alternative splicing of the clock genes plays more complex roles than previously expected. PMID:24885185
The Plant Circadian Clock: From a Simple Timekeeper to a Complex Developmental Manager.
Sanchez, Sabrina E; Kay, Steve A
2016-12-01
The plant circadian clock allows organisms to anticipate the predictable changes in the environment by adjusting their developmental and physiological traits. In the last few years, it was determined that responses known to be regulated by the oscillator are also able to modulate clock performance. These feedback loops and their multilayer communications create a complex web, and confer on the clock network a role that exceeds the measurement of time. In this article, we discuss the current knowledge of the wiring of the clock, including the interplay with metabolism, hormone, and stress pathways in the model species Arabidopsis thaliana We outline the importance of this system in crop agricultural traits, highlighting the identification of natural alleles that alter the pace of the timekeeper. We report evidence supporting the understanding of the circadian clock as a master regulator of plant life, and we hypothesize on its relevant role in the adaptability to the environment and the impact on the fitness of most organisms. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.
Synchronous radio-frequency FM signal generator using direct digital synthesizers
NASA Astrophysics Data System (ADS)
Arablu, Masoud; Kafashi, Sajad; Smith, Stuart T.
2018-04-01
A novel Radio-Frequency Frequency-Modulated (RF-FM) signal generation method is introduced and a prototype circuit developed to evaluate its functionality and performance. The RF-FM signal generator uses a modulated, voltage-controlled time delay to correspondingly modulate the phase of a 10 MHz sinusoidal reference signal. This modulated reference signal is, in turn, used to clock a Direct Digital Synthesizer (DDS) circuit resulting in an FM signal at its output. The modulating signal that is input to the voltage-controlled time delay circuit is generated by another DDS that is synchronously clocked by the same 10 MHz sine wave signal before modulation. As a consequence, all of the digital components are timed from a single sine wave oscillator that forms the basis of all timing. The resultant output signal comprises a center, or carrier, frequency plus a series of phase-synchronized sidebands having exact integer harmonic frequency separation. In this study, carrier frequencies ranging from 10 MHz to 70 MHz are generated with modulation frequencies ranging from 10 kHz to 300 kHz. The captured spectra show that the FM signal characteristics, amplitude and phase, of the sidebands and the modulation depth are consistent with the Jacobi-Anger expansion for modulated harmonic signals.
NASA Technical Reports Server (NTRS)
Nagano, S.
1979-01-01
Base driver with common-load-current feedback protects paralleled inverter systems from open or short circuits. Circuit eliminates total system oscillation that can occur in conventional inverters because of open circuit in primary transformer winding. Common feedback signal produced by functioning modules forces operating frequency of failed module to coincide with clock drive so module resumes normal operating frequency in spite of open circuit.
Multifunction audio digitizer. [producing direct delta and pulse code modulation
NASA Technical Reports Server (NTRS)
Monford, L. G., Jr. (Inventor)
1974-01-01
An illustrative embodiment of the invention includes apparatus which simultaneously produces both direct delta modulation and pulse code modulation. An input signal, after amplification, is supplied to a window comparator which supplies a polarity control signal to gate the output of a clock to the appropriate input of a binary up-down counter. The control signals provide direct delta modulation while the up-down counter output provides pulse code modulation.
NASA Astrophysics Data System (ADS)
Li, Xinying; Xiao, Jiangnan
2015-06-01
We propose a novel scheme for optical frequency-locked multi-carrier generation based on one electro-absorption modulated laser (EML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. The optimal operating zone for the cascaded EML and PM is found out based on theoretical analysis and numerical simulation. We experimentally demonstrate 25 optical subcarriers with frequency spacing of 12.5 GHz and power difference less than 5 dB can be generated based on the cascaded EML and PM operating in the optimal zone, which agrees well with the numerical simulation. We also experimentally demonstrate 28-Gbaud polarization division multiplexing quadrature phase shift keying (PDM-QPSK) modulated coherent optical transmission based on the cascaded EML and PM. The bit error ratio (BER) can be below the pre-forward-error-correction (pre-FEC) threshold of 3.8 × 10-3 after 80-km single-mode fiber-28 (SMF-28) transmission.
Discrete Functions of Nuclear Receptor Rev-erbα Couple Metabolism to the Clock
Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J.; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M.; Remsberg, Jarrett R.; Jager, Jennifer; Soccio, Raymond E.; Steger, David J.; Lazar, Mitchell A.
2015-01-01
SUMMARY Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell autonomous clock and as a regulator of metabolic genes. Here we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 corepressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of molecular clock across all tissues, whereas Rev-erbα utilizes lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. PMID:26044300
GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock.
Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M; Remsberg, Jarrett R; Jager, Jennifer; Soccio, Raymond E; Steger, David J; Lazar, Mitchell A
2015-06-26
Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell-autonomous clock and as a regulator of metabolic genes. Here, we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 co-repressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of the molecular clock across all tissues, whereas Rev-erbα uses lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. Copyright © 2015, American Association for the Advancement of Science.
Identification of Small Molecule Activators of Cryptochrome
Hirota, Tsuyoshi; Lee, Jae Wook; St. John, Peter C.; Sawa, Mariko; Iwaisako, Keiko; Noguchi, Takako; Pongsawakul, Pagkapol Y.; Sonntag, Tim; Welsh, David K.; Brenner, David A.; Doyle, Francis J.; Schultz, Peter G.; Kay, Steve A.
2013-01-01
Impairment of the circadian clock has been associated with numerous disorders, including metabolic disease. Although small molecules that modulate clock function might offer therapeutic approaches to such diseases, only a few compound have been identified that selectively target core clock proteins. From an unbiased cell-based circadian screen, we identified KL001, a small molecule that specifically interacts with cryptochrome (CRY). KL001 prevented ubiquitin-dependent degradation of CRY, resulting in lengthening of the circadian period. In combination with mathematical modeling, KL001 revealed that CRY1 and CRY2 share a similar functional role in the period regulation. Furthermore, KL001- mediated CRY stabilization inhibited glucagon-induced gluconeogenesis in primary hepatocytes. KL001 thus provides a tool to study the regulation of CRY-dependent physiology and aid development of clock-based therapeutics of diabetes. PMID:22798407
The Importance of Stochastic Effects for Explaining Entrainment in the Zebrafish Circadian Clock.
Heussen, Raphaela; Whitmore, David
2015-01-01
The circadian clock plays a pivotal role in modulating physiological processes and has been implicated, either directly or indirectly, in a range of pathological states including cancer. Here we investigate how the circadian clock is entrained by external cues such as light. Working with zebrafish cell lines and combining light pulse experiments with simulation efforts focused on the role of synchronization effects, we find that even very modest doses of light exposure are sufficient to trigger some entrainment, whereby a higher light intensity or duration correlates with strength of the circadian signal. Moreover, we observe in the simulations that stochastic effects may be considered an essential feature of the circadian clock in order to explain the circadian signal decay in prolonged darkness, as well as light initiated resynchronization as a strong component of entrainment.
Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren
2015-12-05
Ketogenic diet (KD) is used for weight loss or to treat epilepsy. KD leads to liver AMP-activated protein kinase (AMPK) activation, which would be expected to inhibit gluconeogenesis. However, KD leads to increased hepatic glucose output. As AMPK and its active phosphorylated form (pAMPK) show circadian oscillation, this discrepancy could stem from wrong-time-of-day sampling. The effect of KD was tested on mouse clock gene expression, AMPK, mTOR, SIRT1 and locomotor activity for 2 months and compared to low-fat diet (LFD). KD led to 1.5-fold increased levels of blood glucose and insulin. Brain pAMPK/AMPK ratio was 40% higher under KD, whereas that in liver was not affected. KD led to 40% and 20% down-regulation of the ratio of pP70S6K/P70S6K, the downstream target of mTOR, in the brain and liver, respectively. SIRT1 levels were 40% higher in the brain, but 40% lower in the liver of KD-fed mice. Clock genes showed delayed rhythms under KD. In the brain of KD-fed mice, amplitudes of clock genes were down-regulated, whereas 6-fold up-regulation was found in the liver. The metabolic state under KD indicates reduced satiety in the brain and reduced anabolism alongside increased gluconeogenesis in the liver. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3 depletion.
Hong, Sungguan; Zhou, Wenjun; Fang, Bin; Lu, Wenyun; Loro, Emanuele; Damle, Manashree; Ding, Guolian; Jager, Jennifer; Zhang, Sisi; Zhang, Yuxiang; Feng, Dan; Chu, Qingwei; Dill, Brian D; Molina, Henrik; Khurana, Tejvir S; Rabinowitz, Joshua D; Lazar, Mitchell A; Sun, Zheng
2017-02-01
Type 2 diabetes and insulin resistance are associated with reduced glucose utilization in the muscle and poor exercise performance. Here we find that depletion of the epigenome modifier histone deacetylase 3 (HDAC3) specifically in skeletal muscle causes severe systemic insulin resistance in mice but markedly enhances endurance and resistance to muscle fatigue, despite reducing muscle force. This seemingly paradoxical phenotype is due to lower glucose utilization and greater lipid oxidation in HDAC3-depleted muscles, a fuel switch caused by the activation of anaplerotic reactions driven by AMP deaminase 3 (Ampd3) and catabolism of branched-chain amino acids. These findings highlight the pivotal role of amino acid catabolism in muscle fatigue and type 2 diabetes pathogenesis. Further, as genome occupancy of HDAC3 in skeletal muscle is controlled by the circadian clock, these results delineate an epigenomic regulatory mechanism through which the circadian clock governs skeletal muscle bioenergetics. These findings suggest that physical exercise at certain times of the day or pharmacological targeting of HDAC3 could potentially be harnessed to alter systemic fuel metabolism and exercise performance.
Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3
Hong, Sungguan; Zhou, Wenjun; Fang, Bin; Lu, Wenyun; Loro, Emanuele; Damle, Manashree; Ding, Guolian; Jager, Jennifer; Zhang, Sisi; Zhang, Yuxiang; Feng, Dan; Chu, Qingwei; Dill, Brian D; Molina, Henrik; Khurana, Tejvir S; Rabinowitz, Joshua D; Lazar, Mitchell A; Sun, Zheng
2017-01-01
Type 2 diabetes (T2D) and insulin resistance are associated with reduced glucose utilization in the muscle and poor exercise performance. Here we find that depletion of an epigenome modifier, histone deacetylase 3 (HDAC3), specifically in skeletal muscle causes severe systemic insulin resistance in mice, but markedly enhances exercise endurance and muscle fatigue resistance, despite reducing muscle force. This seemingly paradoxical phenotype is due to lower glucose utilization and greater lipid oxidation in HDAC3-depleted muscles, a fuel switch caused by the activation of anaplerotic reactions driven by AMP deaminase 3 (Ampd3) and branched-chain amino acid catabolism. These findings highlight the pivotal role of amino acid catabolism in muscle fatigue and T2D pathogenesis. Further, as genome occupancy of HDAC3 in skeletal muscle is controlled by the circadian clock, these results delineate an epigenomic regulatory mechanism through which the circadian clock governs skeletal muscle bioenergetics. These findings suggest that physical exercise at certain times of the day or pharmacological targeting of HDAC3 could potentially be harnessed to alter systemic fuel metabolism and exercise performance. PMID:27991918
Machine Learning Helps Identify CHRONO as a Circadian Clock Component
Venkataraman, Anand; Ramanathan, Chidambaram; Kavakli, Ibrahim H.; Hughes, Michael E.; Baggs, Julie E.; Growe, Jacqueline; Liu, Andrew C.; Kim, Junhyong; Hogenesch, John B.
2014-01-01
Over the last decades, researchers have characterized a set of “clock genes” that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics. PMID:24737000
Synthesizing genetic sequential logic circuit with clock pulse generator
2014-01-01
Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665
A 128-channel Time-to-Digital Converter (TDC) inside a Virtex-5 FPGA on the GANDALF module
NASA Astrophysics Data System (ADS)
Büchele, M.; Fischer, H.; Gorzellik, M.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.
2012-03-01
The GANDALF 6U-VME64x/VXS module has been developed for the digitization and real time analysis of detector signals. To perform different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition and trigger generation, this module comes with exchangeable analog and digital mezzanine cards. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In contrast to common TDC concepts, the input signal is sampled by 16 equidistant phase-shifted clocks. A particular challenge of the design is the minimum skew routing of the input signals to the sampling flip-flops. We present measurement results for the differential nonlinearity and the time resolution of the TDC readout system.
Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior.
Ben-Moshe Livne, Zohar; Alon, Shahar; Vallone, Daniela; Bayleyen, Yared; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C; Burgess, Harold A; Foulkes, Nicholas S; Gothilf, Yoav
2016-11-01
The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior.
Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior
Alon, Shahar; Vallone, Daniela; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G.; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C.; Burgess, Harold A.; Foulkes, Nicholas S.; Gothilf, Yoav
2016-01-01
The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior. PMID:27870848
High Band Technology Program (HiTeP)
2005-03-01
clock distribution circuit. One Receiver Memory module receives 60MHz reference sine wave and distributes 60MHz clock signals to all Receiver Memory...Diagram UNCLASSIFIED 23 in N00014-99-C-0314 Integrated Defense Systems Final Report 1 March 2005 .. 4.ran FibreXpress Fibre-Channel PMC "Motrl Medea FCR...the Electrically Short Crossed-Notch (ESCN). It is shorter than traditional traveling wave notch antennas. The 2X ECSN fin length is approximately 1.2
Fenske, Myles P; Nguyen, LeAnn P; Horn, Erin K; Riffell, Jeffrey A; Imaizumi, Takato
2018-02-12
Most plant-pollinator interactions occur during specific periods during the day. To facilitate these interactions, many flowers are known to display their attractive qualities, such as scent emission and petal opening, in a daily rhythmic fashion. However, less is known about how the internal timing mechanisms (the circadian clocks) of plants and animals influence their daily interactions. We examine the role of the circadian clock in modulating the interaction between Petunia and one of its pollinators, the hawkmoth Manduca sexta. We find that desynchronization of the Petunia circadian clock affects moth visitation preference for Petunia flowers. Similarly, moths with circadian time aligned to plants show stronger flower-foraging activities than moths that lack this alignment. Moth locomotor activity is circadian clock-regulated, although it is also strongly repressed by light. Moths show a time-dependent burst increase in flight activity during subjective night. In addition, moth antennal responsiveness to the floral scent compounds exhibits a 24-hour rhythm in both continuous light and dark conditions. This study highlights the importance of the circadian clocks in both plants and animals as a crucial factor in initiating specialized plant-pollinator relationships.
Kim, Sam-Moon; Neuendorff, Nichole; Chapkin, Robert S; Earnest, David J
2016-05-01
Inflammatory signaling may play a role in high-fat diet (HFD)-related circadian clock disturbances that contribute to systemic metabolic dysregulation. Therefore, palmitate, the prevalent proinflammatory saturated fatty acid (SFA) in HFD and the anti-inflammatory, poly-unsaturated fatty acid (PUFA), docosahexaenoic acid (DHA), were analyzed for effects on circadian timekeeping and inflammatory responses in peripheral clocks. Prolonged palmitate, but not DHA, exposure increased the period of fibroblast Bmal1-dLuc rhythms. Acute palmitate treatment produced phase shifts of the Bmal1-dLuc rhythm that were larger in amplitude as compared to DHA. These phase-shifting effects were time-dependent and contemporaneous with rhythmic changes in palmitate-induced inflammatory responses. Fibroblast and differentiated adipocyte clocks exhibited cell-specific differences in the time-dependent nature of palmitate-induced shifts and inflammation. DHA and other inhibitors of inflammatory signaling (AICAR, cardamonin) repressed palmitate-induced proinflammatory responses and phase shifts of the fibroblast clock, suggesting that SFA-mediated inflammatory signaling may feed back to modulate circadian timekeeping in peripheral clocks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
A tunable artificial circadian clock in clock-defective mice
D'Alessandro, Matthew; Beesley, Stephen; Kim, Jae Kyoung; Chen, Rongmin; Abich, Estela; Cheng, Wayne; Yi, Paul; Takahashi, Joseph S.; Lee, Choogon
2015-01-01
Self-sustaining oscillations are essential for diverse physiological functions such as the cell cycle, insulin secretion and circadian rhythms. Synthetic oscillators using biochemical feedback circuits have been generated in cell culture. These synthetic systems provide important insight into design principles for biological oscillators, but have limited similarity to physiological pathways. Here we report the generation of an artificial, mammalian circadian clock in vivo, capable of generating robust, tunable circadian rhythms. In mice deficient in Per1 and Per2 genes (thus lacking circadian rhythms), we artificially generate PER2 rhythms and restore circadian sleep/wake cycles with an inducible Per2 transgene. Our artificial clock is tunable as the period and phase of the rhythms can be modulated predictably. This feature, and other design principles of our work, might enhance the study and treatment of circadian dysfunction and broader aspects of physiology involving biological oscillators. PMID:26617050
Joo, J; Cox, C C; Kindred, E D; Lashinger, L M; Young, M E; Bray, M S
2016-09-01
Both circadian disruption and timing of feeding have important roles in the development of metabolic disease. Despite growing acceptance that the timing of food consumption has long-term impact on metabolic homeostasis, little is known regarding the immediate influence on whole body metabolism, or the mechanisms involved. We aimed to examine the acute effects of time-of-day-dependent high fat feeding on whole body substrate metabolism and metabolic plasticity, and to determine the potential contribution of the adipocyte circadian clock. Mice were fed a regimen of 4-h meal at the beginning and end of the dark (waking) cycle, separated by 4 h of fasting. Daily experimental conditions consisted of either an early very high fat or high fat (EVHF or EHF, 60 or 45% kcals from fat, respectively) or late (LVHF or LHF) meal, paired with a low fat (LF, 10% kcals from fat) meal. Metabolic parameters, glucose tolerance, body fat composition and weight were assessed. To determine the role of the adipocyte circadian clock, an aP2-CLOCK mutant (ACM) mouse model was used. Mice in the EVHF or EHF groups showed a 13.2 or 8.84 higher percentage of caloric intake from fat and had a 0.013 or 0.026 lower daily average respiratory exchange ratio, respectively, compared with mice eating the opposite feeding regime. Changes in glucose tolerance, body fat composition and weight were not significant at the end of the 9-day restricted feeding period. ACM mice did not exhibit different metabolic responses to the feeding regimes compared with wild-type littermates. Circadian clock disruption did not influence the short-term response to timed feeding. Both the total fat composition of diet and the timing of fat intake may differentially mediate the effect of timed feeding on substrate metabolism, but may not induce acute changes in metabolic flexibility.
USDA-ARS?s Scientific Manuscript database
Dysregulation in the circadian system induced by variants of clock genes has been associated with type 2 diabetes. Evidence for the role of cryptochromes, core components of the system, in regulating glucose homeostasis is not supported by CRY1 candidate gene association studies for diabetes and ins...
NASA Astrophysics Data System (ADS)
Kawanishi, S.; Takara, H.; Saruwatari, M.; Kitoh, T.
1993-09-01
Successful operation of a phase-locked loop is demonstrated using a traveling-wave laser-diode amplifier as a 50 GHz phase detector. Optical gain modulation in the laser diode amplifier and an all-optical clock multiplication technique using a silica-based guided-wave optical circuit are used to achieve the extremely high-speed operation. Also discussed is the possibility of more than 100 GHz operation.
Clock distribution for BaF2 readout electronics at CSNS-WNS
NASA Astrophysics Data System (ADS)
He, Bing; Cao, Ping; Zhang, De-Liang; Wang, Qi; Zhang, Ya-Xi; Qi, Xin-Cheng; An, Qi
2017-01-01
A BaF2 (Barium Fluoride) detector array is designed to precisely measure the (n, γ) cross section at the CSNS-WNS (white neutron source at China Spallation Neutron Source). It is a 4π solid angle-shaped detector array consisting of 92 BaF2 crystal elements. To discriminate signals from the BaF2 detector, a pulse shape discrimination method is used, supported by a waveform digitization technique. There are 92 channels for digitizing. The precision and synchronization of clock distribution restricts the performance of waveform digitizing. In this paper, a clock prototype for the BaF2 readout electronics at CSNS-WNS is introduced. It is based on the PXIe platform and has a twin-stage tree topology. In the first stage, clock is synchronously distributed from the tree root to each PXIe crate through a coaxial cable over a long distance, while in the second stage, the clock is further distributed to each electronic module through a PXIe dedicated differential star bus. With the help of this topology, each tree node can fan out up to 20 clocks with 3U size. Test results show the clock jitter is less than 20 ps, which meets the requirements of the BaF2 readout electronics. Besides, this clock system has the advantages of high density, simplicity, scalability and cost saving, so it can be useful for other clock distribution applications. Supported by National Research and Development plan (2016 YFA0401602) NSAF (U1530111) and National Natural Science Foundation of China (11005107)
Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C. Robertson; Xu, Xiaodong; Ma, Ligeng
2012-01-01
Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5′ and 3′ splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level. PMID:22942380
A Timer for Synchronous Digital Systems
NASA Technical Reports Server (NTRS)
McKenney, Elizabeth; Irwin, Philip
2003-01-01
The Real-Time Interferometer Control Systems Testbed (RICST) timing board is a VersaModule Eurocard (VME)-based board that can generate up to 16 simultaneous, phase-locked timing signals at a rate defined by the user. It can also generate all seven VME interrupt requests (IRQs). The RICST timing board is suitable mainly for robotic, aerospace, and real-time applications. Several circuit boards on the market are capable of generating periodic IRQs. Most are associated with Global Positioning System (GPS) receivers and Inter Range Instrumentation Group (IRIG) time-code generators, whereas this board uses either an internal VME clock or an externally generated clock signal to synchronize multiple components of the system. The primary advantage of this board is that there is no discernible jitter in the output clock waveforms because the signals are divided down from a high-frequency clock signal instead of being phase-locked from a lower frequency. The primary disadvantage to this board, relative to other periodic-IRQ-generating boards, is that it is more difficult to synchronize the system to wall clock time.
MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale
Du, Ngoc-Hien; Arpat, Alaaddin Bulak; De Matos, Mara; Gatfield, David
2014-01-01
A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation. DOI: http://dx.doi.org/10.7554/eLife.02510.001 PMID:24867642
Rhythm and mood: relationships between the circadian clock and mood-related behavior.
Schnell, Anna; Albrecht, Urs; Sandrelli, Federica
2014-06-01
Mood disorders are multifactorial and heterogeneous diseases caused by the interplay of several genetic and environmental factors. In humans, mood disorders are often accompanied by abnormalities in the organization of the circadian system, which normally synchronizes activities and functions of cells and tissues. Studies on animal models suggest that the basic circadian clock mechanism, which runs in essentially all cells, is implicated in the modulation of biological phenomena regulating affective behaviors. In particular, recent findings highlight the importance of the circadian clock mechanisms in neurological pathways involved in mood, such as monoaminergic neurotransmission, hypothalamus-pituitary-adrenal axis regulation, suprachiasmatic nucleus and olfactory bulb activities, and neurogenesis. Defects at the level of both, the circadian clock mechanism and system, may contribute to the etiology of mood disorders. Modification of the circadian system using chronotherapy appears to be an effective treatment for mood disorders. Additionally, understanding the role of circadian clock mechanisms, which affect the regulation of different mood pathways, will open up the possibility for targeted pharmacological treatments. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Guo, X.; Mandelis, A.; Zinman, B.
2012-11-01
Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water-glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.
NASA Astrophysics Data System (ADS)
Smith, Natalie Rochelle
While the gas turbine engine has existed for nearly 80 years, much of the complex aerodynamics which governs compressor performance is still not well understood. The unsteady flow field consists of periodic blade row interactions from the wakes and potential fields of each blade and vane. Vane clocking is the relative circumferential indexing of adjacent vane rows with the same vane count, and it is one method to change blade row interactions. Though the potential of performance benefits with vane clocking is known, the driving flow physics have yet to be identified. This research examines the effects of blade row interactions on embedded stator total pressure loss and boundary layer transition in the Purdue 3-stage axial compressor. The inlet guide vane, Stator 1, and Stator 2 all have 44 vanes which enable vane clocking of the embedded stage, while the rotors have different blade counts producing amplitude modulation of the unsteady interactions. A detailed investigation of corrected conditions is presented to establish repeatable, compressor performance year-round in a facility utilizing ambient inlet conditions. Without proper humidity accounting of compressor corrected conditions and an understanding of the potential for inlet temperature changes to affect clearances due to thermal growth, measurements of small performance changes in detailed research studies could be indiscernible. The methodology and implementation of a powder-paint flow visualization technique along with the illuminated flow physics are presented in detail. This method assists in understanding the loss development in the compressor by highlighting stator corner separations and endwall flow patterns. Effects of loading condition, rotor tip clearance height, and stator wake and rotor tip leakage interactions are shown with this technique. Vane clocking effects on compressor performance were quantified for nine loading conditions and six clocking configurations - the largest vane clocking dataset in the open literature. These data show that vane clocking effects are small at low loading conditions, including peak efficiency operation, but become stronger as loading increases, and then eventually lessen at near stall operation. Additionally, stator wake profiles and flow visualization reveal that total pressure loss changes are due to a corner separation modulation between clocking configurations. To further address these clocking trends, high-frequency response data were acquired at the Stator 2 inlet and along the Stator 2 surface. The unsteadiness at the Stator 2 inlet was quantified with detailed radial traverses for the different clocking configurations. These data show the effects of interactions between the Stator 1 wake and Rotor 2 tip leakage flow, which result in significantly different inlet flow conditions for Stator 2. The high unsteadiness and blockage region formed by the rotor tip leakage flow changes in size and shape between clocking configurations. Finally, measurements of the Stator 2 surface flows were acquired to investigate the vane clocking effects on unsteady surface pressures and boundary layer transition. These data reveal that Stator 2 performance is influenced by blade row interactions including rotor-rotor interactions, stator wake-rotor tip leakage flow interactions, and vane clocking.
VLSI design of an RSA encryption/decryption chip using systolic array based architecture
NASA Astrophysics Data System (ADS)
Sun, Chi-Chia; Lin, Bor-Shing; Jan, Gene Eu; Lin, Jheng-Yi
2016-09-01
This article presents the VLSI design of a configurable RSA public key cryptosystem supporting the 512-bit, 1024-bit and 2048-bit based on Montgomery algorithm achieving comparable clock cycles of current relevant works but with smaller die size. We use binary method for the modular exponentiation and adopt Montgomery algorithm for the modular multiplication to simplify computational complexity, which, together with the systolic array concept for electric circuit designs effectively, lower the die size. The main architecture of the chip consists of four functional blocks, namely input/output modules, registers module, arithmetic module and control module. We applied the concept of systolic array to design the RSA encryption/decryption chip by using VHDL hardware language and verified using the TSMC/CIC 0.35 m 1P4 M technology. The die area of the 2048-bit RSA chip without the DFT is 3.9 × 3.9 mm2 (4.58 × 4.58 mm2 with DFT). Its average baud rate can reach 10.84 kbps under a 100 MHz clock.
Alternative Splicing of Barley Clock Genes in Response to Low Temperature
Calixto, Cristiane P. G.; Simpson, Craig G.; Waugh, Robbie; Brown, John W. S.
2016-01-01
Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement. PMID:27959947
Oprisan, Sorinel A.; Buhusi, Catalin V.
2011-01-01
In most species, the capability of perceiving and using the passage of time in the seconds-to-minutes range (interval timing) is not only accurate but also scalar: errors in time estimation are linearly related to the estimated duration. The ubiquity of scalar timing extends over behavioral, lesion, and pharmacological manipulations. For example, in mammals, dopaminergic drugs induce an immediate, scalar change in the perceived time (clock pattern), whereas cholinergic drugs induce a gradual, scalar change in perceived time (memory pattern). How do these properties emerge from unreliable, noisy neurons firing in the milliseconds range? Neurobiological information relative to the brain circuits involved in interval timing provide support for an striatal beat frequency (SBF) model, in which time is coded by the coincidental activation of striatal spiny neurons by cortical neural oscillators. While biologically plausible, the impracticality of perfect oscillators, or their lack thereof, questions this mechanism in a brain with noisy neurons. We explored the computational mechanisms required for the clock and memory patterns in an SBF model with biophysically realistic and noisy Morris–Lecar neurons (SBF–ML). Under the assumption that dopaminergic drugs modulate the firing frequency of cortical oscillators, and that cholinergic drugs modulate the memory representation of the criterion time, we show that our SBF–ML model can reproduce the pharmacological clock and memory patterns observed in the literature. Numerical results also indicate that parameter variability (noise) – which is ubiquitous in the form of small fluctuations in the intrinsic frequencies of neural oscillators within and between trials, and in the errors in recording/retrieving stored information related to criterion time – seems to be critical for the time-scale invariance of the clock and memory patterns. PMID:21977014
The integration of laser communication and ranging
NASA Astrophysics Data System (ADS)
Xu, Mengmeng; Sun, Jianfeng; Zhou, Yu; Zhang, Bo; Zhang, Guo; Li, Guangyuan; He, Hongyu; Lao, Chenzhe
2017-08-01
The method to realize the integration of laser communication and ranging is proposed in this paper. In the transmitter of two places, the ranging codes with uniqueness, good autocorrelation and cross-correlation properties are embed in the communication data and the encoded with the communication data to realize serial communication. And then the encoded data are modulated and send to each other, which can realize high speed two one-way laser communication. At the receiver, we can get the received ranging code after the demodulation, decoding and clock recovery. The received ranging codes and the local ranging codes do the autocorrelation to get a roughly range, while the phase difference between the local clock and the recovery clock to achieve the precision of the distance.
[Development of automatic urine monitoring system].
Wei, Liang; Li, Yongqin; Chen, Bihua
2014-03-01
An automatic urine monitoring system is presented to replace manual operation. The system is composed of the flow sensor, MSP430f149 single chip microcomputer, human-computer interaction module, LCD module, clock module and memory module. The signal of urine volume is captured when the urine flows through the flow sensor and then displayed on the LCD after data processing. The experiment results suggest that the design of the monitor provides a high stability, accurate measurement and good real-time, and meets the demand of the clinical application.
Atkins, Norman; Ren, Shifang; Hatcher, Nathan; Burgoon, Penny W; Mitchell, Jennifer W; Sweedler, Jonathan V; Gillette, Martha U
2018-06-20
Daily oscillations of brain and body states are under complex temporal modulation by environmental light and the hypothalamic suprachiasmatic nucleus (SCN), the master circadian clock. To better understand mediators of differential temporal modulation, we characterize neuropeptide releasate profiles by nonselective capture of secreted neuropeptides in an optic nerve horizontal SCN brain slice model. Releasates are collected following electrophysiological stimulation of the optic nerve/retinohypothalamic tract under conditions that alter the phase of the SCN activity state. Secreted neuropeptides are identified by intact mass via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We found time-of-day-specific suites of peptides released downstream of optic nerve stimulation. Peptide release was modified differentially with respect to time-of-day by stimulus parameters and by inhibitors of glutamatergic or PACAPergic neurotransmission. The results suggest that SCN physiology is modulated by differential peptide release of both known and unexpected peptides that communicate time-of-day-specific photic signals via previously unreported neuropeptide signatures.
Dual-Modulation, Dual-Wavelength, Optical Polarimetry System for Glucose Monitoring
2016-08-26
dual-wavelength, optical polarimetry system for glucose monitoring 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) 5d...JBO.21.8.087001] 14. ABSTRACT A dual modulation optical polarimetry system utilizing both laser intensity and polarization modulation was designed...varying birefringence, which is one of the major limitations to the realization of polarimetry for glucose monitoring in the eye. The high-speed less
Frequency-Accommodating Manchester Decoder
NASA Technical Reports Server (NTRS)
Vasquez, Mario J.
1988-01-01
No adjustment necessary to cover a 10:1 frequency range. Decoding circuit converts biphase-level pulse-code modulation to nonreturn-to-zero (NRZ)-level pulse-code modulation plus clock signal. Circuit accommodates input data rate of 50 to 500 kb/s. Tracks gradual changes in rate automatically, eliminating need for extra circuits and manual switching to adjust to different rates.
Covarrubias-Pinto, Adriana; Moll, Pablo; Solís-Maldonado, Macarena; Acuña, Aníbal I.; Riveros, Andrea; Miró, María Paz; Papic, Eduardo; Beltrán, Felipe A.; Cepeda, Carlos; Concha, Ilona I.; Brauchi, Sebastián; Castro, Maite A.
2016-01-01
Failure in energy metabolism and oxidative damage are associated with Huntington’s disease (HD). Ascorbic acid released during synaptic activity inhibits use of neuronal glucose, favouring lactate uptake to sustain brain activity. Here, we observe a decreased expression of GLUT3 in STHdhQ111 cells (HD cells) and R6/2 mice (HD mice). Localisation of GLUT3 is decreased at the plasma membrane in HD cells affecting the modulation of glucose uptake by ascorbic acid. An ascorbic acid analogue without antioxidant activity is able to inhibit glucose uptake in HD cells. The impaired modulation of glucose uptake by ascorbic acid is directly related to ROS levels indicating that oxidative stress sequesters the ability of ascorbic acid to modulate glucose utilisation. Therefore, in HD, a decrease in GLUT3 localisation at the plasma membrane would contribute to an altered neuronal glucose uptake during resting periods while redox imbalance should contribute to metabolic failure during synaptic activity. PMID:26456058
The possible interplay of synaptic and clock genes in autism spectrum disorders.
Bourgeron, T
2007-01-01
Autism spectrum disorders (ASD) are complex neurodevelopmental conditions characterized by deficits in social communication, absence or delay in language, and stereotyped and repetitive behaviors. Results from genetic studies reveal one pathway associated with susceptibility to ASD, which includes the synaptic cell adhesion molecules NLGN3, NLGN4, and NRXN1 and a postsynaptic scaffolding protein SHANK3. This protein complex is crucial for the maintenance of functional synapses as well as the adequate balance between neuronal excitation and inhibition. Among the factors that could modulate this pathway are the genes controlling circadian rhythms. Indeed, sleep disorders and low melatonin levels are frequently observed in ASD. In this context, an alteration of both this synaptic pathway and the setting of the clock would greatly increase the risk of ASD. In this chapter, I report genetic and neurobiological findings that highlight the major role of synaptic and clock genes in the susceptibility to ASD. On the basis of these lines of evidence, I propose that future studies of ASD should investigate the circadian modulation of synaptic function as a focus for functional analyses and the development of new therapeutic strategies.
Asprosin, a fasting-induced glucogenic protein hormone
USDA-ARS?s Scientific Manuscript database
Hepatic glucose release into the circulation is vital for brain function and survival during periods of fasting and is modulated by an array of hormones that precisely regulate plasma glucose levels. We have identified a fasting-induced protein hormone that modulates hepatic glucose release. It is t...
The REVEILLE Clock Genes Inhibit Growth of Juvenile and Adult Plants by Control of Cell Size1[OPEN
Gray, Jennifer A.; Chu, Dalena Nhu
2017-01-01
The circadian clock is a complex regulatory network that enhances plant growth and fitness in a constantly changing environment. In Arabidopsis (Arabidopsis thaliana), the clock is composed of numerous regulatory feedback loops in which REVEILLE8 (RVE8) and its homologs RVE4 and RVE6 act in a partially redundant manner to promote clock pace. Here, we report that the remaining members of the RVE8 clade, RVE3 and RVE5, play only minor roles in the regulation of clock function. However, we find that RVE8 clade proteins have unexpected functions in the modulation of light input to the clock and the control of plant growth at multiple stages of development. In seedlings, these proteins repress hypocotyl elongation in a daylength- and sucrose-dependent manner. Strikingly, adult rve4 6 8 and rve3 4 5 6 8 mutants are much larger than wild-type plants, with both increased leaf area and biomass. This size phenotype is associated with a faster growth rate and larger cell size and is not simply due to a delay in the transition to flowering. Gene expression and epistasis analysis reveal that the growth phenotypes of rve mutants are due to the misregulation of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 expression. Our results show that even small changes in PIF gene expression caused by the perturbation of clock gene function can have large effects on the growth of adult plants. PMID:28254761
Circadian Clock Regulates Response to Pesticides in Drosophila via Conserved Pdp1 Pathway
Beaver, Laura Michelle; Hooven, Louisa Ada; Butcher, Shawn Michael; Krishnan, Natraj; Sherman, Katherine Alice; Chow, Eileen Shin-Yeu; Giebultowicz, Jadwiga Maria
2010-01-01
Daily rhythms generated by the circadian clock regulate many life functions, including responses to xenobiotic compounds. In Drosophila melanogaster, the circadian clock consists of positive elements encoded by cycle (cyc) and Clock (Clk) and negative elements encoded by period (per) and timeless (tim) genes. The ϵ-isoform of the PAR-domain protein 1 (Pdp1ε) transcription factor is controlled by positive clock elements and regulates daily locomotor activity rhythms. Pdp1 target genes have not been identified, and its involvement in other clock output pathways is not known. Mammalian orthologs of Pdp1 have been implicated in the regulation of xenobiotic metabolism; therefore, we asked whether Pdp1 has a similar role in the fly. Using pesticides as model toxicants, we determined that disruption of Pdp1ε increased pesticide-induced mortality in flies. Flies deficient for cyc also showed increased mortality, while disruption of per and tim had no effect. Day/night and Pdp1-dependent differences in the expression of xenobiotic-metabolizing enzymes Cyp6a2, Cyp6g1, and α-Esterase-7 were observed and likely contribute to impaired detoxification. DHR96, a homolog of constitutive androstane receptor and pregnane X receptor, is involved in pesticide response, and DHR96 expression decreased when Pdp1 was suppressed. Taken together, our data uncover a pathway from the positive arm of the circadian clock through Pdp1 to detoxification effector genes, demonstrating a conserved role of the circadian system in modulating xenobiotic toxicity. PMID:20348229
Bartok, Osnat; Teesalu, Mari; Ashwall-Fluss, Reut; Pandey, Varun; Hanan, Mor; Rovenko, Bohdana M; Poukkula, Minna; Havula, Essi; Moussaieff, Arieh; Vodala, Sadanand; Nahmias, Yaakov; Kadener, Sebastian; Hietakangas, Ville
2015-01-01
Nutrient sensing pathways adjust metabolism and physiological functions in response to food intake. For example, sugar feeding promotes lipogenesis by activating glycolytic and lipogenic genes through the Mondo/ChREBP-Mlx transcription factor complex. Concomitantly, other metabolic routes are inhibited, but the mechanisms of transcriptional repression upon sugar sensing have remained elusive. Here, we characterize cabut (cbt), a transcription factor responsible for the repressive branch of the sugar sensing transcriptional network in Drosophila. We demonstrate that cbt is rapidly induced upon sugar feeding through direct regulation by Mondo-Mlx. We found that CBT represses several metabolic targets in response to sugar feeding, including both isoforms of phosphoenolpyruvate carboxykinase (pepck). Deregulation of pepck1 (CG17725) in mlx mutants underlies imbalance of glycerol and glucose metabolism as well as developmental lethality. Furthermore, we demonstrate that cbt provides a regulatory link between nutrient sensing and the circadian clock. Specifically, we show that a subset of genes regulated by the circadian clock are also targets of CBT. Moreover, perturbation of CBT levels leads to deregulation of the circadian transcriptome and circadian behavioral patterns. PMID:25916830
Clock and reset synchronization of high-integrity lockstep self-checking pairs
NASA Technical Reports Server (NTRS)
Brickner, Christopher (Inventor); Oliver, Brett D. (Inventor); Caltagirone, Joseph (Inventor)
2012-01-01
An apparatus comprises first and second modules configured to operate in a lockstep mode and a reset mode. Each of the first and second modules is configured to asynchronously enter the reset mode when a parent reset signal is asserted at the respective each module. Each of the first and second modules is configured to, in response to the asserted parent reset signal being negated at the respective each module, indicate to the respective other module that the respective each module is ready to exit the reset mode and exit the reset mode when the respective other module has also indicated that the respective other module is ready to exit the reset mode.
Epigenetic control and the circadian clock: linking metabolism to neuronal responses.
Orozco-Solis, R; Sassone-Corsi, P
2014-04-04
Experimental and epidemiological evidence reveal the profound influence that industrialized modern society has imposed on human social habits and physiology during the past 50 years. This drastic change in life-style is thought to be one of the main causes of modern diseases including obesity, type 2 diabetes, mental illness such as depression, sleep disorders, and certain types of cancer. These disorders have been associated to disruption of the circadian clock, an intrinsic time-keeper molecular system present in virtually all cells and tissues. The circadian clock is a key element in homeostatic regulation by controlling a large array of genes implicated in cellular metabolism. Importantly, intimate links between epigenetic regulation and the circadian clock exist and are likely to prominently contribute to the plasticity of the response to the environment. In this review, we summarize some experimental and epidemiological evidence showing how environmental factors such as stress, drugs of abuse and changes in circadian habits, interact through different brain areas to modulate the endogenous clock. Furthermore we point out the pivotal role of the deacetylase silent mating-type information regulation 2 homolog 1 (SIRT1) as a molecular effector of the environment in shaping the circadian epigenetic landscape. Published by Elsevier Ltd.
Dedicated clock/timing-circuit theories of time perception and timed performance.
van Rijn, Hedderik; Gu, Bon-Mi; Meck, Warren H
2014-01-01
Scalar Timing Theory (an information-processing version of Scalar Expectancy Theory) and its evolution into the neurobiologically plausible Striatal Beat-Frequency (SBF) theory of interval timing are reviewed. These pacemaker/accumulator or oscillation/coincidence detection models are then integrated with the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture as dedicated timing modules that are able to make use of the memory and decision-making mechanisms contained in ACT-R. The different predictions made by the incorporation of these timing modules into ACT-R are discussed as well as the potential limitations. Novel implementations of the original SBF model that allow it to be incorporated into ACT-R in a more fundamental fashion than the earlier simulations of Scalar Timing Theory are also considered in conjunction with the proposed properties and neural correlates of the "internal clock".
Polarization-insensitive techniques for optical signal processing
NASA Astrophysics Data System (ADS)
Salem, Reza
2006-12-01
This thesis investigates polarization-insensitive methods for optical signal processing. Two signal processing techniques are studied: clock recovery based on two-photon absorption in silicon and demultiplexing based on cross-phase modulation in highly nonlinear fiber. The clock recovery system is tested at an 80 Gb/s data rate for both back-to-back and transmission experiments. The demultiplexer is tested at a 160 Gb/s data rate in a back-to-back experiment. We experimentally demonstrate methods for eliminating polarization dependence in both systems. Our experimental results are confirmed by theoretical and numerical analysis.
Wu, Tao; Sun, Lu; ZhuGe, Fen; Guo, Xichao; Zhao, Zhining; Tang, Ruiqi; Chen, Qinping; Chen, Lin; Kato, Hisanori; Fu, Zhengwei
2011-12-01
The timing of meals has been suggested to play an important role in circadian regulation and metabolic health. Three meals a day is a well-established human feeding habit, which in today's lifestyle may or may not be followed. The aim of this study was to test whether the absence of breakfast or supper significantly affects the circadian system and physiological function. The authors developed a rat model for their daily three meals study, whereby animals were divided into three groups (three meals, TM; no first meal, NF; no last meal, NL) all fed with the same amount of food every day. Rats in the NF group displayed significantly decreased levels of plasma triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose in the activity phase, accompanied by delayed circadian phases of hepatic peripheral clock and downstream metabolic genes. Rats in the NL group showed lower concentration of plasma TC, HDL-C, and glucose in the rest phase, plus reduced adipose tissue accumulation and body weight gain. Real-time polymerase chain reaction (PCR) analysis indicated an attenuated rhythm in the food-entraining pathway, including down-regulated expression of the clock genes Per2, Bmal1, and Rev-erbα, which may further contribute to the delayed and decreased expression of FAS in lipogenesis in this group. Our findings are consistent with the conclusion that the daily first meal determines the circadian phasing of peripheral clocks, such as in the liver, whereas the daily last meal tightly couples to lipid metabolism and adipose tissue accumulation, which suggests differential physiological effects and function of the respective meal timings.
Yeh, Shu-Jen; Hanna, Charles F; Khalil, Omar S
2003-06-01
Most proposed noninvasive methods for glucose measurements do not consider the physiologic response of the body to changes in glucose concentration. Rather than consider the body as an inert matrix for the purpose of glucose measurement, we exploited the possibility that noninvasive measurements of glucose can be approached by investigating their effects on the skin's thermo-optical response. Glucose concentrations in humans were correlated with temperature-modulated localized reflectance signals at wavelengths between 590 and 935 nm, which do not correspond to any near-infrared glucose absorption wavelengths. Optical signal was collected while skin temperature was modulated between 22 and 38 degrees C over 2 h to generate a periodic set of cutaneous vasoconstricting and vasodilating events, as well as a periodic change in skin light scattering. The method was tested in a series of modified meal tolerance tests involving carbohydrate-rich meals and no-meal or high-protein/no-carbohydrate meals. The optical data correlated with glucose values. Changes in glucose concentrations resulting from a carbohydrate-rich meal were predicted with a model based on a carbohydrate-meal calibration run. For diabetic individuals, glucose concentrations were predicted with a standard error of prediction <1.5 mmol/L and a prediction correlation coefficient 0.73 in 80% of the cases. There were run-to-run differences in predicted glucose concentrations. Non-carbohydrate meals showed a high degree of scatter when predicted by a carbohydrate meal calibration model. Blood glucose concentrations alter thermally modulated optical signals, presumably through physiologic and physical effects. Temperature changes drive cutaneous vascular and refractive index responses in a way that mimics the effect of changes in glucose concentration. Run-to-run differences are attributable to site-to-site structural differences.
Takeuchi, Tomomi; Newton, Linsey; Burkhardt, Alyssa; Mason, Saundra; Farré, Eva M.
2014-01-01
In Arabidopsis, the circadian clock regulates UV-B-mediated changes in gene expression. Here it is shown that circadian clock components are able to inhibit UV-B-induced gene expression in a gene-by-gene-specific manner and act downstream of the initial UV-B sensing by COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) and UVR8 (UV RESISTANCE LOCUS 8). For example, the UV-B induction of ELIP1 (EARLY LIGHT INDUCIBLE PROTEIN 1) and PRR9 (PSEUDO-RESPONSE REGULATOR 9) is directly regulated by LUX (LUX ARRYTHMO), ELF4 (EARLY FLOWERING 4), and ELF3. Moreover, time-dependent changes in plant sensitivity to UV-B damage were observed. Wild-type Arabidopsis plants, but not circadian clock mutants, were more sensitive to UV-B treatment during the night periods than during the light periods under diel cycles. Experiments performed under short cycles of 6h light and 6h darkness showed that the increased stress sensitivity of plants to UV-B in the dark only occurred during the subjective night and not during the subjective day in wild-type seedlings. In contrast, the stress sensitivity of Arabidopsis mutants with a compromised circadian clock was still influenced by the light condition during the subjective day. Taken together, the results show that the clock and light modulate plant sensitivity to UV-B stress at different times of the day. PMID:25147271
Circadian Clock-Regulated Expression of Phytochrome and Cryptochrome Genes in Arabidopsis1
Tóth, Réka; Kevei, Éva; Hall, Anthony; Millar, Andrew J.; Nagy, Ferenc; Kozma-Bognár, László
2001-01-01
Many physiological and biochemical processes in plants exhibit endogenous rhythms with a period of about 24 h. Endogenous oscillators called circadian clocks regulate these rhythms. The circadian clocks are synchronized to the periodic environmental changes (e.g. day/night cycles) by specific stimuli; among these, the most important is the light. Photoreceptors, phytochromes, and cryptochromes are involved in setting the clock by transducing the light signal to the central oscillator. In this work, we analyzed the spatial, temporal, and long-term light-regulated expression patterns of the Arabidopsis phytochrome (PHYA to PHYE) and cryptochrome (CRY1 and CRY2) promoters fused to the luciferase (LUC+) reporter gene. The results revealed new details of the tissue-specific expression and light regulation of the PHYC and CRY1 and 2 promoters. More importantly, the data obtained demonstrate that the activities of the promoter::LUC+ constructs, with the exception of PHYC::LUC+, display circadian oscillations under constant conditions. In addition, it is shown by measuring the mRNA abundance of PHY and CRY genes under constant light conditions that the circadian control is also maintained at the level of mRNA accumulation. These observations indicate that the plant circadian clock controls the expression of these photoreceptors, revealing the formation of a new regulatory loop that could modulate gating and resetting of the circadian clock. PMID:11743105
Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L
2015-04-01
The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. © 2015 The Author(s).
Andrade-Silva, Jéssica; Cipolla-Neto, José; Peliciari-Garcia, Rodrigo A
2014-01-01
Although the norepinephrine (NE) synchronization protocol was proved to be an important procedure for further modulating in vitro pineal melatonin synthesis, the maintenance of clock genes under the same conditions remained to be investigated. The aim of this study was to investigate the maintenance of the clock genes expression in pineal gland cultures under standard and NE-synchronized stimulation. The glands were separated into three experimental groups: Control, Standard (acute NE-stimulation), and NE-synchronized. The expression of Bmal1, Per2, Cry2, Rev-erbα, the clock controlled gene Dbp and Arylalkylamine-N-acetyltransferase were investigated, as well as melatonin content. No oscillations were observed in the expression of the investigated genes from the control group. Under Standard NE stimulation, the clock genes did not exhibit a rhythmic pattern of expression. However, in the NE-synchronized condition, a rhythmic expression pattern was observed in all cases. An enhancement in pineal gland responsiveness to NE stimulation, reflected in an advanced synthesis of melatonin was also observed. Our results reinforce our previous hypothesis that NE synchronization of pineal gland culture mimics the natural rhythmic release of NE in the gland, increasing melatonin synthesis and keeping the pineal circadian clock synchronized, ensuring the fine adjustments that are relied in the clockwork machinery. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Teo, Chuin Hau; Soga, Tomoko; Parhar, Ishwar S
2017-01-01
Postweaning social isolation reduces the amplitude of the daily variation of CLOCK protein in the brain and induces lower reproductive activity. Gonadotropin-inhibitory hormone (GnIH) acts as an inhibitor in the reproductive system and has been linked to stress. Social isolation has been shown to lower neuronal activity of GnIH-expressing neurons in the dorsomedial hypothalamus (DMH). The exact mechanism by which social isolation may affect GnIH is still unclear. We investigated the impact of social isolation on regulatory cellular mechanisms in GnIH neurons. We examined via immunohistochemistry the expression of CLOCK protein at four different times throughout the day in GnIH cells tagged with enhanced fluorescent green protein (EGFP-GnIH) in 9-week-old adult male rats that have been raised for 6 weeks under postweaning social isolation and compared them with group-raised control rats of the same age. We also studied the expression of β-catenin-which has been shown to be affected by circadian proteins such as Bmal1-in EGFP-GnIH neurons to determine whether it could play a role in linking CLOCK in GnIH neurons. We found that social isolation modifies the pattern of CLOCK expression in GnIH neurons in the DMH. Socially isolated rats displayed greater CLOCK expression in the dark phase, while control rats displayed increased CLOCK expression in the light phase. Furthermore, β-catenin expression pattern in GnIH cells was disrupted by social isolation. This suggests that social isolation triggers changes in CLOCK and GnIH expression, which may be associated with an increase in nuclear β-catenin during the dark phase.
Durgan, David J.; Tsai, Ju-Yun; Grenett, Maximiliano H.; Pat, Betty M.; Ratcliffe, William F.; Villegas-Montoya, Carolina; Garvey, Merissa E.; Nagendran, Jeevan; Dyck, Jason R.B.; Bray, Molly S.; Gamble, Karen L.; Gimble, Jeffrey M.; Young, Martin E.
2011-01-01
Circadian dyssynchrony of an organism (at the whole body level) with its environment, either through light/dark cycle or genetic manipulation of clock genes, augments various cardiometabolic diseases. The cardiomyocyte circadian clock has recently been shown to influence multiple myocardial processes, ranging from transcriptional regulation and energy metabolism, to contractile function. We therefore reasoned that chronic dyssychrony of the cardiomyocyte circadian clock with its environment would precipitate myocardial maladaptation to a circadian challenge (simulated shift work; SSW). To test this hypothesis, 2 and 20 month old wild-type and CCM (Cardiomyocyte Clock Mutant; a model with genetic temporal suspension of the cardiomyocyte circadian clock at the active-to-sleep phase transition) mice were subjected to chronic (16-wks) bi-weekly 12-hr phase shifts in the light/dark cycle (i.e., SSW). Assessment of adaptation/maladaptation at whole body homeostatic, gravimetric, humoral, histological, transcriptional, and cardiac contractile function levels revealed essentially identical responses between wild-type and CCM littermates. However, CCM hearts exhibit increased bi-ventricular weight, cardiomyocyte size, and molecular markers of hypertrophy (anf, mcip1) independent of aging and/or SSW. Similarly, a second genetic model of selective temporal suspension of the cardiomyocyte circadian clock (Cardiomyocyte-specific BMAL1 Knockout [CBK] mice) exhibits increased bi-ventricular weight and mcip1 expression. Wild-type mice exhibit 5-fold greater cardiac hypertrophic growth (and 6-fold greater anf mRNA induction) when challenged with the hypertrophic agonist isoproterenol at the active-to-sleep phase transition, relative to isoproterenol administration at the sleep-to-active phase transition. This diurnal variation was absent in CCM mice. Collectively, these data suggest that the cardiomyocyte circadian clock likely influences responsiveness of the heart to hypertrophic stimuli. PMID:21452915
Effects of Different PER Translational Kinetics on the Dynamics of a Core Circadian Clock Model
Nieto, Paula S.; Revelli, Jorge A.; Garbarino-Pico, Eduardo; Condat, Carlos A.; Guido, Mario E.; Tamarit, Francisco A.
2015-01-01
Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis. PMID:25607544
Effects of different per translational kinetics on the dynamics of a core circadian clock model.
Nieto, Paula S; Revelli, Jorge A; Garbarino-Pico, Eduardo; Condat, Carlos A; Guido, Mario E; Tamarit, Francisco A
2015-01-01
Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.
NASA Astrophysics Data System (ADS)
Mandelis, Andreas; Guo, Xinxin
2011-10-01
A differential photothermal radiometry method, wavelength-modulated differential photothermal radiometry (WM-DPTR), has been developed theoretically and experimentally for noninvasive, noncontact biological analyte detection, such as blood glucose monitoring. WM-DPTR features analyte specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the base line of a prominent and isolated mid-IR analyte absorption band (here the carbon-oxygen-carbon bond in the pyran ring of the glucose molecule). A theoretical photothermal model of WM-DPTR signal generation and detection has been developed. Simulation results on water-glucose phantoms with the human blood range (0-300 mg/dl) glucose concentration demonstrated high sensitivity and resolution to meet wide clinical detection requirements. The model has also been validated by experimental data of the glucose-water system obtained using WM-DPTR.
Ambrosio, Maria Rosaria; D'Esposito, Vittoria; Costa, Valerio; Liguoro, Domenico; Collina, Francesca; Cantile, Monica; Prevete, Nella; Passaro, Carmela; Mosca, Giusy; De Laurentiis, Michelino; Di Bonito, Maurizio; Botti, Gerardo; Franco, Renato; Beguinot, Francesco; Ciccodicola, Alfredo; Formisano, Pietro
2017-12-12
Type 2 diabetes and obesity are negative prognostic factors in patients with breast cancer (BC). We found that sensitivity to tamoxifen was reduced by 2-fold by 25 mM glucose (High Glucose; HG) compared to 5.5 mM glucose (Low Glucose; LG) in MCF7 BC cells. Shifting from HG to LG ameliorated MCF7 cell responsiveness to tamoxifen. RNA-Sequencing of MCF7 BC cells revealed that cell cycle-related genes were mainly affected by glucose. Connective Tissue Growth Factor (CTGF) was identified as a glucose-induced modulator of cell sensitivity to tamoxifen. Co-culturing MCF7 cells with human adipocytes exposed to HG, enhanced CTGF mRNA levels and reduced tamoxifen responsiveness of BC cells. Inhibition of adipocyte-released IL8 reverted these effects. Interestingly, CTGF immuno-detection in bioptic specimens from women with estrogen receptor positive (ER + ) BC correlated with hormone therapy resistance, distant metastases, reduced overall and disease-free survival. Thus, glucose affects tamoxifen responsiveness directly modulating CTGF in BC cells, and indirectly promoting IL8 release by adipocytes.
The REVEILLE Clock Genes Inhibit Growth of Juvenile and Adult Plants by Control of Cell Size.
Gray, Jennifer A; Shalit-Kaneh, Akiva; Chu, Dalena Nhu; Hsu, Polly Yingshan; Harmer, Stacey L
2017-04-01
The circadian clock is a complex regulatory network that enhances plant growth and fitness in a constantly changing environment. In Arabidopsis ( Arabidopsis thaliana ), the clock is composed of numerous regulatory feedback loops in which REVEILLE8 ( RVE8 ) and its homologs RVE4 and RVE6 act in a partially redundant manner to promote clock pace. Here, we report that the remaining members of the RVE8 clade, RVE3 and RVE5 , play only minor roles in the regulation of clock function. However, we find that RVE8 clade proteins have unexpected functions in the modulation of light input to the clock and the control of plant growth at multiple stages of development. In seedlings, these proteins repress hypocotyl elongation in a daylength- and sucrose-dependent manner. Strikingly, adult rve4 6 8 and rve3 4 5 6 8 mutants are much larger than wild-type plants, with both increased leaf area and biomass. This size phenotype is associated with a faster growth rate and larger cell size and is not simply due to a delay in the transition to flowering. Gene expression and epistasis analysis reveal that the growth phenotypes of rve mutants are due to the misregulation of PHYTOCHROME INTERACTING FACTOR4 ( PIF4 ) and PIF5 expression. Our results show that even small changes in PIF gene expression caused by the perturbation of clock gene function can have large effects on the growth of adult plants. © 2017 American Society of Plant Biologists. All Rights Reserved.
Cavanaugh, Daniel J; Vigderman, Abigail S; Dean, Terry; Garbe, David S; Sehgal, Amita
2016-02-01
Sleep is under the control of homeostatic and circadian processes, which interact to determine sleep timing and duration, but the mechanisms through which the circadian system modulates sleep are largely unknown. We therefore used adult-specific, temporally controlled neuronal activation and inhibition to identify an interaction between the circadian clock and a novel population of sleep-promoting neurons in Drosophila. Transgenic flies expressed either dTRPA1, a neuronal activator, or Shibire(ts1), an inhibitor of synaptic release, in small subsets of neurons. Sleep, as determined by activity monitoring and video tracking, was assessed before and after temperature-induced activation or inhibition using these effector molecules. We compared the effect of these manipulations in control flies and in mutant flies that lacked components of the molecular circadian clock. Adult-specific activation or inhibition of a population of neurons that projects to the sleep-promoting dorsal Fan-Shaped Body resulted in bidirectional control over sleep. Interestingly, the magnitude of the sleep changes were time-of-day dependent. Activation of sleep-promoting neurons was maximally effective during the middle of the day and night, and was relatively ineffective during the day-to-night and night-to-day transitions. These time-ofday specific effects were absent in flies that lacked functional circadian clocks. We conclude that the circadian system functions to gate sleep through active inhibition at specific times of day. These data identify a mechanism through which the circadian system prevents premature sleep onset in the late evening, when homeostatic sleep drive is high. © 2016 Associated Professional Sleep Societies, LLC.
Kim, Hyunbae; Zheng, Ze; Walker, Paul D; Kapatos, Gregory; Zhang, Kezhong
2017-07-15
Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress. Copyright © 2017 American Society for Microbiology.
Kim, Hyunbae; Zheng, Ze; Walker, Paul D.; Kapatos, Gregory
2017-01-01
ABSTRACT Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress. PMID:28461393
The choroid plexus harbors a circadian oscillator modulated by estrogens.
Quintela, Telma; Albuquerque, Tânia; Lundkvist, Gabriella; Carmine Belin, Andrea; Talhada, Daniela; Gonçalves, Isabel; Carro, Eva; Santos, Cecília R A
2018-02-01
The suprachiasmatic nucleus (SCN) of the hypothalamus is considered the master circadian oscillator in mammals. However, extra-SCN structures in the brain also display daily rhythms. Recently, we have demonstrated that the choroid plexus (CP) expresses core clock genes that are subjected to circadian regulation in a sex-dependent manner. By using CP explants cultured from female knock-in mice carrying the Period-luciferase transgene, we show that CP exhibits endogenous circadian rhythms of PERIOD2::LUCIFERASE expression. Furthermore, we demonstrate that estrogen declines following ovariectomy modulates the daily rhythm expression of Bmal1, Per1 and Per2 in female rat CP, corroborating data obtained in experiments where rat CP epithelial cell (CPEC) cultures were incubated with 17β-estradiol (E2). The molecular mechanism underlying these effects was also investigated, and we provide evidence that the estrogen receptor (ER) mediates the response of clock genes to E2. In conclusion, our study proves that the CP harbors a circadian oscillator that is modulated by estrogens and demonstrates that E2 regulation occurs through an estrogen-receptor-dependent mechanism.
Modular design and implementation of field-programmable-gate-array-based Gaussian noise generator
NASA Astrophysics Data System (ADS)
Li, Yuan-Ping; Lee, Ta-Sung; Hwang, Jeng-Kuang
2016-05-01
The modular design of a Gaussian noise generator (GNG) based on field-programmable gate array (FPGA) technology was studied. A new range reduction architecture was included in a series of elementary function evaluation modules and was integrated into the GNG system. The approximation and quantisation errors for the square root module with a first polynomial approximation were high; therefore, we used the central limit theorem (CLT) to improve the noise quality. This resulted in an output rate of one sample per clock cycle. We subsequently applied Newton's method for the square root module, thus eliminating the need for the use of the CLT because applying the CLT resulted in an output rate of two samples per clock cycle (>200 million samples per second). Two statistical tests confirmed that our GNG is of high quality. Furthermore, the range reduction, which is used to solve a limited interval of the function approximation algorithms of the System Generator platform using Xilinx FPGAs, appeared to have a higher numerical accuracy, was operated at >350 MHz, and can be suitably applied for any function evaluation.
Light directs zebrafish period2 expression via conserved D and E boxes.
Vatine, Gad; Vallone, Daniela; Appelbaum, Lior; Mracek, Philipp; Ben-Moshe, Zohar; Lahiri, Kajori; Gothilf, Yoav; Foulkes, Nicholas S
2009-10-01
For most species, light represents the principal environmental signal for entraining the endogenous circadian clock. The zebrafish is a fascinating vertebrate model for studying this process since unlike mammals, direct exposure of most of its tissues to light leads to local clock entrainment. Importantly, light induces the expression of a set of genes including certain clock genes in most zebrafish cell types in vivo and in vitro. However, the mechanism linking light to gene expression remains poorly understood. To elucidate this key mechanism, here we focus on how light regulates transcription of the zebrafish period2 (per2) gene. Using transgenic fish and stably transfected cell line-based assays, we define a Light Responsive Module (LRM) within the per2 promoter. The LRM lies proximal to the transcription start site and is both necessary and sufficient for light-driven gene expression and also for a light-dependent circadian clock regulation. Curiously, the LRM sequence is strongly conserved in other vertebrate per2 genes, even in species lacking directly light-sensitive peripheral clocks. Furthermore, we reveal that the human LRM can substitute for the zebrafish LRM to confer light-regulated transcription in zebrafish cells. The LRM contains E- and D-box elements that are critical for its function. While the E-box directs circadian clock regulation by mediating BMAL/CLOCK activity, the D-box confers light-driven expression. The zebrafish homolog of the thyrotroph embryonic factor binds efficiently to the LRM D-box and transactivates expression. We demonstrate that tef mRNA levels are light inducible and that knock-down of tef expression attenuates light-driven transcription from the per2 promoter in vivo. Together, our results support a model where a light-dependent crosstalk between E- and D-box binding factors is a central determinant of per2 expression. These findings extend the general understanding of the mechanism whereby the clock is entrained by light and how the regulation of clock gene expression by light has evolved in vertebrates.
Man, Gene Chi Wai; Zhang, Tao; Chen, Xiaoyan; Wang, Jianzhang; Wu, Fangrong; Liu, Yingyu; Wang, Chi Chiu; Cheong, Ying; Li, Tin Chiu
2017-08-01
During normal pregnancy, the mechanism by which the fetus escapes immunological rejection by the maternal womb remains elusive. Given the biological complexities, the immunological mechanism is unlikely to be simply an allograft response in acceptance or rejection of the early pregnancy. Circadian clock responsible for the mammalian circadian rhythm is an endogenously generated rhythm associated with almost all physiological processes including reproduction. There is now growing evidence to suggest that the circadian clocks are intricately linked to the immune system and pregnancy. When perturbed, the role of immune cells can be affected on maintaining the enriched vascular system needed for placentation. This alteration can be triggered by the irregular production of maternal and placental melatonin. Hence, the role of circadian rhythm modulators such as melatonin offers intriguing opportunities for therapy. In this review, we evaluate the complex interaction between the circadian clock and melatonin within the immune system and their roles in the circadian regulation and maintenance of normal pregnancy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hinze, Thomas; Schumann, Mathias; Bodenstein, Christian; Heiland, Ines; Schuster, Stefan
2011-01-01
Exploration of chronobiological systems emerges as a growing research field within bioinformatics focusing on various applications in medicine, agriculture, and material sciences. From a systems biological perspective, the question arises whether biological control systems for regulation of oscillatory signals and their technical counterparts utilise similar mechanisms. If so, modelling approaches and parameterisation adopted from building blocks can help to identify general components for frequency control in circadian clocks along with gaining insight into mechanisms of clock synchronisation to external stimuli like the daily rhythm of sunlight and darkness. Phase-locked loops could be an interesting candidate in this context. Both, biology and engineering, can benefit from a unified view resulting from systems modularisation. In a first experimental study, we analyse a model of coupled repressilators. We demonstrate its ability to synchronise clock signals in a monofrequential manner. Several oscillators initially deviate in phase difference and frequency with respect to explicit reaction and diffusion rates. Accordingly, the duration of the synchronisation process depends on dedicated reaction and diffusion parameters whose settings still lack to be sufficiently captured analytically. PMID:22046179
Obesity in mice with adipocyte-specific deletion of clock component Arntl
Paschos, Georgios K; Ibrahim, Salam; Song, Wen-Liang; Kunieda, Takeshige; Grant, Gregory; Reyes, Teresa M; Bradfield, Christopher A; Vaughan, Cheryl H; Eiden, Michael; Masoodi, Mojgan; Griffin, Julian L; Wang, Fenfen; Lawson, John A; FitzGerald, Garret A
2013-01-01
Adipocytes store excess energy in the form of triglycerides and signal the levels of stored energy to the brain. Here we show that adipocyte-specific deletion of Arntl (also known as Bmal1), a gene encoding a core molecular clock component, results in obesity in mice with a shift in the diurnal rhythm of food intake, a result that is not seen when the gene is disrupted in hepatocytes or pancreatic islets. Changes in the expression of hypothalamic neuropeptides that regulate appetite are consistent with feedback from the adipocyte to the central nervous system to time feeding behavior. Ablation of the adipocyte clock is associated with a reduced number of polyunsaturated fatty acids in adipocyte triglycerides. This difference between mutant and wild-type mice is reflected in the circulating concentrations of polyunsaturated fatty acids and nonesterified polyunsaturated fatty acids in hypothalamic neurons that regulate food intake. Thus, this study reveals a role for the adipocyte clock in the temporal organization of energy regulation, highlights timing as a modulator of the adipocyte-hypothalamic axis and shows the impact of timing of food intake on body weight. PMID:23142819
Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-α1
Duhart, José M.; Leone, María Juliana; Paladino, Natalia; Evans, Jennifer A.; Castanon-Cervantes, Oscar; Davidson, Alec J.; Golombek, Diego A.
2013-01-01
The immune and the circadian systems interact in a bidirectional fashion. The master circadian oscillator, located in the suprachiasmatic nuclei of the hypothalamus (SCN), responds to peripheral and local immune stimuli, such as proinflammatory cytokines and bacterial endotoxin. Astrocytes exert several immune functions in the central nervous system and there is growing evidence that points towards a role of these cells in the regulation of circadian rhythms. The aim of this work was to assess the response of SCN astrocytes to immune stimuli, particularly to the proinflammatory cytokine TNF-α. TNF-α applied to cultures of SCN astrocytes from Per2luc knock in mice altered both the phase and amplitude of PER2 expression rhythms, in a phase dependent manner. Furthermore, conditioned media from SCN astrocytes cultures transiently challenged with TNF-α induced an increase in Per1 expression in NIH 3T3 cells, that was blocked by TNF-α antagonism. In addition, these conditioned media could induce phase shifts in SCN PER2 rhythms and, when administered intracerebroventricularly, induced phase delays in behavioral circadian rhythms and SCN activation in control mice, but not in TNF-Receptor-1 mutants. In summary, our results show that TNF-α modulates the molecular clock of SCN astrocytes in vitro and also that, in response to this molecule, SCN astrocytes can modulate clock gene expression in other cells and tissues, and induce phase shifts in a circadian behavioral output in vivo. These findings suggest a role for astroglial cells in the alteration of circadian timing by immune activation. PMID:24062487
Modeling and Analysis of Asynchronous Systems Using SAL and Hybrid SAL
NASA Technical Reports Server (NTRS)
Tiwari, Ashish; Dutertre, Bruno
2013-01-01
We present formal models and results of formal analysis of two different asynchronous systems. We first examine a mid-value select module that merges the signals coming from three different sensors that are each asynchronously sampling the same input signal. We then consider the phase locking protocol proposed by Daly, Hopkins, and McKenna. This protocol is designed to keep a set of non-faulty (asynchronous) clocks phase locked even in the presence of Byzantine-faulty clocks on the network. All models and verifications have been developed using the SAL model checking tools and the Hybrid SAL abstractor.
Multi-tissue DNA methylation age predictor in mouse.
Stubbs, Thomas M; Bonder, Marc Jan; Stark, Anne-Katrien; Krueger, Felix; von Meyenn, Ferdinand; Stegle, Oliver; Reik, Wolf
2017-04-11
DNA methylation changes at a discrete set of sites in the human genome are predictive of chronological and biological age. However, it is not known whether these changes are causative or a consequence of an underlying ageing process. It has also not been shown whether this epigenetic clock is unique to humans or conserved in the more experimentally tractable mouse. We have generated a comprehensive set of genome-scale base-resolution methylation maps from multiple mouse tissues spanning a wide range of ages. Many CpG sites show significant tissue-independent correlations with age which allowed us to develop a multi-tissue predictor of age in the mouse. Our model, which estimates age based on DNA methylation at 329 unique CpG sites, has a median absolute error of 3.33 weeks and has similar properties to the recently described human epigenetic clock. Using publicly available datasets, we find that the mouse clock is accurate enough to measure effects on biological age, including in the context of interventions. While females and males show no significant differences in predicted DNA methylation age, ovariectomy results in significant age acceleration in females. Furthermore, we identify significant differences in age-acceleration dependent on the lipid content of the diet. Here we identify and characterise an epigenetic predictor of age in mice, the mouse epigenetic clock. This clock will be instrumental for understanding the biology of ageing and will allow modulation of its ticking rate and resetting the clock in vivo to study the impact on biological age.
NASA Astrophysics Data System (ADS)
Ahamed, Mohammad Shahed; Saito, Yuji; Mashiko, Koichi; Mochizuki, Masataka
2017-11-01
In recent years, heat pipes have been widely used in various hand held mobile electronic devices such as smart phones, tablet PCs, digital cameras. With the development of technology these devices have different user friendly features and applications; which require very high clock speeds of the processor. In general, a high clock speed generates a lot of heat, which needs to be spreaded or removed to eliminate the hot spot on the processor surface. However, it is a challenging task to achieve proper cooling of such electronic devices mentioned above because of their confined spaces and concentrated heat sources. Regarding this challenge, we introduced an ultra-thin heat pipe; this heat pipe consists of a special fiber wick structure named as "Center Fiber Wick" which can provide sufficient vapor space on the both sides of the wick structure. We also developed a cooling module that uses this kind of ultra-thin heat pipe to eliminate the hot spot issue. This cooling module consists of an ultra-thin heat pipe and a metal plate. By changing the width, the flattened thickness and the effective length of the ultra-thin heat pipe, several experiments have been conducted to characterize the thermal properties of the developed cooling module. In addition, other experiments were also conducted to determine the effects of changes in the number of heat pipes in a single module. Characterization and comparison of the module have also been conducted both experimentally and theoretically.
Associations of polymorphisms in circadian genes with abdominal obesity in Chinese adult population.
Ye, Ding; Cai, Shaofang; Jiang, Xiyi; Ding, Ye; Chen, Kun; Fan, Chunhong; Jin, Mingjuan
2016-09-01
Circadian rhythm, which is controlled by circadian genes, regulates metabolic balance including the circulating levels of glucose, fatty acids, triglycerides, various hormones and so on. The study aimed to investigate the impact of potential polymorphisms in circadian genes on abdominal obesity among Chinese Han adults. A total of 260 cases with abdominal obesity and 260 controls were recruited by individual matching. Demographic characteristics and lifestyle information were collected by a validated questionnaire, and anthropometric parameters was measured by physical examination. Twenty-three single nucleotide polymorphisms (SNPs) in three circadian genes, CLOCK, CRY1 and CRY2, were genotyped by MassArray technique. Five SNPs significantly deviated from Hardy-Weinberg equilibrium (HWE) among controls, so eighteen SNPs were taken into logistic regression analysis. Independently, CLOCK rs10002541 (CC genotype vs. TT genotype: OR: 0.45, 95% CI: 0.23-0.86), CLOCK rs6850524 (CC genotype vs. GG genotype: OR: 0.50, 95% CI: 0.25-0.99) and CRY1 rs10861688 (TT genotype vs. CC genotype: OR: 0.50, 95% CI: 0.25-0.97) were negatively associated with the risk of abdominal obesity. Haplotype analysis showed that the haplotypes of CG and TG for CLOCK rs10002541 and rs4864546 had significant associations with abdominal obesity. Compared with the carriers of TA, those of CG were observed to have a lower risk (OR: 0.74, 95% CI: 0.56-0.99) of abdominal obesity, and those of TG presented a higher risk (OR: 1.70, 95% CI: 1.03-2.81). Our findings suggest that CLOCK and CRY1 polymorphisms might be involved in individual susceptibility to abdominal obesity in Chinese Han population. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Ribas-Latre, Aleix; Eckel-Mahan, Kristin
2016-03-01
While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively, can destroy synchrony between peripheral clocks and the central pacemaker in the brain as well as between peripheral clocks themselves. In addition, we review several studies looking at clock gene SNPs in humans and the metabolic phenotypes or tendencies associated with particular clock gene mutations. Targeted use of specific nutrients based on chronotype has the potential for immense clinical utility in the future. Macronutrients and micronutrients have the ability to function as zeitgebers for the clock by activating or modulating specific clock proteins or accessory proteins (such as nuclear receptors). Circadian clock control by nutrients can be tissue-specific. With a better understanding of the mechanisms that support nutrient-induced circadian control in specific tissues, human chronotype and SNP information might eventually be used to tailor nutritional regimens for metabolic disease treatment and thus be an important part of personalized medicine's future.
Circadian Desynchrony Promotes Metabolic Disruption in a Mouse Model of Shiftwork
Barclay, Johanna L.; Husse, Jana; Bode, Brid; Naujokat, Nadine; Meyer-Kovac, Judit; Schmid, Sebastian M.; Lehnert, Hendrik; Oster, Henrik
2012-01-01
Shiftwork is associated with adverse metabolic pathophysiology, and the rising incidence of shiftwork in modern societies is thought to contribute to the worldwide increase in obesity and metabolic syndrome. The underlying mechanisms are largely unknown, but may involve direct physiological effects of nocturnal light exposure, or indirect consequences of perturbed endogenous circadian clocks. This study employs a two-week paradigm in mice to model the early molecular and physiological effects of shiftwork. Two weeks of timed sleep restriction has moderate effects on diurnal activity patterns, feeding behavior, and clock gene regulation in the circadian pacemaker of the suprachiasmatic nucleus. In contrast, microarray analyses reveal global disruption of diurnal liver transcriptome rhythms, enriched for pathways involved in glucose and lipid metabolism and correlating with first indications of altered metabolism. Although altered food timing itself is not sufficient to provoke these effects, stabilizing peripheral clocks by timed food access can restore molecular rhythms and metabolic function under sleep restriction conditions. This study suggests that peripheral circadian desynchrony marks an early event in the metabolic disruption associated with chronic shiftwork. Thus, strengthening the peripheral circadian system by minimizing food intake during night shifts may counteract the adverse physiological consequences frequently observed in human shift workers. PMID:22629359
Resolving Phase Ambiguities In OQPSK
NASA Technical Reports Server (NTRS)
Nguyen, Tien M.
1991-01-01
Improved design for modulator and demodulator in offset-quaternary-phase-key-shifting (OQPSK) communication system enables receiver to resolve ambiguity in estimated phase of received signal. Features include unique-code-word modulation and detection and digital implementation of Costas loop in carrier-recovery subsystem. Enchances performance of carrier-recovery subsystem, reduces complexity of receiver by removing redundant circuits from previous design, and eliminates dependence of timing in receiver upon parallel-to-serial-conversion clock.
Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is Modulated by PDF.
Chen, Jiangtian; Reiher, Wencke; Hermann-Luibl, Christiane; Sellami, Azza; Cognigni, Paola; Kondo, Shu; Helfrich-Förster, Charlotte; Veenstra, Jan A; Wegener, Christian
2016-09-01
Feeding and sleep are fundamental behaviours with significant interconnections and cross-modulations. The circadian system and peptidergic signals are important components of this modulation, but still little is known about the mechanisms and networks by which they interact to regulate feeding and sleep. We show that specific thermogenetic activation of peptidergic Allatostatin A (AstA)-expressing PLP neurons and enteroendocrine cells reduces feeding and promotes sleep in the fruit fly Drosophila. The effects of AstA cell activation are mediated by AstA peptides with receptors homolog to galanin receptors subserving similar and apparently conserved functions in vertebrates. We further identify the PLP neurons as a downstream target of the neuropeptide pigment-dispersing factor (PDF), an output factor of the circadian clock. PLP neurons are contacted by PDF-expressing clock neurons, and express a functional PDF receptor demonstrated by cAMP imaging. Silencing of AstA signalling and continuous input to AstA cells by tethered PDF changes the sleep/activity ratio in opposite directions but does not affect rhythmicity. Taken together, our results suggest that pleiotropic AstA signalling by a distinct neuronal and enteroendocrine AstA cell subset adapts the fly to a digestive energy-saving state which can be modulated by PDF.
Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is Modulated by PDF
Reiher, Wencke; Hermann-Luibl, Christiane; Sellami, Azza; Cognigni, Paola; Helfrich-Förster, Charlotte; Veenstra, Jan A.
2016-01-01
Feeding and sleep are fundamental behaviours with significant interconnections and cross-modulations. The circadian system and peptidergic signals are important components of this modulation, but still little is known about the mechanisms and networks by which they interact to regulate feeding and sleep. We show that specific thermogenetic activation of peptidergic Allatostatin A (AstA)-expressing PLP neurons and enteroendocrine cells reduces feeding and promotes sleep in the fruit fly Drosophila. The effects of AstA cell activation are mediated by AstA peptides with receptors homolog to galanin receptors subserving similar and apparently conserved functions in vertebrates. We further identify the PLP neurons as a downstream target of the neuropeptide pigment-dispersing factor (PDF), an output factor of the circadian clock. PLP neurons are contacted by PDF-expressing clock neurons, and express a functional PDF receptor demonstrated by cAMP imaging. Silencing of AstA signalling and continuous input to AstA cells by tethered PDF changes the sleep/activity ratio in opposite directions but does not affect rhythmicity. Taken together, our results suggest that pleiotropic AstA signalling by a distinct neuronal and enteroendocrine AstA cell subset adapts the fly to a digestive energy-saving state which can be modulated by PDF. PMID:27689358
Real-time machine vision system using FPGA and soft-core processor
NASA Astrophysics Data System (ADS)
Malik, Abdul Waheed; Thörnberg, Benny; Meng, Xiaozhou; Imran, Muhammad
2012-06-01
This paper presents a machine vision system for real-time computation of distance and angle of a camera from reference points in the environment. Image pre-processing, component labeling and feature extraction modules were modeled at Register Transfer (RT) level and synthesized for implementation on field programmable gate arrays (FPGA). The extracted image component features were sent from the hardware modules to a soft-core processor, MicroBlaze, for computation of distance and angle. A CMOS imaging sensor operating at a clock frequency of 27MHz was used in our experiments to produce a video stream at the rate of 75 frames per second. Image component labeling and feature extraction modules were running in parallel having a total latency of 13ms. The MicroBlaze was interfaced with the component labeling and feature extraction modules through Fast Simplex Link (FSL). The latency for computing distance and angle of camera from the reference points was measured to be 2ms on the MicroBlaze, running at 100 MHz clock frequency. In this paper, we present the performance analysis, device utilization and power consumption for the designed system. The FPGA based machine vision system that we propose has high frame speed, low latency and a power consumption that is much lower compared to commercially available smart camera solutions.
Proietto, Marco; Bianchi, Michele Maria; Ballario, Paola; Brenna, Andrea
2015-01-01
Blue light, a key abiotic signal, regulates a wide variety of physiological processes in many organisms. One of these phenomena is the circadian rhythm presents in organisms sensitive to the phase-setting effects of blue light and under control of the daily alternation of light and dark. Circadian clocks consist of autoregulatory alternating negative and positive feedback loops intimately connected with the cellular metabolism and biochemical processes. Neurospora crassa provides an excellent model for studying the molecular mechanisms involved in these phenomena. The White Collar Complex (WCC), a blue-light receptor and transcription factor of the circadian oscillator, and Frequency (FRQ), the circadian clock pacemaker, are at the core of the Neurospora circadian system. The eukaryotic circadian clock relies on transcriptional/translational feedback loops: some proteins rhythmically repress their own synthesis by inhibiting the activity of their transcriptional factors, generating self-sustained oscillations over a period of about 24 h. One of the basic mechanisms that perpetuate self-sustained oscillations is post translation modification (PTM). The acronym PTM generically indicates the addition of acetyl, methyl, sumoyl, or phosphoric groups to various types of proteins. The protein can be regulatory or enzymatic or a component of the chromatin. PTMs influence protein stability, interaction, localization, activity, and chromatin packaging. Chromatin modification and PTMs have been implicated in regulating circadian clock function in Neurospora. Research into the epigenetic control of transcription factors such as WCC has yielded new insights into the temporal modulation of light-dependent gene transcription. Here we report on epigenetic and protein PTMs in the regulation of the Neurospora crassa circadian clock. We also present a model that illustrates the molecular mechanisms at the basis of the blue light control of the circadian clock. PMID:26198228
Chun, Lauren E.; Hinds, Laura R.; Spencer, Robert L.
2016-01-01
Mood disorders are associated with dysregulation of prefrontal cortex (PFC) function, circadian rhythms, and diurnal glucocorticoid (corticosterone [CORT]) circulation. Entrainment of clock gene expression in some peripheral tissues depends on CORT. In this study, we characterized over the course of the day the mRNA expression pattern of the core clock genes Per1, Per2, and Bmal1 in the male rat PFC and suprachiasmatic nucleus (SCN) under different diurnal CORT conditions. In experiment 1, rats were left adrenal-intact (sham) or were adrenalectomized (ADX) followed by 10 daily antiphasic (opposite time of day of the endogenous CORT peak) ip injections of either vehicle or 2.5 mg/kg CORT. In experiment 2, all rats received ADX surgery followed by 13 daily injections of vehicle or CORT either antiphasic or in-phase with the endogenous CORT peak. In sham rats clock gene mRNA levels displayed a diurnal pattern of expression in the PFC and the SCN, but the phase differed between the 2 structures. ADX substantially altered clock gene expression patterns in the PFC. This alteration was normalized by in-phase CORT treatment, whereas antiphasic CORT treatment appears to have eliminated a diurnal pattern (Per1 and Bmal1) or dampened/inverted its phase (Per2). There was very little effect of CORT condition on clock gene expression in the SCN. These experiments suggest that an important component of glucocorticoid circadian physiology entails CORT regulation of the molecular clock in the PFC. Consequently, they also point to a possible mechanism that contributes to PFC disrupted function in disorders associated with abnormal CORT circulation. PMID:26901093
Anabolic Heterogeneity Following Resistance Training: A Role for Circadian Rhythm?
Camera, Donny M
2018-01-01
It is now well established that resistance exercise stimulates muscle protein synthesis and promotes gains in muscle mass and strength. However, considerable variability exists following standardized resistance training programs in the magnitude of muscle cross-sectional area and strength responses from one individual to another. Several studies have recently posited that alterations in satellite cell population, myogenic gene expression and microRNAs may contribute to individual variability in anabolic adaptation. One emerging factor that may also explain the variability in responses to resistance exercise is circadian rhythms and underlying molecular clock signals. The molecular clock is found in most cells within the body, including skeletal muscle, and principally functions to optimize the timing of specific cellular events around a 24 h cycle. Accumulating evidence investigating the skeletal muscle molecular clock indicates that exercise-induced contraction and its timing may regulate gene expression and protein synthesis responses which, over time, can influence and modulate key physiological responses such as muscle hypertrophy and increased strength. Therefore, the circadian clock may play a key role in the heterogeneous anabolic responses with resistance exercise. The central aim of this Hypothesis and Theory is to discuss and propose the potential interplay between the circadian molecular clock and established molecular mechanisms mediating muscle anabolic responses with resistance training. This article begins with a current review of the mechanisms associated with the heterogeneity in muscle anabolism with resistance training before introducing the molecular pathways regulating circadian function in skeletal muscle. Recent work showing members of the core molecular clock system can regulate myogenic and translational signaling pathways is also discussed, forming the basis for a possible role of the circadian clock in the variable anabolic responses with resistance exercise.
Torres-Farfan, C; Abarzua-Catalan, L; Valenzuela, F J; Mendez, N; Richter, H G; Valenzuela, G J; Serón-Ferré, M
2009-06-01
Timely production of glucocorticoid hormones in response to ACTH is essential for survival by coordinating energy intake and expenditure and acting as homeostatic regulators against stress. Adrenal cortisol response to ACTH is clock time dependent, suggesting that an intrinsic circadian oscillator in the adrenal cortex contributes to modulate the response to ACTH. Circadian clock gene expression has been reported in the adrenal cortex of several species. However, there are no reports accounting for potential involvement of adrenal clock proteins on cortisol response to ACTH. Here we explored whether the clock protein cryptochrome 2 (CRY2) knockdown modifies the adrenal response to ACTH in a primate. Adrenal gland explants from adult capuchin monkey (n = 5) were preincubated for 6 h with transfection vehicle (control) or with two different Cry2 antisense and sense probes followed by 48 h incubation in medium alone (no ACTH) or with 100 nm ACTH. Under control and sense conditions, ACTH increased cortisol production, whereas CRY2 suppression inhibited ACTH-stimulated cortisol production. Expression of the steroidogenic enzymes steroidogenic acute regulatory protein and 3beta-hydroxysteroid dehydrogenase at 48 h of incubation was increased by ACTH in control explants and suppressed by Cry2 knockdown. Additionally, we found that Cry2 knockdown decreased the expression of the clock gene brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (Bmal1) at the mRNA and protein levels. Altogether these results strongly support that the clock protein CRY2 is involved in the mechanism by which ACTH increases the expression of steroidogenic acute regulatory protein and 3beta-hydroxysteroid dehydrogenase. Thus, adequate expression levels of components of the adrenal circadian clock are required for an appropriate cortisol response to ACTH.
Hwang, Jae-Woong; Sundar, Isaac K.; Yao, Hongwei; Sellix, Michael T.; Rahman, Irfan
2014-01-01
Patients with obstructive lung diseases display abnormal circadian rhythms in lung function. We determined the mechanism whereby environmental tobacco/cigarette smoke (CS) modulates expression of the core clock gene BMAL1, through Sirtuin1 (SIRT1) deacetylase during lung inflammatory and injurious responses. Adult C57BL6/J and various mice mutant for SIRT1 and BMAL1 were exposed to both chronic (6 mo) and acute (3 and 10 d) CS, and we measured the rhythmic expression of clock genes, circadian rhythms of locomotor activity, lung function, and inflammatory and emphysematous responses in the lungs. CS exposure (100–300 mg/m3 particulates) altered clock gene expression and reduced locomotor activity by disrupting the central and peripheral clocks and increased lung inflammation, causing emphysema in mice. BMAL1 was acetylated and degraded in the lungs of mice exposed to CS and in patients with chronic obstructive pulmonary disease (COPD), compared with lungs of the nonsmoking controls, linking it mechanistically to CS-induced reduction of SIRT1. Targeted deletion of Bmal1 in lung epithelium augmented inflammation in response to CS, which was not attenuated by the selective SIRT1 activator SRT1720 (EC50=0.16 μM) in these mice. Thus, the circadian clock, specifically the enhancer BMAL1 in epithelium, plays a pivotal role, mediated by SIRT1-dependent BMAL1, in the regulation of CS-induced lung inflammatory and injurious responses.— Hwang, J.-W., Sundar, I. K., Yao, H., Sellix, M. T., Rahman, I. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. PMID:24025728
Design and implementation of ATCA-based 100Gbps DP-QPSK optical signal test instrument
NASA Astrophysics Data System (ADS)
Su, Shaojing; Qin, Jiangyi; Huang, Zhiping; Liu, Chenwu
2014-11-01
In order to achieve the receiving task of 100Gbps Dual Polarization-Quadrature Phase Shift Keying (DP-QPSK) optical signal acquisition instrument, improve acquisition performance of the instrument, this paper has deeply researched DP-QPSK modulation principles, demodulation techniques and the key technologies of optical signal acquisition. The theories of DP-QPSK optical signal transmission are researched. The DP-QPSK optical signal transmission model is deduced. And the clock and data recovery in high-speed data acquisition and offset correction of multi-channel data are researched. By reasonable hardware circuit design and software system construction, the utilization of high performance Advanced Telecom Computing Architecture (ATCA), this paper proposes a 100Gbps DP-QPSK optical signal acquisition instrument which is based on ATCA. The implementations of key modules are presented by comparison and argumentation. According to the modularization idea, the instrument can be divided into eight modules. Each module performs the following functions. (1) DP-QPSK coherent detection demodulation module; (2) deceleration module; (3) FPGA (Field Programmable Gate Array); (4) storage module; (5) data transmission module; (6) clock module; (7) power module; (8) JTAG debugging, configuration module; What is more, this paper has put forward two solutions to test optical signal acquisition instrument performance. The first scenario is based on a standard STM-256 optical signal format and exploits the SignalTap of QuartusII software to monitor the optical signal data. Another scenario is to use a pseudo-random signal series to generate data, acquisition module acquires a certain amount of data signals, and then the signals are transferred to a computer by the Gigabit Ethernet to analyze. Two testing results show that the bit error rate of optical signal acquisition instrument is low. And the instrument fully meets the requirements of signal receiving system. At the same time this design has an important significance in practical applications.
Clonazepam increases in vivo striatal extracellular glucose in diabetic rats after glucose overload.
Gomez, Rosane; Barros, Helena M T
2003-12-01
Hyperglycemia modulates brain function, including neuronal excitability, neurotransmitter release and behavioral changes. There may be connections between the GABAergic system, glucose sensing neurons and glucose in the neuronal environment that shed light on the mechanism by which GABA(A) agents influence depressive behavior in diabetic rats submitted to the forced swimming test. We aimed to investigate whether clonazepam (CNZ), a GABA(A) receptor positive modulator, modifies in vivo striatal extracellular glucose levels in diabetic rats under fasting condition or after oral glucose overload. Streptozotocin diabetic and nondiabetic rats were submitted to in vivo striatal microdialysis. Perfusate samples were collected at baseline, during fasting and following administration of CNZ (0.25 mg/kg) and oral glucose overload. Blood glucose and striatal extracellular glucose were measured simultaneously at several time points. Fasting striatal glucose levels were higher in diabetic than in nondiabetic rats and the differences between these animals were maintained after glucose overload. The increases in extracellular striatal glucose after glucose overload were around 40% and blood to brain transference was decreased in diabetics. CNZ treatment paradoxically increased striatal glucose after glucose overload in diabetic rats, which may mark the dysfunction in brain glucose homeostasis.
Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis.
Thaiss, Christoph A; Zeevi, David; Levy, Maayan; Zilberman-Schapira, Gili; Suez, Jotham; Tengeler, Anouk C; Abramson, Lior; Katz, Meirav N; Korem, Tal; Zmora, Niv; Kuperman, Yael; Biton, Inbal; Gilad, Shlomit; Harmelin, Alon; Shapiro, Hagit; Halpern, Zamir; Segal, Eran; Elinav, Eran
2014-10-23
All domains of life feature diverse molecular clock machineries that synchronize physiological processes to diurnal environmental fluctuations. However, no mechanisms are known to cross-regulate prokaryotic and eukaryotic circadian rhythms in multikingdom ecosystems. Here, we show that the intestinal microbiota, in both mice and humans, exhibits diurnal oscillations that are influenced by feeding rhythms, leading to time-specific compositional and functional profiles over the course of a day. Ablation of host molecular clock components or induction of jet lag leads to aberrant microbiota diurnal fluctuations and dysbiosis, driven by impaired feeding rhythmicity. Consequently, jet-lag-induced dysbiosis in both mice and humans promotes glucose intolerance and obesity that are transferrable to germ-free mice upon fecal transplantation. Together, these findings provide evidence of coordinated metaorganism diurnal rhythmicity and offer a microbiome-dependent mechanism for common metabolic disturbances in humans with aberrant circadian rhythms, such as those documented in shift workers and frequent flyers.
Grape seed procyanidin extract modulates proliferation and apoptosis of pancreatic beta-cells.
Cedó, Lídia; Castell-Auví, Anna; Pallarès, Victor; Blay, Mayte; Ardévol, Anna; Arola, Lluís; Pinent, Montserrat
2013-05-01
Grape seed procyanidin extract (GSPE) modulates glucose homeostasis and insulinemia in several animal models. Under pathological conditions, insulin levels are dependent on pancreatic beta-cell functionality, as well as on the beta-cell mass expansion or apoptosis in the pancreas. In this study, we analysed the effects of GSPE on modulating apoptosis and proliferation in beta-cells. We tested the effects of GSPE in the INS-1E pancreatic beta-cell line, either under basal or altered conditions with high glucose, insulin or palmitate levels. GSPE enhanced the pro-apoptotic effect of high glucose and showed clear antiproliferative effects under high glucose, insulin and palmitate conditions. These antiproliferative effects are likely due to high molecular weight compounds contained in the extract. GSPE also modulated pro- and anti-apoptotic markers in the pancreas of rats fed a cafeteria diet, with the effect depending on the dose of GSPE and duration of treatment. Thus, GSPE is able to modulate apoptosis and proliferation of beta-cells under altered, but not basal, conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Time-of-Day Effects on Metabolic and Clock-Related Adjustments to Cold.
Machado, Frederico Sander Mansur; Zhang, Zhi; Su, Yan; de Goede, Paul; Jansen, Remi; Foppen, Ewout; Coimbra, Cândido Celso; Kalsbeek, Andries
2018-01-01
Daily cyclic changes in environmental conditions are key signals for anticipatory and adaptive adjustments of most living species, including mammals. Lower ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT) and skeletal muscle. Given that the molecular components of the endogenous biological clock interact with thermal and metabolic mechanisms directly involved in the defense of body temperature, the present study evaluated the differential homeostatic responses to a cold stimulus at distinct time-windows of the light/dark-cycle. Male Wistar rats were subjected to a single episode of 3 h cold ambient temperature (4°C) at one of 6 time-points starting at Zeitgeber Times 3, 7, 11, 15, 19, and 23. Metabolic rate, core body temperature, locomotor activity (LA), feeding, and drinking behaviors were recorded during control and cold conditions at each time-point. Immediately after the stimulus, rats were euthanized and both the soleus and BAT were collected for real-time PCR. During the light phase (i.e., inactive phase), cold exposure resulted in a slight hyperthermia ( p < 0.001). Light phase cold exposure also increased metabolic rate and LA ( p < 0.001). In addition, the prevalence of fat oxidative metabolism was attenuated during the inactive phase ( p < 0.001). These metabolic changes were accompanied by time-of-day and tissue-specific changes in core clock gene expression, such as DBP ( p < 0.0001) and REV-ERBα ( p < 0.01) in the BAT and CLOCK ( p < 0.05), PER2 ( p < 0.05), CRY1 ( p < 0.05), CRY2 ( p < 0.01), and REV-ERBα ( p < 0.05) in the soleus skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis were affected in a time-of-day and tissue-specific manner by cold exposure. The time-of-day modulation of substrate mobilization and oxidation during cold exposure provides a clear example of the circadian modulation of physiological and metabolic responses. Interestingly, after cold exposure, time-of-day mostly affected circadian clock gene expression in the soleus muscle, despite comparable changes in LA over the light-dark-cycle. The current findings add further evidence for tissue-specific actions of the internal clock in different peripheral organs such as skeletal muscle and BAT.
Filichkin, Sergei A.; Breton, Ghislain; Priest, Henry D.; Dharmawardhana, Palitha; Jaiswal, Pankaj; Fox, Samuel E.; Michael, Todd P.; Chory, Joanne; Kay, Steve A.; Mockler, Todd C.
2011-01-01
Background Circadian clocks provide an adaptive advantage through anticipation of daily and seasonal environmental changes. In plants, the central clock oscillator is regulated by several interlocking feedback loops. It was shown that a substantial proportion of the Arabidopsis genome cycles with phases of peak expression covering the entire day. Synchronized transcriptome cycling is driven through an extensive network of diurnal and clock-regulated transcription factors and their target cis-regulatory elements. Study of the cycling transcriptome in other plant species could thus help elucidate the similarities and differences and identify hubs of regulation common to monocot and dicot plants. Methodology/Principal Findings Using a combination of oligonucleotide microarrays and data mining pipelines, we examined daily rhythms in gene expression in one monocotyledonous and one dicotyledonous plant, rice and poplar, respectively. Cycling transcriptomes were interrogated under different diurnal (driven) and circadian (free running) light and temperature conditions. Collectively, photocycles and thermocycles regulated about 60% of the expressed nuclear genes in rice and poplar. Depending on the condition tested, up to one third of oscillating Arabidopsis-poplar-rice orthologs were phased within three hours of each other suggesting a high degree of conservation in terms of rhythmic gene expression. We identified clusters of rhythmically co-expressed genes and searched their promoter sequences to identify phase-specific cis-elements, including elements that were conserved in the promoters of Arabidopsis, poplar, and rice. Conclusions/Significance Our results show that the cycling patterns of many circadian clock genes are highly conserved across poplar, rice, and Arabidopsis. The expression of many orthologous genes in key metabolic and regulatory pathways is diurnal and/or circadian regulated and phased to similar times of day. Our results confirm previous findings in Arabidopsis of three major classes of cis-regulatory modules within the plant circadian network: the morning (ME, GBOX), evening (EE, GATA), and midnight (PBX/TBX/SBX) modules. Identification of identical overrepresented motifs in the promoters of cycling genes from different species suggests that the core diurnal/circadian cis-regulatory network is deeply conserved between mono- and dicotyledonous species. PMID:21694767
Müller, Mattea; Canfora, Emanuel E.; Blaak, Ellen E.
2018-01-01
Gastrointestinal transit time may be an important determinant of glucose homeostasis and metabolic health through effects on nutrient absorption and microbial composition, among other mechanisms. Modulation of gastrointestinal transit may be one of the mechanisms underlying the beneficial health effects of dietary fibers. These effects include improved glucose homeostasis and a reduced risk of developing metabolic diseases such as obesity and type 2 diabetes mellitus. In this review, we first discuss the regulation of gastric emptying rate, small intestinal transit and colonic transit as well as their relation to glucose homeostasis and metabolic health. Subsequently, we briefly address the reported health effects of different dietary fibers and discuss to what extent the fiber-induced health benefits may be mediated through modulation of gastrointestinal transit. PMID:29495569
Modulation of parathion toxicity by glucose feeding: Is nitric oxide involved?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Jing; Gupta, Ramesh C.; Goad, John T.
2007-03-15
Glucose feeding can markedly exacerbate the toxicity of the anticholinesterase insecticide, parathion. We determined the effects of parathion on brain nitric oxide and its possible role in potentiation of toxicity by glucose feeding. Adult rats were given water or 15% glucose in water for 3 days and challenged with vehicle or parathion (18 mg/kg, s.c.) on day 4. Functional signs, plasma glucose and brain cholinesterase, citrulline (an indicator of nitric oxide production) and high-energy phosphates (HEPs) were measured 1-3 days after parathion. Glucose feeding exacerbated cholinergic toxicity. Parathion increased plasma glucose (15-33%) and decreased cortical cholinesterase activity (81-90%), with nomore » significant differences between water and glucose treatment groups. In contrast, parathion increased brain regional citrulline (40-47%) and decreased HEPs (18-40%) in rats drinking water, with significantly greater changes in glucose-fed rats (248-363% increase and 31-61% decrease, respectively). We then studied the effects of inhibiting neuronal nitric oxide synthase (nNOS) by 7-nitroindazole (7NI, 30 mg/kg, i.p. x4) on parathion toxicity and its modulation by glucose feeding. Co-exposure to parathion and 7NI led to a marked increase in cholinergic signs of toxicity and lethality, regardless of glucose intake. Thus, glucose feeding enhanced the accumulation of brain nitric oxide following parathion exposure, but inhibition of nitric oxide synthesis was ineffective at counteracting increased parathion toxicity associated with glucose feeding. Evidence is therefore presented to suggest that nitric oxide may play both toxic and protective roles in cholinergic toxicity, and its precise contribution to modulation by glucose feeding requires further investigation.« less
Absolute frequency measurement of the 88Sr+ clock transition using a GPS link to the SI second
NASA Astrophysics Data System (ADS)
Dubé, Pierre; E Bernard, John; Gertsvolf, Marina
2017-06-01
We report the results of a recent measurement of the absolute frequency of the 5s{{ }2}{{S}1/2} - 4d{{ }2}{{D}5/2} transition of the {{}88}\\text{Sr}{{}+} ion. The optical frequency was measured against the international atomic time realization of the SI second on the geoid as obtained by frequency transfer using a global positioning system link and the precise point positioning technique. The measurement campaign yielded more than 100 h of frequency data. It was performed with improvements to the stability and accuracy of the single-ion clock compared to the last measurement made in 2012. The single ion clock uncertainty is evaluated at 1.5× {{10}-17} when contributions from acousto-optic modulator frequency chirps and servo errors are taken into account. The stability of the ion clock is 3× {{10}-15} at 1 s averaging, a factor of three better than in the previous measurement. The results from the two measurement campaigns are in good agreement. The uncertainty of the measurement, primarily from the link to the SI second, is 0.75 Hz (1.7× {{10}-15} ). The frequency measured for the S-D clock transition of {{}88}\\text{S}{{\\text{r}}+} is {ν0}= 444 779 044 095 485.27(75) Hz.
Compact atomic clocks and stabilised laser for space applications
NASA Astrophysics Data System (ADS)
Mileti, Gaetano; Affolderbach, Christoph; Matthey-de-l'Endroit, Renaud
2016-07-01
We present our developments towards next generation compact vapour-cell based atomic frequency standards using a tunable laser diode instead of a traditional discharge lamp. The realisation of two types of Rubidium clocks addressing specific applications is in progress: high performance frequency standards for demanding applications such as satellite navigation, and chip-scale atomic clocks, allowing further miniaturisation of the system. The stabilised laser source constitutes the main technological novelty of these new standards, allowing a more efficient preparation and interrogation of the atoms and hence an improvement of the clock performances. However, before this key component may be employed in a commercial and ultimately in a space-qualified instrument, further studies are necessary to demonstrate their suitability, in particular concerning their reliability and long-term operation. The talk will present our preliminary investigations on this subject. The stabilised laser diode technology developed for our atomic clocks has several other applications on ground and in space. We will conclude our talk by illustrating this for the example of a recently completed ESA project on a 1.6 microns wavelength reference for a future space-borne Lidar. This source is based on a Rubidium vapour cell providing the necessary stability and accuracy, while a second harmonic generator and a compact optical comb generated from an electro-optic modulator allow to transfer these properties from the Rubidium wavelength (780nm) to the desired spectral range.
Circadian modulation of short-term memory in Drosophila.
Lyons, Lisa C; Roman, Gregg
2009-01-01
Endogenous biological clocks are widespread regulators of behavior and physiology, allowing for a more efficient allocation of efforts and resources over the course of a day. The extent that different processes are regulated by circadian oscillators, however, is not fully understood. We investigated the role of the circadian clock on short-term associative memory formation using a negatively reinforced olfactory-learning paradigm in Drosophila melanogaster. We found that memory formation was regulated in a circadian manner. The peak performance in short-term memory (STM) occurred during the early subjective night with a twofold performance amplitude after a single pairing of conditioned and unconditioned stimuli. This rhythm in memory is eliminated in both timeless and period mutants and is absent during constant light conditions. Circadian gating of sensory perception does not appear to underlie the rhythm in short-term memory as evidenced by the nonrhythmic shock avoidance and olfactory avoidance behaviors. Moreover, central brain oscillators appear to be responsible for the modulation as cryptochrome mutants, in which the antennal circadian oscillators are nonfunctional, demonstrate robust circadian rhythms in short-term memory. Together these data suggest that central, rather than peripheral, circadian oscillators modulate the formation of short-term associative memory and not the perception of the stimuli.
Quasimodo mediates daily and acute light effects on Drosophila clock neuron excitability.
Buhl, Edgar; Bradlaugh, Adam; Ogueta, Maite; Chen, Ko-Fan; Stanewsky, Ralf; Hodge, James J L
2016-11-22
We have characterized a light-input pathway regulating Drosophila clock neuron excitability. The molecular clock drives rhythmic electrical excitability of clock neurons, and we show that the recently discovered light-input factor Quasimodo (Qsm) regulates this variation, presumably via an Na + , K + , Cl - cotransporter (NKCC) and the Shaw K + channel (dK V 3.1). Because of light-dependent degradation of the clock protein Timeless (Tim), constant illumination (LL) leads to a breakdown of molecular and behavioral rhythms. Both overexpression ( OX ) and knockdown ( RNAi ) of qsm, NKCC, or Shaw led to robust LL rhythmicity. Whole-cell recordings of the large ventral lateral neurons (l-LNv) showed that altering Qsm levels reduced the daily variation in neuronal activity: qsm OX led to a constitutive less active, night-like state, and qsm RNAi led to a more active, day-like state. Qsm also affected daily changes in K + currents and the GABA reversal potential, suggesting a role in modifying membrane currents and GABA responses in a daily fashion, potentially modulating light arousal and input to the clock. When directly challenged with blue light, wild-type l-LNvs responded with increased firing at night and no net response during the day, whereas altering Qsm, NKKC, or Shaw levels abolished these day/night differences. Finally, coexpression of Shaw OX and NKCC RNAi in a qsm mutant background restored LL-induced behavioral arrhythmicity and wild-type neuronal activity patterns, suggesting that the three genes operate in the same pathway. We propose that Qsm affects both daily and acute light effects in l-LNvs probably acting on Shaw and NKCC.
Quasimodo mediates daily and acute light effects on Drosophila clock neuron excitability
Bradlaugh, Adam; Ogueta, Maite; Chen, Ko-Fan; Stanewsky, Ralf; Hodge, James J. L.
2016-01-01
We have characterized a light-input pathway regulating Drosophila clock neuron excitability. The molecular clock drives rhythmic electrical excitability of clock neurons, and we show that the recently discovered light-input factor Quasimodo (Qsm) regulates this variation, presumably via an Na+, K+, Cl− cotransporter (NKCC) and the Shaw K+ channel (dKV3.1). Because of light-dependent degradation of the clock protein Timeless (Tim), constant illumination (LL) leads to a breakdown of molecular and behavioral rhythms. Both overexpression (OX) and knockdown (RNAi) of qsm, NKCC, or Shaw led to robust LL rhythmicity. Whole-cell recordings of the large ventral lateral neurons (l-LNv) showed that altering Qsm levels reduced the daily variation in neuronal activity: qsmOX led to a constitutive less active, night-like state, and qsmRNAi led to a more active, day-like state. Qsm also affected daily changes in K+ currents and the GABA reversal potential, suggesting a role in modifying membrane currents and GABA responses in a daily fashion, potentially modulating light arousal and input to the clock. When directly challenged with blue light, wild-type l-LNvs responded with increased firing at night and no net response during the day, whereas altering Qsm, NKKC, or Shaw levels abolished these day/night differences. Finally, coexpression of ShawOX and NKCCRNAi in a qsm mutant background restored LL-induced behavioral arrhythmicity and wild-type neuronal activity patterns, suggesting that the three genes operate in the same pathway. We propose that Qsm affects both daily and acute light effects in l-LNvs probably acting on Shaw and NKCC. PMID:27821737
Christie, Andrew E.; Fontanilla, Tiana M.; Nesbit, Katherine T.; Lenz, Petra H.
2013-01-01
Diel vertical migration and seasonal diapause are critical life history events for the copepod Calanus finmarchicus. While much is known about these behaviors phenomenologically, little is known about their molecular underpinnings. Recent studies in insects suggest that some circadian genes/proteins also contribute to the establishment of seasonal diapause. Thus, it is possible that in Calanus these distinct timing regimes share some genetic components. To begin to address this possibility, we used the well-established Drosophila melanogaster circadian system as a reference for mining clock transcripts from a 200,000+ sequence Calanus transcriptome; the proteins encoded by the identified transcripts were also deduced and characterized. Sequences encoding homologs of the Drosophila core clock proteins CLOCK, CYCLE, PERIOD and TIMELESS were identified, as was one encoding CRYPTOCHROME 2, a core clock protein in ancestral insect systems, but absent in Drosophila. Calanus transcripts encoding proteins known to modulate the Drosophila core clock were also identified and characterized, e.g. CLOCKWORK ORANGE, DOUBLETIME, SHAGGY and VRILLE. Alignment and structural analyses of the deduced Calanus proteins with their Drosophila counterparts revealed extensive sequence conservation, particularly in functional domains. Interestingly, reverse BLAST analyses of these sequences against all arthropod proteins typically revealed non-Drosophila isoforms to be most similar to the Calanus queries. This, in combination with the presence of both CRYPTOCHROME 1 (a clock input pathway protein) and CRYPTOCHROME 2 in Calanus, suggests that the organization of the copepod circadian system is an ancestral one, more similar to that of insects like Danaus plexippus than to that of Drosophila. PMID:23727418
Prosser, Rebecca A.; Mangrum, Charles A.; Glass, J. David
2008-01-01
Alcohol abuse is associated with sleep problems, which are often linked to circadian rhythm disturbances. However, there is no information on the direct effects of ethanol on the mammalian circadian clock. Acute ethanol inhibits glutamate signaling, which is the primary mechanism through which light resets the mammalian clock in the suprachiasmatic nucleus (SCN). Glutamate and light also inhibit circadian clock resetting induced by non-photic signals, including serotonin. Thus, we investigated the effects of acute ethanol on both glutamatergic and serotoninergic resetting of the SCN clock in vitro. We show that ethanol dose-dependently inhibits glutamate-induced phase shifts and enhances serotonergic phase shifts. The inhibition of glutamate-induced phase shifts is not affected by excess glutamate, glycine or D-serine, but is prevented by excess brain-derived neurotrophic factor (BDNF). BDNF is known to augment glutamate signaling in the SCN and to be necessary for glutamate/light-induced phase shifts. Thus, ethanol may inhibit glutamate-induced clock resetting at least in part by blocking BDNF enhancement of glutamate signaling. Ethanol enhancement of serotonergic phase shifts is mimicked by treatments that suppress glutamate signaling in the SCN, including antagonists of glutamate receptors, BDNF signaling and nitric oxide synthase. The combined effect of ethanol with these treatments is not additive, suggesting they act through a common pathway. Our data indicate further that the interaction between serotonin and glutamate in the SCN may occur downstream from nitric oxide synthase activation. Thus, acute ethanol disrupts normal circadian clock phase regulation, which could contribute to the physiological and psychological problems associated with alcohol abuse. PMID:18313227
Icard, Philippe; Teboul, Bernard; El Baze, Philip
2017-11-01
Cancer cells consume high amounts of glucose to produce ATP and molecules entering biosynthesis. Numerous experimental studies have demonstrated that glucose deprivation and/or glycolysis inhibition arrest cancer cell growth and may increase the efficiency of cytotoxic drugs. In contrast, increasing glycolysis in tumor-infiltrating lymphocytes (TILs) activates these cells that destroy cancer cells. We propose to increase the efficiency of chemotherapy by modulating glucose intake during the course of chemotherapy. Glucose and caloric intake should be drastically reduced the day before and during chemotherapy administration to deprive cancer cells of ATP and molecules required to repair cytotoxic lesions. Few hours after chemotherapy, glucose and caloric intake should be drastically increased for few days to promote the activation of TILs that reinforce the destruction of cancer cells. This strategy could improve the results of chemotherapy by first enhancing cytotoxic stress against tumor cells and then promoting activation of the anti-cancer immune response. The modulation of glucose intake during chemotherapy should be tested clinically. The proposed scheme is simple, surely easier to follow than a strict chronic diet, and should avoid weight loss. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Chirp-free optical return-to-zero modulation based on a single microring resonator.
Sun, Lili; Ye, Tong; Wang, Xiaowen; Zhou, Linjie; Chen, Jianping
2012-03-26
This paper proposes a chirp-free optical return-to-zero (RZ) modulator using a double coupled microring resonator. Optical RZ modulation is achieved by applying a clock (CLK) driving signal to the input coupling region and a non-return-to-zero (NRZ) driving signal to the output coupling region. Static and time-domain coupled-mode theory (CMT) based dynamic analyse are performed to theoretically investigate its performance in RZ modulation. The criteria to realize RZ modulation are deduced. Various RZ modulation formats, including RZ phase-shift-keying (RZ-PSK), carrier-suppressed RZ (CSRZ), and RZ intensity modulation formats, can be implemented by using CLK and NRZ signals with different combinations of polarities. Numerical simulations are performed and the feasibility of our modulator at 10 Gbit/s for the multiple RZ modulation formats is verified.
Stable passive optical clock generation in SOA-based fiber lasers.
Wang, Jing-Yun; Lin, Kuei-Huei; Chen, Hou-Ren
2015-02-15
Stable optical pulse trains are obtained from 1.3-μm and 1.5-μm semiconductor optical amplifier (SOA)-based fiber lasers using passive optical technology. The waveforms depend on SOA currents, and the repetition rates can be tuned by varying the relative length of sub-cavities. The output pulse trains of these SOA-based fiber lasers are stable against intracavity polarization adjustment and environmental perturbation. The optical clock generation is explained in terms of mode competition, self-synchronization, and SOA saturation. Without resorting to any active modulation circuits or devices, the technology used here is simple and may find various applications in the future.
Shahmoradi, Ali; Reinecke, Lisa; Kroos, Christina; Wichert, Sven P.; Oster, Henrik; Wehr, Michael C.; Taneja, Reshma; Hirrlinger, Johannes; Rossner, Moritz J.
2014-01-01
Increasing evidence suggests that clock genes may be implicated in a spectrum of psychiatric diseases, including sleep and mood related disorders as well as schizophrenia. The bHLH transcription factors SHARP1/DEC2/BHLHE41 and SHARP2/DEC1/BHLHE40 are modulators of the circadian system and SHARP1/DEC2/BHLHE40 has been shown to regulate homeostatic sleep drive in humans. In this study, we characterized Sharp1 and Sharp2 double mutant mice (S1/2-/-) using online EEG recordings in living animals, behavioral assays and global gene expression profiling. EEG recordings revealed attenuated sleep/wake amplitudes and alterations of theta oscillations. Increased sleep in the dark phase is paralleled by reduced voluntary activity and cortical gene expression signatures reveal associations with psychiatric diseases. S1/2-/- mice display alterations in novelty induced activity, anxiety and curiosity. Moreover, mutant mice exhibit impaired working memory and deficits in prepulse inhibition resembling symptoms of psychiatric diseases. Network modeling indicates a connection between neural plasticity and clock genes, particularly for SHARP1 and PER1. Our findings support the hypothesis that abnormal sleep and certain (endo)phenotypes of psychiatric diseases may be caused by common mechanisms involving components of the molecular clock including SHARP1 and SHARP2. PMID:25340473
Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142.
Červený, Jan; Sinetova, Maria A; Valledor, Luis; Sherman, Louis A; Nedbal, Ladislav
2013-08-06
The unicellular cyanobacterium Cyanothece sp. American Type Culture Collection (ATCC) 51142 is capable of performing oxygenic photosynthesis during the day and microoxic nitrogen fixation at night. These mutually exclusive processes are possible only by temporal separation by circadian clock or another cellular program. We report identification of a temperature-dependent ultradian metabolic rhythm that controls the alternating oxygenic and microoxic processes of Cyanothece sp. ATCC 51142 under continuous high irradiance and in high CO2 concentration. During the oxygenic photosynthesis phase, nitrate deficiency limited protein synthesis and CO2 assimilation was directed toward glycogen synthesis. The carbohydrate accumulation reduced overexcitation of the photosynthetic reactions until a respiration burst initiated a transition to microoxic N2 fixation. In contrast to the circadian clock, this ultradian period is strongly temperature-dependent: 17 h at 27 °C, which continuously decreased to 10 h at 39 °C. The cycle was expressed by an oscillatory modulation of net O2 evolution, CO2 uptake, pH, fluorescence emission, glycogen content, cell division, and culture optical density. The corresponding ultradian modulation was also observed in the transcription of nitrogenase-related nifB and nifH genes and in nitrogenase activities. We propose that the control by the newly identified metabolic cycle adds another rhythmic component to the circadian clock that reflects the true metabolic state depending on the actual temperature, irradiance, and CO2 availability.
Kagan, Margarita; Kivirand, Kairi; Rinken, Toonika
2013-09-10
We studied the modulation of calibration parameters of biosensors, in which glucose oxidase was used for bio-recognition, in the presence of different chlorides by following the transient phase dynamics of oxygen concentration with an oxygen optrode. The mechanism of modulation was characterized with the changes of the glucose oxidase catalytic constant and oxygen diffusion constant. The modulation of two biosensor calibration parameters were studied: the maximum calculated signal change was amplified for about 20% in the presence of sodium and magnesium chlorides; the value of the kinetic parameter decreased along with the addition of salts and increased only at sodium chloride concentrations over 0.5 mM. Besides glucose bioassay, the amplification of calibration parameters was also studied in cascaded two-enzyme lactose biosensor, where the initial step of lactose bio-recognition, the β-galactosidase - catalyzed lactose hydrolysis, was additionally accelerated by magnesium ions. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zunoubi, Mohammad R.; Anderson, Brian; Naderi, Shadi A.; Madden, Timothy J.; Dajani, Iyad
2017-03-01
The development of high-power fiber lasers is of great interest due to the advantages they offer relative to other laser technologies. Currently, the maximum power from a reportedly single-mode fiber amplifier stands at 10 kW. Though impressive, this power level was achieved at the cost of a large spectral linewidth, making the laser unsuitable for coherent or spectral beam combination techniques required to reach power levels necessary for airborne tactical applications. An effective approach in limiting the SBS effect is to insert an electro-optic phase modulator at the low-power end of a master oscillator power amplifier (MOPA) system. As a result, the optical power is spread among spectral sidebands; thus raising the overall SBS threshold of the amplifier. It is the purpose of this work to present a comprehensive numerical scheme that is based on the extended nonlinear Schrodinger equations that allows for accurate analysis of phase modulated fiber amplifier systems in relation to the group velocity dispersion and Kerr nonlinearities and their effect on the coherent beam combining efficiency. As such, we have simulated a high-power MOPA system modulated via filtered pseudo-random bit sequence format for different clock rates and power levels. We show that at clock rates of ≥30 GHz, the combination of GVD and self-phase modulation may lead to a drastic drop in beam combining efficiency at the multi-kW level. Furthermore, we extend our work to study the effect of cross-phase modulation where an amplifier is seeded with two laser sources.
Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA
NASA Astrophysics Data System (ADS)
Bellato, M.; Bortolato, D.; Chavas, J.; Isocrate, R.; Rampazzo, G.; Triossi, A.; Bazzacco, D.; Mengoni, D.; Recchia, F.
2013-07-01
The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors.
Optical Communication with Semiconductor Laser Diode. Interim Progress Report. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Davidson, Frederic; Sun, Xiaoli
1989-01-01
Theoretical and experimental performance limits of a free-space direct detection optical communication system were studied using a semiconductor laser diode as the optical transmitter and a silicon avalanche photodiode (APD) as the receiver photodetector. Optical systems using these components are under consideration as replacements for microwave satellite communication links. Optical pulse position modulation (PPM) was chosen as the signal format. An experimental system was constructed that used an aluminum gallium arsenide semiconductor laser diode as the transmitter and a silicon avalanche photodiode photodetector. The system used Q=4 PPM signaling at a source data rate of 25 megabits per second. The PPM signal format requires regeneration of PPM slot clock and word clock waveforms in the receiver. A nearly exact computational procedure was developed to compute receiver bit error rate without using the Gaussion approximation. A transition detector slot clock recovery system using a phase lock loop was developed and implemented. A novel word clock recovery system was also developed. It was found that the results of the nearly exact computational procedure agreed well with actual measurements of receiver performance. The receiver sensitivity achieved was the closest to the quantum limit yet reported for an optical communication system of this type.
Circadian redox signaling in plant immunity and abiotic stress.
Spoel, Steven H; van Ooijen, Gerben
2014-06-20
Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive.
Webb, Ian C
2017-02-01
Reward-related learning, including that associated with drugs of abuse, is largely mediated by the dopaminergic mesolimbic pathway. Mesolimbic neurophysiology and motivated behavior, in turn, are modulated by the circadian timing system which generates ∼24-h rhythms in cellular activity. Both drug taking and seeking and mesolimbic dopaminergic neurotransmission can vary widely over the day. Moreover, circadian clock genes are expressed in ventral tegmental area dopaminergic cells and in mesolimbic target regions where they can directly modulate reward-related neurophysiology and behavior. There also exists a reciprocal influence between drug taking and circadian timing as the administration of drugs of abuse can alter behavioral rhythms and circadian clock gene expression in mesocorticolimbic structures. These interactions suggest that manipulations of the circadian timing system may have some utility in the treatment of substance abuse disorders. Here, the literature on bidirectional interactions between the circadian timing system and drug taking is briefly reviewed, and potential chronotherapeutic considerations for the treatment of addiction are discussed.
Opperhuizen, Anne-Loes; Stenvers, Dirk J; Jansen, Remi D; Foppen, Ewout; Fliers, Eric; Kalsbeek, Andries
2017-07-01
Exposure to light at night (LAN) has increased dramatically in recent decades. Animal studies have shown that chronic dim LAN induced obesity and glucose intolerance. Furthermore, several studies in humans have demonstrated that chronic exposure to artificial LAN may have adverse health effects with an increased risk of metabolic disorders, including type 2 diabetes. It is well-known that acute exposure to LAN affects biological clock function, hormone secretion and the activity of the autonomic nervous system, but data on the effects of LAN on glucose homeostasis are lacking. This study aimed to investigate the acute effects of LAN on glucose metabolism. Male Wistar rats were subjected to i.v. glucose or insulin tolerance tests while exposed to 2 h of LAN in the early or late dark phase. In subsequent experiments, different light intensities and wavelengths were used. LAN exposure early in the dark phase at ZT15 caused increased glucose responses during the first 20 min after glucose infusion (p < 0.001), whereas LAN exposure at the end of the dark phase, at ZT21, caused increased insulin responses during the first 10 min (p < 0.01), indicating that LAN immediately induces glucose intolerance in rats. Subsequent experiments demonstrated that the effect of LAN was both intensity- and wavelength-dependent. White light of 50 and 150 lx induced greater glucose responses than 5 and 20 lx, whereas all intensities other than 5 lx reduced locomotor activity. Green light induced glucose intolerance, but red and blue light did not, suggesting the involvement of a specific retina-brain pathway. Together, these data show that exposure to LAN has acute adverse effects on glucose metabolism in a time-, intensity- and wavelength-dependent manner.
Modulation of gastrointestinal vagal neurocircuits by hyperglycemia
Browning, Kirsteen N.
2013-01-01
Glucose sensing within autonomic neurocircuits is critical for the effective integration and regulation of a variety of physiological homeostatic functions including the co-ordination of vagally-mediated reflexes regulating gastrointestinal (GI) functions. Glucose regulates GI functions via actions at multiple sites of action, from modulating the activity of enteric neurons, endocrine cells, and glucose transporters within the intestine, to regulating the activity and responsiveness of the peripheral terminals, cell bodies and central terminals of vagal sensory neurons, to modifying both the activity and synaptic responsiveness of central brainstem neurons. Unsurprisingly, significant impairment in GI functions occurs in pathophysiological states where glucose levels are dysregulated, such as diabetes. A substantial obstacle to the development of new therapies to modify the disease, rather than treat the symptoms, are the gaps in our understanding of the mechanisms by which glucose modulates GI functions, particularly vagally-mediated responses and a more complete understanding of disease-related plasticity within these neurocircuits may open new avenues and targets for research. PMID:24324393
Naderi, Fatemeh; Hernández-Pérez, Juan; Chivite, Mauro; Soengas, José L; Míguez, Jesús M; López-Patiño, Marcos A
2018-05-08
Stress is conditioning animal welfare by negatively affecting a wide range of physiological and behavioral functions. This may be applied to circadian physiology and food intake. Cortisol, the stress-related hormone, may mediate such effect of stress, but other indirect mediators might be considered, such as sirtuin1. Then, either the independent modulatory effect or the existence of any interaction between mediators may be responsible. The circadian system is the main modulator of several integrative mechanisms at both central and peripheral levels that are rhythmically presented, thus influencing different processes such as food intake. In this way, food intake is controlled by the circadian system, as demonstrated by the persistence of such rhythms of food intake in the absence of environmental external cues. Our study aimed to evaluate the daily profile of hypothalamic mRNA abundance of circadian clock genes (clock1a, bmal1, per1 and rev-erbβ-like), and food intake regulators (crf, pomc-a1, cart, and npy) in rainbow trout (Oncorhynchus mykiss), the impact of stress on such rhythms, and the involvement of cortisol and sirtuin1 as mediators. Four cohorts of trout were subjected to 1) normal stocking density (control group), 2) high stocking density for 72 hours (stress group), 3) normal stocking density and implanted with mifepristone, a glucocorticoid receptors antagonist, and 4) mifepristone administered and stressed for 72 hours. Fish from each group were sampled every 4-h along the 24-h LD cycle, and cortisol, glucose and lactate plasma levels were evaluated. Hypothalamic mRNA abundance of clock genes, food intake regulators, glucocorticoid receptors and sirtuin1 were qPCR assayed. Our results reveal the impact of stress on most of the genes assayed, but different mechanisms appear to be involved. The rhythm of clock genes displayed decreased amplitude and averaged levels in stressed trout, with no changes of the acrophase being observed. This effect was not prevented by mifepristone. On the contrary, the effect of stress on the daily profile of crf, pomc-a1, and npy was totally prevented by mifepristone administration. Accordingly, cortisol appears to mainly mediate the effect of stress on food intake regulators through binding to specific glucocorticoid receptors within trout hypothalamus, whereas sirtuin1 is apparently mediating such effects on the circadian system in the same brain region. Further research must be performed to clarify those mechanisms through which stress influences food intake and the circadian oscillator within the same brain region, hypothalamus, in rainbow trout, and the interaction among them all.
A Pulse Code Modulated Fiber Optic Link Design for Quinault Under-Water Tracking Range.
1980-09-01
invented and patented a light-wave communications device, the Photophone . The light beam was acoustically modulated, transmitted through the atmosphere and...a load resistor or feedback resistor. This voltage can be cal- culated by multiplying the received power, the respcnsiv ity and the effective load...frequency is not real critical since the clock, in effect , is synchronized after every eight bits by the timing pulse. The more interesting part of the
The circadian modulation of leptin-controlled bone formation
USDA-ARS?s Scientific Manuscript database
Mice with circadian gene Period and Cryptochrome mutations develop high bone mass early in life. Such a phenotype is accompanied by an increase in osteoblast numbers in mutant bone and cannot be corrected by leptin intracerebroventricular infusion. Thus, the molecular clock plays a key role in lepti...
EMCS Modules/Intelligent Time Clock (ITC).
1980-09-01
scale, smaller activities where a large EMCS would not be economically feasible, have had to look elsewhere to achieve their conservation goals. In this...DAEN- MPU . Washington DC: ERADCOM Tech Supp Dir. (DELSD-L) Ft. Monmouth, NJ: Engr District (Memphis) Library. Memphis TN: Natick (’en (Kwvoh flu
A reconfigurable multicarrier demodulator architecture
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; Jamali, M. M.
1991-01-01
An architecture based on parallel and pipline design approaches has been developed for the Frequency Division Multiple Access/Time Domain Multiplexed (FDMA/TDM) conversion system. The architecture has two main modules namely the transmultiplexer and the demodulator. The transmultiplexer has two pipelined modules. These are the shared multiplexed polyphase filter and the Fast Fourier Transform (FFT). The demodulator consists of carrier, clock, and data recovery modules which are interactive. Progress on the design of the MultiCarrier Demodulator (MCD) using commercially available chips and Application Specific Integrated Circuits (ASIC) and simulation studies using Viewlogic software will be presented at the conference.
Holistic design in high-speed optical interconnects
NASA Astrophysics Data System (ADS)
Saeedi, Saman
Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking. In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy eciency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The receiver sensitivity is measured to be -8.8dBm at 32Gb/s. Next, on the optical transmitter side, three new techniques will be presented. First one is a differential ring modulator that breaks the optical bandwidth/quality factor trade-off known to limit the speed of high-Q ring modulators. This structure maintains a constant energy in the ring to avoid pattern-dependent power droop. As a first proof of concept, a prototype has been fabricated and measured up to 10Gb/s. The second technique is thermal stabilization of micro-ring resonator modulators through direct measurement of temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. A prototype is fabricated and a closed-loop feedback system is demonstrated to operate at 20Gb/s in the presence of temperature fluctuations. The third technique is a switched-capacitor based pre-emphasis technique designed to extend the inherently low bandwidth of carrier injection micro-ring modulators. A measured prototype of the optical transmitter achieves energy efficiency of 342fJ/bit at 10Gb/s and the wavelength stabilization circuit based on the monolithic PTAT sensor consumes 0.29mW. Lastly, a first-order frequency synthesizer that is suitable for high-speed on-chip clock generation will be discussed. The proposed design features an architecture combining an LC quadrature VCO, two sample-and-holds, a PI, digital coarse-tuning, and rotational frequency detection for fine-tuning. In addition to an electrical reference clock, as an extra feature, the prototype chip is capable of receiving a low jitter optical reference clock generated by a high-repetition-rate mode-locked laser. The output clock at 8GHz has an integrated RMS jitter of 490fs, peak-to-peak periodic jitter of 2.06ps, and total RMS jitter of 680fs. The reference spurs are measured to be 64.3dB below the carrier frequency. At 8GHz the system consumes 2.49mW from a 1V supply.
[Design and implementation of real-time continuous glucose monitoring instrument].
Huang, Yonghong; Liu, Hongying; Tian, Senfu; Jia, Ziru; Wang, Zi; Pi, Xitian
2017-12-01
Real-time continuous glucose monitoring can help diabetics to control blood sugar levels within the normal range. However, in the process of practical monitoring, the output of real-time continuous glucose monitoring system is susceptible to glucose sensor and environment noise, which will influence the measurement accuracy of the system. Aiming at this problem, a dual-calibration algorithm for the moving-window double-layer filtering algorithm combined with real-time self-compensation calibration algorithm is proposed in this paper, which can realize the signal drift compensation for current data. And a real-time continuous glucose monitoring instrument based on this study was designed. This real-time continuous glucose monitoring instrument consisted of an adjustable excitation voltage module, a current-voltage converter module, a microprocessor and a wireless transceiver module. For portability, the size of the device was only 40 mm × 30 mm × 5 mm and its weight was only 30 g. In addition, a communication command code algorithm was designed to ensure the security and integrity of data transmission in this study. Results of experiments in vitro showed that current detection of the device worked effectively. A 5-hour monitoring of blood glucose level in vivo showed that the device could continuously monitor blood glucose in real time. The relative error of monitoring results of the designed device ranged from 2.22% to 7.17% when comparing to a portable blood meter.
Amir, Shimon; Stewart, Jane
2009-05-15
Key molecular components of the mammalian circadian clock are expressed rhythmically in many brain areas and peripheral tissues in mammals. Here we review findings from our work on rhythms of expression of the clock protein Period2 (PER2) in four regions of the limbic forebrain known to be important in the regulation of motivational and emotional states. These regions include the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), the central nucleus of the amygdala (CEA), the basolateral amygdala (BLA), and the dentate gyrus (DG). Daily rhythms in the expression of PER2 in these regions are controlled by the master circadian pacemaker, the suprachiasmatic nucleus (SCN), but, importantly, they are also sensitive to homeostatic perturbations and to hormonal states that directly influence motivated behavior. Thus, circadian information from the SCN and homeostatic signals are integrated in these regions of the limbic forebrain to affect the temporal organization of motivational and emotional processes.
NASA Technical Reports Server (NTRS)
Fouts, Douglas J.; Butner, Steven E.
1991-01-01
The design of the processing element of GASP, a GaAs supercomputer with a 500-MHz instruction issue rate and 1-GHz subsystem clocks, is presented. The novel, functionally modular, block data flow architecture of GASP is described. The architecture and design of a GASP processing element is then presented. The processing element (PE) is implemented in a hybrid semiconductor module with 152 custom GaAs ICs of eight different types. The effects of the implementation technology on both the system-level architecture and the PE design are discussed. SPICE simulations indicate that parts of the PE are capable of being clocked at 1 GHz, while the rest of the PE uses a 500-MHz clock. The architecture utilizes data flow techniques at a program block level, which allows efficient execution of parallel programs while maintaining reasonably good performance on sequential programs. A simulation study of the architecture indicates that an instruction execution rate of over 30,000 MIPS can be attained with 65 PEs.
NASA Technical Reports Server (NTRS)
Esterhuizen, Stephan
2012-01-01
NASA's twin GRAIL [1] spacecraft (Ebb and Flow) arrived at Earth's Moon on New Year's Day, 2012. GRAIL's primary mission is to create a high-resolution map of the Moon's gravitational field by measuring very precisely the change in distance between the two spacecraft [2]. Each spacecraft transmits two signals to the other spacecraft, a PRN code modulated on a 2 GHz carrier (S-band), as well as an unmodulated carrier at roughly 33 GHz (Ka-band). Since it's not feasible to synchronize the two GRAIL spacecraft's clocks via GPS (as was done with GRACE), the S-band signals are used as a time-transfer link to synchronize either Ebb's clock to Flow or vice versa. As an independent measure to determine the clock offset of the GRAIL ultra-stable oscillators to UTC(NIST), an experiment was conducted where our JPL team used a large antenna on Earth to eavesdrop on the inter-spacecraft time-transfer link.
Logan, Ryan W; Parekh, Puja K; Kaplan, Gabrielle N; Becker-Krail, Darius D; Williams, Wilbur P; Yamaguchi, Shintaro; Yoshino, Jun; Shelton, Micah A; Zhu, Xiyu; Zhang, Hui; Waplinger, Spencer; Fitzgerald, Ethan; Oliver-Smith, Jeffrey; Sundarvelu, Poornima; Enwright, John F; Huang, Yanhua H; McClung, Colleen A
2018-05-04
The diurnal regulation of dopamine is important for normal physiology and diseases such as addiction. Here we find a novel role for the CLOCK protein to antagonize CREB-mediated transcriptional activity at the tyrosine hydroxylase (TH) promoter, which is mediated by the interaction with the metabolic sensing protein, Sirtuin 1 (SIRT1). Additionally, we demonstrate that the transcriptional activity of TH is modulated by the cellular redox state, and daily rhythms of redox balance in the ventral tegmental area (VTA), along with TH transcription, are highly disrupted following chronic cocaine administration. Furthermore, CLOCK and SIRT1 are important for regulating cocaine reward and dopaminergic (DAergic) activity, with interesting differences depending on whether DAergic activity is in a heightened state and if there is a functional CLOCK protein. Taken together, we find that rhythms in cellular metabolism and circadian proteins work together to regulate dopamine synthesis and the reward value for drugs of abuse.
The genomic basis of circadian and circalunar timing adaptations in a midge.
Kaiser, Tobias S; Poehn, Birgit; Szkiba, David; Preussner, Marco; Sedlazeck, Fritz J; Zrim, Alexander; Neumann, Tobias; Nguyen, Lam-Tung; Betancourt, Andrea J; Hummel, Thomas; Vogel, Heiko; Dorner, Silke; Heyd, Florian; von Haeseler, Arndt; Tessmar-Raible, Kristin
2016-12-01
Organisms use endogenous clocks to anticipate regular environmental cycles, such as days and tides. Natural variants resulting in differently timed behaviour or physiology, known as chronotypes in humans, have not been well characterized at the molecular level. We sequenced the genome of Clunio marinus, a marine midge whose reproduction is timed by circadian and circalunar clocks. Midges from different locations show strain-specific genetic timing adaptations. We examined genetic variation in five C. marinus strains from different locations and mapped quantitative trait loci for circalunar and circadian chronotypes. The region most strongly associated with circadian chronotypes generates strain-specific differences in the abundance of calcium/calmodulin-dependent kinase II.1 (CaMKII.1) splice variants. As equivalent variants were shown to alter CaMKII activity in Drosophila melanogaster, and C. marinus (Cma)-CaMKII.1 increases the transcriptional activity of the dimer of the circadian proteins Cma-CLOCK and Cma-CYCLE, we suggest that modulation of alternative splicing is a mechanism for natural adaptation in circadian timing.
Daily rhythms in locomotor circuits in Drosophila involve PDF
Pírez, Nicolás; Christmann, Bethany L.
2013-01-01
The neuropeptide pigment-dispersing factor (PDF) has been studied extensively in Drosophila, and its role in circadian time-keeping has been firmly established. The role of PDF outside of the clock circuit, however, is poorly understood. A recent study suggested that PDF may act on the ellipsoid body (EB) to link the clock and sleep/activity circuits. We performed whole brain optical imaging with the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps expressed under control of the pdfR promoter to address how the clock and sleep deprivation affect the physiology of these cells. Basal cAMP levels in EB were regulated both by PDF and synaptic inputs that are controlled by the circadian clock. Acute application of PDF to the brain caused a significant, and PDF-receptor-dependent, increase in cAMP in EB cells. Application of TTX to block circuit-mediated effects of PDF increased the morning response but not the response at night, implying the existence of a temporally regulated, PDF-stimulated input that blocks cAMP generation. ACh produced both direct (TTX-insensitive) and indirect (TTX-sensitive) increases in cAMP during the day but was totally TTX-insensitive at night, indicating that ACh-stimulated inputs to the EB are suppressed at night. Sleep deprivation did not affect the cAMP responses of these cells to either PDF or ACh. These results suggest a novel role for PDF as a modulator of activity outside of the clock circuit. By elucidating the mechanisms by which the neuropeptide PDF act on its target cells, our work contributes to our understating of how the central clock coordinates activity and sleep. PMID:23678016
Daily rhythms in locomotor circuits in Drosophila involve PDF.
Pírez, Nicolás; Christmann, Bethany L; Griffith, Leslie C
2013-08-01
The neuropeptide pigment-dispersing factor (PDF) has been studied extensively in Drosophila, and its role in circadian time-keeping has been firmly established. The role of PDF outside of the clock circuit, however, is poorly understood. A recent study suggested that PDF may act on the ellipsoid body (EB) to link the clock and sleep/activity circuits. We performed whole brain optical imaging with the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps expressed under control of the pdfR promoter to address how the clock and sleep deprivation affect the physiology of these cells. Basal cAMP levels in EB were regulated both by PDF and synaptic inputs that are controlled by the circadian clock. Acute application of PDF to the brain caused a significant, and PDF-receptor-dependent, increase in cAMP in EB cells. Application of TTX to block circuit-mediated effects of PDF increased the morning response but not the response at night, implying the existence of a temporally regulated, PDF-stimulated input that blocks cAMP generation. ACh produced both direct (TTX-insensitive) and indirect (TTX-sensitive) increases in cAMP during the day but was totally TTX-insensitive at night, indicating that ACh-stimulated inputs to the EB are suppressed at night. Sleep deprivation did not affect the cAMP responses of these cells to either PDF or ACh. These results suggest a novel role for PDF as a modulator of activity outside of the clock circuit. By elucidating the mechanisms by which the neuropeptide PDF act on its target cells, our work contributes to our understating of how the central clock coordinates activity and sleep.
Redox regulation and pro-oxidant reactions in the physiology of circadian systems.
Méndez, Isabel; Vázquez-Martínez, Olivia; Hernández-Muñoz, Rolando; Valente-Godínez, Héctor; Díaz-Muñoz, Mauricio
2016-05-01
Rhythms of approximately 24 h are pervasive in most organisms and are known as circadian. There is a molecular circadian clock in each cell sustained by a feedback system of interconnected "clock" genes and transcription factors. In mammals, the timing system is formed by a central pacemaker, the suprachiasmatic nucleus, in coordination with a collection of peripheral oscillators. Recently, an extensive interconnection has been recognized between the molecular circadian clock and the set of biochemical pathways that underlie the bioenergetics of the cell. A principle regulator of metabolic networks is the flow of electrons between electron donors and acceptors. The concomitant reduction and oxidation (redox) reactions directly influence the balance between anabolic and catabolic processes. This review summarizes and discusses recent findings concerning the mutual and dynamic interactions between the molecular circadian clock, redox reactions, and redox signaling. The scope includes the regulatory role played by redox coenzymes (NAD(P)+/NAD(P)H, GSH/GSSG), reactive oxygen species (superoxide anion, hydrogen peroxide), antioxidants (melatonin), and physiological events that modulate the redox state (feeding condition, circadian rhythms) in determining the timing capacity of the molecular circadian clock. In addition, we discuss a purely metabolic circadian clock, which is based on the redox enzymes known as peroxiredoxins and is present in mammalian red blood cells and in other biological systems. Both the timing system and the metabolic network are key to a better understanding of widespread pathological conditions such as the metabolic syndrome, obesity, and diabetes. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Apelin targets gut contraction to control glucose metabolism via the brain
Fournel, Audren; Drougard, Anne; Duparc, Thibaut; Marlin, Alysson; Brierley, Stuart M; Castro, Joel; Le-Gonidec, Sophie; Masri, Bernard; Colom, André; Lucas, Alexandre; Rousset, Perrine; Cenac, Nicolas; Vergnolle, Nathalie; Valet, Philippe; Cani, Patrice D; Knauf, Claude
2017-01-01
Objective The gut–brain axis is considered as a major regulatory checkpoint in the control of glucose homeostasis. The detection of nutrients and/or hormones in the duodenum informs the hypothalamus of the host's nutritional state. This process may occur via hypothalamic neurons modulating central release of nitric oxide (NO), which in turn controls glucose entry into tissues. The enteric nervous system (ENS) modulates intestinal contractions in response to various stimuli, but the importance of this interaction in the control of glucose homeostasis via the brain is unknown. We studied whether apelin, a bioactive peptide present in the gut, regulates ENS-evoked contractions, thereby identifying a new physiological partner in the control of glucose utilisation via the hypothalamus. Design We measured the effect of apelin on electrical and mechanical duodenal responses via telemetry probes and isotonic sensors in normal and obese/diabetic mice. Changes in hypothalamic NO release, in response to duodenal contraction modulated by apelin, were evaluated in real time with specific amperometric probes. Glucose utilisation in tissues was measured with orally administrated radiolabeled glucose. Results In normal and obese/diabetic mice, glucose utilisation is improved by the decrease of ENS/contraction activities in response to apelin, which generates an increase in hypothalamic NO release. As a consequence, glucose entry is significantly increased in the muscle. Conclusions Here, we identify a novel mode of communication between the intestine and the hypothalamus that controls glucose utilisation. Moreover, our data identified oral apelin administration as a novel potential target to treat metabolic disorders. PMID:26565000
Carvedilol analog modulates both basal and stimulated sinoatrial node automaticity.
Shinohara, Tetsuji; Kim, Daehyeok; Joung, Boyoung; Maruyama, Mitsunori; Vembaiyan, Kannan; Back, Thomas G; Wayne Chen, S R; Chen, Peng-Sheng; Lin, Shien-Fong
2014-05-01
The membrane voltage clock and calcium (Ca(2+)) clock jointly regulate sinoatrial node (SAN) automaticity. VK-II-36 is a novel carvedilol analog that suppresses sarcoplasmic reticulum (SR) Ca(2+) release but does not block the β-receptor. The effect of VK-II-36 on SAN function remains unclear. The purpose of this study was to evaluate whether VK-II-36 can influence SAN automaticity by inhibiting the Ca(2+) clock. We simultaneously mapped intracellular Ca(2+) and membrane potential in 24 isolated canine right atriums using previously described criteria of the timing of late diastolic intracellular Ca elevation (LDCAE) relative to the action potential upstroke to detect the Ca(2+) clock. Pharmacological interventions with isoproterenol (ISO), ryanodine, caffeine, and VK-II-36 were performed after baseline recordings. VK-II-36 caused sinus rate downregulation and reduced LDCAE in the pacemaking site under basal conditions (P < 0.01). ISO induced an upward shift of the pacemaking site in SAN and augmented LDCAE in the pacemaking site. ISO also significantly and dose-dependently increased the sinus rate. The treatment of VK-II-36 (30 μmol/l) abolished both the ISO-induced shift of the pacemaking site and augmentation of LDCAE (P < 0.01), and it suppressed the ISO-induced increase in sinus rate (P = 0.02). Our results suggest that the sinus rate may be partly controlled by the Ca(2+) clock via SR Ca(2+) release during β-adrenergic stimulation.
Carvedilol Analogue Modulates both Basal and Stimulated Sinoatrial Node Automaticity
Shinohara, Tetsuji; Kim, Daehyeok; Joung, Boyoung; Maruyama, Mitsunori; Vembaiyan, Kannan; Back, Thomas G.; Chen, S.R. Wayne; Chen, Peng-Sheng; Lin, Shien-Fong
2013-01-01
Background The membrane voltage clock and calcium (Ca2+) clock jointly regulate sinoatrial node (SAN) automaticity. VK-II-36 is a novel carvedilol analog that suppress sarcoplasmic reticulum (SR) Ca2+ release but does not block β-receptor. The effect of VK-II-36 on SAN function remains unclear. The purpose of this study was to evaluate whether VK-II-36 can influence SAN automaticity through inhibiting the Ca2+ clock. Methods and Results We simultaneously mapped intracellular Ca2+ and membrane potential in 24 isolated canine right atriums, using previously described criteria of the timing of late diastolic intracellular Ca elevation (LDCAE) relative to the action potential upstroke to detect the Ca2+ clock. Pharmacological intervention with isoproterenol (ISO), ryanodine, caffeine, and VK-II-36 were performed after baseline recordings. VK-II-36 caused sinus rate downregulation and reduced LDCAE in the pacemaking site under basal condition (P<0.01). ISO induced an upward shift of the pacemaking site in SAN and augmented LDCAE in pacemaking site. ISO also significantly and dose-dependently increased the sinus rate. The treatment of VK-II-36 (30 μmol/L) abolished both the ISO-induced shift of pacemaking site and augmentation of LDCAE (P<0.01), and suppressed the ISO-induced increase in sinus rate (P=0.02). Conclusions Our results suggest that sinus rate may be partly controlled by Ca2+ clock via SR Ca2+ release during β-adrenergic stimulation. PMID:23836067
Michel, Maximilian; Lyons, Lisa C.
2014-01-01
Across phylogeny, the endogenous biological clock has been recognized as providing adaptive advantages to organisms through coordination of physiological and behavioral processes. Recent research has emphasized the role of circadian modulation of memory in generating peaks and troughs in cognitive performance. The circadian clock along with homeostatic processes also regulates sleep, which itself impacts the formation and consolidation of memory. Thus, the circadian clock, sleep and memory form a triad with ongoing dynamic interactions. With technological advances and the development of a global 24/7 society, understanding the mechanisms underlying these connections becomes pivotal for development of therapeutic treatments for memory disorders and to address issues in cognitive performance arising from non-traditional work schedules. Invertebrate models, such as Drosophila melanogaster and the mollusks Aplysia and Lymnaea, have proven invaluable tools for identification of highly conserved molecular processes in memory. Recent research from invertebrate systems has outlined the influence of sleep and the circadian clock upon synaptic plasticity. In this review, we discuss the effects of the circadian clock and sleep on memory formation in invertebrates drawing attention to the potential of in vivo and in vitro approaches that harness the power of simple invertebrate systems to correlate individual cellular processes with complex behaviors. In conclusion, this review highlights how studies in invertebrates with relatively simple nervous systems can provide mechanistic insights into corresponding behaviors in higher organisms and can be used to outline possible therapeutic options to guide further targeted inquiry. PMID:25136297
Ultra-stable clock laser system development towards space applications.
Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe
2016-09-26
The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10 -16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm 3 ; and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm 3 . The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10 -10 /g, 5.8 × 10 -10 /g and 3.1 × 10 -10 /g, where g ≈ 9.8 m/s 2 is the standard gravitational acceleration.
A Kalman Filter Clock Algorithm for Use in the Presence of Flicker Frequency Modulation Noise
2004-09-01
40, S335-S341. [5] P. M. Harris, J. A. Davis, M. G. Cox, and S. L. Shemar, 2003, “ Least - squares analysis of time series data and its application to two - way satellite time and frequency transfer measurements ,” Metrologia
A Systolic Array-Based FPGA Parallel Architecture for the BLAST Algorithm
Guo, Xinyu; Wang, Hong; Devabhaktuni, Vijay
2012-01-01
A design of systolic array-based Field Programmable Gate Array (FPGA) parallel architecture for Basic Local Alignment Search Tool (BLAST) Algorithm is proposed. BLAST is a heuristic biological sequence alignment algorithm which has been used by bioinformatics experts. In contrast to other designs that detect at most one hit in one-clock-cycle, our design applies a Multiple Hits Detection Module which is a pipelining systolic array to search multiple hits in a single-clock-cycle. Further, we designed a Hits Combination Block which combines overlapping hits from systolic array into one hit. These implementations completed the first and second step of BLAST architecture and achieved significant speedup comparing with previously published architectures. PMID:25969747
Nutrigenetics and Nutrimiromics of the Circadian System: The Time for Human Health
Micó, Víctor; Díez-Ricote, Laura; Daimiel, Lidia
2016-01-01
Even though the rhythmic oscillations of life have long been known, the precise molecular mechanisms of the biological clock are only recently being explored. Circadian rhythms are found in virtually all organisms and affect our lives. Thus, it is not surprising that the correct running of this clock is essential for cellular functions and health. The circadian system is composed of an intricate network of genes interwined in an intrincated transcriptional/translational feedback loop. The precise oscillation of this clock is controlled by the circadian genes that, in turn, regulate the circadian oscillations of many cellular pathways. Consequently, variations in these genes have been associated with human diseases and metabolic disorders. From a nutrigenetics point of view, some of these variations modify the individual response to the diet and interact with nutrients to modulate such response. This circadian feedback loop is also epigenetically modulated. Among the epigenetic mechanisms that control circadian rhythms, microRNAs are the least studied ones. In this paper, we review the variants of circadian-related genes associated to human disease and nutritional response and discuss the current knowledge about circadian microRNAs. Accumulated evidence on the genetics and epigenetics of the circadian system points to important implications of chronotherapy in the clinical practice, not only in terms of pharmacotherapy, but also for dietary interventions. However, interventional studies (especially nutritional trials) that include chronotherapy are scarce. Given the importance of chronobiology in human health such studies are warranted in the near future. PMID:26927084
Nutrigenetics and Nutrimiromics of the Circadian System: The Time for Human Health.
Micó, Víctor; Díez-Ricote, Laura; Daimiel, Lidia
2016-02-26
Even though the rhythmic oscillations of life have long been known, the precise molecular mechanisms of the biological clock are only recently being explored. Circadian rhythms are found in virtually all organisms and affect our lives. Thus, it is not surprising that the correct running of this clock is essential for cellular functions and health. The circadian system is composed of an intricate network of genes interwined in an intrincated transcriptional/translational feedback loop. The precise oscillation of this clock is controlled by the circadian genes that, in turn, regulate the circadian oscillations of many cellular pathways. Consequently, variations in these genes have been associated with human diseases and metabolic disorders. From a nutrigenetics point of view, some of these variations modify the individual response to the diet and interact with nutrients to modulate such response. This circadian feedback loop is also epigenetically modulated. Among the epigenetic mechanisms that control circadian rhythms, microRNAs are the least studied ones. In this paper, we review the variants of circadian-related genes associated to human disease and nutritional response and discuss the current knowledge about circadian microRNAs. Accumulated evidence on the genetics and epigenetics of the circadian system points to important implications of chronotherapy in the clinical practice, not only in terms of pharmacotherapy, but also for dietary interventions. However, interventional studies (especially nutritional trials) that include chronotherapy are scarce. Given the importance of chronobiology in human health such studies are warranted in the near future.
Pulse-voltammetric glucose detection at gold junction electrodes.
Rassaei, Liza; Marken, Frank
2010-09-01
A novel glucose sensing concept based on the localized change or "modulation" in pH within a symmetric gold-gold junction electrode is proposed. A paired gold-gold junction electrode (average gap size ca. 500 nm) is prepared by simultaneous bipotentiostatic electrodeposition of gold onto two closely spaced platinum disk electrodes. For glucose detection in neutral aqueous solution, the potential of the "pH-modulator" electrode is set to -1.5 V vs saturated calomel reference electrode (SCE) to locally increase the pH, and simultaneously, either cyclic voltammetry or square wave voltammetry experiments are conducted at the sensor electrode. A considerable improvement in the sensor electrode response is observed when a normal pulse voltammetry sequence is applied to the modulator electrode (to generate "hydroxide pulses") and the glucose sensor electrode is operated with fixed bias at +0.5 V vs SCE (to eliminate capacitive charging currents). Preliminary data suggest good linearity for the glucose response in the medically relevant 1-10 mM concentration range (corresponding to 0.18-1.8 g L(-1)). Future electroanalytical applications of multidimensional pulse voltammetry in junction electrodes are discussed.
Chronobiology of micturition: putative role of the circadian clock.
Negoro, Hiromitsu; Kanematsu, Akihiro; Yoshimura, Koji; Ogawa, Osamu
2013-09-01
Mammals urinate less frequently during the sleep period than the awake period. This is modulated by a triad of factors, including decreased arousal in the brain, a decreased urine production rate in the kidneys and increased functional bladder capacity during sleep. The circadian clock is genetic transcription-translation feedback machinery. It exists in most organs and cells, termed the peripheral clock, which is orchestrated by the central clock in the suprachiasmatic nucleus of the brain. We discuss the linkage between the day and night change in micturition frequency and the genetic rhythm maintained by the circadian clock system, focusing on the brain, kidney and bladder. We performed an inclusive review of the literature on the diurnal change in micturition frequency, urine volume, functional bladder capacity and urodynamics in humans and rodents, relating this to recent basic biological findings about the circadian clock. In humans various behavioral studies demonstrated a diurnal functional change in the kidney and bladder. Conversely, patients with nocturnal enuresis and nocturia showed impairment in this triad of factors. Rats and mice, which are nocturnal animals, also have a micturition frequency rhythm that is decreased during the day, which is the sleep phase for them. Mice with a genetically defective circadian clock system show impaired physiological rhythms in the triad of factors. The existence of the circadian clock has been proven in the brain, kidney and bladder, in which thousands of circadian oscillating genes exist. In the kidney they include genes involved in the regulation of water and major electrolytes. In the bladder they include connexin 43, a gene associated with the regulation of bladder capacity. Recent progress in molecular biology about the circadian clock provides an opportunity to investigate the genetic basis of the micturition rhythm or impairment of the rhythm in nocturnal enuresis and nocturia. If this approach is to be translated clinically, a strategy is to analyze and treat the triad of micturition factors as separate parts of 1 problem. The other way could be to cope with this triad of problems simultaneously, if possible, by treating the circadian physiological rhythm itself. The discoveries reviewed point toward further investigation of the micturition rhythm by basic and translational chronobiology. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Non-nutritive sweeteners: no class effect on the glycemic or appetite responses to ingested glucose
Bryant, Charlotte E.; Wasse, Lucy K.; Astbury, Nerys; Nandra, Gurinder; McLaughlin, John T.
2014-01-01
There is considerable interest in whether non-nutritive sweeteners are sensed in the gastrointestinal tract to modulate appetitive or absorptive responses to ingested carbohydrate. We determined the effect of a panel of non-nutritive sweeteners, aspartame, saccharin and acesulfame-K, delivered in doses that would be consumed in normal usage. Each was given in combination with glucose, assessing their effect on glycemic responses and appetite in ten healthy human subjects. There was no additional effect of aspartame or saccharin on the blood glucose response to oral glucose at any time point, although acesulfame-K exerted a small effect. However, none had an effect on perceptions of hunger or fullness. We conclude that there is no consistent evidence that non-nutrient sweeteners, when acutely consumed with glucose in dietetically relevant doses, have a class effect in modulating blood glucose in healthy human subjects. However, acesulfame-K may require further exploration. PMID:24595225
Apelin targets gut contraction to control glucose metabolism via the brain.
Fournel, Audren; Drougard, Anne; Duparc, Thibaut; Marlin, Alysson; Brierley, Stuart M; Castro, Joel; Le-Gonidec, Sophie; Masri, Bernard; Colom, André; Lucas, Alexandre; Rousset, Perrine; Cenac, Nicolas; Vergnolle, Nathalie; Valet, Philippe; Cani, Patrice D; Knauf, Claude
2017-02-01
The gut-brain axis is considered as a major regulatory checkpoint in the control of glucose homeostasis. The detection of nutrients and/or hormones in the duodenum informs the hypothalamus of the host's nutritional state. This process may occur via hypothalamic neurons modulating central release of nitric oxide (NO), which in turn controls glucose entry into tissues. The enteric nervous system (ENS) modulates intestinal contractions in response to various stimuli, but the importance of this interaction in the control of glucose homeostasis via the brain is unknown. We studied whether apelin, a bioactive peptide present in the gut, regulates ENS-evoked contractions, thereby identifying a new physiological partner in the control of glucose utilisation via the hypothalamus. We measured the effect of apelin on electrical and mechanical duodenal responses via telemetry probes and isotonic sensors in normal and obese/diabetic mice. Changes in hypothalamic NO release, in response to duodenal contraction modulated by apelin, were evaluated in real time with specific amperometric probes. Glucose utilisation in tissues was measured with orally administrated radiolabeled glucose. In normal and obese/diabetic mice, glucose utilisation is improved by the decrease of ENS/contraction activities in response to apelin, which generates an increase in hypothalamic NO release. As a consequence, glucose entry is significantly increased in the muscle. Here, we identify a novel mode of communication between the intestine and the hypothalamus that controls glucose utilisation. Moreover, our data identified oral apelin administration as a novel potential target to treat metabolic disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Astrophysics Data System (ADS)
Devadhasan, Jasmine P.; Kim, Sanghyo
2015-07-01
Complementary metal oxide semiconductor (CMOS) image sensors are received great attention for their high efficiency in biological applications. The present work describes a CMOS image sensor-based whole blood glucose monitoring system through a point-of-care (POC) approach. A simple poly-ethylene terephthalate (PET) film chip was developed to carry out the enzyme kinetic reaction at various concentrations of blood glucose. In this technique, assay reagent was adsorbed onto amine functionalized silica (AFSiO2) nanoparticles in order to achieve glucose oxidation on the PET film chip. The AFSiO2 nanoparticles can immobilize the assay reagent with an electrostatic attraction and eased to develop the opaque platform which was technically suitable chip to analyze by the camera module. The oxidized glucose then produces a green color according to the glucose concentration and is analyzed by the camera module as a photon detection technique. The photon number decreases with increasing glucose concentration. The simple sensing approach, utilizing enzyme immobilized AFSiO2 nanoparticle chip and assay detection method was developed for quantitative glucose measurement.
Toward a reduced-wire readout system for ultrasound imaging.
Lim, Jaemyung; Arkan, Evren F; Degertekin, F Levent; Ghovanloo, Maysam
2014-01-01
We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply.
Toward a Reduced-Wire Readout System for Ultrasound Imaging
Lim, Jaemyung; Arkan, Evren F.; Degertekin, F. Levent; Ghovanloo, Maysam
2015-01-01
We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply. PMID:25571135
A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid.
Castro, Maite A; Beltrán, Felipe A; Brauchi, Sebastián; Concha, Ilona I
2009-07-01
In this review, we discuss a novel function of ascorbic acid in brain energetics. It has been proposed that during glutamatergic synaptic activity neurons preferably consume lactate released from glia. The key to this energetic coupling is the metabolic activation that occurs in astrocytes by glutamate and an increase in extracellular [K(+)]. Neurons are cells well equipped to consume glucose because they express glucose transporters and glycolytic and tricarboxylic acid cycle enzymes. Moreover, neuronal cells express monocarboxylate transporters and lactate dehydrogenase isoenzyme 1, which is inhibited by pyruvate. As glycolysis produces an increase in pyruvate concentration and a decrease in NAD(+)/NADH, lactate and glucose consumption are not viable at the same time. In this context, we discuss ascorbic acid participation as a metabolic switch modulating neuronal metabolism between rest and activation periods. Ascorbic acid is highly concentrated in CNS. Glutamate stimulates ascorbic acid release from astrocytes. Ascorbic acid entry into neurons and within the cell can inhibit glucose consumption and stimulate lactate transport. For this switch to occur, an ascorbic acid flow is necessary between astrocytes and neurons, which is driven by neural activity and is part of vitamin C recycling. Here, we review the role of glucose and lactate as metabolic substrates and the modulation of neuronal metabolism by ascorbic acid.
Prion protein modulates glucose homeostasis by altering intracellular iron.
Ashok, Ajay; Singh, Neena
2018-04-26
The prion protein (PrP C ), a mainly neuronal protein, is known to modulate glucose homeostasis in mouse models. We explored the underlying mechanism in mouse models and the human pancreatic β-cell line 1.1B4. We report expression of PrP C on mouse pancreatic β-cells, where it promoted uptake of iron through divalent-metal-transporters. Accordingly, pancreatic iron stores in PrP knockout mice (PrP -/- ) were significantly lower than wild type (PrP +/+ ) controls. Silencing of PrP C in 1.1B4 cells resulted in significant depletion of intracellular (IC) iron, and remarkably, upregulation of glucose transporter GLUT2 and insulin. Iron overloading, on the other hand, resulted in downregulation of GLUT2 and insulin in a PrP C -dependent manner. Similar observations were noted in the brain, liver, and neuroretina of iron overloaded PrP +/+ but not PrP -/- mice, indicating PrP C -mediated modulation of insulin and glucose homeostasis through iron. Peripheral challenge with glucose and insulin revealed blunting of the response in iron-overloaded PrP +/+ relative to PrP -/- mice, suggesting that PrP C -mediated modulation of IC iron influences both secretion and sensitivity of peripheral organs to insulin. These observations have implications for Alzheimer's disease and diabetic retinopathy, known complications of type-2-diabetes associated with brain and ocular iron-dyshomeostasis.
Jitter model and signal processing techniques for pulse width modulation optical recording
NASA Technical Reports Server (NTRS)
Liu, Max M.-K.
1991-01-01
A jitter model and signal processing techniques are discussed for data recovery in Pulse Width Modulation (PWM) optical recording. In PWM, information is stored through modulating sizes of sequential marks alternating in magnetic polarization or in material structure. Jitter, defined as the deviation from the original mark size in the time domain, will result in error detection if it is excessively large. A new approach is taken in data recovery by first using a high speed counter clock to convert time marks to amplitude marks, and signal processing techniques are used to minimize jitter according to the jitter model. The signal processing techniques include motor speed and intersymbol interference equalization, differential and additive detection, and differential and additive modulation.
Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome.
Depner, Christopher M; Melanson, Edward L; McHill, Andrew W; Wright, Kenneth P
2018-06-05
Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.
Kalsbeek, Andries; La Fleur, Susanne; Van Heijningen, Caroline; Buijs, Ruud M
2004-09-01
Daily peak plasma glucose concentrations are attained shortly before awakening. Previous experiments indicated an important role for the biological clock, located in the suprachiasmatic nuclei (SCN), in the genesis of this anticipatory rise in plasma glucose concentrations by controlling hepatic glucose production. Here, we show that stimulation of NMDA receptors, or blockade of GABA receptors in the paraventricular nucleus of the hypothalamus (PVN) of conscious rats, caused a pronounced increase in plasma glucose concentrations. The local administration of TTX in brain areas afferent to the PVN revealed that an important part of the inhibitory inputs to the PVN was derived from the SCN. Using a transneuronal viral-tracing technique, we showed that the SCN is connected to the liver via both branches of the autonomic nervous system (ANS). The combination of a blockade of GABA receptors in the PVN with selective removal of either the sympathetic or parasympathetic branch of the hepatic ANS innervation showed that hyperglycemia produced by PVN stimulation was primarily attributable to an activation of the sympathetic input to the liver. We propose that the daily rise in plasma glucose concentrations is caused by an SCN-mediated withdrawal of GABAergic inputs to sympathetic preautonomic neurons in the PVN, resulting in an increased hepatic glucose production. The remarkable resemblance of the presently proposed control mechanism to that described previously for the control of daily melatonin rhythm suggests that the GABAergic control of sympathetic preautonomic neurons in the PVN is an important pathway for the SCN to control peripheral physiology.
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh
2006-05-01
Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.
Lateral geniculate lesions block circadian phase-shift responses to a benzodiazepine.
Johnson, R F; Smale, L; Moore, R Y; Morin, L P
1988-01-01
Several pharmacological treatments, including application of an excitatory neurotoxin to the lateral geniculate nucleus (LGN) and systemic administration of triazolam, a clinically effective benzodiazepine, can elicit large phase shifts in a circadian rhythm according to the time of administration. The hypothesis that the LGN might mediate the effect of triazolam on circadian clock function was tested. Bilateral lesions of the LGN, which destroyed the connection from the intergeniculate leaflet to the suprachiasmatic nucleus, blocked phase-shift responses to triazolam. The requirement of an intact LGN for triazolam to shift circadian phase suggests that the LGN may be a site through which stimuli gain access to the circadian clock to modulate rhythm phase and entrainment. Images PMID:3293053
Calcium and cAMP directly modulate the speed of the Drosophila circadian clock.
Palacios-Muñoz, Angelina; Ewer, John
2018-06-01
Circadian clocks impose daily periodicities to animal behavior and physiology. At their core, circadian rhythms are produced by intracellular transcriptional/translational feedback loops (TTFL). TTFLs may be altered by extracellular signals whose actions are mediated intracellularly by calcium and cAMP. In mammals these messengers act directly on TTFLs via the calcium/cAMP-dependent transcription factor, CREB. In the fruit fly, Drosophila melanogaster, calcium and cAMP also regulate the periodicity of circadian locomotor activity rhythmicity, but whether this is due to direct actions on the TTFLs themselves or are a consequence of changes induced to the complex interrelationship between different classes of central pacemaker neurons is unclear. Here we investigated this question focusing on the peripheral clock housed in the non-neuronal prothoracic gland (PG), which, together with the central pacemaker in the brain, controls the timing of adult emergence. We show that genetic manipulations that increased and decreased the levels of calcium and cAMP in the PG caused, respectively, a shortening and a lengthening of the periodicity of emergence. Importantly, knockdown of CREB in the PG caused an arrhythmic pattern of eclosion. Interestingly, the same manipulations directed at central pacemaker neurons caused arrhythmicity of eclosion and of adult locomotor activity, suggesting a common mechanism. Our results reveal that the calcium and cAMP pathways can alter the functioning of the clock itself. In the PG, these messengers, acting as outputs of the clock or as second messengers for stimuli external to the PG, could also contribute to the circadian gating of adult emergence.
NASA Adds Leap Second to Master Clock
2017-12-08
On Dec. 31, 2016, official clocks around the world will add a leap second just before midnight Coordinated Universal Time — which corresponds to 6:59:59 p.m. EST. NASA missions will also have to make the switch, including the Solar Dynamics Observatory, or SDO, which watches the sun 24/7. Clocks do this to keep in sync with Earth's rotation, which gradually slows down over time. When the dinosaurs roamed Earth, for example, our globe took only 23 hours to make a complete rotation. In space, millisecond accuracy is crucial to understanding how satellites orbit. "SDO moves about 1.9 miles every second," said Dean Pesnell, the project scientist for SDO at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "So does every other object in orbit near SDO. We all have to use the same time to make sure our collision avoidance programs are accurate. So we all add a leap second to the end of 2016, delaying 2017 by one second." The leap second is also key to making sure that SDO is in sync with the Coordinated Universal Time, or UTC, used to label each of its images. SDO has a clock that counts the number of seconds since the beginning of the mission. To convert that count to UTC requires knowing just how many leap seconds have been added to Earth-bound clocks since the mission started. When the spacecraft wants to provide a time in UTC, it calls a software module that takes into consideration both the mission's second count and the number of leap seconds — and then returns a time in UTC.
Martins, Rute S. T.; Gomez, Ana; Zanuy, Silvia; Carrillo, Manuel; Canário, Adelino V. M.
2015-01-01
The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG) axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL) alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP) accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis. PMID:26641263
Conditional Deletion of Bmal1 in Ovarian Theca Cells Disrupts Ovulation in Female Mice.
Mereness, Amanda L; Murphy, Zachary C; Forrestel, Andrew C; Butler, Susan; Ko, CheMyong; Richards, JoAnne S; Sellix, Michael T
2016-02-01
Rhythmic events in female reproductive physiology, including ovulation, are tightly controlled by the circadian timing system. The molecular clock, a feedback loop oscillator of clock gene transcription factors, dictates rhythms of gene expression in the hypothalamo-pituitary-ovarian axis. Circadian disruption due to environmental factors (eg, shift work) or genetic manipulation of the clock has negative impacts on fertility. Although the central pacemaker in the suprachiasmatic nucleus classically regulates the timing of ovulation, we have shown that this rhythm also depends on phasic sensitivity to LH. We hypothesized that this rhythm relies on clock function in a specific cellular compartment of the ovarian follicle. To test this hypothesis we generated mice with deletion of the Bmal1 locus in ovarian granulosa cells (GCs) (Granulosa Cell Bmal1 KO; GCKO) or theca cells (TCs) (Theca Cell Bmal1 KO; TCKO). Reproductive cycles, preovulatory LH secretion, ovarian morphology and behavior were not grossly altered in GCKO or TCKO mice. We detected phasic sensitivity to LH in wild-type littermate control (LC) and GCKO mice but not TCKO mice. This decline in sensitivity to LH is coincident with impaired fertility and altered patterns of LH receptor (Lhcgr) mRNA abundance in the ovary of TCKO mice. These data suggest that the TC is a pacemaker that contributes to the timing and amplitude of ovulation by modulating phasic sensitivity to LH. The TC clock may play a critical role in circadian disruption-mediated reproductive pathology and could be a target for chronobiotic management of infertility due to environmental circadian disruption and/or hormone-dependent reprogramming in women.
FPGA-based RF interference reduction techniques for simultaneous PET–MRI
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-01-01
Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector. PMID:27049898
FPGA-based RF interference reduction techniques for simultaneous PET-MRI.
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-05-07
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
FPGA-based RF interference reduction techniques for simultaneous PET-MRI
NASA Astrophysics Data System (ADS)
Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.
2016-05-01
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming.
Choi, Kevin; Weber, Jean-Michel
2016-03-15
This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg(-1)·min(-1) and boost glucose disposal to 40.1 ± 13 μmol·kg(-1)·min(-1). These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise. Copyright © 2016 the American Physiological Society.
Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming
Choi, Kevin
2015-01-01
This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg−1·min−1 and boost glucose disposal to 40.1 ± 13 μmol·kg−1·min−1. These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise. PMID:26719305
Di Simone, Nicoletta; Di Nicuolo, Fiorella; Marzioni, Daniela; Castellucci, Mario; Sanguinetti, Maurizio; D'lppolito, Silvia; Caruso, Alessandro
2009-02-01
The adipocytokine resistin impairs glucose tolerance and insulin sensitivity. Here, we examine the effect of resistin on glucose uptake in human trophoblast cells and we demonstrate that transplacental glucose transport is mediated by glucose transporter (GLUT)-1. Furthermore, we evaluate the type of signal transduction induced by resistin in GLUT-1 regulation. BeWo choriocarcinoma cells and primary cytotrophoblast cells were cultured with increasing resistin concentrations for 24 hrs. The main outcome measures include glucose transport assay using [(3)H]-2-deoxy glucose, GLUT-1 protein expression by Western blot analysis and GLUT-1 mRNA detection by quantitative real-time RT-PCR. Quantitative determination of phospho(p)-ERK1/2 in cell lysates was performed by an Enzyme Immunometric Assay and Western blot analysis. Our data demonstrate a direct effect of resistin on normal cytotrophoblastic and on BeWo cells: resistin modulates glucose uptake, GLUT-1 messenger ribonucleic acid (mRNA) and protein expression in placental cells. We suggest that ERK1/2 phosphorylation is involved in the GLUT-1 regulation induced by resistin. In conclusion, resistin causes activation of both the ERK1 and 2 pathway in trophoblast cells. ERK1 and 2 activation stimulated GLUT-1 synthesis and resulted in increase of placental glucose uptake. High resistin levels (50-100 ng/ml) seem able to affect glucose-uptake, presumably by decreasing the cell surface glucose transporter.
Modulation of hippocampal neural plasticity by glucose-related signaling.
Mainardi, Marco; Fusco, Salvatore; Grassi, Claudio
2015-01-01
Hormones and peptides involved in glucose homeostasis are emerging as important modulators of neural plasticity. In this regard, increasing evidence shows that molecules such as insulin, insulin-like growth factor-I, glucagon-like peptide-1, and ghrelin impact on the function of the hippocampus, which is a key area for learning and memory. Indeed, all these factors affect fundamental hippocampal properties including synaptic plasticity (i.e., synapse potentiation and depression), structural plasticity (i.e., dynamics of dendritic spines), and adult neurogenesis, thus leading to modifications in cognitive performance. Here, we review the main mechanisms underlying the effects of glucose metabolism on hippocampal physiology. In particular, we discuss the role of these signals in the modulation of cognitive functions and their potential implications in dysmetabolism-related cognitive decline.
Getting past tense. Dealing with stress the right way may safeguard your health.
Gebel, Erika
2012-12-01
The clock is ticking and the traffic is horrendous. Late to work again. And you left your blood glucose meter at home. Hello, stress. We've all felt, at one time or another, the stomach-clenching grip of stress. Scientists are discovering that it's a serious health hazard. Type 2 diabetes, for example, may be brought on in part by stress. Constant anxiety may be detrimental for people with diabetes, too, but don't let that worry you; there are strategies for tackling stress.
Inhibition of starch digestion by the green tea polyphenol, (−)-epigallocatechin-3-gallate
Forester, Sarah C.; Gu, Yeyi; Lambert, Joshua D.
2013-01-01
Scope Green tea has been shown to ameliorate symptoms of metabolic syndrome in vivo. The effects could be due, in part, to modulation of postprandial blood glucose levels. Methods and results We examined the effect of coadministration of (−)-epigallocatechin-3-gallate (EGCG, 100 mg/kg, i.g.) on blood glucose levels following oral administration of common corn starch (CCS), maltose, sucrose, or glucose to fasted CF-1 mice. We found that cotreatment with EGCG significantly reduced postprandial blood glucose levels after administration of CCS compared to control mice (50 and 20% reduction in peak blood glucose levels and blood glucose area under the curve, respectively). EGCG had no effect on postprandial blood glucose following administration of maltose or glucose, suggesting that EGCG may modulate amylase-mediated starch digestion. In vitro, EGCG noncompetitively inhibited pancreatic amylase activity by 34% at 20 μM. No significant change was induced in the expression of two small intestinal glucose transporters (GLUT2 and SGLT1). Conclusions Our results suggest that EGCG acutely reduces postprandial blood glucose levels in mice when coadministered with CCS and this may be due in part to inhibition of α-amylase. The relatively low effective dose of EGCG makes a compelling case for studies in human subjects. PMID:23038646
Proton mediated control of biochemical reactions with bioelectronic pH modulation
NASA Astrophysics Data System (ADS)
Deng, Yingxin; Miyake, Takeo; Keene, Scott; Josberger, Erik E.; Rolandi, Marco
2016-04-01
In Nature, protons (H+) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H+ channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H+ currents and H+ concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H+ between PdHx contacts and solution. The present transducer records bistable pH modulation from an “enzymatic flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. The transducer also controls bioluminescence from firefly luciferase by affecting solution pH.
NASA Technical Reports Server (NTRS)
1988-01-01
Final report to NASA LeRC on the development of gallium arsenide (GaAS) high-speed, low power serial/parallel interface modules. The report discusses the development and test of a family of 16, 32 and 64 bit parallel to serial and serial to parallel integrated circuits using a self aligned gate MESFET technology developed at the Honeywell Sensors and Signal Processing Laboratory. Lab testing demonstrated 1.3 GHz clock rates at a power of 300 mW. This work was accomplished under contract number NAS3-24676.
Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons
Shi, Xuemei; Zhou, Fuguo; Li, Xiaojie; Chang, Benny; Li, Depei; Wang, Yi; Tong, Qingchun; Xu, Yong; Fukuda, Makoto; Zhao, Jean J.; Li, Defa; Burrin, Douglas G.; Chan, Lawrence; Guan, Xinfu
2013-01-01
Glucagon-like peptides (GLP-1/2) are co-produced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We show that mice lacking GLP-2 receptor (GLP-2R) in POMC neurons display glucose intolerance and hepatic insulin resistance. GLP-2R activation in POMC neurons is required for GLP-2 to enhance insulin-mediated suppression of hepatic glucose production (HGP) and gluconeogenesis. GLP-2 directly modulates excitability of POMC neurons in GLP-2R- and PI3K-dependent manners. GLP-2 initiates GLP-2R-p85α interaction and facilitates PI3K-Akt-dependent FoxO1 nuclear exclusion in POMC neurons. Central GLP-2 suppresses basal HGP and enhances insulin sensitivity, which are abolished in POMC-p110α KO mice. Thus, CNS GLP-2 plays a key physiological role in the control of hepatic glucose production through activating PI3K-dependent modulation of membrane excitability and nuclear transcription of POMC neurons in the brain. PMID:23823479
NASA Astrophysics Data System (ADS)
Degaudenzi, Riccardo; Vanghi, Vieri
1994-02-01
In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.
De Nobrega, Aliza K.
2017-01-01
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals. PMID:29391952
New Approaches for DC Balanced SpaceWire
NASA Technical Reports Server (NTRS)
Kisin, Alex; Rakow, Glenn
2016-01-01
Direct Current (DC) line balanced SpaceWire is attractive for a number of reasons. Firstly, a DC line balanced interface provides the ability to isolate the physical layer with either a transformer or capacitor to achieve higher common mode voltage rejection and/or the complete galvanic isolation in the case of a transformer. Secondly, it provides the possibility to reduce the number of conductors and transceivers in the classical SpaceWire interface by half by eliminating the Strobe line. Depending on the modulator scheme - the clock data recovery frequency requirements may be only twice that of the transmit clock, or even match the transmit clock: depending on the Field Programmable Gate Array (FPGA) decoder design. In this paper, several different implementation scenarios will be discussed. Two of these scenarios are backward compatible with the existing SpaceWire hardware standards except for changes at the character level. Three other scenarios, while decreasing by half the standard SpaceWire hardware components, will require changes at both the character and signal levels and work with fixed rates. Other scenarios with variable data rates will require an additional SpaceWire interface handshake initialization sequence.
Maggi, Silvia; Balzani, Edoardo; Lassi, Glenda; Garcia-Garcia, Celina; Plano, Andrea; Espinoza, Stefano; Mus, Liudmila; Tinarelli, Federico; Nolan, Patrick M; Gainetdinov, Raul R; Balci, Fuat; Nieus, Thierry; Tucci, Valter
2017-12-19
Circadian clock is known to adapt to environmental changes and can significantly influence cognitive and physiological functions. In this work, we report specific behavioral, cognitive, and sleep homeostatic defects in the after hours (Afh) circadian mouse mutant, which is characterized by lengthened circadian period. We found that the circadian timing irregularities in Afh mice resulted in higher interval timing uncertainty and suboptimal decisions due to incapability of processing probabilities. Our phenotypic observations further suggested that Afh mutants failed to exhibit the necessary phenotypic plasticity for adapting to temporal changes at multiple time scales (seconds-to-minutes to circadian). These behavioral effects of Afh mutation were complemented by the specific disruption of the Per/Cry circadian regulatory complex in brain regions that govern food anticipatory behaviors, sleep, and timing. We derive statistical predictions, which indicate that circadian clock and sleep are complementary processes in controlling behavioral/cognitive performance during 24 hrs. The results of this study have pivotal implications for understanding how the circadian clock modulates sleep and behavior.
Kinetics of Doubletime Kinase-dependent Degradation of the Drosophila Period Protein*
Syed, Sheyum; Saez, Lino; Young, Michael W.
2011-01-01
Robust circadian oscillations of the proteins PERIOD (PER) and TIMELESS (TIM) are hallmarks of a functional clock in the fruit fly Drosophila melanogaster. Early morning phosphorylation of PER by the kinase Doubletime (DBT) and subsequent PER turnover is an essential step in the functioning of the Drosophila circadian clock. Here using time-lapse fluorescence microscopy we study PER stability in the presence of DBT and its short, long, arrhythmic, and inactive mutants in S2 cells. We observe robust PER degradation in a DBT allele-specific manner. With the exception of doubletime-short (DBTS), all mutants produce differential PER degradation profiles that show direct correspondence with their respective Drosophila behavioral phenotypes. The kinetics of PER degradation with DBTS in cell culture resembles that with wild-type DBT and posits that, in flies DBTS likely does not modulate the clock by simply affecting PER degradation kinetics. For all the other tested DBT alleles, the study provides a simple model in which the changes in Drosophila behavioral rhythms can be explained solely by changes in the rate of PER degradation. PMID:21659538
Huang, Jian; Zhong, Zhaomin; Wang, Mingyong; Chen, Xifeng; Tan, Yicheng; Zhang, Shuqing; He, Wei; He, Xiong; Huang, Guodong; Lu, Haiping; Wu, Ping; Che, Yi; Yan, Yi-Lin; Postlethwait, John H.; Chen, Wenbiao
2015-01-01
Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopamine-related genes monoamine oxidase and dopamine β hydroxylase, and acts via genes important for the development or maintenance of dopaminergic neurons to regulate their number and organization in the ventral diencephalic posterior tuberculum. We then found that Per1 knock-out mice also display ADHD-like symptoms and reduced levels of dopamine, thereby showing highly conserved roles of the circadian clock in ADHD. Our studies demonstrate that disruption of a circadian clock gene elicits ADHD-like syndrome. The circadian model for attention deficiency and hyperactive behavior sheds light on ADHD pathogenesis and opens avenues for exploring novel targets for diagnosis and therapy for this common psychiatric disorder. PMID:25673850
Why does the brain (not) have glycogen?
DiNuzzo, Mauro; Maraviglia, Bruno; Giove, Federico
2011-05-01
In the present paper we formulate the hypothesis that brain glycogen is a critical determinant in the modulation of carbohydrate supply at the cellular level. Specifically, we propose that mobilization of astrocytic glycogen after an increase in AMP levels during enhanced neuronal activity controls the concentration of glucose phosphates in astrocytes. This would result in modulation of glucose phosphorylation by hexokinase and upstream cell glucose uptake. This mechanism would favor glucose channeling to activated neurons, supplementing the already rich neuron-astrocyte metabolic and functional partnership with important implications for the energy compounds used to sustain neuronal activity. The hypothesis is based on recent modeling evidence suggesting that rapid glycogen breakdown can profoundly alter the short-term kinetics of glucose delivery to neurons and astrocytes. It is also based on review of the literature relevant to glycogen metabolism during physiological brain activity, with an emphasis on the metabolic pathways identifying both the origin and the fate of this glucose reserve. Copyright © 2011 WILEY Periodicals, Inc.
Nishio, Yousuke; Usuda, Yoshihiro; Matsui, Kazuhiko; Kurata, Hiroyuki
2008-01-01
The phosphotransferase system (PTS) is the sugar transportation machinery that is widely distributed in prokaryotes and is critical for enhanced production of useful metabolites. To increase the glucose uptake rate, we propose a rational strategy for designing the molecular architecture of the Escherichia coli glucose PTS by using a computer-aided design (CAD) system and verified the simulated results with biological experiments. CAD supports construction of a biochemical map, mathematical modeling, simulation, and system analysis. Assuming that the PTS aims at controlling the glucose uptake rate, the PTS was decomposed into hierarchical modules, functional and flux modules, and the effect of changes in gene expression on the glucose uptake rate was simulated to make a rational strategy of how the gene regulatory network is engineered. Such design and analysis predicted that the mlc knockout mutant with ptsI gene overexpression would greatly increase the specific glucose uptake rate. By using biological experiments, we validated the prediction and the presented strategy, thereby enhancing the specific glucose uptake rate. PMID:18197177
Insulin Regulates Astrocytic Glucose Handling Through Cooperation With IGF-I.
Fernandez, Ana M; Hernandez-Garzón, Edwin; Perez-Domper, Paloma; Perez-Alvarez, Alberto; Mederos, Sara; Matsui, Takashi; Santi, Andrea; Trueba-Saiz, Angel; García-Guerra, Lucía; Pose-Utrilla, Julia; Fielitz, Jens; Olson, Eric N; Fernandez de la Rosa, Ruben; Garcia Garcia, Luis; Pozo, Miguel Angel; Iglesias, Teresa; Araque, Alfonso; Soya, Hideaki; Perea, Gertrudis; Martin, Eduardo D; Torres Aleman, Ignacio
2017-01-01
Brain activity requires a flux of glucose to active regions to sustain increased metabolic demands. Insulin, the main regulator of glucose handling in the body, has been traditionally considered not to intervene in this process. However, we now report that insulin modulates brain glucose metabolism by acting on astrocytes in concert with IGF-I. The cooperation of insulin and IGF-I is needed to recover neuronal activity after hypoglycemia. Analysis of underlying mechanisms show that the combined action of IGF-I and insulin synergistically stimulates a mitogen-activated protein kinase/protein kinase D pathway resulting in translocation of GLUT1 to the cell membrane through multiple protein-protein interactions involving the scaffolding protein GAIP-interacting protein C terminus and the GTPase RAC1. Our observations identify insulin-like peptides as physiological modulators of brain glucose handling, providing further support to consider the brain as a target organ in diabetes. © 2017 by the American Diabetes Association.
The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN
Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth
2015-01-01
Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078
Unmanned Air Vehicle -Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fred Oppel, SNL 06134
2013-04-17
This package contains modules that model the mobility of systems such as helicopters and fixed wing flying in the air. This package currently models first order physics - basically a velocity integrator. UAV mobility uses an internal clock to maintain stable, high-fidelity simulations over large time steps This package depends on interface that reside in the Mobility package.
Effect of blood glucose level on acute stress response of grass carp Ctenopharyngodon idella.
Jiang, Danli; Wu, Yubo; Huang, Di; Ren, Xing; Wang, Yan
2017-10-01
Stress has a considerable impact on welfare and productivity of fish, and blood glucose level of fish may be a factor modulating stress response. This study evaluated the effect of blood glucose level and handling on acute stress response of grass carp Ctenopharyngodon idella. Fish were intraperitoneally injected with glucose at 0, 0.2, 0.5, and 1.0 mg g -1 body mass (BM) and then were exposed to handling for 5 min. Glucose injection resulted in increase of plasma glucose level and liver glycogen content and decrease of plasma lactate level. Handling resulted in increase of plasma levels of cortisol, glucose, and lactate and plasma lactic dehydrogenase (LDH) activity and decrease of liver glycogen content. At 1 h post-stress, the plasma cortisol level was lower in the stressed fish injected with glucose at 0.5 mg g -1 BM than the stressed fish injected with glucose at 0, 0.2, and 1.0 mg g -1 BM. No significant differences were found in the activities of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate kinase (PK) in the liver between the stressed and unstressed fish, regardless of the dose of glucose injection. At 1 h post-stress, the liver glucose-6-phosphatase (G6Pase) activity was higher in the fish without glucose injection than in the fish injected with glucose. This study reveals that blood glucose level can affect stress response of grass carp by modulating cortisol release and glucose homeostasis through glycogen metabolism and gluconeogenesis in the liver.
The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity.
Franken, P; Lopez-Molina, L; Marcacci, L; Schibler, U; Tafti, M
2000-01-15
Albumin D-binding protein (DBP) is a PAR leucine zipper transcription factor that is expressed according to a robust circadian rhythm in the suprachiasmatic nuclei, harboring the circadian master clock, and in most peripheral tissues. Mice lacking DBP display a shorter circadian period in locomotor activity and are less active. Thus, although DBP is not essential for circadian rhythm generation, it does modulate important clock outputs. We studied the role of DBP in the circadian and homeostatic aspects of sleep regulation by comparing DBP deficient mice (dbp-/-) with their isogenic controls (dbp+/+) under light-dark (LD) and constant-dark (DD) baseline conditions, as well as after sleep loss. Whereas total sleep duration was similar in both genotypes, the amplitude of the circadian modulation of sleep time, as well as the consolidation of sleep episodes, was reduced in dbp-/- under both LD and DD conditions. Quantitative EEG analysis demonstrated a marked reduction in the amplitude of the sleep-wake-dependent changes in slow-wave sleep delta power and an increase in hippocampal theta peak frequency in dbp-/- mice. The sleep deprivation-induced compensatory rebound of EEG delta power was similar in both genotypes. In contrast, the rebound in paradoxical sleep was significant in dbp+/+ mice only. It is concluded that the transcriptional regulatory protein DBP modulates circadian and homeostatic aspects of sleep regulation.
Takekata, Hiroki; Numata, Hideharu; Shiga, Sakiko
2014-02-01
Whether the circatidal rhythm is generated by a machinery common to the circadian clock is one of the important and interesting questions in chronobiology. The mangrove cricket Apteronemobius asahinai shows a circatidal rhythm generating active and inactive phases and a circadian rhythm modifying the circatidal rhythm by inhibiting activity during the subjective day simultaneously. In the previous study, RNA interference of the circadian clock gene period disrupted the circadian rhythm but not the circatidal rhythm, suggesting a difference in molecular mechanisms between the circatidal and circadian rhythms. In the present study, to compare the neural mechanisms of these 2 rhythms, we observed locomotor activity in the mangrove cricket after surgical removal of the optic lobe, which has been shown to be the locus of the circadian clock in other crickets. We also noted the pigment-dispersing factor immunoreactive neurons (PDF-IRNs) in the optic lobe, because PDF is a key output molecule in the circadian clock system in some insects. The results showed that the circadian modulation was disrupted after the removal of the optic lobes but that the circatidal rhythm was maintained with no remarkable changes in its free-running period. Even in crickets in which some PDF-immunoreactive somata remained after removal of the optic lobe, the circadian rhythm was completely disrupted. The remnants of PDF-IRNs were not correlated to the occurrence and free-running period of the circatidal rhythm. These results indicate that the principal circatidal clock is located in a region(s) different from the optic lobe, whereas the circadian clock is located in the optic lobe, as in other crickets, and PDF-IRNs are not important for circatidal rhythm. Therefore, it is suggested that the circatidal rhythm of A. asahinai is driven by a neural basis different from that driving the circadian rhythm.
Genovese, Salvatore; Ashida, Hitoshi; Yamashita, Yoko; Nakgano, Tomoya; Ikeda, Masaki; Daishi, Shirasaya; Epifano, Francesco; Taddeo, Vito Alessandro; Fiorito, Serena
2017-08-15
Glucose transporter 4 (GLUT4) is firmly established to play a pivotal role in glucose metabolism and in particular in modulating the insulin-stimulated glucose transport in several tissues, such as skeletal muscle and adipose tissue. Stimulation of GLUT4 by insulin results in its translocation to the plasma membrane, activation of several kinases, and finally in a large glucose influx into cells. In this study we investigated the modulating properties of four biologically active oxyprenylated ferulic acid and umbelliferone derivatives and of their unprenylated parent compounds on GLUT-4 mediated glucose uptake and translocation. Oxyprenylated phenylpropanoids have been synthesized in high yields and purity by already reported methodologies. All the synthesized chemicals were tested for their capacity to modulate GLUT4 mediated glucose uptake and GLUT4 translocation in L6 rat skeletal myoblasts in the concentration range 0.1 - 10 µM. Insulin (0.1 µM) was used as positive control. Western blot analysis was employed to assess if GLUT4 translocation occurred prior to increase of glucose uptake. Statistical analyses were carried out by the Dunnett multiple comparison test. 4'-Geranyloxyferulic acid (GOFA), 7-isopentenyloxycoumarin, and auraptene (7-geranyloxycoumarin) increased glucose uptake in a concentration-dependent manner, and significant increases were observed at 0.1 µM for GOFA, and 10 µM for 7-isopentenyloxycoumarin, and auraptene. These products also were able to significantly promote the translocation of GLUT4 to the plasma membrane of L6 myotubes. After treatment with compounds for 15 min, the incorporated amounts of GOFA, 7-isopentenyloxucoumarin, and auraptene were 0.15, 0.32, and 1.77 nmols/60-mm culture dish, respectively. A sample of raw Italian propolis, found to be rich in GOFA and auraptene, was also seen to mimic insulin-effect in the concentration range 0.01 - 1.0 mg/ml. Among the compounds assayed, auraptene showed to possess potentialities to be a potent activator of both translocation of GLUT4 and glucose influx into skeletal muscle cells with the highest bioavailability among effective compounds. Its capacity to modulate sugar metabolism, coupled to its presence in edible Citrus fruits, can be regarded as an additional reason to account for the already known stimulating properties of some vegetable (e.g. bitter orange). Copyright © 2017 Elsevier GmbH. All rights reserved.
Atomic clocks based on extened-cavity diode laser in multimode operation
NASA Astrophysics Data System (ADS)
Yim, Sin; Cho, D.
2011-05-01
We demonstrated the possibilities to develope an atomic clock based on coherent population trapping (CPT) without using a local oscillator and a modulator. Instead of using a modulator, we use two modes from a single extended-cavity diode laser in multimode operation. Two different types of feedback system are applied to stabilize a difference frequency between the two modes and eliminate the need for an extra frequency modulation. In the first type, we employ an electronic feedback using dispersion of the CPT resonance as an error signal. The two modes are phase locked with reference to a dispersion signal from a CPT resonance of 85Rb at 3.036 GHz ground hyperfine splitting. We use D1 transition at 794.8 nm with lin ⊥lin polarizations to obtain large-contrast CPT signal. Allan deviation of the beat frequency between the two modes is 1 ×10-10 at 200-s integration time. In the second type, we employ optoelectronic feedback to construct an opto-electronic oscillator (OEO). In an OEO, the beating signal between two modes is recovered by a fast photodiode, and its output is amplified and fed back to the laser diode by using a direct modulation of an injection current. When the OEO loop is closed, oscillation frequency depends on variations of the loop length. In order to stabilize an OEO loop length and thereby its oscillation frequency, CPT cell is inserted to play a role of microwave band pass filter. Allan deviation of the CPT-stabilized OEO is 2 ×10-10 at 100-s integration time.
USDA-ARS?s Scientific Manuscript database
Inadequate energy intake induces changes in endogenous glucose production (GP) to preserve muscle mass. Whether addition provision of dietary protein modulates GP response to energy deficit is unclear. The objective was to determine whether exercise-induced energy deficit effects on glucose metaboli...
Proton mediated control of biochemical reactions with bioelectronic pH modulation
Deng, Yingxin; Miyake, Takeo; Keene, Scott; ...
2016-04-07
In Nature, protons (H +) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H + channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H + currents and H + concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H + between PdH x contacts and solution. The present transducer records bistable pH modulation from an “enzymaticmore » flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. Furthermore, the transducer also controls bioluminescence from firefly luciferase by affecting solution pH.« less
Proton mediated control of biochemical reactions with bioelectronic pH modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Yingxin; Miyake, Takeo; Keene, Scott
In Nature, protons (H +) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H + channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H + currents and H + concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H + between PdH x contacts and solution. The present transducer records bistable pH modulation from an “enzymaticmore » flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. Furthermore, the transducer also controls bioluminescence from firefly luciferase by affecting solution pH.« less
Chukwuma, Chika Ifeanyi; Mopuri, Ramgopal; Nagiah, Savania; Chuturgoon, Anil Amichund; Islam, Md Shahidul
2017-08-02
Studies have reported that erythritol, a low or non-glycemic sugar alcohol possesses anti-hyperglycemic and anti-diabetic potentials but the underlying mode of actions is not clear. This study investigated the underlying mode of actions behind the anti-hyperglycemic and anti-diabetic potentials of erythritol using different experimental models (experiment 1, 2 and 3). Experiment 1 examined the effects of increasing concentrations (2.5-20%) of erythritol on glucose absorption and uptake in isolated rat jejunum and psoas muscle, respectively. Experiments 2 and 3 examined the effects of a single oral dose of erythritol (1 g/kg bw) on intestinal glucose absorption, gastric emptying and postprandial blood glucose increase, glucose tolerance, serum insulin level, muscle/liver hexokinase and liver glucose-6 phosphatase activities, liver and muscle glycogen contents and mRNA and protein expression of muscle Glut-4 and IRS-1 in normal and type 2 diabetic animals. Experiment 1 revealed that erythritol dose dependently enhanced muscle glucose ex vivo. Experiment 2 demonstrated that erythritol feeding delayed gastric emptying and reduced small intestinal glucose absorption as well as postprandial blood glucose rise, especially in diabetic animals. Experiment 3 showed that erythritol feeding improved glucose tolerance, muscle/liver hexokinase and liver glucose-6 phosphatase activities, glycogen storage and also modulated expression of muscle Glut-4 and IRS-1 in diabetic animals. Data suggest that erythritol may exert anti-hyperglycemic effects not only via reducing small intestinal glucose absorption, but also by increasing muscle glucose uptake, improving glucose metabolic enzymes activity and modulating muscle Glut-4 and IRS-1 mRNA and protein expression. Hence, erythritol may be a useful dietary supplement for managing hyperglycemia, particularly for T2D.
VHF command system study. [spectral analysis of GSFC VHF-PSK and VHF-FSK Command Systems
NASA Technical Reports Server (NTRS)
Gee, T. H.; Geist, J. M.
1973-01-01
Solutions are provided to specific problems arising in the GSFC VHF-PSK and VHF-FSK Command Systems in support of establishment and maintenance of Data Systems Standards. Signal structures which incorporate transmission on the uplink of a clock along with the PSK or FSK data are considered. Strategies are developed for allocating power between the clock and data, and spectral analyses are performed. Bit error probability and other probabilities pertinent to correct transmission of command messages are calculated. Biphase PCM/PM and PCM/FM are considered as candidate modulation techniques on the telemetry downlink, with application to command verification. Comparative performance of PCM/PM and PSK systems is given special attention, including implementation considerations. Gain in bit error performance due to coding is also considered.
Spacecraft Tests of General Relativity
NASA Technical Reports Server (NTRS)
Anderson, John D.
1997-01-01
Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.
Chemical chronobiology: Toward drugs manipulating time.
Wallach, Thomas; Kramer, Achim
2015-06-22
Circadian clocks are endogenous timing systems orchestrating the daily regulation of a huge variety of physiological, metabolic and behavioral processes. These clocks are important for health - in mammals, their disruption leads to a diverse number of pathologies. While genetic and biochemical approaches largely uncovered the molecular bases of circadian rhythm generation, chemical biology strategies targeting the circadian oscillator by small chemical compounds are increasingly developed. Here, we review the recent progress in the identification of small molecules modulating circadian rhythms. We focus on high-throughput screening approaches using circadian bioluminescence reporter cell lines as well as describe alternative mechanistic screens. Furthermore, we discuss the potential for chemical optimization of small molecule ligands with regard to the recent progress in structural chronobiology. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Johnston, Jonathan D; Ebling, Francis J P; Hazlerigg, David G
2005-06-01
Photoperiod regulates the seasonal physiology of many mammals living in temperate latitudes. Photoperiodic information is decoded by the master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and then transduced via pineal melatonin secretion. This neurochemical signal is interpreted by tissues expressing melatonin receptors (e.g. the pituitary pars tuberalis, PT) to drive physiological changes. In this study we analysed the photoperiodic regulation of the circadian clockwork in the SCN and PT of the Siberian hamster. Female hamsters were exposed to either long or short photoperiod for 8 weeks and sampled at 2-h intervals across the 24-h cycle. In the SCN, rhythmic expression of the clock genes Per1, Per2, Cry1, Rev-erbalpha, and the clock-controlled genes arginine vasopressin (AVP) and d-element binding protein (DBP) was modulated by photoperiod. All of these E-box-containing genes tracked dawn, with earlier peak mRNA expression in long, compared to short, photoperiod. This response occurred irrespective of the presence of additional regulatory cis-elements, suggesting photoperiodic regulation of SCN gene expression through a common E-box-related mechanism. In long photoperiod, expression of Cry1 and Per1 in the PT tracked the onset and offset of melatonin secretion, respectively. However, whereas Cry1 tracked melatonin onset in short period, Per1 expression was not detectably rhythmic. We therefore propose that, in the SCN, photoperiodic regulation of clock gene expression primarily occurs via E-boxes, whereas melatonin-driven signal transduction drives the phasing of a subset of clock genes in the PT, independently of the E-box.
Bazzi, Gaia; Podofillini, Stefano; Gatti, Emanuele; Gianfranceschi, Luca; Cecere, Jacopo G; Spina, Fernando; Saino, Nicola; Rubolini, Diego
2017-10-01
The timing of major life-history events, such as migration and moult, is set by endogenous circadian and circannual clocks, that have been well characterized at the molecular level. Conversely, the genetic sources of variation in phenology and in other behavioral traits have been sparsely addressed. It has been proposed that inter-individual variability in the timing of seasonal events may arise from allelic polymorphism at phenological candidate genes involved in the signaling cascade of the endogenous clocks. In this study of a long-distance migratory passerine bird, the willow warbler Phylloscopus trochilus , we investigated whether allelic variation at 5 polymorphic loci of 4 candidate genes ( Adcyap1 , Clock , Creb1 , and Npas2 ), predicted 2 major components of the annual schedule, namely timing of spring migration across the central Mediterranean sea and moult speed, the latter gauged from ptilochronological analyses of tail feathers moulted in the African winter quarters. We identified a novel Clock gene locus ( Clock region 3) showing polyQ polymorphism, which was however not significantly associated with any phenotypic trait. Npas2 allele size predicted male (but not female) spring migration date, with males bearing longer alleles migrating significantly earlier than those bearing shorter alleles. Creb1 allele size significantly predicted male (but not female) moult speed, longer alleles being associated with faster moult. All other genotype-phenotype associations were statistically non-significant. These findings provide new evidence for a role of candidate genes in modulating the phenology of different circannual activities in long-distance migratory birds, and for the occurrence of sex-specific candidate gene effects.
Plano, Santiago A.; Agostino, Patricia V.; de la Iglesia, Horacio O.; Golombek, Diego A.
2012-01-01
The master circadian clock in mammals is located in the hypothalamic suprachiasmatic nuclei (SCN) and is synchronized by several environmental stimuli, mainly the light-dark (LD) cycle. Light pulses in the late subjective night induce phase advances in locomotor circadian rhythms and the expression of clock genes (such as Per1-2). The mechanism responsible for light-induced phase advances involves the activation of guanylyl cyclase (GC), cGMP and its related protein kinase (PKG). Pharmacological manipulation of cGMP by phosphodiesterase (PDE) inhibition (e.g., sildenafil) increases low-intensity light-induced circadian responses, which could reflect the ability of the cGMP-dependent pathway to directly affect the photic sensitivity of the master circadian clock within the SCN. Indeed, sildenafil is also able to increase the phase-shifting effect of saturating (1200 lux) light pulses leading to phase advances of about 9 hours, as well as in C57 a mouse strain that shows reduced phase advances. In addition, sildenafil was effective in both male and female hamsters, as well as after oral administration. Other PDE inhibitors (such as vardenafil and tadalafil) also increased light-induced phase advances of locomotor activity rhythms and accelerated reentrainment after a phase advance in the LD cycle. Pharmacological inhibition of the main downstream target of cGMP, PKG, blocked light-induced expression of Per1. Our results indicate that the cGMP-dependent pathway can directly modulate the light-induced expression of clock-genes within the SCN and the magnitude of light-induced phase advances of overt rhythms, and provide promising tools to design treatments for human circadian disruptions. PMID:22590651
Wearable Contact Lens Biosensors for Continuous Glucose Monitoring Using Smartphones.
Elsherif, Mohamed; Hassan, Mohammed Umair; Yetisen, Ali K; Butt, Haider
2018-05-17
Low-cost, robust, and reusable continuous glucose monitoring systems that can provide quantitative measurements at point-of-care settings is an unmet medical need. Optical glucose sensors require complex and time-consuming fabrication processes, and their readouts are not practical for quantitative analyses. Here, a wearable contact lens optical sensor was created for the continuous quantification of glucose at physiological conditions, simplifying the fabrication process and facilitating smartphone readouts. A photonic microstructure having a periodicity of 1.6 μm was printed on a glucose-selective hydrogel film functionalized with phenylboronic acid. Upon binding with glucose, the microstructure volume swelled, which modulated the periodicity constant. The resulting change in the Bragg diffraction modulated the space between zero- and first-order spots. A correlation was established between the periodicity constant and glucose concentration within 0-50 mM. The sensitivity of the sensor was 12 nm mM -1 , and the saturation response time was less than 30 min. The sensor was integrated with commercial contact lenses and utilized for continuous glucose monitoring using smartphone camera readouts. The reflected power of the first-order diffraction was measured via a smartphone application and correlated to the glucose concentrations. A short response time of 3 s and a saturation time of 4 min was achieved in the continuous monitoring mode. Glucose-sensitive photonic microstructures may have applications in point-of-care continuous monitoring devices and diagnostics at home settings.
Modulation of insulin secretion by fatty acyl analogs.
Las, Guy; Mayorek, Nina; Dickstein, Kobie; Bar-Tana, Jacob
2006-12-01
The secretagogue, the incretin-like, and the suppressive activities of long-chain fatty acids (LCFAs) in modulating insulin secretion in vivo and in cultured islets were simulated here by beta,beta'-tetramethyl-hexadecanedioic acid (M16) and alpha,alpha'-tetrachloro-tetradecanedioic acid (Cl-DICA). M16, but not Cl-DICA, serves as a substrate for ATP-dependent CoA thioesterification but is not further metabolized. M16, but not Cl-DICA, acted as a potent insulin secretagogue in islets cultured in basal but not high glucose. Short-term exposure to M16 or Cl-DICA resulted in activation of glucose- but not arginine-stimulated insulin secretion. Long-term exposure to M16, but not to Cl-DICA, resulted in suppression of glucose-, arginine-, and K(+)-stimulated insulin secretion; inhibition of glucose-induced proinsulin biosynthesis; and depletion of islets insulin. beta-Cell mass and islet ATP content remained unaffected. Hence, nonmetabolizable LCFA analogs may highlight discrete LCFA metabolites and pathways involved in modulating insulin secretion, which could be overlooked due to the rapid turnover of natural LCFA.
NASA Astrophysics Data System (ADS)
Yustisia, I.; Jusman, S. W. A.; Wanandi, S. I.
2017-08-01
Cancer stem cells have been reported to maintain stemness under certain extracellular changes. This study aimed to analyze the effect of extracellular O2 level modulation on the glucose metabolism of human CD24-/CD44+ breast cancer stem cells (BCSCs). The primary BCSCs (CD24-/CD44+ cells) were cultured under hypoxia (1% O2) for 0.5, 4, 6, 24 and 48 hours. After each incubation period, HIF1α, GLUT1 and CA9 expressions, as well as glucose metabolism status, including glucose consumption, lactate production, O2 consumption and extracellular pH (pHe) were analyzed using qRT-PCR, colorimetry, fluorometry, and enzymatic reactions, respectively. Hypoxia caused an increase in HIF1α mRNA expressions and protein levels and shifted the metabolic states to anaerobic glycolysis, as demonstrated by increased glucose consumption and lactate production, as well as decreased O2 consumption and pHe. Furthermore, we demonstrated that GLUT1 and CA9 mRNA expressions simultaneously increased, in line with HIF1α expression. In conclusion, modulation of the extracellular environment of human BCSCs through hypoxia shifedt the metabolic state of BCSCs to anaerobic glycolysis, which might be associated with GLUT1 and CA9 expressions regulated by HIFlα transcription factor.
Proposed mechanisms of the effects of proanthocyanidins on glucose homeostasis.
Yang, Kaiyuan; Chan, Catherine B
2017-08-01
Proanthocyanidins are a major group of flavonoids in the human diet, known for their strong antioxidant properties. Emerging evidence from clinical studies indicates a role of proanthocyanidins in modulating glucose homeostasis, and higher proanthocyanidin intake has been associated with reduced risk of diabetes. On the other hand, recent studies report limited bioavailability of proanthocyanidins. At relatively low concentrations in the systemic circulation, proanthocyanidins may act as cell-signaling molecules to modulate glucose homeostasis. For example, they affect hepatic glucose production via adenosine monophosphate-activated protein kinase and/or insulin-signaling pathways. There is also evidence for a direct role of proanthocyanidins in modulating several pancreatic β-cell functions: prevention of oxidative stress, enhancement of insulin secretion, and promotion of β-cell survival. Therefore, greater understanding of the potentially beneficial effects of proanthocyanidins on cell-signaling pathways implicated in glucose homeostasis is needed. In addition, further investigation to address the in vivo metabolism of proanthocyanidins and the comparative effectiveness of proanthocyanidin-derived metabolites is warranted. The dosage and the experimental model should be given special attention when results from mechanistic studies using proanthocyanidins are interpreted. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won
2013-12-01
We have recently demonstrated that some anti-diabetic drugs such as biguanide and thizolidinediones administered centrally modulate the blood glucose level, suggesting that orally administered anti-diabetic drugs may modulate the blood glucose level by acting on central nervous system. The present study was designed to explore the possible action of another class of anti-diabetic drugs, glinidies, administered centrally on the blood glucose level in ICR mice. Mice were administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) with 5 to 30 µg of repaglinide or nateglinide in D-glucose-fed and streptozotocin (STZ)-treated models. We found that i.c.v. or i.t. injection with repaglinide dose-dependently attenuated the blood glucose level in D-glucose-fed model, whereas i.c.v. or i.t. injection with nateglinide showed no modulatory action on the blood glucose level in D-glucose-fed model. Furthermore, the effect of repaglinide administered i.c.v. or i.t. on the blood glucose level in STZ-treated model was studied. We found that repaglinide administered i.c.v. slightly enhanced the blood glucose level in STZ-treated model. On the other hand, i.t. injection with repaglinide attenuated the blood glucose level in STZ-treated model. The plasma insulin level was enhanced by repaglinide in D-glucose-fed model, but repaglinide did not affect the plasma insulin level in STZ-treated model. In addition, nateglinide did not alter the plasma insulin level in both D-glucose-fed and STZ-treated models. These results suggest that the anti-diabetic action of repaglinide appears to be, at least, mediated via the brain and the spinal cord as revealed in both D-glucose fed and STZ-treated models.
Michaelides, Michael; Miller, Michael L; DiNieri, Jennifer A; Gomez, Juan L; Schwartz, Elizabeth; Egervari, Gabor; Wang, Gene Jack; Mobbs, Charles V; Volkow, Nora D; Hurd, Yasmin L
2017-11-01
Appetitive drive is influenced by coordinated interactions between brain circuits that regulate reinforcement and homeostatic signals that control metabolism. Glucose modulates striatal dopamine (DA) and regulates appetitive drive and reinforcement learning. Striatal DA D2 receptors (D2Rs) also regulate reinforcement learning and are implicated in glucose-related metabolic disorders. Nevertheless, interactions between striatal D2R and peripheral glucose have not been previously described. Here we show that manipulations involving striatal D2R signaling coincide with perseverative and impulsive-like responding for sucrose, a disaccharide consisting of fructose and glucose. Fructose conveys orosensory (ie, taste) reinforcement but does not convey metabolic (ie, nutrient-derived) reinforcement. Glucose however conveys orosensory reinforcement but unlike fructose, it is a major metabolic energy source, underlies sustained reinforcement, and activates striatal circuitry. We found that mice with deletion of dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32) exclusively in D2R-expressing cells exhibited preferential D2R changes in the nucleus accumbens (NAc), a striatal region that critically regulates sucrose reinforcement. These changes coincided with perseverative and impulsive-like responding for sucrose pellets and sustained reinforcement learning of glucose-paired flavors. These mice were also characterized by significant glucose intolerance (ie, impaired glucose utilization). Systemic glucose administration significantly attenuated sucrose operant responding and D2R activation or blockade in the NAc bidirectionally modulated blood glucose levels and glucose tolerance. Collectively, these results implicate NAc D2R in regulating both peripheral glucose levels and glucose-dependent reinforcement learning behaviors and highlight the notion that glucose metabolic impairments arising from disrupted NAc D2R signaling are involved in compulsive and perseverative feeding behaviors.
Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi
2013-01-01
We have recently demonstrated that some anti-diabetic drugs such as biguanide and thizolidinediones administered centrally modulate the blood glucose level, suggesting that orally administered anti-diabetic drugs may modulate the blood glucose level by acting on central nervous system. The present study was designed to explore the possible action of another class of anti-diabetic drugs, glinidies, administered centrally on the blood glucose level in ICR mice. Mice were administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) with 5 to 30 µg of repaglinide or nateglinide in D-glucose-fed and streptozotocin (STZ)-treated models. We found that i.c.v. or i.t. injection with repaglinide dose-dependently attenuated the blood glucose level in D-glucose-fed model, whereas i.c.v. or i.t. injection with nateglinide showed no modulatory action on the blood glucose level in D-glucose-fed model. Furthermore, the effect of repaglinide administered i.c.v. or i.t. on the blood glucose level in STZ-treated model was studied. We found that repaglinide administered i.c.v. slightly enhanced the blood glucose level in STZ-treated model. On the other hand, i.t. injection with repaglinide attenuated the blood glucose level in STZ-treated model. The plasma insulin level was enhanced by repaglinide in D-glucose-fed model, but repaglinide did not affect the plasma insulin level in STZ-treated model. In addition, nateglinide did not alter the plasma insulin level in both D-glucose-fed and STZ-treated models. These results suggest that the anti-diabetic action of repaglinide appears to be, at least, mediated via the brain and the spinal cord as revealed in both D-glucose fed and STZ-treated models. PMID:24381497
Note: optical receiver system for 152-channel magnetoencephalography.
Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong
2014-11-01
An optical receiver system composing 13 serial data restore/synchronizer modules and a single module combiner converted optical 32-bit serial data into 32-bit synchronous parallel data for a computer to acquire 152-channel magnetoencephalography (MEG) signals. A serial data restore/synchronizer module identified 32-bit channel-voltage bits from 48-bit streaming serial data, and then consecutively reproduced 13 times of 32-bit serial data, acting in a synchronous clock. After selecting a single among 13 reproduced data in each module, a module combiner converted it into 32-bit parallel data, which were carried to 32-port digital input board in a computer. When the receiver system together with optical transmitters were applied to 152-channel superconducting quantum interference device sensors, this MEG system maintained a field noise level of 3 fT/√Hz @ 100 Hz at a sample rate of 1 kSample/s per channel.
Mair, William; Steffen, Kristan K; Dillin, Andrew
2011-09-16
AMP-activated protein kinase (AMPK) is a conserved cellular fuel gauge previously implicated in aging. In this issue, Lu et al. (2011) describe how age-related deacetylation of Sip2, a subunit of the AMPK homolog in yeast, acts as a life span clock that can be wound backward or forward to modulate longevity. Copyright © 2011 Elsevier Inc. All rights reserved.
Singh, Pankaj Kumar; Singh, Sweta; Ganesh, Subramaniam
2012-02-01
Lafora disease (LD), an inherited and fatal neurodegenerative disorder, is characterized by increased cellular glycogen content and the formation of abnormally branched glycogen inclusions, called Lafora bodies, in the affected tissues, including neurons. Therefore, laforin phosphatase and malin ubiquitin E3 ligase, the two proteins that are defective in LD, are thought to regulate glycogen synthesis through an unknown mechanism, the defects in which are likely to underlie some of the symptoms of LD. We show here that laforin's subcellular localization is dependent on the cellular glycogen content and that the stability of laforin is determined by the cellular ATP level, the activity of 5'-AMP-activated protein kinase, and the affinity of malin toward laforin. By using cell and animal models, we further show that the laforin-malin complex regulates cellular glucose uptake by modulating the subcellular localization of glucose transporters; loss of malin or laforin resulted in an increased abundance of glucose transporters in the plasma membrane and therefore excessive glucose uptake. Loss of laforin or malin, however, did not affect glycogen catabolism. Thus, the excessive cellular glucose level appears to be the primary trigger for the abnormally higher levels of cellular glycogen seen in LD.
Arrieta-Cruz, Isabel; Su, Ya; Gutiérrez-Juárez, Roger
2016-02-15
Leucine has been shown to acutely inhibit hepatic glucose production in rodents by a mechanism requiring its metabolism to acetyl-CoA in the mediobasal hypothalamus (MBH). In the early stages, all branched-chain amino acids (BCAA) are metabolized by a shared set of enzymes to produce a ketoacid, which is later metabolized to acetyl-CoA. Consequently, isoleucine and valine may also modulate glucose metabolism. To examine this possibility we performed intrahypothalamic infusions of isoleucine or valine in rats and assessed whole body glucose kinetics under basal conditions and during euglycemic pancreatic clamps. Furthermore, because high fat diet (HFD) consumption is known to interfere with central glucoregulation, we also asked whether the action of BCAAs was affected by HFD. We fed rats a lard-rich diet for a short interval and examined their response to central leucine. The results showed that both isoleucine and valine individually lowered blood glucose by decreasing liver glucose production. Furthermore, the action of the BCAA leucine was markedly attenuated by HFD feeding. We conclude that all three BCAAs centrally modulate glucose metabolism in the liver and that their action is disrupted by HFD-induced insulin resistance.
Suppression of Endogenous Glucose Production by Isoleucine and Valine and Impact of Diet Composition
Arrieta-Cruz, Isabel; Su, Ya; Gutiérrez-Juárez, Roger
2016-01-01
Leucine has been shown to acutely inhibit hepatic glucose production in rodents by a mechanism requiring its metabolism to acetyl-CoA in the mediobasal hypothalamus (MBH). In the early stages, all branched-chain amino acids (BCAA) are metabolized by a shared set of enzymes to produce a ketoacid, which is later metabolized to acetyl-CoA. Consequently, isoleucine and valine may also modulate glucose metabolism. To examine this possibility we performed intrahypothalamic infusions of isoleucine or valine in rats and assessed whole body glucose kinetics under basal conditions and during euglycemic pancreatic clamps. Furthermore, because high fat diet (HFD) consumption is known to interfere with central glucoregulation, we also asked whether the action of BCAAs was affected by HFD. We fed rats a lard-rich diet for a short interval and examined their response to central leucine. The results showed that both isoleucine and valine individually lowered blood glucose by decreasing liver glucose production. Furthermore, the action of the BCAA leucine was markedly attenuated by HFD feeding. We conclude that all three BCAAs centrally modulate glucose metabolism in the liver and that their action is disrupted by HFD-induced insulin resistance. PMID:26891318
Redundant operation of counter modules
NASA Technical Reports Server (NTRS)
Nagano, S. (Inventor)
1980-01-01
A technique for the redundant operation of counter modules is described. Redundant operation is maintained by detecting the zero state of each counter and clearing the other to that state, thus periodically resynchronizing the counters, and obtaining an output from both counters through AC coupled diode-OR gates. Redundant operation of counter flip flops is maintained in a similar manner, and synchronous operation of redundant squarewave clock generators of the feedback type is effected by connecting together the feedback inputs of the squarewave generators through a coupling resistor, and obtaining an output from both generators through AC coupled diode-OR gates.
Light at night increases body mass by shifting the time of food intake
Fonken, Laura K.; Workman, Joanna L.; Walton, James C.; Weil, Zachary M.; Morris, John S.; Haim, Abraham; Nelson, Randy J.
2010-01-01
The global increase in the prevalence of obesity and metabolic disorders coincides with the increase of exposure to light at night (LAN) and shift work. Circadian regulation of energy homeostasis is controlled by an endogenous biological clock that is synchronized by light information. To promote optimal adaptive functioning, the circadian clock prepares individuals for predictable events such as food availability and sleep, and disruption of clock function causes circadian and metabolic disturbances. To determine whether a causal relationship exists between nighttime light exposure and obesity, we examined the effects of LAN on body mass in male mice. Mice housed in either bright (LL) or dim (DM) LAN have significantly increased body mass and reduced glucose tolerance compared with mice in a standard (LD) light/dark cycle, despite equivalent levels of caloric intake and total daily activity output. Furthermore, the timing of food consumption by DM and LL mice differs from that in LD mice. Nocturnal rodents typically eat substantially more food at night; however, DM mice consume 55.5% of their food during the light phase, as compared with 36.5% in LD mice. Restricting food consumption to the active phase in DM mice prevents body mass gain. These results suggest that low levels of light at night disrupt the timing of food intake and other metabolic signals, leading to excess weight gain. These data are relevant to the coincidence between increasing use of light at night and obesity in humans. PMID:20937863
Haselton, Aaron; Sharmin, Effat; Schrader, Janel; Sah, Megha; Poon, Peter; Fridell, Yih-Woei C
2010-08-01
In Drosophila melanogaster (D. melanogaster), neurosecretory insulin-like peptide-producing cells (IPCs), analogous to mammalian pancreatic beta cells are involved in glucose homeostasis. Extending those findings, we have developed in the adult fly an oral glucose tolerance test and demonstrated that IPCs indeed are responsible for executing an acute glucose clearance response. To further develop D. melanogaster as a relevant system for studying age-associated metabolic disorders, we set out to determine the impact of adult-specific partial ablation of IPCs (IPC knockdown) on insulin-like peptide (ILP) action, metabolic outcomes and longevity. Interestingly, while IPC knockdown flies are hyperglycemic and glucose intolerant, these flies remain insulin sensitive as measured by peripheral glucose disposal upon insulin injection and serine phosphorylation of a key insulin-signaling molecule, Akt. Significant increases in stored glycogen and triglyceride levels as well as an elevated level of circulating lipid measured in adult IPC knockdown flies suggest profound modulation in energy metabolism. Additional physiological outcomes measured in those flies include increased resistance to starvation and impaired female fecundity. Finally, increased life span and decreased mortality rates measured in IPC knockdown flies demonstrate that it is possible to modulate ILP action in adult flies to achieve life span extension without insulin resistance. Taken together, we have established and validated an invertebrate genetic system to further investigate insulin action, metabolic homeostasis and regulation of aging regulated by adult IPCs.
Mated Drosophila melanogaster females consume more amino acids during the dark phase
Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q.
2017-01-01
To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock. PMID:28241073
Mated Drosophila melanogaster females consume more amino acids during the dark phase.
Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q
2017-01-01
To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock.
Expression of an insulin-regulatable glucose carrier in muscle and fat endothelial cells
NASA Astrophysics Data System (ADS)
Vilaró, Senen; Palacín, Manuel; Pilch, Paul F.; Testar, Xavier; Zorzano, Antonio
1989-12-01
INSULIN rapidly stimulates glucose use in the major target tissues, muscle and fat, by modulating a tissue-specific glucose transporter isoform1-6. Access of glucose to the target tissue is restricted by endothelial cells which line the walls of nonfenestrated capillaries of fat and muscle7. Thus, we examined whether the capillary endothelial cells are actively involved in the modulation of glucose availability by these tissues. We report here the abundant expression of the muscle/fat glucose transporter isoform in endothelial cells, using an immunocytochemical analysis with a monoclonal antibody specific for this isoform1. This expression is restricted to endothelial cells from the major insulin target tissues, and it is not detected in brain and liver where insulin does not activate glucose transport. The expression of the muscle/fat transporter isoform in endothelial cells is significantly greater than in the neighbouring muscle and fat cells. Following administration of insulin to animals in vivo, there occurs a rapid increase in the number of muscle/fat transporters present in the lumenal plasma membrane of the capillary endothelial cells. These results document that insulin promotes the translocation of the muscle/fat glucose transporter in endothelial cells. It is therefore likely that endothelial cells play an important role in the regulation of glucose use by the major insulin target tissues in normal and diseased states.
Yudin, V I; Taichenachev, A V; Basalaev, M Yu; Kovalenko, D V
2017-02-06
We theoretically investigate the dynamic regime of coherent population trapping (CPT) in the presence of frequency modulation (FM). We have formulated the criteria for quasi-stationary (adiabatic) and dynamic (non-adiabatic) responses of atomic system driven by this FM. Using the density matrix formalism for Λ system, the error signal is exactly calculated and optimized. It is shown that the optimal FM parameters correspond to the dynamic regime of atomic-field interaction, which significantly differs from conventional description of CPT resonances in the frame of quasi-stationary approach (under small modulation frequency). Obtained theoretical results are in good qualitative agreement with different experiments. Also we have found CPT-analogue of Pound-Driver-Hall regime of frequency stabilization.
Interspecific studies of circadian genes period and timeless in Drosophila.
Noreen, Shumaila; Pegoraro, Mirko; Nouroz, Faisal; Tauber, Eran; Kyriacou, Charalambos P
2018-03-30
The level of rescue of clock function in genetically arrhythmic Drosophila melanogaster hosts using interspecific clock gene transformation was used to study the putative intermolecular coevolution between interacting clock proteins. Among them PER and TIM are the two important negative regulators of the circadian clock feedback loop. We transformed either the D. pseudoobscura per or tim transgenes into the corresponding arrhythmic D. melanogaster mutant (per01 or tim01) and observed >50% rhythmicity but the period of activity rhythm was either longer (D. pseudoobscura-per) or shorter than 24 h (D. pseudoobscura-tim) compared to controls. By introducing both transgenes simultaneously into double mutants, we observed that the period of the activity rhythm was rescued by the pair of hemizygous transgenes (~24 h). These flies also showed a more optimal level of temperature compensation for the period. Under LD 12:12 these flies have a D. pseudoobscura like activity profile with the absence of morning anticipation as well as a very prominent earlier evening peak of activity rhythm. These observation are consistent with the view that TIM and PER form a heterospecific coevolved module at least for the circadian period of activity rhythms. However the strength of rhythmicity was reduced by having both transgenes present, so while evidence for a coevolution between PER and TIM is observed for some characters it is not for others. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
New Approaches for Direct Current (DC) Balanced SpaceWire
NASA Technical Reports Server (NTRS)
Kisin, Alex; Rakow, Glenn
2016-01-01
Direct Current (DC) line balanced SpaceWire is attractive for a number of reasons. Firstly, a DC line balanced interface provides the ability to isolate the physical layer with either a transformer or capacitor to achieve higher common mode voltage rejection and or the complete galvanic isolation in the case of a transformer. And secondly, it provides the possibility to reduce the number of conductors and transceivers in the classical SpaceWire interface by half by eliminating the Strobe line. Depending on the modulator scheme the clock data recovery frequency requirements may be only twice that of the transmit clock, or even match the transmit clock: depending on the Field Programmable Gate Array (FPGA) decoder design. In this paper, several different implementation scenarios will be discussed. Two of these scenarios are backward compatible with the existing SpaceWire hardware standards except for changes at the character level. Three other scenarios, while decreasing by half the standard SpaceWire hardware components, will require changes at both the character and signal levels and work with fixed rates. Other scenarios with variable data rates will require an additional SpaceWire interface handshake initialization sequence.
Bowhead whale localization using asynchronous hydrophones in the Chukchi Sea.
Warner, Graham A; Dosso, Stan E; Hannay, David E; Dettmer, Jan
2016-07-01
This paper estimates bowhead whale locations and uncertainties using non-linear Bayesian inversion of their modally-dispersed calls recorded on asynchronous recorders in the Chukchi Sea, Alaska. Bowhead calls were recorded on a cluster of 7 asynchronous ocean-bottom hydrophones that were separated by 0.5-9.2 km. A warping time-frequency analysis is used to extract relative mode arrival times as a function of frequency for nine frequency-modulated whale calls that dispersed in the shallow water environment. Each call was recorded on multiple hydrophones and the mode arrival times are inverted for: the whale location in the horizontal plane, source instantaneous frequency (IF), water sound-speed profile, seabed geoacoustic parameters, relative recorder clock drifts, and residual error standard deviations, all with estimated uncertainties. A simulation study shows that accurate prior environmental knowledge is not required for accurate localization as long as the inversion treats the environment as unknown. Joint inversion of multiple recorded calls is shown to substantially reduce uncertainties in location, source IF, and relative clock drift. Whale location uncertainties are estimated to be 30-160 m and relative clock drift uncertainties are 3-26 ms.
Scalable Multiprocessor for High-Speed Computing in Space
NASA Technical Reports Server (NTRS)
Lux, James; Lang, Minh; Nishimoto, Kouji; Clark, Douglas; Stosic, Dorothy; Bachmann, Alex; Wilkinson, William; Steffke, Richard
2004-01-01
A report discusses the continuing development of a scalable multiprocessor computing system for hard real-time applications aboard a spacecraft. "Hard realtime applications" signifies applications, like real-time radar signal processing, in which the data to be processed are generated at "hundreds" of pulses per second, each pulse "requiring" millions of arithmetic operations. In these applications, the digital processors must be tightly integrated with analog instrumentation (e.g., radar equipment), and data input/output must be synchronized with analog instrumentation, controlled to within fractions of a microsecond. The scalable multiprocessor is a cluster of identical commercial-off-the-shelf generic DSP (digital-signal-processing) computers plus generic interface circuits, including analog-to-digital converters, all controlled by software. The processors are computers interconnected by high-speed serial links. Performance can be increased by adding hardware modules and correspondingly modifying the software. Work is distributed among the processors in a parallel or pipeline fashion by means of a flexible master/slave control and timing scheme. Each processor operates under its own local clock; synchronization is achieved by broadcasting master time signals to all the processors, which compute offsets between the master clock and their local clocks.
Setting the main circadian clock of a diurnal mammal by hypocaloric feeding
Mendoza, Jorge; Gourmelen, Sylviane; Dumont, Stephanie; Sage-Ciocca, Dominique; Pévet, Paul; Challet, Etienne
2012-01-01
Caloric restriction attenuates the onset of a number of pathologies related to ageing. In mammals, circadian rhythms, controlled by the hypothalamic suprachiasmatic (SCN) clock, are altered with ageing. Although light is the main synchronizer for the clock, a daily hypocaloric feeding (HF) may also modulate the SCN activity in nocturnal rodents. Here we report that a HF also affects behavioural, physiological and molecular circadian rhythms of the diurnal rodent Arvicanthis ansorgei. Under constant darkness HF, but not normocaloric feeding (NF), entrains circadian behaviour. Under a light–dark cycle, HF at midnight led to phase delays of the rhythms of locomotor activity and plasma corticosterone. Furthermore, Per2 and vasopressin gene oscillations in the SCN were phase delayed in HF Arvicanthis compared with animals fed ad libitum. Moreover, light-induced expression of Per genes in the SCN was modified in HF Arvicanthis, despite a non-significant effect on light-induced behavioural phase delays. Together, our data show that HF affects the circadian system of the diurnal rodent Arvicanthis ansorgei differentially from nocturnal rodents. The Arvicanthis model has relevance for the potential use of HF to manipulate circadian rhythms in diurnal species including humans. PMID:22570380
Chen, Chong; Wang, Songhua; Hu, Qingjuan; Zeng, Lvming; Peng, Hailong; Liu, Chao; Huang, Li-Ping; Song, Hao; Li, Yuping; Yao, Li-Hua; Meng, Wei
2018-01-01
Islet beta cells (β-cells) are unique cells that play a critical role in glucose homeostasis by secreting insulin in response to increased glucose levels. Voltage-gated ion channels in β-cells, such as K+ and Ca2+ channels, contribute to insulin secretion. The response of voltage-gated Na+ channels (VGSCs) in β-cells to the changes in glucose levels remains unknown. This work aims to determine the role of extracellular glucose on the regulation of VGSC. The effect of glucose on VGSC currents (INa) was investigated in insulin-secreting β-cell line (INS-1) cells of rats using whole-cell patch clamp techniques, and the effects of glucose on insulin content and cell viability were determined using Enzyme-Linked Immunosorbent Assay (ELISA) and Methylthiazolyldiphenyl-tetrazolium Bromide (MTT) assay methods respectively. Our results show that extracellular glucose application can inhibit the peak of INa in a concentration-dependent manner. Glucose concentration of 18 mM reduced the amplitude of INa, suppressed the INa of steady-state activation, shifted the steady-state inactivation curves of INa to negative potentials, and prolonged the time course of INa recovery from inactivation. Glucose also enhanced the activity-dependent attenuation of INa and reduced the fraction of activated channels. Furthermore, 18 mM glucose or low concentration of tetrodotoxin (TTX, a VGSC-specific blocker) partially inhibited the activity of VGSC and also improved insulin synthesis. These results revealed that extracellular glucose application enhances the insulin synthesis in INS-1 cells and the mechanism through the partial inhibition on INa channel is involved. Our results innovatively suggest that VGSC plays a vital role in modulating glucose homeostasis. © 2018 The Author(s). Published by S. Karger AG, Basel.
Medina, Johan; Nakagawa, Yuko; Nagasawa, Masahiro; Fernandez, Anny; Sakaguchi, Kazushige; Kitaguchi, Tetsuya; Kojima, Itaru
2016-01-01
The calcium-sensing receptor (CaSR) is activated by various cations, cationic compounds, and amino acids. In the present study we investigated the effect of glucose on CaSR in HEK293 cells stably expressing human CaSR (HEK-CaSR cells). When glucose concentration in the buffer was raised from 3 to 25 mm, a rapid elevation of cytoplasmic Ca2+ concentration ([Ca2+]c) was observed. This elevation was immediate and transient and was followed by a sustained decrease in [Ca2+]c. The effect of glucose was detected at a concentration of 4 mm and reached its maximum at 5 mm. 3-O-Methylglucose, a non-metabolizable analogue of glucose, reproduced the effect of glucose. Sucrose also induced an elevation of [Ca2+]c in HEK-CaSR cells. Similarly, sucralose was nearly as effective as glucose in inducing elevation of [Ca2+]c. Glucose was not able to increase [Ca2+]c in the absence of extracellular Ca2+. The effect of glucose on [Ca2+]c was inhibited by NPS-2143, an allosteric inhibitor of CaSR. In addition, NPS-2143 also inhibited the [Ca2+]c responses to sucralose and sucrose. Glucose as well as sucralose decreased cytoplasmic cAMP concentration in HEK-CaSR cells. The reduction of cAMP induced by glucose was blocked by pertussis toxin. Likewise, sucralose reduced [cAMP]c. Finally, glucose increased [Ca2+]c in PT-r parathyroid cells and in Madin-Darby canine kidney cells, both of which express endogenous CaSR. These results indicate that glucose acts as a positive allosteric modulator of CaSR. PMID:27613866
Design of an MR image processing module on an FPGA chip
NASA Astrophysics Data System (ADS)
Li, Limin; Wyrwicz, Alice M.
2015-06-01
We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128 × 128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments.
Design of an MR image processing module on an FPGA chip
Li, Limin; Wyrwicz, Alice M.
2015-01-01
We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128 × 128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments. PMID:25909646
Boyd, Joseph S; Cheng, Ryan R; Paddock, Mark L; Sancar, Cigdem; Morcos, Faruck; Golden, Susan S
2016-09-15
Two-component systems (TCS) that employ histidine kinases (HK) and response regulators (RR) are critical mediators of cellular signaling in bacteria. In the model cyanobacterium Synechococcus elongatus PCC 7942, TCSs control global rhythms of transcription that reflect an integration of time information from the circadian clock with a variety of cellular and environmental inputs. The HK CikA and the SasA/RpaA TCS transduce time information from the circadian oscillator to modulate downstream cellular processes. Despite immense progress in understanding of the circadian clock itself, many of the connections between the clock and other cellular signaling systems have remained enigmatic. To narrow the search for additional TCS components that connect to the clock, we utilized direct-coupling analysis (DCA), a statistical analysis of covariant residues among related amino acid sequences, to infer coevolution of new and known clock TCS components. DCA revealed a high degree of interaction specificity between SasA and CikA with RpaA, as expected, but also with the phosphate-responsive response regulator SphR. Coevolutionary analysis also predicted strong specificity between RpaA and a previously undescribed kinase, HK0480 (herein CikB). A knockout of the gene for CikB (cikB) in a sasA cikA null background eliminated the RpaA phosphorylation and RpaA-controlled transcription that is otherwise present in that background and suppressed cell elongation, supporting the notion that CikB is an interactor with RpaA and the clock network. This study demonstrates the power of DCA to identify subnetworks and key interactions in signaling pathways and of combinatorial mutagenesis to explore the phenotypic consequences. Such a combined strategy is broadly applicable to other prokaryotic systems. Signaling networks are complex and extensive, comprising multiple integrated pathways that respond to cellular and environmental cues. A TCS interaction model, based on DCA, independently confirmed known interactions and revealed a core set of subnetworks within the larger HK-RR set. We validated high-scoring candidate proteins via combinatorial genetics, demonstrating that DCA can be utilized to reduce the search space of complex protein networks and to infer undiscovered specific interactions for signaling proteins in vivo Significantly, new interactions that link circadian response to cell division and fitness in a light/dark cycle were uncovered. The combined analysis also uncovered a more basic core clock, illustrating the synergy and applicability of a combined computational and genetic approach for investigating prokaryotic signaling networks. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
A Distributed Synchronization and Timing System on the EAST Tokamak
NASA Astrophysics Data System (ADS)
Luo, Jiarong; Wu, Yichun; Shu, Yantai
2008-08-01
A key requirement for the EAST distributed control system (EASTDCS) is time synchronization to an accuracy of <1 mus. In 2006 a Distributed Synchronization and Timing System (DSTS) was set up, which is based on the ATmega128 AVR microcontroller and the Nut/OS embedded Real Time Operating System (RTOS). The DSTS provides the control and the data acquisition systems with reference clocks (0.01 Hz 10 MHz) and delayed trigger times ( 1 mus 4294 s). These are produced by a Core Module Unit (CMU) connected by optical fibres to many Local Synchronized Node Units (LSNU). The fibres provide immunity from electrical noise and are of equal length to match clock and trigger delays between systems. This paper describes the architecture of the DSTS on the EAST tokamak and provides an overview of the characteristics of the main and local units.
Prototype of a gigabit data transmitter in 65 nm CMOS for DEPFET pixel detectors at Belle-II
NASA Astrophysics Data System (ADS)
Kishishita, T.; Krüger, H.; Hemperek, T.; Lemarenko, M.; Koch, M.; Gronewald, M.; Wermes, N.
2013-08-01
This paper describes the recent development of a gigabit data transmitter for the Belle-II pixel detector (PXD). The PXD is an innermost detector currently under development for the upgraded KEK-B factory in Japan. The PXD consists of two layers of DEPFET sensor modules located at 1.8 and 2.2 cm radii. Each module is equipped with three different ASIC types mounted on the detector substrate with a flip-chip technique: (a) SWITCHER for generating steering signals for the DEPFET sensors, (b) DCD for digitizing the signal currents, and (c) DHP for performing data processing and sending the data off the module to the back-end data handling hybrid via ∼ 40 cm Kapton flex and 12-15 m twisted pair (TWP) cables. To meet the requirements of the PXD data transmission, a prototype of the DHP data transmitter has been developed in a 65-nm standard CMOS technology. The transmitter test chip consists of current-mode logic (CML) drivers and a phase-locked loop (PLL) which generates a clock signal for a 1.6 Gbit/s output data stream from an 80 cm reference clock. A programmable pre-emphasis circuit is also implemented in the CML driver to compensate signal losses in the long cable by shaping the transmitted pulse response. The jitter performance was measured as 25 ps (1 σ distribution) by connecting the chip with 38 cm flex and 10 m TWP cables.
Subjective and Real Time: Coding Under Different Drug States
Sanchez-Castillo, Hugo; Taylor, Kathleen M.; Ward, Ryan D.; Paz-Trejo, Diana B.; Arroyo-Araujo, Maria; Castillo, Oscar Galicia; Balsam, Peter D.
2016-01-01
Organisms are constantly extracting information from the temporal structure of the environment, which allows them to select appropriate actions and predict impending changes. Several lines of research have suggested that interval timing is modulated by the dopaminergic system. It has been proposed that higher levels of dopamine cause an internal clock to speed up, whereas less dopamine causes a deceleration of the clock. In most experiments the subjects are first trained to perform a timing task while drug free. Consequently, most of what is known about the influence of dopaminergic modulation of timing is on well-established timing performance. In the current study the impact of altered DA on the acquisition of temporal control was the focal question. Thirty male Sprague-Dawley rats were distributed randomly into three different groups (haloperidol, d-amphetamine or vehicle). Each animal received an injection 15 min prior to the start of every session from the beginning of interval training. The subjects were trained in a Fixed Interval (FI) 16s schedule followed by training on a peak procedure in which 64s non-reinforced peak trials were intermixed with FI trials. In a final test session all subjects were given vehicle injections and 10 consecutive non-reinforced peak trials to see if training under drug conditions altered the encoding of time. The current study suggests that administration of drugs that modulate dopamine do not alter the encoding temporal durations but do acutely affect the initiation of responding. PMID:27087743
Henriques, Rossana; Wang, Huan; Liu, Jun; Boix, Marc; Huang, Li-Fang; Chua, Nam-Hai
2017-11-01
Circadian rhythms of gene expression are generated by the combinatorial action of transcriptional and translational feedback loops as well as chromatin remodelling events. Recently, long noncoding RNAs (lncRNAs) that are natural antisense transcripts (NATs) to transcripts encoding central oscillator components were proposed as modulators of core clock function in mammals (Per) and fungi (frq/qrf). Although oscillating lncRNAs exist in plants, their functional characterization is at an initial stage. By screening an Arabidopsis thaliana lncRNA custom-made array we identified CDF5 LONG NONCODING RNA (FLORE), a circadian-regulated lncRNA that is a NAT of CDF5. Quantitative real-time RT-PCR confirmed the circadian regulation of FLORE, whereas GUS-staining and flowering time evaluation were used to determine its biological function. FLORE and CDF5 antiphasic expression reflects mutual inhibition in a similar way to frq/qrf. Moreover, whereas the CDF5 protein delays flowering by directly repressing FT transcription, FLORE promotes it by repressing several CDFs (CDF1, CDF3, CDF5) and increasing FT transcript levels, indicating both cis and trans function. We propose that the CDF5/FLORE NAT pair constitutes an additional circadian regulatory module with conserved (mutual inhibition) and unique (function in trans) features, able to fine-tune its own circadian oscillation, and consequently, adjust the onset of flowering to favourable environmental conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Yum, Kyungsuk; McNicholas, Thomas P.; Mu, Bin; Strano, Michael S.
2013-01-01
This article reviews research efforts on developing single-walled carbon nanotube (SWNT)-based near-infrared (NIR) optical glucose sensors toward long-term in vivo continuous glucose monitoring (CGM). We first discuss the unique optical properties of SWNTs and compare SWNTs with traditional organic and nanoparticle fluorophores regarding in vivo glucose-sensing applications. We then present our development of SWNT-based glucose sensors that use glucose-binding proteins and boronic acids as a high-affinity molecular receptor for glucose and transduce binding events on the receptors to modulate SWNT fluorescence. Finally, we discuss opportunities and challenges in translating the emerging technology of SWNT-based NIR optical glucose sensors into in vivo CGM for practical clinical use. PMID:23439162
Rolling Band Artifact Flagging in the Kepler Data Pipeline
NASA Astrophysics Data System (ADS)
Clarke, Bruce; Kolodziejczak, Jeffery J; Caldwell, Douglas A.
2014-06-01
Instrument-induced artifacts in the raw Kepler pixel data include time-varying crosstalk from the fine guidance sensor (FGS) clock signals, manifestations of drifting moiré pattern as locally correlated nonstationary noise and rolling bands in the images. These systematics find their way into the calibrated pixel time series and ultimately into the target flux time series. The Kepler pipeline module Dynablack models the FGS crosstalk artifacts using a combination of raw science pixel data, full frame images, reverse-clocked pixel data and ancillary temperature data. The calibration module (CAL) uses the fitted Dynablack models to remove FGS crosstalk artifacts in the calibrated pixels by adjusting the black level correction per cadence. Dynablack also detects and flags spatial regions and time intervals of strong time-varying black-level. These rolling band artifact (RBA) flags are produced on a per row per cadence basis by searching for transit signatures in the Dynablack fit residuals. The Photometric Analysis module (PA) generates per target per cadence data quality flags based on the Dynablack RBA flags. Proposed future work includes using the target data quality flags as a basis for de-weighting in the Presearch Data Conditioning (PDC), Transiting Planet Search (TPS) and Data Validation (DV) pipeline modules. We discuss the effectiveness of RBA flagging for downstream users and illustrate with some affected light curves. We also discuss the implementation of Dynablack in the Kepler data pipeline and present results regarding the improvement in calibrated pixels and the expected improvement in cotrending performance as a result of including FGS corrections in the calibration. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shcheslavskiy, V. I.; Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny Novgorod 603005; Neubauer, A.
We present a lifetime imaging technique that simultaneously records the fluorescence and phosphorescence lifetime images in confocal laser scanning systems. It is based on modulating a high-frequency pulsed laser synchronously with the pixel clock of the scanner, and recording the fluorescence and phosphorescence signals by multidimensional time-correlated single photon counting board. We demonstrate our technique on the recording of the fluorescence/phosphorescence lifetime images of human embryonic kidney cells at different environmental conditions.
Carvalho-Filho, M A; Carvalho, B M; Oliveira, A G; Guadagnini, D; Ueno, M; Dias, M M; Tsukumo, D M; Hirabara, S M; Reis, L F; Curi, R; Carvalheira, J B C; Saad, Mario J A
2012-11-01
The molecular integration of nutrient- and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of κB kinase β. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of κB kinase β phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity.
Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons.
Shi, Xuemei; Zhou, Fuguo; Li, Xiaojie; Chang, Benny; Li, Depei; Wang, Yi; Tong, Qingchun; Xu, Yong; Fukuda, Makoto; Zhao, Jean J; Li, Defa; Burrin, Douglas G; Chan, Lawrence; Guan, Xinfu
2013-07-02
Glucagon-like peptides (GLP-1/GLP-2) are coproduced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We show that mice lacking GLP-2 receptor (GLP-2R) in POMC neurons display glucose intolerance and hepatic insulin resistance. GLP-2R activation in POMC neurons is required for GLP-2 to enhance insulin-mediated suppression of hepatic glucose production (HGP) and gluconeogenesis. GLP-2 directly modulates excitability of POMC neurons in GLP-2R- and PI3K-dependent manners. GLP-2 initiates GLP-2R-p85α interaction and facilitates PI3K-Akt-dependent FoxO1 nuclear exclusion in POMC neurons. Central GLP-2 suppresses basal HGP and enhances insulin sensitivity, which are abolished in POMC-p110α KO mice. Thus, CNS GLP-2 plays a key physiological role in the control of HGP through activating PI3K-dependent modulation of membrane excitability and nuclear transcription of POMC neurons in the brain. Copyright © 2013 Elsevier Inc. All rights reserved.
McNay, E C; Gold, P E
1998-05-15
Based largely on dissociations of the effects of different lesions on learning and memory, memories for different attributes appear to be organized in independent neural systems. Results obtained with direct injections of drugs into one brain region at a time support a similar conclusion. The present experiments investigated the effects of simultaneous pharmacological manipulation of two neural systems, the amygdala and the septohippocampal system, to examine possible interactions of memory modulation across systems. Morphine injected into the medial septum impaired memory both for avoidance training and during spontaneous alternation. When glucose was concomitantly administered to the amygdala, glucose reversed the morphine-induced deficits in memory during alternation but not for avoidance training. These results suggest that the amygdala is involved in modulation of spatial memory processes and that direct injections of memory-modulating drugs into the amygdala do not always modulate memory for aversive events. These findings are contrary to predictions from the findings of lesion studies and of studies using direct injections of drugs into single brain areas. Thus, the independence of neural systems responsible for processing different classes of memory is less clear than implied by studies using lesions or injections of drugs into single brain areas.
Zou, Xin; Huang, Wenya; Lu, Fuer; Fang, Ke; Wang, Dingkun; Zhao, Shuyong; Jia, Jiming; Xu, Lijun; Wang, Kaifu; Wang, Nan; Dong, Hui
2017-03-23
Jiao-Tai-Wan (JTW), composed of Rhizome Coptidis and Cortex Cinnamomi, is a classical traditional Chinese prescription for treating insomnia. Several in vivo studies have concluded that JTW could exert its therapeutical effect in insomnia rats. However, the specific mechanism is still unclear. The present study aimed to explore the effect of JTW on sleep in obesity-resistant (OR) rats with chronic partial sleep deprivation (PSD) and to clarify its possible mechanism. JTW was prepared and the main components contained in the granules were identified by 3D-High Performance Liquid Chromatography (3D-HPLC) assay. The Male Sprague-Dawley (SD) rats underwent 4 h PSD by environmental noise and the treatment with low and high doses of JTW orally for 4 weeks, respectively. Then sleep structure was analyzed by electroencephalographic (EEG). Inflammation markers including high-sensitivity C reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were examined in the rat plasma. Meanwhile, metabolic parameters as body weight increase rate, fasting plasma glucose (FPG), fasting insulin (FINS) levels and insulin resistance index (HOMA-IR) were measured. The expressions of clock gene cryptochromes (Cry1 and Cry2) and inflammation gene nuclear factor-κB (NF-κB) in peripheral blood monocyte cells (PBMC) were also determined. The result showed that the administration of JTW significantly increased total sleep time and total slow wave sleep (SWS) time in OR rats with PSD. Furthermore, the treatment with JTW reversed the increase in the markers of systemic inflammation and insulin resistance caused by sleep loss. These changes were also associated with the up-regulation of Cry1 mRNA and Cry 2 mRNA and the down-regulation of NF-κB mRNA expression in PBMC. This study suggests that JTW has the beneficial effects of improving sleep, inflammation and insulin sensitivity. The mechanism appears to be related to the modulation of circadian clock and inflammation genes expressions in PBMC.
Proton Fall or Bicarbonate Rise
Theparambil, Shefeeq M.; Weber, Tobias; Schmälzle, Jana; Ruminot, Ivàn; Deitmer, Joachim W.
2016-01-01
Glycolysis is the primary step for major energy production in the cell. There is strong evidence suggesting that glucose consumption and rate of glycolysis are highly modulated by cytosolic pH/[H+], but those can also be stimulated by an increase in the intracellular [HCO3−]. Because proton and bicarbonate shift concomitantly, it remained unclear whether enhanced glucose consumption and glycolytic rate were mediated by the changes in intracellular [H+] or [HCO3−]. We have asked whether glucose metabolism is enhanced by either a fall in intracellular [H+] or a rise in intracellular [HCO3−], or by both, in mammalian astrocytes. We have recorded intracellular glucose in mouse astrocytes using a FRET-based nanosensor, while imposing different intracellular [H+] and [CO2]/[HCO3−]. Glucose consumption and glycolytic rate were augmented by a fall in intracellular [H+], irrespective of a concomitant rise or fall in intracellular [HCO3−]. Transport of HCO3− into and out of astrocytes by the electrogenic sodium bicarbonate cotransporter (NBCe1) played a crucial role in causing changes in intracellular pH and [HCO3−], but was not obligatory for the pH-dependent changes in glucose metabolism. Our results clearly show that it is the cytosolic pH that modulates glucose metabolism in cortical astrocytes, and possibly also in other cell types. PMID:27422823
Setting sail for glucose homeostasis with the AKAP150-PP2B-anchor.
Teo, Adrian Kee Keong; Kulkarni, Rohit N
2012-10-17
Glucose-stimulated insulin secretion, controlled by multiple protein phosphorylation events, is critical for the regulation of glucose homeostasis. Protein kinase A (PKA) is known to play a role in β cell physiology, but the role of its anchoring protein is not fully understood. Hinke et al (2012) illustrate the significance of A-kinase anchoring protein 150 in tethering protein phosphatase 2B to mediate nutrient-stimulated insulin secretion and thus modulate glucose homeostasis.
Lee, Hyunjae; Song, Changyeong; Hong, Yong Seok; Kim, Min Sung; Cho, Hye Rim; Kang, Taegyu; Shin, Kwangsoo; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong
2017-01-01
Electrochemical analysis of sweat using soft bioelectronics on human skin provides a new route for noninvasive glucose monitoring without painful blood collection. However, sweat-based glucose sensing still faces many challenges, such as difficulty in sweat collection, activity variation of glucose oxidase due to lactic acid secretion and ambient temperature changes, and delamination of the enzyme when exposed to mechanical friction and skin deformation. Precise point-of-care therapy in response to the measured glucose levels is still very challenging. We present a wearable/disposable sweat-based glucose monitoring device integrated with a feedback transdermal drug delivery module. Careful multilayer patch design and miniaturization of sensors increase the efficiency of the sweat collection and sensing process. Multimodal glucose sensing, as well as its real-time correction based on pH, temperature, and humidity measurements, maximizes the accuracy of the sensing. The minimal layout design of the same sensors also enables a strip-type disposable device. Drugs for the feedback transdermal therapy are loaded on two different temperature-responsive phase change nanoparticles. These nanoparticles are embedded in hyaluronic acid hydrogel microneedles, which are additionally coated with phase change materials. This enables multistage, spatially patterned, and precisely controlled drug release in response to the patient’s glucose level. The system provides a novel closed-loop solution for the noninvasive sweat-based management of diabetes mellitus. PMID:28345030
Glucose modulates food-related salience coding of midbrain neurons in humans.
Ulrich, Martin; Endres, Felix; Kölle, Markus; Adolph, Oliver; Widenhorn-Müller, Katharina; Grön, Georg
2016-12-01
Although early rat studies demonstrated that administration of glucose diminishes dopaminergic midbrain activity, evidence in humans has been lacking so far. In the present functional magnetic resonance imaging study, glucose was intravenously infused in healthy human male participants while seeing images depicting low-caloric food (LC), high-caloric food (HC), and non-food (NF) during a food/NF discrimination task. Analysis of brain activation focused on the ventral tegmental area (VTA) as the origin of the mesolimbic system involved in salience coding. Under unmodulated fasting baseline conditions, VTA activation was greater during HC compared with LC food cues. Subsequent to infusion of glucose, this difference in VTA activation as a function of caloric load leveled off and even reversed. In a control group not receiving glucose, VTA activation during HC relative to LC cues remained stable throughout the course of the experiment. Similar treatment-specific patterns of brain activation were observed for the hypothalamus. The present findings show for the first time in humans that glucose infusion modulates salience coding mediated by the VTA. Hum Brain Mapp 37:4376-4384, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Method to implement the CCD timing generator based on FPGA
NASA Astrophysics Data System (ADS)
Li, Binhua; Song, Qian; He, Chun; Jin, Jianhui; He, Lin
2010-07-01
With the advance of the PFPA technology, the design methodology of digital systems is changing. In recent years we develop a method to implement the CCD timing generator based on FPGA and VHDL. This paper presents the principles and implementation skills of the method. Taking a developed camera as an example, we introduce the structure, input and output clocks/signals of a timing generator implemented in the camera. The generator is composed of a top module and a bottom module. The bottom one is made up of 4 sub-modules which correspond to 4 different operation modes. The modules are implemented by 5 VHDL programs. Frame charts of the architecture of these programs are shown in the paper. We also describe implementation steps of the timing generator in Quartus II, and the interconnections between the generator and a Nios soft core processor which is the controller of this generator. Some test results are presented in the end.
Phase and Pupil Amplitude Recovery for JWST Space-Optics Control
NASA Technical Reports Server (NTRS)
Dean, B. H.; Zielinski, T. P.; Smith, J. S.; Bolcar, M. R.; Aronstein, D. L.; Fienup, J. R.
2010-01-01
This slide presentation reviews the phase and pupil amplitude recovery for the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam). It includes views of the Integrated Science Instrument Module (ISIM), the NIRCam, examples of Phase Retrieval Data, Ghost Irradiance, Pupil Amplitude Estimation, Amplitude Retrieval, Initial Plate Scale Estimation using the Modulation Transfer Function (MTF), Pupil Amplitude Estimation vs lambda, Pupil Amplitude Estimation vs. number of Images, Pupil Amplitude Estimation vs Rotation (clocking), and Typical Phase Retrieval Results Also included is information about the phase retrieval approach, Non-Linear Optimization (NLO) Optimized Diversity Functions, and Least Square Error vs. Starting Pupil Amplitude.
Demodulator for binary-phase modulated signals having a variable clock rate
NASA Technical Reports Server (NTRS)
Wu, Ta Tzu (Inventor)
1976-01-01
Method and apparatus for demodulating binary-phase modulated signals recorded on a magnetic stripe on a card as the card is manually inserted into a card reader. Magnetic transitions are sensed as the card is read and the time interval between immediately preceeding basic transitions determines the duration of a data sampling pulse which detects the presence or absence of an intermediate transition pulse indicative of two respective logic states. The duration of the data sampling pulse is approximately 75 percent of the preceeding interval between basic transitions to permit tracking succeeding time differences in basic transition intervals of up to approximately 25 percent.
Cryo-Vacuum Testing of the JWST Integrated Science Instrument Module
NASA Technical Reports Server (NTRS)
Kimble, Randy A.; Vila, M. Begona; Van Campen, Julie M.; Birkmann, Stephen M.; Comber, Brian J.; Fatig, Curtis C.; Glasse, Alistair C. H.; Glazer, Stuart D.; Kelly, Douglas M.; Mann, Steven D.;
2016-01-01
In late 2015 early 2016, a major cryo-vacuum test was carried out for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope. This test comprised the final cryo-certification and calibration test of the ISIM before its delivery for integration with the rest of the JWST observatory. Over the roughly 100-day period of the round-the-clock test program, the full complement of ISIM flight instruments, structure, harness radiator, and electronics were put through a comprehensive program of thermal, optical, electrical, and operational tests. We briefly summarize the goals, setup, execution, and key results for this critical JWST milestone.
Pilot Kent Rominger floats in tunnel
1995-10-24
STS073-E-5053 (26 Oct. 1995) --- Astronaut Kent V. Rominger, STS-73 pilot, floats through a tunnel connecting the space shuttle Columbia's cabin and its science module. Rominger is one of seven crewmembers in the midst of a 16-day multi-faceted mission aboard Columbia. For the next week and a half, the crew will continue working in shifts around the clock on a diverse assortment of United States Microgravity Laboratory (USML-2) experiments located in the science module. Fields of study include fluid physics, materials science, biotechnology, combustion science and commercial space processing technologies. The frame was exposed with an Electronic Still Camera (ESC).
Susceptibility of interstitial continuous glucose monitor performance to sleeping position.
Mensh, Brett D; Wisniewski, Natalie A; Neil, Brian M; Burnett, Daniel R
2013-07-01
Developing a round-the-clock artificial pancreas requires accurate and stable continuous glucose monitoring. The most widely used continuous glucose monitors (CGMs) are percutaneous, with the sensor residing in the interstitial space. Inaccuracies in percutaneous CGM readings during periods of lying on the devices (e.g., in various sleeping positions) have been anecdotally reported but not systematically studied. In order to assess the impact of sleep and sleep position on CGM performance, we conducted a study in human subjects in which we measured the variability of interstitial CGM data at night as a function of sleeping position. Commercially available sensors were placed for 4 days in the abdominal subcutaneous tissue in healthy, nondiabetic volunteers (four sensors per person, two per side). Nocturnal sleeping position was determined from video recordings and correlated to sensor data. We observed that, although the median of the four sensor readings was typically 70-110 mg/dl during sleep, individual sensors intermittently exhibited aberrant glucose readings (>25 mg/dl away from median) and that these aberrant readings were strongly correlated with subjects lying on the sensors. We expected and observed that most of these aberrant sleep-position-related CGM readings were sudden decreases in reported glucose values, presumably due to local blood-flow decreases caused by tissue compression. Curiously, in rare cases, the aberrant CGM readings were elevated values. These findings highlight limitations in our understanding of interstitial fluid physiology in the subcutaneous space and have significant implications for the utilization of sensors in the construction of an artificial pancreas. © 2013 Diabetes Technology Society.
Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias
2015-01-01
Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865
Influence of Acute and Chronic Exercise on Glucose Uptake
Röhling, Martin; Herder, Christian; Stemper, Theodor; Müssig, Karsten
2016-01-01
Insulin resistance plays a key role in the development of type 2 diabetes. It arises from a combination of genetic predisposition and environmental and lifestyle factors including lack of physical exercise and poor nutrition habits. The increased risk of type 2 diabetes is molecularly based on defects in insulin signaling, insulin secretion, and inflammation. The present review aims to give an overview on the molecular mechanisms underlying the uptake of glucose and related signaling pathways after acute and chronic exercise. Physical exercise, as crucial part in the prevention and treatment of diabetes, has marked acute and chronic effects on glucose disposal and related inflammatory signaling pathways. Exercise can stimulate molecular signaling pathways leading to glucose transport into the cell. Furthermore, physical exercise has the potential to modulate inflammatory processes by affecting specific inflammatory signaling pathways which can interfere with signaling pathways of the glucose uptake. The intensity of physical training appears to be the primary determinant of the degree of metabolic improvement modulating the molecular signaling pathways in a dose-response pattern, whereas training modality seems to have a secondary role. PMID:27069930
Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons
Babic, Tanja; Troy, Amanda E; Fortna, Samuel R; Browning, Kirsteen N
2012-01-01
Background Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, as well as indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT3 receptors. Methods Whole cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs’ solution containing different concentrations of D-glucose (1.25–20mM) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT3 receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. Key Results Increasing or decreasing extracellular D-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current as well as the proportion of 5-HT3 receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5µM) suggesting involvement of a protein trafficking pathway. Furthermore, L-glucose did not mimic the response of D-glucose implying that metabolic events downstream of neuronal glucose uptake are required in order to observe the modulation of 5-HT3 receptor mediated responses. Conclusions & Inferences These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged. PMID:22845622
NASA Astrophysics Data System (ADS)
Mortensen, Dale J.
1995-04-01
The testing and performance of a prototype modem developed at NASA Lewis Research Center for high-speed free-space direct detection optical communications is described. The testing was performed under laboratory conditions using computer control with specially developed test equipment that simulates free-space link conditions. The modem employs quaternary pulse position modulation at 325 Megabits per second (Mbps) on two optical channels, which are multiplexed to transmit a single 650 Mbps data stream. The measured results indicate that the receiver's automatic gain control (AGC), phased-locked-loop slot clock recovery, digital symbol clock recovery, matched filtering, and maximum likelihood data recovery circuits were found to have only 1.5 dB combined implementation loss during bit-error-rate (BER) performance measurements. Pseudo random bit sequences and real-time high quality video sources were used to supply 650 Mbps and 325 Mbps data streams to the modem. Additional testing revealed that Doppler frequency shifting can be easily tracked by the receiver, that simulated pointing errors are readily compensated for by the AGC circuits, and that channel timing skew affects the BER performance in an expected manner. Overall, the needed technologies for a high-speed laser communications modem were demonstrated.
Effects of Dim Light at Night on Food Intake and Body Mass in Developing Mice.
Cissé, Yasmine M; Peng, Juan; Nelson, Randy J
2017-01-01
Appropriately timed light is critical for circadian organization; exposure to dim light at night (dLAN) disrupts temporal organization of endogenous biological timing. Exposure to dLAN in adult mice is associated with elevated body mass and changes in metabolism putatively driven by voluntary changes in the time of food intake. We predicted that exposure of young mice to LAN could affect adult metabolic function. At 3 weeks (Experiment 1) or 5 weeks (Experiment 2) of age, mice were either maintained in standard light-dark (DARK) cycles or exposed to nightly dLAN (5 lux). In the first two experiments, food intake and locomotor activity were assessed after 4 weeks and a glucose tolerance test was administered after 6 weeks in experimental lighting conditions. In Experiment 3, tissues were collected around the clock at 6 h intervals to investigate rhythmic hepatic clock gene expression in mice exposed to dLAN from 3 or 5 weeks of age. Male and female mice exposed to dLAN beginning at 3 weeks of age displayed similar growth rates and body mass to DARK-reared offspring, despite increasing day-time food intake. Exposure to dLAN beginning at 5 weeks of age increased body mass and daytime food intake in male, but not female, mice. Consistent with the body mass phenotype, clock gene expression was unaltered in the liver. In contrast to adults, dLAN exposure during the development of the peripheral circadian system has sex- and development-dependent effects on body mass gain.
A dynamically reconfigurable multi-functional PLL for SRAM-based FPGA in 65nm CMOS technology
NASA Astrophysics Data System (ADS)
Yang, Mingqian; Chen, Lei; Li, Xuewu; Zhang, Yanlong
2018-04-01
Phase-locked loops (PLL) have been widely utilized in FPGA as an important module for clock management. PLL with dynamic reconfiguration capability is always welcomed in FPGA design as it is able to decrease power consumption and simultaneously improve flexibility. In this paper, a multi-functional PLL with dynamic reconfiguration capability for 65nm SRAM-based FPGA is proposed. Firstly, configurable charge pump and loop filter are utilized to optimize the loop bandwidth. Secondly, the PLL incorporates a VCO with dual control voltages to accelerate the adjustment of oscillation frequency. Thirdly, three configurable dividers are presented for flexible frequency synthesis. Lastly, a configuration block with dynamic reconfiguration function is proposed. Simulation results demonstrate that the proposed multi-functional PLL can output clocks with configurable division ratio, phase shift and duty cycle. The PLL can also be dynamically reconfigured without affecting other parts' running or halting the FPGA device.
25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel
Wang, Chao; Huang, Duan; Huang, Peng; Lin, Dakai; Peng, Jinye; Zeng, Guihua
2015-01-01
In this paper, a practical continuous-variable quantum key distribution system is developed and it runs in the real-world conditions with 25 MHz clock rate. To reach high-rate, we have employed a homodyne detector with maximal bandwidth to 300 MHz and an optimal high-efficiency error reconciliation algorithm with processing speed up to 25 Mbps. To optimize the stability of the system, several key techniques are developed, which include a novel phase compensation algorithm, a polarization feedback algorithm, and related stability method on the modulators. Practically, our system is tested for more than 12 hours with a final secret key rate of 52 kbps over 50 km transmission distance, which is the highest rate so far in such distance. Our system may pave the road for practical broadband secure quantum communication with continuous variables in the commercial conditions. PMID:26419413
NASA Astrophysics Data System (ADS)
Chen, Kai; Wei, Wen-Bo; Deng, Ming; Wu, Zhong-Liang; Yu, Gang
2015-09-01
In planning and executing marine controlled-source electromagnetic methods, seafloor electromagnetic receivers must overcome the problems of noise, clock drift, and power consumption. To design a receiver that performs well and overcomes the abovementioned problems, we performed forward modeling of the E-field abnormal response and established the receiver's characteristics. We describe the design optimization and the properties of each component, that is, low-noise induction coil sensor, low-noise Ag/AgCl electrode, low-noise chopper amplifier, digital temperature-compensated crystal oscillator module, acoustic telemetry modem, and burn wire system. Finally, we discuss the results of onshore and offshore field tests to show the effectiveness of the developed seafloor electromagnetic receiver and its performance: typical E-field noise of 0.12 nV/m/rt(Hz) at 0.5 Hz, dynamic range higher than 120 dB, clock drift lower than 1 ms/day, and continuous operation of at least 21 days.
Constellation Program Electrical Ground Support Equipment Research and Development
NASA Technical Reports Server (NTRS)
McCoy, Keegan S.
2010-01-01
At the Kennedy Space Center, I engaged in the research and development of electrical ground support equipment for NASA's Constellation Program. Timing characteristics playa crucial role in ground support communications. Latency and jitter are two problems that must be understood so that communications are timely and consistent within the Kennedy Ground Control System (KGCS). I conducted latency and jitter tests using Alien-Bradley programmable logic controllers (PLCs) so that these two intrinsic network properties can be reduced. Time stamping and clock synchronization also play significant roles in launch processing and operations. Using RSLogix 5000 project files and Wireshark network protocol analyzing software, I verified master/slave PLC Ethernet module clock synchronization, master/slave IEEE 1588 communications, and time stamping capabilities. All of the timing and synchronization test results are useful in assessing the current KGCS operational level and determining improvements for the future.
QPPM receiver for free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, J. M.; Mohamed, J. H.; Nagy, L. A.; Lizanich, P. J.; Mortensen, D. J.
1994-01-01
A prototype receiver developed at NASA Lewis Research Center for direct detection and demodulation of quaternary pulse position modulated (QPPM) optical carriers is described. The receiver enables dual-channel communications at 325-Megabits per second (Mbps) per channel. The optical components of the prototype receiver are briefly described. The electronic components, comprising the analog signal conditioning, slot clock recovery, matched filter and maximum likelihood data recovery circuits are described in more detail. A novel digital symbol clock recovery technique is presented as an alternative to conventional analog methods. Simulated link degradations including noise and pointing-error induced amplitude variations are applied. The bit-error-rate performance of the electronic portion of the prototype receiver under varying optical signal-to-noise power ratios is found to be within 1.5-dB of theory. Implementation of the receiver as a hybrid of analog and digital application specific integrated circuits is planned.
An immune clock of human pregnancy
Aghaeepour, Nima; Ganio, Edward A.; Mcilwain, David; Tsai, Amy S.; Tingle, Martha; Van Gassen, Sofie; Gaudilliere, Dyani K.; Baca, Quentin; McNeil, Leslie; Okada, Robin; Ghaemi, Mohammad S.; Furman, David; Wong, Ronald J.; Winn, Virginia D.; Druzin, Maurice L.; El-Sayed, Yaser Y.; Quaintance, Cecele; Gibbs, Ronald; Darmstadt, Gary L.; Shaw, Gary M.; Stevenson, David K.; Tibshirani, Robert; Nolan, Garry P.; Lewis, David B.; Angst, Martin S.; Gaudilliere, Brice
2017-01-01
The maintenance of pregnancy relies on finely tuned immune adaptations. We demonstrate that these adaptations are precisely timed, reflecting an immune clock of pregnancy in women delivering at term. Using mass cytometry, the abundance and functional responses of all major immune cell subsets were quantified in serial blood samples collected throughout pregnancy. Cell signaling–based Elastic Net, a regularized regression method adapted from the elastic net algorithm, was developed to infer and prospectively validate a predictive model of interrelated immune events that accurately captures the chronology of pregnancy. Model components highlighted existing knowledge and revealed previously unreported biology, including a critical role for the interleukin-2–dependent STAT5ab signaling pathway in modulating T cell function during pregnancy. These findings unravel the precise timing of immunological events occurring during a term pregnancy and provide the analytical framework to identify immunological deviations implicated in pregnancy-related pathologies. PMID:28864494
25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel.
Wang, Chao; Huang, Duan; Huang, Peng; Lin, Dakai; Peng, Jinye; Zeng, Guihua
2015-09-30
In this paper, a practical continuous-variable quantum key distribution system is developed and it runs in the real-world conditions with 25 MHz clock rate. To reach high-rate, we have employed a homodyne detector with maximal bandwidth to 300 MHz and an optimal high-efficiency error reconciliation algorithm with processing speed up to 25 Mbps. To optimize the stability of the system, several key techniques are developed, which include a novel phase compensation algorithm, a polarization feedback algorithm, and related stability method on the modulators. Practically, our system is tested for more than 12 hours with a final secret key rate of 52 kbps over 50 km transmission distance, which is the highest rate so far in such distance. Our system may pave the road for practical broadband secure quantum communication with continuous variables in the commercial conditions.
Light as a central modulator of circadian rhythms, sleep and affect.
LeGates, Tara A; Fernandez, Diego C; Hattar, Samer
2014-07-01
Light has profoundly influenced the evolution of life on earth. As widely appreciated, light enables us to generate images of our environment. However, light - through intrinsically photosensitive retinal ganglion cells (ipRGCs) - also influences behaviours that are essential for our health and quality of life but are independent of image formation. These include the synchronization of the circadian clock to the solar day, tracking of seasonal changes and the regulation of sleep. Irregular light environments lead to problems in circadian rhythms and sleep, which eventually cause mood and learning deficits. Recently, it was found that irregular light can also directly affect mood and learning without producing major disruptions in circadian rhythms and sleep. In this Review, we discuss the indirect and direct influence of light on mood and learning, and provide a model for how light, the circadian clock and sleep interact to influence mood and cognitive functions.
Gatto, Cheryl L.; Broadie, Kendal
2009-01-01
Loss of fragile X mental retardation 1 (FMR1) gene function is the most common cause of inherited mental retardation and autism spectrum disorders, characterized by attention disorder, hyperactivity and disruption of circadian activity cycles. Pursuit of effective intervention strategies requires determining when the FMR1 product (FMRP) is required in the regulation of neuronal circuitry controlling these behaviors. In the well-characterized Drosophila disease model, loss of the highly conserved dFMRP causes circadian arrhythmicity and conspicuous abnormalities in the circadian clock circuitry. Here, a novel Sholl Analysis was used to quantify over-elaborated synaptic architecture in dfmr1-null small ventrolateral neurons (sLNvs), a key subset of clock neurons. The transgenic Gene-Switch system was employed to drive conditional neuronal dFMRP expression in the dfmr1-null mutant background in order to dissect temporal requirements within the clock circuit. Introduction of dFMRP during early brain development, including the stages of neurogenesis, neuronal fate specification and early pathfinding, provided no rescue of dfmr1 mutant phenotypes. Similarly, restoring normal dFMRP expression in the adult failed to restore circadian circuit architecture. In sharp contrast, supplying dFMRP during a transient window of very late brain development, wherein synaptogenesis and substantial subsequent synaptic reorganization (e.g. use-dependent pruning) occur, provided strong morphological rescue to reestablish normal sLNvs synaptic arbors. We conclude that dFMRP plays a developmentally restricted role in sculpting synaptic architecture in these neurons that cannot be compensated for by later reintroduction of the protein at maturity. PMID:19738924
Analysis of smear in high-resolution remote sensing satellites
NASA Astrophysics Data System (ADS)
Wahballah, Walid A.; Bazan, Taher M.; El-Tohamy, Fawzy; Fathy, Mahmoud
2016-10-01
High-resolution remote sensing satellites (HRRSS) that use time delay and integration (TDI) CCDs have the potential to introduce large amounts of image smear. Clocking and velocity mismatch smear are two of the key factors in inducing image smear. Clocking smear is caused by the discrete manner in which the charge is clocked in the TDI-CCDs. The relative motion between the HRRSS and the observed object obliges that the image motion velocity must be strictly synchronized with the velocity of the charge packet transfer (line rate) throughout the integration time. During imaging an object off-nadir, the image motion velocity changes resulting in asynchronization between the image velocity and the CCD's line rate. A Model for estimating the image motion velocity in HRRSS is derived. The influence of this velocity mismatch combined with clocking smear on the modulation transfer function (MTF) is investigated by using Matlab simulation. The analysis is performed for cross-track and along-track imaging with different satellite attitude angles and TDI steps. The results reveal that the velocity mismatch ratio and the number of TDI steps have a serious impact on the smear MTF; a velocity mismatch ratio of 2% degrades the MTFsmear by 32% at Nyquist frequency when the TDI steps change from 32 to 96. In addition, the results show that to achieve the requirement of MTFsmear >= 0.95 , for TDI steps of 16 and 64, the allowable roll angles are 13.7° and 6.85° and the permissible pitch angles are no more than 9.6° and 4.8°, respectively.
Golini, Rebeca S.; Delgado, Silvia M.; Navigatore Fonzo, Lorena S.; Ponce, Ivana T.; Lacoste, María G.; Anzulovich, Ana C.
2012-01-01
The circadian expression of clock and clock-controlled cognition-related genes in the hippocampus would be essential to achieve an optimal daily cognitive performance. There is some evidence that retinoid nuclear receptors (RARs and RXRs) can regulate circadian gene expression in different tissues. In this study, Holtzman male rats from control and vitamin A-deficient groups were sacrificed throughout a 24-h period and hippocampus samples were isolated every 4 or 5 h. RARα and RXRβ expression level was quantified and daily expression patterns of clock BMAL1, PER1, RORα and REVERB genes, RORα and REVERB proteins, as well as temporal expression of cognition-related RC3 and BDNF genes were determined in the hippocampus of the two groups of rats. Our results show significant daily variations of BMAL1, PER1, RORα and REVERB genes, RORα and REVERB proteins and, consequently, daily oscillating expression of RC3 and BDNF genes in the rat hippocampus. Vitamin A deficiency reduced RXRβ mRNA level as well as the amplitude of PER1, REVERB gene and REVERB protein rhythms, and phase-shifted the daily peaks of BMAL1 and RORα mRNA, RORα protein and RC3 and BDNF mRNA levels. Thus, nutritional factors, such as vitamin A and its derivatives the retinoids, might modulate daily patterns of BDNF and RC3 expression in the hippocampus and they could be essential to maintain an optimal daily performance at molecular level in this learning-and-memory-related brain area. PMID:22434687
Cocaine Modulates Mammalian Circadian Clock Timing by Decreasing Serotonin Transport in the SCN
Prosser, Rebecca A.; Stowie, Adam; Amicarelli, Mario; Nackenoff, Alex G.; Blakely, Randy D.; Glass, J. David
2014-01-01
Cocaine abuse disrupts reward and homeostatic processes through diverse processes, including those involved in circadian clock regulation. Recently we showed that cocaine administration to mice disrupts nocturnal photic phase resetting of the suprachiasmatic (SCN) circadian clock, whereas administration during the day induces non-photic phase shifts. Importantly, the same effects are seen when cocaine is applied to the SCN in vitro, where it blocks photic-like (glutamate-induced) phase shifts at night and induces phase advances during the day. Furthermore, our previous data suggest that cocaine acts in the SCN by enhancing serotonin (5-HT) signaling. For example, the in vitro actions of cocaine mimic those of 5-HT and are blocked by the 5-HT antagonist, metergoline, but not the dopamine receptor antagonist, fluphenazine. Although our data are consistent with cocaine acting through enhance 5-HT signaling, the nonselective actions of cocaine as an antagonist of monoamine transporters raises the question of whether inhibition of the 5-HT transporter (SERT) is key to its circadian effects. Here we investigate this issue using transgenic mice expressing a SERT that exhibits normal 5-HT recognition and transport but significantly reduced cocaine potency (SERT Met172). Circadian patterns of SCN behavioral and neuronal activity did not differ between WT and SERT Met172 mice, nor did they differ in the ability of the 5-HT1A,2,7 receptor agonist, 8-OH-DPAT to reset SCN clock phase, consistent with the normal SERT expression and activity in the transgenic mice. However, 1) cocaine administration does not induce phase advances when administered in vivo or in vitro in SERT Met172 mice; 2) cocaine does not block photic or glutamate-induced (phase shifts in SERT Met172 mice; and 3) cocaine does not induce long-term changes in free-running period in SERT Met172 mice. We conclude that SERT antagonism is required for the phase shifting of the SCN circadian clock induced by cocaine. PMID:24950119
Wang, Lingdi; Scott, Iain; Zhu, Lu; Wu, Kaiyuan; Han, Kim; Chen, Yong; Gucek, Marjan; Sack, Michael N
2017-09-12
The mitochondrial enriched GCN5-like 1 (GCN5L1) protein has been shown to modulate mitochondrial protein acetylation, mitochondrial content and mitochondrial retrograde signaling. Here we show that hepatic GCN5L1 ablation reduces fasting glucose levels and blunts hepatic gluconeogenesis without affecting systemic glucose tolerance. PEPCK and G6Pase transcript levels are downregulated in hepatocytes from GCN5L1 liver specific knockout mice and their upstream regulator, FoxO1 protein levels are decreased via proteasome-dependent degradation and via reactive oxygen species mediated ERK-1/2 phosphorylation. ERK inhibition restores FoxO1, gluconeogenic enzyme expression and glucose production. Reconstitution of mitochondrial-targeted GCN5L1 blunts mitochondrial ROS, ERK activation and increases FoxO1, gluconeogenic enzyme expression and hepatocyte glucose production. We suggest that mitochondrial GCN5L1 modulates post-translational control of FoxO1, regulates gluconeogenesis and controls metabolic pathways via mitochondrial ROS mediated ERK activation. Exploring mechanisms underpinning GCN5L1 mediated ROS signaling may expand our understanding of the role of mitochondria in gluconeogenesis control.Hepatic gluconeogenesis is tightly regulated at transcriptional level and is essential for survival during prolonged fasting. Here Wang et al. show that the mitochondrial enriched GCN5-like 1 protein controls hepatic glucose production by regulating FoxO1 protein levels via proteasome-dependent degradation and, in turn, gluconeogenic gene expression.
Montero, Sergio; Cuéllar, Ricardo; Lemus, Mónica; Avalos, Reyes; Ramírez, Gladys; de Álvarez-Buylla, Elena Roces
2012-01-01
Neuronal systems, which regulate energy intake, energy expenditure and endogenous glucose production, sense and respond to input from hormonal related signals that convey information from body energy availability. Carotid chemoreceptors (CChr) function as sensors for circulating glucose levels and contribute to glycemic counterregulatory responses. Brain-derived neurotrophic factor (BDNF) that plays an important role in the endocrine system to regulate glucose metabolism could play a role in hyperglycemic glucose reflex with brain glucose retention (BGR) evoked by anoxic CChr stimulation. Infusing BDNF into the nucleus tractus solitarii (NTS) before CChr stimulation, showed that this neurotrophin increased arterial glucose and BGR. In contrast, BDNF receptor (TrkB) antagonist (K252a) infusions in NTS resulted in a decrease in both glucose variables.
Steviol Glycosides Modulate Glucose Transport in Different Cell Types
Rizzo, Benedetta; Zambonin, Laura; Leoncini, Emanuela; Vieceli Dalla Sega, Francesco; Prata, Cecilia; Fiorentini, Diana; Hrelia, Silvana
2013-01-01
Extracts from Stevia rebaudiana Bertoni, a plant native to Central and South America, have been used as a sweetener since ancient times. Currently, Stevia extracts are largely used as a noncaloric high-potency biosweetener alternative to sugar, due to the growing incidence of type 2 diabetes mellitus, obesity, and metabolic disorders worldwide. Despite the large number of studies on Stevia and steviol glycosides in vivo, little is reported concerning the cellular and molecular mechanisms underpinning the beneficial effects on human health. The effect of four commercial Stevia extracts on glucose transport activity was evaluated in HL-60 human leukaemia and in SH-SY5Y human neuroblastoma cells. The extracts were able to enhance glucose uptake in both cellular lines, as efficiently as insulin. Our data suggest that steviol glycosides could act by modulating GLUT translocation through the PI3K/Akt pathway since treatments with both insulin and Stevia extracts increased the phosphorylation of PI3K and Akt. Furthermore, Stevia extracts were able to revert the effect of the reduction of glucose uptake caused by methylglyoxal, an inhibitor of the insulin receptor/PI3K/Akt pathway. These results corroborate the hypothesis that Stevia extracts could mimic insulin effects modulating PI3K/Akt pathway. PMID:24327825
Theparambil, Shefeeq M; Weber, Tobias; Schmälzle, Jana; Ruminot, Ivàn; Deitmer, Joachim W
2016-09-02
Glycolysis is the primary step for major energy production in the cell. There is strong evidence suggesting that glucose consumption and rate of glycolysis are highly modulated by cytosolic pH/[H(+)], but those can also be stimulated by an increase in the intracellular [HCO3 (-)]. Because proton and bicarbonate shift concomitantly, it remained unclear whether enhanced glucose consumption and glycolytic rate were mediated by the changes in intracellular [H(+)] or [HCO3 (-)]. We have asked whether glucose metabolism is enhanced by either a fall in intracellular [H(+)] or a rise in intracellular [HCO3 (-)], or by both, in mammalian astrocytes. We have recorded intracellular glucose in mouse astrocytes using a FRET-based nanosensor, while imposing different intracellular [H(+)] and [CO2]/[HCO3 (-)]. Glucose consumption and glycolytic rate were augmented by a fall in intracellular [H(+)], irrespective of a concomitant rise or fall in intracellular [HCO3 (-)]. Transport of HCO3 (-) into and out of astrocytes by the electrogenic sodium bicarbonate cotransporter (NBCe1) played a crucial role in causing changes in intracellular pH and [HCO3 (-)], but was not obligatory for the pH-dependent changes in glucose metabolism. Our results clearly show that it is the cytosolic pH that modulates glucose metabolism in cortical astrocytes, and possibly also in other cell types. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Kumar, S Mathan; Swaminathan, Kavitha; Clemens, Dahn L; Dey, Aparajita
2014-02-01
Gluthathione (GSH) is a major cellular antioxidant. The present study utilizing VL-17A cells exposed to chronic alcohol plus high glucose investigated the changes in oxidative stress, toxicity, and glyoxalase 1 activity as a detoxification pathway due to changes in GSH level through GSH supplementation with N-acetyl cysteine (NAC) or ursodeoxycholic acid (UDCA) and its depletion through buthionine sulfoximine (BSO) or diethyl maleate (DEM). Glyoxalase 1 plays an important role in detoxification of methylglyoxal which is formed as a precursor of advanced glycated end products formed due to high glucose mediated oxidative stress. Significant changes in glyoxalase 1 activity utilizing methylglyoxal or glyoxal as substrates occurred with NAC or UDCA or BSO or DEM supplementation in chronic alcohol plus high glucose treated VL-17A cells. NAC or UDCA administration in chronic alcohol plus high glucose treated VL-17A cells increased viability and decreased ROS levels, lipid peroxidation and 3-nitrotyrosine adduct formation. Similarly, GSH depletion with BSO or DEM had an opposite effect on the parameters in chronic alcohol plus high glucose treated VL-17A cells. In conclusion, modulation of GSH with NAC or UDCA or BSO or DEM leads to significant changes in oxidative stress, glyoxalase 1 enzyme activity and toxicity in chronic alcohol plus high glucose treated VL-17A cells.
Young, Christian D.; Lewis, Andrew S.; Rudolph, Michael C.; Ruehle, Marisa D.; Jackman, Matthew R.; Yun, Ui J.; Ilkun, Olesya; Pereira, Renata; Abel, E. Dale; Anderson, Steven M.
2011-01-01
Tumor cells exhibit an altered metabolism characterized by elevated aerobic glycolysis and lactate secretion which is supported by an increase in glucose transport and consumption. We hypothesized that reducing or eliminating the expression of the most prominently expressed glucose transporter(s) would decrease the amount of glucose available to breast cancer cells thereby decreasing their metabolic capacity and proliferative potential. Of the 12 GLUT family glucose transporters expressed in mice, GLUT1 was the most abundantly expressed at the RNA level in the mouse mammary tumors from MMTV-c-ErbB2 mice and cell lines examined. Reducing GLUT1 expression in mouse mammary tumor cell lines using shRNA or Cre/Lox technology reduced glucose transport, glucose consumption, lactate secretion and lipid synthesis in vitro without altering the concentration of ATP, as well as reduced growth on plastic and in soft agar. The growth of tumor cells with reduced GLUT1 expression was impaired when transplanted into the mammary fat pad of athymic nude mice in vivo. Overexpression of GLUT1 in a cell line with low levels of endogenous GLUT1 increased glucose transport in vitro and enhanced growth in nude mice in vivo as compared to the control cells with very low levels of GLUT1. These studies demonstrate that GLUT1 is the major glucose transporter in mouse mammary carcinoma models overexpressing ErbB2 or PyVMT and that modulation of the level of GLUT1 has an effect upon the growth of mouse mammary tumor cell lines in vivo. PMID:21826239
Heilbronner, Sarah R.; Meck, Warren. H.
2014-01-01
The goal of our study was to characterize the relationship between intertemporal choice and interval timing, including determining how drugs that modulate brain serotonin and dopamine levels influence these two processes. In Experiment 1, rats were tested on a standard 40-s peak-interval procedure following administration of fluoxetine (3, 5, or 8 mg/kg) or vehicle to assess basic effects on interval timing. In Experiment 2, rats were tested in a novel behavioral paradigm intended to simultaneously examine interval timing and impulsivity. Rats performed a variant of the bi-peak procedure using 10-s and 40-s target durations with an additional “defection” lever that provided the possibility of a small, immediate reward. Timing functions remained relatively intact, and ‘patience’ across subjects correlated with peak times, indicating a negative relationship between ‘patience’ and clock speed. We next examined the effects of fluoxetine (5 mg/kg), cocaine (15 mg/kg), or methamphetamine (1 mg/kg) on task performance. Fluoxetine reduced impulsivity as measured by defection time without corresponding changes in clock speed. In contrast, cocaine and methamphetamine both increased impulsivity and clock speed. Thus, variations in timing may mediate intertemporal choice via dopaminergic inputs. However, a separate, serotonergic system can affect intertemporal choice without affecting interval timing directly. PMID:24135569
Pickkers, P; Hoedemaekers, A; Netea, M G; de Galan, B E; Smits, P; van der Hoeven, J G; van Deuren, M
2004-05-01
Recent trials investigating the effects of strict glucose regulation in critically ill patients have shown impressive reductions in morbidity and mortality. Although the literature focuses on the possible toxic effects of high blood glucose levels, the underlying mechanism for this improvement is unclear. We hypothesise that strict glucose regulation results in modulation of cytokine production, leading to a shift towards a more anti-inflammatory pattern. This shift in the cytokine balance accounts for the reduction in morbidity and mortality. To support our hypothesis, effects of glucose and insulin on cytokine release and effects of glucose, insulin, and cytokines on host defence, cardiac function and coagulation will be reviewed.
Yi, Cong; Tong, Jingjing; Lu, Puzhong; Wang, Yizheng; Zhang, Jinxie; Sun, Chen; Yuan, Kangning; Xue, Renyu; Zou, Bing; Li, Nianzhong; Xiao, Shuhua; Dai, Chong; Huang, Yuwei; Xu, Liling; Li, Lin; Chen, She; Miao, Di; Deng, Haiteng; Li, Hongliang; Yu, Li
2017-04-10
Autophagy is essential for maintaining glucose homeostasis, but the mechanism by which energy deprivation activates autophagy is not fully understood. We show that Mec1/ATR, a member of the DNA damage response pathway, is essential for glucose starvation-induced autophagy. Mec1, Atg13, Atg1, and the energy-sensing kinase Snf1 are recruited to mitochondria shortly after glucose starvation. Mec1 is recruited through the adaptor protein Ggc1. Snf1 phosphorylates Mec1 on the mitochondrial surface, leading to recruitment of Atg1 to mitochondria. Furthermore, the Snf1-mediated Mec1 phosphorylation and mitochondrial recruitment of Atg1 are essential for maintaining mitochondrial respiration during glucose starvation, and active mitochondrial respiration is required for energy deprivation-activated autophagy. Thus, formation of a Snf1-Mec1-Atg1 module on mitochondria governs energy deprivation-induced autophagy by regulating mitochondrial respiration. Copyright © 2017 Elsevier Inc. All rights reserved.
Selective Inhibition of FOXO1 Activator/Repressor Balance Modulates Hepatic Glucose Handling.
Langlet, Fanny; Haeusler, Rebecca A; Lindén, Daniel; Ericson, Elke; Norris, Tyrrell; Johansson, Anders; Cook, Joshua R; Aizawa, Kumiko; Wang, Ling; Buettner, Christoph; Accili, Domenico
2017-11-02
Insulin resistance is a hallmark of diabetes and an unmet clinical need. Insulin inhibits hepatic glucose production and promotes lipogenesis by suppressing FOXO1-dependent activation of G6pase and inhibition of glucokinase, respectively. The tight coupling of these events poses a dual conundrum: mechanistically, as the FOXO1 corepressor of glucokinase is unknown, and clinically, as inhibition of glucose production is predicted to increase lipogenesis. Here, we report that SIN3A is the insulin-sensitive FOXO1 corepressor of glucokinase. Genetic ablation of SIN3A abolishes nutrient regulation of glucokinase without affecting other FOXO1 target genes and lowers glycemia without concurrent steatosis. To extend this work, we executed a small-molecule screen and discovered selective inhibitors of FOXO-dependent glucose production devoid of lipogenic activity in hepatocytes. In addition to identifying a novel mode of insulin action, these data raise the possibility of developing selective modulators of unliganded transcription factors to dial out adverse effects of insulin sensitizers. Copyright © 2017 Elsevier Inc. All rights reserved.
Lammers, Nicolette M; Sondermeijer, Brigitte M; Twickler, Th B Marcel; de Bie, Rob M; Ackermans, Mariëtte T; Fliers, Eric; Schuurman, P Richard; La Fleur, Susanne E; Serlie, Mireille J
2014-01-01
Animal studies have shown that central dopamine signaling influences glucose metabolism. As a first step to show this association in an experimental setting in humans, we studied whether deep brain stimulation (DBS) of the subthalamic nucleus (STN), which modulates the basal ganglia circuitry, alters basal endogenous glucose production (EGP) or insulin sensitivity in patients with Parkinson's disease (PD). We studied 8 patients with PD treated with DBS STN, in the basal state and during a hyperinsulinemic euglycemic clamp using a stable glucose isotope, in the stimulated and non-stimulated condition. We measured EGP, hepatic insulin sensitivity, peripheral insulin sensitivity (Rd), resting energy expenditure (REE), glucoregulatory hormones, and Parkinson symptoms, using the Unified Parkinson's Disease Rating Scale (UPDRS). Basal plasma glucose and EGP did not differ between the stimulated and non-stimulated condition. Hepatic insulin sensitivity was similar in both conditions and there were no significant differences in Rd and plasma glucoregulatory hormones between DBS on and DBS off. UPDRS was significantly higher in the non-stimulated condition. DBS of the STN in patients with PD does not influence basal EGP or insulin sensitivity. These results suggest that acute modulation of the motor basal ganglia circuitry does not affect glucose metabolism in humans.
Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes
Fuente-Martín, Esther; García-Cáceres, Cristina; Argente-Arizón, Pilar; Díaz, Francisca; Granado, Miriam; Freire-Regatillo, Alejandra; Castro-González, David; Ceballos, María L.; Frago, Laura M.; Dickson, Suzanne L.; Argente, Jesús; Chowen, Julie A.
2016-01-01
Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons. PMID:27026049
Satoh, Takashi; Igarashi, Masaki; Yamada, Shogo; Takahashi, Natsuko; Watanabe, Kazuhiro
2015-02-23
It is said that black tea is effective against type 2 diabetes mellitus because it can help modulate postprandial hyperglycemia. However, the mechanism underlying its therapeutic and preventive effects on type 2 diabetes mellitus is unclear. In this study, we focused on the effect of black tea on the carbohydrate digestion and absorption process in the gastrointestinal tract. We examined whether black tea can modulate postprandial hyperglycemia. The freeze-dried powder of the aqueous extract of black tea leaves (JAT) was used for in vitro studies of α-amylase activity, α-glucosidase activity, and glucose uptake by glucose transporters in Caco-2 cells; ex vivo studies of small intestinal α-glucosidase activity; and in vivo studies of oral sugar tolerance in GK rats, an animal model of nonobese type 2 diabetes mellitus. Half maximal inhibitory concentration values indicated that JAT significantly reduced α-glucosidase activity, but weakly reduced α-amylase activity. Kinetic studies of rat small intestinal α-glucosidase activity revealed that the combination of JAT and the α-glucosidase inhibitor, acarbose, showed a mixed-type inhibition. JAT had no effect on the uptake of 2'-deoxy-d-glucose by glucose transporter 2 (GLUT2) and the uptake of α-methyl-d-glucose by sodium-dependent glucose transporter 1 (SGLT1). In the oral sucrose tolerance test in GK rats, JAT reduced plasma glucose levels in a dose-dependent manner compared with the control group. The hypoglycemic action of JAT was also confirmed: JAT, in combination with acarbose, produced a synergistic inhibitory effect on plasma glucose levels in vivo. In contrast to the oral sucrose tolerance test, JAT showed no effect in the oral glucose tolerance test. JAT was demonstrated to inhibit the degradation of disaccharides into monosaccharides by α-glucosidase in the small intestine. Thereby indirectly preventing the absorption of the dietary source of glucose mediated by SGLT1 and GLUT2 transporters localized at the apical side of enterocytes in the small intestine. The results indicate that black tea could be useful as a functional food in the dietary therapy for borderline type 2 diabetes mellitus that could modulate postprandial hyperglycemia. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Design of an MR image processing module on an FPGA chip.
Li, Limin; Wyrwicz, Alice M
2015-06-01
We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128×128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments. Copyright © 2015 Elsevier Inc. All rights reserved.
McIsaac, W; Ferguson, A V
2017-04-01
The hypothalamic paraventricular nucleus (PVN) is critical for normal energy balance and has been shown to contain high levels of both brain-derived neurotrophic factor (BDNF) and tropomyosin-receptor kinase B mRNA. Microinjections of BDNF into the PVN increase energy expenditure, suggesting that BDNF plays an important role in energy homeostasis through direct actions in this nucleus. The present study aimed to examine the postsynaptic effects of BDNF on the membrane potential of PVN neurones, and also to determine whether extracellular glucose concentrations modulated these effects. We used hypothalamic PVN slices from male Sprague-Dawley rats to perform whole cell current-clamp recordings from PVN neurones. BDNF was bath applied at a concentration of 2 nmol L -1 and the effects on membrane potential determined. BDNF caused depolarisations in 54% of neurones (n=25; mean±SEM, 8.9±1.2 mV) and hyperpolarisations in 23% (n=11; -6.7±1.4 mV), whereas the remaining cells were unaffected. These effects were maintained in the presence of tetrodotoxin (n=9; 56% depolarised, 22% hyperpolarised, 22% nonresponders), or the GABA a antagonist bicuculline (n=12; 42% depolarised, 17% hyperpolarised, 41% nonresponders), supporting the conclusion that these effects on membrane potential were postsynaptic. Current-clamp recordings from PVN neurones next examined the effects of BDNF on these neurones at varying extracellular glucose concentrations. Larger proportions of PVN neurones hyperpolarised in response to BDNF as the glucose concentrations decreased [10 mmol L -1 glucose 23% (n=11) of neurones hyperpolarised, whereas, at 0.2 mmol L -1 glucose, 71% showed hyperpolarising effects (n=12)]. Our findings reveal that BDNF has direct GABA A independent effects on PVN neurones, which are modulated by local glucose concentrations. The latter observation further emphasises the critical importance of using physiologically relevant conditions in an investigation of the central pathways involved in the regulation of energy homeostasis. © 2017 British Society for Neuroendocrinology.
A link between hepatic glucose production and peripheral energy metabolism via hepatokines
Abdul-Wahed, Aya; Gautier-Stein, Amandine; Casteras, Sylvie; Soty, Maud; Roussel, Damien; Romestaing, Caroline; Guillou, Hervé; Tourette, Jean-André; Pleche, Nicolas; Zitoun, Carine; Gri, Blandine; Sardella, Anne; Rajas, Fabienne; Mithieux, Gilles
2014-01-01
Type 2 diabetes is characterized by a deterioration of glucose tolerance, which associates insulin resistance of glucose uptake by peripheral tissues and increased endogenous glucose production. Here we report that the specific suppression of hepatic glucose production positively modulates whole-body glucose and energy metabolism. We used mice deficient in liver glucose-6 phosphatase that is mandatory for endogenous glucose production. When they were fed a high fat/high sucrose diet, they resisted the development of diabetes and obesity due to the activation of peripheral glucose metabolism and thermogenesis. This was linked to the secretion of hepatic hormones like fibroblast growth factor 21 and angiopoietin-like factor 6. Interestingly, the deletion of hepatic glucose-6 phosphatase in previously obese and insulin-resistant mice resulted in the rapid restoration of glucose and body weight controls. Therefore, hepatic glucose production is an essential lever for the control of whole-body energy metabolism during the development of obesity and diabetes. PMID:25061558
A link between hepatic glucose production and peripheral energy metabolism via hepatokines.
Abdul-Wahed, Aya; Gautier-Stein, Amandine; Casteras, Sylvie; Soty, Maud; Roussel, Damien; Romestaing, Caroline; Guillou, Hervé; Tourette, Jean-André; Pleche, Nicolas; Zitoun, Carine; Gri, Blandine; Sardella, Anne; Rajas, Fabienne; Mithieux, Gilles
2014-08-01
Type 2 diabetes is characterized by a deterioration of glucose tolerance, which associates insulin resistance of glucose uptake by peripheral tissues and increased endogenous glucose production. Here we report that the specific suppression of hepatic glucose production positively modulates whole-body glucose and energy metabolism. We used mice deficient in liver glucose-6 phosphatase that is mandatory for endogenous glucose production. When they were fed a high fat/high sucrose diet, they resisted the development of diabetes and obesity due to the activation of peripheral glucose metabolism and thermogenesis. This was linked to the secretion of hepatic hormones like fibroblast growth factor 21 and angiopoietin-like factor 6. Interestingly, the deletion of hepatic glucose-6 phosphatase in previously obese and insulin-resistant mice resulted in the rapid restoration of glucose and body weight controls. Therefore, hepatic glucose production is an essential lever for the control of whole-body energy metabolism during the development of obesity and diabetes.
Peroxisome Proliferators-Activated Receptor (PPAR) Modulators and Metabolic Disorders
Cho, Min-Chul; Lee, Kyoung; Paik, Sang-Gi; Yoon, Do-Young
2008-01-01
Overweight and obesity lead to an increased risk for metabolic disorders such as impaired glucose regulation/insulin resistance, dyslipidemia, and hypertension. Several molecular drug targets with potential to prevent or treat metabolic disorders have been revealed. Interestingly, the activation of peroxisome proliferator-activated receptor (PPAR), which belongs to the nuclear receptor superfamily, has many beneficial clinical effects. PPAR directly modulates gene expression by binding to a specific ligand. All PPAR subtypes (α, γ, and σ) are involved in glucose metabolism, lipid metabolism, and energy balance. PPAR agonists play an important role in therapeutic aspects of metabolic disorders. However, undesired effects of the existing PPAR agonists have been reported. A great deal of recent research has focused on the discovery of new PPAR modulators with more beneficial effects and more safety without producing undesired side effects. Herein, we briefly review the roles of PPAR in metabolic disorders, the effects of PPAR modulators in metabolic disorders, and the technologies with which to discover new PPAR modulators. PMID:18566691
Hypothalamic pathogenesis of type 2 diabetes.
Koshiyama, Hiroyuki; Hamamoto, Yoshiyuki; Honjo, Sachiko; Wada, Yoshiharu; Lkeda, Hiroki
2006-01-01
There have recently been increasing experimental and clinical evidences suggesting that hypothalamic dysregulation may be one of the underlying mechanisms of abnormal glucose metabolism. First, increased hypothalamic-pituitary-adrenal axis activity induced by uncontrollable excess stress may cause diabetes mellitus as well as dyslipidemia, visceral obesity, and osteoporosis with some resemblance to Cushing's disease. Second, several molecules are known to be expressed both in pancreas and hypothalamus; adenosine triphosphate-sensitive potassium channels, malonyl-CoA, glucokinase, and AMP-activated protein kinase. Those molecules appear to form an integrated hypothalamic system, which may sense hypothalamic fuel status, especially glucose level, and inhibit action of insulin on hepatic gluconeogenesis, thereby forming a brain-liver circuit. Third, hypothalamic resistance to insulin as an adiposity signal may be involved in pathogenesis of peripheral insulin resistance. The results with mice with a neuron-specific disruption of the insulin receptor gene or those lacking insulin receptor substrate 2 in hypothalamus supported this possibility. Finally, it has very recently been suggested that dysregulation of clock genes in hypothalamus may cause abnormal glucose metabolism. Taken together, it is plausible that some hypothalamic abnormality may underlie at least some portion of type 2 diabetes or insulin resistance in humans, and this viewpoint of hypothalamic pathogenesis of type 2 diabetes may lead to the development of new drugs for type 2 diabetes.
The Automatic Meteorological Station System AN/TMQ-30 ( ).
1982-08-01
network, the station electronics initiate the above operating sequence. 3.2.1 Meteorological Parameters Vindspeed. Windspeed measurements are made over a...much like a pocket calculator. Provision has been made to enable the operator to set or read the clock of the master station and to * set, modify, or...conditions is occuring during a regular cycle period. A normal report is not made under these conditions. Control is passed to the read data module under
Mishra, Bhuwaneshwar S; Singh, Manjul; Aggrawal, Priyanka; Laxmi, Ashverya
2009-01-01
Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62%) genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35%) even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient conditions.
Contribution of Glucose Transport to the Control of the Glycolytic Flux in Trypanosoma brucei
NASA Astrophysics Data System (ADS)
Bakker, Barbara M.; Walsh, Michael C.; Ter Kuile, Benno H.; Mensonides, Femke I. C.; Michels, Paul A. M.; Opperdoes, Fred R.; Westerhoff, Hans V.
1999-08-01
The rate of glucose transport across the plasma membrane of the bloodstream form of Trypanosoma brucei was modulated by titration of the hexose transporter with the inhibitor phloretin, and the effect on the glycolytic flux was measured. A rapid glucose uptake assay was developed to measure the transport activity independently of the glycolytic flux. Phloretin proved a competitive inhibitor. When the effect of the intracellular glucose concentration on the inhibition was taken into account, the flux control coefficient of the glucose transporter was between 0.3 and 0.5 at 5 mM glucose. Because the flux control coefficients of all steps in a metabolic pathway sum to 1, this result proves that glucose transport is not the rate-limiting step of trypanosome glycolysis. Under physiological conditions, transport shares the control with other steps. At glucose concentrations much lower than physiological, the glucose carrier assumed all control, in close agreement with model predictions.
2003-01-16
KENNEDY SPACE CENTER, FLA. - A crowd by the countdown clock watches as Space Shuttle Columbia roars toward space on mission STS-107. Following a flawless and uneventful countdown, liftoff occurred on-time at 10:39 a.m. EST. The 16-day research mission will include FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Landing is scheduled at about 8:53 a.m. EST on Saturday, Feb. 1. This mission is the first Shuttle mission of 2003. Mission STS-107 is the 28th flight of the orbiter Columbia and the 113th flight overall in NASA's Space Shuttle program.
NASA Technical Reports Server (NTRS)
Hall, William A.; Gilbert, John
1990-01-01
Electronic metronome paces users through wide range of exercise routines. Conceptual programmable cadence timer provides rhythmic aural and visual cues. Timer automatically changes cadence according to program entered by the user. It also functions as clock, stopwatch, or alarm. Modular pacer operated as single unit or as two units. With audiovisual module moved away from base module, user concentrates on exercise cues without distraction from information appearing on the liquid-crystal display. Variety of uses in rehabilitative medicine, experimental medicine, sports, and gymnastics. Used in intermittent positive-pressure breathing treatment, in which patient must rhythmically inhale and retain medication delivered under positive pressure; and in incentive spirometer treatment, in which patient must inhale maximally at regular intervals.
Real-time FPGA architectures for computer vision
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel; Torres-Huitzil, Cesar
2000-03-01
This paper presents an architecture for real-time generic convolution of a mask and an image. The architecture is intended for fast low level image processing. The FPGA-based architecture takes advantage of the availability of registers in FPGAs to implement an efficient and compact module to process the convolutions. The architecture is designed to minimize the number of accesses to the image memory and is based on parallel modules with internal pipeline operation in order to improve its performance. The architecture is prototyped in a FPGA, but it can be implemented on a dedicated VLSI to reach higher clock frequencies. Complexity issues, FPGA resources utilization, FPGA limitations, and real time performance are discussed. Some results are presented and discussed.
Functional Evolution of a cis-Regulatory Module
Palsson, Arnar; Alekseeva, Elena; Bergman, Casey M; Nathan, Janaki; Kreitman, Martin
2005-01-01
Lack of knowledge about how regulatory regions evolve in relation to their structure–function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module—the even-skipped stripe 2 enhancer—from four Drosophila species. The evolution of this enhancer is non-clock-like, with important functional differences between closely related species and functional convergence between distantly related species. Functional divergence is attributable to differences in activation levels rather than spatiotemporal control of gene expression. Our findings have implications for understanding enhancer structure–function, mechanisms of speciation and computational identification of regulatory modules. PMID:15757364
Zhao, Li; Chen, Yi; Xia, Fangzhen; Abudukerimu, Buatikamu; Zhang, Wen; Guo, Yuyu; Wang, Ningjian; Lu, Yingli
2018-01-01
In addition to improving glucose metabolism, liraglutide, a glucagon-like peptide-1 receptor agonist, has weight-loss effects. The underlying mechanisms are not completely understood. This study was performed to explore whether liraglutide could lower weight by modulating the composition of the gut microbiota in simple obese and diabetic obese rats. In our study, Wistar and Goto-Kakizaki (GK) rats were randomly treated with liraglutide or normal saline for 12 weeks. The biochemical parameters and metabolic hormones were measured. Hepatic glucose production and lipid metabolism were also assessed with isotope tracers. Changes in gut microbiota were analyzed by 16S rRNA gene sequencing. Both glucose and lipid metabolism were significantly improved by liraglutide. Liraglutide lowered body weight independent of glycemia status. The abundance and diversity of gut microbiota were considerably decreased by liraglutide. Liraglutide also decreased obesity-related microbial phenotypes and increased lean-related phenotypes. In conclusion, liraglutide can prevent weight gain by modulating the gut microbiota composition in both simple obese and diabetic obese subjects.
l-Serine Enhances Light-Induced Circadian Phase Resetting in Mice and Humans.
Yasuo, Shinobu; Iwamoto, Ayaka; Lee, Sang-Il; Ochiai, Shotaro; Hitachi, Rina; Shibata, Satomi; Uotsu, Nobuo; Tarumizu, Chie; Matsuoka, Sayuri; Furuse, Mitsuhiro; Higuchi, Shigekazu
2017-12-01
Background: The circadian clock is modulated by the timing of ingestion or food composition, but the effects of specific nutrients are poorly understood. Objective: We aimed to identify the amino acids that modulate the circadian clock and reset the light-induced circadian phase in mice and humans. Methods: Male CBA/N mice were orally administered 1 of 20 l-amino acids, and the circadian and light-induced phase shifts of wheel-running activity were analyzed. Antagonists of several neurotransmitter pathways were injected before l-serine administration, and light-induced phase shifts were analyzed. In addition, the effect of l-serine on the light-induced phase advance was investigated in healthy male students (mean ± SD age 22.2 ± 1.8 y) by using dim-light melatonin onset (DLMO) determined by saliva samples as an index of the circadian phase. Results: l-Serine administration enhanced light-induced phase shifts in mice (1.86-fold; P < 0.05). Both l-serine and its metabolite d-serine, a coagonist of N -methyl-d-aspartic acid (NMDA) receptors, exerted this effect, but d-serine concentrations in the hypothalamus did not increase after l-serine administration. The effect of l-serine was blocked by picrotoxin, an antagonist of γ-aminobutyric acid A receptors, but not by MK801, an antagonist of NMDA receptors. l-Serine administration altered the long-term expression patterns of clock genes in the suprachiasmatic nuclei. After advancing the light-dark cycle by 6 h, l-serine administration slightly accelerated re-entrainment to the shifted cycle. In humans, l-serine ingestion before bedtime induced significantly larger phase advances of DLMO after bright-light exposure during the morning (means ± SEMs-l-serine: 25.9 ± 6.6 min; placebo: 12.1 ± 7.0 min; P < 0.05). Conclusion: These results suggest that l-serine enhances light-induced phase resetting in mice and humans, and it may be useful for treating circadian disturbances. © 2017 American Society for Nutrition.
Trinchese, Giovanna; Cavaliere, Gina; De Filippo, Chiara; Aceto, Serena; Prisco, Marina; Chun, Jong Tai; Penna, Eduardo; Negri, Rossella; Muredda, Laura; Demurtas, Andrea; Banni, Sebastiano; Berni-Canani, Roberto; Mattace Raso, Giuseppina; Calignano, Antonio; Meli, Rosaria; Greco, Luigi; Crispino, Marianna; Mollica, Maria P
2018-01-01
Scope: Milk from various species differs in nutrient composition. In particular, human milk (HM) and donkey milk (DM) are characterized by a relative high level of triacylglycerol enriched in palmitic acid in sn-2 position. These dietary fats seem to exert beneficial nutritional properties through N-acylethanolamine tissue modulation. The aim of this study is to compare the effects of cow milk (CM), DM, and HM on inflammation and glucose and lipid metabolism, focusing on mitochondrial function, efficiency, and dynamics in skeletal muscle, which is the major determinant of resting metabolic rate. Moreover, we also evaluated the levels of endocannabinoids and N-acylethanolamines in liver and skeletal muscle, since tissue fatty acid profiles can be modulated by nutrient intervention. Procedures: To this aim, rats were fed with CM, DM, or HM for 4 weeks. Then, glucose tolerance and insulin resistance were analyzed. Pro-inflammatory and anti-inflammatory cytokines were evaluated in serum and skeletal muscle. Skeletal muscle was also processed to estimate mitochondrial function, efficiency, and dynamics, oxidative stress, and antioxidant/detoxifying enzyme activities. Fatty acid profiles, endocannabinoids, and N-acylethanolamine congeners were determined in liver and skeletal muscle tissue. Results: We demonstrated that DM or HM administration reducing inflammation status, improves glucose disposal and insulin resistance and reduces lipid accumulation in skeletal muscle. Moreover, HM or DM administration increases redox status, and mitochondrial uncoupling, affecting mitochondrial dynamics in the skeletal muscle. Interestingly, HM and DM supplementation increase liver and muscle levels of the N-oleoylethanolamine (OEA), a key regulator of lipid metabolism and inflammation. Conclusions: HM and DM have a healthy nutritional effect, acting on inflammatory factors and glucose and lipid metabolism. This beneficial effect is associated to a modulation of mitochondrial function, efficiency, and dynamics and to an increase of OEA levels in skeletal muscle.
Trinchese, Giovanna; Cavaliere, Gina; De Filippo, Chiara; Aceto, Serena; Prisco, Marina; Chun, Jong Tai; Penna, Eduardo; Negri, Rossella; Muredda, Laura; Demurtas, Andrea; Banni, Sebastiano; Berni-Canani, Roberto; Mattace Raso, Giuseppina; Calignano, Antonio; Meli, Rosaria; Greco, Luigi; Crispino, Marianna; Mollica, Maria P.
2018-01-01
Scope: Milk from various species differs in nutrient composition. In particular, human milk (HM) and donkey milk (DM) are characterized by a relative high level of triacylglycerol enriched in palmitic acid in sn-2 position. These dietary fats seem to exert beneficial nutritional properties through N-acylethanolamine tissue modulation. The aim of this study is to compare the effects of cow milk (CM), DM, and HM on inflammation and glucose and lipid metabolism, focusing on mitochondrial function, efficiency, and dynamics in skeletal muscle, which is the major determinant of resting metabolic rate. Moreover, we also evaluated the levels of endocannabinoids and N-acylethanolamines in liver and skeletal muscle, since tissue fatty acid profiles can be modulated by nutrient intervention. Procedures: To this aim, rats were fed with CM, DM, or HM for 4 weeks. Then, glucose tolerance and insulin resistance were analyzed. Pro-inflammatory and anti-inflammatory cytokines were evaluated in serum and skeletal muscle. Skeletal muscle was also processed to estimate mitochondrial function, efficiency, and dynamics, oxidative stress, and antioxidant/detoxifying enzyme activities. Fatty acid profiles, endocannabinoids, and N-acylethanolamine congeners were determined in liver and skeletal muscle tissue. Results: We demonstrated that DM or HM administration reducing inflammation status, improves glucose disposal and insulin resistance and reduces lipid accumulation in skeletal muscle. Moreover, HM or DM administration increases redox status, and mitochondrial uncoupling, affecting mitochondrial dynamics in the skeletal muscle. Interestingly, HM and DM supplementation increase liver and muscle levels of the N-oleoylethanolamine (OEA), a key regulator of lipid metabolism and inflammation. Conclusions: HM and DM have a healthy nutritional effect, acting on inflammatory factors and glucose and lipid metabolism. This beneficial effect is associated to a modulation of mitochondrial function, efficiency, and dynamics and to an increase of OEA levels in skeletal muscle. PMID:29472867
Homenko, Ju G; Susin, D S; Kataeva, G V; Irishina, Ju A; Zavolokov, I G
To study the relationship between early cognitive impairment symptoms and cerebral glucose metabolism in different brain regions (according to the positron emission tomography (PET) data) in Parkinson's disease (PD) in order to increase the diagnostic and treatment efficacy. Two groups of patients with PD (stage I-III), including 11 patients without cognitive disorders and 13 with mild cognitive impairment (MCI), were examined. The control group included 10 age-matched people with normal cognition. To evaluate cognitive state, the Mini mental state examination (MMSE), the Frontal assessment battery (FAB) and the 'clock drawing test' were used. The regional cerebral glucose metabolism rate (CMRglu) was assessed using PET with 18F-fluorodeoxyglucose (FDG). In PD patients, CMRglu were decreased in the frontal (Brodmann areas (BA) 9, 10, 11, 46, 47), occipital (BA 19) and parietal (BA 39), temporal (BA 20, 37), and cingulate cortex (BA 32) compared to the control group. Cerebral glucose metabolism was decreased in the frontal (BA 8, 9, 10, 45, 46, 47), parietal (BA 7, 39, 40) and cingulate cortex (BA 23, 24, 31, 32) in the group of PD patients with MCI compared to PD patients with normal cognition. Hypometabolism in BA 7, 8, 23, 24, 31, 40 was revealed only in comparison of PD and PD-MCI groups, and did not appear in case of comparison of cognitively normal PD patients with the control group. It is possible to suggest that the mentioned above brain areas were associated with cognitive impairment. The revealed glucose hypometabolism pattern possibly has the diagnostic value for the early and preclinical diagnosis of MCI in PD and control of treatment efficacy.
NASA Astrophysics Data System (ADS)
Garvey, W. Timothy; Huecksteadt, Thomas P.; Birnbaum, Morris J.
1989-07-01
A prominent feature of diabetes mellitus is the inability of insulin to appropriately increase the transport of glucose into target tissues. The contributions of different glucose transport proteins to insulin resistance in rats with streptozotocin-induced diabetes was evaluated. A glucose transporter messenger RNA and its cognate protein that are exclusively expressed in muscle and adipose tissue were specifically depleted in diabetic animals, and these effects were reversed after insulin therapy; a different glucose transporter and its messenger RNA that exhibit a less restricted tissue distribution were not specifically modulated in this way. Depletion of the muscle- and adipose-specific glucose transporter species correlates with and may account for the major portion of cellular insulin resistance in diabetes in these animals.
Near-critical GLUT1 and Neurodegeneration.
Barros, L Felipe; San Martín, Alejandro; Ruminot, Ivan; Sandoval, Pamela Y; Fernández-Moncada, Ignacio; Baeza-Lehnert, Felipe; Arce-Molina, Robinson; Contreras-Baeza, Yasna; Cortés-Molina, Francisca; Galaz, Alex; Alegría, Karin
2017-11-01
Recent articles have drawn renewed attention to the housekeeping glucose transporter GLUT1 and its possible involvement in neurodegenerative diseases. Here we provide an updated analysis of brain glucose transport and the cellular mechanisms involved in its acute modulation during synaptic activity. We discuss how the architecture of the blood-brain barrier and the low concentration of glucose within neurons combine to make endothelial/glial GLUT1 the master controller of neuronal glucose utilization, while the regulatory role of the neuronal glucose transporter GLUT3 emerges as secondary. The near-critical condition of glucose dynamics in the brain suggests that subtle deficits in GLUT1 function or its activity-dependent control by neurons may contribute to neurodegeneration. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Novel role of insulin in the regulation of glucose excretion by mourning doves (Zenaida macroura).
Sweazea, Karen L; Braun, Eldon J; Sparr, Richard
2017-06-01
In mammals, insulin primarily lowers plasma glucose (P Glu ) by increasing its uptake into tissues. Studies have also shown that insulin lowers P Glu in mammals by modulating glomerular filtration rate (GFR). Birds have naturally high P Glu and, although insulin administration significantly decreases glucose concentrations, birds are resistant to insulin-mediated glucose uptake into tissues. Since prior work has not examined the effects of insulin on GFR in birds, the purpose of the present study was to assess whether insulin can augment renal glucose excretion and thereby lower P Glu . Therefore, the hypothesis of the present study was that insulin lowers P Glu in birds by augmenting GFR, as estimated by inulin clearance (C In ). Adult mourning doves (Zenaida macroura) were used as experimental animals. Doves were anesthetized and the brachial vein was cannulated for administration of [ 14 C]-inulin and insulin and the brachial artery was cannulated for blood collections. Ureteral urine was collected via a catheter inserted into the cloaca. Ten minutes following administration of exogenous insulin (400μg/kg body mass, i.v.) plasma glucose was significantly decreased (p=0.0003). Twenty minutes following insulin administration, increases in GFR (p=0.016) were observed along with decreases in urine glucose concentrations (p=0.008), glucose excretion (p=0.028), and the fractional excretion of glucose (p=0.003). Urine flow rate (p=0.051) also tended to increase after administration of insulin. These data demonstrate a significant role for insulin in modulating GFR in mourning doves, which may in part explain the lower P Glu measured following insulin administration. Copyright © 2017 Elsevier GmbH. All rights reserved.
Forman, Davis A.; Richards, Mark; Forman, Garrick N.; Holmes, Michael W. R.; Power, Kevin E.
2016-01-01
The purpose of this study was to examine the influence of neutral and pronated handgrip positions on corticospinal excitability to the biceps brachii during arm cycling. Corticospinal and spinal excitability were assessed using motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation (TMS) and cervicomedullary-evoked potentials (CMEPs) elicited via transmastoid electrical stimulation (TMES), respectively. Participants were seated upright in front on arm cycle ergometer. Responses were recorded from the biceps brachii at two different crank positions (6 and 12 o’clock positions relative to a clock face) while arm cycling with neutral and pronated handgrip positions. Responses were also elicited during tonic elbow flexion to compare/contrast the results to a non-rhythmic motor output. MEP and CMEP amplitudes were significantly larger at the 6 o’clock position while arm cycling with a neutral handgrip position compared to pronated (45.6 and 29.9%, respectively). There were no differences in MEP and CMEP amplitudes at the 12 o’clock position for either handgrip position. For the tonic contractions, MEPs were significantly larger with a neutral vs. pronated handgrip position (32.6% greater) while there were no difference in CMEPs. Corticospinal excitability was higher with a neutral handgrip position for both arm cycling and tonic elbow flexion. While spinal excitability was also higher with a neutral handgrip position during arm cycling, no difference was observed during tonic elbow flexion. These findings suggest that not only is corticospinal excitability to the biceps brachii modulated at both the supraspinal and spinal level, but that it is influenced differently between rhythmic arm cycling and tonic elbow flexion. PMID:27826236
Górska-Andrzejak, Jolanta; Chwastek, Elżbieta M; Walkowicz, Lucyna; Witek, Kacper
2018-01-01
We show that the level of the core protein of the circadian clock Period (PER) expressed by glial peripheral oscillators depends on their location in the Drosophila optic lobe. It appears to be controlled by the ventral lateral neurons (LNvs) that release the circadian neurotransmitter Pigment Dispersing Factor (PDF). We demonstrate that glial cells of the distal medulla neuropil (dMnGl) that lie in the vicinity of the PDF-releasing terminals of the LNvs possess receptors for PDF (PDFRs) and express PER at significantly higher level than other types of glia. Surprisingly, the amplitude of PER molecular oscillations in dMnGl is increased twofold in PDF-free environment, that is in Pdf 0 mutants. The Pdf 0 mutants also reveal an increased level of glia-specific protein REPO in dMnGl. The photoreceptors of the compound eye (R-cells) of the PDF-null flies, on the other hand, exhibit de-synchrony of PER molecular oscillations, which manifests itself as increased variability of PER-specific immunofluorescence among the R-cells. Moreover, the daily pattern of expression of the presynaptic protein Bruchpilot (BRP) in the lamina terminals of the R-cells is changed in Pdf 0 mutant. Considering that PDFRs are also expressed by the marginal glia of the lamina that surround the R-cell terminals, the LNv pacemakers appear to be the likely modulators of molecular cycling in the peripheral clocks of both the glial cells and the photoreceptors of the compound eye. Consequently, some form of PDF-based coupling of the glial clocks and the photoreceptors of the eye with the central LNv pacemakers must be operational.
Górska-Andrzejak, Jolanta; Chwastek, Elżbieta M.; Walkowicz, Lucyna; Witek, Kacper
2018-01-01
We show that the level of the core protein of the circadian clock Period (PER) expressed by glial peripheral oscillators depends on their location in the Drosophila optic lobe. It appears to be controlled by the ventral lateral neurons (LNvs) that release the circadian neurotransmitter Pigment Dispersing Factor (PDF). We demonstrate that glial cells of the distal medulla neuropil (dMnGl) that lie in the vicinity of the PDF-releasing terminals of the LNvs possess receptors for PDF (PDFRs) and express PER at significantly higher level than other types of glia. Surprisingly, the amplitude of PER molecular oscillations in dMnGl is increased twofold in PDF-free environment, that is in Pdf0 mutants. The Pdf0 mutants also reveal an increased level of glia-specific protein REPO in dMnGl. The photoreceptors of the compound eye (R-cells) of the PDF-null flies, on the other hand, exhibit de-synchrony of PER molecular oscillations, which manifests itself as increased variability of PER-specific immunofluorescence among the R-cells. Moreover, the daily pattern of expression of the presynaptic protein Bruchpilot (BRP) in the lamina terminals of the R-cells is changed in Pdf0 mutant. Considering that PDFRs are also expressed by the marginal glia of the lamina that surround the R-cell terminals, the LNv pacemakers appear to be the likely modulators of molecular cycling in the peripheral clocks of both the glial cells and the photoreceptors of the compound eye. Consequently, some form of PDF-based coupling of the glial clocks and the photoreceptors of the eye with the central LNv pacemakers must be operational. PMID:29615925
Djouani-Tahri, El Batoul; Sanchez, Frédéric; Lozano, Jean-Claude; Bouget, François-Yves
2011-01-01
The green picoalga Ostreococcus tauri (Prasinophyceae), which has been described as the smallest free-living eukaryotic organism, has minimal cellular ultra-structure and a very small genome. In recent years, O. tauri has emerged as a novel model organism for systems biology approaches that combine functional genomics and mathematical modeling, with a strong emphasis on light regulated processes and circadian clock. These approaches were made possible through the implementation of a minimal molecular toolbox for gene functional analysis including overexpression and knockdown strategies. We have previously shown that the promoter of the High Affinity Phosphate Transporter (HAPT) gene drives the expression of a luciferase reporter at high and constitutive levels under constant light. Here we report, using a luciferase reporter construct, that the HAPT promoter can be finely and reversibly tuned by modulating the level and nature of phosphate in culture medium. This HAPT regulation was additionally used to analyze the circadian clock gene Time of Cab expression 1 (TOC1). The phenotype of a TOC1ox/CCA1:Luc line was reverted from arrhythmic to rhythmic simply by adding phosphate to the culture medium. Furthermore, since the time of phosphate injection had no effect on the phase of CCA1:Luc expression, this study suggests further that TOC1 is a central clock gene in Ostreococcus. We have developed a phosphate-regulated expression system that allows fine gene function analysis in Ostreococcus. Recently, there has been a growing interest in microalgae as cell factories. This non-toxic phosphate-regulated system may prove useful in tuning protein expression levels quantitatively and temporally for biotechnological applications.
Pharmacological Targeting the REV-ERBs in Sleep/Wake Regulation
Amador, Ariadna; Huitron-Resendiz, Salvador; Roberts, Amanda J.; Kamenecka, Theodore M.; Solt, Laura A.; Burris, Thomas P.
2016-01-01
The circadian clock maintains appropriate timing for a wide range of behaviors and physiological processes. Circadian behaviors such as sleep and wakefulness are intrinsically dependent on the precise oscillation of the endogenous molecular machinery that regulates the circadian clock. The identical core clock machinery regulates myriad endocrine and metabolic functions providing a link between sleep and metabolic health. The REV-ERBs (REV-ERBα and REV-ERBβ) are nuclear receptors that are key regulators of the molecular clock and have been successfully targeted using small molecule ligands. Recent studies in mice suggest that REV-ERB-specific synthetic agonists modulate metabolic activity as well as alter sleep architecture, inducing wakefulness during the light period. Therefore, these small molecules represent unique tools to extensively study REV-ERB regulation of sleep and wakefulness. In these studies, our aim was to further investigate the therapeutic potential of targeting the REV-ERBs for regulation of sleep by characterizing efficacy, and optimal dosing time of the REV-ERB agonist SR9009 using electroencephalographic (EEG) recordings. Applying different experimental paradigms in mice, our studies establish that SR9009 does not lose efficacy when administered more than once a day, nor does tolerance develop when administered once a day over a three-day dosing regimen. Moreover, through use of a time response paradigm, we determined that although there is an optimal time for administration of SR9009 in terms of maximal efficacy, there is a 12-hour window in which SR9009 elicited a response. Our studies indicate that the REV-ERBs are potential therapeutic targets for treating sleep problems as those encountered as a consequence of shift work or jet lag. PMID:27603791
2017-01-01
The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose. PMID:28072818
Marroquin-Guzman, Margarita; Sun, Guangchao; Wilson, Richard A
2017-01-01
The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose.
Real-time improvement of continuous glucose monitoring accuracy: the smart sensor concept.
Facchinetti, Andrea; Sparacino, Giovanni; Guerra, Stefania; Luijf, Yoeri M; DeVries, J Hans; Mader, Julia K; Ellmerer, Martin; Benesch, Carsten; Heinemann, Lutz; Bruttomesso, Daniela; Avogaro, Angelo; Cobelli, Claudio
2013-04-01
Reliability of continuous glucose monitoring (CGM) sensors is key in several applications. In this work we demonstrate that real-time algorithms can render CGM sensors smarter by reducing their uncertainty and inaccuracy and improving their ability to alert for hypo- and hyperglycemic events. The smart CGM (sCGM) sensor concept consists of a commercial CGM sensor whose output enters three software modules, able to work in real time, for denoising, enhancement, and prediction. These three software modules were recently presented in the CGM literature, and here we apply them to the Dexcom SEVEN Plus continuous glucose monitor. We assessed the performance of the sCGM on data collected in two trials, each containing 12 patients with type 1 diabetes. The denoising module improves the smoothness of the CGM time series by an average of ∼57%, the enhancement module reduces the mean absolute relative difference from 15.1 to 10.3%, increases by 12.6% the pairs of values falling in the A-zone of the Clarke error grid, and finally, the prediction module forecasts hypo- and hyperglycemic events an average of 14 min ahead of time. We have introduced and implemented the sCGM sensor concept. Analysis of data from 24 patients demonstrates that incorporation of suitable real-time signal processing algorithms for denoising, enhancement, and prediction can significantly improve the performance of CGM applications. This can be of great clinical impact for hypo- and hyperglycemic alert generation as well in artificial pancreas devices.
VCSEL-based optical transceiver module operating at 25 Gb/s and using a single CMOS IC
NASA Astrophysics Data System (ADS)
Afriat, Gil; Horwitz, Lior; Lazar, Dror; Issachar, Assaf; Pogrebinsky, Alexander; Ran, Adee; Shoor, Ehud; Bar, Roi; Saba, Rushdy
2012-01-01
We present here a low cost, small form factor, optical transceiver module composed of a CMOS IC transceiver, 850 nm emission wavelength VCSEL modulated at 25 Gb/s, and an InGaAs/InP PIN Photo Diode (PD). The transceiver IC is fabricated in a standard 28 nm CMOS process and integrates the analog circuits interfacing the VCSEL and PD, namely the VCSEL driver and Transimpedance Amplifier (TIA), as well as all other required transmitter and receiver circuits like Phase Locked Loop (PLL), Post Amplifier and Clock & Data Recovery (CDR). The transceiver module couples into a 62.5/125 um multi-mode (OM1) TX/RX fiber pair via a low cost plastic cover realizing the transmitter and receiver lens systems and demonstrates BER < 10-12 at the 25 Gb/s data rate over a distance of 3 meters. Using a 50/125 um laser optimized multi-mode fiber (OM3), the same performance was achieved over a distance of 30 meters.
Circadian Modulation of 8-Oxoguanine DNA Damage Repair
Manzella, Nicola; Bracci, Massimo; Strafella, Elisabetta; Staffolani, Sara; Ciarapica, Veronica; Copertaro, Alfredo; Rapisarda, Venerando; Ledda, Caterina; Amati, Monica; Valentino, Matteo; Tomasetti, Marco; Stevens, Richard G.; Santarelli, Lory
2015-01-01
The DNA base excision repair pathway is the main system involved in the removal of oxidative damage to DNA such as 8-Oxoguanine (8-oxoG) primarily via the 8-Oxoguanine DNA glycosylase (OGG1). Our goal was to investigate whether the repair of 8-oxoG DNA damage follow a circadian rhythm. In a group of 15 healthy volunteers, we found a daily variation of Ogg1 expression and activity with higher levels in the morning compared to the evening hours. Consistent with this, we also found lower levels of 8-oxoG in morning hours compared to those in the evening hours. Lymphocytes exposed to oxidative damage to DNA at 8:00 AM display lower accumulation of 8-oxoG than lymphocytes exposed at 8:00 PM. Furthermore, altered levels of Ogg1 expression were also observed in a group of shift workers experiencing a deregulation of circadian clock genes compared to a control group. Moreover, BMAL1 knockdown fibroblasts with a deregulated molecular clock showed an abolishment of circadian variation of Ogg1 expression and an increase of OGG1 activity. Our results suggest that the circadian modulation of 8-oxoG DNA damage repair, according to a variation of Ogg1 expression, could render humans less susceptible to accumulate 8-oxoG DNA damage in the morning hours. PMID:26337123
Picosecond-precision multichannel autonomous time and frequency counter
NASA Astrophysics Data System (ADS)
Szplet, R.; Kwiatkowski, P.; RóŻyc, K.; Jachna, Z.; Sondej, T.
2017-12-01
This paper presents the design, implementation, and test results of a multichannel time interval and frequency counter developed as a desktop instrument. The counter contains four main functional modules for (1) performing precise measurements, (2) controlling and fast data processing, (3) low-noise power suppling, and (4) supplying a stable reference clock (optional rubidium standard). A fundamental for the counter, the time interval measurement is based on time stamping combined with a period counting and in-period two-stage time interpolation that allows us to achieve wide measurement range (above 1 h), high precision (even better than 4.5 ps), and high measurement speed (up to 91.2 × 106 timestamps/s). The frequency is measured up to 3.0 GHz with the use of the reciprocal method. Wide functionality of the counter includes also the evaluation of frequency stability of clocks and oscillators (Allan deviation) and phase variation (time interval error, maximum time interval error, time deviation). The 8-channel measurement module is based on a field programmable gate array device, while the control unit involves a microcontroller with a high performance ARM-Cortex core. An efficient and user-friendly control of the counter is provided either locally, through the built-in keypad or/and color touch panel, or remotely, with the aid of USB, Ethernet, RS232C, or RS485 interfaces.
A 9-Bit 50 MSPS Quadrature Parallel Pipeline ADC for Communication Receiver Application
NASA Astrophysics Data System (ADS)
Roy, Sounak; Banerjee, Swapna
2018-03-01
This paper presents the design and implementation of a pipeline Analog-to-Digital Converter (ADC) for superheterodyne receiver application. Several enhancement techniques have been applied in implementing the ADC, in order to relax the target specifications of its building blocks. The concepts of time interleaving and double sampling have been used simultaneously to enhance the sampling speed and to reduce the number of amplifiers used in the ADC. Removal of a front end sample-and-hold amplifier is possible by employing dynamic comparators with switched capacitor based comparison of input signal and reference voltage. Each module of the ADC comprises two 2.5-bit stages followed by two 1.5-bit stages and a 3-bit flash stage. Four such pipeline ADC modules are time interleaved using two pairs of non-overlapping clock signals. These two pairs of clock signals are in phase quadrature with each other. Hence the term quadrature parallel pipeline ADC has been used. These configurations ensure that the entire ADC contains only eight operational-trans-conductance amplifiers. The ADC is implemented in a 0.18-μm CMOS process and supply voltage of 1.8 V. The proto-type is tested at sampling frequencies of 50 and 75 MSPS producing an Effective Number of Bits (ENOB) of 6.86- and 6.11-bits respectively. At peak sampling speed, the core ADC consumes only 65 mW of power.
A 9-Bit 50 MSPS Quadrature Parallel Pipeline ADC for Communication Receiver Application
NASA Astrophysics Data System (ADS)
Roy, Sounak; Banerjee, Swapna
2018-06-01
This paper presents the design and implementation of a pipeline Analog-to-Digital Converter (ADC) for superheterodyne receiver application. Several enhancement techniques have been applied in implementing the ADC, in order to relax the target specifications of its building blocks. The concepts of time interleaving and double sampling have been used simultaneously to enhance the sampling speed and to reduce the number of amplifiers used in the ADC. Removal of a front end sample-and-hold amplifier is possible by employing dynamic comparators with switched capacitor based comparison of input signal and reference voltage. Each module of the ADC comprises two 2.5-bit stages followed by two 1.5-bit stages and a 3-bit flash stage. Four such pipeline ADC modules are time interleaved using two pairs of non-overlapping clock signals. These two pairs of clock signals are in phase quadrature with each other. Hence the term quadrature parallel pipeline ADC has been used. These configurations ensure that the entire ADC contains only eight operational-trans-conductance amplifiers. The ADC is implemented in a 0.18-μm CMOS process and supply voltage of 1.8 V. The proto-type is tested at sampling frequencies of 50 and 75 MSPS producing an Effective Number of Bits (ENOB) of 6.86- and 6.11-bits respectively. At peak sampling speed, the core ADC consumes only 65 mW of power.
Picosecond-precision multichannel autonomous time and frequency counter.
Szplet, R; Kwiatkowski, P; Różyc, K; Jachna, Z; Sondej, T
2017-12-01
This paper presents the design, implementation, and test results of a multichannel time interval and frequency counter developed as a desktop instrument. The counter contains four main functional modules for (1) performing precise measurements, (2) controlling and fast data processing, (3) low-noise power suppling, and (4) supplying a stable reference clock (optional rubidium standard). A fundamental for the counter, the time interval measurement is based on time stamping combined with a period counting and in-period two-stage time interpolation that allows us to achieve wide measurement range (above 1 h), high precision (even better than 4.5 ps), and high measurement speed (up to 91.2 × 10 6 timestamps/s). The frequency is measured up to 3.0 GHz with the use of the reciprocal method. Wide functionality of the counter includes also the evaluation of frequency stability of clocks and oscillators (Allan deviation) and phase variation (time interval error, maximum time interval error, time deviation). The 8-channel measurement module is based on a field programmable gate array device, while the control unit involves a microcontroller with a high performance ARM-Cortex core. An efficient and user-friendly control of the counter is provided either locally, through the built-in keypad or/and color touch panel, or remotely, with the aid of USB, Ethernet, RS232C, or RS485 interfaces.
Doty, Michael A.
1997-01-01
A system and method for simultaneously collecting serial number information reports from numerous colliding coded-radio-frequency identity tags. Each tag has a unique multi-digit serial number that is stored in non-volatile RAM. A reader transmits an ASCII coded "D" character on a carrier of about 900 MHz and a power illumination field having a frequency of about 1.6 Ghz. A one MHz tone is modulated on the 1.6 Ghz carrier as a timing clock for a microprocessor in each of the identity tags. Over a thousand such tags may be in the vicinity and each is powered-up and clocked by the 1.6 Ghz power illumination field. Each identity tag looks for the "D" interrogator modulated on the 900 MHz carrier, and each uses a digit of its serial number to time a response. Clear responses received by the reader are repeated for verification. If no verification or a wrong number is received by any identity tag, it uses a second digital together with the first to time out a more extended period for response. Ultimately, the entire serial number will be used in the worst case collision environments; and since the serial numbers are defined as being unique, the final possibility will be successful because a clear time-slot channel will be available.
Doty, M.A.
1997-01-07
A system and method are disclosed for simultaneously collecting serial number information reports from numerous colliding coded-radio-frequency identity tags. Each tag has a unique multi-digit serial number that is stored in non-volatile RAM. A reader transmits an ASCII coded ``D`` character on a carrier of about 900 MHz and a power illumination field having a frequency of about 1.6 Ghz. A one MHz tone is modulated on the 1.6 Ghz carrier as a timing clock for a microprocessor in each of the identity tags. Over a thousand such tags may be in the vicinity and each is powered-up and clocked by the 1.6 Ghz power illumination field. Each identity tag looks for the ``D`` interrogator modulated on the 900 MHz carrier, and each uses a digit of its serial number to time a response. Clear responses received by the reader are repeated for verification. If no verification or a wrong number is received by any identity tag, it uses a second digital together with the first to time out a more extended period for response. Ultimately, the entire serial number will be used in the worst case collision environments; and since the serial numbers are defined as being unique, the final possibility will be successful because a clear time-slot channel will be available. 5 figs.
Wang, Can; Jiang, Jian-Dong; Wu, Wei; Kong, Wei-Jia
2016-01-01
The mangiferin-berberine (MB) salt was synthesized by ionic bonding of mangiferin (M) and berberine (B) at an equal molecular ratio. This study aimed to investigate the activities of MB salt in modulating lipid and glucose metabolisms in HepG2 cells. After 24 h treatment of the studying compounds, cellular AMP-activated protein kinase α (AMPKα)/acetyl-CoA carboxylase (ACC) protein levels and carnitine palmitoyltransferase (CPT) 1 activities, intracellular lipid contents, mRNA expression levels of target genes, glucose consumption, and glucose production amounts were determined. Compound C (CC) was used in the blocking experiments. Our results showed that MB salt increased p-AMPKα (Thr172)/p-ACC (Ser79) levels and CPT1 activity and suppressed oleic acid- (OA-) induced lipid accumulation and upregulation of lipogenic genes potently in HepG2 cells. The above activities of MB salt were AMPK dependent and were superior to those of M or B when administered at an equal molar concentration. MB salt enhanced basal and insulin-stimulated glucose consumption and suppressed gluconeogenesis more potently than M or B alone. The inhibiting activity of MB salt on cellular gluconeogenesis was AMPK dependent. Our results may support MB salt as a new kind of agent for the development of novel lipid or glucose-lowering drugs in the future. PMID:27123455
Common features in diverse insect clocks.
Numata, Hideharu; Miyazaki, Yosuke; Ikeno, Tomoko
2015-01-01
This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks.
Cholinergic modulation of neuronal excitability in the rat suprachiasmatic nucleus.
Yang, Jyh-Jeen; Wang, Yu-Ting; Cheng, Pi-Cheng; Kuo, Yeh-Jung; Huang, Rong-Chi
2010-03-01
The central cholinergic system regulates both the circadian clock and sleep-wake cycle and may participate in the feedback control of vigilance states on neural excitability in the suprachiasmatic nucleus (SCN) that houses the circadian clock. Here we investigate the mechanisms for cholinergic modulation of SCN neuron excitability. Cell-attached recordings indicate that the nonspecific cholinergic agonist carbachol (CCh) inhibited 55% and excited 21% SCN neurons, leaving 24% nonresponsive. Similar response proportions were produced by two muscarinic receptor [muscarinic acetylcholine receptor (mAChR)] agonists, muscarine and McN-A-343 (M1/4 agonist), but not by two nicotinic receptor (nAChR) agonists, nicotine and choline (alpha7-nAChR agonist), which, however, produced similar response proportions. Whole cell and perforated-patch recordings indicate that CCh inhibition of firing was mediated by membrane hyperpolarization due to activation of background K(+) currents, which were sensitive to submillimolar concentrations of Ba(2+) and to millimolar concentrations of TEA. RT-PCR analysis demonstrated the presence of mRNA for M1 to M5 mAChRs in SCN. The CCh-induced hyperpolarization and activation of background K(+) currents were blocked by M4 antagonists and to a lesser degree by M1 antagonists but were insensitive to the antagonists for M2 or M3, suggesting the involvement of M4 and M1 mAChRs in mediating CCh inhibition of firing. CCh enhancement of firing was mediated by membrane depolarization, as a result of postsynaptic inhibition of background K(+) currents. The multiple actions of cholinergic modulation via multiple receptors and ion channels may allow acetylcholine to finely control SCN neuron excitability in different physiological settings.
IEEE 1588 Time Synchronization Board in MTCA.4 Form Factor
NASA Astrophysics Data System (ADS)
Jabłoński, G.; Makowski, D.; Mielczarek, A.; Orlikowski, M.; Perek, P.; Napieralski, A.; Makijarvi, P.; Simrock, S.
2015-06-01
Distributed data acquisition and control systems in large-scale scientific experiments, like e.g. ITER, require time synchronization with nanosecond precision. A protocol commonly used for that purpose is the Precise Timing Protocol (PTP), also known as IEEE 1588 standard. It uses the standard Ethernet signalling and protocols and allows obtaining timing accuracy of the order of tens of nanoseconds. The MTCA.4 is gradually becoming the platform of choice for building such systems. Currently there is no commercially available implementation of the PTP receiver on that platform. In this paper, we present a module in the MTCA.4 form factor supporting this standard. The module may be used as a timing receiver providing reference clocks in an MTCA.4 chassis, generating a Pulse Per Second (PPS) signal and allowing generation of triggers and timestamping of events on 8 configurable backplane lines and two front panel connectors. The module is based on the Xilinx Spartan 6 FPGA and thermally stabilized Voltage Controlled Oscillator controlled by the digital-to-analog converter. The board supports standalone operation, without the support from the host operating system, as the entire control algorithm is run on a Microblaze CPU implemented in the FPGA. The software support for the card includes the low-level API in the form of Linux driver, user-mode library, high-level API: ITER Nominal Device Support and EPICS IOC. The device has been tested in the ITER timing distribution network (TCN) with three cascaded PTP-enabled Hirschmann switches and a GPS reference clock source. An RMS synchronization accuracy, measured by direct comparison of the PPS signals, better than 20 ns has been obtained.
Metrology Arrangement for Measuring the Positions of Mirrors of a Submillimeter Telescope
NASA Technical Reports Server (NTRS)
Abramovici, Alex; Bartman, Randall K.
2011-01-01
The position of the secondary mirror of a submillimeter telescope with respect to the primary mirror needs to be known .0.03 mm in three dimensions. At the time of this reporting, no convenient, reasonably priced arrangement that offers this capability exists. The solution proposed here relies on measurement devices developed and deployed for the GeoSAR mission, and later adapted for the ISAT (Innovative Space Based Radar Antenna Technology) demonstration. The measurement arrangement consists of four metrology heads, located on an optical bench, attached to the secondary mirror. Each metrology head has a dedicated target located at the edge of the primary mirror. One laser beam, launched from the head and returned by the target, is used to measure distance. Another beam, launched from a beacon on the target, is monitored by the metrology head and generates a measurement of the target position in the plane perpendicular to the laser beam. A 100-MHz modulation is carried by a collimated laser beam. The relevant wavelength is the RF one, 3 m, divided by two, because the light carries it to the target and back. The phase change due to travel to the target and back is measured by timing the zero-crossing of the RF modulation, using a 100-MHz clock. In order to obtain good resolution, the 100-MHz modulation signal is down-converted to 1 kHz. Then, the phase change corresponding to the round-trip to the target is carried by a 1-kHz signal. Since the 100-MHz clock beats 100,000 times during one period of the 1-kHz signal, the least-significant-bit (LSB) resolution is LSB = 0.015 mm.
USDA-ARS?s Scientific Manuscript database
Starch digestion involves the breakdown by alpha-amylase to small linear and branched malto-oligosaccharides, which are in turn hydrolyzed to glucose by the mucosal alpha-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI). MGAM and SI are anchored to the small intestinal brush-bor...
Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons
USDA-ARS?s Scientific Manuscript database
Glucagon-like peptides (GLP-1/GLP-2) are coproduced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We sho...
Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila
Selcho, Mareike; Millán, Carola; Palacios-Muñoz, Angelina; Ruf, Franziska; Ubillo, Lilian; Chen, Jiangtian; Bergmann, Gregor; Ito, Chihiro; Silva, Valeria; Wegener, Christian; Ewer, John
2017-01-01
Animal circadian clocks consist of central and peripheral pacemakers, which are coordinated to produce daily rhythms in physiology and behaviour. Despite its importance for optimal performance and health, the mechanism of clock coordination is poorly understood. Here we dissect the pathway through which the circadian clock of Drosophila imposes daily rhythmicity to the pattern of adult emergence. Rhythmicity depends on the coupling between the brain clock and a peripheral clock in the prothoracic gland (PG), which produces the steroid hormone, ecdysone. Time information from the central clock is transmitted via the neuropeptide, sNPF, to non-clock neurons that produce the neuropeptide, PTTH. These secretory neurons then forward time information to the PG clock. We also show that the central clock exerts a dominant role on the peripheral clock. This use of two coupled clocks could serve as a paradigm to understand how daily steroid hormone rhythms are generated in animals. PMID:28555616
Yao, Zepeng; Bennett, Amelia J; Clem, Jenna L; Shafer, Orie T
2016-12-13
In animals, networks of clock neurons containing molecular clocks orchestrate daily rhythms in physiology and behavior. However, how various types of clock neurons communicate and coordinate with one another to produce coherent circadian rhythms is not well understood. Here, we investigate clock neuron coupling in the brain of Drosophila and demonstrate that the fly's various groups of clock neurons display unique and complex coupling relationships to core pacemaker neurons. Furthermore, we find that coordinated free-running rhythms require molecular clock synchrony not only within the well-characterized lateral clock neuron classes but also between lateral clock neurons and dorsal clock neurons. These results uncover unexpected patterns of coupling in the clock neuron network and reveal that robust free-running behavioral rhythms require a coherence of molecular oscillations across most of the fly's clock neuron network. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Refractory Metal Heat Pipe Life Test - Test Plan and Standard Operating Procedures
NASA Technical Reports Server (NTRS)
Martin, J. J.; Reid, R. S.
2010-01-01
Refractory metal heat pipes developed during this project shall be subjected to various operating conditions to evaluate life-limiting corrosion factors. To accomplish this objective, various parameters shall be investigated, including the effect of temperature and mass fluence on long-term corrosion rate. The test series will begin with a performance test of one module to evaluate its performance and to establish the temperature and power settings for the remaining modules. The performance test will be followed by round-the-clock testing of 16 heat pipes. All heat pipes shall be nondestructively inspected at 6-month intervals. At longer intervals, specific modules will be destructively evaluated. Both the nondestructive and destructive evaluations shall be coordinated with Los Alamos National Laboratory. During the processing, setup, and testing of the heat pipes, standard operating procedures shall be developed. Initial procedures are listed here and, as hardware is developed, will be updated, incorporating findings and lessons learned.
A circadian clock regulates sensitivity to cadmium in Paramecium tetraurelia.
Hinrichsen, Robert D; Tran, Joseph R
2010-08-01
The heavy metal cadmium is a dangerous environmental toxicant that can be lethal to humans and other organisms. This paper demonstrates that cadmium is lethal to the ciliated protozoan Paramecium tetraurelia and that a circadian clock modulates the sensitivity of the cells to cadmium. Various concentrations of cadmium were shown to increase the number of behavioral responses, decrease the swimming speed of cells, and generate large vacuole formation in cells prior to death. Cells were grown in either 12-h light/12-h dark or constant dark conditions exhibited a toxic response to 500 microM CdCl(2); the sensitivity of the response was found to vary with a 24-h periodicity. Cells were most sensitive to cadmium at circadian time 0 (CT0), while they were least sensitive in the early evening (CT12). This rhythm persisted even when the cells were grown in constant dark. The oscillation in cadmium sensitivity was shown to be temperature-compensated; cells grown at 18 degrees C and 28 degrees C had a similar 24-h oscillation. Finally, phase shifting experiments demonstrated a phase-dependent response to light. These data establish the criteria required for a circadian clock and demonstrate that P. tetraurelia possesses a circadian-influenced regulatory component of the cadmium toxic response. The Paramecium system is shown to be an excellent model system for the study of the effects of biological rhythms on heavy metal toxicity.
Neurotransmitters of the retino-hypothalamic tract.
Hannibal, Jens
2002-07-01
The brain's biological clock, which, in mammals, is located in the suprachiasmatic nucleus (SCN), generates circadian rhythms in behaviour and physiology. These biological rhythms are adjusted daily (entrained) to the environmental light/dark cycle via a monosynaptic retinofugal pathway, the retinohypothalamic tract (RHT). In this review, the anatomical and physiological evidence for glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP) as principal transmitters of the RHT will be considered. A combination of immunohistochemistry at both the light- and electron-microscopic levels and tract-tracing studies have revealed that these two transmitters are co-stored in a subpopulation of retinal ganglion cells projecting to the retino-recipient zone of the ventral SCN. The PACAP/glutamate-containing cells, which constitute the RHT, also contain a recently identified photoreceptor protein, melanopsin, which may function as a "circadian photopigment". In vivo and in vitro studies have shown that glutamate and glutamate agonists such as N-methyl- D-aspartate mimic light-induced phase shifts and that application of glutamate antagonists blocks light-induced phase shifts at subjective night indicating that glutamate mediates light signalling to the clock. PACAP in nanomolar concentrations has similar phase-shifting capacity as light and glutamate, whereas PACAP in micromolar concentrations modulates glutamate-induced phase shifts. Possible targets for PACAP and glutamate are the recently identified clock genes Per1 and Per2, which are induced in the SCN by light, glutamate and PACAP at night.
Regulation of alternative splicing by the circadian clock and food related cues
2012-01-01
Background The circadian clock orchestrates daily rhythms in metabolism, physiology and behaviour that allow organisms to anticipate regular changes in their environment, increasing their adaptation. Such circadian phenotypes are underpinned by daily rhythms in gene expression. Little is known, however, about the contribution of post-transcriptional processes, particularly alternative splicing. Results Using Affymetrix mouse exon-arrays, we identified exons with circadian alternative splicing in the liver. Validated circadian exons were regulated in a tissue-dependent manner and were present in genes with circadian transcript abundance. Furthermore, an analysis of circadian mutant Vipr2-/- mice revealed the existence of distinct physiological pathways controlling circadian alternative splicing and RNA binding protein expression, with contrasting dependence on Vipr2-mediated physiological signals. This view was corroborated by the analysis of the effect of fasting on circadian alternative splicing. Feeding is an important circadian stimulus, and we found that fasting both modulates hepatic circadian alternative splicing in an exon-dependent manner and changes the temporal relationship with transcript-level expression. Conclusions The circadian clock regulates alternative splicing in a manner that is both tissue-dependent and concurrent with circadian transcript abundance. This adds a novel temporal dimension to the regulation of mammalian alternative splicing. Moreover, our results demonstrate that circadian alternative splicing is regulated by the interaction between distinct physiological cues, and illustrates the capability of single genes to integrate circadian signals at different levels of regulation. PMID:22721557
Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes
Shi, Ting; Li, Dachao; Li, Guoqing; Zhang, Yiming; Xu, Kexin; Lu, Luo
2016-01-01
One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to blood glucose changes. A theoretical model was developed based on biophysics and physiology of glucose transport in the microcirculation system. Blood and interstitial fluid glucose changes were measured in mice and rats by fluorescent and isotope methods, respectively. Computer simulation mimicked curves were fitted with data resulting from fluorescent measurements of mice and isotope measurements of rats, indicating that there were lag times for ISF glucose changes. It also showed that there was a required diffusion distance for glucose to travel from center of capillaries to interstitial space in both mouse and rat models. We conclude that it is feasible with the developed model to continuously monitor dynamic changes of blood glucose concentration through measuring glucose changes in ISF with high accuracy, which requires correct parameters for determining and compensating for the delay time of glucose changes in ISF. PMID:27239479
Deshmukh, Atul S; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T; Cox, Jürgen; Mann, Matthias
2015-04-01
Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
USNO Master Clock - Naval Oceanography Portal
section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home ⺠USNO ⺠Precise Time ⺠Master Clock USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info USNO Master Clock clock vault The USNO Master Clock is the
Ienaga, Kazuharu; Sohn, Mimi; Naiki, Mitsuru; Jaffa, Ayad A
2014-06-01
A creatinine metabolite, 5-hydroxy-1-methylhydantoin (HMH: NZ-419), a hydroxyl radical scavenger, has previously been shown to confer renoprotection by inhibiting the progression of chronic kidney disease in rats. In the current study, we demonstrate that HMH modulates the effects of glucose and bradykinin (BK) in vascular smooth muscle cell (VSMC). HMH a novel anti-oxidant drug completely suppressed the expression of B2-kinin receptors (B2KR) in response to high glucose (25 mM) stimulation in VSMC and was also shown to attenuate the effects of BK on VSMC remodeling. HMH inhibited the BK-induced increase in MAPK phosphorylation and attenuated the increase in connective tissue growth factor (CTGF) protein levels in VSMC. These findings suggest that HMH may confer vascular protection against high glucose concentrations and BK-stimulation to ameliorate vascular injury and remodeling through its anti-oxidant properties.
NASA Astrophysics Data System (ADS)
Yoshino, Ken-ichiro; Fujiwara, Mikio; Nakata, Kensuke; Sumiya, Tatsuya; Sasaki, Toshihiko; Takeoka, Masahiro; Sasaki, Masahide; Tajima, Akio; Koashi, Masato; Tomita, Akihisa
2018-03-01
Quantum key distribution (QKD) allows two distant parties to share secret keys with the proven security even in the presence of an eavesdropper with unbounded computational power. Recently, GHz-clock decoy QKD systems have been realized by employing ultrafast optical communication devices. However, security loopholes of high-speed systems have not been fully explored yet. Here we point out a security loophole at the transmitter of the GHz-clock QKD, which is a common problem in high-speed QKD systems using practical band-width limited devices. We experimentally observe the inter-pulse intensity correlation and modulation pattern-dependent intensity deviation in a practical high-speed QKD system. Such correlation violates the assumption of most security theories. We also provide its countermeasure which does not require significant changes of hardware and can generate keys secure over 100 km fiber transmission. Our countermeasure is simple, effective and applicable to wide range of high-speed QKD systems, and thus paves the way to realize ultrafast and security-certified commercial QKD systems.
Choi, Charles; Cao, Guan; Tanenhaus, Anne K.; McCarthy, Ellena v.; Jung, Misun; Schleyer, William; Shang, Yuhua; Rosbash, Michael; Yin, Jerry C.P.; Nitabach, Michael N.
2012-01-01
Drosophila melanogaster flies concentrate behavioral activity around dawn and dusk. This organization of daily activity is controlled by central circadian clock neurons, including the lateral ventral pacemaker neurons (LNvs) that secrete the neuropeptide PDF (Pigment Dispersing Factor). Previous studies have demonstrated the requirement for PDF signaling to PDF receptor (PDFR)-expressing dorsal clock neurons in organizing circadian activity. While LNvs also express functional PDFR, the role of these autoreceptors has remained enigmatic. Here we show that (1) PDFR activation in LNvs shifts the balance of circadian activity from evening to morning, similar to behavioral responses to summer-like environmental conditions and (2) this shift is mediated by stimulation of the Ga,s-cAMP pathway and a consequent change in PDF/neurotransmitter co-release from the LNvs. These results suggest a novel mechanism for environmental control of the allocation of circadian activity and provide new general insight into the role of neuropeptide autoreceptors in behavioral control circuits. PMID:22938867
López, Sergio; Bermúdez, Beatriz; Pacheco, Yolanda M; Villar, José; Abia, Rocío; Muriana, Francisco J G
2008-09-01
Exaggerated and prolonged postprandial triglyceride concentrations are associated with numerous conditions related to insulin resistance, including obesity, type 2 diabetes, and the metabolic syndrome. Although dietary fats profoundly affect postprandial hypertriglyceridemia, limited data exist regarding their effects on postprandial glucose homeostasis. We sought to determine whether postprandial glucose homeostasis is modulated distinctly by high-fat meals enriched in saturated fatty acids (SFAs) or monounsaturated fatty acids (MUFAs). Normotriglyceridemic subjects with normal fasting glucose and normal glucose tolerance were studied. Blood samples were collected over the 8 h after ingestion of a glucose and triglyceride tolerance test meal (GTTTM) in which a panel of dietary fats with a gradual change in the ratio of MUFAs to SFAs was included. On 5 separate occasions, basal and postprandial concentrations of glucose, insulin, triglyceride, and free fatty acids (FFAs) were measured. High-fat meals increased the postprandial concentrations of insulin, triglycerides, and FFAs, and they enhanced postprandial beta cell function while decreasing insulin sensitivity (as assessed with different model-based and empirical indexes: insulinogenic index, insulinogenic index/homeostasis model assessment of insulin resistance, area under the curve for insulin/area under the curve for glucose, homeostasis model assessment for beta cell function, and GTTTM-determined insulin sensitivity, oral glucose insulin sensitivity, and the postprandial Belfiore indexes for glycemia and blood FFAs. These effects were significantly ameliorated, in a direct linear relation, when MUFAs were substituted for SFAs. The data presented here suggest that beta cell function and insulin sensitivity progressively improve in the postprandial state as the proportion of MUFAs with respect to SFAs in dietary fats increases.
Fasting metabolism modulates the interleukin-12/interleukin-10 cytokine axis
Kernbauer, Elisabeth; Hölzl, Markus A.; Hofer, Johannes; Gualdoni, Guido A.; Schmetterer, Klaus G.; Miftari, Fitore; Sobanov, Yury; Meshcheryakova, Anastasia; Mechtcheriakova, Diana; Witzeneder, Nadine; Greiner, Georg; Ohradanova-Repic, Anna; Waidhofer-Söllner, Petra; Säemann, Marcus D.; Decker, Thomas
2017-01-01
A crucial role of cell metabolism in immune cell differentiation and function has been recently established. Growing evidence indicates that metabolic processes impact both, innate and adaptive immunity. Since a down-stream integrator of metabolic alterations, mammalian target of rapamycin (mTOR), is responsible for controlling the balance between pro-inflammatory interleukin (IL)-12 and anti-inflammatory IL-10, we investigated the effect of upstream interference using metabolic modulators on the production of pro- and anti-inflammatory cytokines. Cytokine release and protein expression in human and murine myeloid cells was assessed after toll-like receptor (TLR)-activation and glucose-deprivation or co-treatment with 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activators. Additionally, the impact of metabolic interference was analysed in an in-vivo mouse model. Glucose-deprivation by 2-deoxy-D-glucose (2-DG) increased the production of IL-12p40 and IL-23p19 in monocytes, but dose-dependently inhibited the release of anti-inflammatory IL-10. Similar effects have been observed using pharmacological AMPK activation. Consistently, an inhibition of the tuberous sclerosis complex-mTOR pathway was observed. In line with our in vitro observations, glycolysis inhibition with 2-DG showed significantly reduced bacterial burden in a Th2-prone Listeria monocytogenes mouse infection model. In conclusion, we showed that fasting metabolism modulates the IL-12/IL-10 cytokine balance, establishing novel targets for metabolism-based immune-modulation. PMID:28742108
Vavilis, Theofanis; Delivanoglou, Nikoleta; Aggelidou, Eleni; Stamoula, Eleni; Mellidis, Kyriakos; Kaidoglou, Aikaterini; Cheva, Angeliki; Pourzitaki, Chryssa; Chatzimeletiou, Katerina; Lazou, Antigone; Albani, Maria; Kritis, Aristeidis
2016-07-01
Hypoxia is the lack of sufficient oxygenation of tissue, imposing severe stress upon cells. It is a major feature of many pathological conditions such as stroke, traumatic brain injury, cerebral hemorrhage, perinatal asphyxia and can lead to cell death due to energy depletion and increased free radical generation. The present study investigates the effect of hypoxia on the unfolded protein response of the cell (UPR), utilizing a 16-h oxygen-glucose deprivation protocol (OGD) in a PC12 cell line model. Expression of glucose-regulated protein 78 (GRP78) and glucose-regulated protein 94 (GRP94), key players of the UPR, was studied along with the expression of glucose-regulated protein 75 (GRP75), heat shock cognate 70 (HSC70), and glyceraldehyde 3-phosphate dehydrogenase, all with respect to the cell death mechanism(s). Cells subjected to OGD displayed upregulation of GRP78 and GRP94 and concurrent downregulation of GRP75. These findings were accompanied with minimal apoptotic cell death and induction of autophagy. The above observation warrants further investigation to elucidate whether autophagy acts as a pro-survival mechanism that upon severe and prolonged hypoxia acts as a concerted cell response leading to cell death. In our OGD model, hypoxia modulates UPR and induces autophagy.
Device for modular input high-speed multi-channel digitizing of electrical data
VanDeusen, Alan L.; Crist, Charles E.
1995-09-26
A multi-channel high-speed digitizer module converts a plurality of analog signals to digital signals (digitizing) and stores the signals in a memory device. The analog input channels are digitized simultaneously at high speed with a relatively large number of on-board memory data points per channel. The module provides an automated calibration based upon a single voltage reference source. Low signal noise at such a high density and sample rate is accomplished by ensuring the A/D converters are clocked at the same point in the noise cycle each time so that synchronous noise sampling occurs. This sampling process, in conjunction with an automated calibration, yields signal noise levels well below the noise level present on the analog reference voltages.
Galileo probe battery systems design
NASA Technical Reports Server (NTRS)
Dagarin, B. P.; Van Ess, J. S.; Marcoux, L. S.
1986-01-01
NASA's Galileo mission to Jupiter will consist of a Jovian orbiter and an atmospheric entry probe. The power for the probe will be derived from two primary power sources. The main source is composed of three Li-SO2 battery modules containing 13 D-size cell strings per module. These are required to retain capacity for 7.5 years, support a 150 day clock, and a 7 hour mission sequence of increasing loads from 0.15 to 9.5 amperes for the last 30 minutes. This main power source is supplemented by two thermal batteries (CaCrO4-Ca) for use in firing the pyrotechnic initiators during the atmospheric staging events. This paper describes design development and testing of these batteries at the system level.
Design and implementation of quadrature bandpass sigma-delta modulator used in low-IF RF receiver
NASA Astrophysics Data System (ADS)
Ge, Binjie; Li, Yan; Yu, Hang; Feng, Xiaoxing
2018-05-01
This paper presents the design and implementation of quadrature bandpass sigma-delta modulator. A pole movement method for transforming real sigma-delta modulator to a quadrature one is proposed by detailed study of the relationship of noise-shaping center frequency and integrator pole position in sigma-delta modulator. The proposed modulator uses sampling capacitor sharing switched capacitor integrator, and achieves a very small feedback coefficient by a series capacitor network, and those two techniques can dramatically reduce capacitor area. Quantizer output-dependent dummy capacitor load for reference voltage buffer can compensate signal-dependent noise that is caused by load variation. This paper designs a quadrature bandpass Sigma-Delta modulator for 2.4 GHz low IF receivers that achieve 69 dB SNDR at 1 MHz BW and -1 MHz IF with 48 MHz clock. The chip is fabricated with SMIC 0.18 μm CMOS technology, it achieves a total power current of 2.1 mA, and the chip area is 0.48 mm2. Project supported by the National Natural Science Foundation of China (Nos. 61471245, U1201256), the Guangdong Province Foundation (No. 2014B090901031), and the Shenzhen Foundation (Nos. JCYJ20160308095019383, JSGG20150529160945187).
Naldi, Aurélien; Baruchet, Michaël; Canella, Donatella; Le Martelot, Gwendal; Guex, Nicolas; Desvergne, Béatrice; Delorenzi, Mauro; Deplancke, Bart; Desvergne, Béatrice; Guex, Nicolas; Herr, Winship; Naef, Felix; Rougemont, Jacques; Schibler, Ueli; Deplancke, Bart; Guex, Nicolas; Herr, Winship; Guex, Nicolas; Andersin, Teemu; Cousin, Pascal; Gilardi, Federica; Gos, Pascal; Martelot, Gwendal Le; Lammers, Fabienne; Canella, Donatella; Gilardi, Federica; Raghav, Sunil; Fabbretti, Roberto; Fortier, Arnaud; Long, Li; Vlegel, Volker; Xenarios, Ioannis; Migliavacca, Eugenia; Praz, Viviane; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; David, Fabrice; Jarosz, Yohan; Kuznetsov, Dmitry; Liechti, Robin; Martin, Olivier; Delafontaine, Julien; Sinclair, Lucas; Cajan, Julia; Krier, Irina; Leleu, Marion; Migliavacca, Eugenia; Molina, Nacho; Naldi, Aurélien; Rey, Guillaume; Symul, Laura; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; Bernasconi, David; Delorenzi, Mauro; Andersin, Teemu; Canella, Donatella; Gilardi, Federica; Martelot, Gwendal Le; Lammers, Fabienne; Baruchet, Michaël; Raghav, Sunil
2014-01-01
In mammals, the circadian clock allows them to anticipate and adapt physiology around the 24 hours. Conversely, metabolism and food consumption regulate the internal clock, pointing the existence of an intricate relationship between nutrient state and circadian homeostasis that is far from being understood. The Sterol Regulatory Element Binding Protein 1 (SREBP1) is a key regulator of lipid homeostasis. Hepatic SREBP1 function is influenced by the nutrient-response cycle, but also by the circadian machinery. To systematically understand how the interplay of circadian clock and nutrient-driven rhythm regulates SREBP1 activity, we evaluated the genome-wide binding of SREBP1 to its targets throughout the day in C57BL/6 mice. The recruitment of SREBP1 to the DNA showed a highly circadian behaviour, with a maximum during the fed status. However, the temporal expression of SREBP1 targets was not always synchronized with its binding pattern. In particular, different expression phases were observed for SREBP1 target genes depending on their function, suggesting the involvement of other transcription factors in their regulation. Binding sites for Hepatocyte Nuclear Factor 4 (HNF4) were specifically enriched in the close proximity of SREBP1 peaks of genes, whose expression was shifted by about 8 hours with respect to SREBP1 binding. Thus, the cross-talk between hepatic HNF4 and SREBP1 may underlie the expression timing of this subgroup of SREBP1 targets. Interestingly, the proper temporal expression profile of these genes was dramatically changed in Bmal1 −/− mice upon time-restricted feeding, for which a rhythmic, but slightly delayed, binding of SREBP1 was maintained. Collectively, our results show that besides the nutrient-driven regulation of SREBP1 nuclear translocation, a second layer of modulation of SREBP1 transcriptional activity, strongly dependent from the circadian clock, exists. This system allows us to fine tune the expression timing of SREBP1 target genes, thus helping to temporally separate the different physiological processes in which these genes are involved. PMID:24603613
[Elevated expression of CLOCK is associated with poor prognosis in hepatocellular carcinoma].
Li, Bo; Yang, Xiliang; Li, Jiaqi; Yang, Yi; Yan, Zhaoyong; Zhang, Hongxin; Mu, Jiao
2018-02-01
Objective To evaluate the expression of circadian locomotor output cycles kaput (CLOCK) and its effects on cell growth in hepatocellular carcinoma (HCC). Methods The expression of CLOCK in 158 pairs of human HCC tissues and matched noncancerous samples was detected by immunohistochemical (IHC) staining. The expression of CLOCK in HCC patients was also verified using the data from GEO and TCGA (a total of 356 cases). The relationship between CLOCK expression and clinicopathological features of HCC patients was analyzed by single factor statistical analysis. Kaplan-Meier survival curves of HCC patients were drawn to study the relationship between the expression level of CLOCK and the survival state. The effect of CLOCK on the growth of HepG2 cells was detected by MTS assay. Results The expression of CLOCK in HCC tissues was significantly higher than that in the adjacent tissues, and the up-regulation of CLOCK expression in HCC tissue was also confirmed in the public data of HCC (356 cases). HCC patients were divided into low CLOCK expression group and high CLOCK expression group. Univariate analysis showed that the expression of CLOCK was related to tumor size, TNM stage, and portal vein invasion in HCC patients. HCC patients with low CLOCK expression had longer overall survival time and relapse-free survival time than those with high CLOCK expression. The proliferation of cells significantly decreased after the expression of CLOCK was knocked down in HepG2 cells. Conclusion The expression of CLOCK in HCC tissues was much higher than that in normal liver tissues, and the high expression of CLOCK indicated the poor prognosis. The knockdown of CLOCK in HCC cells could inhibit the proliferation of HepG2 cells.
Capacitive Sensing of Glucose in Electrolytes Using Graphene Quantum Capacitance Varactors.
Zhang, Yao; Ma, Rui; Zhen, Xue V; Kudva, Yogish C; Bühlmann, Philippe; Koester, Steven J
2017-11-08
A novel graphene-based variable capacitor (varactor) that senses glucose based on the quantum capacitance effect was successfully developed. The sensor utilizes a metal-oxide-graphene varactor device structure that is inherently compatible with passive wireless sensing, a key advantage for in vivo glucose sensing. The graphene varactors were functionalized with pyrene-1-boronic acid (PBA) by self-assembly driven by π-π interactions. Successful surface functionalization was confirmed by both Raman spectroscopy and capacitance-voltage characterization of the devices. Through glucose binding to the PBA, the glucose concentration in the buffer solutions modulates the level of electrostatic doping of the graphene surface to different degrees, which leads to capacitance changes and Dirac voltage shifts. These responses to the glucose concentration were shown to be reproducible and reversible over multiple measurement cycles, suggesting promise for eventual use in wireless glucose monitoring.
Lucena, Miguel C; Carvalho-Cruz, Patricia; Donadio, Joana L; Oliveira, Isadora A; de Queiroz, Rafaela M; Marinho-Carvalho, Monica M; Sola-Penna, Mauro; de Paula, Iron F; Gondim, Katia C; McComb, Mark E; Costello, Catherine E; Whelan, Stephen A; Todeschini, Adriane R; Dias, Wagner B
2016-06-17
Deregulated cellular metabolism is a hallmark of tumors. Cancer cells increase glucose and glutamine flux to provide energy needs and macromolecular synthesis demands. Several studies have been focused on the importance of glycolysis and pentose phosphate pathway. However, a neglected but very important branch of glucose metabolism is the hexosamine biosynthesis pathway (HBP). The HBP is a branch of the glucose metabolic pathway that consumes ∼2-5% of the total glucose, generating UDP-GlcNAc as the end product. UDP-GlcNAc is the donor substrate used in multiple glycosylation reactions. Thus, HBP links the altered metabolism with aberrant glycosylation providing a mechanism for cancer cells to sense and respond to microenvironment changes. Here, we investigate the changes of glucose metabolism during epithelial mesenchymal transition (EMT) and the role of O-GlcNAcylation in this process. We show that A549 cells increase glucose uptake during EMT, but instead of increasing the glycolysis and pentose phosphate pathway, the glucose is shunted through the HBP. The activation of HBP induces an aberrant cell surface glycosylation and O-GlcNAcylation. The cell surface glycans display an increase of sialylation α2-6, poly-LacNAc, and fucosylation, all known epitopes found in different tumor models. In addition, modulation of O-GlcNAc levels was demonstrated to be important during the EMT process. Taken together, our results indicate that EMT is an applicable model to study metabolic and glycophenotype changes during carcinogenesis, suggesting that cell glycosylation senses metabolic changes and modulates cell plasticity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Sun, Shuqin; Yang, Shuo; Dai, Min; Jia, Xiujuan; Wang, Qiyan; Zhang, Zheng; Mao, Yongjun
2017-06-13
Apoptosis plays a critical role in the progression of diabetic cardiomyopathy (DC). Astragalus polysaccharides (APS), an extract of astragalus membranaceus (AM), is an effective cardioprotectant. Currently, little is known about the detailed mechanisms underlying cardioprotective effects of APS. The aims of this study were to investigate the potential effects and mechanisms of APS on apoptosis employing a model of high glucose induction of apoptosis in H9C2 cells. A model of high glucose induction of H9C2 cell apoptosis was adopted in this research. The cell viabilities were analyzed by MTT assay, and the apoptotic response was quantified by flow cytometry. The expression levels of the apoptosis related proteins were determined by Real-time PCR and western blotting. Incubation of H9C2 cells with various concentrations of glucose (i.e., 5.5, 12.5, 25, 33 and 44 mmol/L) for 24 h revealed that cell viability was reduced by high glucose dose-dependently. Pretreatment of cells with APS could inhibit high glucose-induced H9C2 cell apoptosis by decreasing the expressions of caspases and the release of cytochrome C from mitochondria to cytoplasm. Further experiments also showed that APS could modulate the ratio of Bcl-2 to Bax in mitochondria. APS decreases high glucose-induced H9C2 cell apoptosis by inhibiting the expression of pro-apoptotic proteins of both the extrinsic and intrinsic pathways and modulating the ratio of Bcl-2 to Bax in mitochondria.
Allick, Gideon; Bisschop, Peter H; Ackermans, Mariette T; Endert, Erik; Meijer, Alfred J; Kuipers, Folkert; Sauerwein, Hans P; Romijn, Johannes A
2004-12-01
The aim of this study was to examine the mechanisms by which dietary carbohydrate and fat modulate fasting glycemia. We compared the effects of an eucaloric high-carbohydrate (89% carbohydrate) and high-fat (89% fat) diet on fasting glucose metabolism and insulin sensitivity in seven obese patients with type 2 diabetes using stable isotopes and euglycemic hyperinsulinemic clamps. At basal insulin levels glucose concentrations were 148 +/- 11 and 123 +/- 11 mg/dl (8.2 +/- 0.6 and 6.8 +/- 0.6 mmol/liter) on the high-carbohydrate and high-fat diet, respectively (P < 0.001), with insulin concentrations of 12 +/- 2 and 10 +/- 1 microIU/ml (82 +/- 11 and 66 +/- 10 pmol/liter) (P = 0.08). Glucose production was higher on the high-carbohydrate diet (1.88 +/- 0.06 vs. 1.55 +/- 0.05 mg/kg.min (10.44 +/- 0.33 vs. 8.61 +/- 0.28 micromol/kg.min) (P < 0.001) because of higher glycogenolysis. Gluconeogenic rates were not different between the diets. During the use of hyperinsulinemic euglycemic clamps, insulin-mediated suppression of glucose production and stimulation of glucose disposal were not different between the diets. Free fatty concentrations were suppressed by 89 and 62% (P < 0.0001) on the high-carbohydrate and high-fat diet, respectively. We conclude that short-term variations in dietary carbohydrate to fat ratios affect basal glucose metabolism in people with type 2 diabetes merely through modulation of the rate of glycogenolysis, without affecting insulin sensitivity of glucose metabolism.
Guo, Xiangyu; Yoshitomi, Hisae; Gao, Ming; Qin, Lingling; Duan, Ying; Sun, Wen; Xu, Tunhai; Xie, Peifeng; Zhou, Jingxin; Huang, Liansha; Liu, Tonghua
2013-03-01
Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) have been associated with insulin-resistance; however, the effective therapies in improving insulin sensitivity are limited. This study is aimed at investigating the effect of Guava Leaf (GL) extracts on glucose tolerance and insulin resistance in SHRSP.Z-Leprfa/Izm rats (SHRSP/ZF), a model of spontaneously metabolic syndrome. Male rats at 7 weeks of age were administered with vehicle water or treated by gavage with 2 g/kg GL extracts daily for six weeks, and their body weights, water and food consumption, glucose tolerance, and insulin resistance were measured. Compared with the controls, treatment with GL extracts did not modulate the amounts of water and food consumption, but significantly reduced the body weights at six weeks post treatment. Treatment with GL extracts did not alter the levels of fasting plasma glucose and insulin, but significantly reduced the levels of plasma glucose at 60 and 120 min post glucose challenge, also reduced the values of AUC and quantitative insulin sensitivity check index (QUICKI) at 42 days post treatment. Furthermore, treatment with GL extracts promoted IRS-1, AKT, PI3Kp85 expression, then IRS-1, AMKP, and AKT308, but not AKT473, phosphorylation, accompanied by increasing the ratios of membrane to total Glut 4 expression and adiponectin receptor 1 transcription in the skeletal muscles. These data indicated that GL extracts improved glucose metabolism and insulin sensitivity in the skeletal muscles of rats by modulating the insulin-related signaling.
2013-01-01
Background Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) have been associated with insulin-resistance; however, the effective therapies in improving insulin sensitivity are limited. This study is aimed at investigating the effect of Guava Leaf (GL) extracts on glucose tolerance and insulin resistance in SHRSP.Z-Leprfa/Izm rats (SHRSP/ZF), a model of spontaneously metabolic syndrome. Methods Male rats at 7 weeks of age were administered with vehicle water or treated by gavage with 2 g/kg GL extracts daily for six weeks, and their body weights, water and food consumption, glucose tolerance, and insulin resistance were measured. Results Compared with the controls, treatment with GL extracts did not modulate the amounts of water and food consumption, but significantly reduced the body weights at six weeks post treatment. Treatment with GL extracts did not alter the levels of fasting plasma glucose and insulin, but significantly reduced the levels of plasma glucose at 60 and 120 min post glucose challenge, also reduced the values of AUC and quantitative insulin sensitivity check index (QUICKI) at 42 days post treatment. Furthermore, treatment with GL extracts promoted IRS-1, AKT, PI3Kp85 expression, then IRS-1, AMKP, and AKT308, but not AKT473, phosphorylation, accompanied by increasing the ratios of membrane to total Glut 4 expression and adiponectin receptor 1 transcription in the skeletal muscles. Conclusions These data indicated that GL extracts improved glucose metabolism and insulin sensitivity in the skeletal muscles of rats by modulating the insulin-related signaling. PMID:23452929
CAMAC: A Unique Application with a Pocket Terminal.
1982-09-16
POCKET TERMINAL S. PERFORMING ORG. REPORT NUMSIER I. AUTWOR(o) S. CONTRACT OR GRANT NUMU41’e() A.D. Elmond S. PERFORMING ORGANIZATION NAME AND ADORIESS 10...port of any CAMAC crate. In addition to being a maintenance device, the HHTT is a " smart " device that can control operations in a CAMAC crate. The...system LSI 11/23 microprocessor through an Asynchronous Serial Port (ASP) interface module. This ASP interface consists of: 1) Crystal Clock 2) MIK -Bus
Depping, Reinhard; Oster, Henrik
2017-11-01
Sensing of environmental parameters is critically important for cells of metazoan organisms. Members of the superfamily of bHLH-PAS transcription factors, involved in oxygen sensing and circadian rhythm generation, are important players in such molecular pathways. The interplay between both networks includes a so far unknown factor, connecting PER2 (circadian clocks) to hypoxia sensing (HIF-1 α) to result in a more adapted state of homeostasis at the right time. © 2017 Federation of European Biochemical Societies.
NASA Technical Reports Server (NTRS)
Rohrbach, Scott O.; Kubalak, David A.; Gracey, Renee M.; Sabatke, Derek S.; Howard, Joseph M.; Telfer, Randal C.; Zielinski, Thomas P.
2016-01-01
This paper describes the critical instrument alignment terms associated with the six-degree of freedom alignment of each the Science Instrument (SI) in the James Webb Space Telescope (JWST), including focus, pupil shear, pupil clocking, and boresight. We present the test methods used during cryogenic-vacuum tests to directly measure the performance of each parameter, the requirements levied on each, and the impact of any violations of these requirements at the instrument and Observatory level.
Measurement Techniques for Clock Jitter
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin; Schlesinger, Adam
2012-01-01
NASA is in the process of modernizing its communications infrastructure to accompany the development of a Crew Exploration Vehicle (CEV) to replace the shuttle. With this effort comes the opportunity to infuse more advanced coded modulation techniques, including low-density parity-check (LDPC) codes that offer greater coding gains than the current capability. However, in order to take full advantage of these codes, the ground segment receiver synchronization loops must be able to operate at a lower signal-to-noise ratio (SNR) than supported by equipment currently in use.
CLOCK regulates mammary epithelial cell growth and differentiation
Crodian, Jennifer; Suárez-Trujillo, Aridany; Erickson, Emily; Weldon, Bethany; Crow, Kristi; Cummings, Shelby; Chen, Yulu; Shamay, Avi; Mabjeesh, Sameer J.; Plaut, Karen
2016-01-01
Circadian clocks influence virtually all physiological processes, including lactation. Here, we investigate the role of the CLOCK gene in regulation of mammary epithelial cell growth and differentiation. Comparison of mammary morphology in late-pregnant wild-type and ClockΔ19 mice, showed that gland development was negatively impacted by genetic loss of a functional timing system. To understand whether these effects were due, in part, to loss of CLOCK function in the gland, the mouse mammary epithelial cell line, HC11, was transfected with short hairpin RNA that targeted Clock (shClock). Cells transfected with shClock expressed 70% less Clock mRNA than wild-type (WT) HC11 cultures, which resulted in significantly depressed levels of CLOCK protein (P < 0.05). HC11 lines carrying shClock had four-fold higher growth rates (P < 0.05), and the percentage of cells in G1 phase was significantly higher (90.1 ± 1.1% of shClock vs. 71.3 ± 3.6% of WT-HC11) following serum starvation. Quantitative-PCR (qPCR) analysis showed shClock had significant effects (P < 0.0001) on relative expression levels of Ccnd1, Wee1, and Tp63. qPCR analysis of the effect of shClock on Fasn and Cdh1 expression in undifferentiated cultures and cultures treated 96 h with dexamethasone, insulin, and prolactin (differentiated) found levels were reduced by twofold and threefold, respectively (P < 0.05), in shClock line relative to WT cultures. Abundance of CDH1 and TP63 proteins were significantly reduced in cultures transfected with shClock. These data support how CLOCK plays a role in regulation of epithelial cell growth and differentiation in the mammary gland. PMID:27707717
Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol
NASA Technical Reports Server (NTRS)
Huang, Xiaowan; Singh, Anu; Smolka, Scott A.
2010-01-01
We use the UPPAAL model checker for Timed Automata to verify the Timing-Sync time-synchronization protocol for sensor networks (TPSN). The TPSN protocol seeks to provide network-wide synchronization of the distributed clocks in a sensor network. Clock-synchronization algorithms for sensor networks such as TPSN must be able to perform arithmetic on clock values to calculate clock drift and network propagation delays. They must be able to read the value of a local clock and assign it to another local clock. Such operations are not directly supported by the theory of Timed Automata. To overcome this formal-modeling obstacle, we augment the UPPAAL specification language with the integer clock derived type. Integer clocks, which are essentially integer variables that are periodically incremented by a global pulse generator, greatly facilitate the encoding of the operations required to synchronize clocks as in the TPSN protocol. With this integer-clock-based model of TPSN in hand, we use UPPAAL to verify that the protocol achieves network-wide time synchronization and is devoid of deadlock. We also use the UPPAAL Tracer tool to illustrate how integer clocks can be used to capture clock drift and resynchronization during protocol execution
Lee, Anna; Choi, Kyeong-Mi; Jung, Won-Beom; Jeong, Heejin; Kim, Ga-Yeong; Lee, Ju Hyun; Lee, Mi Kyeong; Hong, Jin Tae; Roh, Yoon-Seok; Sung, Sang-Hyun; Yoo, Hwan-Soo
2017-08-28
Type 2 diabetes is characterized by insulin resistance, which leads to increased blood glucose levels. Adipocytes are involved in the development of insulin resistance, resulting from the dysfunction of the insulin signaling pathway. In this study, we investigated whether meso -dihydroguaiaretic acid (MDGA) may modulate glucose uptake in adipocytes, and examined its mechanism of action. MDGA enhanced adipogenesis through up-regulation of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α in 3T3-L1 adipocytes partially differentiated with sub-optimal concentrations of insulin. MDGA also increased glucose uptake by stimulating expression and translocation of glucose transporter 4 (GLUT4) in adipocytes. These results suggest that MDGA may increase GLUT4 expression and its translocation by promoting insulin sensitivity, leading to enhanced glucose uptake.
Gliotransmission and Brain Glucose Sensing
Lanfray, Damien; Arthaud, Sébastien; Ouellet, Johanne; Compère, Vincent; Do Rego, Jean-Luc; Leprince, Jérôme; Lefranc, Benjamin; Castel, Hélène; Bouchard, Cynthia; Monge-Roffarello, Boris; Richard, Denis; Pelletier, Georges; Vaudry, Hubert; Tonon, Marie-Christine; Morin, Fabrice
2013-01-01
Hypothalamic glucose sensing is involved in the control of feeding behavior and peripheral glucose homeostasis, and glial cells are suggested to play an important role in this process. Diazepam-binding inhibitor (DBI) and its processing product the octadecaneuropeptide (ODN), collectively named endozepines, are secreted by astroglia, and ODN is a potent anorexigenic factor. Therefore, we investigated the involvement of endozepines in brain glucose sensing. First, we showed that intracerebroventricular administration of glucose in rats increases DBI expression in hypothalamic glial-like tanycytes. We then demonstrated that glucose stimulates endozepine secretion from hypothalamic explants. Feeding experiments indicate that the anorexigenic effect of central administration of glucose was blunted by coinjection of an ODN antagonist. Conversely, the hyperphagic response elicited by central glucoprivation was suppressed by an ODN agonist. The anorexigenic effects of centrally injected glucose or ODN agonist were suppressed by blockade of the melanocortin-3/4 receptors, suggesting that glucose sensing involves endozepinergic control of the melanocortin pathway. Finally, we found that brain endozepines modulate blood glucose levels, suggesting their involvement in a feedback loop controlling whole-body glucose homeostasis. Collectively, these data indicate that endozepines are a critical relay in brain glucose sensing and potentially new targets in treatment of metabolic disorders. PMID:23160530
Carnagarin, Revathy; Dharmarajan, Arun M; Dass, Crispin R
2015-12-05
Among all the varied actions of insulin, regulation of glucose homeostasis is the most critical and intensively studied. With the availability of glucose from nutrient metabolism, insulin action in muscle results in increased glucose disposal via uptake from the circulation and storage of excess, thereby maintaining euglycemia. This major action of insulin is executed by redistribution of the glucose transporter protein, GLUT4 from intracellular storage sites to the plasma membrane and storage of glucose in the form of glycogen which also involves modulation of actin dynamics that govern trafficking of all the signal proteins of insulin signal transduction. The cellular mechanisms responsible for these trafficking events and the defects associated with insulin resistance are largely enigmatic, and this review provides a consolidated overview of the various molecular mechanisms involved in insulin-dependent glucose homeostasis in skeletal muscle, as insulin resistance at this major peripheral site impacts whole body glucose homeostasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Olfactory stimulation modulates the blood glucose level in rats.
Tsuji, Tadataka; Tanaka, Susumu; Bakhshishayan, Sanam; Kogo, Mikihiko; Yamamoto, Takashi
2018-01-01
In both humans and animals, chemosensory stimuli, including odors and tastes, induce a variety of physiologic and mental responses related to energy homeostasis, such as glucose kinetics. The present study examined the importance of olfactory function in glucose kinetics following ingestion behavior in a simplified experimental scenario. We applied a conventional glucose tolerance test to rats with and without olfactory function and analyzed subsequent blood glucose (BG) curves in detail. The loss of olfactory input due to experimental damage to the olfactory mucosa induced a marked decrease in the area under the BG curve. Exposure to grapefruit odor and its main component, limonene, both of which activate the sympathetic nerves, before glucose loading also greatly depressed the BG curve. Pre-loading exposure to lavender odor, a parasympathetic activator, stabilized the BG level. These results suggest that olfactory function is important for proper glucose kinetics after glucose intake and that certain fragrances could be utilized as tools for controlling BG levels.
A clock-aided positioning algorithm based on Kalman model of GNSS receiver clock bias
NASA Astrophysics Data System (ADS)
Zhu, Lingyao; Li, Zishen; Yuan, Hong
2017-10-01
The modeling and forecasting of the receiver clock bias is of practical significance, including the improvement of positioning accuracy, etc. When the clock frequency of the receiver is stable, the model can be established according to the historical clock bias data and the clock bias of the following time can be predicted. For this, we adopted the Kalman model to predict the receiver clock bias based on the calculated clock bias data obtained from the laboratory via sliding mode. Meanwhile, the relevant clock-aided positioning algorithm was presented. The results show that: the Kalman model can be used in practical work; and that under the condition that only 3 satellite signal can be received, this clock-aided positioning results can meet the needs of civilian users, which improves the continuity of positioning in harsh conditions.
Variable frequency microprocessor clock generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branson, C.N.
A microprocessor-based system is described comprising: a digital central microprocessor provided with a clock input and having a rate of operation determined by the frequency of a clock signal input thereto; memory means operably coupled to the central microprocessor for storing programs respectively including a plurality of instructions and addressable by the central microprocessor; peripheral device operably connected to the central microprocessor, the first peripheral device being addressable by the central microprocessor for control thereby; a system clock generator for generating a digital reference clock signal having a reference frequency rate; and frequency rate reduction circuit means connected between themore » clock generator and the clock input of the central microprocessor for selectively dividing the reference clock signal to generate a microprocessor clock signal as an input to the central microprocessor for clocking the central microprocessor.« less
Entanglement of quantum clocks through gravity
NASA Astrophysics Data System (ADS)
Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav
2017-03-01
In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.
Entanglement of quantum clocks through gravity.
Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav
2017-03-21
In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.
Geopotential measurements with synchronously linked optical lattice clocks
NASA Astrophysics Data System (ADS)
Takano, Tetsushi; Takamoto, Masao; Ushijima, Ichiro; Ohmae, Noriaki; Akatsuka, Tomoya; Yamaguchi, Atsushi; Kuroishi, Yuki; Munekane, Hiroshi; Miyahara, Basara; Katori, Hidetoshi
2016-10-01
According to Einstein's theory of relativity, the passage of time changes in a gravitational field. On Earth, raising a clock by 1 cm increases its apparent tick rate by 1.1 parts in 1018, allowing chronometric levelling through comparison of optical clocks. Here, we demonstrate such geopotential measurements by determining the height difference of master and slave clocks separated by 15 km with an uncertainty of 5 cm. A subharmonic of the master clock laser is delivered through a telecom fibre to synchronously operate the distant clocks. Clocks operated under such phase coherence reject clock laser noise and facilitate proposals for linking clocks and interferometers. Taken over half a year, 11 measurements determine the fractional frequency difference between the two clocks to be 1,652.9(5.9) × 10-18, consistent with an independent measurement by levelling and gravimetry. Our system demonstrates a building block for an internet of clocks, which may constitute ‘quantum benchmarks’, serving as height references with dynamic responses.
Oscillator networks with tissue-specific circadian clocks in plants.
Inoue, Keisuke; Araki, Takashi; Endo, Motomu
2017-09-08
Many organisms rely on circadian clocks to synchronize their biological processes with the 24-h rotation of the earth. In mammals, the circadian clock consists of a central clock in the suprachiasmatic nucleus and peripheral clocks in other tissues. The central clock is tightly coupled to synchronize rhythmicity and can organize peripheral clocks through neural and hormonal signals. In contrast to mammals, it has long been assumed that the circadian clocks in each plant cell is able to be entrained by external light, and they are only weakly coupled to each other. Recently, however, several reports have demonstrated that plants have unique oscillator networks with tissue-specific circadian clocks. Here, we introduce our current view regarding tissue-specific properties and oscillator networks of plant circadian clocks. Accumulating evidence suggests that plants have multiple oscillators, which show distinct properties and reside in different tissues. A direct tissue-isolation technique and micrografting have clearly demonstrated that plants have hierarchical oscillator networks consisting of multiple tissue-specific clocks. Copyright © 2017. Published by Elsevier Ltd.
Entanglement of quantum clocks through gravity
Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav
2017-01-01
In general relativity, the picture of space–time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass–energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks. PMID:28270623
Mailloux, Ryan J; Harper, Mary-Ellen
2010-07-01
Reduced nicotinamide adenine dinucleotide (NADPH) is a functionally important metabolite required to support numerous cellular processes. However, despite the identification of numerous NADPH-producing enzymes, the mechanisms underlying how the organellar pools of NADPH are maintained remain elusive. Here, we have identified glucose-6-phosphate dehydrogenase (G6PDH) as an important source of NADPH in mitochondria. Activity analysis, submitochondrial fractionation, fluorescence microscopy, and protease sensitivity assays revealed that G6PDH is localized to the mitochondrial matrix. 6-ANAM, a specific G6PDH inhibitor, depleted mitochondrial NADPH pools and increased oxidative stress revealing the importance of G6PDH in NADPH maintenance. We also show that glucose availability and differences in metabolic state modulate the enzymatic sources of NADPH in mitochondria. Indeed, cells cultured in high glucose (HG) not only adopted a glycolytic phenotype but also relied heavily on matrix-associated G6PDH as a source of NADPH. In contrast, cells exposed to low-glucose (LG) concentrations, which displayed increased oxygen consumption, mitochondrial metabolic efficiency, and decreased glycolysis, relied predominantly on isocitrate dehydrogenase (ICDH) as the principal NADPH-producing enzyme in the mitochondria. Culturing glycolytic cells in LG for 48 h decreased G6PDH and increased ICDH protein levels in the mitochondria, further pointing to the regulatory role of glucose. 2-Deoxyglucose treatment also prevented the increase of mitochondrial G6PDH in response to HG. The role of glucose in regulating enzymatic sources of mitochondrial NADPH pool maintenance was confirmed using human myotubes from obese adults with a history of type 2 diabetes mellitus (post-T2DM). Myotubes from post-T2DM participants failed to increase mitochondrial G6PDH in response to HG in contrast to mitochondria in myotubes from control participants (non-T2DM). Hence, we not only identified a matrix-associated G6PDH but also provide evidence that metabolic state/glucose availability modulate enzymatic sources of NADPH.
Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.
Magoń, A; Pyda, M
2011-11-29
The thermal behaviors of α-D-glucose in the melting and glass transition regions were examined utilizing the calorimetric methods of standard differential scanning calorimetry (DSC), standard temperature-modulated differential scanning calorimetry (TMDSC), quasi-isothermal temperature-modulated differential scanning calorimetry (quasi-TMDSC), and thermogravimetric analysis (TGA). The quantitative thermal analyses of experimental data of crystalline and amorphous α-D-glucose were performed based on heat capacities. The total, apparent and reversingheat capacities, and phase transitions were evaluated on heating and cooling. The melting temperature (T(m)) of a crystalline carbohydrate such as α-D-glucose, shows a heating rate dependence, with the melting peak shifted to lower temperature for a lower heating rate, and with superheating of around 25K. The superheating of crystalline α-D-glucose is observed as shifting the melting peak for higher heating rates, above the equilibrium melting temperature due to of the slow melting process. The equilibrium melting temperature and heat of fusion of crystalline α-D-glucose were estimated. Changes of reversing heat capacity evaluated by TMDSC at glass transition (T(g)) of amorphous and melting process at T(m) of fully crystalline α-D-glucose are similar. In both, the amorphous and crystalline phases, the same origin of heat capacity changes, in the T(g) and T(m) area, are attributable to molecular rotational motion. Degradation occurs simultaneously with the melting process of the crystalline phase. The stability of crystalline α-D-glucose was examined by TGA and TMDSC in the melting region, with the degradation shown to be resulting from changes of mass with temperature and time. The experimental heat capacities of fully crystalline and amorphous α-D-glucose were analyzed in reference to the solid, vibrational, and liquid heat capacities, which were approximated based on the ATHAS scheme and Data Bank. Copyright © 2011 Elsevier Ltd. All rights reserved.
Monoaminergic control of cellular glucose utilization by glycogenolysis in neocortex and hippocampus
DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia
2016-01-01
Brainstem nuclei are the principal sites of monoamine (MA) innervation to major forebrain structures. In the cortical grey matter, increased secretion of MA neuromodulators occurs in response to a wealth of environmental and homeostatic challenges, whose onset is associated with rapid, preparatory changes in neural activity as well as with increases in energy metabolism. Blood-borne glucose is the main substrate for energy production in the brain. Once entered the tissue, interstitial glucose is equally accessible to neurons and astrocytes, the two cell types accounting for most of cellular volume and energy metabolism in neocortex and hippocampus. Astrocytes also store substantial amounts of glycogen, but non-stimulated glycogen turnover is very small. The rate of cellular glucose utilization in the brain is largely determined by hexokinase, which under basal conditions is more than 90% inhibited by its product glucose-6-phosphate (Glc-6-P). During rapid increases in energy demand, glycogen is a primary candidate in modulating the intracellular level of Glc-6-P, which can occur only in astrocytes. Glycogenolysis can produce Glc-6-P at a rate higher than uptake and phosphorylation of glucose. MA neurotransmitter are released extrasinaptically by brainstem neurons projecting to neocortex and hippocampus, thus activating MA receptors located on both neuronal and astrocytic plasma membrane. Importantly, MAs are glycogenolytic agents and thus they are exquisitely suitable for regulation of astrocytic Glc-6-P concentration, upstream substrate flow through hexokinase and hence cellular glucose uptake. Conforming to such mechanism, Gerald A. Dienel and Nancy F. Cruz recently suggested that activation of noradrenergic locus coeruleus might reversibly block astrocytic glucose uptake by stimulating glycogenolysis in these cells, thereby anticipating the rise in glucose need by active neurons. In this paper, we further develop the idea that the whole monoaminergic system modulates both function and metabolism of forebrain regions in a manner mediated by glycogen mobilization in astrocytes. PMID:26168779
DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia
2015-12-01
Brainstem nuclei are the principal sites of monoamine (MA) innervation to major forebrain structures. In the cortical grey matter, increased secretion of MA neuromodulators occurs in response to a wealth of environmental and homeostatic challenges, whose onset is associated with rapid, preparatory changes in neural activity as well as with increases in energy metabolism. Blood-borne glucose is the main substrate for energy production in the brain. Once entered the tissue, interstitial glucose is equally accessible to neurons and astrocytes, the two cell types accounting for most of cellular volume and energy metabolism in neocortex and hippocampus. Astrocytes also store substantial amounts of glycogen, but non-stimulated glycogen turnover is very small. The rate of cellular glucose utilization in the brain is largely determined by hexokinase, which under basal conditions is more than 90 % inhibited by its product glucose-6-phosphate (Glc-6-P). During rapid increases in energy demand, glycogen is a primary candidate in modulating the intracellular level of Glc-6-P, which can occur only in astrocytes. Glycogenolysis can produce Glc-6-P at a rate higher than uptake and phosphorylation of glucose. MA neurotransmitter are released extrasinaptically by brainstem neurons projecting to neocortex and hippocampus, thus activating MA receptors located on both neuronal and astrocytic plasma membrane. Importantly, MAs are glycogenolytic agents and thus they are exquisitely suitable for regulation of astrocytic Glc-6-P concentration, upstream substrate flow through hexokinase and hence cellular glucose uptake. Conforming to such mechanism, Gerald A. Dienel and Nancy F. Cruz recently suggested that activation of noradrenergic locus coeruleus might reversibly block astrocytic glucose uptake by stimulating glycogenolysis in these cells, thereby anticipating the rise in glucose need by active neurons. In this paper, we further develop the idea that the whole monoaminergic system modulates both function and metabolism of forebrain regions in a manner mediated by glycogen mobilization in astrocytes.
Ferguson, Jane F; Shah, Rhia Y; Shah, Rachana; Mehta, Nehal N; Rickels, Michael R; Reilly, Muredach P
2015-04-01
Insulin resistance is a risk factor for type 2 diabetes, and is associated with inflammatory cardiometabolic disease. Given differences between African ancestry (AA) and European ancestry (EA) in the epidemiology of type 2 diabetes as well as in response to inflammatory stress, we investigated potential race differences in glucose homeostasis responses during experimental endotoxemia in humans. Healthy volunteers (age 18-45 years, BMI 18-30 kg/m(2), 47% female, African-ancestry (AA, n=42) and European-ancestry (EA, n=106)) were recruited as part of the Genetics of Evoked Responses to Niacin and Endotoxemia (GENE) Study. Subjects underwent an inpatient endotoxin challenge (1 ng/kg LPS) and two frequently-sampled intravenous glucose tolerance tests (FSIGTT). Insulin and glucose values obtained during FSIGTT pre- and 24-hours post-LPS were analyzed using the minimal model. FSIGTT derived insulin sensitivity index (SI), disposition index (DI) and glucose effectiveness (SG) decreased significantly following LPS (p<0.0001) while the acute insulin response to glucose (AIR(g)) increased (p<0.0001). Although expected race differences were observed in glucose homeostasis parameters at baseline prior to LPS e.g., lower SI (2.5 vs. 4.1 μU/L/min, p<0.0001) but higher AIR(g) (median 848 vs. 290 μU/L/min, p<0.0001) in AA vs. EA, the changes in glucose homeostasis responses to LPS were directionally and proportionally consistent across race e.g., SI median -35% in EA and -29% in AA and AIR(g) median +17% in EA and +26% in AA. Both EA and AA samples modulated glucose and insulin homeostasis similarly during endotoxemia. Race differences in response to environmental inflammatory stress are unlikely to be a substantial contributor to the observed difference in diabetes incidence and complications between EA and AA. Copyright © 2015 Elsevier Inc. All rights reserved.
Choudhary, Alpa; Modak, Arnab; Apte, Shree K.
2017-01-01
ABSTRACT The effective elimination of xenobiotic pollutants from the environment can be achieved by efficient degradation by microorganisms even in the presence of sugars or organic acids. Soil isolate Pseudomonas putida CSV86 displays a unique ability to utilize aromatic compounds prior to glucose. The draft genome and transcription analyses revealed that glucose uptake and benzoate transport and metabolism genes are clustered at the glc and ben loci, respectively, as two distinct operons. When grown on glucose plus benzoate, CSV86 displayed significantly higher expression of the ben locus in the first log phase and of the glc locus in the second log phase. Kinetics of substrate uptake and metabolism matched the transcription profiles. The inability of succinate to suppress benzoate transport and metabolism resulted in coutilization of succinate and benzoate. When challenged with succinate or benzoate, glucose-grown cells showed rapid reduction in glc locus transcription, glucose transport, and metabolic activity, with succinate being more effective at the functional level. Benzoate and succinate failed to interact with or inhibit the activities of glucose transport components or metabolic enzymes. The data suggest that succinate and benzoate suppress glucose transport and metabolism at the transcription level, enabling P. putida CSV86 to preferentially metabolize benzoate. This strain thus has the potential to be an ideal host to engineer diverse metabolic pathways for efficient bioremediation. IMPORTANCE Pseudomonas strains play an important role in carbon cycling in the environment and display a hierarchy in carbon utilization: organic acids first, followed by glucose, and aromatic substrates last. This limits their exploitation for bioremediation. This study demonstrates the substrate-dependent modulation of ben and glc operons in Pseudomonas putida CSV86, wherein benzoate suppresses glucose transport and metabolism at the transcription level, leading to preferential utilization of benzoate over glucose. Interestingly, succinate and benzoate are cometabolized. These properties are unique to this strain compared to other pseudomonads and open up avenues to unravel novel regulatory processes. Strain CSV86 can serve as an ideal host to engineer and facilitate efficient removal of recalcitrant pollutants even in the presence of simpler carbon sources. PMID:28733285
Sheng, Zhenyu; Santiago, Ammy M; Thomas, Mark P; Routh, Vanessa H
2014-09-01
Lateral hypothalamic area (LHA) orexin neurons modulate reward-based feeding by activating ventral tegmental area (VTA) dopamine (DA) neurons. We hypothesize that signals of peripheral energy status influence reward-based feeding by modulating the glucose sensitivity of LHA orexin glucose-inhibited (GI) neurons. This hypothesis was tested using electrophysiological recordings of LHA orexin-GI neurons in brain slices from 4 to 6week old male mice whose orexin neurons express green fluorescent protein (GFP) or putative VTA-DA neurons from C57Bl/6 mice. Low glucose directly activated ~60% of LHA orexin-GFP neurons in both whole cell and cell attached recordings. Leptin indirectly reduced and ghrelin directly enhanced the activation of LHA orexin-GI neurons by glucose decreases from 2.5 to 0.1mM by 53±12% (n=16, P<0.001) and 41±24% (n=8, P<0.05), respectively. GABA or neurotensin receptor blockade prevented leptin's effect on glucose sensitivity. Fasting increased activation of LHA orexin-GI neurons by decreased glucose, as would be predicted by these hormonal effects. We also evaluated putative VTA-DA neurons in a novel horizontal slice preparation containing the LHA and VTA. Decreased glucose increased the frequency of spontaneous excitatory post-synaptic currents (sEPSCs; 125 ± 40%, n=9, P<0.05) and action potentials (n=9; P<0.05) in 45% (9/20) of VTA DA neurons. sEPSCs were completely blocked by AMPA and NMDA glutamate receptor antagonists (CNQX 20 μM, n=4; APV 20μM, n=4; respectively), demonstrating that these sEPSCs were mediated by glutamatergic transmission onto VTA DA neurons. Orexin-1 but not 2 receptor antagonism with SB334867 (10μM; n=9) and TCS-OX2-29 (2μM; n=5), respectively, blocks the effects of decreased glucose on VTA DA neurons. Thus, decreased glucose increases orexin-dependent excitatory glutamate neurotransmission onto VTA DA neurons. These data suggest that the glucose sensitivity of LHA orexin-GI neurons links metabolic state and reward-based feeding. Copyright © 2014 Elsevier Inc. All rights reserved.
Electromagnetic synchronisation of clocks with finite separation in a rotating system
NASA Astrophysics Data System (ADS)
Cohen, J. M.; Moses, H. E.; Rosenblum, A.
1984-11-01
For clocks on the vertices of a triangle, it is shown that clock synchronisation using electromagnetic signals between finitely spaced clocks in a rotating frame leads to the same synchronization error as a closely spaced band of clocks along the same light path. In addition, the above result is generalized to n equally spaced clocks.
Biological timing and the clock metaphor: oscillatory and hourglass mechanisms.
Rensing, L; Meyer-Grahle, U; Ruoff, P
2001-05-01
Living organisms have developed a multitude of timing mechanisms--"biological clocks." Their mechanisms are based on either oscillations (oscillatory clocks) or unidirectional processes (hourglass clocks). Oscillatory clocks comprise circatidal, circalunidian, circadian, circalunar, and circannual oscillations--which keep time with environmental periodicities--as well as ultradian oscillations, ovarian cycles, and oscillations in development and in the brain, which keep time with biological timescales. These clocks mainly determine time points at specific phases of their oscillations. Hourglass clocks are predominantly found in development and aging and also in the brain. They determine time intervals (duration). More complex timing systems combine oscillatory and hourglass mechanisms, such as the case for cell cycle, sleep initiation, or brain clocks, whereas others combine external and internal periodicities (photoperiodism, seasonal reproduction). A definition of a biological clock may be derived from its control of functions external to its own processes and its use in determining temporal order (sequences of events) or durations. Biological and chemical oscillators are characterized by positive and negative feedback (or feedforward) mechanisms. During evolution, living organisms made use of the many existing oscillations for signal transmission, movement, and pump mechanisms, as well as for clocks. Some clocks, such as the circadian clock, that time with environmental periodicities are usually compensated (stabilized) against temperature, whereas other clocks, such as the cell cycle, that keep time with an organismic timescale are not compensated. This difference may be related to the predominance of negative feedback in the first class of clocks and a predominance of positive feedback (autocatalytic amplification) in the second class. The present knowledge of a compensated clock (the circadian oscillator) and an uncompensated clock (the cell cycle), as well as relevant models, are briefly re viewed. Hourglass clocks are based on linear or exponential unidirectional processes that trigger events mainly in the course of development and aging. An important hourglass mechanism within the aging process is the limitation of cell division capacity by the length of telomeres. The mechanism of this clock is briefly reviewed. In all clock mechanisms, thresholds at which "dependent variables" are triggered play an important role.
The Clock mutant mouse is a novel experimental model for nocturia and nocturnal polyuria.
Ihara, Tatsuya; Mitsui, Takahiko; Nakamura, Yuki; Kira, Satoru; Miyamoto, Tatsuya; Nakagomi, Hiroshi; Sawada, Norifumi; Hirayama, Yuri; Shibata, Keisuke; Shigetomi, Eiji; Shinozaki, Yoichi; Yoshiyama, Mitsuharu; Andersson, Karl-Erik; Nakao, Atsuhito; Takeda, Masayuki; Koizumi, Schuichi
2017-04-01
The pathophysiologies of nocturia (NOC) and nocturnal polyuria (NP) are multifactorial and their etiologies remain unclear in a large number of patients. Clock genes exist in most cells and organs, and the products of Clock regulate circadian rhythms as representative clock genes. Clock genes regulate lower urinary tract function, and a newly suggested concept is that abnormalities in clock genes cause lower urinary tract symptoms. In the present study, we investigated the voiding behavior of Clock mutant (Clock Δ19/Δ19 ) mice in order to determine the effects of clock genes on NOC/NP. Male C57BL/6 mice aged 8-12 weeks (WT) and male C57BL/6 Clock Δ19/Δ19 mice aged 8 weeks were used. They were bred under 12 hr light/dark conditions for 2 weeks and voiding behavior was investigated by measuring water intake volume, urine volume, urine volume/void, and voiding frequency in metabolic cages in the dark and light periods. No significant differences were observed in behavior patterns between Clock Δ19/Δ19 and WT mice. Clock Δ19/Δ19 mice showed greater voiding frequencies and urine volumes during the sleep phase than WT mice. The diurnal change in urine volume/void between the dark and light periods in WT mice was absent in Clock Δ19/Δ19 mice. Additionally, functional bladder capacity was significantly lower in Clock Δ19/Δ19 mice than in WT mice. We demonstrated that Clock Δ19/Δ19 mice showed the phenotype of NOC/NP. The Clock Δ19/Δ19 mouse may be used as an animal model of NOC and NP. Neurourol. Urodynam. 36:1034-1038, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring
NASA Technical Reports Server (NTRS)
Pollock, Julie; Oliver, Brett; Brickner, Christopher
2012-01-01
A document discusses the utilization of embedded clocks inside of operating network data links as an auxiliary clock source to satisfy local oscillator monitoring requirements. Modem network interfaces, typically serial network links, often contain embedded clocking information of very tight precision to recover data from the link. This embedded clocking data can be utilized by the receiving device to monitor the local oscillator for tolerance to required specifications, often important in high-integrity fault-tolerant applications. A device can utilize a received embedded clock to determine if the local or the remote device is out of tolerance by using a single link. The local device can determine if it is failing, assuming a single fault model, with two or more active links. Network fabric components, containing many operational links, can potentially determine faulty remote or local devices in the presence of multiple faults. Two methods of implementation are described. In one method, a recovered clock can be directly used to monitor the local clock as a direct replacement of an external local oscillator. This scheme is consistent with a general clock monitoring function whereby clock sources are clocking two counters and compared over a fixed interval of time. In another method, overflow/underflow conditions can be used to detect clock relationships for monitoring. These network interfaces often provide clock compensation circuitry to allow data to be transferred from the received (network) clock domain to the internal clock domain. This circuit could be modified to detect overflow/underflow conditions of the buffering required and report a fast or slow receive clock, respectively.
Computer Aided Wirewrap Interconnect.
1980-11-01
ECLI (180 MHz System Clock Generated via Ring Oscillator) Clock Waveform: Synchronous Phase 0 Output Binary Counter: Power Plane Noie: (Loaded) LSB...LOGIC (ECL) (185 MHz System Clock Generated via Ring Oscillator) Clock Woveform Synchronous Phase 0 Output Binary Counter- Power Plane Voise (Loaded...High Speed .. ......... . 98 Clock Signals Into Logic Panels in a Multiboard System On-Eoard Clock Distribution Via Fanout .... ......... 102 Through
Molecular cogs of the insect circadian clock.
Shirasu, Naoto; Shimohigashi, Yasuyuki; Tominaga, Yoshiya; Shimohigashi, Miki
2003-08-01
During the last five years, enormous progress has been made in understanding the molecular basis of circadian systems, mainly by molecular genetic studies using the mouse and fly. Extensive evidence has revealed that the core clock machinery involves "clock genes" and "clock proteins" functioning as molecular cogs. These participate in transcriptional/translational feedback loops and many homologous clock-components in the fruit fly Drosophila are also expressed in mammalian clock tissues with circadian rhythms. Thus, the mechanisms of the central clock seem to be conserved across animal kingdom. However, some recent studies imply that the present widely accepted molecular models of circadian clocks may not always be supported by the experimental evidence.
Circadian clock gene plays a key role on ovarian cycle and spontaneous abortion.
Li, Ruiwen; Cheng, Shuting; Wang, Zhengrong
2015-01-01
Circadian locomotor output cycles protein kaput (CLOCK) plays a key role in maintaining circadian rhythms and activation of downstream elements. However, its function on human female reproductive system remains unknown. To investigate the potential role of CLOCK, CLOCK-shRNAs were transfected into mouse 129 ES cells or injected into the ovaries of adult female mice. Western blotting was utilized to analyze the protein interactions and flow cytometry was used to assess apoptosis. The expression of CLOCK peaked at the 6th week in the healthy fetuses. However, an abnormal expression of CLOCK was detected in fetuses from spontaneous miscarriage. To determine the effect of CLOCK on female fertility, a small hairpin RNA (shRNA) strategy was used to specifically knockdown the CLOCK gene expression in vitro and in vivo. Knockdown of CLOCK induced apoptosis in mouse embryonic stem (mES) cells and inhibited the proliferation in mES cells in vitro. CLOCK knockdown also led to decreased release of oocytes and smaller litter size compared with control in vivo. Collectively, theses findings indicate that CLOCK plays an important role in fertility and that the CLOCK knockdown leads to reduction in reproduction and increased miscarriage risk. © 2015 S. Karger AG, Basel.
Injectable nano-network for glucose-mediated insulin delivery.
Gu, Zhen; Aimetti, Alex A; Wang, Qun; Dang, Tram T; Zhang, Yunlong; Veiseh, Omid; Cheng, Hao; Langer, Robert S; Anderson, Daniel G
2013-05-28
Diabetes mellitus, a disorder of glucose regulation, is a global burden affecting 366 million people across the world. An artificial "closed-loop" system able to mimic pancreas activity and release insulin in response to glucose level changes has the potential to improve patient compliance and health. Herein we develop a glucose-mediated release strategy for the self-regulated delivery of insulin using an injectable and acid-degradable polymeric network. Formed by electrostatic interaction between oppositely charged dextran nanoparticles loaded with insulin and glucose-specific enzymes, the nanocomposite-based porous architecture can be dissociated and subsequently release insulin in a hyperglycemic state through the catalytic conversion of glucose into gluconic acid. In vitro insulin release can be modulated in a pulsatile profile in response to glucose concentrations. In vivo studies validated that these formulations provided improved glucose control in type 1 diabetic mice subcutaneously administered with a degradable nano-network. A single injection of the developed nano-network facilitated stabilization of the blood glucose levels in the normoglycemic state (<200 mg/dL) for up to 10 days.
Banerjee, Dithi; Bloom, Amanda L M; Panepinto, John C
2016-10-01
The pathogenic fungus Cryptococcus neoformans must adapt to glucose-limited conditions in the lung and glucose replete conditions upon dissemination to the brain. We report that glucose controls ribosome biogenesis and translation by modulating mRNA decay through a balance of PKA and Hog1 signalling. Glucose signalling through PKA stabilized ribosomal protein (RP) mRNAs whereas glucose starvation destabilized RP transcripts through Hog1. Glucose starvation-induced oxidative stress response genes, and treatment of glucose-fed cells with reactive oxygen species (ROS) generating compounds repressed RP transcripts, both of which were dependent on Hog1. Stabilization of RP transcripts led to retention of polysomes in a hog1Δ mutant, whereas stabilization of RP transcripts by cyclic AMP did not affect translation repression, suggesting that Hog1 alone signals translation repression. In sum, this work describes a novel antagonism between PKA and Hog1 controlling ribosome biogenesis via mRNA stability in response to glucose availability in this important human pathogen. © 2016 John Wiley & Sons Ltd.