NASA Astrophysics Data System (ADS)
Johnson, S.; Geissman, J. W.; Katopody, D. T.; Kerstetter, S. R.; Oldow, J. S.
2016-12-01
The northern part of the southern Walker Lane experienced three extensional events from the late Oligocene to the Holocene: 1) late Oligocene to early Miocene WNW and ENE trending half-grabens, 2) Late Miocene to early Pliocene high-magnitude extension on a low-angle normal fault, and 3) contemporary transtensional deformation that initiated at 4 Ma. Each of the extensional events controlled deposition of synextensional strata. What is less understood is the timing and magnitude of vertical axis rotation and its relationship to each of the three extensional events. As part of a recent and ongoing multidisciplinary study to better understand the complex nature and history of these extensional events we present preliminary paleomagnetic data from 55 sites in Miocene extrusive igneous rocks which record that clockwise vertical-axis rotation played a significant role in accommodating displacement in these systems. Recently refined stratigraphic, geochronologic, and structural controls have allowed the detailed paleomagnetic sampling required for this study. We seek to provide better constraints on timing, areal extent, and distribution of vertical axis rotation to answer how vertical axis rotation interacted with these extensional events. Consistent with past studies, we have recognized 20-30 degrees of clockwise vertical-axis rotation distributed heterogeneously throughout the study area. However, clockwise vertical-axis rotations are no longer occurring in this region as evidenced by modern geodetic velocity fields. The accommodation of displacement by vertical axis rotations in this region likely ceased by early Pliocene to late Miocene when the structural step-over migrated to the northwest to its present day manifestation in the Mina Deflection. Anisotropy of magnetic susceptibility (AMS), used as a proxy for flow direction in igneous extrusive rocks, provides evidence that at least one late Oligocene-early Miocene half-grabens acted as near-source depositional centers concurrent with extension.
NASA Astrophysics Data System (ADS)
Silenko, Alexander J.
2017-12-01
We consider a proton electric-dipole-moment experiment in an all-electric storage ring when the spin is frozen and local longitudinal and vertical electric fields alternate. In this experiment, the geometric (Berry) phases are very important. Due to the these phases, the spin rotates about the radial axis. The corresponding systematic error is rather important while it can be canceled with clockwise and counterclockwise beams. The geometric phases also lead to the spin rotation about the radial axis. This effect can be canceled with clockwise and counterclockwise beams as well. The sign of the azimuthal component of the angular velocity of the spin precession depends on the starting point where the spin orientation is perfect. The radial component of this quantity keeps its value and sign for each starting point. When the longitudinal and vertical electric fields are joined in the same sections without any alternation, the systematic error due to the geometric phases does not appear but another systematic effect of the spin rotation about the azimuthal axis takes place. It has opposite signs for clockwise and counterclockwise beams.
NASA Astrophysics Data System (ADS)
Bradley, Kyle E.; Vassilakis, Emmanuel; Hosa, Aleksandra; Weiss, Benjamin P.
2013-01-01
New paleomagnetic data from Early Miocene to Pliocene terrestrial sedimentary and volcanic rocks in Central Greece constrain the history of vertical-axis rotation along the central part of the western limb of the Aegean arc. The present-day pattern of rapid block rotation within a broad zone of distributed deformation linking the right-lateral North Anatolian and Kephalonia continental transform faults initiated after Early Pliocene time, resulting in a uniform clockwise rotation of 24.3±6.5° over a region >250 km long and >150 km wide encompassing Central Greece and the western Cycladic archipelago. Because the published paleomagnetic dataset requires clockwise rotations of >50° in Western Greece after ˜17 Ma, while our measurements resolve no vertical-axis rotation of Central Greece between ˜15 Ma and post-Early Pliocene time, a large part of the clockwise rotation of Western Greece must have occurred during the main period of contraction within the external thrust belt of the Ionian Zone between ˜17 and ˜15 Ma. Pliocene initiation of rapid clockwise rotation in Central and Western Greece reflects the development of the North Anatolia-Kephalonia Fault system within the previously extended Aegean Sea region, possibly in response to entry of dense oceanic lithosphere of the Ionian Sea into the Hellenic subduction zone and consequent accelerated slab rollback. The development of the Aegean geometric arc therefore occurred in two short-duration pulses characterized by rapid rotation and strong regional deformation.
NASA Astrophysics Data System (ADS)
Tetreault, J. L.; Jones, C. H.
2007-12-01
The Coalinga Anticline is a one of a series of fault-related folds in the central Coast Ranges, California, oriented subparallel to the San Andreas Fault (SAF). The development of the Central Coast Range anticlines can be related to the relative strength of the SAF. If positing a weak SAF, fault-normal slip is partitioned to these subparallel compressional folds. If the SAF is strong, these folds rotated to their current orientation during wrenching. Another possibility is that the Coast Range anticlines are accommodating oblique-slip partitioned from the SAF. The 1983 Coalinga earthquake does not have a purely thrusting focal mechanism (rake =100°), reflecting the likelihood that oblique slip is being partitioned to this anticline, even though surface expression of fold-axis-parallel slip has not been identified. Paleomagnetic vertical-axis rotations and focal mechanism strain inversions were used to quantify oblique-slip deformation within the Coalinga Anticline. Clockwise rotations of 10° to 16° are inferred from paleomagnetic sites located in late Miocene to Pliocene beds on the steeply dipping forelimb and backlimb of the fold. Significant vertical-axis rotations are not identified in the paleomagnetic sites within the nose of the anticline. The varying vertical axis rotations conflict with wrench tectonics (strong SAF) as the mechanism of fold development. We use focal mechanisms inversions of earthquakes that occurred between 1983 to 2006 to constrain the seismogenic strain within the fold that presumably help to build it over time. In the upper 7 km, the principal shortening axis is oriented N37E to N40E, statistically indistinguishable from normal to the fold (N45E). The right-lateral shear in the folded strata above the fault tip, evident from the paleomagnetically determined clockwise vertical-axis rotations, is being accommodated aseismically or interseismically. In the region between 7 and 11 km, where the mainshock occurred, the shortening direction ranges from oblique to normal to the fold trend. Our results show that right-lateral slip is resolved along the main fault plane and not distributed to the smaller aftershocks at depths of 7-11 km. The principal strain axes and clockwise paleomagnetic rotations indicate that the Coalinga Anticline is accommodating minor right-lateral shearing and thus shares some of the strike-slip motion of the San Andreas system.
The horizontal and vertical cervico-ocular reflexes of the rabbit.
Barmack, N H; Nastos, M A; Pettorossi, V E
1981-11-16
Horizontal and vertical cervico-ocular reflexes of the rabbit (HCOR, VCOR) were evoked by sinusoidal oscillation of the body about the vertical and longitudinal axes while the head was fixed. These reflexes were studied over a frequency range of 0.005-0.800 Hz and at stimulus amplitudes of +/- 10 degrees. When the body of the rabbit was rotated horizontally clockwise around the fixed head, clockwise conjugate eye movements were evoked. When the body was rotated about the longitudinal axis onto the right side, the right eye rotated down and the left eye rotated up. The mean gain of the HCOR (eye velocity/body velocity) rose from 0.21 and 0.005 Hz to 0.27 at 0.020 Hz and then declined to 0.06 at 0.3Hz. The gain of the VCOR was less than the gain of the HCOR by a factor of 2-3. The HCOR was measured separately and in combination with the horizontal vestibulo-ocular reflex (HVOR). These reflexes combine linearly. The relative movements of the first 3 cervical vertebrae during stimulation of the HCOR and VCOR were measured. For the HCOR, the largest angular displacement (74%) occurs between C1 and C2. For the VCOR, the largest relative angular displacement (45%) occurs between C2 and C3. Step horizontal clockwise rotation of the head and body (HVOR) evoked low velocity counterclockwise eye movements followed by fast clockwise (resetting) eye movements. Step horizontal clockwise rotation of the body about the fixed head (HCOR) evoked low velocity clockwise eye movements which were followed by fast clockwise eye movements. Step horizontal clockwise rotation of the head about the fixed body (HCOR + HVOR) evoked low velocity counterclockwise eye movements which were not interrupted by fast clockwise eye movements. These data provide further evidence for a linear combination of independent HCOR and HVOR signals.
2017-01-01
PURPOSE The aim of this study was to determine the influence of long base lengths of a fixed partial denture (FPD) to rotational resistance with variation of vertical wall angulation. MATERIALS AND METHODS Trigonometric calculations were done to determine the maximum wall angle needed to resist rotational displacement of an experimental-FPD model in 2-dimensional plane. The maximum wall angle calculation determines the greatest taper that resists rotation. Two different axes of rotation were used to test this model with five vertical abutment heights of 3-, 3.5-, 4-, 4.5-, and 5-mm. The two rotational axes were located on the mesial-side of the anterior abutment and the distal-side of the posterior abutment. Rotation of the FPD around the anterior axis was counter-clockwise, Posterior-Anterior (P-A) and clockwise, Anterior-Posterior (A-P) around the distal axis in the sagittal plane. RESULTS Low levels of vertical wall taper, ≤ 10-degrees, were needed to resist rotational displacement in all wall height categories; 2–to–6–degrees is generally considered ideal, with 7–to–10–degrees as favorable to the long axis of the abutment. Rotation around both axes demonstrated that two axial walls of the FPD resisted rotational displacement in each direction. In addition, uneven abutment height combinations required the lowest wall angulations to achieve resistance in this study. CONCLUSION The vertical height and angulation of FPD abutments, two rotational axes, and the long base lengths all play a role in FPD resistance form. PMID:28874995
NASA Astrophysics Data System (ADS)
Montes, C.; Bayona, G.; Cardona, A.; Pardo, A.; Nova, G.; Montano, P.
2013-05-01
A recent update of the geochronologic and mapping database of the Isthmus of Panama suggests that the Isthmus represents an arc that was left-laterally fragmented between 38 and 28 Ma, and then oroclinally bent. This was hypothesis was tested using paleomagnetic data (24 sites and 192 cores) that indicated large counterclockwise vertical-axis rotations (70.9°, ± 6.7°), and moderate clockwise rotations (between 40° ± 4.1° and 56.2° ± 11.1) on either side of an east-west trending fault at the apex of the Isthmus (Rio Gatun Fault), consistent with Isthmus curvature. Sampling for paleomagnetism was performed on Cretaceous basaltic rocks of the Panama arc, some of them probably correlative to the Caribbean large igneous province. Also, sampling took place in younger Cenozoic cover rocks, as well as in the younger arc rocks. This database is here complemented with 15 new pilot paleomagnetic sites taken in eastern, central, and western Panama, and 3 new sites from Miocene cover rocks of what is now considered to be the southeastern-most tip of the Central American arc. The latter record clockwise vertical-axis rotations between 12 and 40°, in agreement with oroclinal bending hypothesis for the formation of the Isthmus of Panama. These new results begin to fill a gap in the paleomagnetic vertical-axis rotation database for the Panama arc. These results also support the continuity of the Central America arc to the east, into what is now docked to western South America.
NASA Astrophysics Data System (ADS)
Pluhar, Christopher J.; Coe, Robert S.; Lewis, Jonathan C.; Monastero, Francis C.; Glen, Jonathan M. G.
2006-10-01
Pliocene lavas and sediments of Wild Horse Mesa in the Coso Range, CA exhibit clockwise vertical-axis rotation of fault-bounded blocks. This indicates localization of one strand of the Eastern California shear zone/Walker Lane Belt within a large-scale, transtensional, dextral, releasing stepover. We measured rotations paleomagnetically relative to two different reference frames. At two localities we averaged secular variation through sedimentary sections to reveal rotation or its absence relative to paleogeographic north. Where sediments are lacking we used areally-extensive lava flows from individual cooling units or short eruptive episodes to measure the relative rotation of localities by comparing their paleomagnetic remanence directions to one another. At the western edge of Wild Horse Mesa the fanglomerate member of the Coso Formation (c.a. 3 Ma) exhibits between 8.4° ± 7.8° and 26.2° ± 9.0° (two endmember models of a continuum) absolute clockwise rotation. Within Wild Horse Mesa, 3-3.5 Ma lavas at 5 different localities exhibit about 12.0° ± 4.6° (weighted mean) clockwise rotation relative to the margins of the area, a result statistically indistinguishable from the absolute rotation. Hence the segment of the Eastern California shear zone passing through Wild Horse Mesa has caused vertical axis rotation of fault-bounded blocks as part of the overall dextral shear strain. The magnitude of block rotation at Wild Horse Mesa suggests that rotation has accommodated: 1) 1.5 km of dextral shear along an azimuth of about north 30° west since ca. 3 Ma between the area's bounding faults and 2) 2 km of extension perpendicular to the Coso Wash normal fault during this same period. This corresponds to 13-25% extension across the mesa. In contrast to Wild Horse Mesa, the opposite (western) side of the trace of the Coso Wash normal fault hosts the Coso geothermal area and what Monastero et al. [F.C. Monastero, A.M. Katzenstein, J.S. Miller, J.R. Unruh, M.C. Adams, K. Richards-Dinger, The Coso geothermal field: a nascent metamorphic core complex, Geol. Soc. Amer. Bull. 117 (2005) 1534-1553.] characterize as a nascent metamorphic core complex. Consistent with upper plate disruption above a detachment, surface rocks (i.e. the upper plate of the detachment system) at the Coso geothermal area are tilted westward. However they appear to exhibit no detectable rotation. Thus, the style of block rotation may be partitioned: with clockwise vertical-axis rotation dominating in the Wild Horse Mesa and horizontal axis rotation (tilting) in the geothermal area.
NASA Astrophysics Data System (ADS)
Petronis, M. S.; Grondin, D.; Castillo, G., Sr.; Shields, S.; Lindline, J.; Romero, B.; Pluhar, C. J.
2016-12-01
Deformation between the North American and Pacific plates is distributed across a wide zone of the western margin of the continent, where at least 25-30% of the plate boundary strain is accommodated via intraplate deformation. We hypothesize that during the early to mid-Miocene transtensional deformation was located east of the Sierra Nevada in the Mono Basin prior to stepping east into the Mina Deflection. Seventeen 40Ar/39Ar age determinations were obtained from sequences of lava flows that yield relatively stable plateau ages that indicate eruption in the late Miocene to early Pliocene. Paleomagnetic data were collected from the Miocene Jack Springs Tuff (JST) east of Huntoon Valley, and stratigraphically continuous sections of Mio-Pliocene basalt flows near Marietta, NV (MB), Pizona, CA (PB), Queens Valley, CA/NV (QVB), and in the Adobe Hills (AH). Nineteen sites from the JST yield clockwise discordant results, with respect to the reference location, from +20°±10° to +60°±11°. The results from the basalts yield discordant data with respect to the Miocene expected field direction (D=353°, I=58°, A95= 3°). Twelve of 13 sites from the MB yield a group mean direction D=027°, I=57°, a95=12.4° that is clockwise discordant with an inferred rotation (R) and flattening (F) of R=+33.9°+/-18.4° and F=1.3°+/-10.6°. Seventeen of 22 sites from four sections in the PB indicate that three sections are counter-clockwise discordant and one section plots on the expected field direction. Sixteen of 23 sites from five sections in the QVB indicate that three sections are counter-clockwise discordant and two sections are clockwise discordant. Thirty-four sites of the >100 sites collected in the Adobe Hills are clockwise discordant ranging from +15°±10° to +50°±10°. This study provides the first paleomagnetic data for this area, which supports the hypothesis of strain accommodated by vertical axis rotation in the Mono Basin and constrains the timing of intraplate reorganization.
Hershberger, W A; Stewart, M R; Laughlin, N K
1976-05-01
Motion projections (pictures) simulating a horizontal array of vertical lines rotating in depth about its central vertical line were observed by 24 college students who rotated a crank handle in the direction of apparent rotation. All displays incorporated contradictory motion perspective: Whereas the perspective transformation in the vertical (y) dimension stimulated one direction of rotation, the transformation in the horizontal (x) dimension simulated the opposite direction. The amount of perspective in each dimension was varied independently of the other by varying the projection ratio used for each dimension. We used the same five ratios for each dimension, combining them factorially to generate the 25 displays. Analysis of variance of the duration of crank turning which agreed with y-axis information yielded main effects of both x and y projection ratios but no interaction, revealing that x- and y-axis motion perspectives mediate kinetic depth effects which are functionally independent.
NASA Astrophysics Data System (ADS)
Tetreault, Joya Liana
The two geologic questions I address in this research are: do fault-related folds accommodate oblique-slip shortening, and how is oblique-slip deformation absorbed within the folded strata? If the strata is deforming as a strike-slip shear zone, then we should be able to observe material rotations produced by strike-slip shear by measuring paleomagnetic vertical-axis rotations. I have approached these problems by applying paleomagnetic vertical-axis rotations, minor fault analyses, and focal mechanism strain inversions to identify evidence of strike-slip shear and to quantify oblique-slip deformation within fault-related folds in the Rocky Mountain Foreland, Colorado Plateau, and the central Coast Ranges. Clockwise paleomagnetic vertical-axis rotations and compressive paleostress rotations of 15-40º in the forelimb of the Grayback Monocline, northeastern Front Range Colorado, indicate that this Laramide fold is absorbing right-lateral shear from a N90E regional shortening direction. This work shows that paleomagnetic vertical-axis rotations in folded strata can be used to identify strike-slip motion on an underlying fault, and that oblique-slip deformation is localized in the forelimb of the fold. I applied the same paleomagnetic methods to identify oblique-slip on the underlying faults of the Nacimiento, East Kaibab, San Rafael, and Grand Hogback monoclines of the Colorado Plateau. The absence of paleomagnetic rotations and structural evidence for small displacements at the Nacimiento and East Kaibab monoclines indicate minor (<1km) right-lateral slip is being accommodated in these folds. Paleomagnetic vertical-axis rotations are found in the forelimbs of the San Rafael and Grand Hogback monoclines, yielding strike-slip displacements of ˜5km within these two folds. These results are consistent with a northeast Laramide compressive stress direction. In the Coalinga anticline, central Coast Ranges, California, clockwise paleomagnetic rotations and an 8º counterclockwise deflection of the maximum shortening direction (derived from focal mechanisms strain inversions of the upper 7km) are compatible with right-lateral shear. The maximum shortening direction in the area of the mainshock rupture is fold-normal, indicating that strike-slip displacement is confined to the main fault plane and not distributed to the hanging wall. The San Andreas Fault is therefore partitioning a small amount of strike-slip to the Coalinga anticline.
Hopson, R.F.; Hillhouse, J.W.; Howard, K.A.
2008-01-01
Analysis of the strikes of 3841 dikes in 47 domains in the 500-km-long Late Jurassic Independence dike swarm indicates a distribution that is skewed clockwise from the dominant northwest strike. Independence dike swarm azimuths tend to cluster near 325?? ?? 30??, consistent with initial subparallel intrusion along much of the swarm. Dike azimuths in a quarter of the domains vary widely from the dominant trend. In domains in the essentially unrotated Sierra Nevada block, mean dike azimuths range mostly between 300?? and 320??, with the exception of Mount Goddard (247??). Mean dike azimuths in domains in the Basin and Range Province in the Argus, Inyo, and White Mountains areas range from 291?? to 354?? the mean is 004?? in the El Paso Mountains. In the Mojave Desert, mean dike azimuths range from 318?? to 023??, and in the eastern Transverse Ranges, they range from 316?? to 051??. Restoration for late Cenozoic vertical-axis rotations, suggested by paleodeclinations determined from published studies from nearby Miocene and younger rocks, shifts dike azimuths into better agreement with azimuths measured in the tectonically stable Sierra Nevada. This confirms that vertical-axis tectonic rotations explain some of the dispersion in orientation, especially in the Mojave Desert and eastern Transverse Ranges, and that the dike orientations can be a useful if imperfect guide to tectonic rotations where paleomagnetic data do not exist. Large deviations from the main trend of the swarm may reflect (1) clockwise rotations for which there is no paleomagnetic evidence available, (2) dike intrusions of other ages, (3) crack filling at angles oblique or perpendicular to the main swarm, (4) pre-Miocene rotations, or (5) unrecognized domain boundaries between dike localities and sites with paleomagnetic determinations. ?? 2008 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Rood, Dylan H.; Burbank, Douglas W.; Herman, Scott W.; Bogue, Scott
2011-10-01
We use paleomagnetic data from Tertiary volcanic rocks to address the rates and timing of vertical-axis block rotations across the central Sierra Nevada-Walker Lane transition in the Bodie Hills, California/Nevada. Samples from the Upper Miocene (˜9 Ma) Eureka Valley Tuff suggest clockwise vertical-axis block rotations between NE-striking left-lateral faults in the Bridgeport and Mono Basins. Results in the Bodie Hills suggest clockwise rotations (R ± ΔR, 95% confidence limits) of 74 ± 8° since Early to Middle Miocene (˜12-20 Ma), 42 ± 11° since Late Miocene (˜8-9 Ma), and 14 ± 10° since Pliocene (˜3 Ma) time with no detectable northward translation. The data are compatible with a relatively steady rotation rate of 5 ± 2° Ma-1 (2σ) since the Middle Miocene over the three examined timescales. The average rotation rates have probably not varied by more than a factor of two over time spans equal to half of the total time interval. Our paleomagnetic data suggest that block rotations in the region of the Mina Deflection began prior to Late Miocene time (˜9 Ma), and perhaps since the Middle Miocene if rotation rates were relatively constant. Block rotation in the Bodie Hills is similar in age and long-term average rate to rotations in the Transverse Ranges of southern California associated with early transtensional dextral shear deformation. We speculate that the age of rotations in the Bodie Hills indicates dextral shear and strain accommodation within the central Walker Lane Belt resulting from coupling of the Pacific and North America plates.
Interseismic strain and rotation rates in the northeast Mojave domain, eastern California
Savage, J.C.; Svarc, J.L.; Prescott, II W.
2004-01-01
The northeast Mojave domain, a type locality for bookshelf faulting, is a region of east striking, left-lateral faults in the northeast comer of the Mojave block, a block otherwise dominated by ??N40??W striking, right-lateral faults. Paleomagnetic evidence suggests that blocks within the domain have rotated clockwise about a vertical axis as much as 60?? since 12.8 Ma [Schermer et al., 1996]. In 1994, and again in 2002, the U.S. Geological Survey surveyed an array of 14 geodetic monuments distributed across the northeast Mojave domain. The 2002 survey results were adjusted to remove the coseismic offsets imposed by the nearby Hector Mine earthquake (16 October 1999, Mw = 7.1). The adjusted deformation across the array appears to be uniform and can be approximated by the principal strain rates ??:1 = 28.9 ?? 9.1 N77.2??W ?? 4.8?? and ??2 = -48.2 ?? 8.9 N12.8??E ?? 4.8?? nstrain yr-1; extension reckoned positive, and quoted uncertainties are standard deviations. That strain accumulation could be released by slip . on faults striking N32??W but not by bookshelf faulting on the east striking faults alone. The vertical axis rotation rate of the northeast Mojave domain as a whole relative to fixed North America is 71.0 ?? 6.4 nrad yr-1 (4.07?? ?? 0.37?? Myr-1) clockwise, about twice the maximum tenser shear strain rate. The observed rotation rate acting over 12.8 Myr would produce'a clockwise rotation of 52.1?? ?? 4.7??, exclusive of possible coseismic rotations. That rotation is in rough agreement with the paleomagnetic rotation accumulated in the individual fault blocks within the northeast Mojave domain since 12.8 Ma.
Physics-based Scaling Laws for Confined and Unconfined Transverse Jets
2015-02-01
11(c). Once again, the jet is injected at 90 clockwise from the vertical axis . For the top row, with K increasing from left to right, the location...with previous data collected for gas turbine geometries (Holdeman 1993). It is apparent that the local optimum observed for six jets involves jet...behavior changed dramatically, with the emergence of a local optimum mixing state that is consistent with previous data collected for gas turbine
Chasing the Garlock: A study of tectonic response to vertical axis rotation
NASA Astrophysics Data System (ADS)
Guest, Bernard; Pavlis, Terry L.; Golding, Heather; Serpa, Laura
2003-06-01
Vertical-axis, clockwise block rotations in the Northeast Mojave block are well documented by numerous authors. However, the effects of these rotations on the crust to the north of the Northeast Mojave block have remained unexplored. In this paper we present a model that results from mapping and geochronology conducted in the north and central Owlshead Mountains. The model suggests that some or all of the transtension and rotation observed in the Owlshead Mountains results from tectonic response to a combination of clockwise block rotation in the Northeast Mojave block and Basin and Range extension. The Owlshead Mountains are effectively an accommodation zone that buffers differential extension between the Northeast Mojave block and the Basin and Range. In addition, our model explores the complex interactions that occur between faults and fault blocks at the junction of the Garlock, Brown Mountain, and Owl Lake faults. We hypothesize that the bending of the Garlock fault by rotation of the Northeast Mojave block resulted in a misorientation of the Garlock that forced the Owl Lake fault to break in order to accommodate slip on the western Garlock fault. Subsequent sinistral slip on the Owl Lake fault offset the Garlock, creating the now possibly inactive Mule Springs strand of the Garlock fault. Dextral slip on the Brown Mountain fault then locked the Owl Lake fault, forcing the active Leach Lake strand of the Garlock fault to break.
NASA Astrophysics Data System (ADS)
Fredrickson, S. M.; Pluhar, C. J.; Carlson, C. W.
2013-12-01
Walker Lane is a broad (~100-200 km) zone of dextral shear located between the Sierra Nevada microplate and the Basin and Range Province. We consider Bodie Hills a part of the greater Walker Lane because it has experienced clockwise, vertical-axis rotation of crustal blocks due to dextral shear accommodation. This strain is variable, resulting in rotations ranging from ~10°-70° depending on location. The Miocene Eureka Valley Tuff (EVT) is an ideal strain marker, because it is a geologically instantaneous and laterally extensive unit. We use paleomagnetic analysis of ignimbrites to improve the resolution of strain domain boundaries as well as test for doming in Bodie Hills. EVT site mean directions were compared to reference directions of the Tollhouse Flat and By Day Members collected from the stable Sierra Nevada to determine magnitudes of vertical-axis rotation. Three new sites and three previously sampled sites define a high-rotation domain including Bridgeport Valley and the East Walker River Canyon with an average clockwise rotation of ~50°-60°. We define the eastern boundary of this high-rotation domain as coinciding with a mapped fault exhibiting 11.7°×7.9° rotation of the presumed footwall. Our data corroborates and improves on Carlson's (2012) kinematic model in which the greater Bodie Hills has rotated clockwise ~30° since EVT emplacement. Eutaxitic textures, dipping up to 90°, are gross indicators of true tilt, but are also influenced by original dips in some localities, complicating interpretations. John et al. (2012) describe a simple doming model of Bodie Hills since EVT emplacement, supported by the high elevation of outflow channels compared to source areas. Our paleomagnetic data does not support simple doming, suggesting that there is either no doming of Bodie Hills, or that vertical crustal displacements have occurred without large-scale folding. John et al. (2012) dated undifferentiated EVT in Bodie Hills at ~9.4 Ma; using paleomagnetism, we show the dated outcrops to be Tollhouse Flat Member, substantially improving age constraints on EVT.
Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.
2008-01-01
Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.
NASA Astrophysics Data System (ADS)
Shields, S.; Petronis, M. S.; Pluhar, C. J.; Gordon, L.
2014-12-01
The mid-Miocene Jack Springs Tuff (JST) outcrops across the western Mina Deflection accommodation zone, west-central Nevada and into eastern California. Previously, the source location for the JST was unknown, yet recent studies northwest of Mono Lake, CA have identified a relatively un-rotated structural block in which to reference the paleomagnetic data. Although new studies have indicated that this block may be rotated up to 13º, we argue that the probable source area is located near the Bodie Hills, CA. At this site, the paleomagnetic reference direction is D = 353°, I = 43°, α95 = 7.7° (Carlson et al, 2013). Based on these data, the JST can be used to measure absolute vertical-axis rotation as well as enable reconstruction of the paleo-topography using the corrected anisotropy of magnetic susceptibility (AMS) data. A total of 19 sites were sampled to constrain Cenozoic to recent vertical axis rotation within the region and AMS experiments were conducted to determine the flow direction of the JST. Curie point estimates indicate that the JST ranges in titanium concentration from 0.042 to 1.10, indicating a low to moderate titanomagnetite phase (Akimoto, 1962). Demagnetization experiments reveal mean destructive fields of the NRM ranging between 15mT and 40mT suggesting that both multi-domain to pseudo-single domain grains are the dominant ferromagnetic phases that carry the remanence and AMS fabric. Preliminary paleomagnetic data yield stable single component demagnetization behavior for most sites that, after structural correction, indicate clockwise vertical axis rotation ranging from +20°± 10° to +60°± 11° between multiple fault blocks. The uncorrected AMS data yield oblate magnetic fabrics that can be used to infer the transport direction, source region, and paleovalley geometry of the JST. These data are tentatively interpreted to indicate west to east transport of the JST across the Mono Basin region into the Mina Deflection that was erupted and flowed into a paleovalley off the Sierra Nevada Mountain front. Based on the new paleomagnetic data, we hypothesize that the JST experienced clockwise vertical axis rotation associated with transtensional faulting east of Mono Lake, CA. Our paleomagnetic data support this hypothesis and we argue that deformation likely occurred between ca. 9.5 Ma to as late as 3 Ma.
The influence of foot position on scrum kinetics during machine scrummaging.
Bayne, Helen; Kat, Cor-Jacques
2018-05-23
The purpose of this study was to investigate the effect of variations in the alignment of the feet on scrum kinetics during machine scrummaging. Twenty nine rugby forwards from amateur-level teams completed maximal scrum efforts against an instrumented scrum machine, with the feet in parallel and non-parallel positions. Three-dimensional forces, the moment about the vertical axis and sagittal plane joint angles were measured during the sustained pushing phase. There was a decrease in the magnitude of the resultant force and compression force in both of the non-parallel conditions compared to parallel and larger compression forces were associated with more extended hip and knee angles. Scrummaging with the left foot forward resulted in the lateral force being directed more towards the left and the turning moment becoming more clockwise. These directional changes were reversed when scrummaging with the right foot forward. Scrummaging with the right foot positioned ahead of the left may serve to counteract the natural clockwise wheel of the live scrum and could be used to achieve an anti-clockwise rotation of the scrum for tactical reasons. However, this would be associated with lower resultant forces and a greater lateral shear force component directed towards the right.
Nystagmus responses in a group of normal humans during earth-horizontal axis rotation
NASA Technical Reports Server (NTRS)
Wall, Conrad, III; Furman, Joseph M. R.
1989-01-01
Horizontal eye movement responses to earth-horizontal yaw axis rotation were evaluated in 50 normal human subjects who were uniformly distributed in age (20-69 years) and each age group was then divided by gender. Subjects were rotated with eyes open in the dark, using clockwise and counter-clockwise 60 deg velocity trapezoids. The nystagmus slow component velocity is analyzed. It is shown that, despite large intersubject variability, parameters which describe earth-horizontal yaw axis responses are loosely interrelated, and some of them vary significantly with gender and age.
Paleomagnetic data bearing on style of Miocene deformation in the Lake Mead area, Southern Nevada
Wawrzyniec, T.F.; Geissman, J.W.; Anderson, R.E.; Harlan, S.S.; Faulds, J.
2001-01-01
Paleomagnetic and structural data from intermediate to mafic composition lava flows and related dikes in all major blocks of the late Miocene Hamblin-Cleopatra Volcano, which was structurally dismembered during the development of the Lake Mead Fault System (LMFS), provide limits on the magnitude and sense of tilting and vertical axis rotation of crust during extension of this part of the Basin and Range province. Sinistral separation along the fault system dissected the volcano into three major blocks. The eastern, Cleopatra Lobe of the volcano is structurally the most intact section of the volcano. Normal and reverse polarity data from paleomagnetic sites collected along traverses in the Cleopatra Lobe yield an in situ grand mean of Declination (D) = 339??, Inclination (I) = +54??, ??95 = 3.1??, k = 27.2, N = 81 sites. The rocks of the central core of the volcano yield an in situ grand mean of D = 3??, I = + 59??, ??95 = 6.8??, k = 42.5, N = 11 sites (six normal, five reverse polarity). Sites collected within the western Hamblin Lobe of the volcano are exclusively of reverse polarity and yield an overall in situ mean of D = 168??, I = -58??, ??95 = 6.5??. k = 28.9, N = 18 sites. Interpretation of the paleomagnetic data in the context of the structural history of the volcano and surrounding area, considers the possibility of two different types of structural corrections. A stratigraphic tilt correction involves restoring flows to the horizontal using the present strike. This correction assumes no initial, possibly radial, dip of flows of the volcano and is considered invalid. A structural tilt correction to the data assumes that dikes of the radiating swarm associated with the volcano were originally vertical and results in block mean directions of D = 9??, I = +53??, ??95 = 3.1??, k = 27.2, and D = 58??, I = + 78??, ??95 = 6.8, k = 42.5, for the Cleopatra Lobe and the central intrusive core, respectively. The data from the Cleopatra Lobe are slightly discordant, in a clockwise sense, from expected middle- to late-Miocene field directions. The data from the volcano are not consistent with a proposed structural model of uniform, moderate magnitude, statistically significant, counter-clockwise vertical axis rotation of fault-bounded blocks during overall sinsitral displacement along the LMFS. We also analyzed dikes of the northernmost part of the Miocene Wilson Ridge hypabyssal igneous complex, strata of the Triassic Chinle Formation, and basalt flows of the Miocene West End Wash/Callville Mesa volcanic centers. Dikes in the Wilson Ridge pluton and the Triassic strata yield magnetizations with directions suggestive of statistically significant, clockwise, vertical-axis rotations consistent with local, large-magnitude shear of crustal fragments near some of the faults of the LMFS. Late Cenozoic deformation of the Hamblin-Cleopatra volcano area appears to have been non-uniform in scale and magnitude and no single structural model, involving strictly strike-slip faulting, can account for the observed paleomagnetic data. ?? 2001 Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
2007-01-01
A tool comprises a first handle and a second handle, each handle extending from a gripping end portion to a working end portion, the first handle having first screw threads disposed circumferentially about an inner portion of a first through-hole at the working end portion thereof, the second handle having second screw threads disposed circumferentially about an inner portion of a second through-hole at the working end portion thereof, the first and second respective through-holes being disposed concentrically about a common axis of the working end portions. First and second screw locks preferably are disposed concentrically with the first and second respective through-holes, the first screw lock having a plurality of locking/unlocking screw threads for engaging the first screw threads of the first handle, the second screw lock having a plurality of locking/unlocking screw threads for engaging the second screw threads of the second handle. A locking clutch drive, disposed concentrically with the first and second respective through-holes, engages the first screw lock and the second screw lock. The first handle and the second handle are selectively operable at their gripping end portions by a user using a single hand to activate the first and second screw locks to lock the locking clutch drive for either clockwise rotation about the common axis, or counter-clockwise rotation about the common axis, or to release the locking clutch drive so that the handles can be rotated together about the common axis either the clockwise or counter-clockwise direction without rotation of the locking clutch drive.
NASA Astrophysics Data System (ADS)
Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.
2008-12-01
Escarpments bounding the Pito Deep Rift expose cross-sections into ~3 Ma oceanic crust accreted at a super-fast spreading (>140 mm/yr) segment of the East Pacific Rise (EPR). Dikes within the sheeted dike complex persistently strike NE, parallel to local abyssal hill lineaments and magnetic anomaly stripes, and dip SE, outward and away from the EPR. During the Pito Deep 2005 Cruise, both ALVIN and JASON II used the Geocompass to fully orient a total of 69 samples [63 basaltic dikes, 6 massive gabbros] collected in situ. Paleomagnetic analyses of these oriented samples provide a quantitative constraint of kinematics of structural rotations of dikes. Magnetic remanence of dike samples indicates a dominant normal polarity with almost all directions rotated clockwise from the expected direction. The most geologically plausible model to account for these dispersions using these data coupled with the general orientation of the dikes incorporates two different structural rotations: 1) A horizontal-axis rotation that occurred near the EPR axis, related to sub-axial subsidence, and 2) A clockwise vertical-axis rotation, associated with the rotation of the Easter microplate consistent with current models. Additionally, the anisotropy of magnetic susceptibility (AMS) of dike samples indicates rock fabric and magmatic flow direction within dikes. In most samples, two of three AMS eigenvectors lie near the dike plane orientations. Generally, Kmin lies perpendicular to dike planes, while Kmax is often shallow within the dike planes, indicating dominantly subhorizontal magma flow. Steep Kmax in a few samples indicates vertical flow directions that suggest either primary flow or gravitational back-flow during waning stages of dike intrusion. These results provide the first direct evidence for primarily horizontal magma flow in sheeted dikes of super-fast spread oceanic crust. Results for Pito Deep Rift and previous results for Hess Deep Rift reveal outward dipping dikes that are interpreted as a result of subaxial spreading processes that are not evident from surface studies of spreading centers. Both areas show evidence of subaxial subsidence during accretion and lateral magmatic flow in the sheeted dike complex.
NASA Astrophysics Data System (ADS)
Hagstrum, J. T.; Wells, R. E.; Evarts, R. C.; Blakely, R. J.; Beeson, M. H.
2006-12-01
Paleomagnetic analysis of the Miocene Columbia River Basalt Group (CRBG) in the northern Willamette Valley of Oregon was undertaken as part of a larger mapping and hydrogeologic investigation of the CRBG's internal stratigraphy and structure. Differences in paleomagnetic directions between flows due to geomagnetic reversals and paleosecular variation, in combination with geochemical data, provide the most reliable means of flow identification. In addition, vertical-axis rotations between CRBG sites in the Portland area and sampling localities within the same flow units on the relatively stable Columbia Plateau were calculated. Clockwise rotations for sites within the northern Willamette Valley are remarkably consistent and have a weighted mean of 29°±3° (N=94). Available paleomagnetic data from CRBG sites along the Oregon coast at Cape Lookout (19°±22°, N=4) and Cape Foulweather (29°±18°, N=4) show similar results. East of the Portland Hills fault zone along the Columbia River Gorge, however, clockwise rotations are much less averaging 12°±3° (N=15). North of Portland, the CRBG rotational values drop abruptly from ~29° to 6°±17° (N=3) across an unnamed fault near Woodland, WA, identified using aeromagnetic data; to the south, the values drop from ~29° to 18°±3° (N=6) across the Mt. Angel-Gales Creek fault zone east of Salem, OR. The eastern boundary of the Oregon Coast Range block is thus defined by three offset NW-trending fault segments, with the offsets corresponding to the Portland and Willamette pull-apart basins. North of the Coast Range block's northern boundary, which is roughly coincident with the Columbia River, CRBG rotations also are about half that (15°±3°, N=15) found within the block. Northward movement and clockwise rotation of the Oregon Coast Range block have previously been modeled as decreasing continuously eastward to the Columbia Plateau. Our new paleomagnetic data indicate an abrupt step down of rotational values by half in the vicinity of the Portland metropolitan area, and that the Portland Hills-Clackamas River and other parallel structural zones could be the loci of larger and more dangerous strike-slip earthquakes than previously thought.
A step forward in understanding step-overs: the case of the Dead Sea Fault in northern Israel
NASA Astrophysics Data System (ADS)
Dembo, Neta; Granot, Roi; Hamiel, Yariv
2017-04-01
The rotational deformation field around step-overs between segments of strike-slip faults is poorly resolved. Vertical-axis paleomagnetic rotations can be used to characterize the deformation field, and together with mechanical modeling, can provide constraints on the characteristics of the adjacent fault segments. The northern Dead Sea Fault, a major segmented sinistral transform fault that straddles the boundary between the Arabian Plate and Sinai Subplate, offers an appropriate tectonic setting for our detailed mechanical and paleomagnetic investigation. We examine the paleomagnetic vertical-axis rotations of Neogene-Pleistocene basalt outcrops surrounding a right step-over between two prominent segments of the fault: the Jordan Gorge section and the Hula East Boundary Fault. Results from 20 new paleomagnetic sites reveal significant (>20˚) counterclockwise rotations within the step-over and small clockwise rotations in the vicinity. Sites located further (>2.5 km) away from the step-over generally experience negligible to minor rotations. Finally, we construct a mechanical model guided by the observed rotational field that allows us to characterize the structural, mechanical and kinematic behavior of the Dead Sea Fault in northern Israel.
NASA Astrophysics Data System (ADS)
Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.
2017-03-01
Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to 450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.
Perceptual disturbances predicted in zero-g through three-dimensional modeling.
Holly, Jan E
2003-01-01
Perceptual disturbances in zero-g and 1-g differ. For example, the vestibular coriolis (or "cross-coupled") effect is weaker in zero-g. In 1-g, blindfolded subjects rotating on-axis experience perceptual disturbances upon head tilt, but the effects diminish in zero-g. Head tilts during centrifugation in zero-g and 1-g are investigated here by means of three-dimensional modeling, using a model that was previously used to explain the zero-g reduction of the on-axis vestibular coriolis effect. The model's foundation comprises the laws of physics, including linear-angular interactions in three dimensions. Addressed is the question: In zero-g, will the vestibular coriolis effect be as weak during centrifugation as during on-axis rotation? Centrifugation in 1-g was simulated first, with the subject supine, head toward center. The most noticeable result concerned direction of head yaw. For clockwise centrifuge rotation, greater perceptual effects arose in simulations during yaw counterclockwise (as viewed from the top of the head) than for yaw clockwise. Centrifugation in zero-g was then simulated with the same "supine" orientation. The result: In zero-g the simulated vestibular coriolis effect was greater during centrifugation than during on-axis rotation. In addition, clockwise-counterclockwise differences did not appear in zero-g, in contrast to the differences that appear in 1-g.
Strain accumulation and rotation in western Nevada, 1993-2000
NASA Astrophysics Data System (ADS)
Svarc, J. L.; Savage, J. C.; Prescott, W. H.; Ramelli, A. R.
2002-05-01
The positions of 44 GPS monuments in an array extending from the Sierra Nevada at the latitude of Reno to near Austin, Nevada, have been measured several times in the 1993-2000 interval. The western half of the array spans the Walker Lane belt, whereas the eastern half spans the central Nevada seismic zone (CNSZ). The principal strain rates in the Walker Lane belt are 29.6 +/- 5.3 nstrain yr-1 N88.4°E +/- 5.4° and -12.8 +/- 6.0 nanostrain yr-1 N01.6°W +/- 5.4°, extension reckoned positive, and the clockwise (as seen from above the Earth) rotation rate about a vertical axis is 13.6 +/- 4.0 nrad yr-1. The quoted uncertainties are standard deviations. The motion in the Walker Lane belt can then be represented by a zone striking N35°W subject to 16.8 +/- 4.9 nstrain yr-1 extension perpendicular to it and 19.5 +/- 4.0 nstrain yr-1 right-lateral, simple shear across it. The N35°W strike of the zone is the same as the direction of the local tangent to the small circle drawn about the Pacific-North America pole of rotation. The principal strain rates for the CNSZ are 46.2 +/- 11.0 nstrain yr-1 N49.9°W +/- 6.0° and -13.6 +/- 6.1 nstrain yr-1 N40.1°E +/- 6.0°, and the clockwise rotation rate about a vertical axis is 20.3 +/- 6.3 nrad yr-1. The motion across the CNSZ can then be represented by a zone striking N12°E subject to 32.6 +/- 11.0 nstrain yr-1 extension perpendicular to it and 25.1 +/- 6.3 nstrain yr-1 right-lateral, simple shear across it. The N12°E strike of the zone is similar to the strikes of the faults (Rainbow Mountain, Fairview Peak, and Dixie Valley) within it.
Strain accumulation and rotation in western Nevada, 1993-2000
Svarc, J.L.; Savage, J.C.; Prescott, W.H.; Ramelli, A.R.
2002-01-01
The positions of 44 GPS monuments in an array extending from the Sierra Nevada at the latitude of Reno to near Austin, Nevada, have been measured several times in the 1993-2000 interval. The western half of the array spans the Walker Lane belt, whereas the eastern half spans the central Nevada seismic zone (CNSZ). The principal strain rates in the Walker Lane belt are 29.6 ?? 5.3 nstrain yr-1 N88.4??E ?? 5.4?? and -12.8 ?? 6.0 nanostrain yr-1 N01.6??W ?? 5.4??, extension reckoned positive, and the clockwise (as seen from above the Earth) rotation rate about a vertical axis is 13.6 ?? 4.0 nrad yr-1. The quoted uncertainties are standard deviations. The motion in the Walker Lane belt can then be represented by a zone striking N35??W subject to 16.8 ?? 4.9 nstrain yr-1 extension perpendicular to it and 19.5 ?? 4.0 nstrain yr-1 right-lateral, simple shear across it. The N35??W strike of the zone is the same as the direction of the local tangent to the small circle drawn about the Pacific-North America pole of rotation. The principal strain rates for the CNSZ are 46.2 ?? 11.0 nstrain yr-1 N49.9??W ?? 6.0?? and -13.6 ?? 6.1 nstrain yr-1 N40.1??E ?? 6.0??, and the clockwise rotation rate about a vertical axis is 20.3 ?? 6.3 nrad yr-1. The motion across the CNSZ can then be represented by a zone striking N12??E subject to 32.6 ?? 11.0 nstrain yr-1 extension perpendicular to it and 25.1 ?? 6.3 nstrain yr-1 right-lateral, simple shear across it. The N12??E strike of the zone is similar to the strikes of the faults (Rainbow Mountain, Fairview Peak, and Dixie Valley) within it.
NASA Astrophysics Data System (ADS)
Aldrich, M. J.; Adams, Andrew I.; Escobar, Carlos
1991-03-01
The structural geology of the Platanares geothermal site in western Honduras, located about 25 km south of the northern boundary of the Caribbean plate, is the result of post Early Miocene extensional deformation. Normal faults, many with listric geometries, are numerous throughout the area. Strike-slip faulting has mostly occurred on reactived normal faults. Analysis of the fault slip data shows an older minimum principal stress, σ 3, oriented approximately N-S and a contemporary σ 3 tensional and oriented ENE-WSW. The analysis suggests that σ 3 has rotated clockwise since the Early Miocene although some of the change in orientation of σ 3 might reflect counterclockwise rotation of the crust about a vertical axis. The σ 1 and σ 2 stress axes apparently switched recently, with the σ 3 axis remaining unchanged. These results are consistent with a tectonic model in which the east-drifting Caribbean plate is pinned against North America by the subducting Cocos plate (Malfait and Dinkleman, 1972) and the northern and southern margins of the Caribbean plate are broad, mobile zones that are undergoing counterclockwise and clockwise rotations respectively (Gose, 1985). The majority of the hot springs at Platanares lie along Quebrada del Agua Caliente. Fractures control the movement of the geothermal waters. Hot springs occur along joints and faults and, in places, hot water flows laterally along bedding planes. If the fractures also control the movement of water at depth then the source reservoir of the geothermal waters may be located northeast of the principal hot spring areas along the quebrada since the majority of the faults dip in that direction. However, if the fault that seems to have controlled the development of Quebrada del Agua Caliente is vertical as inferred then the main reservoir may lie directly beneath this drainage.
NASA Astrophysics Data System (ADS)
Weber, J.; Umhoefer, P. J.; Pérez Venzor, J. A.; Bachtadse, V.
2009-12-01
Compared to oceanic plate boundaries which are generally narrow zones of deformation, continental plate boundaries appear as widespread areas with complex and poorly understood kinematics. Motion of crustal blocks within these “diffuse plate boundaries” causes rather small-scale lithospheric deformation within the boundary zone, while the main plates behave more rigid. Complex deformation patterns of interacting terranes separated by a variety of active faults are the consequence. To study the dynamic implications of boundary zone deformation, the southern part of the Baja California peninsula, Mexico (Baja) has been chosen as target for a detailed paleomagnetic study. In combination with geodetic measurements it is tried to characterize rigid block rotations and temporal changes in rotation rates. Up to now, little paleomagnetic work directed toward vertical axis rotations has been done in Baja California, despite its location in a major active transtensional zone. To address this problem, a total of 501 cores from 63 sites in the southern part of Baja - including sites on San José Island, San Francisco Island and Cerralvo Island - has been taken from volcanic and sedimentary rocks covering the last 25 million years in time. The analysis of paleomagnetic declinations and comparison to coeval data from North America and stable areas of Baja California allow evaluating the long-term kinematics of the region and the effects of oblique-rifting in the Gulf of California to the east. Nearly all sampled sites indicate vertical axis rotation up to 30-40 degrees with an average of about 20-25 degrees. Depending on the location these rotations have been either clockwise or counter-clockwise and are correlated with the opening of the Gulf of California and the translation of the Baja California peninsula to the North. Results of the paleomagnetic investigation are compared to geodetic data of the last few years in order to address the problem how strain is partitioned within a complex network of faults and how rates of rotation change with time.
Ni, Xian-Da; Huang, Jun; Hu, Yuan-Ping; Xu, Rui; Yang, Wei-Yu; Zhou, Li-Ming
2013-01-01
The aim of this study was to observe the rotation patterns at the papillary muscle plane in the Left Ventricle(LV) with normal subjects using two-dimensional speckle tracking imaging(2D-STI). We acquired standard of the basal, the papillary muscle and the apical short-axis images of the LV in 64 subjects to estimate the LV rotation motion by 2D-STI. The rotational degrees at the papillary muscle short-axis plane were measured at 15 different time points in the analysis of two heart cycles. There were counterclockwise rotation, clockwise rotation, and counterclockwise to clockwise rotation at the papillary muscle plane in the LV with normal subjects, respectively. The ROC analysis of the rotational degrees was performed at the papillary muscle short-axis plane at the peak LV torsion for predicting whether the turnaround point of twist to untwist motion pattern was located at the papillary muscle level. Sensitivity and specificity were 97% and 67%, respectively, with a cut-off value of 0.34°, and an area under the ROC curve of 0.8. At the peak LV torsion, there was no correlation between the rotational degrees at the papillary muscle short-axis plane and the LVEF in the normal subjects(r = 0.000, p = 0.998). In the study, we conclude that there were three rotation patterns at the papillary muscle short-axis levels, and the transition from basal clockwise rotation to apical counterclockwise rotation is located at the papillary muscle level.
Principal components of wrist circumduction from electromagnetic surgical tracking.
Rasquinha, Brian J; Rainbow, Michael J; Zec, Michelle L; Pichora, David R; Ellis, Randy E
2017-02-01
An electromagnetic (EM) surgical tracking system was used for a functionally calibrated kinematic analysis of wrist motion. Circumduction motions were tested for differences in subject gender and for differences in the sense of the circumduction as clockwise or counter-clockwise motion. Twenty subjects were instrumented for EM tracking. Flexion-extension motion was used to identify the functional axis. Subjects performed unconstrained wrist circumduction in a clockwise and counter-clockwise sense. Data were decomposed into orthogonal flexion-extension motions and radial-ulnar deviation motions. PCA was used to concisely represent motions. Nonparametric Wilcoxon tests were used to distinguish the groups. Flexion-extension motions were projected onto a direction axis with a root-mean-square error of [Formula: see text]. Using the first three principal components, there was no statistically significant difference in gender (all [Formula: see text]). For motion sense, radial-ulnar deviation distinguished the sense of circumduction in the first principal component ([Formula: see text]) and in the third principal component ([Formula: see text]); flexion-extension distinguished the sense in the second principal component ([Formula: see text]). The clockwise sense of circumduction could be distinguished by a multifactorial combination of components; there were no gender differences in this small population. These data constitute a baseline for normal wrist circumduction. The multifactorial PCA findings suggest that a higher-dimensional method, such as manifold analysis, may be a more concise way of representing circumduction in human joints.
NASA Astrophysics Data System (ADS)
Gürer, Derya; van Hinsbergen, Douwe J. J.; Özkaptan, Murat; Creton, Iverna; Koymans, Mathijs R.; Cascella, Antonio; Langereis, Cornelis G.
2018-03-01
To quantitatively reconstruct the kinematic evolution of Central and Eastern Anatolia within the framework of Neotethyan subduction accommodating Africa-Eurasia convergence, we paleomagnetically assess the timing and amount of vertical axis rotations across the Ulukışla and Sivas regions. We show paleomagnetic results from ˜ 30 localities identifying a coherent rotation of a SE Anatolian rotating block comprised of the southern Kırşehir Block, the Ulukışla Basin, the Central and Eastern Taurides, and the southern part of the Sivas Basin. Using our new and published results, we compute an apparent polar wander path (APWP) for this block since the Late Cretaceous, showing that it experienced a ˜ 30-35° counterclockwise vertical axis rotation since the Oligocene time relative to Eurasia. Sediments in the northern Sivas region show clockwise rotations. We use the rotation patterns together with known fault zones to argue that the counterclockwise-rotating domain of south-central Anatolia was bounded by the Savcılı Thrust Zone and Deliler-Tecer Fault Zone in the north and by the African-Arabian trench in the south, the western boundary of which is poorly constrained and requires future study. Our new paleomagnetic constraints provide a key ingredient for future kinematic restorations of the Anatolian tectonic collage.
Ni, Xian-Da; Huang, Jun; Hu, Yuan-Ping; Xu, Rui; Yang, Wei-Yu; Zhou, Li-Ming
2013-01-01
Background The aim of this study was to observe the rotation patterns at the papillary muscle plane in the Left Ventricle(LV) with normal subjects using two-dimensional speckle tracking imaging(2D-STI). Methods We acquired standard of the basal, the papillary muscle and the apical short-axis images of the LV in 64 subjects to estimate the LV rotation motion by 2D-STI. The rotational degrees at the papillary muscle short-axis plane were measured at 15 different time points in the analysis of two heart cycles. Results There were counterclockwise rotation, clockwise rotation, and counterclockwise to clockwise rotation at the papillary muscle plane in the LV with normal subjects, respectively. The ROC analysis of the rotational degrees was performed at the papillary muscle short-axis plane at the peak LV torsion for predicting whether the turnaround point of twist to untwist motion pattern was located at the papillary muscle level. Sensitivity and specificity were 97% and 67%, respectively, with a cut-off value of 0.34°, and an area under the ROC curve of 0.8. At the peak LV torsion, there was no correlation between the rotational degrees at the papillary muscle short-axis plane and the LVEF in the normal subjects(r = 0.000, p = 0.998). Conclusions In the study, we conclude that there were three rotation patterns at the papillary muscle short-axis levels, and the transition from basal clockwise rotation to apical counterclockwise rotation is located at the papillary muscle level. PMID:24376634
Rotation in Xenopus laevis embryos during the second cell cycle.
Starodubov, Sergey M; Golychenkov, Vladimir A
2009-01-01
Using time-lapse video recording and comparing successive digital images, we found that 38% of Xenopus laevis embryos (n=118) exhibited rotation during the second cell cycle. This rotation, which we term the second rotation, started approximately during the appearance of the first cleavage furrow and proceeded clockwise or counterclockwise around the vertical axis. Rotations lasted for 5-30 minutes, i.e. up to the beginning of the third cell cycle. The mean rotation angle was 36.4 degrees, with a maximum rotation of 77 degrees. No mortality was observed among the embryos exhibiting rotation. The second rotation was observed to be similar to the well-known fertilization rotation which takes place during the first cell cycle. The possible nature and significance of the second rotation are discussed.
Hagstrum, J.T.; Gans, P.B.
1989-01-01
The Oligocene Kalamazoo Tuff (???35 Ma) was sampled for paleomagnetic analysis across a 100-km-wide zone of highly extended crust in east central Nevada to estimate between-site vertical axis rotations and thus the relative importance of strike-slip faulting to the mechanism of extension. The tilt-corrected data, with sources of error reduced or eliminated, exhibit a 28?? ?? 12?? clockwise rotation of the Schell Creek Range relative to the Kern Mountains region. This rotation implies differential extension accommodated by strike-slip faulting or N-S shortening. The paleomagnetic results also suggest that large changes in strike of layered units near faults with presumed strike-slip movement need not be the result of oroclinal bending, but could result from superimposed sets of orthogonal normal faults. -from Authors
Anatomy of a Venusian hot spot - Geology, gravity, and mantle dynamics of Eistla Regio
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Phillips, Roger J.
1992-01-01
Results of a study of the western and central portions of the Venusian hot spot Eistla Regio are presented. Magellan radar images were mapped to elucidate the general geologic history of the region. Radial fracture systems both on the rises and volcanoes indicate that uplift and associated faulting accompanied volcanic construction. Prominent fracture zones strike WNW to NW, parallel to the long axis of the highlands. The largest of these, Guor Linea, exhibits a progressive deformation history that may include minor clockwise rotation in addition to bulk NNE-SSW extension. Pioneer Venus line-of-sight accelerations were inverted for vertical gravity which, when combined with topography, were used to solve for mass anomalies on the crust-mantle boundary and in the upper levels of the mantle convective system.
NASA Astrophysics Data System (ADS)
Hagstrum, J. T.; Wells, R. E.; Evarts, R. C.; Niem, A. R.; Sawlan, M. G.; Blakely, R. J.
2008-12-01
Identification of individual flows within the Columbia River Basalt Group (CRBG) has mostly relied on minor differences in geochemistry, but magnetic polarity has also proved useful in differentiating flows and establishing a temporal framework. Within the thick, rapidly erupted Grande Ronde Basalt four major polarity chrons (R1 to N2) have been identified. Because cooling times of CRBG flows are brief compared to rates of paleosecular variation (PSV), within-flow paleomagnetic directions are expected to be constant across the extensive east-west reaches of these flows. Vertical-axis rotations in OR and WA, driven by northward-oblique subduction of the Juan de Fuca plate, thus can be measured by comparing directions for western sampling localities to directions for the same flow units on the relatively stable Columbia Plateau. Clockwise rotations calculated for outcrop locations within the Coast Range (CR) block are uniformly about 30° (N=102 sites). East of the northwest-trending en échelon Mt. Angel-Gales Creek, Portland Hills, and northern unnamed fault zones, as well as north of the CR block's northern boundary (~Columbia River), clockwise rotations abruptly drop to about 15° (N=39 sites), with offsets in these bounding fault zones corresponding to the Portland and Willamette pull-apart basins. The general agreement of vertical- axis rotation rates estimated from CRBG magnetizations with those determined from modern GPS velocities indicates a relatively steady rate over the last 10 to 15 Myr. Unusual directions due to PSV, field excursions, or polarity transitions could provide useful stratigraphic markers. Individual flow directions, however, have not been routinely used to identify flows. One reason this has been difficult is that remagnetization is prevalent, particularly in the Coast Ranges, coupled with earlier demagnetization techniques that did not completely remove overprint components. Except for the Ginkgo and Pomona flows of the Wanapum and Saddle Mountains Basalts, reference Plateau directions for the CRBG are poorly known. Moreover, field and drill- core relations indicate that flows with different chemistries were erupted at the same time. Renewed sampling, therefore, has been undertaken eastward from the Portland area into the Columbia River Gorge and out onto the Plateau. Resampling of the Patrick Grade section (23 flows) in southeastern WA has shown that overprint magnetizations were not successfully removed in many flows at this locality in an earlier study [1]. This brings into question blanket demagnetization studies of the CRBG as well as polarity measurements routinely made in the field with hand-held fluxgate magnetometers. [1] Choiniere and Swanson, 1979, Am. J. Sci., 279, p. 755
Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland
NASA Astrophysics Data System (ADS)
Green, R. G.; White, R. S.; Greenfield, T. S.
2013-12-01
Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.
NASA Astrophysics Data System (ADS)
Herman, S. W.; Gans, P. B.
2006-12-01
A paleomagnetic investigation into possible vertical axis rotations has been conducted in the Sierra el Aguaje and Sierra Tinajas del Carmen, Sonora, Mexico, in order assess proposed styles for oblique continental rifting in the Gulf of California. Two styles of rifting have been proposed; (1) strain partitioning (Stock and Hodges, 89), and (2) transtension (Gans, 97), for the Proto-Gulf period of the Gulf of California. The presence of large- scale vertical axis rotations would lend weight to the argument for transtension. The Sierra el Aguaje and Sierra Tinajas del Carmen are located in southwestern coastal Sonora, Mexico. The ranges represent the eastern-rifted margin of the central Gulf of California. This is one of the few areas of that margin which is entirely above water, with new ocean crust of the Guaymas basin lying immediately offshore of the western edge of the ranges. The ranges are composed of volcanic units and their corresponding volcaniclastic units that are the result of persistent magmatic activity between 20 and 8.8 Ma, including three packages of basalt and andesite that make excellent paleomagnetic recorders. Based on cross cutting relations and geochronologic data for pre-, syn-, and post-tectonic volcanic units, most of the faulting and tilting in the Sierra El Aguaje and Sierra Tinajas del Carmen is bracketed between 11.9 and 9.0 Ma, thus falling entirely within Proto-Gulf time. Existing field relations suggest the presence of large (>45°) vertical axis rotations in this region. This evidence includes: a) abrupt changes in the strike of tilted strata in different parts of the range b) ubiquitous NE-SW striking faults with left lateral-normal oblique slip, that terminate against major NW-trending right lateral faults, and c) obliquity between the general strike of tilted strata and the strike of faults. The results of the paleomagnetic investigation are consistent with the field evidence and show large clockwise rotations between ~30° and ~100° with no discernable translation. Such large-scale rotations lend credence to the theory that the area inboard of Baja California was experiencing transtension during the Proto-Gulf period, rather than the pure extension that would have been the result of strain partitioning.
Absolute plate motions and true polar wander in the absence of hotspot tracks.
Steinberger, Bernhard; Torsvik, Trond H
2008-04-03
The motion of continents relative to the Earth's spin axis may be due either to rotation of the entire Earth relative to its spin axis--true polar wander--or to the motion of individual plates. In order to distinguish between these over the past 320 Myr (since the formation of the Pangaea supercontinent), we present here computations of the global average of continental motion and rotation through time in a palaeomagnetic reference frame. Two components are identified: a steady northward motion and, during certain time intervals, clockwise and anticlockwise rotations, interpreted as evidence for true polar wander. We find approximately 18 degrees anticlockwise rotation about 250-220 Myr ago and the same amount of clockwise rotation about 195-145 Myr ago. In both cases the rotation axis is located at about 10-20 degrees W, 0 degrees N, near the site that became the North American-South American-African triple junction at the break-up of Pangaea. This was followed by approximately 10 degrees clockwise rotation about 145-135 Myr ago, followed again by the same amount of anticlockwise rotation about 110-100 Myr ago, with a rotation axis in both cases approximately 25-50 degrees E in the reconstructed area of North Africa and Arabia. These rotation axes mark the maxima of the degree-two non-hydrostatic geoid during those time intervals, and the fact that the overall net rotation since 320 Myr ago is nearly zero is an indication of long-term stability of the degree-two geoid and related mantle structure. We propose a new reference frame, based on palaeomagnetism, but corrected for the true polar wander identified in this study, appropriate for relating surface to deep mantle processes from 320 Myr ago until hotspot tracks can be used (about 130 Myr ago).
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1993-01-01
A split spline screw type payload fastener assembly, including three identical male and female type split spline sections, is discussed. The male spline sections are formed on the head of a male type spline driver. Each of the split male type spline sections has an outwardly projecting load baring segment including a convex upper surface which is adapted to engage a complementary concave surface of a female spline receptor in the form of a hollow bolt head. Additionally, the male spline section also includes a horizontal spline releasing segment and a spline tightening segment below each load bearing segment. The spline tightening segment consists of a vertical web of constant thickness. The web has at least one flat vertical wall surface which is designed to contact a generally flat vertically extending wall surface tab of the bolt head. Mutual interlocking and unlocking of the male and female splines results upon clockwise and counter clockwise turning of the driver element.
NASA Astrophysics Data System (ADS)
Pradhan, R.; Saha, S.; Datta, P. K.
2013-01-01
Round-trip phase-shifts with intensity of an input signal due to saturable index change and optically induced thermal effects in a vertical cavity semiconductor (quantum wells) saturable absorber (VCSSA) are investigated analytically to observe counter-clockwise bi-stability in transmission mode and clockwise bi-stability in reflection mode. Simultaneous effects of Kerr nonlinearity and cavity heating on resonance wavelength-shift of the VCSSA micro-cavity are investigated. It is found that these bi-stable characteristics are possible to the absorption edge of nonlinear material for long wavelength side operations of low intensity resonance wavelength of the micro-cavity, where dispersion of absorption and refraction are neglected over a small range of optical wavelength tuning (δλ˜10 nm). Simulations are carried out to find out optimized parameters of the device for bi-stable characteristics. Operations are demonstrated for InGaAs/InP quantum wells based VCSSA with low intensity resonance wavelength of 1570 nm. For counter-clockwise bi-stable switching at working wavelength of 1581 nm, an input intensity variation of 0.79IS is required with top (Rt) and back DBR reflectivity (Rb) of 91% and 93%, respectively, where IS represents the absorption saturation intensity of nonlinear medium. Whereas, the clockwise bi-stability occurs at 0.22IS for working wavelength of 1578 nm with Rt of 90% and Rb of 98%, respectively.
Peri-equatorial paleolatitudes for Jurassic radiolarian cherts of Greece
Aiello, I.W.; Hagstrum, J.T.; Principi, G.
2008-01-01
Radiolarian-rich sediments dominated pelagic deposition over large portions of the Tethys Ocean during middle to late Jurassic time as shown by extensive bedded chert sequences found in both continental margin and ophiolite units of the Mediterranean region. Which paleoceanographic mechanisms and paleotectonic setting favored radiolarian deposition during the Jurassic, and the nature of a Tethys-wide change from biosiliceous to biocalcareous (mainly nannofossil) deposition at the beginning of Cretaceous time, have remained open questions. Previous paleomagnetic analyses of Jurassic red radiolarian cherts in the Italian Apennines indicate that radiolarian deposition occurred at low peri-equatorial latitudes, similar to modern day deposition of radiolarian-rich sediments within equatorial zones of high biologic productivity. To test this result for other sectors of the Mediterranean region, we undertook paleomagnetic study of Mesozoic (mostly middle to upper Jurassic) red radiolarian cherts within the Aegean region on the Peloponnesus and in continental Greece. Sampled units are from the Sub-Pelagonian Zone on the Argolis Peninsula, the Pindos-Olonos Zone on the Koroni Peninsula, near Karpenissi in central Greece, and the Ionian Zone in the Varathi area of northwestern Greece. Thermal demagnetization of samples from all sections removed low-temperature viscous and moderate-temperature overprint magnetizations that fail the available fold tests. At Argolis and Koroni, however, the cherts carry a third high-temperature magnetization that generally exhibits a polarity stratigraphy and passes the available fold tests. We interpret the high-temperature component to be the primary magnetization acquired during chert deposition and early diagenesis. At Kandhia and Koliaky (Argolis), the primary declinations and previous results indicate clockwise vertical-axis rotations of ??? 40?? relative to "stable" Europe. Due to ambiguities in hemispheric origin (N or S) and thus paleomagnetic polarity, the observed declinations could indicate either clockwise (CW) or counterclockwise (CCW) vertical-axis rotations. Thus at Adriani (Koroni), the primary declinations indicate either CW or CCW rotations of ??? 95?? or ??? 84??, depending on paleomagnetic polarity and age. The primary inclinations for all Peloponnesus sites indicate peri-equatorial paleolatitudes similar to those found for coeval radiolarian cherts exposed in other Mediterranean orogenic belts. Our new paleomagnetic data support the interpretation that Mesozoic radiolarites within the Tethys Ocean were originally deposited along peri-equatorial belts of divergence and high biologic productivity. ?? 2007 Elsevier B.V. All rights reserved.
Coarse-Scale Biases for Spirals and Orientation in Human Visual Cortex
Heeger, David J.
2013-01-01
Multivariate decoding analyses are widely applied to functional magnetic resonance imaging (fMRI) data, but there is controversy over their interpretation. Orientation decoding in primary visual cortex (V1) reflects coarse-scale biases, including an over-representation of radial orientations. But fMRI responses to clockwise and counter-clockwise spirals can also be decoded. Because these stimuli are matched for radial orientation, while differing in local orientation, it has been argued that fine-scale columnar selectivity for orientation contributes to orientation decoding. We measured fMRI responses in human V1 to both oriented gratings and spirals. Responses to oriented gratings exhibited a complex topography, including a radial bias that was most pronounced in the peripheral representation, and a near-vertical bias that was most pronounced near the foveal representation. Responses to clockwise and counter-clockwise spirals also exhibited coarse-scale organization, at the scale of entire visual quadrants. The preference of each voxel for clockwise or counter-clockwise spirals was predicted from the preferences of that voxel for orientation and spatial position (i.e., within the retinotopic map). Our results demonstrate a bias for local stimulus orientation that has a coarse spatial scale, is robust across stimulus classes (spirals and gratings), and suffices to explain decoding from fMRI responses in V1. PMID:24336733
Hagstrum, J.T.; Swanson, D.A.; Snee, L.W.
1998-01-01
Paleomagnetic study of the intrusive suite of Kidd Creek in the southern Washington Cascades (23 sites in dikes and sills) was undertaken to help determine if these rocks are comagmatic and whether they postdate regional folding of the volcanic arc. Fission track and 40Ar-39Ar age determinations indicate an age of ???12.7 Ma (middle Miocene) for these rocks. The similarity of normal-polarity characteristic directions for most samples corroborate the available geochemical data indicating that these rocks are most likely comagmatic. Reversed-polarity directions for samples from four sites, however, show that emplacement of Kidd Creek intrusions spanned at least one reversal of the geomagnetic field. The paleomagnetic directions for the dikes and sills fail a fold test at the 99% confidence level indicating that the Kidd Creek rocks postdate regional folding. The mean in situ direction also indicates that the Kidd Creek and older rocks have been rotated 22?? ?? 6?? clockwise about a vertical or near-vertical axis from the expected Miocene direction. Compression and regional folding of the Cascade arc in southern Washington therefore had ended by ???12 Ma prior to the onset of deformation resulting in rotation of these rocks.
NASA Astrophysics Data System (ADS)
Herman, Scott William
The history of late Miocene (Proto-Gulf) deformation on the Sonoran margin of the Gulf of California is key to understanding how Baja California was captured by the Pacific plate and how strain was partitioned during the Proto-Gulf period (12.5-6 Ma). The Sierra el Aguaje and Sierra Tinajas del Carmen are located in southwestern coastal Sonora, Mexico, and represent the eastern rifted margin of the central Gulf of California. The ranges are composed of volcanic units and their corresponding volcaniclastic units which are the result of persistent magmatic activity between 20 and 8.8 Ma, including three packages of basalt and andesite that make excellent paleomagnetic recorders. Based on cross cutting relations and geochronologic data for pre-, syn-, and post-tectonic volcanic units, most of the faulting and tilting in the Sierra El Aguaje is bracketed between 11.9 and 9.0 Ma, thus falling entirely within Proto-Gulf time. A paleomagnetic investigation into possible vertical axis rotations in the Sierra el Aguaje has uncovered evidence of clockwise rotations between ~13º and ~105º with possible translations. These results are consistent with existing field relations, which suggest the presence of large (>45°) vertical axis rotations in this region. This evidence includes: a) abrupt changes in the strike of tilted strata in different parts of the range, including large domains characterized by E-W strikes b) ubiquitous NE-SW striking faults with left lateral-normal oblique slip, that terminate against major NW-trending right lateral faults, and c) obliquity between the general strike of tilted strata and the strike of faults. These rotations occurred after 12 Ma and largely prior to 9 Ma, thus falling into the Proto-Gulf period. Such large-scale rotations lend credence to the theory that the area inboard of Baja California was experiencing transtension during the Proto-Gulf period, rather than the pure extension that would be the result of strain partitioning between Sonora and the Tosco-Abreojos fault offshore Baja California.
NASA Astrophysics Data System (ADS)
Montes, Camilo; Guzman, Georgina; Bayona, German; Cardona, Agustin; Valencia, Victor; Jaramillo, Carlos
2010-10-01
A moderate amount of vertical-axis clockwise rotation of the Santa Marta massif (30°) explains as much as 115 km of extension (stretching of 1.75) along its trailing edge (Plato-San Jorge basin) and up to 56 km of simultaneous shortening with an angular shear of 0.57 along its leading edge (Perijá range). Extensional deformation is recorded in the 260 km-wide, fan-shaped Plato-San Jorge basin by a 2-8 km thick, shallowing-upward and almost entirely fine-grained, upper Eocene and younger sedimentary sequence. The simultaneous initiation of shortening in the Cesar-Ranchería basin is documented by Mesozoic strata placed on to lower Eocene syntectonic strata (Tabaco Formation and equivalents) along the northwest-verging, shallow dipping (9-12° to the southeast) and discrete Cerrejón thrust. First-order subsidence analysis in the Plato-San Jorge basin is consistent with crustal stretching values between 1.5 and 2, also predicted by the rigid-body rotation of the Santa Marta massif. The model predicts about 100 km of right-lateral displacement along the Oca fault and 45 km of left-lateral displacement along the Santa Marta-Bucaramanga fault. Clockwise rotation of a rigid Santa Marta massif, and simultaneous Paleogene opening of the Plato-San Jorge basin and emplacement of the Cerrejón thrust sheet would have resulted in the fragmentation of the Cordillera Central-Santa Marta massif province. New U/Pb ages (241 ± 3 Ma) on granitoid rocks from industry boreholes in the Plato-San Jorge basin confirm the presence of fragments of a now segmented, Late Permian to Early Triassic age, two-mica, granitic province that once spanned the Santa Marta massif to the northernmost Cordillera Central.
NASA Astrophysics Data System (ADS)
Platt, J. P.; Becker, T. W.
2013-09-01
Sets of E- to NE-trending sinistral and/or reverse faults occur within the San Andreas system, and are associated with palaeomagnetic evidence for clockwise vertical-axis rotations. These structures cut across the trend of active dextral faults, posing questions as to how displacement is transferred across them. Geodetic data show that they lie within an overall dextral shear field, but the data are commonly interpreted to indicate little or no slip, nor any significant rate of rotation. We model these structures as rotating by bookshelf slip in a dextral shear field, and show that a combination of sinistral slip and rotation can produce the observed velocity field. This allows prediction of rates of slip, rotation, fault-parallel extension and fault-normal shortening within the panel. We use this method to calculate the kinematics of the central segment of the Garlock Fault, which cuts across the eastern California shear zone at a high angle. We obtain a sinistral slip rate of 6.1 ± 1.1 mm yr-1, comparable to geological evidence, but higher than most previous geodetic estimates, and a rotation rate of 4.0 ± 0.7° Myr-1 clockwise. The western Transverse Ranges transect a similar shear zone in coastal and offshore California, but at an angle of only 40°. As a result, the faults, which were sinistral when they were at a higher angle to the shear zone, have been reactivated in a dextral sense at a low rate, and the rate of rotation of the panel has decreased from its long-term rate of ˜5° to 1.6° ± 0.2° Myr-1 clockwise. These results help to resolve some of the apparent discrepancies between geological and geodetic slip-rate estimates, and provide an enhanced understanding of the mechanics of intracontinental transform systems.
NASA Astrophysics Data System (ADS)
Bormann, Jayne M.; Hammond, William C.; Kreemer, Corné; Blewitt, Geoffrey
2016-04-01
We present 264 new interseismic GPS velocities from the Mobile Array of GPS for Nevada Transtension (MAGNET) and continuous GPS networks that measure Pacific-North American plate boundary deformation in the Central Walker Lane. Relative to a North America-fixed reference frame, northwestward velocities increase smoothly from ∼4 mm/yr in the Basin and Range province to 12.2 mm/yr in the central Sierra Nevada resulting in a Central Walker Lane deformation budget of ∼8 mm/yr. We use an elastic block model to estimate fault slip and block rotation rates and patterns of deformation from the GPS velocities. Right-lateral shear is distributed throughout the Central Walker Lane with strike-slip rates generally <1.5 mm/yr predicted by the block model, but extension rates are highest near north-striking normal faults found along the Sierra Nevada frontal fault system and in a left-stepping, en-echelon series of asymmetric basins that extend from Walker Lake to Lake Tahoe. Neotectonic studies in the western Central Walker Lane find little evidence of strike-slip or oblique faulting in the asymmetric basins, prompting the suggestion that dextral deformation in this region is accommodated through clockwise block rotations. We test this hypothesis and show that a model relying solely on the combination of clockwise block rotations and normal faulting to accommodate dextral transtensional strain accumulation systematically misfits the GPS data in comparison with our preferred model. This suggests that some component of oblique or partitioned right-lateral fault slip is needed to accommodate shear in the asymmetric basins of the western Central Walker Lane. Present-day clockwise vertical axis rotation rates in the Bodie Hills, Carson Domain, and Mina Deflection are between 1-4°/Myr, lower than published paleomagnetic rotation rates, suggesting that block rotation rates have decreased since the Late to Middle Miocene.
Paleomagnetism of the Talesh Mountains and implications for the geodynamics of NW Iran
NASA Astrophysics Data System (ADS)
Langereis, C. G.; Kuijper, C. B.; Rezaeian, M.; van der Boon, A.; Cotton, L.; Pastor-Galan, D.; Krijgsman, W.
2017-12-01
Since the late Eocene, convergence and subsequent collision between Arabia and Eurasia was accommodated both in the overriding Eurasian plate - which includes the Iranian plateau - and by subduction and accretion of the Neotethys and Arabian margin. Determining rotations of the Talesh is of crucial importance for estimating crustal shortening in the Arabia-Eurasia collision region. Previously, we quantified how much Arabia-Eurasia convergence was accommodated north of the Talesh mountains of NW Iran (120 km). Since the Eocene, the Talesh and western Alborz Mountains show a 16° net clockwise rotation relative to Eurasia. In our kinematic restoration, we considered the Talesh and western Alborz Mountains as a coherent single block, with a length of 600 km. However, on a smaller scale ( 100 km), the Talesh Mountains show a Z-shaped outcrop pattern of Eocene volcanic rocks. Here, we present new paleomagnetic data from Cretaceous sediments and Eocene volcanics of the Talesh Mountains, which cover a gap in our previous work. We reconstruct vertical axis rotations of the Z-shape. For the Eocene, our results indicate an increasing amount of CW rotation with respect to Eurasia from south to north: 24° in the southeast to 49° in the central Talesh. Cretaceous data show significantly larger rotations of 70-100° CW. This could indicate that curvature in the Talesh is progressive through time. The formation of this orocline must have started after the Eocene at the latest. However, it seems that not all of the outcrop pattern can be explained by the observed vertical axis rotations yet.
Song, Jae-Won; Lim, Joong-Ki; Lee, Kee-Joon; Sung, Sang-Jin; Chun, Youn-Sic
2016-01-01
Objective Orthodontic mini-implants (OMI) generate various horizontal and vertical force vectors and moments according to their insertion positions. This study aimed to help select ideal biomechanics during maxillary incisor retraction by varying the length in the anterior retraction hook (ARH) and OMI position. Methods Two extraction models were constructed to analyze the three-dimentional finite element: a first premolar extraction model (Model 1, M1) and a residual 1-mm space post-extraction model (Model 2, M2). The OMI position was set at a height of 8 mm from the arch wire between the second maxillary premolar and the first molar (low OMI traction) or at a 12-mm height in the mesial second maxillary premolar (high OMI traction). Retraction force vectors of 200 g from the ARH (-1, +1, +3, and +6 mm) at low or high OMI traction were resolved into X-, Y-, and Z-axis components. Results In M1 (low and high OMI traction) and M2 (low OMI traction), the maxillary incisor tip was extruded, but the apex was intruded, and the occlusal plane was rotated clockwise. Significant intrusion and counter-clockwise rotation in the occlusal plane were observed under high OMI traction and -1 mm ARH in M2. Conclusions This study observed orthodontic tooth movement according to the OMI position and ARH height, and M2 under high OMI traction with short ARH showed retraction with maxillary incisor intrusion. PMID:27478801
Fukawa, Toshihiko; Hirakawa, Takashi; Maegawa, Jiro
2014-01-01
Background: We have developed a hybrid facial osteogenesis distraction system that combines the advantages of external and internal distraction devices to enable control of both the distraction distance and vector. However, when the advanced maxilla has excessive clockwise rotation and shifts more downward vertically than planned, it might be impossible to pull it up to correct it. We invented devices attached to external distraction systems that can control the vertical vector of distraction to resolve this problem. The purpose of this article is to describe the result of utilizing the distraction system for syndromic craniosynostosis. Methods: In addition to a previously reported hybrid facial distraction system, the devices for controlling the vertical direction of the advanced maxilla were attached to the external distraction device. The vertical direction of the advanced maxilla can be controlled by adjustment of the spindle units. This system was used for 2 patients with Crouzon and Apert syndrome. Results: The system enabled control of the vertical distance, with no complications during the procedures. As a result, the maxilla could be advanced into the planned position including overcorrection without excessive clockwise rotation of distraction. Conclusion: Our system can alter the cases and bring them into the planned position, by controlling the vertical vector of distraction. We believe that this system might be effective in infants with syndromic craniosynostosis as it involves 2 osteotomies and horizontal and vertical direction of elongation can be controlled. PMID:25289307
Optimizing the use of a skin prick test device on children.
Buyuktiryaki, Betul; Sahiner, Umit Murat; Karabulut, Erdem; Cavkaytar, Ozlem; Tuncer, Ayfer; Sekerel, Bulent Enis
2013-01-01
Studies comparing skin prick test (SPT) devices have revealed varying results in performance and there is little known about their use on children. We performed 2 complementary studies to test the sensitivity, reproducibility and acceptability of commercially available SPT devices (Stallerpoint, Antony, France) using different application techniques. In the first part, histamine/saline was put on as a drop by use of a vial (V), and in the second part it was transferred from a well with the aid of the test device (W). The techniques were as follows: apply vertical pressure (Stallerpoint-VP or Stallerpoint-WP), apply vertical pressure with 90° clockwise rotation (Stallerpoint-VC or Stallerpoint-WC) and apply vertical pressure with 90° clockwise and counter-clockwise rotations (Stallerpoint-VCC or Stallerpoint-WCC). For comparison, ALK Lancet was used with a technique of 'drop and apply vertical pressure'. In the first part, sensitivities of the Stallerpoint-VC (96.6%), Stallerpoint-VCC (95.5%) and ALK Lancet (93.2%) techniques were superior (p < 0.001) to the other Stallerpoint-VP and Stallerpoint-WP techniques (76.1 and 46.6%). Intrapatient coefficient of variation (CV) values were 15.0, 18.9, 15.4, 22.4 and 48.5%, respectively. Interpatient CV ranged between 22.8 and 55.1%. In the second part, the Stallerpoint-WC (98.8%), WCC (97.5%) and ALK Lancet (98.8%) techniques yielded high sensitivities, whereas the sensitivity of Stallerpoint-WP (28.7%) was very low. There were false-positive reactions in the Stallerpoint-VCC and WCC techniques. In children, the SPT technique was found to be as important as the testing device. Stallerpoint-VC and WC techniques are reliable, tolerable and comparable with the ALK Lancet technique. Copyright © 2013 S. Karger AG, Basel.
Le Fort III Distraction With Internal vs External Distractors: A Cephalometric Analysis.
Robertson, Kevin J; Mendez, Bernardino M; Bruce, William J; McDonnell, Brendan D; Chiodo, Michael V; Patel, Parit A
2018-05-01
This study compares the change in midface position following Le Fort III advancement using either rigid external distraction (group 1) or internal distraction (group 2). We hypothesized that, with reference to right-facing cephalometry, internal distraction would result in increased clockwise rotation and inferior displacement of the midface. Le Fort III osteotomies and standardized distraction protocols were performed on 10 cadaveric specimens per group. Right-facing lateral cephalograms were traced and compared across time points to determine change in position at points orbitale, anterior nasal spine (ANS), A-point, and angle ANB. Institutional. Twenty cadaveric head specimens. Standard subcranial Le Fort III osteotomies were performed from a coronal approach and adequately mobilized. The specified distraction mechanism was applied and advanced by 15 mm. Changes of position were calculated at various skeletal landmarks: orbitale, ANS, A-point, and ANB. Group 1 demonstrated relatively uniform x-axis advancement with minimal inferior repositioning at the A-point, ANS, and orbitale. Group 2 demonstrated marked variation in x-axis advancement among the 3 points, along with a significant inferior repositioning and clockwise rotation of the midface ( P < .0001). External distraction resulted in more uniform advancement of the midface, whereas internal distraction resulted in greater clockwise rotation and inferior displacement. External distraction appears to provide increased vector control of the midface, which is important in creating a customized distraction plan based on the patient's individual occlusal and skeletal needs.
Zhou, Jia; Pu, Da-Rong; Tian, Lei-Qi; Tong, Hai; Liu, Hong-Yu; Tang, Yan; Zhou, Qi-Chang
2015-05-28
Our study aimed to investigate the feasibility of velocity vector imaging (VVI) to analyze left ventricular (LV) myocardial mechanics in rabbits at basal state. The animals used in this study were 30 New Zealand white rabbits. All rabbits underwent routine echocardiography under VVI-mode at basal state. The 2-dimensional (2-D) echocardiography images acquired included parasternal left long-axis views and short-axis views at the level of LV mitral valve, papillary muscles, and apex. Images were analyzed by VVI software. At basal state, longitudinal LV velocity decreased from the basal to the apical segment (P<0.05). In the short axis direction, the highest peak myocardial velocity was found between the anterior septum and anterior wall for each segment at the same level; the peak strains and strain rates (SR) were the highest in the anterior and lateral wall compared to other segments (all P<0.05). During systole, LV base rotated in a clockwise direction and LV apex rotated in a counter-clockwise direction, while during diastole, both LV base and apex rotated in the direction opposite to systole. The rotation angle, rotation velocity and unwinding velocity in the apical segment were greater than the basal segment (P<0.05). VVI is a reliable tool for evaluating LV myocardial mechanics in rabbits at basal state, and the LV long-axis short-axis and torsional motions reflect the normal regular patterns. Our study lays the foundation for future experimental approaches in rabbit models and for other applications related to the study of human myocardial mechanics.
Basic kinematics of the saddle and rider in high-level dressage horses trotting on a treadmill.
Byström, A; Rhodin, M; von Peinen, K; Weishaupt, M A; Roepstorff, L
2009-03-01
A comprehensive kinematic description of rider and saddle movements is not yet present in the scientific literature. To describe saddle and rider movements in a group of high-level dressage horses and riders. Seven high-level dressage horses and riders were subjected to kinematic measurements while performing collected trot on a treadmill. For analysis a rigid body model for the saddle and core rider segments, projection angles of the rider's extremities and the neck and trunk of the horse, and distances between markers selected to indicate rider position were used. For a majority of the variables measured it was possible to describe a common pattern for the group. Rotations around the transverse axis (pitch) were generally biphasic for each diagonal. During the first half of stance the saddle rotated anti-clockwise and the rider's pelvis clockwise viewed from the right and the rider's lumbar back extended. During the later part of stance and the suspension phase reverse pitch rotations were observed. Rotations of the saddle and core rider segments around the longitudinal (roll) and vertical axes (yaw) changed direction only around time of contact of each diagonal. The saddles and riders of high-level dressage horses follow a common movement pattern at collected trot. The movements of the saddle and rider are clearly related to the movements of the horse and saddle movements also seem to be influenced by the rider. Knowledge about rider and saddle movements can further our understanding of, and hence possibilities to prevent, orthopaedic injuries related to the exposure of the horse to a rider and saddle.
Chan, Alan H S; Hoffmann, Errol R
2012-01-01
Stereotype strength and reversibility were determined for displays that were in the Front, Right and Left orientations relative to the operator, along with rotary, horizontally and vertically-moving controls located in the overhead, left-sagittal and right-sagittal planes. In each case, responses were made using the left and right hands. The arrangements used were (i) rotary control with a circular display (ii) horizontal/transverse control moving forward/rearward in the left and right-sagittal planes or transversely in the overhead plane and (iii) vertical/longitudinal control moving vertically in the left and right-sagittal planes and longitudinally in the overhead plane. These are all combinations not previously researched. Stereotype strength varied with display plane, type of control and plane of control. Models for the stereotype strength are developed, showing the contribution of various components to the overall stereotype strength. The major component for horizontally-moving controls comes from the "visual field" model of Worringham and Beringer (1998); for the rotary control important factors are "clockwise-for-clockwise" and the hand/control location effect (Hoffmann, 2009a). Vertically-moving controls are governed by a simple 'up-for-up' relationship between displays and controls. Overall stereotype strength is a maximum when all components add positively. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Paleomagnetic constraints on deformation of superfast-spread oceanic crust exposed at Pito Deep Rift
NASA Astrophysics Data System (ADS)
Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.
2011-12-01
The uppermost oceanic crust produced at the superfast spreading (˜142 km Ma-1, full-spreading rate) southern East Pacific Rise (EPR) during the Gauss Chron is exposed in a tectonic window along the northeastern wall of the Pito Deep Rift. Paleomagnetic analysis of fully oriented dike (62) and gabbro (5) samples from two adjacent study areas yield bootstrapped mean remanence directions of 38.9° ± 8.1°, -16.7° ± 15.6°, n = 23 (Area A) and 30.4° ± 8.0°, -25.1° ± 12.9°, n = 44 (Area B), both are significantly distinct from the Geocentric Axial Dipole expected direction at 23° S. Regional tectonics and outcrop-scale structural data combined with bootstrapped remanence directions constrain models that involve a sequence of three rotations that result in dikes restored to subvertical orientations related to (1) inward-tilting of crustal blocks during spreading (Area A = 11°, Area B = 22°), (2) clockwise, vertical-axis rotation of the Easter Microplate (A = 46°, B = 44°), and (3) block tilting at Pito Deep Rift (A = 21°, B = 10°). These data support a structural model for accretion at the southern EPR in which outcrop-scale faulting and block rotation accommodates spreading-related subaxial subsidence that is generally less than that observed in crust generated at a fast spreading rate exposed at Hess Deep Rift. These data also support previous estimates for the clockwise rotation of crust adjacent to the Easter Microplate. Dike sample natural remanent magnetization (NRM) has an arithmetic mean of 5.96 A/m ± 3.76, which suggests that they significantly contribute to observed magnetic anomalies from fast- to superfast-spread crust.
Håkansson, Sebastian; Morisaki, Hiroshi; Heuser, John; Sibley, L. David
1999-01-01
Toxoplasma gondii is a member of the phylum Apicomplexa, a diverse group of intracellular parasites that share a unique form of gliding motility. Gliding is substrate dependent and occurs without apparent changes in cell shape and in the absence of traditional locomotory organelles. Here, we demonstrate that gliding is characterized by three distinct forms of motility: circular gliding, upright twirling, and helical rotation. Circular gliding commences while the crescent-shaped parasite lies on its right side, from where it moves in a counterclockwise manner at a rate of ∼1.5 μm/s. Twirling occurs when the parasite rights itself vertically, remaining attached to the substrate by its posterior end and spinning clockwise. Helical gliding is similar to twirling except that it occurs while the parasite is positioned horizontally, resulting in forward movement that follows the path of a corkscrew. The parasite begins lying on its left side (where the convex side is defined as dorsal) and initiates a clockwise revolution along the long axis of the crescent-shaped body. Time-lapse video analyses indicated that helical gliding is a biphasic process. During the first 180o of the turn, the parasite moves forward one body length at a rate of ∼1–3 μm/s. In the second phase, the parasite flips onto its left side, in the process undergoing little net forward motion. All three forms of motility were disrupted by inhibitors of actin filaments (cytochalasin D) and myosin ATPase (butanedione monoxime), indicating that they rely on an actinomyosin motor in the parasite. Gliding motility likely provides the force for active penetration of the host cell and may participate in dissemination within the host and thus is of both fundamental and practical interest. PMID:10564254
Paleo movement of continents, mantle dynamics and large wander of the rotational pole
NASA Astrophysics Data System (ADS)
Greff-Lefftz, M.; Besse, J.
2010-12-01
Polar wander is known to be mainly linked to mass distribution changes in its mantle or surface, and more particularly to subductions evolution. On one hand, the peri-pacific subductions seem to be a quite permanent feature of the earth's history at least since the Paleozoic, while the "Tethyan" subductions have a complex history with successive collisions of continental blocs (Hercynian, Kimmerian, Indian) and episodically rebirth of E-W subduction zones. We investigate plate motion during the last 350 million years in a reference frame where Africa is fixed, this last plate being a central plate from which most continents diverged since Pangea break-up. The exact amount of subduction is unknown before 120 Ma and we try to estimate it from the study of the subduction volcanism in the past and plate motion history, when available. Assuming that the subducted slabs sink vertically into the mantle and taking into account large-scale upwellings derived from present-day tomography and intra-plate volcanism in the past, we compute the time variation of mantle density heterogeneities since 350 Ma. By conservation of the angular momentum of the Earth, the temporal evolution of the rotational axis, with respect to the fixed Africa, is computed and compared to the Apparent Polar Wander (APW) observed by paleomagnetism since 280 Ma. We find that a major trend of the computed APW can be described as successive oscillatory clockwise or counter-clockwise motions and that the cusps (around 230 Ma and 170 Ma), both in the observed Africa APW and in the computed pole, are essentially due to the Hercynian (340-300 Ma) and Kimmerian (270-230 Ma) continental collisions.
NASA Astrophysics Data System (ADS)
Choi, Eunho; Lim, Gyu-Ho
2016-04-01
Summer time front is one of the most significant phenomena over East Asia including China, Korea and Japan. Many efforts have been established to understand the nature of front. However, there was no research conducting identifying East Asia summer time fronts objectively. We have established objective front recognition method. The method follows next procedures : 1) We calculate vorticity on 850-hPa surface. 2) Any grid point that have horizontal gradient of equivalent potential temperature (EPT hereafter) on 850-hPa surface less than 4 'c / 100km set to zero. 3) Next, we smooth this field using 9-point smoothing technique. 4) Finally we extract the main axis of closed contour correspond to vorticity of 1.5 10-5s-5. Voronoi diagram used to extract this axis. We define this axis as front on 850-hPa pressure surface. We have applied the method on 1981-2010 ERA-Interim dataset. From the result, front frequency maximums are in around of East China Sea (34N, 122E), north (38N, 136E) and south (34N, 140E) of main island of Japan. Below 30N and above 40N, front frequency tends to decrease maybe due to decrease in the magnitude of gradient of EPT and the frequency of cyclonic weather disturbance. Two main regions affect the variability of East Asia Front Frequency. One is equatorial positive region especially over Taiwan (25N, 120E). The other one is East Sea next to Korea (40N, 135E). Humid warm air transported from southern China (20N-30N, 100E-110E) and dry cold air transported from northern China (30N-40N, 100E-110E) compressed by clockwise high system over Taiwan and counter-clockwise low system over East Sea). This compressed precipitation-making system or front moves by extratropical westerly and transported out to north-western Pacific. It looks like geopotential over Taiwan affected by tropical activity, especially vertical integration of temperature (VIT hereafter) over tropical region (30S-30N). When VIT is higher than normal, geopotential over Taiwan also higher than normal with correlation coefficient of 0.5 (1981-2010). Therefore, we can conclude that when VIT is higher than normal, front frequency is higher than normal. VIT is significantly related with ENSO variability. We will investigate how the tropical region activity affects the front frequency over East Asia.
Steerable vertical to horizontal energy transducer for mobile robots
Spletzer, Barry L.; Fischer, Gary J.; Feddema, John T.
2001-01-01
The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.
Orientation of human optokinetic nystagmus to gravity: a model-based approach
NASA Technical Reports Server (NTRS)
Gizzi, M.; Raphan, T.; Rudolph, S.; Cohen, B.
1994-01-01
Optokinetic nystagmus (OKN) was induced by having subjects watch a moving display in a binocular, head-fixed apparatus. The display was composed of 3.3 degrees stripes moving at 35 degrees/s for 45 s. It subtended 88 degrees horizontally by 72 degrees vertically of the central visual field and could be oriented to rotate about axes that were upright or tilted 45 degrees or 90 degrees. The head was held upright or was tilted 45 degrees left or right on the body during stimulation. Head-horizontal (yaw axis) and head-vertical (pitch axis) components of OKN were recorded with electro-oculography (EOG). Slow phase velocity vectors were determined and compared with the axis of stimulation and the spatial vertical (gravity axis). With the head upright, the axis of eye rotation during yaw axis OKN was coincident with the stimulus axis and the spatial vertical. With the head tilted, a significant vertical component of eye velocity appeared during yaw axis stimulation. As a result the axis of eye rotation shifted from the stimulus axis toward the spatial vertical. Vertical components developed within 1-2 s of stimulus onset and persisted until the end of stimulation. In the six subjects there was a mean shift of the axis of eye rotation during yaw axis stimulation of approximately 18 degrees with the head tilted 45 degrees on the body. Oblique optokinetic stimulation with the head upright was associated with a mean shift of the axis of eye rotation toward the spatial vertical of 9.2 degrees. When the head was tilted and the same oblique stimulation was given, the axis of eye rotation rotated to the other side of the spatial vertical by 5.4 degrees. This counterrotation of the axis of eye rotation is similar to the "Muller (E) effect," in which the perception of the upright is counterrotated to the opposite side of the spatial vertical when subjects are tilted in darkness. The data were simulated by a model of OKN with a "direct" and "indirect" pathway. It was assumed that the direct visual pathway is oriented in a body, not a spatial frame of reference. Despite the short optokinetic after-nystagmus time constants, strong horizontal to vertical cross-coupling could be produced if the horizontal and vertical time constants were in proper ratio and there were no suppression of nystagmus in directions orthogonal to the stimulus direction. The model demonstrates that the spatial orientation of OKN can be achieved by restructuring the system matrix of velocity storage. We conclude that an important function of velocity storage is to orient slow-phase velocity toward the spatial vertical during movement in a terrestrial environment.
NASA Astrophysics Data System (ADS)
Rood, D. H.; Burbank, D. W.; Luyendyk, B. P.
2005-12-01
We document the geometry, timing, rates, and kinematic style of Late Tertiary deformation between Sonora Pass and Mono Basin, central Sierra Nevada, California. Observed mismatches between geodetic and geologic deformation rates in the western Great Basin may be primarily due to underestimates of true geologic deformation. Relatively little attention has been paid to the role of permanent deformation between faults, i.e. folding or crustal block rotation. Current slip discrepancies may be accounted for if a significant component of off-fault transrotational deformation is present. We use geologic and paleomagnetic data to address the kinematic development of the Sierra Nevada frontal fault zone (SNFFZ), and to quantify both the elastic and inelastic strain accumulated across the Sierra Nevada-Basin and Range transition since ~9 Ma. The complex structure of this transition, between the regions of Sonora Pass and Mono Basin, may be a result of three distinct modes of dextral shear accommodation (transtensional, transpressional, and crustal thinning). The study area is characterized by four important structural elements that lie between the SNFFZ and Walker Lane Belt: (1) N- to NNW-striking normal and oblique faults, dominantly E-dipping, and associated W-tilted fault blocks; (2) NW-striking dextral faults; (3) ENE- to NE-striking left-lateral oblique faults that may accommodate overall dextral shear through clockwise vertical axis rotations of fault blocks; (4) E- to NE-trending folds, which may accommodate N-S shortening at large-scale left steps in the dextral transtensional fault system. Between Bridgeport and Mono Basins, a regional E- to NE-trending fold is present that affects both the Tertiary volcanic strata and a Quaternary glacial outwash surface. To the west, normal faulting rates on the SNFFZ are 1-2 mm/yr (Bursik and Sieh, 1989). This slip decreases to the north, into the folded region of the Bodie Hills. This kinematic relationship suggests that the region may be an accommodation zone between two linking faults, possibly an active fold that accommodates N-S shortening at a large-scale left step in the range front fault system. We collected ~200 paleomagnetic samples from the Late Miocene Eureka Valley Tuff of the Stanislaus Group at 21 sites over a 125-km-long, E-W transect (from the Sierra Nevada foothills to east of Mono Basin). Stepwise AF demagnetization reveals a stable characteristic remnant magnetization. Our preliminary data suggest 20-40 degrees of clockwise rotation adjacent to faults of the SNFFZ. An expanded dataset aims to identify specific structural domains, quantify differential vertical axis block rotations, and test geometric models of transrotation (i.e. block-specific versus gradational) during transtensional lithospheric deformation.
Young, Richard; Glennon, Richard A
2008-01-01
Racemic MDMA (0.3-30 mg/kg), S(+)-MDMA (0.3-30 mg/kg), R(-)-MDMA (0.3-50 mg/kg) and saline vehicle (10 ml/kg) were comprehensively evaluated in fully automated and computer-integrated activity chambers, which were designed for mice, and provided a detailed analysis of the frequency, location, and/or duration of 18 different activities. The results indicated that MDMA and its isomers produced stimulation of motor actions, with S(+)-MDMA and (+/-)-MDMA usually being more potent than R(-)-MDMA in measures such as movement (time, distance, velocity), margin distance, rotation (clockwise and counterclockwise), and retraced activities. Interestingly, racemic MDMA appeared to exert a greater than expected potency and/or an enhanced effect on measures such as movement episodes, center actions (entries and distance), clockwise rotations, and jumps; actions that might be explained by additive or synergistic (i.e. potentiation) effects of the stereoisomers. In other measures, the enantiomers displayed different effects: S(+)-MDMA produced a preference to induce counterclockwise (versus clockwise) rotations, and each isomer exerted a different profile of effect on vertical activities and jumps. Furthermore, each isomer of MDMA appeared to attenuate the effect of its opposite enantiomer on some behaviors; antagonism effects that were surmised from a lack of expected activities by racemic MDMA. S(+)-MDMA (but not R(-)-MDMA), for example, produced an increase in vertical entries (rearing) and a preference to increase counterclockwise (versus clockwise) rotations; (+/-)-MDMA also should have induced such effects but did not. Apparently, R(-)-MDMA, when combined with S(+)-MDMA to form (+/-)-MDMA, prevented the appearance of those increases (from control) in activities. Similarly, R(-)-MDMA (but not S(+)-MDMA) produced increases in episodes (i.e. jumps) and vertical distance that racemic MDMA also should have, but were not, exhibited. Evidently, the presence of S(+)-MDMA in the racemic mixture inhibited the appearance of those increases (from control) in behavior. Taken together, the various and complex effects of MDMA and its stereoisomers are noted and a strategy is suggested for future studies that stresses the importance of steric effects and interplay, probable interaction(s) with various neurotransmitters, and interaction(s) with the particular behavioral or biological event (or action) being measured.
Young, Richard; Glennon, Richard A.
2010-01-01
Racemic MDMA (0.3 – 30 mg/kg), S(+)-MDMA (0.3 – 30 mg/kg), R(-)-MDMA (0.3 – 50 mg/kg) and saline vehicle (10 ml/kg) were comprehensively evaluated in fully automated and computer-integrated activity chambers, which were designed for mice, and provided a detailed analysis of the frequency, location, and/or duration of 18 different activities. The results indicated that MDMA and its isomers produced stimulation of motor actions, with S(+)-MDMA and (±)-MDMA usually being more potent than R(-)-MDMA in measures such as movement (time, distance, velocity), margin distance, rotation (clockwise and counterclockwise), and retraced activities. Interestingly, racemic MDMA appeared to exert a greater than expected potency and/or an enhanced effect on measures such as movement episodes, center actions (entries and distance), clockwise rotations, and jumps; actions that might be explained by additive or synergistic (i.e. potentiation) effects of the stereoisomers. In other measures, the enantiomers displayed different effects: S(+)-MDMA produced a preference to induce counterclockwise (versus clockwise) rotations, and each isomer exerted a different profile of effect on vertical activities and jumps. Furthermore, each isomer of MDMA appeared to attenuate the effect of its opposite enantiomer on some behaviors; antagonism effects that were surmised from a lack of expected activities by racemic MDMA. S(+)-MDMA (but not R(-)-MDMA), for example, produced an increase in vertical entries (rearing) and a preference to increase counterclockwise (versus clockwise) rotations; (±)-MDMA also should have induced such effects but did not. Apparently, R(-)-MDMA, when combined with S(+)-MDMA to form (±)-MDMA, prevented the appearance of those increases (from control) in activities. Similarly, R(-)-MDMA (but not S(+)-MDMA) produced increases in episodes (i.e. jumps) and vertical distance that racemic MDMA also should have, but were not, exhibited. Evidently, the presence of S(+)-MDMA in the racemic mixture inhibited the appearance of those increases (from control) in behavior. Taken together, the various and complex effects of MDMA and its stereoisomers are noted and a strategy is suggested for future studies that stresses the importance of steric effects and interplay, probable interaction(s) with various neurotransmitters, and interaction(s) with the particular behavioral or biological event (or action) being measured. PMID:17904622
NASA Technical Reports Server (NTRS)
Wilson, R. E.
1981-01-01
Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.
Dynamics of tethered constellations in Earth orbit
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1986-01-01
Topics covered include station keeping of single-axis and two-axis constellations; single-axis vertical constellations with low-g platform; single-axis vertical constellations with three masses; deployment strategy; and damping of vibrational modes.
NASA Technical Reports Server (NTRS)
Ralston, J.
1983-01-01
The influence of airplane components, as well as wing location and tail length, on the rotational flow aerodynamics is discussed for a 1/6 scale general aviation airplane model. The airplane was tested in a built-up fashion (i.e., body, body-wing, body-wing-vertical, etc.) in the presence of two wing locations and two body lengths. Data were measured, using a rotary balance, over an angle-of-attack range of 8 deg to 90 deg, and for clockwise and counter-clockwise rotations covering an omega b/2V range of 0 to 0.9.
NASA Astrophysics Data System (ADS)
Lindeman, J. R.; Pluhar, C. J.; Farner, M. J.
2013-12-01
The relative motions of the Pacific and North American plates about the Sierra Nevada-North American Euler pole is accommodated by dextral slip along the San Andreas Fault System (~75%) and the Walker Lane-Eastern California Shear Zone system of faults, east of the Sierra Nevada microplate (~25%). The Bodie Hills and Mono Basin regions lie within the Walker Lane and partially accommodate deformation by vertical axis rotation of up to 60o rotation since ~9.4 Ma. This region experienced recurrent eruptive events from mid to late Miocene, including John et al.'s (2012) ~12.05 Ma Tuff of Jack Springs (TJS) and Gilbert's (1968) 11.1 - 11.9 Ma 'latite ignimbrite' east of Mono Lake. Both tuffs can be identified by phenocrysts of sanidine and biotite in hand specimens, with TJS composed of a light-grey matrix and the latite ignimbrite composed of a grey-black matrix. Our paleomagnetic results show these units to both be normal polarity, with the latite ignimbrite exhibiting a shallow inclination. TJS's normal polarity is consistent with emplacement during subchron C5 An. 1n (12.014 - 12.116 Ma). The X-ray fluorescence analyses of fiamme from TJS in Bodie Hills and the latite ignimbrite located east of Mono Lake reveal them both to be rhyolites with the latite ignimbrite sharing elevated K composition seen in the slightly younger Stanislaus Group (9.0 - 10.2 Ma). We establish a paleomagnetic reference direction of D = 352.8o I = 42.7o α95 = 7.7o n = 5 sites (42 samples) for TJS in the Bodie Hills in a region hypothesized by Carlson (2012) to have experienced low rotation. Our reference for Gilbert's latite ignimbrite (at Cowtrack Mountain) is D = 352.9o I = 32.1o α95 = 4.7o. This reference locality is found on basement highland likely to have experienced less deformation then the nearby Mono Basin since ignimbrite emplacement. Paleomagnetic results from this latite ignimbrite suggests ~98.2o × 5.5o of clockwise vertical axis rotation of parts of eastern Mono Basin since unit emplacement. A welded 11.7 Ma (K-Ar; Drake, 1979) rhyolitic tuff near Trafton Mountain appears similar in composition to TJS. Drake's tuff exhibits a reversed polarity, consistent with reversed polarity subchron C5r.3r (11.614 - 12.014 Ma) and distinguishes this tuff from TJS and Gilbert's latite ignimbrite.
Vertical axis wind turbine airfoil
Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich
2012-12-18
A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.
A local-circulation model for Darrieus vertical-axis wind turbines
NASA Astrophysics Data System (ADS)
Masse, B.
1986-04-01
A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.
The development and testing of a novel cross axis wind turbine
NASA Astrophysics Data System (ADS)
Chong, W. T.; Muzammil, W. K.; Gwani, M.; Wong, K. H.; Fazlizan, A.; Wang, C. T.; Poh, S. C.
2016-06-01
A novel cross axis wind turbine (CAWT) which comprises of a cross axis blades arrangement was presented and investigated experimentally. The CAWT is a new type of wind turbine that extracts wind energy from airflow coming from the horizontal and vertical directions. The wind turbine consists of three vertical blades and six horizontal blades arranged in a cross axis orientation. Hubs in the middle of the CAWT link the horizontal and vertical blades through connectors to form the CAWT. The study used a 45° deflector to guide the oncoming airflow upward (vertical wind direction). The results from the study showed that the CAWT produced significant improvements in power output and rotational speed performance compared to a conventional straight-bladed vertical axis wind turbine (VAWT).
Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum
NASA Astrophysics Data System (ADS)
Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman
2017-10-01
Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.
NASA Astrophysics Data System (ADS)
Molina Garza, Roberto S.; Geissman, John W.
1999-04-01
Two ancient magnetizations have been isolated in rocks of the Caborca terrane, northwest Mexico. The characteristic magnetizations of Neoproterozoic and Paleozoic miogeoclinal shelf-strata, arc-derived Lower Jurassic marine strata, and Jurassic volcanic and volcaniclastic rocks are of dual polarity and east-northeast declination (or south-southwest) and shallow inclination. Magnetizations in Neoproterozoic and Paleozoic miogeoclinal strata are interpreted as secondary (J*) and to be of similar age to those observed in Lower and Middle Jurassic rocks. Remanence acquisition is bracketed between about 190 and 160 Ma. The overall mean (D=15.0°, I=8.5° n=38 sites; six localities; k=19.1, α95=5.5°) suggests a moderate to large clockwise rotation of 12 to 50° (depending on reference direction assumed) of the Caborca terrane, and rocks of the Sonoran segment of the Cordilleran volcanic arc, with respect to the North America craton. When compared with expected inclinations, observed values are not anomalously steep, arguing against statistically significant southward latitudinal displacement of the Caborca block after remanence acquisition. Late Cretaceous intrusions yield primary, dual-polarity steep inclination ``K'' magnetizations (D=341.4°, I=52.3° n=10 sites; five localities; k=38.3, α95=7.9°) and have locally remagnetized Neoproterozoic and Jurassic strata. When present, secondary (K*) magnetizations in Neoproterozoic strata are of higher coercivity and higher unblocking temperature than the characteristic (J*) magnetization. Importantly, the regional internal consistency of data for Late Cretaceous intrusions suggests that effects of Tertiary tilt or rotation about a vertical axis over the broad region sampled (~5000 km2) are not substantial. Late Cretaceous primary (K) magnetizations and secondary (K*) magnetizations yield a combined mean of D=348.1°, I=50.7° (N=10 localities; 47 sites; k=53.5, α95=6.7°), indicating at most small (<~10°) clockwise rotation of the Caborca region with respect to the craton. Permissible post-Late Cretaceous latitudinal displacement is near or below the detection limit of paleomagnetism (<~300 km). Limited data from Lower Cretaceous strata of the Bisbee Group (D=339.9°, I=47.9° n=4 sites) suggest that the modest clockwise rotations inferred on the basis of J* magnetizations in Jurassic and older strata occurred in Jurassic time. Together, the lack of evidence for southward displacement, yet evidence for statistically significant clockwise rotation, and the overall similarity of Jurassic magnetizations in the Cordilleran arc with those of the Caborca block, despite the fact that some of them are clearly secondary, are not consistent with the Mojave-Sonora megashear hypothesis of Late Jurassic left-lateral strike-slip motion of the crust of northern Mexico.
Precise Measurement of Velocity Dependent Friction in Rotational Motion
ERIC Educational Resources Information Center
Alam, Junaid; Hassan, Hafsa; Shamim, Sohaib; Mahmood, Waqas; Anwar, Muhammad Sabieh
2011-01-01
Frictional losses are experimentally determined for a uniform circular disc exhibiting rotational motion. The clockwise and anticlockwise rotations of the disc, that result when a hanger tied to a thread is released from a certain height, give rise to vertical oscillations of the hanger as the thread winds and unwinds over a pulley attached to the…
Analysis of Rapidly Developing Low Cloud Ceilings in a Stable Environment
NASA Technical Reports Server (NTRS)
Wheeler, Mark M.; Case, Jonathan L.
2005-01-01
This report describes the work done by the Applied Meteorology Unit (AMU) in developing a database of days that experienced rapid (< 90 minutes) low cloud formation in a stable atmosphere, resulting in ceilings at the Shuttle Landing Facility (TTS) that violated Space Shuttle Flight Rules (FR). The meteorological conditions favoring the rapid formation of low ceilings include the presence of any inversion below 8000 ft, high relative humidity beneath the inversion, and a clockwise turning of the winds from the surface to the middle troposphere (approx. 15000 ft). The AMU compared and contrasted the atmospheric and thermodynamic conditions between days with rapid low ceiling formation and days with low ceiling resulting from other mechanism. The AMU found that the vertical wind profile is the probable discerning factor between the rapidly-forming ceiling days and other low ceiling days at TTS. Most rapidly-developing low ceiling days had a clockwise turning of the winds with height, whereas other low ceiling days typically had a counter-clockwise turning of the winds with height or negligible vertical wind shear. Forecasters at the Space Meteorology Group (SMG) issue 30 to 90 minute forecasts for low cloud ceilings at TTS to support Space Shuttle landings. Mission verification statistics have shown ceilings to be the number one forecast challenge. More specifically, forecasters at SMG are concerned with any rapidly developing clouds ceilings below 8000 ft in a stable, capped thermodynamic environment, Therefore, the AMU was tasked to examine archived events of rapid stable cloud formation resulting in ceilings below 8000 ft, and document the atmospheric regimes favoring this type of cloud development. The AMU examined the cool season months of November to March during the years of 1993-2003 for days that had low-level inversions and rapid, stable low cloud formation that resulted in ceilings violating the Space Shuttle FR. The AMU wrote and modified existing code to identify inversions from the morning Cape Canaveral, FL rawinsonde (XMR) during the cool season and output pertinent sounding information. They parsed all days with cloud ceilings below 8000 ft at TTS, forming a database of possible rapidly-developing low ceiling events. Days with precipitation or noticeable fog bum-off situations were excluded from the database. Only the daytime hours were examined for possible ceiling development events since low clouds are easier to diagnose with visible satellite imagery. Follow-on work would expand the database to include nighttime cases, using a special enhancement of the infrared imagery for identifying areas of low clouds. The report presents two sample cases of rapidly-developing low cloud ceilings. These cases depict the representative meteorological and thermodynamic characteristics of such events. The cases also illustrate how quickly the cloud decks can develop, sometimes forming in 30 minutes or less. The report also summarizes the composite meteorological conditions for 20 event days with rapid low cloud ceiling formation and 48 non-events days consisting of advection or widespread low cloud ceilings. The meteorological conditions were quite similar for both the event and non-event days, since both types of days experienced low cloud ceilings. Both types of days had a relatively moist environment beneath the inversion based below 8000 ft. In the 20 events identified, de onset of low ceilings occurred between 1200-1800 UTC in every instance. The distinguishing factor between the event and non-event days appears to be the vertical wind profile in the XMR sounding. Eighty-five percent of the event days had a clockwise turning of the winds with height in the lower to middle troposphere whereas 83% of the non-events had a counter-clockwise turning of the winds with height or negligible vertical wind shear. A clockwise turning of the winds with height indicates a warm advection regime, which supports large-scale rising motn and possible cloud formation. Meanwhile, a counter-clockwise turning of the winds with height indicates cold advection or sinking motion in a post-cold frontal environment.
Visuotopic organization of the cebus pulvinar: a double representation the contralateral hemifield.
Gattass, R; Oswaldo-Cruz, E; Sousa, A P
1978-08-18
The projection of the visual field in the pulvinar nucleus was studied in 17 Cebus monkeys using electrophysiological techniques. Visual space is represented in two regions of the pulvinar; (1) the ventrolateral group, Pvlg, comprising nuclei P delta, P delta, P gamma, P eta and P mu 1; and (2) P mu. In the first group, which corresponds to the pulvinar inferior and ventral part of the pulvinar lateralis, we observed a greater respresentation of the central part of the visual field. Approximately 58% of the volume of the ventrolateral group is concerned with the visual space within 10 degrees of the fovea. This portion of the visual field is represented at its lateral aspects, mainly close to the level of the caudal pole of the lateral geniculate nucleus (LGN). Projection of the vertical meridian runs along its lateral border while that of the horizontal one is found running from the dorsal third of the LGN's hilus to the medial border of the ventro-lateral group. The lower quadrant is represented at its dorsal portion while the upper quadrant is represented at the ventral one. In Pmu the representation is rotated 90 degrees clockwise around the rostrocaudal axis: the vertical meridian is found at the ventromedial border of this nucleus. Thus, the lower quadrant is represented at the later portion of Pmu and the upper at its medial portion. Both projections are restricted to the contralateral hemifield.
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil
2010-05-01
New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies Khalil Sarkarinejad and Abdolreza Partabian Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran (Sarkarinejad@geology.susc.ac.ir). In the oceanic diverging away plates, the asthenospheric flow at solidus high-temperature conditions typically produces mineral foliations and lineations in peridotites. Foliation and lineation of mantle are defined by preferred flattening and alignment of olivine, pyroxene and spinel. In the areas with steep foliations trajectories which are associated with the steeply plunging stretching lineation trajectories, reflecting localized vertical flow and has been related to mantle diapir. The mantle flow patterns are well documented through detail structural mapping of the Neyriz ophiolite along the Zagros inclined dextral transpression and Oman ophiolite. Such models of the diverging asthenaspheric mantle flow and formation of mantle diapir are rarely discussed and paid any attention in the mathematical models of transpressional deformation in converging continental crusts. Systematic measurements of the mineral preferred orientations and construction of the foliation and lineation trajectories of the Zagros high-strain zone reveal two diapers with the shape of the inclined NW-SE boundary-parallel semi-ellipses shape and one rotated asymmetric diapir. These diapers made of quartzo-feldspathic gneiss and garnet amphibolite core with phyllite, phyllonite, muscovite schist and deformed conglomerate as a cover sequences. These boundary-parallel and rotated diapirs are formed by the interaction of Afro-Arabian lower to middle continental detachment and hot subdacting Tethyan oceanic crust, due to increasing effective pressure and temperature. The plastic/viscous gneissic diapers were squeezed between in Zagros transpression curvilinear boundary zones in an angle alpha=25°. Constructed finite strain ellipsoid based on the X-axes of the elliptical shaped deformed markers of the diapir cover sequences show trend X-axis of the strain ellipsoid making an angle phai=2° with the boundary zones. The steep plunging stretching lineation primarily controlled by the plastic/viscous flow. This also show that during inclined upwelling boundary-parallel diapers, X-, Y-axes of the strain ellipsoid rotated clockwise and Z-axis experienced counter clockwise rotation with triclinic symmetries relative to the Zagros curvilinear transpression boundary zones with an orientation of N42°plus/minus 24°W.
Aeroelastically coupled blades for vertical axis wind turbines
Paquette, Joshua; Barone, Matthew F.
2016-02-23
Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.
NASA Astrophysics Data System (ADS)
Zheng, Jie; Tian, Jiwei; Liang, Hui
2017-04-01
Based on nearly 3 months of moored acoustic Doppler current profiler records on the continental slope in the northwestern South China Sea (SCS) in 2006, this study examines temporal and vertical characteristics of near-inertial internal waves (NIW). Rotary frequency spectrum indicates that motions in the near-inertial frequency are strongly polarized, with clockwise (CW) energy exceeding counterclockwise (CCW) by about a factor of 10. Wavelet analysis exhibits an energy peak exceeding the 95% confidence level at the frequency of local inertial during the passage of typhoon Xangsane (24 September to 4 October). This elevated near-inertial kinetic energy (NIKE) event possesses about a 4 days delay correlation with the time integral of energy flux induced by typhoon, indicating an energy source of wind. Further analysis shows that the upward phase velocity of this event is 3.8 m h-1 approximately, corresponding to a vertical wavelength of about 125 m if not taking the redshift of local inertial frequency into account. Rotary vertical wavenumber spectrum exhibits the dominance of clockwise-with-depth energy, indicating downward energy propagation and implying a surface energy source. Dynamical modes suggest that mode 1 plays a dominant role at the growth stage of NIW, whereas major contribution is from higher modes during the penetration of NIKE into the ocean interior.
Spence, Morgan L; Storrs, Katherine R; Arnold, Derek H
2014-07-29
Humans are experts at face recognition. The mechanisms underlying this complex capacity are not fully understood. Recently, it has been proposed that face recognition is supported by a coarse-scale analysis of visual information contained in horizontal bands of contrast distributed along the vertical image axis-a biological facial "barcode" (Dakin & Watt, 2009). A critical prediction of the facial barcode hypothesis is that the distribution of image contrast along the vertical axis will be more important for face recognition than image distributions along the horizontal axis. Using a novel paradigm involving dynamic image distortions, a series of experiments are presented examining famous face recognition impairments from selectively disrupting image distributions along the vertical or horizontal image axes. Results show that disrupting the image distribution along the vertical image axis is more disruptive for recognition than matched distortions along the horizontal axis. Consistent with the facial barcode hypothesis, these results suggest that human face recognition relies disproportionately on appropriately scaled distributions of image contrast along the vertical image axis. © 2014 ARVO.
NASA Astrophysics Data System (ADS)
Walker, R. T.; Fattahi, M.; Mousavi, Z.; Pathier, E.; Sloan, R. A.; Talebian, M.; Thomas, A. L.; Walpersdorf, A.
2014-12-01
The Doruneh left-lateral strike-slip fault of NE Iran has a prominent expression in the landscape, showing that the fault is active in the late Quaternary. Existing estimates of its slip-rate vary, however, which has led to suggestions that it may exhibit temporal changes in activity. Using high-resolution optical satellite imagery we make reconstructions of displacement across four alluvial fans that cross the Doruneh fault, and determine the ages of these fans using luminescence dating, combined with U-series dating of pedogenic carbonates in one case. The four fans, which vary in age from 10-100 kyr, yield estimates of slip rate of ~2-3 mm/yr. We compare the average slip-rate measurements to the rate of accumulation of strain across the Doruneh fault using GPS and InSAR measurements, and find that the slip-rate is likely to have remained constant - within the uncertainty of our measurements - over the last ~100 ka. The slip-rate that we measure is consistent with the E-W left-lateral Doruneh fault accommodating N-S right-lateral faulting by 'bookshelf' faulting, with clockwise rotation about a vertical axis, in a similar manner to the Eastern California Shear Zone.
NASA Astrophysics Data System (ADS)
Koyi, Hemin; Nilfouroushan, Faramarz; Hessami, Khaled
2015-04-01
A series of scaled analogue models are run to study the degree of coupling between basement block kinematics and cover deformation. In these models, rigid basal blocks were rotated about vertical axis in a "bookshelf" fashion, which caused strike-slip faulting along the blocks and, to some degrees, in the overlying cover units of loose sand. Three different combinations of cover basement deformations are modeled; cover shortening prior to basement fault movement; basement fault movement prior to shortening of cover units; and simultaneous cover shortening with basement fault movement. Model results show that the effect of basement strike-slip faults depends on the timing of their reactivation during the orogenic process. Pre- and syn-orogen basement strike-slip faults have a significant impact on the structural pattern of the cover units, whereas post-orogenic basement strike-slip faults have less influence on the thickened hinterland of the overlying fold-and-thrust belt. The interaction of basement faulting and cover shortening results in formation of rhomb features. In models with pre- and syn-orogen basement strike-slip faults, rhomb-shaped cover blocks develop as a result of shortening of the overlying cover during basement strike-slip faulting. These rhombic blocks, which have resemblance to flower structures, differ in kinematics, genesis and structural extent. They are bounded by strike-slip faults on two opposite sides and thrusts on the other two sides. In the models, rhomb-shaped cover blocks develop as a result of shortening of the overlying cover during basement strke-slip faulting. Such rhomb features are recognized in the Alborz and Zagros fold-and-thrust belts where cover units are shortened simultaneously with strike-slip faulting in the basement. Model results are also compared with geodetic results obtained from combination of all available GPS velocities in the Zagros and Alborz FTBs. Geodetic results indicate domains of clockwise and anticlockwise rotation in these two FTBs. The typical pattern of structures and their spatial distributions are used to suggest clockwise block rotation of basement blocks about vertical axes and their associated strike-slip faulting in both west-central Alborz and the southeastern part of the Zagros fold-and-thrust belt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ye; Karri, Naveen K.; Wang, Qi
Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studiesmore » on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.« less
Repeatability and oblique flow response characteristics of current meters
Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.; ,
1993-01-01
Laboratory investigation into the precision and accuracy of various mechanical-current meters are presented. Horizontal-axis and vertical-axis meters that are used for the measurement of point velocities in streams and rivers were tested. Meters were tested for repeatability and response to oblique flows. Both horizontal- and vertical-axis meters were found to under- and over-register oblique flows with errors generally increasing as the velocity and angle of flow increased. For the oblique flow tests, magnitude of errors were smallest for horizontal-axis meters. Repeatability of all meters tested was good, with the horizontal- and vertical-axis meters performing similarly.
Nakamichi, Yu; Kalatsky, Valery A; Watanabe, Hideyuki; Sato, Takayuki; Rajagopalan, Uma Maheswari; Tanifuji, Manabu
2018-04-01
Orientation tuning is a canonical neuronal response property of six-layer visual cortex that is encoded in pinwheel structures with center orientation singularities. Optical imaging of intrinsic signals enables us to map these surface two-dimensional (2D) structures, whereas lack of appropriate techniques has not allowed us to visualize depth structures of orientation coding. In the present study, we performed functional optical coherence tomography (fOCT), a technique capable of acquiring a 3D map of the intrinsic signals, to study the topology of orientation coding inside the cat visual cortex. With this technique, for the first time, we visualized columnar assemblies in orientation coding that had been predicted from electrophysiological recordings. In addition, we found that the columnar structures were largely distorted around pinwheel centers: center singularities were not rigid straight lines running perpendicularly to the cortical surface but formed twisted string-like structures inside the cortex that turned and extended horizontally through the cortex. Looping singularities were observed with their respective termini accessing the same cortical surface via clockwise and counterclockwise orientation pinwheels. These results suggest that a 3D topology of orientation coding cannot be fully anticipated from 2D surface measurements. Moreover, the findings demonstrate the utility of fOCT as an in vivo mesoscale imaging method for mapping functional response properties of cortex in the depth axis. NEW & NOTEWORTHY We used functional optical coherence tomography (fOCT) to visualize three-dimensional structure of the orientation columns with millimeter range and micrometer spatial resolution. We validated vertically elongated columnar structure in iso-orientation domains. The columnar structure was distorted around pinwheel centers. An orientation singularity formed a string with tortuous trajectories inside the cortex and connected clockwise and counterclockwise pinwheel centers in the surface orientation map. The results were confirmed by comparisons with conventional optical imaging and electrophysiological recordings.
Kim, Jeong Ho; Marin, Luz S; Dennerlein, Jack T
2018-09-01
As mining vehicle operators are exposed to high level of Whole body vibration (WBV) for prolonged periods of time, approaches to reduce this exposure are needed for the specific types of exposures in mining. Although various engineering controls (i.e. seat suspension systems) have been developed to address WBV, there has been lack of research to systematically evaluate these systems in reducing WBV exposures in mining heavy equipment vehicle settings. Therefore, this laboratory-based study evaluated the efficacy of different combinations of fore-aft (x-axis), lateral (y-axis), and vertical (z-axis) suspensions in reducing WBV exposures. The results showed that the active vertical suspension more effectively reduced the vertical vibration (∼50%; p's < 0.0001) as compared to the passive vertical suspension (10%; p's < 0.11). The passive fore-aft (x-axis) and lateral (y-axis) suspension systems did not attenuate the corresponding axis vibration (p's > 0.06) and sometimes amplified the floor vibration, especially when the non-vertical vibration was predominant (p's < 0.02). These results indicate that there is a critical need to develop more effective engineering controls including better seat suspensions to address non-vertical WBV exposures, especially because these non-vertical WBV exposures can increase risks for adverse health effects including musculoskeletal loading, discomfort, and impaired visual acuity. Copyright © 2018 Elsevier Ltd. All rights reserved.
A unique approach to estimating lateral anisotropy in complex geohydrologic environments
Halford, K.J.; Campbell, B.
2004-01-01
Aquifers in fractured rock or karstic settings are likely to have anisotropic transmissivity distributions. Aquifer tests that are performed in these settings also we frequently affected by leakage from adjacent confining units. Finite-difference models such as MODFLOW are convenient tools for estimating the hydraulic characteristics of the stressed aquifer and adjacent confining units but are poor tools for the estimation of lateral anisotropy. This limitation of finite-difference methods can be overcome by application of the spin method, a technique whereby the positions of the observation wells are rotated about the production well to estimate anisotropy and orientation. Formal parameter estimation is necessary to analyze aquifer tests because of the number of parameters that we estimated. As a test, transmissivity, anisotropy, and orientation were successfully estimated for a simple hypothetical problem with known properties. The technique also was applied to estimate hydraulic properties of the Santee Limestone/Black Mingo (SL/BM) aquifer and a leaky confining unit beneath Charleston, South Carolina. A 9-day aquifer test with an average discharge of 644 1/min was analyzed numerically. Drawdowns in the SL/BM aquifer and confining unit were simulated with a 12-layer MODFLOW model that was discretized into 81 rows of 81 columns. Simulated drawdowns at seven observation wells that ranged from 23 to 2700 m from the production well were matched to measured drawdowns. Transmissivity estimated along the minor axis ranged from 10 to 15 m2/day and along the major axis ranged from 80 to 100 m2/day. The major axis of transmissivity was oriented along compass heading 116?? (degrees clockwise from north), which agrees with geologic interpretations. Vertical hydraulic conductivity and specific storage estimates for the overlying confining unit were 4 ?? 10-5m/day and 2 ?? 10-4 1/m, respectively. ?? 2004 International Association of Hydraulic Engineering and Research.
State of the art in protection of erosion-corrosion on vertical axis tidal current turbine
NASA Astrophysics Data System (ADS)
Musabikha, Siti; Utama, I. Ketut Aria Pria; Mukhtasor
2018-05-01
Vertical axis tidal current turbine is main part of ocean energy devices which converts the tidal current energy into electricity. Its development is arising too due to increased interest research topic concerning climate change mitigation. Due to its rotating movement, it will be induced mechanical forces, such as shear stress and/or particle impact. Because of its natural operations, vertical axis turbine is also being exposed to harsh and corroding marine environment itself. In order to secure the vertical tidal turbine devices from mechanical wear and corrosion effects which is lead to a material loss, an appropriate erosion-corrosion protection needs to be defined. Its protection actionscan be derived such as design factors, material selections, inhibitors usage, cathodic protections, and coatings. This paper aims to analyze protection method which is necessary to control erosion-corrosion phenomenon that appears to the vertical axis tidal current turbine.
The Potential of Indigenous Energy Resources for Remote Military Bases
1976-03-01
temperature collector schematic for steam production, ~ 350oF 3. Vertical-axis wind turbine 4. Proposed onshore siting for wind generator 5...inflmii ’amwiiMii "iHiHiiiiiiiiiir Üftiiiin- _ _ _. _ ;v’,. ^ L -^l . ’._...;’ :..; -23- turbine concept first designed by G.J.M. Darrieus of...adjusting fo’- the overall efficiency Airfoil section Vertical-axis windmil Fig. 3—Vertical-axis wind turbine L tiJBltlWittMMWiliMi^^ 1 0
Decreased Left Ventricular Torsion and Untwisting in Children with Dilated Cardiomyopathy
Jin, Seon Mi; Bae, Eun Jung; Choi, Jung Yun; Yun, Yong Soo
2007-01-01
The purpose of this study was to analyze left ventricular (LV) torsion and untwisting, and to evaluate the correlation between torsion and other components of LV contraction in children with dilated cardiomyopathy (DCM). Segmental and global rotation, rotational rate (Vrot) were measured at three levels of LV using the two-dimensional (2D) speckle tracking imaging (STI) method in 10 DCM patients (range 0.6-15 yr, median 6.5 yr, 3 females) and 17 age- and sex-matched normal controls. Global torsion was decreased in DCM (peak global torsion; 10.9±4.6° vs. 0.3±2.1°, p<0.001). Loss of LV torsion occurred mainly by the diminution of counterclockwise apical rotation and was augmented by somewhat less reduction in clockwise basal rotation. In DCM, the normal counterclockwise apical rotation was not observed, and the apical rotation about the central axis was clockwise or slightly counterclockwise (peak apical rotation; 5.9±4.1° vs. -0.9±3.1°, p<0.001). Systolic counterclockwise Vrot and early diastolic clockwise Vrot at the apical level were decreased or abolished. In DCM, decreased systolic torsion and loss of early diastolic recoil contribute to LV systolic and diastolic dysfunction. The STI method may facilitate the serial evaluation of the LV torsional behavior in clinical settings and give new biomechanical concepts for better management of patients with DCM. PMID:17728501
14 CFR 25.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first... two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the... axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...
14 CFR 27.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first... two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...
Pulse Power Hybrid Energy Storage Module Development Program
2015-05-01
consumed by the PFN. The energy stored in the HESM is displayed 12 as flywheel speed (RPM) against the right-side vertical axis . The flywheel speed...energy consumed by the PFN. The energy stored in the HESM is shown in Joules on the left-side vertical axis and in terms of flywheel speed (RPM) on the...right-side vertical axis . A noticeable difference in the charging variants is seen in the energy transfer through the HESM. Referring to Fig. 8, the
Structural patterns and tectonic history of the Bauer microplate, Eastern Tropical Pacific
Eakins, B.W.; Lonsdale, P.F.
2003-01-01
The Bauer microplate was an independent slab of oceanic lithosphere that from 17 Ma to 6 Ma grew from 1.4 ?? 105 km2 to 1.2 ?? 106 km2 between the rapidly diverging Pacific and Nazca plates. Growth was by accretion at the lengthening and overlapping axes of the (Bauer-Nazca) Galapagos Rise (GR) and the (Pacific-Bauer) East Pacific Rise (EPR). EPR and GR axial propagation to create and rapidly grow the counter-clockwise spinning microplate occurred in two phases: (1) 17-15Ma, when the EPR axis propagated north and the GR axis propagated south around a narrow (100- to 200-km-wide) core of older lithosphere; and (2) 8-6 Ma, when rapid northward propagation of the EPR axis resumed, overlapping ???400 km of the fast-spreading Pacific-Nazca rise-crest and appending a large (200- to 400-km-wide) area of the west flank of that rise as a 'northern annex' to the microplate. Between 15 and 8 Ma the microplate grew principally by crustal accretion at the crest of its rises. The microplate was captured by the Nazca plate and the Galapagos Rise axis became extinct soon after 6 Ma, when the south end of the Pacific-Bauer EPR axis became aligned with the southern Pacific-Nazca EPR axis and its north end was linked by the Quebrada Transform to the northern Pacific-Nazca EPR axis. Incomplete multibeam bathymetry of the microplate margins, and of both flanks of the Pacific-Bauer and Bauer-Nazca Rises, together with archival magnetic and satellite altimetry data, clarifies the growth and (counter-clockwise) rotation of the microplate, and tests tectonic models derived from studies of the still active, much smaller, Easter and Juan Fernandez microplates. Our interpretations differ from model predictions in that Euler poles were not located on the microplate boundary, propagation in the 15-8 Ma phase of growth was not toward these poles, and microplate rotation rates were small (5??/m.y.) for much of its history, when long, bounding transform faults reduced coupling to Nazca plate motion. Some structures of the Bauer microplate boundary, such as deep rift valleys and a broad zone of thrust-faulted lithosphere, are, however, similar to those observed around the smaller, active microplates. Analysis of how the Bauer microplate was captured when coupling to the Pacific plate was reduced invites speculation on why risecrest microplates eventually lose their independence. ?? Springer 2005.
NASA Astrophysics Data System (ADS)
Ismail, Roslina; Omar, Ghazali; Jalar, Azman; Majlis, Burhanuddin Yeop
2015-07-01
Wire bonding processes has been widely adopted in micro-electromechanical systems (MEMS) packaging especially in biomedical devices for the integration of components. In the first process sequence in wire bonding, the zone along the wire near the melted tips is called the heat-affected zone (HAZ). The HAZ plays an important factor that influenced the looping profiles of wire bonding process. This paper investigates the effect of dopants on microstructures in the HAZ. One precent palladium (Pd) was added to the as-drawn 4N gold wire and annealed at 600°C. The addition of Pd was able to moderate the grain growth in the HAZ by retarding the heat propagation to the wire. In the formation of the looping profile, the first bending point of the looping is highly associated with the length of the HAZ. The alloyed gold wire (2N gold) has a sharp angle at a distance of about 30 m from the neck of the wire with a measured bending radius of about 40 mm and bending angle of about 40° clockwise from vertical axis, while the 4N gold wire bends at a longer distance. It also shows that the HAZ for 4N gold is longer than 2N gold wire.
NASA Astrophysics Data System (ADS)
Xu, G.; Lavelle, J. W.
2016-12-01
A numerical model of ocean flow and transport is used to extrapolate observations of currents and hydrography and infer patterns of material flux in the deep ocean around Axial Volcano--the destination node of the Ocean Observatories Initiative (OOI)'s Cabled Array. Using an inverse method, the model is made to approximate measured deep ocean flow around this site during a 35-day time period in 2002. The model is then used to extract month-long mean patterns and examine smaller-scale spatial and temporal variability around Axial. Like prior observations, model month-long mean currents flow anti-cyclonically (clockwise) around the volcano's summit in toroidal form at speeds of up to 7 cm/s. The mean vertical circulation has a net effect of pumping water out of the caldera. Temperature and salinity iso-surfaces sweep upward and downward on opposite sides of the volcano with vertical excursions of up to 70 m. As a time mean, the temperature (salinity) anomaly takes the form of a cold (briny) dome above the summit. Passive tracer material released at the location of the ASHES vent field exits the caldera through its southern open end and over the western bounding wall driven by vertical flow. Once outside the caldera, the tracer circles the summit in clockwise fashion, while gradually bleeding southwestward into the ambient ocean. Another tracer release experiment using a source of 2-day duration inside and near the northern end of the caldera suggests a residence time of the fluid at that locale of 5-6 days.
A four-axis hand controller for helicopter flight control
NASA Technical Reports Server (NTRS)
Demaio, Joe
1993-01-01
A proof-of-concept hand controller for controlling lateral and longitudinal cyclic pitch, collective pitch and tail rotor thrust was developed. The purpose of the work was to address problems of operator fatigue, poor proprioceptive feedback and cross-coupling of axes associated with many four-axis controller designs. The present design is an attempt to reduce cross-coupling to a level that can be controlled with breakout force, rather than to eliminate it entirely. The cascaded design placed lateral and longitudinal cyclic in their normal configuration. Tail rotor thrust was placed atop the cyclic controller. A left/right twisting motion with the wrist made the control input. The axis of rotation was canted outboard (clockwise) to minimize cross-coupling with the cyclic pitch axis. The collective control was a twist grip, like a motorcycle throttle. Measurement of the amount of cross-coupling involved in pure, single-axis inputs showed cross coupling under 10 percent of full deflection for all axes. This small amount of cross-coupling could be further reduced with better damping and force gradient control. Fatigue was not found to be a problem, and proprioceptive feedback was adequate for all flight tasks executed.
Goers, G.F.
1987-11-10
A three-axis control for precisely and conveniently adjusting items such as mirrors and lenses is disclosed. The adjuster apparatus includes a vertical stack of three rotatable adjusters. Rotation of the first effects vertical translation, whereas the second and third are eccentric assemblies which interact to effect movement along two angled axes perpendicular to the vertical axis. 13 figs.
Goers, George F.
1987-01-01
A three-axis control for precisely and conveniently adjusting items such as irrors and lenses is disclosed. The adjuster apparatus includes a vertical stack of three rotatable adjusters. Rotation of the first effects vertical translation, whereas the second and third are eccentric assemblies which interact to effect movement along two angled axes perpendicular to the vertical axis.
14 CFR 29.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the... formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...
14 CFR 23.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the... formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...
Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU
2011-03-08
A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.
Binocular Coordination of the Human Vestibulo-Ocular Reflex during Off-axis Pitch Rotation
NASA Technical Reports Server (NTRS)
Wood, S. J.; Reschke, M. F.; Kaufman, G. D.; Black, F. O.; Paloski, W. H.
2006-01-01
Head movements in the sagittal pitch plane typically involve off-axis rotation requiring both vertical and horizontal vergence ocular reflexes to compensate for angular and translational motion relative to visual targets of interest. The purpose of this study was to compare passive pitch VOR responses during rotation about an Earth-vertical axis (canal only cues) with off-axis rotation (canal and otolith cues). Methods. Eleven human subjects were oscillated sinusoidally at 0.13, 0.3 and 0.56 Hz while lying left-side down with the interaural axis either aligned with the axis of rotation or offset by 50 cm. In a second set of measurements, twelve subjects were also tested during sinusoidally varying centrifugation over the same frequency range. The modulation of vertical and horizontal vergence ocular responses was measured with a binocular videography system. Results. Off-axis pitch rotation enhanced the vertical VOR at lower frequencies and enhanced the vergence VOR at higher frequencies. During sinusoidally varying centrifugation, the opposite trend was observed for vergence, with both vertical and vergence vestibulo-ocular reflexes being suppressed at the highest frequency. Discussion. These differential effects of off-axis rotation over the 0.13 to 0.56 Hz range are consistent with the hypothesis that otolith-ocular reflexes are segregated in part on the basis of stimulus frequency. At the lower frequencies, tilt otolith-ocular responses compensate for declining canal input. At higher frequencies, translational otolith-ocular reflexes compensate for declining visual contributions to the kinematic demands required for fixating near targets.
NASA Astrophysics Data System (ADS)
Luznik, Luksa; van Benthem, Max; Flack, Karen; Lust, Ethan
2013-11-01
Near wake measurements are presented for a 0.8 m diameter (D) two bladed horizontal axis tidal turbine model for two inflow conditions. The first case had steady inflow conditions, i.e. turbine was towed at a constant carriage speed and the second case had a constant carriage speed and incoming regular waves with a period of 1.6 seconds and 0.09 m wave height. The test matrix in the wake covered four radial positions from r/D = 0.3 to 0.5 and five axial positions from x/D = 0.19 to 0.95. All measurements were performed at the nominal tip speed ratio (TSR) of 7.4. The distribution of mean velocities for the steady inflow case exhibit significant spatial variability in the wake region. Normalized mean streamwise velocity show a decrease in magnitude with the axial direction for all radial locations ranging from U/Utow = 0.55 at r/D = 0.49 to 0.35 at r/D = 0.3. Vertical and lateral mean velocities are small but consistent with counterclockwise fluid angular momentum for a clockwise rotor rotation. The Reynolds shear stresses consistently show elevated levels for measurements near the rotor tip (r/D = 0.49) and are significantly reduced by x/D = 0.6 downstream. This suggests low turbulence levels in the wake which is consistent with very low free stream turbulence. For the case with waves, evidence of enhanced turbulence intensities and shear stresses within spatial coverage of the experiment suggest increased in localized turbulence production in the blade tip region over the entire near wake region.
Improving Tropical Cyclone Intensity Forecasting with Theoretically-Based Statistical
2013-01-03
solely by diabatic heating. The sense of the circulation is counterclockwise for the dashed lines and clockwise for the solid lines. The four panels...indicates the region of diabatic heating. Colored contours indicate , the vertical pressure velocity, which is related to w by = −gw, with...equation (GTE) and determine the associated tangential wind tendency for a variety of initial tangential wind profiles and annular rings of diabatic
Phase dynamics of oscillating magnetizations coupled via spin pumping
NASA Astrophysics Data System (ADS)
Taniguchi, Tomohiro
2018-05-01
A theoretical formalism is developed to simultaneously solve equation of motion of the magnetizations in two ferromagnets and the spin-pumping induced spin transport equation. Based on the formalism, a coupled motion of the magnetizations in a self-oscillation state is studied. The spin pumping is found to induce an in-phase synchronization of the magnetizations for the oscillation around the easy axis. For an out-of-plane self-oscillation around the hard axis, on the other hand, the spin pumping leads to an in-phase synchronization in a small current region, whereas an antiphase synchronization is excited in a large current region. An analytical theory based on the phase equation reveals that the phase difference between the magnetizations in a steady state depends on the oscillation direction, clockwise or counterclockwise, of the magnetizations.
Modular off-axis solar concentrator
Plesniak, Adam P; Hall, John C
2015-01-27
A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.
NASA Astrophysics Data System (ADS)
Zheng, Guangtai; Qiu, Yi; Griffin, Michael J.
2011-12-01
During vertical excitation of the seated human body there are vertical and fore-and-aft forces at the seat that are influenced by contact with a backrest, so it is desirable to take into account the effect of a backrest when developing models of the seated human body. Initially, a seven degree-of-freedom multi-body dynamic model was developed for the human body sitting with an upright posture unsupported by a backrest and exposed to vertical vibration. The model was optimized to fit the vertical apparent mass and the fore-and-aft cross-axis apparent mass measured on a seat. The model was then extended by the addition of vertical and fore-and-aft reaction forces to the upper lumbar spine to model the interaction between the human body and a backrest. By minimizing the least square error between experimental data and the analytical solution of the apparent masses on the seat and at the back, the human body model was able to represent both the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and at the back. Parameter sensitivity studies showed that the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and the backrest were all highly sensitive to the axial stiffness of the tissue beneath the pelvis. Pitch motion of the upper-body contributed to the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat. The apparent mass at the back was more sensitive to the stiffness and damping of the lower back than the properties of the upper back.
Adaptive Changes in the Perception of Fast and Slow Movement at Different Head Positions.
Panichi, Roberto; Occhigrossi, Chiara; Ferraresi, Aldo; Faralli, Mario; Lucertini, Marco; Pettorossi, Vito E
2017-05-01
This paper examines the subjective sense of orientation during asymmetric body rotations in normal subjects. Self-motion perception was investigated in 10 healthy individuals during asymmetric whole-body rotation with different head orientations. Both on-vertical axis and off-vertical axis rotations were employed. Subjects tracked a remembered earth-fixed visual target while rotating in the dark for four cycles of asymmetric rotation (two half-sinusoidal cycles of the same amplitude, but of different duration). The rotations induced a bias in the perception of velocity (more pronounced with fast than with slow motion). At the end of rotation, a marked target position error (TPE) was present. For the on-vertical axis rotations, the TPE was no different if the rotations were performed with a 30° nose-down, a 60° nose-up, or a 90° side-down head tilt. With off-vertical axis rotations, the simultaneous activation of the semicircular canals and otolithic receptors produced a significant increase of TPE for all head positions. This difference between on-vertical and off-vertical axis rotation was probably partly due to the vestibular transfer function and partly due to different adaptation to the speed of rotation. Such a phenomenon might be generated in different components of the vestibular system. The adaptive process enhancing the perception of dynamic movement around the vertical axis is not related to the specific semicircular canals that are activated; the addition of an otolithic component results in a significant increase of the TPE.Panichi R, Occhigrossi C, Ferraresi A, Faralli M, Lucertini M, Pettorossi VE. Adaptive changes in the perception of fast and slow movement at different head positions. Aerosp Med Hum Perform. 2017; 88(5):463-468.
NASA Astrophysics Data System (ADS)
Awan, Muhammad Rizwan; Riaz, Fahid; Nabi, Zahid
2017-05-01
This paper presents the analysis of installing the vertical axis wind turbines between the building passages on an island in Stockholm, Sweden. Based on the idea of wind speed amplification due to the venture effect in passages, practical measurements were carried out to study the wind profile for a range of passage widths in parallel building passages. Highest increment in wind speed was observed in building passages located on the periphery of sland as wind enters from free field. Wind mapping was performed in the island to choose the most favourable location to install the vertical axis wind turbines (VAWT). Using the annual wind speed data for location and measured amplification factor, energy potential of the street was calculated. This analysis verified that small vertical axis wind turbines can be installed in the passage centre line provided that enough space is provided for traffic and passengers.
NASA Technical Reports Server (NTRS)
Dickman, J. D.; Angelaki, D. E.
1999-01-01
During linear accelerations, compensatory reflexes should continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined during linear accelerations produced by constant velocity off-vertical axis yaw rotations and translational motion in darkness. With off-vertical axis rotations, sinusoidally modulated eye-position and velocity responses were observed in all three components, with the vertical and torsional eye movements predominating the response. Peak torsional and vertical eye positions occurred when the head was oriented with the lateral visual axis of the right eye directed orthogonal to or aligned with the gravity vector, respectively. No steady-state horizontal nystagmus was obtained with any of the rotational velocities (8-58 degrees /s) tested. During translational motion, delivered along or perpendicular to the lateral visual axis, vertical and torsional eye movements were elicited. No significant horizontal eye movements were observed during lateral translation at frequencies up to 3 Hz. These responses suggest that, in pigeons, all linear accelerations generate eye movements that are compensatory to the direction of actual or perceived tilt of the head relative to gravity. In contrast, no translational horizontal eye movements, which are known to be compensatory to lateral translational motion in primates, were observed under the present experimental conditions.
A scheiner-principle vernier optometer
NASA Astrophysics Data System (ADS)
Cushman, William B.
1989-06-01
A method and optometer apparatus is disclosed for measuring the dark focus of accommodation. In a preferred embodiment, the optometer apparatus includes: a pinhole aperture plate having first and second horizontally positioned apertures disposed on opposite sides of a first optical axis; first and second orthogonally-oriented polarizing filters respectively covering the first and second horizontally positioned apertures; a positive lens having an optical axis on the first optical axis and being positioned at a distance of approximately one focal length from the pinhole aperture plate; a lens system having an optical axis on the first optical axis; a slit aperture plate having a vertical slit and being disposed on the first optical axis and between the positive lens and the lens system; third and fourth vertically positioned polarizing filters selectively disposed adjacent to the slit aperture plate to divide the slit vertically, a monochromatic light source for propagating light along the first optical axis through the lens system; and movable means attached to the slit aperture plate, the lens system and the monochromatic light source for moving the slit aperture plate.
Research on the unsteady hydrodynamic characteristics of vertical axis tidal turbine
NASA Astrophysics Data System (ADS)
Zhang, Xue-wei; Zhang, Liang; Wang, Feng; Zhao, Dong-ya; Pang, Cheng-yan
2014-03-01
The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.
Tokita, Daisuke; Ebihara, Arata; Nishijo, Miki; Miyara, Kana; Okiji, Takashi
2017-10-01
The purpose of the present study was to compare 2 modes of reciprocal movement (torque-sensitive and time-dependent reciprocal rotation) with continuous rotation in terms of torque and apical force generation during nickel-titanium rotary root canal instrumentation. A custom-made automated root canal instrumentation and torque/force analyzing device was used to prepare simulated canals in resin blocks and monitor the torque and apical force generated in the blocks during preparation. Experimental groups (n = 7, each) consisted of (1) torque-sensitive reciprocal rotation with torque-sensitive vertical movement (group TqR), (2) time-dependent reciprocal rotation with time-dependent vertical movement (group TmR), and (3) continuous rotation with time-dependent vertical movement (group CR). The canals were instrumented with TF Adaptive SM1 and SM2 rotary files (SybronEndo, Orange, CA), and the torque and apical force were measured during instrumentation with SM2. The mean and maximum torque and apical force values were statistically analyzed using 1-way analysis of variance and the Tukey test (α = 0.05). The recordings showed intermittent increases of upward apical force and clockwise torque, indicating the generation and release of screw-in forces. The maximum upward apical force values in group TmR were significantly smaller than those in group CR (P < .05). The maximum torque values in clockwise and counterclockwise directions in groups TqR and TmR were significantly smaller than those in group CR (P < .05). Under the present experimental conditions using TF Adaptive instruments, both torque-sensitive and time-dependent reciprocal rotation generated significantly lower maximum torque and may have advantages in reducing stress generation caused by screw-in forces when compared with continuous rotation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Electrocardiographic screening for emphysema: the frontal plane P axis.
Baljepally, R; Spodick, D H
1999-03-01
Because the most characteristic and sensitive electrocardiographic (ECG) correlate of pulmonary emphysema in adults is verticalization of the frontal plane P-wave vector (P axis), we investigated its strength as a lone criterion to screen for obstructive pulmonary disease (OPD) in an adult hospital population. In all, 954 consecutive unselected ECGs were required to yield 100 with P axis > or = +70 degrees (unequivocally negative P in a VL during sinus rhythm) and pulmonary function tests. and 100 with P axis < or = +50 degrees (unequivocally positive P-aVL). Obstructive pulmonary disease by both pulmonary function test and clinical criteria was present in 89 of 100 patients with vertical P axes and 4 of 100 patients without OPD. The high sensitivity (89% for this series) and high specificity (96%) makes vertical P axis a useful screening criterion. Its at-a-glance simplicity makes it "user-friendly."
Energy dynamics of the intraventricular vortex after mitral valve surgery.
Nakashima, Kouki; Itatani, Keiichi; Kitamura, Tadashi; Oka, Norihiko; Horai, Tetsuya; Miyazaki, Shohei; Nie, Masaki; Miyaji, Kagami
2017-09-01
Mitral valve morphology after mitral valve surgery affects postoperative intraventricular flow patterns and long-term cardiac performance. We visualized ventricular flow by echocardiography vector flow mapping (VFM) to reveal the impact of different mitral valve procedures. Eleven cases of mechanical mitral valve replacement (nine in the anti-anatomical and two in the anatomical position), three bioprosthetic mitral valve replacements, and four mitral valve repairs were evaluated. The mean age at the procedure was 57.4 ± 17.8 year, and the echocardiography VFM in the apical long-axis view was performed 119.9 ± 126.7 months later. Flow energy loss (EL), kinetic pressure (KP), and the flow energy efficiency ratio (EL/KP) were measured. The cases with MVR in the anatomical position and with valve repair had normal vortex directionality ("Clockwise"; N = 6), whereas those with MVR in the anti-anatomical position and with a bioprosthetic mitral valve had the vortex in the opposite direction ("Counterclockwise"; N = 12). During diastole, vortex direction had no effect on EL ("Clockwise": 0.080 ± 0.025 W/m; "Counterclockwise": 0.083 ± 0.048 W/m; P = 0.31) or KP ("Clockwise": 0.117 ± 0.021 N; "Counterclockwise": 0.099 ± 0.057 N; P = 0.023). However, during systole, the EL/KP ratio was significantly higher in the "Counterclockwise" vortex than that in the "Clockwise" vortex (1.056 ± 0.463 vs. 0.617 ± 0.158; P = 0.009). MVP and MVR with a mechanical valve in the anatomical position preserve the physiological vortex, whereas MVR with a mechanical valve in the anti-anatomical position and a bioprosthetic mitral valve generate inefficient vortex flow patterns, resulting in a potential increase in excessive cardiac workload.
Clinical applications of perforator-based propeller flaps in upper limb soft tissue reconstruction.
Ono, Shimpei; Sebastin, Sandeep J; Yazaki, Naoya; Hyakusoku, Hiko; Chung, Kevin C
2011-05-01
A propeller flap is an island flap that moves from one orientation to another by rotating around its vascular axis. The vascular axis is stationary, and flap movement is achieved by revolving on this axis. Early propeller flaps relied on a thick, subcutaneous pedicle to maintain vascularity, and this limited the flap rotation to 90°. With increasing awareness of the location and the vascular territory perfused by cutaneous perforators, it is now possible to design propeller flaps based on a single perforator, so-called "perforator-based propeller flaps." These flaps permit flap rotation up to 180°. We present the results of upper limb soft tissue reconstruction using perforator-based propeller flaps. We constructed a treatment strategy based on the location of the soft tissue defect and the perforator anatomy for expedient wound coverage in 1 stage. All perforator-based propeller flaps derived from 3 institutions that were used for upper limb soft tissue reconstruction were retrospectively analyzed. The parameters studied included the size and location of the defect, the perforator that was used, the size and shape of the flap, the direction (ie, clockwise or counter-clockwise) of flap rotation, the degree of twisting of the perforator, the management of the donor site (ie, linear closure or skin grafting), and flap survival (recorded as the percentage of the flap area that survived). Twelve perforator-based propeller flaps were used to reconstruct upper limb soft tissue defects in 12 patients. Six different perforators were used as vascular pedicles. The donor defects of 11 flaps could be closed primarily. One flap was partially lost in a patient with electrical burns. Perforator-based propeller flaps provide a reliable option for covering small- to medium-size upper limb soft tissue defects. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Does Vertical Reading Help People with Macular Degeneration: An Exploratory Study
Calabrèse, Aurélie; Liu, Tingting; Legge, Gordon E.
2017-01-01
Individuals with macular degeneration often develop a Preferred Retinal Locus (PRL) used in place of the impaired fovea. It is known that many people adopt a PRL left of the scotoma, which is likely to affect reading by occluding text to the right of fixation. For such individuals, we examined the possibility that reading vertical text, in which words are rotated 90° with respect to the normal horizontal orientation, would be beneficial for reading. Vertically oriented words would be tangential to the scotoma instead of being partially occluded by it. Here we report the results of an exploratory study that aimed at investigating this hypothesis. We trained individuals with macular degeneration who had PRLs left of their scotoma to read text rotated 90° clockwise and presented using rapid serial visual presentation (RSVP). Although training resulted in improved reading of vertical text, the training did not result in reading speeds that appreciably exceeded reading speeds following training with horizontal text. These results do not support the hypothesis that people with left PRLs read faster with vertical text. PMID:28114373
Aircraft body-axis rotation measurement system
NASA Technical Reports Server (NTRS)
Cowdin, K. T. (Inventor)
1983-01-01
A two gyro four gimbal attitude sensing system having gimbal lock avoidance is provided with continuous azimuth information, rather than roll information, relative to the magnetic cardinal headings while in near vertical attitudes to allow recovery from vertical on a desired heading. The system is comprised of a means for stabilizing an outer roll gimbal that is common to a vertical gyro and a directional gyro with respect to the aircraft platform which is being angularly displaced about an axis substantially parallel to the outer roll gyro axis. A means is also provided for producing a signal indicative of the magnitude of such displacement as an indication of aircraft heading. Additional means are provided to cause stabilization of the outer roll gimbal whenever the pitch angle of the aircraft passes through a threshold prior to entering vertical flight and destabilization of the outer roll gimbal upon passing through the threshold when departing vertical flight.
Enclosed, off-axis solar concentrator
Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A
2013-11-26
A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.
United in prevention-electrocardiographic screening for chronic obstructive pulmonary disease.
Lazovic, Biljana; Mazic, Sanja; Stajic, Zoran; Djelic, Marina; Zlatkovic-Svenda, Mirjana; Putnikovic, Biljana
2013-01-01
NONE DECLARED. P-wave abnormalities on the resting electrocardiogram have been associated with cardiovascular or pulmonary disease. So far, "Gothic" P wave and verticalization of the frontal plane axis is related to lung disease, particularly obstructive lung disease. We tested if inverted P wave in AVl as a lone criteria of P wave axis >70° could be screening tool for emphysema. 1095 routine electrocardiograms (ECGs) were reviewed which yielded 478 (82,1%) ECGs with vertical P-axis in sinus rhythm. Charts were reviewed for the diagnosis of COPD and emphysema based on medical history and pulmonary function tests. Electrocardiogram is very effective screening tool not only in cardiovascular field but in chronic obstructive pulmonary disease. The verticality of the P axis is usually immediately apparent, making electrocardiogram rapid screening test for emphysema.
40 CFR 75.41 - Precision criteria.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...
40 CFR 75.41 - Precision criteria.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...
40 CFR 75.41 - Precision criteria.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...
40 CFR 75.41 - Precision criteria.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...
40 CFR 75.41 - Precision criteria.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for the entire 30- to 90-day period. (9) The owner or operator shall provide two separate time series... time where the vertical axis represents the percentage difference between each paired hourly reading... monitoring system (or reference method) readings versus time where the vertical axis represents hourly...
The system design and performance test of hybrid vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Dwiyantoro, Bambang Arip; Suphandani, Vivien
2017-04-01
Vertical axis wind turbine is a tool that is being developed to generate energy from wind. One cause is still little use of wind energy is the design of wind turbines that are less precise. Therefore in this study will be developed the system design of hybrid vertical axis wind turbine and tested performance with experimental methods. The design of hybrid turbine based on a straight bladed Darrieus turbine along with a double step Savonius turbine. The method used to design wind turbines is by studying literature, analyzing the critical parts of a wind turbine and the structure of the optimal design. Wind turbine prototype of the optimal design characteristic tests in the wind tunnel experimentally by varying the speed of the wind. From the experimental results show that the greater the wind speed, the greater the wind turbine rotation and torque is raised. The hybrid vertical axis wind turbine has much better self-starting and better conversion efficiency.
NASA Astrophysics Data System (ADS)
Acton, Gary D.; Tessema, Abera; Jackson, Michael; Bilham, Roger
2000-08-01
Deformation throughout Afar over the past 2 myr has been characterized by widespread and intense crustal fragmentation that results from inhomogeneous extension across the region. In eastern Afar, this situation has evolved to localized extension associated with the westward propagation of the Gulf of Aden/Gulf of Tadjurah seafloor spreading system into the Asal-Ghoubbet Rift. During the gradual process of rift propagation and localization, crustal blocks in eastern Afar sustained clockwise rotations of ˜11°. To better understand the processes of rift propagation and localization and how they affect the rest of Afar, we have collected and analyzed over 400 oriented paleomagnetic samples from 67 lava flows from central and southern Afar. Unlike eastern Afar, the mean paleomagnetic direction from central Afar indicates that vertical-axis rotations are statistically insignificant (3.6°±4.4°), though small clockwise rotations (<8°) are permitted. Thus, propagation and localization in central Afar have not had the same influence in causing crustal block rotations or, perhaps more likely, have not reached the same stage of evolution as seen in eastern Afar. In addition, several of the lava flows record intriguing geomagnetic field behavior associated with polarity transitions, excursions, or large secular variation events. Interestingly, the transitional or anomalous virtual geomagnetic poles (VGPs) tend to cluster in two nearly antipodal regions, one in the northern Pacific Ocean and the other in the southwest Indian Ocean. One lava flow has recorded both of the antipodal transitional components, with the two components residing in magnetic minerals with unblocking temperatures above and below ˜500°C, respectively. Reheating and partial remagnetization by the overlying flow cannot explain either of the transitional directions because both differ significantly from that of the reversely magnetized overlying flow. The high-temperature component gives a VGP in the northern Pacific, whereas the lower-temperature component gives a nearly antipodal VGP south of Cape Town, South Africa. Hence, the configuration of the geomagnetic field appears to have jumped nearly instantaneously from a northern-hemisphere transitional state to a southern-hemisphere one during this normal-to-reverse polarity transition.
Paleomagnetism and the assembly of the Mexican subcontinent.
NASA Astrophysics Data System (ADS)
Molina-Garza, R. S.
2008-05-01
The paleomagnetic database for Mexico is still small, but using available data and new results paleomagnetic data can be used to support the following hypothesis: (1) Jurassic anticlockwise rotation of the Chiapas massif and the Yucatan peninsula from a position in the northwest interior of the Golf of Mexico; (2) apparent stability of the Tampico and Coahuila blocks respect to North America for Late Triassic and Jurassic time, allowing for local vertical axis rotations attributed to Cenozoic deformation; (3) clockwise rotation of the Caborca block and the adjacent Jurassic continental arc, without significant north to south latitudinal displacement, between Middle Jurassic and Early Cretaceous time (which argues against the Mojave-Sonora megashear model); and, (4) the apparent accretion of the Guerrero terrane to mainland Mexico after clockwise rotation and transport from a more southern latitude. Paleomagnetic data for the southern Mexico block (SMB) are still difficult to incorporate in reconstructions of western equatorial Pangea. Paleomagnetic data for remagnetized Lower Permian strata and primary directions in igneous rocks of the SMB (crystalline terranes of Oaxaca and Acatlan) suggest stability with respect to North America, which is not consistent with reconstruction of South America closing the Golf region. Alternative explanations require a position for the SMB similar to its present location but at more westerly longitudes. We propose that terranes of the SMB reach their Mesozoic position through mechanisms of extrusion tectonics. Interpretation of Jurassic data for southern Mexico is hindered by incomplete knowledge of the North American APWP and rapid northward drift of the continent. Nonetheless, any model for the evolution of southern Mexico must consider that paleomagnetic data indicate internal deformation of Oaxaquia in pre-Cretaceous time. Paleomagnetic directions reported for Jurassic strata of the Tlaxiaco basin in Oaxaca are interpreted as secondary magnetizations, as they record the same inclination as remagnetized mid-Cretaceous carbonate rocks in the region. Thus previously inferred more northern latitudes for the SMB in Jurassic time are equivocal. The assembly of Mexico is thus the result of Lower Permian tectonics (during and following the Ouachita collision), Late Triassic-Middle Jurassic tectonics (during break-up of Pangea and opening of the Golf of Mexico); and Middle-Upper Cretaceous Cordilleran style terrane accretion.
Paleomagnetism and Lithostratigraphy of the Miocene Tuff of Huntoon Creek Type Section
NASA Astrophysics Data System (ADS)
Johnson, S.; Pluhar, C. J.; Lindeman, J. R.
2014-12-01
Here we define the Tuff of Huntoon Creek (THC), previously identified and mapped in Mono Basin, CA by Gilbert et al. (1968) as "latite ignimbrite" (K-Ar date of 11.1-11.9 Ma). Formally defining this formation and its paleomagnetic characteristics, can help reveal the spatial and temporal relationships of the Walker Lane and Mina Deflection structural features, including distribution of vertical axis rotation. THC is composed of four tuffs with an intercalated volcaniclastic sandstone giving a total stratigraphic thickness of ~300 m. We define THC in a gorge of Huntoon Creek, where the stratigraphic section is capped by Pliocene basalt. The lowest and most extensive stratigraphic unit, the Huntoon Valley member of THC, is ~243 m thick and can be distinguished from other units by the presence of sanidine and biotite phenocrysts and normal polarity. A 7-meter-thick volcaniclastic sandstone overlies the Huntoon Valley member, straddling a magnetic polarity reversal within the section. The 3 overlying members of THC are reversed-polarity, biotite-bearing, sanidine-free tuffs of variable degrees of welding. Their paleomagnetic directions are each statistically distinguishable from the others, indicating that the deposition of each tuff is separated by a significant amount of time and can be used as a geologically instantaneous measure of Earth's magnetic field for purposes of averaging out secular variation. The capping Pliocene olivine basalt was emplaced over an erosional unconformity of significant relief, as evidenced by the complete absence at some locations of the uppermost biotite-bearing THC member. The tilt corrected mean paleomagnetic direction for the 4 members of THC indicate a clockwise rotation magnitude of 77.5°±40.3°. The absolute rotation results of this locality are statistically indistinguishable from the relative rotation results of this locality compared to Cowtrack Mountain (Lindeman et al. 2013). The corroboration of these data suggests that this region of the Mina Deflection has undergone large magnitude clockwise rotation since the emplacement of THC. However, the capping basalt exhibits a magnetic declination of due north, suggesting that this unit experienced little rotation and that rotational deformation in this region had mostly ended by the time of its emplacement at ~3.5 Ma.
Paleomagnetic reconstruction of the Neotethyan Suture in Central Anatolia (Turkey)
NASA Astrophysics Data System (ADS)
Ozkaptan, M.; Gulyuz, E.; Kaymakci, N.; Langereis, C. G.
2016-12-01
The consumption of the Neo-Tethyan Ocean and the accretion of intervening continental blocks such as the Taurides and Kırşehir Block in the south and the Pontides in the north since the Mesozoic occurred along two sutures. The İzmir-Ankara Suture Zone (IASZ) between the Pontides in the north and the Taurides in the south and Intra-Tauride suture Zone (ITSZ) between the Taurides and the Kırşehir block meets around the Haymana Basin. The IASZ follows roughly an E-W trend and makes a sharp bend of approximately of 90° along the western margin of the Çankırı Basin. The ITSZ, on the other hand, follows a NW-SE trend parallel to the Tuz Gölü Fault Zone and overprinted by the structures related to the İASZ in the north. From West to East; the Haymana, Tuz Gölü and Çankırı basins straddle these suture zones and are developed in relation to the subduction and collision processes, which make them invaluable for unraveling deformation history and evolution of the Neotethys. In this regard we have conducted a very detailed paleomagnetic study to determine vertical axis rotations in the region, mainly on the Late Cretaceous to Recent infill of these basins. Results have shown that the region undergone strong clockwise (CW) and counter-clockwise (CCW) rotations, up to ±90° in places, resulting in the present geometry of the region. The central part of the Haymana Basin rotated as much as 90° CCW sense while its northern parts and the Tuz Gölü basin rotated 30° CW sense, which contradicts with almost all the published paleomagnetic results from the region. The restored geometries, based on new paleomagnetic data indicate that Haymana, Tuz Gölü basins and the SW margin of the Çankırı Basin were initially oriented in N-S direction prior to the Eocene. These results indicate that the most of the paleogeographical maps and evolutionary scenarios and models proposed for the region previously requires major re-thinking and serious revisions.
Paleo movement of continents since 300 Ma, mantle dynamics and large wander of the rotational pole
NASA Astrophysics Data System (ADS)
Greff-Lefftz, Marianne; Besse, Jean
2012-09-01
Apparent polar wander (APW) is known to be mainly linked to internal mass distribution changes and in particular to changes in subduction and large-scale upwellings in the mantle. We investigate plate motions during the last 410 million years in a reference frame where Africa is fixed. Indeed, Africa has remained a central plate from which most continents diverged since the break-up of Pangea. The exact amount of subduction is unknown prior to 120 Ma. We propose an approach, based on one hand on the study of the past subduction volcanism to locate ancient subduction activity, and on the other hand microplate motion history in the Tethyan area derived from geology and paleomagnetism. The peri-Pacific subductions seem to be a quasi-permanent feature of the Earth's history at least since the Paleozoic, with however localized interruptions. The “Tethyan” subductions have a complex history with successive collisions of continental blocs (Hercynian, Indo-Sinian, Alpine and Himalayan) and episodical rebirth of E-W subduction trending zones. Assuming that subducted slabs sink vertically into the mantle and taking into account large-scale upwellings derived from present-day tomography and intra-plate volcanism in the past, we compute the time variation of mantle density heterogeneities since 280 Ma. Due to conservation of the angular momentum of the Earth, the temporal evolution of the rotational axis is computed in a mantle reference frame where the Africa plate is fixed, and compared to the apparent polar wander (APW) observed by paleomagnetism since 280 Ma. We find that a major trend of both paleomagnetic and computed APW are successive oscillatory clockwise or counter-clockwise motions, with tracks separated by abrupt cusps (around 230 Ma, 190 Ma and 140-110 Ma). We find that cusps result from earlier major geodynamic events: the 230 Ma cusp is related to the end of active subduction due to the closure of the Rheic Ocean basin after the Hercynian continental collision (340-300 Ma) and to renewed subduction zone West of Laurentia, whereas the 190 Ma cusp results from the Indo-Sinian collision (270-230 Ma) and the subsequent end of the Neo-Tethys ocean subduction.
NASA Astrophysics Data System (ADS)
García, Helbert; Jiménez, Giovanny
2016-08-01
We report paleomagnetic, magnetic fabric and structural results from 21 sites collected in Cretaceous marine mudstones and Paleogene continental sandstones from the limbs, hinge and transverse zones of the Zipaquira Anticline (ZA). The ZA is an asymmetrical fold with one limb completely overturned by processes like gravity and salt tectonics, and marked by several axis curvatures. The ZA is controlled by at least two (2) transverse zones known as the Neusa and Zipaquira Transverse Zones (NTZ and ZTZ, respectively). Magnetic mineralogy methods were applied at different sites and the main carriers of the magnetic properties are paramagnetic components with some sites being controlled by hematite and magnetite. Magnetic fabric analysis shows rigid-body rotation for the back-limb in the ZA, while the forelimb is subjected to internal deformation. Structural and paleomagnetic data shows the influence of the NTZ and ZTZ in the evolution of the different structures like the ZA and the Zipaquira, Carupa, Rio Guandoque, Las Margaritas and Neusa faults, controlling several factors as vergence, extension, fold axis curvature and stratigraphic detatchment. Clockwise rotations unraveled a block segmentation following a discontinuos model caused by transverse zones and one site reported a counter clockwise rotation associated with a left-lateral strike slip component for transverse faults (e.g. the Neusa Fault). We propose that diverse transverse zones have been active since Paleogene times, playing an important role in the tectonic evolution of the Cundinamarca sub-basin and controlling the structural evolution of folds and faults with block segmentation and rotations.
New constraints on Neogene counter-clockwise rotation of Adria relative to Europe
NASA Astrophysics Data System (ADS)
Le Breton, Eline; Handy, Mark R.; Molli, Giancarlo; Ustaszewski, Kamil
2017-04-01
The Adriatic microplate (Adria) is a key player in the geodynamics of Alpine-Mediterranean belts because of its location between two converging plates, Europe and Africa. Most of Adria has been subducted and is presently surrounded by deformed margins comprising the Alps, Apennines, Dinarides and the Calabrian Arc. The Alps-Apennines and Alps-Dinarides junctions are marked by switches in subduction polarity, with Adria being the indenting upper plate in the Alps and the lower plate in the Apennines and Dinarides. Reconstructing Neogene motion and rotation of Adria is therefore key to understanding how such contrasting orogenic styles develop within a similar convergent tectonic regime. We propose a new kinematic reconstruction that balances shortening and extension in the northern Apennines; it reveals that Adria rotated counter-clockwise as it subducted beneath the European Plate to the west and to the east, while indenting the Alps to the north. Syn-collisional back-arc extension in the Liguro-Provençal and northern Tyrrhenian basins exceeds collisional shortening in the northern Apennines, indicating that after 20 Ma Adria and Europe diverged. When combined with existing estimates of Neogene shortening in the Western and Eastern Alps, this overall divergence in the Apennines constrains Adria to have moved to the NW while rotating counter-clockwise relative to Europe. We furthermore consider the length of the present Adriatic slab (135 km) imaged by P-wave tomography in the southern Dinarides to represent the maximum convergence since late Paleogene slab-breakoff, constraining Adria to have rotated 6.5˚ counter-clockwise about an axis in northwestern Italy. Thus, the best fit of available structural data from the Apennines, Alps and Dinarides constrains Adria to have moved 113 km to the NW (azimuth 325˚ ) while rotating 6.5˚ counter-clockwise relative to Europe since 20 Ma. Our model predicts some 80-100 km of Neogene extension between Adria and Africa, most likely accommodated along a NW-SE striking rift system on the African margin and by transtension along NW-SE striking transform faults in the Ionian Sea. We propose that this Neogene motion of Adria resulted from a combination of Africa pushing from the south, the Adriatic-Hellenic slab pulling to the northeast and crustal wedging in the Western Alps, which acted as a pivot and stopped further northwestward motion of Adria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Justice, J.C.; Delli-Gatti, F.A.
1985-12-03
A mining machine is utilized for making original generally horizontal bores in coal seams, and for enlarging preexisting bores. A single cutting head is mounted for rotation about a first horizontal axis generally perpendicular to the dimension of elongation of the horizontal bore, and is pivotal about a second horizontal axis, parallel to the first axis, to change its cutting, vertical position within the bore. A non-rotatable body member, with side wall supports, is mounted posteriorly of the cutting head, and includes a conveyor mechanism and a power mechanism operatively connected to it. The machine can be sumped into amore » bore and then the cutting head rotated about the second axis to change the vertical position thereof, and then moved rearwardly, any cut material being continuously conveyed to the bore mouth by the conveyor mechanism. The amount of vertical movement during the pivoting action about the second axis is controlled in response to the automatic sensing of the thickness of the coal seam in which the machine operates.« less
Joseph, T K; Kartha, C P
1982-01-01
Centring of spectacle lenses is much neglected field of ophthalmology. The prismatic effect caused by wrong centring results in a phoria on the eye muscles which in turn causes persistent eyestrain. The theory of visual axis, optical axis and angle alpha is discussed. Using new methods the visual axis and optical axis of 35 subjects were measured. The results were computed for facial asymmetry, parallax error, angle alpha and also decentration for near vision. The results show that decentration is required on account of each of these factors. Considerable correction is needed in the vertical direction, a fact much neglected nowadays; and vertical decentration results in vertical phoria which is more symptomatic than horizontal phorias. Angle Alpha was computed for each of these patients. A new devise called 'The Kerala Decentration Meter' using the pinhole method for measuring the degree of decentration from the datum centre of the frame, and capable of correcting all the factors described above, is shown with diagrams.
Alignment of x-ray tube focal spots for spectral measurement.
Nishizawa, K; Maekoshi, H; Kamiya, Y; Kobayashi, Y; Ohara, K; Sakuma, S
1982-01-01
A general method to align a diagnostic x-ray machine for x-ray spectrum measurement purpose was theoretically and experimentally investigated by means of the optical alignment of focal pinhole images. Focal pinhole images were obtained by using a multi-pinholed lead plate. the vertical plane, including the central axis and tube axis, was decided upon by observing the symmetry of focal images. the central axis was designated as a line through the center of focus parallel to the target surface lying in the vertical plane. A method to determine the manipulation of the central axis in any direction is presented.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1996-01-01
1. The dynamic contribution of otolith signals to three-dimensional angular vestibuloocular reflex (VOR) was studied during off-vertical axis rotations in rhesus monkeys. In an attempt to separate response components to head velocity from those to head position relative to gravity during low-frequency sinusoidal oscillations, large oscillation amplitudes were chosen such that peak-to-peak head displacements exceeded 360 degrees. Because the waveforms of head position and velocity differed in shape and frequency content, the particular head position and angular velocity sensitivity of otolith-ocular responses could be independently assessed. 2. During both constant velocity rotation and low-frequency sinusoidal oscillations, the otolith system generated two different types of oculomotor responses: 1) modulation of three-dimensional eye position and/or eye velocity as a function of head position relative to gravity, as presented in the preceding paper, and 2) slow-phase eye velocity as a function of head angular velocity. These two types of otolith-ocular responses have been analyzed separately. In this paper we focus on the angular velocity responses of the otolith system. 3. During constant velocity off-vertical axis rotations, a steady-state nystagmus was elicited that was maintained throughout rotation. During low-frequency sinusoidal off-vertical axis oscillations, dynamic otolith stimulation resulted primarily in a reduction of phase leads that characterize low-frequency VOR during earth-vertical axis rotations. Both of these effects are the result of an internally generated head angular velocity signal of otolithic origin that is coupled through a low-pass filter to the VOR. No change in either VOR gain or phase was observed at stimulus frequencies larger than 0.1 Hz. 4. The dynamic otolith contribution to low-frequency angular VOR exhibited three-dimensional response characteristics with some quantitative differences in the different response components. For horizontal VOR, the amplitude of the steady-state slow-phase velocity during constant velocity rotation and the reduction of phase leads during sinusoidal oscillation were relatively independent of tilt angle (for angles larger than approximately 10 degrees). For vertical and torsional VOR, the amplitude of steady-state slow-phase eye velocity during constant velocity rotation increased, and the phase leads during sinusoidal oscillation decreased with increasing tilt angle. The largest steady-state response amplitudes and smallest phase leads were observed during vertical/torsional VOR about an earth-horizontal axis. 5. The dynamic range of otolith-borne head angular velocity information in the VOR was limited to velocities up to approximately 110 degrees/s. Higher head velocities resulted in saturation and a decrease in the amplitude of the steady-state response components during constant velocity rotation and in increased phase leads during sinusoidal oscillations. 6. The response characteristics of otolith-borne angular VORs were also studied in animals after selective semicircular canal inactivation. Otolith angular VORs exhibited clear low-pass filtered properties with a corner frequency of approximately 0.05-0.1 Hz. Vectorial summation of canal VOR alone (elicited during earth-vertical axis rotations) and otolith VOR alone (elicited during off-vertical axis oscillations after semicircular canal inactivation) could not predict VOR gain and phase during off-vertical axis rotations in intact animals. This suggests a more complex interaction of semicircular canal and otolith signals. 7. The results of this study show that the primate low-frequency enhancement of VOR dynamics during off-vertical axis rotation is independent of a simultaneous activation of the vertical and torsional "tilt" otolith-ocular reflexes that have been characterized in the preceding paper. (ABSTRACT TRUNCATED).
Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D
2013-02-01
We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0-400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument.
Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J.; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D.
2013-01-01
We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0–400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument. PMID:23412564
United in Prevention–Electrocardiographic Screening for Chronic Obstructive Pulmonary Disease
Mazic, Sanja; Stajic, Zoran; Djelic, Marina; Zlatkovic-Svenda, Mirjana; Putnikovic, Biljana
2013-01-01
CONFLICT OF INTEREST: NONE DECLARED Introduction P-wave abnormalities on the resting electrocardiogram have been associated with cardiovascular or pulmonary disease. So far, “Gothic” P wave and verticalization of the frontal plane axis is related to lung disease, particularly obstructive lung disease. Aim We tested if inverted P wave in AVl as a lone criteria of P wave axis >70° could be screening tool for emphysema. Material and method 1095 routine electrocardiograms (ECGs) were reviewed which yielded 478 (82,1%) ECGs with vertical P-axis in sinus rhythm. Charts were reviewed for the diagnosis of COPD and emphysema based on medical history and pulmonary function tests. Conclusion Electrocardiogram is very effective screening tool not only in cardiovascular field but in chronic obstructive pulmonary disease. The verticality of the P axis is usually immediately apparent, making electrocardiogram rapid screening test for emphysema. PMID:24058253
Evaluation of simulation motion fidelity criteria in the vertical and directional axes
NASA Technical Reports Server (NTRS)
Schroeder, Jeffery A.
1993-01-01
An evaluation of existing motion fidelity criteria was conducted on the NASA Ames Vertical Motion Simulator. Experienced test pilots flew single-axis repositioning tasks in both the vertical and the directional axes. Using a first-order approximation of a hovering helicopter, tasks were flown with variations only in the filters that attenuate the commands to the simulator motion system. These filters had second-order high-pass characteristics, and the variations were made in the filter gain and natural frequency. The variations spanned motion response characteristics from nearly full math-model motion to fixed-base. Between configurations, pilots recalibrated their motion response perception by flying the task with full motion. Pilots subjectively rated the motion fidelity of subsequent configurations relative to this full motion case, which was considered the standard for comparison. The results suggested that the existing vertical-axis criterion was accurate for combinations of gain and natural frequency changes. However, if only the gain or the natural frequency was changed, the rated motion fidelity was better than the criterion predicted. In the vertical axis, the objective and subjective results indicated that a larger gain reduction was tolerated than the existing criterion allowed. The limited data collected in the yaw axis revealed that pilots had difficulty in distinguishing among the variations in the pure yaw motion cues.
A new vertical axis wind turbine design for urban areas
NASA Astrophysics Data System (ADS)
Frunzulica, Florin; Cismilianu, Alexandru; Boros, Alexandru; Dumitrache, Alexandru; Suatean, Bogdan
2016-06-01
In this paper we aim at developing the model of a Vertical Axis Wind Turbine (VAWT) with the short-term goal of physically realising this turbine to operate at a maximmum power of 5 kW. The turbine is designed for household users in the urban or rural areas and remote or isolated residential areas (hardly accsessible). The proposed model has a biplane configuration on each arm of the VAWT (3 × 2 = 6 blades), allowing for increased performance of the turbine at TSR between 2 and 2.5 (urban area operation) compared to the classic vertical axis turbines. Results that validate the proposed configuration as well as passive control methods to increase the performance of the classic VAWTs are presented.
Scott, Jill R.; Tremblay, Paul L.
2008-08-19
A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.
Palaeomagnetic evidence for post-thrusting tectonic rotation in the Southeast Pyrenees, Spain
NASA Astrophysics Data System (ADS)
Keller, P.; Lowrie, W.; Gehring, A. U.
1994-12-01
The structural framework of the Southeast Pyrenees led to two conflicting interpretations—thrust tectonics vs. wrench tectonics—to explain the geometry of this mountain range. In the present study palaeomagnetic data are presented in an attempt to resolve this conflict. The data reveal different magnetisation directions that indicate tectonic rotations about vertical axes. By means of a regionally homogeneous pattern of rotation, three tectonic units could be distinguished in the Southeast Pyrenees. The Internal Unit in the north reveals no rotation since the Permian. The External Unit to the south shows anticlockwise rotation of 25°, younger than the Early Oligocene. The Pedraforca Unit, placed on the External Unit, shows 57° clockwise rotation which can be assigned to the Neogene. The anticlockwise rotation of the External Unit can be explained by differential compression during the last phase of Pyrenean thrusting, whereas the clockwise rotation of the Pedraforca Unit can be interpreted by post-thrusting tectonics. The rotation pattern of the Southeast Pyrenees provides evidence for both Cretaceous to Paleogene N-S compression and Neogene right-lateral wrench tectonics.
Controlled clockwise and anticlockwise rotational switching of a molecular motor.
Perera, U G E; Ample, F; Kersell, H; Zhang, Y; Vives, G; Echeverria, J; Grisolia, M; Rapenne, G; Joachim, C; Hla, S-W
2013-01-01
The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.
NASA Astrophysics Data System (ADS)
Chang, Lijun; Flesch, Lucy M.; Wang, Chun-Yung; Ding, Zhifeng
2015-07-01
We present 59 new SKS/SKKS and combine them with 69 previously published data to infer the mantle deformation field in SE Tibet. The dense set of anisotropy measurements in the eastern Himalayan syntaxis (EHS) are oriented along a NE-SW azimuth and rotate clockwise in the surround regions. We use GPS measurements and geologic data to determine a continuous surface deformation field that is then used to predict shear wave spitting directions at each station. Comparison of splitting observations with predictions yields an average misfit of 11.7° illustrating that deformation is vertically coherent, consistent with previous studies. Within the central EHS in areas directly surrounding the Namche-Barwa metamorphic massif, the average misfit of 11 stations increases to 60.8°, and vertical coherence is no longer present. The complexity of the mantle anisotropy and surface observations argues for local alteration of the strain fields here associated with recent rapid exhumation of the Indian crust.
Machine imparting complex rotary motion for lapping a spherical inner diameter
Carroll, Thomas A.; Yetter, Harold H.
1986-01-01
An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.
Development of Vault Toilet Waste Treatment Systems.
1978-06-01
wi nd turbine used was a Savoniut’ Wing Rotor, a vertical axis rotor developed by S. J. Savonius in the early 1920’s and used exten- sively in the...2 ) i t was a vertical axis turbine which minimi zed tower con- struction costs, and (3) its high starting torque made it wel l suited to ariving an...ihe turbine constructed by this investigation consistea of two rotors, each 4 ft (1.2 m) high and 7 ft (2.1 m) in wi ath across the long axis , mounted
Machine imparting complex rotary motion for lapping a spherical inner diameter
Carroll, T.A.; Yetter, H.H.
1985-01-30
An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.
Kinesthetic perceptions of earth- and body-fixed axes.
Darling, W G; Hondzinski, J M
1999-06-01
The major purpose of this research was to determine whether kinesthetic/proprioceptive perceptions of the earth-fixed vertical axis are more accurate than perceptions of intrinsic axes. In one experiment, accuracy of alignment of the forearm to earth-fixed vertical and head- and trunk-longitudinal axes by seven blindfolded subjects was compared in four tasks: (1) Earth-Arm--arm (humerus) orientation was manipulated by the experimenter; subjects aligned the forearm parallel to the vertical axis, which was also aligned with the head and trunk longitudinal axis; (2) Head--head, trunk, and upper-limb orientations were manipulated by the experimenter, subjects aligned the forearm parallel to the longitudinal axis of the head using only elbow flexion/extension and shoulder internal/external rotation; (3) Trunk--same as (2), except that subjects aligned the forearm parallel to the trunk-longitudinal axis; (4) Earth--same as (2), except that subjects aligned the forearm parallel to the earth-fixed vertical. Head, trunk, and gravitational axes were never parallel in tasks 2, 3, and 4 so that subjects could not simultaneously match their forearm to all three axes. The results showed that the errors for alignment of the forearm with the earth-fixed vertical were lower than for the trunk- and head-longitudinal axes. Furthermore, errors in the Earth condition were less dependent on alterations of the head and trunk orientation than in the Head and Trunk conditions. These data strongly suggest that the earth-fixed vertical is used as one axis for the kinesthetic sensory coordinate system that specifies upper-limb orientation at the perceptual level. We also examined the effects of varying gravitational torques at the elbow and shoulder on the accuracy of forearm alignment to earth-fixed axes. Adding a 450 g load to the forearm to increase gravitational torques when the forearm is not vertical did not improve the accuracy of forearm alignment with the vertical. Furthermore, adding small, variably sized loads (between which the subjects could not distinguish at the perceptual level) to the forearm just proximal to the wrist produced similar errors in aligning the forearm with the vertical and horizontal. Forearm-positioning errors were not correlated with the size of the load, as would be expected if gravitational torques affected forearm-position sense. We conclude that gravitational torques exerted about the shoulder and elbow do not make significant contributions to sensing forearm-orientation relative to earth-fixed axes when the upper-limb segments are not constrained by external supports.
Three-Axis Ground Reaction Force Distribution during Straight Walking.
Hori, Masataka; Nakai, Akihito; Shimoyama, Isao
2017-10-24
We measured the three-axis ground reaction force (GRF) distribution during straight walking. Small three-axis force sensors composed of rubber and sensor chips were fabricated and calibrated. After sensor calibration, 16 force sensors were attached to the left shoe. The three-axis force distribution during straight walking was measured, and the local features of the three-axis force under the sole of the shoe were analyzed. The heel area played a role in receiving the braking force, the base area of the fourth and fifth toes applied little vertical or shear force, the base area of the second and third toes generated a portion of the propulsive force and received a large vertical force, and the base area of the big toe helped move the body's center of mass to the other foot. The results demonstrate that measuring the three-axis GRF distribution is useful for a detailed analysis of bipedal locomotion.
NASA Astrophysics Data System (ADS)
Warren-Smith, Emily; Lamb, Simon; Stern, Tim A.; Smith, Euan
2017-11-01
Shallow (<25 km), diffuse crustal seismicity occurs in a zone up to 150 km wide adjacent to the southern Alpine Fault, New Zealand, as a consequence of distributed shear and thickening in the obliquely convergent Australian-Pacific plate boundary zone. It has recently been proposed that continental convergence here is accommodated by oblique slip on a low-angle detachment that underlies the region, and as such, forms a previously unrecognized mode of oblique continental convergence. We test this model using microseismicity, presenting a new, 15 month high-resolution microearthquake catalog for the Southern Lakes and northern Fiordland regions adjacent to the Alpine Fault. We determine the spatial distribution, moment release, and style of microearthquakes and show that seismicity in the continental lithosphere is predominantly shallower than 20 km, in a zone up to 150 km wide, but less frequent deeper microseismicity extending into the mantle, at depths of up to 100 km is also observed. The geometry of the subducted oceanic Australian plate is well imaged, with a well-defined Benioff zone to depths of 150 km. In detail, the depth of continental microseismicity shows considerable variation, with no clear link with major active surface faults, but rather represents diffuse cracking in response to the ambient stress release. The moment release rate is 0.1% of that required to accommodate relative plate convergence, and the azimuth of the principal horizontal axis of contraction accommodated by microseismicity is 120°, 15-20° clockwise of the horizontal axis of contractional strain rate observed geodetically. Thus, short-term microseismicity, independent of knowledge of intermittent large-magnitude earthquakes, may not be a good guide to the rate and orientation of long-term deformation but is an indicator of the instantaneous state of stress and potential distribution of finite deformation. We show that both the horizontal and vertical spatial distribution of microseismicity can be explained in terms of a low-angle detachment model.
Chhabra, Lovely; Chaubey, Vinod K; Kothagundla, Chandrasekhar; Bajaj, Rishi; Kaul, Sudesh; Spodick, David H
2013-01-01
Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60°) serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf), amplitude of initial positive component of P-waves in V1 (i-PV1), and interatrial block (IAB) have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf) was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (-) P wave in V1 or a biphasic (+/-) P wave in V1. s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03). s-Ptf also significantly correlated with IAB (P = 0.001); however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23). There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047); however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36). We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by right atrial displacement, and thus the common assumption that increased P-tf implies left atrial enlargement should be made with caution in patients with emphysema. Also, the lack of strong correlation between i-PV1 and P-amplitude in lead III or vertical P-vector may suggest the predominant role of downward right atrial distortion rather than right atrial enlargement in causing vertical P-vector in emphysema.
DOT National Transportation Integrated Search
2002-05-01
INTRODUCTION. Many air traffic control specialists work relatively unique counter-clockwise, rapidly rotating shift schedules. Researchers recommend, however, that if rotating schedules are to be used, they should rotate in a clockwise, rather than a...
Hatching success of ostrich eggs in relation to setting, turning and angle of rotation.
van Schalkwyk, S J; Cloete, S W; Brown, C R; Brand, Z
2000-03-01
1. Three trials were designed to study the effects of axis of setting, turning frequency and axis and angle of rotation on the hatching success of ostrich eggs. The joint effects of axis of setting and angle of rotation were investigated in a fourth trial. 2. The hatchability of fertile ostrich eggs artificially incubated in electronic incubators (turned through 60 degrees hourly) was improved substantially in eggs set in horizontal positions for 2 or 3 weeks and vertically for the rest of the time. 3. The hatchability of fertile eggs set in the horizontal position without any turning was very low (27%). It was improved to approximately 60% by manual turning through 180 degrees around the short axis and through 60 degrees around the long axis at 08.00 and 16.00 h. A further improvement to approximately 80% was obtained in eggs automatically turned through 60 degrees around the long axis in the incubator. Additional turning through 180 degrees around the short axis twice daily at 08.00 and 16.00 h resulted in no further improvement. 4. The hatchability of fertile eggs set vertically in electronic incubators and rotated hourly through angles ranging from 60 degrees to 90 degrees around the short axis increased linearly over the range studied. The response amounted to 1.83% for an increase of 10 (R2=0.96). 5. The detrimental effect of rotation through the smaller angle of 60 degrees around the short axis could be compensated for by setting ostrich eggs in the horizontal position for 2 weeks before putting them in the vertical position.
Ileri, Zehra; Basciftci, Faruk Ayhan
2015-03-01
To investigate the short-term effects of the asymmetric rapid maxillary (ARME) appliance on the vertical, sagittal, and transverse planes in patients with true unilateral posterior crossbite. Subjects were divided into two groups. The treatment group was comprised of 21 patients with unilateral posterior crossbite (mean age = 13.3 ± 2.1 years). Members of this group were treated with the ARME appliance. The control group was comprised of 17 patients with Angle Class I who were kept under observation (mean age = 12.3 ± 0.8 years). Lateral and frontal cephalograms were taken before the expansion (T1), immediately after expansion (T2), and at postexpansion retention (T3) in the treatment group and at preobservation (T1) and postobservation (T2) in the control group. A total of 34 measurements were assessed on cephalograms. For statistical analysis, the Wilcoxon test and analysis of covariance were used. The ARME appliance produced significant increases in nasal, maxillary base, upper arch, and lower arch dimensions (P < .01) and a clockwise rotation of the occlusal plane (P = .001). The ARME appliance created asymmetric increments in the transversal dimensions of the nose, maxilla, and upper arch in the short term. Asymmetric expansion therapy for subjects with unilateral maxillary deficiency may provide satisfactory outcomes in adolescents, with the exception of mandibular arch expansion. The triangular pattern of expansion caused clockwise rotation of the mandible and the occlusal plane and produced significant alterations in the vertical facial dimensions, whereas it created no displacement in maxilla in the sagittal plane.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1996-01-01
1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED).
Developments in blade shape design for a Darrieus vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Ashwill, T. D.; Leonard, T. M.
1986-09-01
A new computer program package has been developed that determines the troposkein shape for a Darrieus Vertical Axis Wind Turbine Blade with any geometrical configuration or rotation rate. This package allows users to interact and develop a buildable blade whose shape closely approximates the troposkein. Use of this package can significantly reduce flatwise mean bending stresses in the blade and increase fatigue life.
Recent Darrieus vertical axis wind turbine aerodynamical experiments at Sandia National Laboratories
NASA Technical Reports Server (NTRS)
Klimas, P. C.
1981-01-01
Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.
Seismic structure of the European crust and upper mantle based on adjoint tomography
NASA Astrophysics Data System (ADS)
Zhu, H.; Bozdag, E.; Peter, D.; Tromp, J.
2013-12-01
We present a new crustal and upper mantle model for the European continent and the North Atlantic Ocean, named EU60. It is constructed based on adjoint tomography and involves 3D variations in elastic wavespeeds, anelastic attenuation, and radial/azimuthal anisotropy. Long-wavelength elastic wavespeed structure of EU60 agree with previous body- and surface-wave tomographic models. Some hitherto unidentified features, such as the Adria microplate, naturally emerge from smoothed starting model. Subducting slabs, slab detachment, ancient suture zones, continental rifts and back-arc basins are well resolved in EU60. For anelastic structure, we find an anti-correlation between shear wavespeeds and anelastic attenuation at shallow depths. At greater depths, this anti-correlation becomes relatively weak, in agreement with previous attenuation studies at global scales. Consistent with radial anisotropy in 1D reference models, the European continent is dominated by features with radially anisotropic parameter xi>1, indicating the presence of horizontal flow within the upper mantle. In addition, subduction zones, such as the Apennines and Hellenic arcs, are characterized as vertical flow with xi<1 at depths greater than 150~km. For azimuthal anisotropy, we find that the direction of fast anisotropic axis is well correlated with complicated tectonic evolution in this region, such as extension along the North Atlantic Ridge, trench retreat in the Mediterranean and counter-clockwise rotation of the Anatolian Plate. The ``point spread function'' is used to assess image quality and analyze tradeoff between different model parameters.
A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Shamsoddin, Sina; Porté-Agel, Fernando
2016-04-01
Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.
Mesozoic intra-arc tectonics in the NE Mojave Desert, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, K.A.; Schermer, E.R.; Walker, J.D.
1993-04-01
Field and U-Pb zircon geochronological data from the Tiefort Mts. (TM) and surrounding areas in the NE Mojave Desert provide new constraints on Precambrian to Paleozoic paleogeography and Mesozoic intra-arc tectonics. Amphibolite facies metasediments appear to correlate with lower Paleozoic miogeoclinal sequences. Coarse-grained K-feldspar augen gneiss occurs in sharp contact with the metasedimentary rocks; U-Pb dating yields a 1393[+-]12 Ma age. This gneiss is interpreted to represent cratonal basement of North America. A texturally and compositionally heterogeneous amphibolite-facies monzonitic complex which intrudes the basement and metasediments yields a mid-Jurassic age. Felsite and biotite granite that intrude the foliated monzonitic complexmore » locally contain the mylonitic fabric and appear to be syn-late kinematic. Undeformed pegmatite, granite, and microdiorite appear as dikes throughout the region. Vertical silicic dikes at southern TM trend N5-25E and are dated at 148[+-]14 Ma, coeval with the Independence dike swarm (IDS). Similar dikes that occur at TM trend N60-80E. Undeformed granite cross-cuts the foliated monzonite; some granitic rocks cut dikes of the IDs and are likely to be Cretaceous in age. The E- to SE-vergence and mid-late Jurassic age of ductile shear zones in the TM region are similar to that in nearby parts of the East Sierra Thrust System (ESTS). If NE and NNE dikes are IDS-equivalent, this implies clockwise, vertical-axis rotation of 30[degree]--90[degree] by younger structures. The authors interpret this to be related to late Cenozoic strike-slip faults. Restoration of folds and the IDS to the regional NW trend results in top to the E to NE sense of shear during Jurassic deformation. Deformation in the TM and areas to the north connects the ESTS from the Garlock fault to the central Mojave region indicating a region in which mid-crustal levels of the arc and cratonal basement experienced contractional tectonism during mid-Jurassic time.« less
Minor, Scott A.; Hudson, Mark R.; Caine, Jonathan S.; Thompson, Ren A.
2013-01-01
The structural geometry of transfer and accommodation zones that relay strain between extensional domains in rifted crust has been addressed in many studies over the past 30 years. However, details of the kinematics of deformation and related stress changes within these zones have received relatively little attention. In this study we conduct the first-ever systematic, multi-basin fault-slip measurement campaign within the late Cenozoic Rio Grande rift of northern New Mexico to address the mechanisms and causes of extensional strain transfer associated with a broad accommodation zone. Numerous (562) kinematic measurements were collected at fault exposures within and adjacent to the NE-trending Santo Domingo Basin accommodation zone, or relay, which structurally links the N-trending, right-stepping en echelon Albuquerque and Española rift basins. The following observations are made based on these fault measurements and paleostresses computed from them. (1) Compared to the typical northerly striking normal to normal-oblique faults in the rift basins to the north and south, normal-oblique faults are broadly distributed within two merging, NE-trending zones on the northwest and southeast sides of the Santo Domingo Basin. (2) Faults in these zones have greater dispersion of rake values and fault strikes, greater dextral strike-slip components over a wide northerly strike range, and small to moderate clockwise deflections of their tips. (3) Relative-age relations among fault surfaces and slickenlines used to compute reduced stress tensors suggest that far-field, ~E-W–trending σ3 stress trajectories were perturbed 45° to 90° clockwise into NW to N trends within the Santo Domingo zones. (4) Fault-stratigraphic age relations constrain the stress perturbations to the later stages of rifting, possibly as late as 2.7–1.1 Ma. Our fault observations and previous paleomagnetic evidence of post–2.7 Ma counterclockwise vertical-axis rotations are consistent with increased bulk sinistral-normal oblique shear along the Santo Domingo rift segment in Pliocene and later time. Regional geologic evidence suggests that the width of active rift faulting became increasingly confined to the Santo Domingo Basin and axial parts of the adjoining basins beginning in the late Miocene. We infer that the Santo Domingo clockwise stress perturbations developed coevally with the oblique rift segment mainly due to mechanical interactions of large faults propagating toward each other from the adjoining basins as the rift narrowed. Our results suggest that negligible bulk strike-slip displacement has been accommodated along the north-trending rift during much of its development, but uncertainties in the maximum ages of fault slip do not allow us to fully evaluate and discriminate between earlier models that invoked northward or southward rotation and translation of the Colorado Plateau during early (Miocene) rifting.
Integrated Medical Curriculum: Advantages and Disadvantages
Quintero, Gustavo A.; Vergel, John; Arredondo, Martha; Ariza, María-Cristina; Gómez, Paula; Pinzon-Barrios, Ana-Maria
2016-01-01
Most curricula for medical education have been integrated horizontally and vertically–-vertically between basic and clinical sciences. The Flexnerian curriculum has disappeared to permit integration between basic sciences and clinical sciences, which are taught throughout the curriculum. We have proposed a different form of integration where the horizontal axis represents the defined learning outcomes and the vertical axis represents the teaching of the sciences throughout the courses. We believe that a mere integration of basic and clinical sciences is not enough because it is necessary to emphasize the importance of humanism as well as health population sciences in medicine. It is necessary to integrate basic and clinical sciences, humanism, and health population in the vertical axis, not only in the early years but also throughout the curriculum, presupposing the use of active teaching methods based on problems or cases in small groups. PMID:29349303
Winship, I R; Wylie, D R
2001-11-01
The responses of neurons in the medial column of the inferior olive to translational and rotational optic flow were recorded from anaesthetized pigeons. Panoramic translational or rotational flowfields were produced by mechanical devices that projected optic flow patterns onto the walls, ceiling and floor of the room. The axis of rotation/translation could be positioned to any orientation in three-dimensional space such that axis tuning could be determined. Each neuron was assigned a vector representing the axis about/along which the animal would rotate/translate to produce the flowfield that elicited maximal modulation. Both translation-sensitive and rotation-sensitive neurons were found. For neurons responsive to translational optic flow, the preferred axis is described with reference to a standard right-handed coordinate system, where +x, +y and +z represent rightward, upward and forward translation of the animal, respectively (assuming that all recordings were from the right side of the brain). t(+y) neurons were maximally excited in response to a translational optic flowfield that results from self-translation upward along the vertical (y) axis. t(-y) neurons also responded best to translational optic flow along the vertical axis but showed the opposite direction preference. The two remaining groups, t(-x+z) and t(-x-z) neurons, responded best to translational optic flow along horizontal axes that were oriented 45 degrees to the midline. There were two types of neurons responsive to rotational optic flow: rVA neurons preferred rotation about the vertical axis, and rH135c neurons preferred rotation about a horizontal axis at 135 degrees contralateral azimuth. The locations of marking lesions indicated a clear topographical organization of the six response types. In summary, our results reinforce that the olivo-cerebellar system dedicated to the analysis of optic flow is organized according to a reference frame consisting of three approximately orthogonal axes: the vertical axis, and two horizontal axes oriented 45 degrees to either side the midline. Previous research has shown that the eye muscles, vestibular semicircular canals and postural control system all share a similar spatial frame of reference.
Double-multiple streamtube model for studying vertical-axis wind turbines
NASA Astrophysics Data System (ADS)
Paraschivoiu, Ion
1988-08-01
This work describes the present state-of-the-art in double-multiple streamtube method for modeling the Darrieus-type vertical-axis wind turbine (VAWT). Comparisons of the analytical results with the other predictions and available experimental data show a good agreement. This method, which incorporates dynamic-stall and secondary effects, can be used for generating a suitable aerodynamic-load model for structural design analysis of the Darrieus rotor.
PHLUX: Photographic Flux Tools for Solar Glare and Flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
2010-12-02
A web-based tool to a) analytically and empirically quantify glare from reflected light and determine the potential impact (e.g., temporary flash blindness, retinal burn), and b) produce flux maps for central receivers. The tool accepts RAW digital photographs of the glare source (for hazard assessment) or the receiver (for flux mapping), as well as a photograph of the sun for intensity and size scaling. For glare hazard assessment, the tool determines the retinal irradiance (W/cm2) and subtended source angle for an observer and plots the glare source on a hazard spectrum (i.e., low-potential for flash blindness impact, potential for flashmore » blindness impact, retinal burn). For flux mapping, the tool provides a colored map of the receiver scaled by incident solar flux (W/m2) and unwraps the physical dimensions of the receiver while accounting for the perspective of the photographer (e.g., for a flux map of a cylindrical receiver, the horizontal axis denotes receiver angle in degrees and the vertical axis denotes vertical position in meters; for a flat panel receiver, the horizontal axis denotes horizontal position in meters and the vertical axis denotes vertical position in meters). The flux mapping capability also allows the user to specify transects along which the program plots incident solar flux on the receiver.« less
A Free Wake Numerical Simulation for Darrieus Vertical Axis Wind Turbine Performance Prediction
NASA Astrophysics Data System (ADS)
Belu, Radian
2010-11-01
In the last four decades, several aerodynamic prediction models have been formulated for the Darrieus wind turbine performances and characteristics. We can identified two families: stream-tube and vortex. The paper presents a simplified numerical techniques for simulating vertical axis wind turbine flow, based on the lifting line theory and a free vortex wake model, including dynamic stall effects for predicting the performances of a 3-D vertical axis wind turbine. A vortex model is used in which the wake is composed of trailing stream-wise and shedding span-wise vortices, whose strengths are equal to the change in the bound vortex strength as required by the Helmholz and Kelvin theorems. Performance parameters are computed by application of the Biot-Savart law along with the Kutta-Jukowski theorem and a semi-empirical stall model. We tested the developed model with an adaptation of the earlier multiple stream-tube performance prediction model for the Darrieus turbines. Predictions by using our method are shown to compare favorably with existing experimental data and the outputs of other numerical models. The method can predict accurately the local and global performances of a vertical axis wind turbine, and can be used in the design and optimization of wind turbines for built environment applications.
Do humans show velocity-storage in the vertical rVOR?
Bertolini, G; Bockisch, C J; Straumann, D; Zee, D S; Ramat, S
2008-01-01
To investigate the contribution of the vestibular velocity-storage mechanism (VSM) to the vertical rotational vestibulo-ocular reflex (rVOR) we recorded eye movements evoked by off-vertical axis rotation (OVAR) using whole-body constant-velocity pitch rotations about an earth-horizontal, interaural axis in four healthy human subjects. Subjects were tumbled forward, and backward, at 60 deg/s for over 1 min using a 3D turntable. Slow-phase velocity (SPV) responses were similar to the horizontal responses elicited by OVAR along the body longitudinal axis, ('barbecue' rotation), with exponentially decaying amplitudes and a residual, otolith-driven sinusoidal response with a bias. The time constants of the vertical SPV ranged from 6 to 9 s. These values are closer to those that reflect the dynamic properties of vestibular afferents than the typical 20 s produced by the VSM in the horizontal plane, confirming the relatively smaller contribution of the VSM to these vertical responses. Our preliminary results also agree with the idea that the VSM velocity response aligns with the direction of gravity. The horizontal and torsional eye velocity traces were also sinusoidally modulated by the change in gravity, but showed no exponential decay.
Large Vertical Axis Rotations along Neotethyan Sutures in TURKEY
NASA Astrophysics Data System (ADS)
Ozkaptan, M.; Gulyuz, E.; Kaymakci, N.; Langereis, C. G.; Ozacar, A. A.; Lefebvre, C.
2014-12-01
Two Neotethyan Sutures,Izmir-Ankara and Intra-Tauride suture zones meet around Ankara region appx. at right angles.The northerly located Izmir-Ankara Suture zone follows approximately E-W trend and it makes a sharp approximately 90° bend at the east along the western margin of the Çankiri Basin.The Intra-Tauride suture follows approximately the Tuzgölü Fault Zone and trends NW-SE and seems to be overprinted by the structures related to the Izmir-Ankara suture zone. These two sutures meet southeastern corner of the Haymana Basin where the basin makes major eastwards counterclockwise bend.From west to East, the Haymana, Tuzgölü and Çankiri Basins straddle these suture zones and are developed in relation to the subduction and collision processes in the region, making them the perfect sites to unravel deformation history and paleogeography of the Neotethyan suture zones in the region. In order to accomplish this, the tectono-stratigraphic evolution of the basin and its paleogeographical positions, in different time slices, constructed by conducting a very detailed study on the Late Cretaceous to Recent infill of the Haymana, Tuzgölü, and Çankiri Basins. We collected more than 4500 sedimentary paleomagnetic samples for paleomagnetic purposes from 112 different locations within 250 km diameter area.Before the demagnetization process, nearly 3000 core specimens were measured for anisotropy of magnetic susceptibility (AMS) in order to understand deformation amounts and kinematics.The paleomagnetic results show that the region underwent strong clockwise and counterclockwise rotations more than 90° in places, resulting in the present geometry of the suture zones. The central part of the Haymana basin rotated as high as 90° counterclockwise while its northern part together with the southwestern part of the Çankiri basin and northern part of the Tuzgölü basin rotated approximately 30° clockwise contrary to almost all published paleomagnetic data from the region.The restored orientations based on this new paleomagnetic data indicate that Haymana, Tuzgölü Basin and the SW margin of the Çankiri basins were initially oriented N-S prior to Eocene.These results indicate that the most of the paleogeographical maps and evolutionary scenarios and models of the region requires major re-thinking and serious revisions.
GPC: General Polygon Clipper library
NASA Astrophysics Data System (ADS)
Murta, Alan
2015-12-01
The University of Manchester GPC library is a flexible and highly robust polygon set operations library for use with C, C#, Delphi, Java, Perl, Python, Haskell, Lua, VB.Net and other applications. It supports difference, intersection, exclusive-or and union clip operations, and polygons may be comprised of multiple disjoint contours. Contour vertices may be given in any order - clockwise or anticlockwise, and contours may be convex, concave or self-intersecting, and may be nested (i.e. polygons may have holes). Output may take the form of either polygon contours or tristrips, and hole and external contours are differentiated in the result.
Neglected locked vertical patellar dislocation
Gupta, Rakesh Kumar; Gupta, Vinay; Sangwan, Sukhbir Singh; Kamboj, Pradeep
2012-01-01
Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge. PMID:23162154
Horizontal-axis clothes washer market poised for expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, K.L.
1994-12-31
The availability of energy- and water-efficient horizontal-axis washing machines in the North American market is growing, as US and European manufacturers position for an expected long-term market shift toward horizontal-axis (H-axis) technology. Four of the five major producers of washing machines in the US are developing or considering new H-axis models. New entrants, including US-based Staber Industries and several European manufacturers, are also expected to compete in this market. The intensified interest in H-axis technology is partly driven by speculation that new US energy efficiency standards, to be proposed in 1996 and implemented in 1999, will effectively mandate H-axis machines.more » H-axis washers typically use one-third to two-thirds less energy, water, and detergent than vertical-axis machines. Some models also reduce the energy needed to dry the laundry, since their higher spin speeds extract more water than is typical with vertical-axis designs. H-axis washing machines are the focus of two broadly-based efforts to support coordinated research and incentive programs by electric, gas, and water utilities: The High-Efficiency Laundry Metering/Marketing Analysis (THELMA), and the Consortium for Energy Efficiency (CEE) High-Efficiency Clothes Washer Initiative. These efforts may help to pave the way for new types of marketing partnerships among utilities and other parties that could help to speed adoption of H-axis washers.« less
Chhabra, Lovely; Chaubey, Vinod K; Kothagundla, Chandrasekhar; Bajaj, Rishi; Kaul, Sudesh; Spodick, David H
2013-01-01
Introduction Pulmonary emphysema causes several electrocardiogram changes, and one of the most common and well known is on the frontal P-wave axis. P-axis verticalization (P-axis > 60°) serves as a quasidiagnostic indicator of emphysema. The correlation of P-axis verticalization with the radiological severity of emphysema and severity of chronic obstructive lung function have been previously investigated and well described in the literature. However, the correlation of P-axis verticalization in emphysema with other P-indices like P-terminal force in V1 (Ptf), amplitude of initial positive component of P-waves in V1 (i-PV1), and interatrial block (IAB) have not been well studied. Our current study was undertaken to investigate the effects of emphysema on these P-wave indices in correlation with the verticalization of the P-vector. Materials and methods Unselected, routinely recorded electrocardiograms of 170 hospitalized emphysema patients were studied. Significant Ptf (s-Ptf) was considered ≥40 mm.ms and was divided into two types based on the morphology of P-waves in V1: either a totally negative (−) P wave in V1 or a biphasic (+/−) P wave in V1. Results s-Ptf correlated better with vertical P-vectors than nonvertical P-vectors (P = 0.03). s-Ptf also significantly correlated with IAB (P = 0.001); however, IAB and P-vector verticalization did not appear to have any significant correlation (P = 0.23). There was a very weak correlation between i-PV1 and frontal P-vector (r = 0.15; P = 0.047); however, no significant correlation was found between i-PV1 and P-amplitude in lead III (r = 0.07; P = 0.36). Conclusion We conclude that increased P-tf in emphysema may be due to downward right atrial position caused by right atrial displacement, and thus the common assumption that increased P-tf implies left atrial enlargement should be made with caution in patients with emphysema. Also, the lack of strong correlation between i-PV1 and P-amplitude in lead III or vertical P-vector may suggest the predominant role of downward right atrial distortion rather than right atrial enlargement in causing vertical P-vector in emphysema. PMID:23690680
Spin-stabilized magnetic levitation without vertical axis of rotation
Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aaronson, Gene [Albuquerque, NM
2009-06-09
The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.
Comparison of current meters used for stream gaging
Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.
1994-01-01
The U.S. Geological Survey (USGS) is field and laboratory testing the performance of several current meters used throughout the world for stream gaging. Meters tested include horizontal-axis current meters from Germany, the United Kingdom, and the People's Republic of China, and vertical-axis and electromagnetic current meters from the United States. Summarized are laboratory test results for meter repeatability, linearity, and response to oblique flow angles and preliminary field testing results. All current meters tested were found to under- and over-register velocities; errors usually increased as the velocity and angle of the flow increased. Repeatability and linearity of all meters tested were good. In the field tests, horizontal-axis meters, except for the two meters from the People's Republic of China, registered higher velocity than did the vertical-axis meters.
Prediction of passenger ride quality in a multifactor environment
NASA Technical Reports Server (NTRS)
Dempsey, T. K.; Leatherwood, J. D.
1976-01-01
A model being developed, permits the understanding and prediction of passenger discomfort in a multifactor environment with particular emphasis upon combined noise and vibration. The model has general applicability to diverse transportation systems and provides a means of developing ride quality design criteria as well as a diagnostic tool for identifying the vibration and/or noise stimuli causing discomfort. Presented are: (1) a review of the basic theoretical and mathematical computations associated with the model, (2) a discussion of methodological and criteria investigations for both the vertical and roll axes of vibration, (3) a description of within-axis masking of discomfort responses for the vertical axis, thereby allowing prediction of the total discomfort due to any random vertical vibration, (4) a discussion of initial data on between-axis masking, and (5) discussion of a study directed towards extension of the vibration model to the more general case of predicting ride quality in the combined noise and vibration environments.
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Paloski, W. H. (Principal Investigator)
2002-01-01
The purpose of this study was to examine how the modulation of tilt and translation otolith-ocular responses during constant velocity off-vertical axis rotation varies as a function of stimulus frequency. Eighteen human subjects were rotated in darkness about their longitudinal axis 30 degrees off-vertical at stimulus frequencies between 0.05 and 0.8 Hz. The modulation of torsion decreased while the modulation of horizontal slow phase velocity (SPV) increased with increasing frequency. It is inferred that the ambiguity of otolith afferent information is greatest in the frequency region where tilt (torsion) and translational (horizontal SPV) otolith-ocular responses crossover. It is postulated that the previously demonstrated peak in motion sickness susceptibility during linear accelerations around 0.3 Hz is the result of frequency segregation of ambiguous otolith information being inadequate to distinguish between tilt and translation.
Numerical modeling and preliminary validation of drag-based vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Krysiński, Tomasz; Buliński, Zbigniew; Nowak, Andrzej J.
2015-03-01
The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.
A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Griffith, D. Todd; Paquette, Joshua; Barone, Matthew; Goupee, Andrew J.; Fowler, Matthew J.; Bull, Diana; Owens, Brian
2016-09-01
Vertical axis wind turbines are receiving significant attention for offshore siting. In general, offshore wind offers proximity to large populations centers, a vast & more consistent wind resource, and a scale-up opportunity, to name a few beneficial characteristics. On the other hand, offshore wind suffers from high levelized cost of energy (LCOE) and in particular high balance of system (BoS) costs owing to accessibility challenges and limited project experience. To address these challenges associated with offshore wind, Sandia National Laboratories is researching large-scale (MW class) offshore floating vertical axis wind turbines (VAWTs). The motivation for this work is that floating VAWTs are a potential transformative technology solution to reduce offshore wind LCOE in deep-water locations. This paper explores performance and cost trade-offs within the design space for floating VAWTs between the configurations for the rotor and platform.
Exploring point-cloud features from partial body views for gender classification
NASA Astrophysics Data System (ADS)
Fouts, Aaron; McCoppin, Ryan; Rizki, Mateen; Tamburino, Louis; Mendoza-Schrock, Olga
2012-06-01
In this paper we extend a previous exploration of histogram features extracted from 3D point cloud images of human subjects for gender discrimination. Feature extraction used a collection of concentric cylinders to define volumes for counting 3D points. The histogram features are characterized by a rotational axis and a selected set of volumes derived from the concentric cylinders. The point cloud images are drawn from the CAESAR anthropometric database provided by the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate and SAE International. This database contains approximately 4400 high resolution LIDAR whole body scans of carefully posed human subjects. Success from our previous investigation was based on extracting features from full body coverage which required integration of multiple camera images. With the full body coverage, the central vertical body axis and orientation are readily obtainable; however, this is not the case with a one camera view providing less than one half body coverage. Assuming that the subjects are upright, we need to determine or estimate the position of the vertical axis and the orientation of the body about this axis relative to the camera. In past experiments the vertical axis was located through the center of mass of torso points projected on the ground plane and the body orientation derived using principle component analysis. In a natural extension of our previous work to partial body views, the absence of rotational invariance about the cylindrical axis greatly increases the difficulty for gender classification. Even the problem of estimating the axis is no longer simple. We describe some simple feasibility experiments that use partial image histograms. Here, the cylindrical axis is assumed to be known. We also discuss experiments with full body images that explore the sensitivity of classification accuracy relative to displacements of the cylindrical axis. Our initial results provide the basis for further investigation of more complex partial body viewing problems and new methods for estimating the two position coordinates for the axis location and the unknown body orientation angle.
On the stability of motion of several types of heavy symmetric gyroscopes with damping torques
NASA Astrophysics Data System (ADS)
Ge, Z.-M.; Wu, M.-H.
Sufficient conditions for the stability of motion of several gyroscopes are obtained using Liapunov's direct method. The stability of a 'temporarily' sleeping top with damping torque is considered for the cases of the support being fixed, being in vertical harmonic motion, and being in vertical periodic motion. Sufficient conditions are also obtained for the stability of a heavy symmetric gyroscope with damping torque and motor torque for the cases of regular precession, vertical axis permanent rotation with and without the axis of the outer gimbal being inclined, and the gyroscope being in a Newtonian central gravitational field.
NASA Technical Reports Server (NTRS)
Hess, Bernhard J M.; Angelaki, Dora E.
2003-01-01
Rotational disturbances of the head about an off-vertical yaw axis induce a complex vestibuloocular reflex pattern that reflects the brain's estimate of head angular velocity as well as its estimate of instantaneous head orientation (at a reduced scale) in space coordinates. We show that semicircular canal and otolith inputs modulate torsional and, to a certain extent, also vertical ocular orientation of visually guided saccades and smooth-pursuit eye movements in a similar manner as during off-vertical axis rotations in complete darkness. It is suggested that this graviceptive control of eye orientation facilitates rapid visual spatial orientation during motion.
Device for passive flow control around vertical axis marine turbine
NASA Astrophysics Data System (ADS)
Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.
2012-11-01
The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.
Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1998-01-01
The adaptive plasticity of the spatial organization of the vestibuloocular reflex (VOR) has been investigated in intact and canal-plugged primates using 2-h exposure to conflicting visual (optokinetic, OKN) and vestibular rotational stimuli about mutually orthogonal axes (generating torsional VOR + vertical OKN, torsional VOR + horizontal OKN, vertical VOR + horizontal OKN, and horizontal VOR + vertical OKN). Adaptation protocols with 0.5-Hz (+/-18 degrees ) head movements about either an earth-vertical or an earth-horizontal axis induced orthogonal response components as high as 40-70% of those required for ideal adaptation. Orthogonal response gains were highest at the adapting frequency with phase leads present at lower and phase lags present at higher frequencies. Furthermore, the time course of adaptation, as well as orthogonal response dynamics were similar and relatively independent of the particular visual/vestibular stimulus combination. Low-frequency (0. 05 Hz, vestibular stimulus: +/-60 degrees ; optokinetic stimulus: +/-180 degrees ) adaptation protocols with head movements about an earth-vertical axis induced smaller orthogonal response components that did not exceed 20-40% of the head velocity stimulus (i.e., approximately 10% of that required for ideal adaptation). At the same frequency, adaptation with head movements about an earth-horizontal axis generated large orthogonal responses that reached values as high as 100-120% of head velocity after 2 h of adaptation (i.e., approximately 40% of ideal adaptation gains). The particular spatial and temporal response characteristics after low-frequency, earth-horizontal axis adaptation in both intact and canal-plugged animals strongly suggests that the orienting (and perhaps translational) but not inertial (velocity storage) components of the primate otolith-ocular system exhibit spatial adaptability. Due to the particular nested arrangement of the visual and vestibular stimuli, the optic flow pattern exhibited a significant component about the third spatial axis (i.e., orthogonal to the axes of rotation of the head and visual surround) at twice the oscillation frequency. Accordingly, the adapted VOR was characterized consistently by a third response component (orthogonal to both the axes of head and optokinetic drum rotation) at twice the oscillation frequency after earth-horizontal but not after earth-vertical axis 0.05-Hz adaptation. This suggests that the otolith-ocular (but not the semicircular canal-ocular) system can adaptively change its spatial organization at frequencies different from those of the head movement.
Unsteady aerodynamic force mechanisms of a hoverfly hovering with a short stroke-amplitude
NASA Astrophysics Data System (ADS)
Zhu, Hao Jie; Sun, Mao
2017-08-01
Hovering insects require a rather large lift coefficient. Many insects hover with a large stroke amplitude (120°-170°), and it has been found that the high lift is mainly produced by the delayed-stall mechanism. However, some insects hover with a small stroke amplitude (e.g., 65°). The delayed-stall mechanism might not work for these insects because the wings travel only a very short distance in a stroke, and other aerodynamic mechanisms must be operating. Here we explore the aerodynamic mechanisms of a hoverfly hovering with an inclined stroke plane and a small stroke amplitude (65.6°). The Navier-Stokes equations are numerically solved to give the flows and forces and the theory of vorticity dynamics used to reveal the aerodynamic mechanisms. The majority of the weight-supporting vertical force is produced in the mid portion of the downstroke, a short period (about 26% of the stroke cycle) in which the vertical force coefficient is larger than 4. The force is produced using a new mechanism, the "paddling mechanism." During the short period, the wing moves rapidly downward and forward at a large angle of attack (about 48°), and strong counter clockwise vorticity is produced continuously at the trailing edge and clockwise vorticity at the leading edge, resulting in a large time rate of change in the first moment of vorticity, hence the large aerodynamic force. It is interesting to note that with the well known delayed stall mechanism, the force is produced by the relative motion of two vortices of opposite sign, while in the "paddling mechanism," it is produced by generating new vortices of opposite sign at different locations.
Measurement of Posterior Corneal Astigmatism by the IOLMaster 700.
LaHood, Benjamin R; Goggin, Michael
2018-05-01
To provide the first description of posterior corneal astigmatism as measured by the IOLMaster 700 (Carl Zeiss Meditec, Jena, Germany) and assess how its characteristics compare to previous measurements from other devices. A total of 1,098 routine IOLMaster 700 biometric measurements were analyzed to provide magnitudes and orientation of steep and flat axes of anterior and posterior corneal astigmatism. Subgroup analysis was conducted to assess correlation of posterior corneal astigmatism characteristics to anterior corneal astigmatism and describe the distribution of posterior corneal astigmatism with age. Mean posterior corneal astigmatism was 0.24 ± 0.15 diopters (D). The steep axis of posterior corneal astigmatism was vertically oriented in 73.32% of measurements. Correlation between the magnitude of anterior and posterior corneal astigmatism was greatest when the steep axis of the anterior corneal astigmatism was oriented vertically (r = 0.68, P < .0001). Vertical orientation of the steep axis of anterior corneal astigmatism became less common as age increased, whereas for posterior corneal astigmatism it remained by far the most common orientation. This first description of posterior corneal astigmatism measurement by the IOLMaster 700 found the average magnitude of posterior corneal astigmatism and proportion of vertical orientation of steep axis was lower than previous estimates. The IOLMaster 700 appears capable of providing enhanced biometric measurement for individualized surgical planning. [J Refract Surg. 2018;34(5):331-336.]. Copyright 2018, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna
2018-03-01
The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.
Calculating Radiation Dose for Biological Tissue
2013-05-30
This graph based on data from the RAD instrument onboard NASA Mars Science Laboratory spacecraft shows the flux of energetic particles vertical axis as a function of the estimated energy deposited in water horizontal axis.
Optimal electrocardiographic limb lead set for rapid emphysema screening
Bajaj, Rishi; Chhabra, Lovely; Basheer, Zainab; Spodick, David H
2013-01-01
Background Pulmonary emphysema of any etiology has been shown to be strongly and quasidiagnostically associated with a vertical frontal P wave axis. A vertical P wave axis (>60 degrees) during sinus rhythm can be easily determined by a P wave in lead III greater than the P wave in lead I (bipolar lead set) or a dominantly negative P wave in aVL (unipolar lead set). The purpose of this investigation was to determine which set of limb leads may be better for identifying the vertical P vector of emphysema in adults. Methods Unselected consecutive electrocardiograms from 100 patients with a diagnosis of emphysema were analyzed to determine the P wave axis. Patients aged younger than 45 years, those not in sinus rhythm, and those with poor quality tracings were excluded. The electrocardiographic data were divided into three categories depending on the frontal P wave axis, ie, >60 degrees, 60 degrees, or <60 degrees, by each criterion (P amplitude lead III > lead I and a negative P wave in aVL). Results Sixty-six percent of patients had a P wave axis > 60 degrees based on aVL, and 88% of patients had a P wave axis > 60 degrees based on the P wave in lead III being greater than in lead I. Conclusion A P wave in lead III greater than that in lead I is a more sensitive marker than a negative P wave in aVL for diagnosing emphysema and is recommended for rapid routine screening. PMID:23378754
Choi, Jongsoo; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R
2017-10-01
Use of a thin-film piezoelectric microactuator for axial scanning during multi-photon vertical cross-sectional imaging is described. The actuator uses thin-film lead-zirconate-titanate (PZT) to generate upward displacement of a central mirror platform, micro-machined from a silicon-on-insulator (SOI) wafer to dimensions compatible with endoscopic imaging instruments. Device modeling in this paper focuses on existence of frequencies near device resonance producing vertical motion with minimal off-axis tilt even in the presence of multiple vibration modes and non-uniformity in fabrication outcomes. Operation near rear resonance permits large stroke lengths at low voltages relative to other vertical microactuators. Highly uniform vertical motion of the mirror platform is a key requirement for vertical cross-sectional imaging in the remote scan architecture being used for multi-photon instrument prototyping. The stage is installed in a benchtop testbed in combination with an electrostatic mirror that performs in-plane scanning. Vertical sectional images are acquired from 15 μm diameter beads and excised mouse colon tissue.
Gravitomagnetic acceleration from black hole accretion disks
NASA Astrophysics Data System (ADS)
Poirier, J.; Mathews, G. J.
2016-05-01
We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.
Turbulent premixed combustion in V-shaped flames: Characteristics of flame front
NASA Astrophysics Data System (ADS)
Kheirkhah, S.; Gülder, Ö. L.
2013-05-01
Flame front characteristics of turbulent premixed V-shaped flames were investigated experimentally using the Mie scattering and the particle image velocimetry techniques. The experiments were performed at mean streamwise exit velocities of 4.0, 6.2, and 8.6 m/s, along with fuel-air equivalence ratios of 0.7, 0.8, and 0.9. Effects of vertical distance from the flame-holder, mean streamwise exit velocity, and fuel-air equivalence ratio on statistics of the distance between the flame front and the vertical axis, flame brush thickness, flame front curvature, and angle between tangent to the flame front and the horizontal axis were studied. The results show that increasing the vertical distance from the flame-holder and the fuel-air equivalence ratio increase the mean and root-mean-square (RMS) of the distance between the flame front and the vertical axis; however, increasing the mean streamwise exit velocity decreases these statistics. Spectral analysis of the fluctuations of the flame front position depicts that the normalized and averaged power-spectrum-densities collapse and show a power-law relation with the normalized wave number. The flame brush thickness is linearly correlated with RMS of the distance between the flame front and the vertical axis. Analysis of the curvature of the flame front data shows that the mean curvature is independent of the experimental conditions tested and equals to zero. Values of the inverse of the RMS of flame front curvature are similar to those of the integral length scale, suggesting that the large eddies in the flow make a significant contribution in wrinkling of the flame front. Spectral analyses of the flame front curvature as well as the angle between tangent to the flame front and the horizontal axis show that the power-spectrum-densities feature a peak. Value of the inverse of the wave number pertaining to the peak is larger than that of the integral length scale.
FORGE Milford Triaxial Test Data and Summary from EGI labs
Joe Moore
2016-03-01
Six samples were evaluated in unconfined and triaxial compression, their data are included in separate excel spreadsheets, and summarized in the word document. Three samples were plugged along the axis of the core (presumed to be nominally vertical) and three samples were plugged perpendicular to the axis of the core. A designation of "V"indicates vertical or the long axis of the plugged sample is aligned with the axis of the core. Similarly, "H" indicates a sample that is nominally horizontal and cut orthogonal to the axis of the core. Stress-strain curves were made before and after the testing, and are included in the word doc.. The confining pressure for this test was 2800 psi. A series of tests are being carried out on to define a failure envelope, to provide representative hydraulic fracture design parameters and for future geomechanical assessments. The samples are from well 52-21, which reaches a maximum depth of 3581 ft +/- 2 ft into a gneiss complex.
The vibration discomfort of standing people: evaluation of multi-axis vibration.
Thuong, Olivier; Griffin, Michael J
2015-01-01
Few studies have investigated discomfort caused by multi-axis vibration and none has explored methods of predicting the discomfort of standing people from simultaneous fore-and-aft, lateral and vertical vibration of a floor. Using the method of magnitude estimation, 16 subjects estimated their discomfort caused by dual-axis and tri-axial motions (octave-bands centred on either 1 or 4 Hz with various magnitudes in the fore-and-aft, lateral and vertical directions) and the discomfort caused by single-axis motions. The method of predicting discomfort assumed in current standards (square-root of the sums of squares of the three components weighted according to their individual contributions to discomfort) provided reasonable predictions of the discomfort caused by multi-axis vibration. Improved predictions can be obtained for specific stimuli, but no single simple method will provide accurate predictions for all stimuli because the rate of growth of discomfort with increasing magnitude of vibration depends on the frequency and direction of vibration.
Water Landing Characteristics of a Reentry Capsule
NASA Technical Reports Server (NTRS)
1958-01-01
Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.
Water-Landing Characteristics of a Reentry Capsule
NASA Technical Reports Server (NTRS)
McGehee, John R.; Hathaway, Melvin E.; Vaughan, Victor L., Jr.
1959-01-01
Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.
Cross-axis adaptation of torsional components in the yaw-axis vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Trillenberg, P.; Shelhamer, M.; Roberts, D. C.; Zee, D. S.
2003-01-01
The three pairs of semicircular canals within the labyrinth are not perfectly aligned with the pulling directions of the six extraocular muscles. Therefore, for a given head movement, the vestibulo-ocular reflex (VOR) depends upon central neural mechanisms that couple the canals to the muscles with the appropriate functional gains in order to generate a response that rotates the eye the correct amount and around the correct axis. A consequence of these neural connections is a cross-axis adaptive capability, which can be stimulated experimentally when head rotation is around one axis and visual motion about another. From this visual-vestibular conflict the brain infers that the slow-phase eye movement is rotating around the wrong axis. We explored the capability of human cross-axis adaptation, using a short-term training paradigm, to determine if torsional eye movements could be elicited by yaw (horizontal) head rotation (where torsion is normally inappropriate). We applied yaw sinusoidal head rotation (+/-10 degrees, 0.33 Hz) and measured eye movement responses in the dark, and before and after adaptation. The adaptation paradigm lasted 45-60 min, and consisted of the identical head motion, coupled with a moving visual scene that required one of several types of eye movements: (1) torsion alone (-Roll); (2) horizontal/torsional, head right/CW torsion (Yaw-Roll); (3) horizontal/torsional, head right/CCW torsion (Yaw+Roll); (4) horizontal, vertical, torsional combined (Yaw+Pitch-Roll); and (5) horizontal and vertical together (Yaw+Pitch). The largest and most significant changes in torsional amplitude occurred in the Yaw-Roll and Yaw+Roll conditions. We conclude that short-term, cross-axis adaptation of torsion is possible but constrained by the complexity of the adaptation task: smaller torsional components are produced if more than one cross-coupling component is required. In contrast, vertical cross-axis components can be easily trained to occur with yaw head movements.
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Paloski, W. H. (Principal Investigator)
1996-01-01
The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in four male squirrel monkeys. Monkeys were rotated in the dark at 200 degrees/s, centrally or 79 cm off-axis, with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's position relative to the centripetal acceleration (facing center or back to center) had a dramatic influence on the VOR. These studies show that a torsional response was always elicited that acted to shift the axis of eye rotation toward alignment with gravito-inertial force. On the other hand, a slow phase downward vertical response usually existed, which shifted the axis of eye rotation away from the gravito-inertial force. These findings were consistent across all monkeys. In another set of tests, the same monkeys were rapidly tilted about their interaural (pitch) axis. Tilt orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the rotation, no consistent eye velocity response was ever observed during or following the tilt. The absence of any response following tilt proves that the observed torsional and vertical responses were not a positional nystagmus. Model simulations qualitatively predict all components of these eccentric rotation and tilt responses. These simulations support the conclusion that the VOR during eccentric rotation may consist of two components: a linear VOR and a rotational VOR. The model predicts a slow phase downward, vertical, linear VOR during eccentric rotation even though there was never a change in the force aligned with monkey's spinal (Z) axis. The model also predicts the torsional components of the response that shift the rotation axis of the angular VOR toward alignment with gravito-inertial force.
Merfeld, D M
1996-01-01
The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in four male squirrel monkeys. Monkeys were rotated in the dark at 200 degrees/s, centrally or 79 cm off-axis, with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's position relative to the centripetal acceleration (facing center or back to center) had a dramatic influence on the VOR. These studies show that a torsional response was always elicited that acted to shift the axis of eye rotation toward alignment with gravito-inertial force. On the other hand, a slow phase downward vertical response usually existed, which shifted the axis of eye rotation away from the gravito-inertial force. These findings were consistent across all monkeys. In another set of tests, the same monkeys were rapidly tilted about their interaural (pitch) axis. Tilt orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the rotation, no consistent eye velocity response was ever observed during or following the tilt. The absence of any response following tilt proves that the observed torsional and vertical responses were not a positional nystagmus. Model simulations qualitatively predict all components of these eccentric rotation and tilt responses. These simulations support the conclusion that the VOR during eccentric rotation may consist of two components: a linear VOR and a rotational VOR. The model predicts a slow phase downward, vertical, linear VOR during eccentric rotation even though there was never a change in the force aligned with monkey's spinal (Z) axis. The model also predicts the torsional components of the response that shift the rotation axis of the angular VOR toward alignment with gravito-inertial force.
NASA Astrophysics Data System (ADS)
Subašić, Senad; Prevolnik, Snježan; Herak, Davorka; Herak, Marijan
2017-05-01
Seismic anisotropy beneath the greater region of the Central and Southern External Dinarides is estimated from observations of SKS splitting. The area is located in the broad and complex Africa-Eurasia convergent plate boundary zone, where the Adriatic microplate interacts with the Dinarides. We analyzed recordings of 12 broadband seismic stations located in the Croatian coastal region. Evidence of seismic anisotropy was found beneath all stations. Fast axis directions are oriented approximately in the NE-SW to NNE-SSW direction, perpendicularly to the strike of the Dinarides. Average delay times range between 0.6 and 1.0 s. A counter-clockwise rotation in average fast axis directions was observed for the stations in the northern part with respect to the stations in the southern part of the studied area. Fast axis directions coincide with the assumed direction of asthenospheric flow through a slab-gap below the Northern and Central External Dinarides, with the maximum tectonic stress orientation in the crust, and with fast directions of Pg and Sg-waves in the crust. These observations suggest that the detected SKS birefringence is primarily caused by the preferred lattice orientation of mantle minerals generated by the asthenospheric flow directed SW-NE to SSW-NNE, with a possible contribution from the crust.
Kotwicki, Tomasz; Napiontek, Marek; Nowakowski, Andrzej
2006-01-01
CT transversal scans of the trunk provided at the level of Th8 or Th9 (apical vertebra) of 23 patients with structural thoracic scoliosis were reviewed. The following parameters were studied: 1) alpha angle formed by the axis of vertebra and the axis of spinous process, 2) beta concave and beta convex angle between the spinous process and the left and right transverse process respectively, 3) gamma concave and gamma convex angle between the axis of vertebra and the left and right transverse process respectively, 4) rotation angle to the sagittal plane according to Aaro and Dahlborn, 5) Cobb angle. Values of measured parameters demonstrated a common pattern of intravertebral deformity: counter clockwise deviation of the spinous process (alpha angle 15,0 +/-8,5 degrees), beta concave (69,8 +/-8,5 degrees) significantly greater than beta convex (38,8 +/-8,5 degrees), gamma concave (54,3 +/-7,8 degrees) not different from gamma convex (56,0 +/-8,0 degrees). Strong linear positive correlation between alpha angle and Aaro-Dahlborn angle was observed (r=0,78, p<0,05). Changes in morphology of apical vertebra due to intravertebral bone remodelling followed the vertebral spatial displacement and there existed a linear correlation in between. The two processes develop in opposite directions.
Electric power from vertical-axis wind turbines
NASA Astrophysics Data System (ADS)
Touryan, K. J.; Strickland, J. H.; Berg, D. E.
1987-12-01
Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.
1980-12-22
Vertical Axis Turbine (3.4.2) A vertical axis ( Darrieus ) turbine has the following advantages over a horizontal turbine : I. Accepts wind from all...would be too large, while wind and solar could only achieve capacity factors of 40 to 50 percent. Alcohol fue’s in gas turbines would be too expensive...or biomass base load system. Wind would not be a good choice to supply such a small toad cencer, especially in Nevada/Utah, since the turbine would
Wind tunnel investigation of a 14 foot vertical axis windmill
NASA Technical Reports Server (NTRS)
Muraca, R. J.; Guillotte, R. J.
1976-01-01
A full scale wind tunnel investigation was made to determine the performance characteristics of a 14 ft diameter vertical axis windmill. The parameters measured were wind velocity, shaft torque, shaft rotation rate, along with the drag and yawing moment. A velocity survey of the flow field downstream of the windmill was also made. The results of these tests along with some analytically predicted data are presented in the form of generalized data as a function of tip speed ratio.
Unsteady Gas Dynamics Problems Related to Flight Vehicles
1979-05-01
vertical-axis wind turbines typified by the Darrieus machine (see Cha’. !. Ref. R9 and R10). When cUL.figured in the zero-bending- moment Tropeq.-!n...Performance Data for the Darrieus Wind Turbine with NASA 0012 Blades," Sandia Labs Energy Report, SAND 76-0130, May 1976. R11. Steele, C.R., "Application of...aspect!ratio wings proved often to be unfavorable. Improved steady and unsteady theories were published for the loading of vertical-axis wind turbines
Design and fabrication of a low-cost Darrieus vertical-axis wind-turbine system, volume 2
NASA Astrophysics Data System (ADS)
1983-03-01
The fabrication, installation, and checkout of 100-kW 17 meter vertical axis wind turbines is described. Turbines are Darrieus-type VAWIs with rotors 17 meters and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18-mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable. Contract results are documented.
Estimation of power in low velocity vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Sampath, S. S.; Shetty, Sawan; Chithirai Pon Selvan, M.
2015-06-01
The present work involves in the construction of a vertical axis wind turbine and the determination of power. Various different types of turbine blades are considered and the optimum blade is selected. Mechanical components of the entire setup are built to obtain maximum rotation per minute. The mechanical energy is converted into the electrical energy by coupling coaxially between the shaft and the generator. This setup produces sufficient power for consumption of household purposes which is economic and easily available.
Model surgery with a passive robot arm for orthognathic surgery planning.
Theodossy, Tamer; Bamber, Mohammad Anwar
2003-11-01
The aims of the study were to assess the degree of accuracy of model surgery performed manually using the Eastman technique and to compare it with model surgery performed with the aid of a robot arm. Twenty-one patients undergoing orthognathic surgery gave consent for this study. They were divided into 2 groups based on the model surgery technique used. Group A (52%) had model surgery performed manually, whereas group B (48%) had their model surgery performed using the robot arm. Patients' maxillary casts were measured before and after model surgery, and results were compared with those for the original treatment plan in horizontal (x-axis), vertical (y-axis), and transverse (z-axis) planes. Statistical analysis using Mann-Whitney U test for x- and y-axis and independent sample t test for z-axis have shown significant differences between both groups in x-axis (P =.024) and y-axis (P =.01) but not in z-axis (P =.776). Model surgery performed with the aid of a robot arm is significantly more accurate in anteroposterior and vertical planes than is manual model surgery. Robot arm has an important role to play in orthognathic surgery planning and in determining the biometrics of orthognathic surgical change at the model surgery stage.
Passive magnetic bearing configurations
Post, Richard F [Walnut Creek, CA
2011-01-25
A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.
DOT National Transportation Integrated Search
2002-07-01
INTRODUCTION. Many Air Traffic Control Specialists (ATCSs) work a relatively unique counter-clockwise, rapidly rotating shift schedule. Although arguments against these kinds of schedules are prevalent in the literature, few studies have examined rot...
Design analysis of vertical wind turbine with airfoil variation
NASA Astrophysics Data System (ADS)
Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad
2016-03-01
With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.
Modeling human vestibular responses during eccentric rotation and off vertical axis rotation
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Paloski, W. H. (Principal Investigator)
1995-01-01
A mathematical model has been developed to help explain human multi-sensory interactions. The most important constituent of the model is the hypothesis that the nervous system incorporates knowledge of sensory dynamics into an "internal model" of these dynamics. This internal model allows the nervous system to integrate the sensory information from many different sensors into a coherent estimate of self-motion. The essence of the model is unchanged from a previously published model of monkey eye movement responses; only a few variables have been adjusted to yield the prediction of human responses. During eccentric rotation, the model predicts that the axis of eye rotation shifts slightly toward alignment with gravito-inertial force. The model also predicts that the time course of the perception of tilt following the acceleration phase of eccentric rotation is much slower than that during deceleration. During off vertical axis rotation (OVAR) the model predicts a small horizontal bias along with small horizontal, vertical, and torsional oscillations. Following OVAR stimulation, when stopped right- or left-side down, a small vertical component is predicted that decays with the horizontal post-rotatory response. All of the predictions are consistent with measurements of human responses.
Movement compatibility for frontal controls with displays located in four cardinal orientations.
Chan, Alan H S; Hoffmann, Errol R
2010-12-01
Strength and reversibility of direction-of-motion stereotypes and response times are presented for different configurations of horizontal, vertical and rotary controls with horizontal, vertical and circular displays. Measures of the strength and reversibility of stereotypes were used to analyse the effects of direction of turn instruction (clockwise/anticlockwise; up/down; left/right), display orientation (North; East; South; West) and hand side (left/right) on movement compatibility. A number of acceptable display/control arrangements were identified for displays in each of the North, East, South and West orientations relative to the operator. For the horizontally moving control, the Worringham and Beringer principle was found to identify display/control arrangements having both high stereotype strength and high reversibility. Vertically moving controls are excellent with vertical displays but poor with horizontal and circular displays. Rotary controls have high stereotype strength and reversibility with both horizontal and circular displays (with the indicator at the 12 o'clock position). STATEMENT OF RELEVANCE: Design of display/control arrangements requires a strong relationship between operator's expectancies and the response of a device to control inputs. The present research fills in gaps for stereotypes where data are not available, in particular where the operator is not seated facing a display directly to the front.
Curiosity ChemCam Analyzes Rocks, Soils and Dust
2013-04-08
This diagram shows how materials analyzed by the ChemCam instrument on NASA Curiosity Mars rover during the first 100 Martian days of the mission differed with regard to hydrogen content horizontal axis and alkali vertical axis.
Effect of the number of blades and solidity on the performance of a vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Delafin, PL; Nishino, T.; Wang, L.; Kolios, A.
2016-09-01
Two, three and four bladed ϕ-shape Vertical Axis Wind Turbines are simulated using a free-wake vortex model. Two versions of the three and four bladed turbines are considered, one having the same chord length as the two-bladed turbine and the other having the same solidity as the two-bladed turbine. Results of the two-bladed turbine are validated against published experimental data of power coefficient and instantaneous torque. The effect of solidity on the power coefficient is presented and the instantaneous torque, thrust and lateral force of the two-, three- and four-bladed turbines are compared for the same solidity. It is found that increasing the number of blades from two to three significantly reduces the torque, thrust and lateral force ripples. Adding a fourth blade further reduces the ripples except for the torque at low tip speed ratio. This work aims to help choosing the number of blades during the design phase of a vertical axis wind turbine.
Fabric and texture at Siple Dome, Antarctica
Diprinzio, C.L.; Wilen, Lawrence A.; Alley, R.B.; Fitzpatrick, J.J.; Spencer, M.K.; Gow, A.J.
2005-01-01
Preferred c-axis orientations are present in the firn at Siple Dome, West Antarctica, and recrystallization begins as shallow as 200 m depth in ice below -20??C, based on digital analysis of c-axis fabrics, grain-sizes and other characteristics of 52 vertical thin sections prepared in the field from the kilometer-long Siple Dome ice core. The shallowest section analyzed, from 22 m, shows clustering of c axes toward the vertical. By 200 m depth, girdle fabric and other features of recrystallized ice are evident in layers (or regions), separated by layers (regions) of typically finer-grained ice lacking evidence of recrystallization. Ice from about 700-780 m depth, which was deposited during the last ice age, is especially fine-grained, with strongly vertical c axes, but deeper ice shows much larger crystals and strong evidence of recrystallization. Azimuthal asymmetry of some c-axis fabrics, trends in grain-size, and other indicators reveal additional information on processes and history of ice flow at Siple Dome.
Optimization of blade motion of vertical axis turbine
NASA Astrophysics Data System (ADS)
Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng
2016-04-01
In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.
NASA Astrophysics Data System (ADS)
Pueyo, Emilio L.; Oliván, Carlota; Soto, Ruth; Rodríguez-Pintó, Adriana; Santolaria, Pablo; Luzón, Aránzazu; Casas, Antonio M.; Ayala, Conxi
2017-04-01
Vertical axis rotations are common in all deformation settings. At larger scales, for example in fold and thrust belts, they are usually related to differential shortening along strike and this may be caused by a number of reasons (interplay of plate boundaries, sedimentary wedges, detachment level distribution, etc.). At smaller scales, local stress fields, interference of non-coaxial deformation phases, development of non-cylindrical structures, etc. may play an important role to accommodate significant magnitudes of rotation. Apart from their implication in the truly 4D understanding of geological structures, the occurrence of vertical axis rotation usually precludes the application of most 3D restoration techniques and thus, increases the uncertainty in any 3D reconstruction. Salt structures may form in different geological settings, but focusing on compressive regimes, very little is known about the relation between their geometry and kinematics and their ability to accommodate vertical axis rotations (i.e. local or regional lateral gradients of shortening). The Barbastro-Balaguer anticline (BBA) is the southernmost structure of the Central Pyrenees. It is a large detachment fold spreading more than 150 km along the front. In contrast to most frontal Pyrenean structures, the BBA is detached in Priabonian evaporites and was folded during Oligocene times as witnessed by well exposed growth strata. Along strike changes in the fold axis trend may reach 50°, an overall the anticline displays a convex shape towards the foreland (south). A residual Bouguer anomaly map based on a densely sampled gravimetric surveying (10.000 stations) has helped delineating a heterogeneous distribution of the Eocene detachment level in the subsurface. In this contribution we explore the interplay between vertical axis rotations, detachment level distribution and the fold geometry (structural trend and style based on hundreds of data). Seventy paleomagnetic sites evenly and densely distributed along the structure have been analyzed for this purpose. About 600 standard specimens have been thermally demagnetized in the Paleomagnetic Laboratory of the Burgos University (ASC TD48DC thermal demagnetizer and 2G superconducting magnetometer). Data processing has been carried out with the VPD program, applying standard PCA and virtual direction analyses. The ChRM directions passes the fold test and display two polarities, pointing to the primary character of the magnetization (key factor for the 3D restoration). This large dataset allows us to draw a robust network of rotation magnitudes along strike the western sector of the BBA that are key to understand its kinematics together to the aforementioned factors. We also pretend to use this network of vertical axis rotations to restore in 3D this salt structure.
Temporal dynamics of ocular position dependence of the initial human vestibulo-ocular reflex.
Crane, Benjamin T; Tian, Junru; Demer, Joseph L
2006-04-01
While an ideal vestibulo-ocular reflex (VOR) generates ocular rotations compensatory for head motion, during visually guided movements, Listing's Law (LL) constrains the eye to rotational axes lying in Listing's Plane (LP). The present study was conducted to explore the recent proposal that the VOR's rotational axis is not collinear with the head's, but rather follows a time-dependent strategy intermediate between LL and an ideal VOR. Binocular LPs were defined during visual fixation in eight normal humans. The VOR was evoked by a highly repeatable transient whole-body yaw rotation in darkness at a peak acceleration of 2800 deg/s2. Immediately before rotation, subjects regarded targets 15 or 500 cm distant located at eye level, 20 degrees up, or 20 degrees down. Eye and head responses were compared with LL predictions in the position and velocity domains. LP orientation varied both among subjects and between individual subject's eyes, and rotated temporally with convergence by 5 +/- 5 degrees (+/-SEM). In the position domain, the eye compensated for head displacement even when the head rotated out of LP. Even within the first 20 ms from onset of head rotation, the ocular velocity axis tilted relative to the head axis by 30% +/- 8% of vertical gaze position. Saccades increased this tilt. Regardless of vertical gaze position, the ocular rotation axis tilted backward 4 degrees farther in abduction than in adduction. There was also a binocular vertical eye velocity transient and lateral tilt of the ocular axis. These disconjugate, short-latency axis perturbations appear intrinsic to the VOR and may have neural or mechanical origins.
Contour symmetry detection: the influence of axis orientation and number of objects.
Friedenberg, J; Bertamini, M
2000-09-01
Participants discriminated symmetrical from random contours connected by straight lines to form part of one- or two-objects. In experiment one, symmetrical contours were translated or reflected and presented at vertical, horizontal, and oblique axis orientations with orientation constant within blocks. Translated two-object contours were detected more easily than one, replicating a "lock-and-key" effect obtained previously for vertical orientations only [M. Bertamini, J.D. Friedenberg, M. Kubovy, Acta Psychologica, 95 (1997) 119-140]. A second experiment extended these results to a wider variety of axis orientations under mixed block conditions. The pattern of performance for translation and reflection at different orientations corresponded in both experiments, suggesting that orientation is processed similarly in the detection of these symmetries.
Rotary moving bed for CO.sub.2 separation and use of same
Elliott, Jeannine Elizabeth; Copeland, Robert James; McCall, Patrick P.
2017-01-10
A rotary moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The rotary moving bed can have a rotational assembly rotating on a vertical axis, and a plurality of sorbent cells positioned horizontally to the axis of rotation that fills a vertical space in the moving bed, where the sorbent cells adsorb the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement with steam. The gas flows in the system flow in a direction horizontal to the axis of rotation and in a direction opposite the rotational movement of the sorbent cells.
Review of gravitomagnetic acceleration from accretion disks
NASA Astrophysics Data System (ADS)
Poirier, J.; Mathews, G. J.
2015-11-01
We review the development of the equations of gravitoelectromagnetism and summarize how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism to produce collimated jets, it is a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.
Vortex-induced vibrations of a flexible cylinder at large inclination angle
Bourguet, Rémi; Triantafyllou, Michael S.
2015-01-01
The free vibrations of a flexible circular cylinder inclined at 80° within a uniform current are investigated by means of direct numerical simulation, at Reynolds number 500 based on the body diameter and inflow velocity. In spite of the large inclination angle, the cylinder exhibits regular in-line and cross-flow vibrations excited by the flow through the lock-in mechanism, i.e. synchronization of body motion and vortex formation. A profound reconfiguration of the wake is observed compared with the stationary body case. The vortex-induced vibrations are found to occur under parallel, but also oblique vortex shedding where the spanwise wavenumbers of the wake and structural response coincide. The shedding angle and frequency increase with the spanwise wavenumber. The cylinder vibrations and fluid forces present a persistent spanwise asymmetry which relates to the asymmetry of the local current relative to the body axis, owing to its in-line bending. In particular, the asymmetrical trend of flow–body energy transfer results in a monotonic orientation of the structural waves. Clockwise and counter-clockwise figure eight orbits of the body alternate along the span, but the latter are found to be more favourable to structure excitation. Additional simulations at normal incidence highlight a dramatic deviation from the independence principle, which states that the system behaviour is essentially driven by the normal component of the inflow velocity. PMID:25512586
Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting
NASA Astrophysics Data System (ADS)
Green, Robert G.; White, Robert S.; Greenfield, Tim
2014-01-01
Along mid-ocean ridges the extending crust is segmented on length scales of 10-1,000km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments.
Threat perception in the chameleon (Chamaeleo chameleon): evidence for lateralized eye use.
Lustig, Avichai; Keter-Katz, Hadas; Katzir, Gadi
2012-07-01
Chameleons are arboreal lizards with highly independent, large amplitude eye movements. In response to an approaching threat, a chameleon on a vertical pole moves so as to keep itself away from the threat. In so doing, it shifts between monocular and binocular scanning of the threat and of the environment. We analyzed eye movements in the Common chameleon, Chamaeleo chameleon, during avoidance response for lateralization, that is, asymmetry at the functional/behavioral levels. The chameleons were exposed to a threat, approaching horizontally from clockwise or anti-clockwise directions, and that could be viewed monocularly or binocularly. Our results show three broad patterns of eye use, as determined by durations spent viewing the threat and by frequency of eye shifts. Under binocular viewing, two of the patterns were found to be both side dependent, that is, lateralized and role dependent ("leading" or "following"). However, under monocular viewing, no such lateralization was detected. We discuss these findings in light of the situation not uncommon in vertebrates, of independent eye movements and a high degree of optic nerve decussation and that lateralization may well occur in organisms that are regularly exposed to critical stimuli from all spatial directions. We point to the need of further investigating lateralization at fine behavioral levels.
NASA Astrophysics Data System (ADS)
Bennett, Scott E. K.; Oskin, Michael E.; Iriondo, Alexander
2017-11-01
Details about the timing and kinematics of rifting are crucial to understand the conditions that led to strain localization, continental rupture, and formation of the Gulf of California ocean basin. We integrate detailed geologic and structural mapping, basin analysis, and geochronology to characterize transtensional rifting on northeastern Isla Tiburón, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. Slip on the Kunkaak normal fault tilted its hanging wall down-to-the-east 70° and formed the non-marine Tecomate basin, deposited across a 20° angular unconformity. From 7.1-6.4 Ma, the hanging wall tilted at 35 ± 5°/Myr, while non-marine sandstone and conglomerate accumulated at 1.4 ± 0.2 mm/yr. At least 1.8 ± 0.1 km of sediments and pyroclastic deposits accumulated in the Tecomate basin concurrent with clockwise vertical-axis block rotation and 2.8 km of total dip-slip motion on the Kunkaak fault. Linear extrapolation of tilting and sedimentation rates suggests that faulting and basin deposition initiated 7.6-7.4 Ma, but an older history involving initially slower rates is permissible. The Kunkaak fault and Tecomate basin are truncated by NW-striking, dextral-oblique structures, including the Yawassag fault, which accrued > 8 km of post-6.4 Ma dextral displacement. The Coastal Sonora fault zone on mainland Sonora, which accrued several tens of kilometers of late Miocene dextral offset, continues to the northwest, across northeastern Isla Tiburón and offshore into the Gulf of California. The establishment of rapid, latest Miocene transtension in the Coastal Sonora fault zone was synchronous with the 8-7 Ma onset of transform faulting and basin formation along the nascent Pacific-North America plate boundary throughout northwestern Mexico and southern California. Plate boundary strain localized into this Gulf of California shear zone, a narrow transtensional belt that subsequently hosted the marine incursion and continental rupture in the Gulf of California.
Proceedings of the vertical axis wind turbine (VAWT) design technology seminar for industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.F. Jr.
1980-08-01
The objective of the Vertical Axis Wind Turbine (VAWT) Program at Sandia National Laboratories is to develop technology that results in economical, industry-produced, and commercially marketable wind energy systems. The purpose of the VAWT Design Technology Seminar or Industry was to provide for the exchange of the current state-of-the-art and predictions for future VAWT technology. Emphasis was placed on technology transfer on Sandia's technical developments and on defining the available analytic and design tools. Separate abstracts are included for presented papers.
Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity
NASA Astrophysics Data System (ADS)
Nitzsche, Fred
1994-05-01
The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.
Experimental characterization of vertical-axis wind turbine noise.
Pearson, C E; Graham, W R
2015-01-01
Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization.
Kinematics of a vertical axis wind turbine with a variable pitch angle
NASA Astrophysics Data System (ADS)
Jakubowski, Mateusz; Starosta, Roman; Fritzkowski, Pawel
2018-01-01
A computational model for the kinematics of a vertical axis wind turbine (VAWT) is presented. A H-type rotor turbine with a controlled pitch angle is considered. The aim of this solution is to improve the VAWT productivity. The discussed method is related to a narrow computational branch based on the Blade Element Momentum theory (BEM theory). The paper can be regarded as a theoretical basis and an introduction to further studies with the application of BEM. The obtained torque values show the main advantage of using the variable pitch angle.
NASA Technical Reports Server (NTRS)
Madura, T. I.; Gull, T. R.; Owocki, S. P.; Groh, J. H.; Okazaki, A. T.; Russell, C. M. P.
2011-01-01
We present a three-dimensional (3-D) dynamical model for the broad [Fe III] emission observed in Eta Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). This model is based on full 3-D Smoothed Particle Hydrodynamics (SPH) simulations of Eta Car's binary colliding winds. Radiative transfer codes are used to generate synthetic spectro-images of [Fe III] emission line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA(theta) that the orbital plane projection of the line-of-sight makes with the apastron side of the semi-major axis, and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3-D orientation of the binary orbit. To simultaneously reproduce the blue-shifted emission arcs observed at orbital phase 0.976, STIS slit PA = +38deg, and the temporal variations in emission seen at negative slit PAs, the binary needs to have an i approx. = 130deg to 145deg, Theta approx. = -15deg to +30deg, and an orbital axis projected on the sky at a P A approx. = 302deg to 327deg east of north. This represents a system with an orbital axis that is closely aligned with the inferred polar axis of the Homunculus nebula, in 3-D. The companion star, Eta(sub B), thus orbits clockwise on the sky and is on the observer's side of the system at apastron. This orientation has important implications for theories for the formation of the Homunculus and helps lay the groundwork for orbital modeling to determine the stellar masses.
Thin-plate spline graphical analysis of the mandible in mandibular prognathism.
Chang, Hsin-Fu; Chang, Hong-Po; Liu, Pao-Hsin; Chang, Chih-Han
2002-11-01
The chin cup has been used to treat skeletal mandibular prognathism in growing patients for 200 years. The pull on the orthopedic-force chin cup is oriented along a line from the mandibular symphysis to the mandibular condyle. Various levels of success have been reported with this restraining device. The vertical chin cup produces strong vertical compression stress on the maxillary molar regions when the direction of traction is 20 degrees more vertical than the chin-condyle line. This treatment strategy may prevent relapse due to counter-clockwise rotation of the mandible. In this report, we describe a new strategy for using chin-cup therapy involving thin-plate spline (TPS) analysis of lateral cephalometric roentgenograms to visualize transformation of the mandible. The actual sites of mandibular skeletal change are not detectable with conventional cephalometric analysis. A case of mandibular prognathism treated with a chin cup and a case of dental Class III malocclusion without orthodontic treatment are described. The case analysis illustrates that specific patterns of mandibular transformation are associated with Class III malocclusion with or without orthopedic therapy, and that visualization of these deformations is feasible using TPS graphical analysis.
Aktürk, Faruk; Bıyık, İsmail; Kocaş, Cüneyt; Ertürk, Mehmet; Yalçın, Ahmet Arif; Savaş, Ayfer Utku; Kuzer, Firuzan Pınar; Uzun, Fatih; Yıldırım, Aydın; Uslu, Nevzat; Çuhadaroğlu, Çağlar
2013-01-01
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of chronic morbidity and mortality. Bronchial obstruction and increased pulmonary vascular resistance impairs right atrial functions. In this study, we aimed to investigate the effect of bronchial obstruction on p wave axis in patients with COPD and usefulness of electrocardiography (ECG) in the evaluation of the severity of COPD. Ninety five patients (64 male and 31 female) included to the study. Patients were in sinus rhythm, with normal ejection fraction and heart chamber sizes. Their respiratory function tests and 12 lead electrocardiograms were obtained at same day. Correlations with severity of COPD and ECG findings including p wave axis, p wave duration, QRS axis, QRS duration were studied. The mean age was 58 ± 12 years. Their mean p wave axis was 62 ± 18 degrees. In this study, p wave axis has demonstrated significant positive correlations with stages of COPD and QRS axis but significant negative correlations with FEV1, FEF, BMI and QRS duration. P wave axis increases with increasing stages of COPD. Verticalization of the frontal p wave axis may be an early finding of worsening of COPD before occurrences of other ECG changes of hypertrophy and enlargement of right heart chambers such as p pulmonale. Verticalization of the frontal p wave axis reflecting right atrial electrical activity and right heart strain may be a useful parameter for quick estimation of the severity of COPD in an out-patient cared.
NASA Technical Reports Server (NTRS)
Cohen, B.; Cohen, N.; Helwig, D.; Solomon, D.; Kozlovskaya, I.; Sirota, M.; Yakushin, S.; Raphan, T.
1994-01-01
This technical paper discusses the following: (1) The VOR of two rhesus monkeys was studied before and after 14 days of spaceflight to determine effects of microgravity on the VOR. Horizontal, vertical and roll eye movements were recorded in these and six other monkeys implanted with scleral search coils. Animals were rotated about a vertical axis to determine the gain of the horizontal, vertical and roll VOR. They were rotated about axes tilted from the vertical (off-vertical axis rotation, OVAR) to determine steady state gains and effects of gravity on modulations in eye position and eye velocity. They were also tested for tilt dumping of post-rotatory nystagmus. (2) The gain of the horizontal VOR was close to unity when animals were tested 15 and 18 hours after flight. VOR gain values were similar to those registered before flight. If the gain of the horizontal VOR changes in microgravity, it must revert to normal soon after landing. (3) Steady state velocities of nystagmus induced by off-vertical axis rotation (OVAR) were unchanged by adaptation to microgravity, and the phase of the modulations was similar before and after flight. However, modulations in horizontal eye velocity had more variation after landing and were on mean about 50% larger for angles of tilt of the axis of rotation between 50 and 90?/s after flight. This difference was similar in both animals and was significant. (4) A striking finding was that tilt dumping was lost in the one animal tested for this function. This loss persisted for several days after return. This is reminiscent of the loss of response to pitch while rotating in the M-131 experiments of Skylab, and must be studied in detail in future spaceflights. (5) Thus, two major findings emerged from these studies: after spaceflight the modulation of horizontal eye velocity was larger during OVAR, and one animal lost its ability to tilt-dump its nystagmus. Both findings are consistent with the postulate that adaptation to microgravity causes alterations in the way that otolith information is processed in the central nervous system. The experiments lay the groundwork for studying the vertical and roll VOR before and after future space flights, as well as for studying modulations in vertical and roll eye position during OVAR and tilt dumping.
Time for a Change; Spirit's View on Sol 1843 (Vertical)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this full-circle view of the rover's surroundings during the 1,843rd Martian day, or sol, of Spirit's surface mission (March 10, 2009). South is in the middle. North is at both ends. This view is presented as a vertical projection with geometric seam correction. North is at the top. The rover had driven 36 centimeters downhill earlier on Sol 1854, but had not been able to get free of ruts in soft material that had become an obstacle to getting around the northeastern corner of the low plateau called 'Home Plate.' The Sol 1854 drive, following two others in the preceding four sols that also achieved little progress in the soft ground, prompted the rover team to switch to a plan of getting around Home Plate counterclockwise, instead of clockwise. The drive direction in subsequent sols was westward past the northern edge of Home Plate.4. Credit JPL. Original 4" x 5" black and white ...
4. Credit JPL. Original 4" x 5" black and white negative housed in the JPL Archives, Pasadena, California. This interior view displays the machine shop in the Administration/Shops Building (the compass angle of the view is undetermined). Looking clockwise from the lower left, the machine tools in view are a power hacksaw, a heat-treatment oven (with white gloves on top), a large hydraulic press with a tool grinder at its immediate right; along the wall in the back of the view are various unidentified machine tool attachments and a vertical milling machine. In the background, a machinist is operating a radial drilling machine, to the right of which is a small drill press. To the lower right, another machinist is operating a Pratt & Whitney engine lathe; behind the operator stand a workbench and vertical bandsaw (JPL negative no. 384-10939, 29 July 1975). - Jet Propulsion Laboratory Edwards Facility, Administration & Shops Building, Edwards Air Force Base, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Miyagawa, Chihiro; Kobayashi, Takumi; Taishi, Toshinori; Hoshikawa, Keigo
2014-09-01
Based on the growth of 3-inch diameter c-axis sapphire using the vertical Bridgman (VB) technique, numerical simulations were made and used to guide the growth of a 6-inch diameter sapphire. A 2D model of the VB hot-zone was constructed, the seeding interface shape of the 3-inch diameter sapphire as revealed by green laser scattering was estimated numerically, and the temperature distributions of two VB hot-zone models designed for 6-inch diameter sapphire growth were numerically simulated to achieve the optimal growth of large crystals. The hot-zone model with one heater was selected and prepared, and 6-inch diameter c-axis sapphire boules were actually grown, as predicted by the numerical results.
Efficiency of the DOMUS 750 vertical-axis wind turbine
NASA Astrophysics Data System (ADS)
Hallock, Kyle; Rasch, Tyler; Ju, Guoqiang; Alonso-Marroquin, Fernando
2017-06-01
The aim of this paper is to present some preliminary results on the efficiency of a wind turbine for an off-grid housing unit. To generate power, the unit uses a photovoltaic solar array and a vertical-axis wind turbine (VAWT). The existing VAWT was analysed to improve efficiency and increase power generation. There were found to be two main sources of inefficiency: 1. the 750W DC epicyclic generator performed poorly in low winds, and 2. the turbine blades wobbled, allowing for energy loss due to off-axis rotation. A 12V DC permanent magnet alternator was chosen that met the power requirements of the housing unit and would generate power at lower wind speeds. A support bracket was designed to prevent the turbine blades from wobbling.
NASA Astrophysics Data System (ADS)
Weiler, Peter D.; Coe, Robert S.
1997-06-01
A paleomagnetic study of three thrust sheets of the fold and thrust belt north of the Ramu-Markham Fault Zone (RMFZ) indicates very rapid vertical-axis rotations, with differential declination anomalies related to tectonic transport of thrust units. Data from this investigation indicate depositional ages straddling the Brunhes-Matuyama reversal (780 ka) for the Leron Formation in Erap Valley. Net counterclockwise, vertical-axis rotations as great as 90° since 1 Ma have occurred locally in the Erap Valley area. These rotations appear to be kinematically related to shear across a tear fault within the foreland fold and thrust belt of the colliding Finisterre Arc, which in turn is aligned with and may be structurally controlled by a major fault in the lower plate. These data indicate that vertical-axis rotations occurred during thrusting; consequently, the actual rotation rate is likely several times higher than the calculated minimum rate. Such very rapid rotations during thrust sheet emplacement may be more common in fold and thrust belts than is presently recognized. Anisotropy of magnetic susceptibility data yields foliated fabrics with subordinate, well-grouped lineations that differ markedly in azimuth in the three thrust sheets. The susceptibility lineations are rendered parallel by the same bedding-perpendicular rotations used to restore the paleomagnetic remanence to N-S thus independently confirming the rapid rotations. The restored lineations are perpendicular to the direction of tectonic transport, and the minimum susceptibility axes are streaked perpendicular to the lineation. We interpret these anisotropy of magnetic susceptibility data as primary sedimentary fabrics modified by weak strain accompanying foreland thrusting.
Are we simplifying balance evaluation in adolescent idiopathic scoliosis?
Pasha, Saba; Baldwin, Keith
2018-01-01
Clinical evaluation of the postural balance in adolescent idiopathic scoliosis has been measured by sagittal vertical axis and frontal balance. The impact of the scoliotic deformity in three planes on balance has not been fully investigated. 47 right thoracic and left lumbar curves adolescent idiopathic scoliosis and 10 non-scoliotic controls were registered prospectively. 13 spinopelvic postural parameters were calculated from the 3-dimantional reconstructions of X-rays. 7 balance variables describing the position and sway of the center of pressure were recorded using a pressure mat. A regression analysis was used to predict sagittal vertical axis and frontal balance from the 7 balance variables. A canonical correlation analysis was performed between all the postural parameters and balance variables and the significant associations between the postural and balance variables were determined. sagittal vertical axis and frontal balance were not significantly associated with the position or sway of the center of pressure (p>0.05). Canonical correlation analysis showed significant associations between the postural variables in the 3 planes and center of pressure position (R 2 =0.81) and sway (R 2 =0.62), p<0.05. Frontal Cobbs, apical rotations, distal kyphosis, pelvic incidence, sacral slope, sagittal vertical axis, and frontal balance contributed to the postural balance in the cohort. The compensatory role of the pelvis and distal kyphosis in sagittal plane was underlined. Multidimensional analyses between the postural and balance variables showed the alignment of the thoracic, lumbar, and pelvis in the 3 planes, in addition to the global head-pelvic position impact on adolescent idiopathic scoliosis balance. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Trunek, Andrew J.; Powell, J. Anthony; Picard, Yoosuf N.; Twigg, Mark E.
2009-01-01
Previous studies of (0001) homoepitaxial growth carried out on arrays of small-area mesas etched into on-axis silicon-face 4H-SiC wafers have demonstrated that spiral growth emanating from at least one screw dislocation threading the mesa is necessary in order for a mesa to grow taller in the <0001> (c-axis vertical) direction while maintaining 4H stacking sequence [1]. However, even amongst mesas containing the screw dislocation step source necessary for vertical c-axis growth, we have observed striking differences in the height and faceting that evolve during prolonged homoepitaxial growths. This paper summarizes Atomic Force Microscopy (AFM), Electron Channeling Contrast Imaging (ECCI), Scanning Electron Microscopy (SEM), and optical microscopy observations of this phenomenon. These observations support our initially proposed model [2] that the observed large variation (for mesas where 3C-SiC nucleation has not occurred) is related to the lateral positioning of a screw dislocation step source within each etched mesa. When the screw dislocation step source is located close enough to the developing edge/sidewall facet of a mesa, the c-axis growth rate and facet angle are affected by the resulting interaction. In particular, the intersection (or near intersection) of the inward-sloping mesa sidewall facet with the screw dislocation appears to impede the rate at which the spiral provides new steps required for c-axis growth. Also, the inward slope of the sidewall facet during growth (relative to other sidewalls of the same mesa not near the screw dislocation) seems to be impeded by the screw dislocation. In contrast, mesas whose screw dislocations are centrally located grow vertically, but inward sloping sidewall facets shrink the area of the top (0001) growth surface almost to the point of vanishing.
Temporal Dynamics of Ocular Position Dependence of the Initial Human Vestibulo-ocular Reflex
Crane, Benjamin T.; Tian, Junru; Demer, Joseph L.
2007-01-01
Purpose While an ideal vestibulo-ocular reflex (VOR) generates ocular rotations compensatory for head motion, during visually guided movements, Listing’s Law (LL) constrains the eye to rotational axes lying in Listing’s Plane (LP). The present study was conducted to explore the recent proposal that the VOR’s rotational axis is not collinear with the head’s, but rather follows a time-dependent strategy intermediate between LL and an ideal VOR. Methods Binocular LPs were defined during visual fixation in eight normal humans. The VOR was evoked by a highly repeatable transient whole-body yaw rotation in darkness at a peak acceleration of 2800 deg/s2. Immediately before rotation, subjects regarded targets 15 or 500 cm distant located at eye level, 20° up, or 20° down. Eye and head responses were compared with LL predictions in the position and velocity domains. Results LP orientation varied both among subjects and between individual subject’s eyes, and rotated temporally with convergence by 5 ± 5° (±SEM). In the position domain, the eye compensated for head displacement even when the head rotated out of LP. Even within the first 20 ms from onset of head rotation, the ocular velocity axis tilted relative to the head axis by 30% ± 8% of vertical gaze position. Saccades increased this tilt. Regardless of vertical gaze position, the ocular rotation axis tilted backward 4° farther in abduction than in adduction. There was also a binocular vertical eye velocity transient and lateral tilt of the ocular axis. Conclusions These disconjugate, short-latency axis perturbations appear intrinsic to the VOR and may have neural or mechanical origins. PMID:16565376
NASA Astrophysics Data System (ADS)
Baugh, B.; Housen, B. A.; Burmester, R. F.
2010-12-01
The Helena salient is a curved orogen in southwest Montana, characterized by thin-skinned folding and thrusting. Ages dated from volcanic sills imply that deformation in the region began 77 million years ago during the late Cretaceous (Harlan et al, 1998). This study investigates the nature of curvature associated with this orogen using paleomagnetic techniques. Carbonate rocks of the Mississippian Madison Group were sampled from 24 sites across three folds: the Devil’s Fence anticline, the Three Forks anticline and the Turner anticline (near Townsend, MT). Results from 16 sites have well defined, but very weak, magnetizations. At 100% untilting, two components of magnetization are revealed: a Mississippian primary magnetization (M-group) from at least two sites, and a Late Cretaceous chemical remanent magnetization (CRM) for 13 sites (K-group). Fold tests for the K-group indicate that each fold acquired a magnetization at 90-100% untilting. A mean direction, in geographic coordinates and D = 35°, I = 72.9°, α95 = 8.8° is obtained for Devil’s Fence anticline, D = 37.7°, I = 70.1°, α95 = 23.9° for Three forks anticline and D = 224.6°, I = 69.1°, α95 = 29.1° for Turner anticline. Using a calculated late Cretaceous NA reference pole (D = 335.8, I = 70.1 and ΔDx = 6.3°;), the K-group indicates large (~60° CW) vertical axis rotations from Devil’s Fence and Three Forks anticlines, as well as 111° counter-clockwise rotation from Turner anticline, since the Late Cretaceous. Hysteresis data fall on the SP-PSD mixing lines, consistent with rock magnetic data from other studies sampling remagnetized carbonate units (e.g. Suk et al., 1993; Xu et al., 1998). When K-group directions are un-rotated on an equal-area plot to a Late Cretaceous NA reference pole, the M-group restores nearly to a Mississippian NA reference pole (D = 310, I = 8.2 and ΔDx = 4.7°) and indicates a clockwise rotation of the pre-deformational sedimentary basin of 22 ± 18° to 59 ± 14°. Pink units show Mission Canyon limestone exposures. Yellow units show Lodgepole limestone exposures. Rectangles are locations of the three anticlines sampled in this study. In red are approximate thrust trace locations, which disappear beneath quaternary alluvial deposits. The western most trace is the Lombard thrust fault.
Motion coherence and direction discrimination in healthy aging.
Pilz, Karin S; Miller, Louisa; Agnew, Hannah C
2017-01-01
Perceptual functions change with age, particularly motion perception. With regard to healthy aging, previous studies mostly measured motion coherence thresholds for coarse motion direction discrimination along cardinal axes of motion. Here, we investigated age-related changes in the ability to discriminate between small angular differences in motion directions, which allows for a more specific assessment of age-related decline and its underlying mechanisms. We first assessed older (>60 years) and younger (<30 years) participants' ability to discriminate coarse horizontal (left/right) and vertical (up/down) motion at 100% coherence and a stimulus duration of 400 ms. In a second step, we determined participants' motion coherence thresholds for vertical and horizontal coarse motion direction discrimination. In a third step, we used the individually determined motion coherence thresholds and tested fine motion direction discrimination for motion clockwise away from horizontal and vertical motion. Older adults performed as well as younger adults for discriminating motion away from vertical. Surprisingly, performance for discriminating motion away from horizontal was strongly decreased. Further analyses, however, showed a relationship between motion coherence thresholds for horizontal coarse motion direction discrimination and fine motion direction discrimination performance in older adults. In a control experiment, using motion coherence above threshold for all conditions, the difference in performance for horizontal and vertical fine motion direction discrimination for older adults disappeared. These results clearly contradict the notion of an overall age-related decline in motion perception, and, most importantly, highlight the importance of taking into account individual differences when assessing age-related changes in perceptual functions.
Interaction of an Artificially Thickened Boundary Layer with a Vertically Mounted Pitching Airfoil
NASA Astrophysics Data System (ADS)
Hohman, Tristen; Smits, Alexander; Martinelli, Luigi
2011-11-01
Wind energy represents a large portion of the growing market in alternative energy technologies and the current landscape has been dominated by the more prevalent horizontal axis wind turbine. However, there are several advantages to the vertical axis wind turbine (VAWT) or Darrieus type design and yet there is much to be understood about how the atmospheric boundary layer (ABL) affects their performance. In this study the ABL was simulated in a wind tunnel through the use of elliptical shaped vortex generators, a castellated wall, and floor roughness elements as described in the method of Counihan (1967) and then verified its validity by hot wire measurement of the mean velocity profile as well as the turbulence intensity. The motion of an blade element around a vertical axis is approximated through the use of a pitching airfoil. The wake of the airfoil is investigated through hot wire anemometry in both uniform flow and in the simulated boundary layer both at Re = 1 . 37 ×105 based on the chord of the airfoil. Sponsored by Hopewell Wind Power (Hong Kong) Limited.
Numerical simulation on a straight-bladed vertical axis wind turbine with auxiliary blade
NASA Astrophysics Data System (ADS)
Li, Y.; Zheng, Y. F.; Feng, F.; He, Q. B.; Wang, N. X.
2016-08-01
To improve the starting performance of the straight-bladed vertical axis wind turbine (SB-VAWT) at low wind speed, and the output characteristics at high wind speed, a flexible, scalable auxiliary vane mechanism was designed and installed into the rotor of SB-VAWT in this study. This new vertical axis wind turbine is a kind of lift-to-drag combination wind turbine. The flexible blade expanded, and the driving force of the wind turbines comes mainly from drag at low rotational speed. On the other hand, the flexible blade is retracted at higher speed, and the driving force is primarily from a lift. To research the effects of the flexible, scalable auxiliary module on the performance of SB-VAWT and to find its best parameters, the computational fluid dynamics (CFD) numerical calculation was carried out. The calculation result shows that the flexible, scalable blades can automatic expand and retract with the rotational speed. The moment coefficient at low tip speed ratio increased substantially. Meanwhile, the moment coefficient has also been improved at high tip speed ratios in certain ranges.
Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence
NASA Astrophysics Data System (ADS)
Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire
2017-11-01
The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.
NASA Astrophysics Data System (ADS)
Doan, Minh; Padricelli, Claudrio; Obi, Shinnosuke; Totsuka, Yoshitaka
2017-11-01
We present the torque and power measurement of laboratory-scale counter-rotating vertical-axis hydrokinetic turbines, built around a magnetic hysteresis brake as the speed controller and a Hall-effect sensor as the rotational speed transducer. A couple of straight-three-bladed turbines were linked through a transmission of spur gears and timing pulleys and coupled to the electronic instrumentation via flexible shaft couplers. A total of 8 experiments in 2 configurations were conducted in the water channel facility (4-m long, 0.3-m wide, and 0.15-m deep). Power generation of the turbines (0.06-m rotor diameter) was measured and compared with that of single turbines of the same size. The wakes generated by these experiments were also measured by particle image velocimetry (PIV) and numerically simulated by unsteady Reynolds-averaged Navier-Stokes (URANS) simulation using OpenFOAM. Preliminary results from wake measurement indicated the mechanism of enhanced power production behind the counter-rotating configuration of vertical-axis turbines. Current address: Politecnico di Milano.
NASA Astrophysics Data System (ADS)
Hantoro, R.; Prananda, J.; Mahmashani, A. W.; Septyaningru, E.; Imanuddin, F.
2018-05-01
Research on the development and innovation of Vertical Axis Hydrokinetic Turbine (VAHT) to improve performance has been done. One of the important indicator that affects VAHT’s performance is Coefficient of Performance (Cp). Theoretical Cp value for the VAT (Darrieus) turbine is 0.45. This paper presents the results of a performance investigation for an innovative Vertical Axis Hydrokinetic Turbine – Straight Blade Cascaded (VAHT-SBC) by modifying the number and the arrangement of blades using CFD simulation. Symmetrical NACA 0018 is used for this study, each model is simulated with current speed variation (U - m/s) of 0.5, 1 and 1.5. An increase in Cp value is shown in variation of 9 blades (3 blades cascaded in each arm) with Cp value of 0.396 at TSR of 2.27 which is reach 88% of the theoretical value. Furthermore, the streamline velocity of the pressure contour, velocity streamline and torque fluctuations are also presented in this paper to gain in deep information.
Two-dimensional particle-in-cell plasma source ion implantation of a prolate spheroid target
NASA Astrophysics Data System (ADS)
Liu, Cheng-Sen; Han, Hong-Ying; Peng, Xiao-Qing; Chang, Ye; Wang, De-Zhen
2010-03-01
A two-dimensional particle-in-cell simulation is used to study the time-dependent evolution of the sheath surrounding a prolate spheroid target during a high voltage pulse in plasma source ion implantation. Our study shows that the potential contour lines pack more closely in the plasma sheath near the vertex of the major axis, i.e. where a thinner sheath is formed, and a non-uniform total ion dose distribution is incident along the surface of the prolate spheroid target due to the focusing of ions by the potential structure. Ion focusing takes place not only at the vertex of the major axis, where dense potential contour lines exist, but also at the vertex of the minor axis, where sparse contour lines exist. This results in two peaks of the received ion dose, locating at the vertices of the major and minor axes of the prolate spheroid target, and an ion dose valley, staying always between the vertices, rather than at the vertex of the minor axis.
Gyroscope and Micromirror Design Using Vertical-Axis CMOS-MEMS Actuation and Sensing
2002-01-01
Interference pattern around the upper anchor (each fringe occurs at 310 nm vertical displacement...described above require extra lithography step(s) other than standard CMOS lithography steps and/or deposition of structural and sacrificial materials...Instruments’ dig- ital mirror device ( DMD ) [43]. The aluminum thin-film technology with vertical parallel- plate actuation has difficulty in achieving
NASA Astrophysics Data System (ADS)
Langfellner, J.; Gizon, L.; Birch, A. C.
2015-09-01
Flow vorticity is a fundamental property of turbulent convection in rotating systems. Solar supergranules exhibit a preferred sense of rotation, which depends on the hemisphere. This is due to the Coriolis force acting on the diverging horizontal flows. We aim to spatially resolve the vertical flow vorticity of the average supergranule at different latitudes, both for outflow and inflow regions. To measure the vertical vorticity, we use two independent techniques: time-distance helioseismology (TD) and local correlation tracking of granules in intensity images (LCT) using data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Both maps are corrected for center-to-limb systematic errors. We find that 8 h TD and LCT maps of vertical vorticity are highly correlated at large spatial scales. Associated with the average supergranule outflow, we find tangential (vortical) flows that reach about 10 m s-1 in the clockwise direction at 40° latitude. In average inflow regions, the tangential flow reaches the same magnitude, but in the anticlockwise direction. These tangential velocities are much smaller than the radial (diverging) flow component (300 m s-1 for the average outflow and 200 m s-1 for the average inflow). The results for TD and LCT as measured from HMI are in excellent agreement for latitudes between -60° and 60°. From HMI LCT, we measure the vorticity peak of the average supergranule to have a full width at half maximum of about 13 Mm for outflows and 8 Mm for inflows. This is larger than the spatial resolution of the LCT measurements (about 3 Mm). On the other hand, the vorticity peak in outflows is about half the value measured at inflows (e.g., 4 × 10-6 s-1 clockwise compared to 8 × 10-6 s-1 anticlockwise at 40° latitude). Results from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) obtained in 2010 are biased compared to the HMI/SDO results for the same period. Appendices are available in electronic form at http://www.aanda.orgThe azimuthally averaged velocity components vr and vt for supergranular outflows and inflows at various latitudes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A67
Cell envelopes of chemotaxis mutants of Escherichia coli rotate their flagella counterclockwise.
Szupica, C J; Adler, J
1985-01-01
Flagella rotated exclusively counterclockwise in Escherichia coli cell envelopes prepared from wild-type cells, whose flagella rotated both clockwise and counterclockwise, from mutants rotating their flagella counterclockwise only, and even from mutants rotating their flagella primarily clockwise. Some factor needed for clockwise flagellar rotation appeared to be missing or defective in the cell envelopes. PMID:3884599
Wind energy converter with high-speed vertical axis rotor and straight rotor blades
NASA Astrophysics Data System (ADS)
Zelck, G.
1982-11-01
Complete documents for a wind energy converter with a vertical axis rotor and straight blades (H-rotor) were developed. The 2 blade rotor with rigid and rectangular air foils in wooden construction reaches the nominal output of 75 KVA from 11,4 m/sec. wind velocity onwards. The development activities are supported by wind tunnel and component tests. The final design selected was based upon previous development work. Trade offs show that the design is more advantageous compared to other designs. The use of wood as a material for the rotary and horizontal blade supports gives positive result.
Finite-element analysis and modal testing of a rotating wind turbine
NASA Astrophysics Data System (ADS)
Carne, T. G.; Lobitz, D. W.; Nord, A. R.; Watson, R. A.
1982-10-01
A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, was developed to compute the mode shapes and frequencies of rotating structures. Special applications of this capability was made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine is established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.
Finite element analysis and modal testing of a rotating wind turbine
NASA Astrophysics Data System (ADS)
Carne, T. G.; Lobitz, D. W.; Nord, A. R.; Watson, R. A.
A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, has been developed to compute the mode shapes and frequencies of rotating structures. Special application of this capability has been made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine has been established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.
A 34-meter VAWT (Vertical Axis Wind Turbine) point design
NASA Astrophysics Data System (ADS)
Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.
The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.
NASA Astrophysics Data System (ADS)
1983-03-01
The design, fabrication, and site drawings associated with fabrication, installation, and check out of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs) were reported. The turbines are Darrieus type VAWTs with rotors 17 meters in diameter and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines are produced, three are installed and operable.
Rotor instrumentation circuits for the Sandia 34-meter vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Sutherland, Herbert J.; Stephenson, William A.
1988-07-01
Sandia National Laboratories has erected a research oriented, 34-meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas, which has been designated the Sandia 34-m VAWT Test Bed. To meet present and future research needs, the machine was equipped with a large array of sensors. This manuscript details the sensors initially placed on the rotor, their respective instrumentation circuits, and the provisions incorporated into the design of the rotor instrumentation circuits for future research. This manuscript was written as a reference manual for the rotor instrumentation of the Test Bed.
Design, performance, and economics of 50-kW and 500-kW vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Schienbein, L. A.; Malcolm, D. J.
1983-11-01
A review of the development and performance of the DAF Indal 50-kW vertical axis Darrieus wind turbine shows that a high level of technical development and reliability has been achieved. Features of the drive train, braking and control systems are discussed and performance details are presented. Details are also presented of a 500-kW VAWT that is currently in production. A discussion of the economics of both the 50-kW and 500-kW VAWTs is included, showing the effects of charge rate, installed cost, operating cost, performance, and efficiency.
Vertical axis wind turbine drive train transient dynamics
NASA Technical Reports Server (NTRS)
Clauss, D. B.; Carne, T. G.
1982-01-01
Start up of a vertical axis wind turbine causes transient torque oscillations in the drive train with peak torques which may be over two and one half times the rated torque of the turbine. A computer code, based on a lumped parameter model of the drive train, was developed and tested for the low cost 17 meter turbine; the results show excellent agreement with field data. The code was used to predict the effect of a slip clutch on transient torque oscillations. It was demonstrated that a slip clutch located between the motor and brake can reduce peak torques by thirty eight percent.
Results of a utility survey of the status of large wind turbine development
NASA Technical Reports Server (NTRS)
Watts, A.; Quraeshi, S.; Rowley, L. P.
1979-01-01
Wind energy conversion systems were surveyed from a utility viewpoint to establish the state of the art with regard to: (1) availability of the type of machines; (2) quality of power generation; (3) suitability for electrical grid; (4) reliability; and (5) economics. Of the 23 designs discussed, 7 have vertical axis wind turbines, 9 have upwind horizontal axis turbines, and 7 have downwind horizontal axis turbines.
Circular heat and momentum flux radiated by magneto-optical nanoparticles
NASA Astrophysics Data System (ADS)
Ott, A.; Ben-Abdallah, P.; Biehs, S.-A.
2018-05-01
In the present article we investigate the heat and momentum fluxes radiated by a hot magneto-optical nanoparticle in its surroundings under the action of an external magnetic field. We show that the flux lines circulate in a confined region at a nanometric distance from the particle around the axis of the magnetic field in a vortexlike configuration. Moreover we prove that the spatial orientation of these vortices (clockwise or counterclockwise) is associated with the contribution of optical resonances with topological charges m =+1 or m =-1 to the thermal emission. This work paves the way for a geometric description of heat and momentum transport in lattices of magneto-optical particles. Moreover it could have important applications in the field of energy storage as well as in thermal management at nanoscale.
NASA Astrophysics Data System (ADS)
Subashi, G. H. M. J.; Matsumoto, Y.; Griffin, M. J.
2008-10-01
Lumped parameter mathematical models representing anatomical parts of the human body have been developed to represent body motions associated with resonances of the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the human body standing in five different postures: 'upright', 'lordotic', 'anterior lean', 'knees bent', and 'knees more bent'. The inertial and geometric parameters of the models were determined from published anthropometric data. Stiffness and damping parameters were obtained by comparing model responses with experimental data obtained previously. The principal resonance of the vertical apparent mass, and the first peak in the fore-and-aft cross-axis apparent mass, of the standing body in an upright posture (at 5-6 Hz) corresponded to vertical motion of the viscera in phase with the vertical motion of the entire body due to deformation of the tissues at the soles of the feet, with pitch motion of the pelvis out of phase with pitch motion of the upper body above the pelvis. Upward motion of the body was in phase with the forward pitch motion of the pelvis. Changing the posture of the upper body had minor effects on the mode associated with the principal resonances of the apparent mass and cross-axis apparent mass, but the mode changed significantly with bending of the legs. In legs-bent postures, the principal resonance (at about 3 Hz) was attributed to bending of the legs coupled with pitch motion of the pelvis in phase with pitch motion of the upper body. In this mode, extension of the legs was in phase with the forward pitch motion of the upper body and the upward vertical motion of the viscera.
Cattaneo, Zaira; Vecchi, Tomaso; Fantino, Micaela; Herbert, Andrew M; Merabet, Lotfi B
2013-02-01
Visual stimuli that exhibit vertical symmetry are easier to remember than stimuli symmetric along other axes, an advantage that extends to the haptic modality as well. Critically, the vertical symmetry memory advantage has not been found in early blind individuals, despite their overall superior memory, as compared with sighted individuals, and the presence of an overall advantage for identifying symmetric over asymmetric patterns. The absence of the vertical axis memory advantage in the early blind may depend on their total lack of visual experience or on the effect of prolonged visual deprivation. To disentangle this issue, in this study, we measured the ability of late blind individuals to remember tactile spatial patterns that were either vertically or horizontally symmetric or asymmetric. Late blind participants showed better memory performance for symmetric patterns. An additional advantage for the vertical axis of symmetry over the horizontal one was reported, but only for patterns presented in the frontal plane. In the horizontal plane, no difference was observed between vertical and horizontal symmetric patterns, due to the latter being recalled particularly well. These results are discussed in terms of the influence of the spatial reference frame adopted during exploration. Overall, our data suggest that prior visual experience is sufficient to drive the vertical symmetry memory advantage, at least when an external reference frame based on geocentric cues (i.e., gravity) is adopted.
A new wind energy conversion system
NASA Technical Reports Server (NTRS)
Smetana, F. O.
1975-01-01
It is presupposed that vertical axis wind energy machines will be superior to horizontal axis machines on a power output/cost basis and the design of a new wind energy machine is presented. The design employs conical cones with sharp lips and smooth surfaces to promote maximum drag and minimize skin friction. The cones are mounted on a vertical axis in such a way as to assist torque development. Storing wind energy as compressed air is thought to be optimal and reasons are: (1) the efficiency of compression is fairly high compared to the conversion of mechanical energy to electrical energy in storage batteries; (2) the release of stored energy through an air motor has high efficiency; and (3) design, construction, and maintenance of an all-mechanical system is usually simpler than for a mechanical to electrical conversion system.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., and read the new Percent of Lots Expected to be Accepted, Pas, which results when using these skip lot... point, proceed vertically to the curve and then horizontally to the left to the vertical axis. From this...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., and read the new Percent of Lots Expected to be Accepted, Pas, which results when using these skip lot... point, proceed vertically to the curve and then horizontally to the left to the vertical axis. From this...
Preservation of vestibular function after scala vestibuli cochlear implantation.
Suzuki, Mitsuya; Goto, Takio; Kashio, Akinori; Yasui, Takuya; Sakamoto, Takashi; Ito, Ken; Yamasoba, Tatsuya
2011-10-01
A 58-year-old man, in whom the cochlear implant (CI) had been inserted into the left ear, had right middle-ear cancer. The CI was removed immediately before receiving subtotal removal of right temporal bone. Four months later, the CI was again inserted in his left cochlea. Because of obliterated scala tympani, the 22 active electrodes of the CI were placed into the scala vestibuli. After the surgery, the patient complained that he experienced rotary vertigo and "jumbling of vertical direction" of objects on walking. Using rotation test, we evaluated vestibular function of remaining left ear. Numerous horizontal nystagmus beats were induced during earth-vertical axis rotation, whereas vertical downbeat nystagmus was scarcely induced during off-vertical axis rotation. The horizontal vestibulo-ocular reflex (VOR) was almost normally induced by sinusoidal stimulation at 0.8Hz. These data suggest that the scala vestibuli insertion of CI would be not so invasive against the lateral semicircular canal. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Prezzi, Claudia; Caffe, Pablo J.; Somoza, Rubén
2004-09-01
Along the Central Andes a pattern of vertical axis tectonic rotations has been paleomagnetically identified. The rotations are clockwise in southern Bolivia, northern Chile and northwestern Argentina. Various models have been proposed to explain the geodynamic evolution of the Central Andes, but the driving mechanism of these rotations remains controversial. Constraining the spatial variability and the timing of the rotations may contribute to a better understanding of their origin. Our results complement information from previous studies, improving the knowledge of tectonic rotations in the region of the northern Argentine Puna and western Cordillera Oriental. In the San Juan de Oro basin (SJOB), 132 cores were drilled from the middle Miocene Tiomayo Formation in the zone of Tiomayo-Santa Ana (22°30'S-66°30'W), and from the ˜17 Ma Casa Colorada dacite dome complex. Another 114 cores were collected from middle Miocene dacitic dome centers emplaced in the zone of Laguna de Pozuelos basin (22°30'S-66°00'W). The results of our paleomagnetic study suggest that the sampled zones underwent very low, statistically insignificant rotation since middle Miocene. However, a tendency for low magnitude rotation appears when observing our data together with paleomagnetic results from coeval rocks in neighbouring areas. If so, this low rotation could be related to middle Miocene thrust activity in the central and eastern parts of the Cordillera Oriental. The combined analysis of paleomagnetic and structural data illustrates the probable, direct relationship between timing of significant rotations and timing of local deformation in the sourthern Central Andes.
NASA Astrophysics Data System (ADS)
Wu, Lunyu; Xiong, Xuejun; Li, Xiaolong; Shi, Maochong; Guo, Yongqing; Chen, Liang
2016-12-01
Bottom currents at about 1000 m depth in and around a submarine valley on the continental slope of the northern South China Sea were studied by a 14-month long experiment from July 2013 to September 2014. The observations reveal that bottom currents are strongly influenced by the topography, being along valley axis or isobaths. Power density spectrum analysis shows that all the currents have significant peaks at diurnal and semi-diurnal frequencies. Diurnal energy is dominant at the open slope site, which is consistent with many previous studies. However, at the site inside the valley the semi-diurnal energy dominates, although the distance between the two sites of observation is quite small (11 km) compared to a typical horizontal first-mode internal tide wavelength (200 km). We found this phenomenon is caused by the focusing of internal waves of certain frequencies in the valley. The inertial peak is found only at the open slope site in the first deployment but missing at the inside valley site and the rest of the deployments. Monthly averaged residual currents reveal that the near-bottom currents on the slope flow southwestward throughout the year except in August and September, 2013, from which we speculate that this is a result of the interaction between a mesoscale eddy and the canyon/sag topography. Currents inside the valley within about 10 mab basically flow along slope and in the layers above the 10 mab the currents are northwestward, that is, from the deep ocean to the shelf. The monthly mean current vectors manifest an Ekman layer-like vertical structure at both sites, which rotate counter-clockwise looking from above.
Mankinen, Edward A.; Irwin, William P.
1990-01-01
Paleomagnetic studies of the Klamath Mountains, Blue Mountains, Sierra Nevada, and northwestern Nevada pertain mostly to Jurassic and Cretaceous rocks, but some data also are available for Permian and Triassic rocks of the region. Large vertical-axis rotations are indicated for rocks in many of the terranes, but few studies show statistically significant latitudinal displacements. The most complete paleomagnetic record is from the Eastern Klamath terrane, which shows large post-Triassic clockwise rotations and virtual cessation of rotation by Early Cretaceous time, when accretion to the continent was completed. Data from Permian strata of the Eastern Klamath terrane indicate no paleolatitude anomaly, in contrast to preliminary results from coeval strata of Hells Canyon in the Blue Mountains region, which are suggestive of some southward movement. If these Hells Canyon results are confirmed, some of the terranes in these two regions must have been traveling on separate plates during late Paleozoic time. Data from Triassic and younger strata in the Blue Mountains region indicate paleolatitudes that are concordant with North America. Results from Triassic rocks of the Koipato Formation in west-central Nevada also indicate southward transport, but when this movement ceased is unknown. The Nevadan orogeny may have occurred in the Sierra Nevada during Jurassic accretion of the ophiolitic and volcanic-arc terranes of that province to the continent, whereas what has been considered to be the same orogeny in the Klamath Mountains may have occurred before accretion. Using the concordance of observed and expected paleomagnetic directions as a guide, the allochthonous Sierra Nevada, Klamath Mountains, and Blue Mountains composite terranes seem to have accreted to the continent sequentially from south to north.
Gao, Fan; Latash, Mark L.
2010-01-01
We address issues of simultaneous control of the grasping force and the total moment of forces applied to a handheld object during its manipulation. Six young healthy male subjects grasped an instrumented handle and performed its cyclic motion in the vertical direction. The handle allowed for setting different clockwise (negative) or counterclockwise torques. Three movement frequencies: 1, 1.5 and 2 Hz, and five different torques: −1/3, −1/6, 0, 1/6 and 1/3 Nm, were used. The rotational equilibrium was maintained by two means: (1) Concerted changes of the moments produced by the normal and tangential forces, specifically anti-phase changes of the moments during the tasks with zero external torque and in-phase changes during the non-zero-torque tasks, and (2) Redistribution of the normal forces among individual fingers such that the agonist fingers—the fingers that resist external torque—increased the force in phase with the acceleration, while the forces of the antagonist fingers—those that assist the external torque—especially, the fingers with the large moment arms, the index and little fingers, stayed unchanged. The observed effects agree with the principle of superposition—according to which some complex actions, for example, prehension, can be decomposed into elemental actions controlled independently—and the mechanical advantage hypothesis according to which in moment production the fingers are activated in proportion to their moment arms with respect to the axis of rotation. We would like to emphasize the linearity of the observed relations, which was not prescribed by the task mechanics and seems to be produced by specific neural control mechanisms. PMID:16328302
Perception of Invariance Over Perspective Transformations in Five Month Old Infants.
ERIC Educational Resources Information Center
Gibson, Eleanor; And Others
This experiment asked whether infants at 5 months perceived an invariant over four types of rigid motion (perspective transformations), and thereby differentiated rigid motion from deformation. Four perspective transformations of a sponge rubber object (rotation around the vertical axis, rotation around the horizontal axis, rotation in the frontal…
Rare cause of knee pain after martial arts demonstration: a case report.
Armstrong, Marc B; Thurber, Jalil
2013-04-01
Patellar dislocations are a commonly treated injury in the Emergency Department (ED), with a majority of cases involving lateral subluxation of the patella outside of the joint space. Intra-condylar dislocations of the patella are rare. Of the two types of axis rotation, vertical and horizontal, the vertical occurs five times less frequently. These injuries most often undergo open reduction or, at best, closed reduction under general anesthesia. To remind Emergency Physicians to consider this injury in any patient with severe knee pain and limited mobility, even with a history that is lacking significant trauma. We present a case of intra-condylar patellar dislocation with vertical axis rotation. This injury is no longer primarily attributed to the young and, barring fracture, closed reduction in the ED should be considered. Copyright © 2013 Elsevier Inc. All rights reserved.
Zhang, Xiaobin; Li, Qiong; Eskine, Kendall J; Zuo, Bin
2014-01-01
The current studies extend perceptual symbol systems theory to the processing of gender categorization by revealing that gender categorization recruits perceptual simulations of spatial height and size dimensions. In study 1, categorization of male faces were faster when the faces were in the "up" (i.e., higher on the vertical axis) rather than the "down" (i.e., lower on the vertical axis) position and vice versa for female face categorization. Study 2 found that responses to male names depicted in larger font were faster than male names depicted in smaller font, whereas opposite response patterns were given for female names. Study 3 confirmed that the effect in Study 2 was not due to metaphoric relationships between gender and social power. Together, these findings suggest that representation of gender (social categorization) also involves processes of perceptual simulation.
Non-genetic individuality in Escherichia coli motor switching
Mora, Thierry; Bai, Fan; Che, Yong-Suk; Minamino, Tohru; Namba, Keiichi; Wingreen, Ned S.
2011-01-01
By analyzing 30-minute, high-resolution recordings of single E. coli flagellar motors in the physiological regime, we show that two main properties of motor switching —the mean clockwise and mean counter-clockwise interval durations— vary significantly. When we represent these quantities on a two-dimensional plot for several cells, the data does not fall on a one-dimensional curve, as expected with a single control parameter, but instead spreads in two dimensions, pointing to motor individuality. The largest variations are in the mean counter-clockwise interval, and are attributable to variations in the concentration of the internal signaling molecule CheY-P. In contrast, variations in the mean clockwise interval are interpreted in terms of motor individuality. We argue that the sensitivity of the mean counter-clockwise interval to fluctuations in CheY-P is consistent with an optimal strategy of run and tumble. The concomittent variability in mean run length may allow populations of cells to better survive in rapidly changing environments by “hedging their bets”. PMID:21422514
NASA Astrophysics Data System (ADS)
Sheriff, Steven D.
1984-06-01
Anomalous paleomagnetic directions have been determined for 17 sites in the Frenchmans Springs member of the Wanapum basalt formation, Columbia River basalt group. These sites are located in the Ginkgo flows from near Vantage, Washington, to Portland, Oregon, a distance of approximately 300 km. The average paleomagnetic direction for six of these sites, centered around Vantage is D = 147°, I = 41°, α95 = 4.5°. The expected Miocene field direction is D = 355°, I = 65°. At some localities there are two distinct Ginkgo flows, in direct stratigraphic succession, with statistically identical anomalous directions. Their anomalous paleomagnetic direction makes these flows a valuable marker horizon in the Columbia River basalt group. The nondipole field direction of the Ginkgo flows correlates well with available results from the Miocene Cape Foulweather basalts of Oregon. This correlation strongly supports the hypothesis that these coastal basalts of Oregon are the distal ends of Columbia Plateau derived basalt flows. The spatial distribution of these anomalous field directions suggests about 14° of clockwise rotation between Vantage and Portland. Combining these data with data from the Oregon Coast basalts allows a maximum declination difference of about 35°. The increase in declination can be best explained by clockwise rotation, about nearby vertical axes, increasing to the southwest across the Columbia Plateau and Oregon coast.
The multi-axis vibration environment and man.
Lovesey, E J
1970-12-01
Many investigations into the effects of vibration on man have been performed since Mallock's first study of London Underground vibrations in 1902. The vibration research has tended to be confined to the vertical (heave) axis, yet recent experiments have indicated that low frequency vibration along the lateral (sway) axis has a greater adverse effect upon comfort and performance. Measurements of the vibration environments in current forms of transport including motor vehicles, hovercraft and aircraft etc have shown that appreciable quantities of vibration along all three axes exist. Further vibration research should consider the effects of multi-axis vibrations upon man rather than limit tests to single axis vibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cisowski, S.M.; Fuller, M.; Haston, R.B.
1990-06-01
On-land and deep-sea core paleomagnetic data have been collected from around the Philippine Sea plate. Data from the Palau islands suggest 70{degree} of clockwise rotation and northward translation since the mid-Oligocene. The authors interpret this rotation as a rotation of the West Philippine Sea basin as a whole. New paleomagnetic data from Guam indicate 70{degree} of clockwise rotation and northward translation since the early Oligocene. Although Eocene results have been previously quoted, the new data suggest that there is no reliable Eocene data from Guam. New data from Saipan suggest 50-60{degree} of clockwise rotation since the Late Eocene and 20{degree}more » of clockwise rotation since the mid-Miocene, along with northward translation. During ODP Leg 126, a new technique utilizing the formation microscanner logging tool was employed to obtain orientated drill cores from the Bonin forearc basin. Preliminary results indicate that 70-110{degree} of clockwise rotation has occurred there since the mid-Oligocene. Inclination studies on cores from ODP Legs 125 and 126 along with the on-land paleomagnetic data support 15{degree} of northward translation of the Philippine Sea plate since the mid-Oligocene. The consistent clockwise rotations found around the Philippine Sea plate suggest that the entire plate, including the Bonin and Mariana arcs, has rotated more than 50{degree} since the mid-Oligocene. The similarity of Oligocene results from the Bonin forearc and Guam suggest that little or no relative rotation has occurred between these two points. This implies that the shape of the Mariana arc is probably not due to rotational deformation. The northward translation and clockwise rotation of the Philippine Sea plate established oblique subduction along the proto-Philippine margin, which could account for the 600 km of subducted slab beneath the eastern Celebes Sea.« less
Patel, Siddharth; Kwak, Lucia; Agarwal, Sunil K; Tereshchenko, Larisa G; Coresh, Josef; Soliman, Elsayed Z; Matsushita, Kunihiro
2017-11-03
A few studies have recently reported clockwise and counterclockwise rotations of QRS transition zone as predictors of mortality. However, their prospective correlates and associations with individual cardiovascular disease (CVD) outcomes are yet to be investigated. Among 13 567 ARIC (Atherosclerosis Risk in Communities) study participants aged 45 to 64 years, we studied key correlates of changes in the status of clockwise and counterclockwise rotation over time as well as the association of rotation status with incidence of coronary heart disease (2408 events), heart failure (2196 events), stroke (991 events), composite CVD (4124 events), 898 CVD deaths, and 3469 non-CVD deaths over 23 years of follow-up. At baseline, counterclockwise rotation was most prevalent (52.9%), followed by no (40.5%) and clockwise (6.6%) rotation. Of patients with no rotation, 57.9% experienced counterclockwise or clockwise rotation during follow-up, with diabetes mellitus and black race significantly predicting clockwise and counterclockwise conversion, respectively. Clockwise rotation was significantly associated with higher risk of heart failure (hazard ratio, 1.20; 95% confidence interval [CI], 1.02-1.41) and non-CVD death (hazard ratio, 1.28; 95% CI, 1.12-1.46) after adjusting for potential confounders including other ECG parameters. On the contrary, counterclockwise rotation was significantly related to lower risk of composite CVD (hazard ratio, 0.93; 95% CI, 0.87-0.99]), CVD mortality (hazard ratio, 0.76; 95% CI, 0.65-0.88), and non-CVD deaths (hazard ratio, 0.92; 95% CI, 0.85-0.99 [borderline significance with heart failure]). Counterclockwise rotation, the most prevalent QRS transition zone pattern, demonstrated the lowest risk of CVD and mortality, whereas clockwise rotation was associated with the highest risk of heart failure and non-CVD mortality. These results have implications on how to interpret QRS transition zone rotation when ECG was recorded. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
New Constraints on Baja California-North America Relative Plate Motion Since 11 Ma
NASA Astrophysics Data System (ADS)
Bennett, S. E.; Skinner, L. A.; Darin, M. H.; Umhoefer, P. J.; Oskin, M. E.; Dorsey, R. J.
2013-12-01
Tectonic reconstructions of the Pacific-North America (PAC-NAM) plate boundary across the Gulf of California and Salton Trough (GCAST) constrain the controversial magnitude of Baja California microplate-North America (BCM-NAM) relative motion since middle Miocene time. We use estimates of total PAC-NAM relative dextral-oblique motion from the updated global plate-circuit model (Atwater and Stock, 2013; GSA Cordilleran Mtg) to resolve the proportion of this motion on faults east of the BCM. Modern GPS studies and offset of late Miocene cross-gulf geologic tie points both suggest that BCM has never been completely coupled to the Pacific plate. Thus, our preferred GCAST reconstruction uses 93% BCM-PAC coupling from the present back to 6 Ma. We assume BCM-PAC coupling of 60% between 6 and 7 Ma, and 25% between 7 and 11 Ma, to avoid unacceptable overlap of continental crustal blocks between Baja California and the Sierra Madre Occidental (on stable NAM). Using these coupling ratios and PAC-NAM stage Euler poles, we determine the azimuth and velocity of individual points on the BCM in 1 million year increments back to 11 Ma. This procedure accounts for minor clockwise rotation of BCM that occurred during oblique rifting, and shows how total BCM-NAM relative motion increases from north to south due to greater distance from the Euler pole. Finer-scale restoration of tectonic blocks along significant (>1 km offset) faults, across extensional (e.g. pull-apart and half-graben) basins, and by vertical-axis rotation is constrained by local geologic and marine-geophysical datasets and accomplished via the open-source Tectonic Reconstruct ArcGIS tool. We find that restoration across the Gulf of California completely closes marine basins and their terrestrial predecessors between 6 and 9 Ma. Latest Miocene opening of these basins was coincident with a ~10° clockwise azimuthal change from 8 to 6 Ma in PAC-NAM relative motion, as revealed by the global plate circuit model. The coupling ratios used in our reconstruction produce important changes in BCM-NAM relative motion, where a point at the latitude of the Guaymas rift corridor experienced a ~10° clockwise azimuthal change from ~119° to ~129° between 8 and 6 Ma, and a ~27 mm/yr rifting rate increase from ~13 to ~40 mm/yr between 9 and 6 Ma. This increase in obliquity and rate of rifting likely drove localization of plate boundary strain into the North American continent and ultimately formed the Gulf of California. Initiation of these basins ca. 9 Ma requires that the residual ~20 - 40 km of dextral-oblique motion from 9 to 11 Ma occurred immediately offshore or east of the present-day Sonora-Sinaloa shoreline on as-yet undocumented structures. Total preferred BCM-NAM dextral-oblique motion since 11 Ma varies from ~385 km in the southern Gulf of California to ~365 km at the Midriff Islands. These values and the south-north gradient are consistent with recent estimates of ~340 × 40 km of relative dextral plate motion across southern California and the Eastern California Shear Zone. Attempts to restore larger amounts (e.g. 450 - 500 km) of BCM-NAM motion require a higher percent of late Miocene BCM-PAC coupling and result in unacceptable overlap between continental tectonic blocks in western Sonora and Sinaloa and submerged, extended continental crust in the southern Gulf of California.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, W.N.; Nellums, R.O.
1979-08-01
The A.T. Kearney and Alcoa economic studies are two independent attempts to assess the installed costs of a series of six Darrieus vertical axis wind turbine designs. The designs cover a range of sizes with peak outputs from 10 to 1600 kW. All are designed to produce utility grid electrical power. Volume IV of this report summarizes, compares, and analyzes the results of these studies. The Kearney and Alcoa final reports are included in the Appendices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, W.N.; Nellums, R.O.
1979-08-01
The A. T. Kearney and Alcoa economic studies are two independent attempts to assess the installed costs of a series of six Darrieus vertical axis wind turbine designs. The designs cover a range of sizes with peak outputs from 10 to 1600 kW. All are designed to produce utility grid electrical power. Volume IV of this report summarizes, compares, and analyzes the results of these studies. The Kearney and Alcoa final reports are included in the Appendices.
A method of calculation on the airloading of vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Azuma, A.; Kimura, S.
A new method of analyzing the aerodynamic characteristics of the Darrieus Vertical-Axis Wind Turbine (VAWT) by applying the local circulation method is described. The validity of this method is confirmed by analyzing the air load acting on a curved blade. The azimuthwise variation of spanwise airloading, torque, and longitudinal forces are accurately calculated for a variety of operational conditions. The results are found to be in good agreement with experimental ones obtained elsewhere. It is concluded that the present approach can calculate the aerodynamic characteristics of the VAWT with much less computational time than that used by the free vortex model.
Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander
2016-09-01
This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.
Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors
NASA Technical Reports Server (NTRS)
Lobitz, D. W.
1981-01-01
The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.
HIGH TEMPERATURE, HIGH POWER HETEROGENEOUS NUCLEAR REACTOR
Hammond, R.P.; Wykoff, W.R.; Busey, H.M.
1960-06-14
A heterogeneous nuclear reactor is designed comprising a stationary housing and a rotatable annular core being supported for rotation about a vertical axis in the housing, the core containing a plurality of radial fuel- element supporting channels, the cylindrical empty space along the axis of the core providing a central plenum for the disposal of spent fuel elements, the core cross section outer periphery being vertically gradated in radius one end from the other to provide a coolant duct between the core and the housing, and means for inserting fresh fuel elements in the supporting channels under pressure and while the reactor is in operation.
NASA Technical Reports Server (NTRS)
Heathcote, D. G.; Bircher, B. W.; Brown, A. H. (Principal Investigator)
1987-01-01
The phototropic dose-response relationship has been determined for Triticum aestivum cv. Broom coleoptiles growing on a purpose-built clinostat apparatus providing gravity compensation by rotation about a horizontal axis at 2 rev min-1. These data are compared with data sets obtained with the clinostat axis vertical and stationary, as a 1 g control, and rotating vertically to examine clinostat effects other than gravity compensation. Triticum at 1 g follows the well-established pattern of other cereal coleoptiles with a first positive curvature at low doses, followed by an indifferent response region, and a second positive response at progressively increasing doses. However, these response regions lie at higher dose levels than reported for Avena. There is no significant difference between the responses observed with the clinostat axis vertical in the rotating and stationary modes, but gravity compensation by horizontal rotation increases the magnitude of first and second positive curvatures some threefold at 100 min after stimulation. The indifferent response is replaced by a significant curvature towards the light source, but remains apparent as a reduced curvature response at these dose levels.
Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes
NASA Astrophysics Data System (ADS)
Chatelain, P.; Duponcheel, M.; Zeoli, S.; Buffin, S.; Caprace, D.-G.; Winckelmans, G.; Bricteux, L.
2017-05-01
The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed.
Analysis of stiffness and stress in I-bar clasps.
Sato, Y; Tsuga, K; Abe, Y; Asahara, S; Akagawa, Y
2001-06-01
An I-bar clasp is one of the most popular direct retainers for distal-extension removable partial dentures. However, no adequate information is available on the shape associated with biomechanics. This study aimed (1) to establish a three-dimensional (3D) finite-element modelling method of I-bar clasps, and (2) to clarify the effect of the shape on the stress and stiffness of I-bar clasps. 3D computer models of I-bar clasps were created with vertical and horizontal straight sections connected with a curved section with six parameters: thickness of the clasp tip (T), width of the clasp tip (W), radius of the curvature (R), horizontal distance between the base and the vertical axis (H), vertical dimension between the tip and the horizontal axis (V), taper (change of width per unit length along the axis)(Tp). Stress decreased as T, W, R and Tp increased, and as V decreased. Stiffness (which is proportional to retention) increased as T, W, R and Tp increased, and as H and V decreased. In both stress and stiffness, the effects of T and Tp were especially large. From the results, a systematic formula between the clasp shape and the stiffness was derived.
Finite element analysis on preferable I-bar clasp shape.
Sato, Y; Tsuga, K; Abe, Y; Asahara, S; Akagawa, Y
2001-05-01
An I-bar clasp is one of the most popular direct retainers for distal-extension removable partial dentures. However, no adequate information is available on preferable shape as determined by biomechanics. This study aimed (1) to investigate, by finite element analysis (FEA), the dimensions and stress of I-bar clasps having the same stiffness, and (2) to estimate a mechanically preferable clasp design. Three-dimensional FEA models of I-bar clasps were created with vertical and horizontal straight sections connected by a curved section characterized by six parameters: thickness of the clasp tip, width of the clasp tip, radius of the curvature, horizontal distance between the base and the vertical axis, vertical dimension between the tip and the horizontal axis, and taper (change of width per unit length along the axis). Stress was calculated with a concentrated load of 5 N applied 2 mm from the tip of the clasp in the buccal direction. A thinner and wider clasp having an taper of 0.020-0.023 and radius of curvature of 2.75-3.00 showed less stress. The results suggest that such a shape might be the preferable I-bar clasp shape as biomechanical viewpoint.
Axis of Eye Rotation Changes with Head-Pitch Orientation during Head Impulses about Earth-Vertical
Schubert, Michael C.; Clendaniel, Richard A.; Carey, John P.; Della Santina, Charles C.; Minor, Lloyd B.; Zee, David S.
2006-01-01
The goal of this study was to assess how the axis of head rotation, Listing's law, and eye position influence the axis of eye rotation during brief, rapid head rotations. We specifically asked how the axis of eye rotation during the initial angular vestibuloocular reflex (VOR) changed when the pitch orientation of the head relative to Earth-vertical was varied, but the initial position of the eye in the orbit and the orientation of Listing's plane with respect to the head were fixed. We measured three-dimensional eye and head rotation axes in eight normal humans using the search coil technique during head-and-trunk (whole-body) and head-on-trunk (head-only) “impulses” about an Earth-vertical axis. The head was initially oriented at one of five pitch angles (30° nose down, 15° nose down, 0°, 15° nose up, 30° nose up). The fixation target was always aligned with the nasooccipital axis. Whole-body impulses were passive, unpredictable, manual, rotations with peak-amplitude of ∼20°, peak-velocity of ∼80°/s, and peak-acceleration of ∼1000°/s2. Head-only impulses were also passive, unpredictable, manual, rotations with peak-amplitude of ∼20°, peak-velocity of ∼150°/s, and peak-acceleration of ∼3000°/s2. During whole-body impulses, the axis of eye rotation tilted in the same direction, and by an amount proportional (0.51 ± 0.09), to the starting pitch head orientation (P < 0.05). This proportionality constant decreased slightly to 0.39 ± 0.08 (P < 0.05) during head-only impulses. Using the head-only impulse data, with the head pitched up, we showed that only 50% of the tilt in the axis of eye rotation could be predicted from vectorial summation of the gains (eye velocity/head velocity) obtained for rotations about the pure yaw and roll head axes. Thus, even when the orientation of Listing's plane and eye position in the orbit are fixed, the axis of eye rotation during the VOR reflects a compromise between the requirements of Listing's law and a perfectly compensatory VOR. PMID:16552499
Nickalls, R W
1996-09-01
Visual latency difference was determined directly in normal volunteers, using the rotating Pulfrich technique described by Nickalls [Vision Research, 26, 367-372 (1986)]. Subjects fixated a black vertical rod rotating clockwise on a horizontal turntable turning with constant angular velocity (16.6,33.3 or 44.7 revs/min) with a neutral density filter (OD 0.7 or 1.5) in front of the right eye. For all subjects the latency difference associated with the 1.5 OD filter was significantly greater (P < 0.001) with the rod rotating at 16.6 rev/min than at 33.3 revs/min. The existence of an inverse relationship between latency difference and angular velocity is hypothesized.
Horizontal wind fluctuations in the stratosphere during large-scale cyclogenesis
NASA Technical Reports Server (NTRS)
Chan, K. R.; Scott, S. G.; Danielsen, Edwin F.; Pfister, L.; Bowen, S. W.; Gaines, Steven E.
1991-01-01
The meteorological measurement system (MMS) on the U-2 aircraft measured pressure, temperature, and the horizontal wind during a cyclogenesis event over western United States on April 20, 1984. The mean horizontal wind in the stratosphere decreases monotonically with altitude. Superimposed on the mean stratospheric wind is a perturbation wind vector, which is an elliptically polarized wave with an amplitude of 4 to 10 m/s and a vertical wavelength of 2 to 3 km. The perturbation wind vector rotates anticyclonically (clockwise) with altitude and produces alternating advection in the plane of the aircraft flight path. This differential advection folds surfaces of constant tracer mixing ratio and contributes to the observed tracer laminar structures and inferred cross-jet transport.
Three-dimensional spatial cognition in a benthic fish, Corydoras aeneus.
Davis, V A; Holbrook, R I; Schumacher, S; Guilford, T; de Perera, T Burt
2014-11-01
The way animals move through space is likely to affect the way they learn and remember spatial information. For example, a pelagic fish, Astyanax fasciatus, moves freely in vertical and horizontal space and encodes information from both dimensions with similar accuracy. Benthic fish can also move with six degrees of freedom, but spend much of their time travelling over the substrate; hence they might be expected to prioritise the horizontal dimension. To understand how benthic fish encode and deploy three-dimensional spatial information we used a fully rotational Y-maze to test whether Corydoras aeneus (i) encode space as an integrated three-dimensional unit or as separate elements, by testing whether they can decompose a three-dimensional trajectory into its vertical and horizontal components, and (ii) whether they prioritise vertical or horizontal information when the two conflict. In contradiction to the expectation generated by our hypothesis, our results suggest that C. aeneus are better at extracting vertical information than horizontal information from a three-dimensional trajectory, suggesting that the vertical axis is learned and remembered robustly. Our results also showed that C. aeneus prioritise vertical information when it conflicts with horizontal information. From these results, we infer that benthic fish attend preferentially to a cue unique to the vertical axis, and we suggest that this cue is hydrostatic pressure. Copyright © 2014 Elsevier B.V. All rights reserved.
33 CFR 159.107 - Rolling test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... liquid retention components, if any, filled with water to half of their volume, must be subjected to 100 cycles with the axis of rotation 4 feet from the centerline of the device, no more than 6 inches below... rotated 90 degrees on its vertical axis and subjected to another 100 cycles. This testing must be repeated...
33 CFR 159.107 - Rolling test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... liquid retention components, if any, filled with water to half of their volume, must be subjected to 100 cycles with the axis of rotation 4 feet from the centerline of the device, no more than 6 inches below... rotated 90 degrees on its vertical axis and subjected to another 100 cycles. This testing must be repeated...
33 CFR 159.107 - Rolling test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... liquid retention components, if any, filled with water to half of their volume, must be subjected to 100 cycles with the axis of rotation 4 feet from the centerline of the device, no more than 6 inches below... rotated 90 degrees on its vertical axis and subjected to another 100 cycles. This testing must be repeated...
33 CFR 159.107 - Rolling test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... liquid retention components, if any, filled with water to half of their volume, must be subjected to 100 cycles with the axis of rotation 4 feet from the centerline of the device, no more than 6 inches below... rotated 90 degrees on its vertical axis and subjected to another 100 cycles. This testing must be repeated...
Let's Have Some Capatence Here
ERIC Educational Resources Information Center
Brown, Reva Berman; McCartney, Sean
2003-01-01
Defines two competitive ideas--competence and capability--and argues that neither deals adequately with the central issue of the present. Provides a model, to place these ideas in conceptual space--the vertical axis of which is bounded by the extremes of narrow and broad focus, and the horizontal axis by the past and the future. Suggests that…
The Storage Ring Proton EDM Experiment
NASA Astrophysics Data System (ADS)
Semertzidis, Yannis; Storage Ring Proton EDM Collaboration
2014-09-01
The storage ring pEDM experiment utilizes an all-electric storage ring to store ~1011 longitudinally polarized protons simultaneously in clock-wise and counter-clock-wise directions for 103 seconds. The radial E-field acts on the proton EDM for the duration of the storage time to precess its spin in the vertical plane. The ring lattice is optimized to reduce intra-beam scattering, increase the statistical sensitivity and reduce the systematic errors of the method. The main systematic error is a net radial B-field integrated around the ring causing an EDM-like vertical spin precession. The counter-rotating beams sense this integrated field and are vertically shifted by an amount, which depends on the strength of the vertical focusing in the ring, thus creating a radial B-field. Modulating the vertical focusing at 10 kHz makes possible the detection of this radial B-field by a SQUID-magnetometer (SQUID-based BPM). For a total number of n SQUID-based BPMs distributed around the ring the effectiveness of the method is limited to the N = n /2 harmonic of the background radial B-field due to the Nyquist sampling theorem limit. This limitation establishes the requirement to reduce the maximum radial B-field to 0.1-1 nT everywhere around the ring by layers of mu-metal and aluminum vacuum tube. The metho's sensitivity is 10-29 e .cm , more than three orders of magnitude better than the present neutron EDM experimental limit, making it sensitive to SUSY-like new physics mass scale up to 300 TeV.
Blade pitch optimization methods for vertical-axis wind turbines
NASA Astrophysics Data System (ADS)
Kozak, Peter
Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.
Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.
Chang, Cheong Bong; Huang, Wei-Xi; Lee, Kyung Heon; Sung, Hyung Jin
2012-10-08
The optical force on a non-spherical particle subjected to a loosely focused laser beam was calculated using the dynamic ray tracing method. Ellipsoidal particles with different aspect ratios, inclination angles, and positions were modeled, and the effects of these parameters on the optical force were examined. The vertical component of the optical force parallel to the laser beam axis decreased as the aspect ratio decreased, whereas the ellipsoid with a small aspect ratio and a large inclination angle experienced a large vertical optical force. The ellipsoids were pulled toward or repelled away from the laser beam axis, depending on the inclination angle, and they experienced a torque near the focal point. The behavior of the ellipsoids in a viscous fluid was examined by analyzing a dynamic simulation based on the penalty immersed boundary method. As the ellipsoids levitated along the direction of the laser beam propagation, they moved horizontally with rotation. Except for the ellipsoid with a small aspect ratio and a zero inclination angle near the focal point, the ellipsoids rotated until the major axis aligned with the laser beam axis.
Cloud Spirals and Outflow in Tropical Storm Katrina
NASA Technical Reports Server (NTRS)
2005-01-01
On Tuesday, August 30, 2005, NASA's Multi-angle Imaging SpectroRadiometer retrieved cloud-top heights and cloud-tracked wind velocities for Tropical Storm Katrina, as the center of the storm was situated over the Tennessee valley. At this time Katrina was weakening and no longer classified as a hurricane, and would soon become an extratropical depression. Measurements such as these can help atmospheric scientists compare results of computer-generated hurricane simulations with observed conditions, ultimately allowing them to better represent and understand physical processes occurring in hurricanes. Because air currents are influenced by the Coriolis force (caused by the rotation of the Earth), Northern Hemisphere hurricanes are characterized by an inward counterclockwise (cyclonic) rotation towards the center. It is less widely known that, at high altitudes, outward-spreading bands of cloud rotate in a clockwise (anticyclonic) direction. The image on the left shows the retrieved cloud-tracked winds as red arrows superimposed across the natural color view from MISR's nadir (vertical-viewing) camera. Both the counter-clockwise motion for the lower-level storm clouds and the clockwise motion for the upper clouds are apparent in these images. The speeds for the clockwise upper level winds have typical values between 40 and 45 m/s (144-162 km/hr). The low level counterclockwise winds have typical values between 7 and 24 m/s (25-86 km/hr), weakening with distance from the storm center. The image on the right displays the cloud-top height retrievals. Areas where cloud heights could not be retrieved are shown in dark gray. Both the wind velocity vectors and the cloud-top height field were produced by automated computer recognition of displacements in spatial features within successive MISR images acquired at different view angles and at slightly different times. The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the entire globe between 82o north and 82o south latitude every nine days. This image covers an area of about 380 kilometers by 1970 kilometers. These data products were generated from a portion of the imagery acquired during Terra orbit 30324 and utilize data from blocks 55-68 within World Reference System-2 path 22. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is managed for NASA by the California Institute of Technology.Parabrachial nucleus neuronal responses to off-vertical axis rotation in macaques
McCandless, Cyrus H.; Balaban, Carey D.
2010-01-01
The caudal aspect of the parabrachial nucleus (PBN) contains neurons responsive to whole body, periodic rotational stimulation in alert monkeys. This study characterizes the angular and linear motion-sensitive response properties of PBN unit responses during off-vertical axis rotation (OVAR) and position trapezoid stimulation. The OVAR responses displayed a constant firing component which varied from the firing rate at rest. Nearly two-thirds of the units also modulated their discharges with respect to head orientation (re: gravity) during constant velocity OVAR stimulation. The modulated response magnitudes were equal during ipsilateral and contralateral OVARs, indicative of a one-dimensional accelerometer. These response orientations during OVAR divided the units into three spatially tuned populations, with peak modulation responses centered in the ipsilateral ear down, contralateral anterior semicircular canal down, and occiput down orientations. Because the orientation of the OVAR modulation response was opposite in polarity to the orientation of the static tilt component of responses to position trapezoids for the majority of units, the linear acceleration responses were divided into colinear dynamic linear and static tilt components. The orientations of these unit responses formed two distinct population response axes: (1) units with an interaural linear response axis and (2) units with an ipsilateral anterior semicircular canal-contralateral posterior semicircular canal plane linear response axis. The angular rotation sensitivity of these units is in a head-vertical plane that either contains the linear acceleration response axis or is perpendicular to the linear acceleration axis. Hence, these units behave like head-based (‘strap-down’) inertial guidance sensors. Because the PBN contributes to sensory and interoceptive processing, it is suggested that vestibulo-recipient caudal PBN units may detect potentially dangerous anomalies in control of postural stability during locomotion. In particular, these signals may contribute to the range of affective and emotional responses that include panic associated with falling, malaise associated with motion sickness and mal-de-debarquement, and comorbid balance and anxiety disorders. PMID:20039027
Apparatus for encapsulating a photovoltaic module
Albright, Scot P.; Dugan, Larry M.
1995-10-24
The subject inventions concern various photovoltaic module designs to protect the module from horizontal and vertical impacts and degradation of solar cell efficiency caused by moisture. In one design, a plurality of panel supports that are positioned adjacent to the upper panel in a photovoltaic module absorb vertical forces exerted along an axis perpendicular to the upper panel. Other designs employ layers of glass and tempered glass, respectively, to protect the module from vertical impacts. A plurality of button-shaped channels is used around the edges of the photovoltaic module to absorb forces applied to the module along an axis parallel to the module and direct moisture away from the module that could otherwise penetrate the module and adversely affect the cells within the module. A spacer is employed between the upper and lower panels that has a coefficient of thermal expansion substantially equivalent to the coefficient of thermal expansion of at least one of the panels.
Zhang, Xiaobin; Li, Qiong; Eskine, Kendall J.; Zuo, Bin
2014-01-01
The current studies extend perceptual symbol systems theory to the processing of gender categorization by revealing that gender categorization recruits perceptual simulations of spatial height and size dimensions. In study 1, categorization of male faces were faster when the faces were in the “up” (i.e., higher on the vertical axis) rather than the “down” (i.e., lower on the vertical axis) position and vice versa for female face categorization. Study 2 found that responses to male names depicted in larger font were faster than male names depicted in smaller font, whereas opposite response patterns were given for female names. Study 3 confirmed that the effect in Study 2 was not due to metaphoric relationships between gender and social power. Together, these findings suggest that representation of gender (social categorization) also involves processes of perceptual simulation. PMID:24587022
Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows
NASA Astrophysics Data System (ADS)
Biferale, L.; Bonaccorso, F.; Mazzitelli, I. M.; van Hinsberg, M. A. T.; Lanotte, A. S.; Musacchio, S.; Perlekar, P.; Toschi, F.
2016-10-01
By using direct numerical simulations (DNS) at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.
Clockwise rotation of the western Mojave Desert
NASA Technical Reports Server (NTRS)
Golombek, Matthew P.; Brown, Laurie L.
1988-01-01
A study of paleomagnetic data from Miocene volcanic rocks in the western Mojave Desert, which suggests about 25 deg of clockwise rotation, is presented. A total of 166 oriented core samples of two types of basalt were taken from 19 sites in the region. After demagnetization to 40 or 60 mT, application of structural corrections, and inversion of reversed sites, the data yielded an average direction of 51.6 deg inclination and 15.6 deg declination. When compared with the expected direction for Miocene rocks for stable North America, the direction for these Mojave rocks shows a clockwise rotation of 23.8 deg + or - 11.3 deg and a flattening of about 2.1 deg, a rotation which agrees in direction with oroclinal bending of the southern Sierra Nevada due to right-lateral shear along the western margin of North America. Most of this rotation is constrained by other paleomagnetic and strucural information to have occurred soon after the sampled basalts were deposited (about 20 Ma) and before about 16 Ma. These clockwise declination anomalies indicate that any subsequent counterclockwise rotation is small and/or compensated by previous clockwise rotation.
NASA Technical Reports Server (NTRS)
Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.
2010-01-01
The extremely massive (> 90 Solar Mass) and luminous (= 5 x 10(exp 6) Solar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the galaxy. However, many of its underlying physical parameters remain a mystery. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision in Eta Car, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of i approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-1) space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.
NASA Technical Reports Server (NTRS)
Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.
2011-01-01
The extremely massive (> 90 Stellar Mass) and luminous (= 5 x 10(exp 6) Stellar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the Galaxy. However, many of its underlying physical parameters remain unknown. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to tightly constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-D space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.
NASA Astrophysics Data System (ADS)
Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu
2013-02-01
We report a simple, efficient and economical way to enhance the levitation or guidance performance of present high-temperature superconducting (HTS) Maglev systems by exploring the anisotropic properties of the critical current density in the a-b plane and along the c-axis of bulk superconductors. In the method, the bulk laying mode with different c-axis directions is designed to match with the magnetic field configuration of the applied permanent magnet guideway (PMG). Experimental results indicate that more than a factor of two improvement in the levitation force or guidance force is achieved when changing the laying mode of bulk superconductors from the traditional fashion of keeping the c-axis vertical to the PMG surface to the studied one of keeping the c-axis parallel to the PMG surface, at the maximum horizontal and vertical magnetic field positions of the PMG, respectively. These phenomena resulted from the physical nature of the generated levitation force and guidance force (electromagnetic forces) and the fact that there are different critical current densities in the a-b plane and along the c axis. Based on the experimental results, new HTS Maglev systems can be designed to meet the requirements of practical heavy-load or curved-route applications.
Whole-body vibration exposure study in U.S. railroad locomotives--an ergonomic risk assessment.
Johanning, Eckardt; Fischer, Siegfried; Christ, Eberhard; Göres, Benno; Landsbergis, Paul
2002-01-01
Whole-body vibration exposure of locomotive engineers and the vibration attenuation of seats in 22 U.S. locomotives (built between 1959 and 2000) was studied during normal revenue service and following international measurement guidelines. Triaxial vibration measurements (duration mean 155 min, range 84-383 min) on the seat and on the floor were compared. In addition to the basic vibration evaluation (aw rms), the vector sum (av), the maximum transient vibration value (MTVV/aw), the vibration dose value (VDV/(aw T1/4)), and the vibration seat effective transmissibility factor (SEAT) were calculated. The power spectral densities are also reported. The mean basic vibration level (aw rms) was for the fore-aft axis x = 0.18 m/sec2, the lateral axis y = 0.28 m/sec2, and the vertical axis z = 0.32 m/sec2. The mean vector sum was 0.59 m/sec2 (range 0.27 to 1.44). The crest factors were generally at or above 9 in the horizontal and vertical axis. The mean MTVV/aw was 5.3 (x), 5.1 (y), and 4.8 (z), and the VDV/(aw T1/4) values ranged from 1.32 to 2.3 (x-axis), 1.33 to 1.7 (y-axis), and 1.38 to 1.86 (z-axis), generally indicating high levels of shocks. The mean seat transmissibility factor (SEAT) was 1.4 (x) and 1.2 (y) and 1 (z), demonstrating a general ineffectiveness of any of the seat suspension systems. In conclusion, these data indicate that locomotive rides are characterized by relatively high shock content (acceleration peaks) of the vibration signal in all directions. Locomotive vertical and lateral vibrations are similar, which appears to be characteristic for rail vehicles compared with many road/off-road vehicles. Tested locomotive cab seats currently in use (new or old) appear inadequate to reduce potentially harmful vibration and shocks transmitted to the seated operator, and older seats particularly lack basic ergonomic features regarding adjustability and postural support.
Oceanic response to Typhoon Nari (2007) in the East China Sea
NASA Astrophysics Data System (ADS)
Oh, Kyung-Hee; Lee, Seok; Kang, Sok-Kuh; Song, Kyu-Min
2017-06-01
The oceanic response to a typhoon in the East China Sea (ECS) was examined using thermal and current structures obtained from ocean surface drifters and a bottom-moored current profiler installed on the right side of the typhoon's track. Typhoon Nari (2007) had strong winds as it passed the central region of the ECS. The thermal structure in the ECS responded to Typhoon Nari (2007) very quickly: the seasonal thermocline abruptly collapsed and the sea surface temperature dropped immediately by about 4°C after the typhoon passed. The strong vertical mixing and surface cooling caused by the typhoon resulted in a change in the thermal structure. Strong near-inertial oscillation occurred immediately after the typhoon passed and lasted for at least 4-5 days, during which a strong vertical current existed in the lower layer. Characteristics of the near-inertial internal oscillation were observed in the middle layer. The clockwise component of the inertial frequency was enhanced in the surface layer and at 63 m depth after the typhoon passed, with these layers almost perfectly out of phase. The vertical shear current was intensified by the interaction of the wind-driven current in the upper layer and the background semi-diurnal tidal current during the arrival of the typhoon, and also by the near-inertial internal oscillation after the typhoon passage. The strong near-inertial internal oscillation persisted without significant interfacial structure after the mixing of the thermocline, which could enhance the vertical mixing over several days.
2015-02-18
tends to resurge when the cost of petroleum rises as it did during the energy crisis of the 1970’s. Wind turbines are divided into two categories that...include horizontal axis and vertical axis. Horizontal-axis wind turbines have a main rotor driving an electrical generator on... turbines . They convert significantly more power in medium and higher winds than drag blades. Blades are attached directly to a hub just like on a
Gravitomagnetic Acceleration of Black Hole Accretion Disk Matter to Polar Jets
NASA Astrophysics Data System (ADS)
Poirier, John; Mathews, Grant
2015-04-01
It is shown that the motion of the neutral masses in an accretion disk orbiting a black hole creates a magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk away from the disk and then inward toward the axis of the accretion disk. Moreover, as the accelerated material nears the axis, a frame-dragging effect twists the trajectories around the axis thus contributing to the formation of a narrow polar jet emanating from the poles.
NASA Astrophysics Data System (ADS)
Tirpitz, Jan-Lukas; Friess, Udo; Platt, Ulrich
2017-04-01
An accurate knowledge of the vertical distribution of trace gases and aerosols is crucial for our understanding of the chemical and dynamical processes in the lower troposphere. Their accurate determination is typically only possible by means of laborious and expensive airborne in-situ measurements but in the recent decades, numerous promising ground-based remote sensing approaches have been developed. One of them is to infer vertical distributions from "Differential Optical Absorption Spectroscopy" (DOAS) measurements. DOAS is a technique to analyze UV- and visible radiation spectra of direct or scattered sunlight, which delivers information on different atmospheric parameters, integrated over the light path from space to the instrument. An appropriate set of DOAS measurements, recorded under different viewing directions (Multi-Axis DOAS) and thus different light path geometries, provides information on the atmospheric state. The vertical profiles of aerosol properties and trace gas concentrations can be retrieved from such a set by numerical inversion techniques, incorporating radiative transfer models. The information content of measured data is rarely sufficient for a well-constrained retrieval, particularly for atmospheric layers above 1 km. We showed in first simulations that, apart from spectral properties, the polarization state of skylight is likely to provide a significant amount of additional information on the atmospheric state and thus to enhance retrieval quality. We present first simulations, expectations and ideas on how to implement and characterize a polarization sensitive Multi-Axis DOAS instrument and a corresponding profile retrieval algorithm.
THE EVOLUTION OF THE ELECTRIC CURRENT DURING THE FORMATION AND ERUPTION OF ACTIVE-REGION FILAMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan
We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period,more » respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.« less
14 CFR 25.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2012 CFR
2012-01-01
... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 27.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2014 CFR
2014-01-01
... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 27.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2013 CFR
2013-01-01
... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 27.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2012 CFR
2012-01-01
... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 29.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2012 CFR
2012-01-01
... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 23.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2013 CFR
2013-01-01
... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 25.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 23.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2014 CFR
2014-01-01
... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 25.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2013 CFR
2013-01-01
... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 27.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 29.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 25.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2014 CFR
2014-01-01
... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 29.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2013 CFR
2013-01-01
... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 23.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2012 CFR
2012-01-01
... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 23.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
14 CFR 29.1387 - Position light system dihedral angles.
Code of Federal Regulations, 2014 CFR
2014-01-01
... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...
Microwave and Millimeter Wave Properties of Vertically-Aligned Single Wall Carbon Nanotubes Films
NASA Astrophysics Data System (ADS)
Haddadi, K.; Tripon-Canseliet, C.; Hivin, Q.; Ducournau, G.; Teo, E.; Coquet, P.; Tay, B. K.; Lepilliet, S.; Avramovic, V.; Chazelas, J.; Decoster, D.
2016-05-01
We present the experimental determination of the complex permittivity of vertically aligned single wall carbon nanotubes (SWCNTs) films grown on quartz substrates in the microwave regime from 10 MHz up to 67 GHz, with the electrical field perpendicular to the main axis of the carbon nanotubes (CNTs), based on coplanar waveguide transmission line approach together with the measurement of the microwave impedance of top metalized vertically—aligned SWCNTs grown on conductive silicon substrates up to 26 GHz. From coplanar waveguide measurements, we obtain a real part of the permittivity almost equal to unity, which is interpreted in terms of low carbon atom density (3 × 1019 at/cm3) associated with a very low imaginary part of permittivity (<10-3) in the frequency range considered due to a very small perpendicular conductivity. The microwave impedance of a vertically aligned CNTs bundle equivalent to a low resistance reveals a good conductivity (3 S/cm) parallel to the CNTs axis. From these two kinds of data, we experimentally demonstrate the tensor nature of the vertically grown CNTs bundles.
The Managerial Grid; Key Orientations for Achieving Production through People.
ERIC Educational Resources Information Center
Blake, Robert R; Mouton, Jane S.
The Managerial Grid arranges a concern for production on the horizontal axis and a concern for people on the vertical axis of a coordinate system: 1,1 shows minimum concern for production and people; 9,1 shows major production emphasis and minimum human considerations; 1,9 shows maximum concern for friendly working conditions and minimum…
Coding of Velocity Storage in the Vestibular Nuclei.
Yakushin, Sergei B; Raphan, Theodore; Cohen, Bernard
2017-01-01
Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons.
Coding of Velocity Storage in the Vestibular Nuclei
Yakushin, Sergei B.; Raphan, Theodore; Cohen, Bernard
2017-01-01
Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons. PMID:28861030
Apparatus for checking dimensions of workpieces
Possati, Mario; Golinelli, Guido
1992-01-01
An apparatus for checking features of workpieces with rotational symmetry defining a geometrical axis, which includes a base, rest devices fixed to the base for supporting the workpiece with the geometrical axis horizontally arranged, and a support structure coupled to the base for rotation about a horizontal axis. A counterweight and sensor are coupled to the support structure and movable with the support structure from a rest position, allowing loading of the workpiece to be checked onto the rest devices to a working position where the sensor is brought into cooperation with the workpiece. The axis of rotation of the support structure is arranged below the axis of the workpiece, in correspondence to a vertical geometrical plane passing through the workpiece geometric axis when the workpiece is positioned on the rest devices.
Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro
2015-05-01
A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1=ω2+ω3. This relation enabled to lay out the flow tube without twisting by the simultaneous rotation of three axes. The flow tube was introduced from the bottom side of the apparatus into the sun axis of the first rotary frame reaching the upper side of the planet axis and connected to the column in the satellite axis. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3:2:5, v/v) for lower phase mobile and (1:4:5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) - CCW (ω2) - CCW (ω3) by the flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) - CW (ω2) - CW (ω3) by the flow tube distribution. A series of experiments on peak resolution and stationary phase retention revealed that better partition efficiencies were obtained at the flow rate of 0.5 mL/min (column 1) and 0.8 mL/min (column 2) for lower phase mobile and 0.2 mL/min (column 1) and 0.4 mL/min (column 2) for upper phase mobile when using the left-handed multilayer coil (total capacity: 57.0 mL for column 1 and 75.0 mL for column 2) under the rotation speeds of approximately ω1=300 rpm, ω2=150 rpm and ω3=150 rpm. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Cliff, W. C.; Huffaker, R. M.; Dahm, W. K.; Thomson, J. A. L.; Lawrence, T. R.; Krause, M. C.; Wilson, D. J. (Inventor)
1976-01-01
A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed.
Topological phononic states of underwater sound based on coupled ring resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Cheng; Li, Zheng; Ni, Xu
We report a design of topological phononic states for underwater sound using arrays of acoustic coupled ring resonators. In each individual ring resonator, two degenerate acoustic modes, corresponding to clockwise and counter-clockwise propagation, are treated as opposite pseudospins. The gapless edge states arise in the bandgap resulting in protected pseudospin-dependent sound transportation, which is a phononic analogue of the quantum spin Hall effect. We also investigate the robustness of the topological sound state, suggesting that the observed pseudospin-dependent sound transportation remains unless the introduced defects facilitate coupling between the clockwise and counter-clockwise modes (in other words, the original mode degeneracymore » is broken). The topological engineering of sound transportation will certainly promise unique design for next generation of acoustic devices in sound guiding and switching, especially for underwater acoustic devices.« less
NASA Astrophysics Data System (ADS)
Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.
2013-01-01
Tropospheric NO2 vertical column densities were retrieved for the first time in Toronto, Canada using three methods of differing spatial scales. Remotely-sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities derived using a pair of chemiluminescence monitors situated 0.01 and 0.5 km above ground level. The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson R ranging from 0.68 to 0.79), but the in situ vertical column densities were 27% to 55% greater than the remotely-sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely-sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely-sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each of the methods.
On the Behavior of Pliable Plate Dynamics in Wind: Application to Vertical Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Cosse, Julia Theresa
Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream. The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind. In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.
Kim, Jeong Ho; Dennerlein, Jack T; Johnson, Peter W
2018-04-01
Whole body vibration (WBV) exposures are often predominant in the fore-aft (x) or lateral (y) axis among off-road agricultural vehicles. However, as the current industry standard seats are designed to reduce mainly vertical (z) axis WBV exposures, they may be less effective in reducing drivers' exposure to multi-axial WBV. Therefore, this laboratory-based study aimed to determine the differences between a single-axial (vertical) and multi-axial (vertical + lateral) suspension seat in reducing WBV exposures, head acceleration, self-reported discomfort, and muscle activity (electromyography) of the major muscle of the low back, neck and shoulders. The results showed that the multi-axial suspension seat had significantly lower WBV exposures compared to the single-axial suspension seats (p' < 0.04). Similarly, the multi-axial suspension seat had lower head acceleration and muscle activity of the neck, shoulder, and low back compared to the single-axial suspension seat; some but not all of the differences were statistically significant. These results indicate that the multi-axial suspension seat may reduce the lateral WBV exposures and associated muscular loading in the neck and low back in agricultural vehicle operators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Three-dimensional hydrodynamic modelling study of reverse estuarine circulation: Kuwait Bay.
Alosairi, Y; Pokavanich, T; Alsulaiman, N
2018-02-01
Hydrodynamics and associated environmental processes have always been of major concern to coastal-dependent countries, such as Kuwait. This is due to the environmental impact that accompanies the economic and commercial activities along the coastal areas. In the current study, a three-dimensional numerical model is utilized to unveil the main dynamic and physical properties of Kuwait Bay during the critical season. The model performance over the summer months (June, July and August 2012) is assessed against comprehensive field measurements of water levels, velocity, temperature and salinity data before using the model to describe the circulation as driven by tides, gravitational convection and winds. The results showed that the baroclinic conditions in the Bay are mainly determined by the horizontal salinity gradient and to much less extent temperature gradient. The gradients stretched over the southern coast of the Bay where dense water is found at the inner and enclosed areas, while relatively lighter waters are found near the mouth of the Bay. This gradient imposed a reversed estuarine circulation at the main axis of the Bay, particularly during neap tides when landward flow near the surface and seaward flow near the bed are most evident. The results also revealed that the shallow areas, including Sulaibikhat and Jahra Bays, are well mixed and generally flow in the counter-clockwise direction. Clockwise circulations dominated the northern portion of the Bay, forming a sort of large eddy, while turbulent fields associated with tidal currents were localized near the headlands. Copyright © 2017 Elsevier Ltd. All rights reserved.
Perception of Fechner Illusory Colors in Alzheimer Disease Patients.
Kaubrys, Gintaras; Bukina, Vera; Bingelytė, Ieva; Taluntis, Vladas
2016-11-30
BACKGROUND Alzheimer disease (AD) primarily affects cognition. A variety of visual disorders was established in AD. Fechner illusory colors are produced by a rotating disk with a black and white pattern. The purpose of our research was to explore the perception of illusory colors in AD. MATERIAL AND METHODS W recruited 40 AD patients (MMSE ≥14) and 40 normal controls (CG group) matched by age, education, gender in this prospective, cross-sectional, case-control study. An achromatic Benham's disk attached to a device to control the speed and direction of rotation was used to produce illusory colors. Primary, secondary, and tertiary RGB system colors were used for matching of illusory and physical colors. RESULTS Subjects in the AD group perceived less illusory colors in 5 arcs (p<0.05) of the 8 arcs assessed. The biggest difference was found between AD and CG groups for pure blue (χ²=26.87, p<0.001 clockwise, χ²=22.75, p<0.001 counter-clockwise). Groups did not differ in perception of pure yellow opponent colors (p>0.05). Mixed colors of the blue-yellow axis were perceived less often in AD, but more frequently than pure blue (#0000FF). The sequence of colors on Benham's disk followed a complex pattern, different from the order of physical spectral colors and opponent processes-based colors. CONCLUSIONS AD patients retained reduced perception of illusory colors. The perception of pure blue illusory color is almost absent in AD. The asymmetrical shift to the yellow opponent is observed in AD with red prevailing over green constituent. This may indicate cortical rather than retinal impairment.
NASA Astrophysics Data System (ADS)
Osete, M. L.; Villalain, J. J.; Pavon-Carrasco, F. J.; Palencia, A.
2009-05-01
The Betic Cordillera is the northern branch of the Betic-Rifean orogen, the westernmost segment of the Mediterranean Alpine orogenic system. Several palaeomagnetic studies have enhanced the important role that block rotations about vertical axes have played in the tectonic evolution of the region. In this work we present a review of published palaeomagnetic data. According with the rotational deformation, the Betics are divided into the central-western area and the eastern Betics. A sequence of rotations for the two regions is also proposed. In central and western Subbetics almost constant clockwise rotations of about 60 are documented in Jurassic limestones. The existence of a pervasive remagnetization of Jurassic limestones, which was coeval with the folding of the studied units and dated as post-Palaeogene, constrains the timing of tectonic rotations in western Subbetics. New palaeomagnetic data from Neogene sedimentary sequences in central Betics indicate that palaeomagnetic clockwise rotations continued after late Miocene. A similar pattern of 40 CW rotations occurred after 20-17 Ma was obtained from the study of the Ronda-Malaga peridotites (western Internal Betics). In eastern Subbetics a more heterogeneous pattern, including very high CW rotations has been observed. But recent rotational deformation in the Internal part of eastern Betics is CCW and related to the left-lateral strike-slip fault systems. Proposed kinematics models for the Betics are discussed under the light of the present available palaeomagnetic information.
NASA Astrophysics Data System (ADS)
AlAnezi, Ghunaim; Kasahara, Junzo; AlDamegh, Khaled S.; Lafouza, Omar; AlYousef, Khaled; Almalki, Fahad; Nishiyama, Eichiro
2015-04-01
We have developed the time lapse technology for EOR (enhanced oil recovery) and CCS (Carbon Capture and Storage) using a very stable and continuous seismic source called ACROSS (Accurately Controlled Routinely Operated Signal System) with multi-geophones. Since 2011, we have tested this technology in the context of carbonate rocks in Saudi Arabia. The Al Wasee water pumping site approximately 120 km east of Riyadh city has been selected as a trail-site. The intention is to observe the changes in aquifers induced by pumping operations. One ACROSS source unit was installed at the Al Wasee site in December 2011 and we are continuing the field test. The instrument has been operated from 10 to 50 Hz with 40 tons-f at 50 Hz. Using alternatively clockwise and counter-clockwise rotations we can synthesize vertical and horizontal forces, respectively. 31 3C-geophones in 2 km x 3 km area and four nearby 3Cgeophones have been used to monitor the seismic changes from pumping the water. The one and half month data between December 2012 and February 2013 show continuous and clear change of observed waveforms for all 31 stations while the source signature did not change. The change is closest and fastest at the station #42. The cause of continuous change with time is interpreted as pumping of water by 64 wells located in this field.
NASA Astrophysics Data System (ADS)
Sproles, E.; Leibowitz, S. G.; Wigington, P. J.; Patil, S.; Reager, J. T.; Famiglietti, J. S.
2013-12-01
The temporal relationships between the measurements of terrestrial water storage (TWS), groundwater, and stream discharge were analyzed at three different scales in the Columbia River Basin (CRB) for water years 2004 - 2012. Our nested watershed approach examined the Snake River (182,000 sq km), Upper Columbia (155,000 sq km), and the greater CRB (614,000 sq km). These three watersheds represent distinct climatic and geologic provinces found in the region. TWS (the vertically-integrated sum of snow, soil moisture, surface water, and groundwater) was measured remotely by NASA's Gravity Recovery and Climate Experiment (GRACE). Results show that over the course of a water year, TWS and discharge exhibit a characteristic counter clockwise hysteresis pattern for each of the three regional watersheds. Similarly, in each of the three watersheds groundwater and discharge also exhibit a characteristic hysteresis pattern over the course of a water year--only in a clockwise direction. Our findings provide regional characteristics that quantify and describe the fluxes between snow, groundwater, and discharge, and also identify the out-of-phase relationship between the region's wet winters and groundwater recharge from during the spring. The methods and results presented in this study provide an analytic framework to incorporate remotely-sensed measurements of TWS to better understand how regional watersheds function as an integrated system, and also to identify potential water surplus and scarcity in the CRB and other regional watersheds.
2017-03-01
experimental effort involving a series of +z-axis impact tests was conducted on the 711th Human Performance Wing’s Vertical Deceleration Tower (VDT...parameters) and a JSF-styled ejection seat configuration (combined non -baseline test parameters) produced similar biodynamic response parameters for the LOIS...Photography .............................................................................. 12 6.0 EXPERIMENTAL DESIGN
The effect of solidity on the performance of H-rotor Darrieus turbine
NASA Astrophysics Data System (ADS)
Hassan, S. M. Rakibul; Ali, Mohammad; Islam, Md. Quamrul
2016-07-01
Utilization of wind energy has been investigated for a long period of time by different researchers in different ways. Out of which, the Horizontal Axis Wind Turbine and the Vertical Axis Wind Turbine have now advanced design, but still there is scope to improve their efficiency. The Vertical Axis Wind Turbine (VAWT) has the advantage over Horizontal Axis Wind Turbine (HAWT) for working on omnidirectional air flow without any extra control system. A modified H-rotor Darrieus type VAWT is analysed in this paper, which is a lift based wind turbine. The effect of solidity (i.e. chord length, no. of blades) on power coefficient (CP) of H-rotor for different tip speed ratios is numerically investigated. The study is conducted using time dependent RANS equations using SST k-ω model. SIMPLE scheme is used as pressure-velocity coupling and in all cases, the second order upwind discretization scheme is chosen for getting more accurate solution. In results, different parameters are compared, which depict the performance of the modified H-rotor Darrieus type VAWT. Double layered H-rotor having inner layer blades with longer chord gives higher power coefficient than those have inner layer blades with smaller chord.
NASA Astrophysics Data System (ADS)
Mendoza, Victor; Bachant, Peter; Wosnik, Martin; Goude, Anders
2016-09-01
Vertical axis wind turbines (VAWT) can be used to extract renewable energy from wind flows. A simpler design, low cost of maintenance, and the ability to accept flow from all directions perpendicular to the rotor axis are some of the most important advantages over conventional horizontal axis wind turbines (HAWT). However, VAWT encounter complex and unsteady fluid dynamics, which present significant modeling challenges. One of the most relevant phenomena is dynamic stall, which is caused by the unsteady variation of angle of attack throughout the blade rotation, and is the focus of the present study. Dynamic stall is usually used as a passive control for VAWT operating conditions, hence the importance of predicting its effects. In this study, a coupled model is implemented with the open-source CFD toolbox OpenFOAM for solving the Navier-Stokes equations, where an actuator line model and dynamic stall model are used to compute the blade loading and body force. Force coefficients obtained from the model are validated with experimental data of pitching airfoil in similar operating conditions as an H-rotor type VAWT. Numerical results show reasonable agreement with experimental data for pitching motion.
NASA Technical Reports Server (NTRS)
Knox, C. E.
1978-01-01
Navigation error data from these flights are presented in a format utilizing three independent axes - horizontal, vertical, and time. The navigation position estimate error term and the autopilot flight technical error term are combined to form the total navigation error in each axis. This method of error presentation allows comparisons to be made between other 2-, 3-, or 4-D navigation systems and allows experimental or theoretical determination of the navigation error terms. Position estimate error data are presented with the navigation system position estimate based on dual DME radio updates that are smoothed with inertial velocities, dual DME radio updates that are smoothed with true airspeed and magnetic heading, and inertial velocity updates only. The normal mode of navigation with dual DME updates that are smoothed with inertial velocities resulted in a mean error of 390 m with a standard deviation of 150 m in the horizontal axis; a mean error of 1.5 m low with a standard deviation of less than 11 m in the vertical axis; and a mean error as low as 252 m with a standard deviation of 123 m in the time axis.
NASA Astrophysics Data System (ADS)
Cross, Rod
2013-03-01
A tippe top (see Fig. 1) is usually constructed as a truncated sphere with a cylindrical peg on top, as indicated in Fig. 2(a). When spun rapidly on a horizontal surface, a tippe top spins about a vertical axis while rotating slowly about a horizontal axis until the peg touches the surface. At that point, weight is transferred to the peg, the truncated sphere rises off the surface, and the top spins on the peg until it is upright. A feature of a tippe top is that its center of mass, labeled G in Fig. 2, is below the geometric center of the sphere, C, when the top is at rest. That is where it will return if the top is tilted sideways and released since that is the stable equilibrium position. The fact that a tippe top turns upside down when it spins is therefore astonishing. The behavior of a tippe top is quite unlike that of a regular top since the spin axis remains closely vertical the whole time. The center of mass of a regular top can also rise, but the spin axis tilts upward as the top rises and enters a "sleeping" position.
Pettorossi, V E; Errico, P; Ferraresi, A
1997-01-01
Quick phases (QPs) induced by horizontal and vertical sinusoidal vestibular stimulations were studied in rabbits, cats, and humans. In all the animals, large and frequent horizontal QPs were observed following yaw stimulation in prone position. By contrast, QPs were almost absent during roll stimulation in rabbits, and they were small and oblique during pitch stimulation in cats and humans. As a result of these differences, the range of gaze displacement induced by vestibular stimulations was greater in the horizontal plane than in the vertical one. We also found that the trajectory of the QPs in rabbits was kept horizontal even when the yaw rotation was off vertical axis of +/- 45 degrees in the sagittal plane. Moreover, in the rabbit, the rare horizontal QPs induced by roll stimulation did not change their orientation at various pitch angles of roll stimulation axis. The QPs were also analyzed following roll stimulation of the rabbit in supine position. In this condition, in which the otolithic receptors were activated in the opposite way compared to prone position, large vertical QPs were elicited. We concluded that these results provide evidence that the otolithic signal plays a role in controlling occurrence and trajectory orientation of the QPs.
Rolled-up TiO₂ optical microcavities for telecom and visible photonics.
Madani, Abbas; Böttner, Stefan; Jorgensen, Matthew R; Schmidt, Oliver G
2014-01-15
The fabrication of high-quality-factor polycrystalline TiO₂ vertically rolled-up microcavities (VRUMs) by the controlled release of differentially strained TiO₂ bilayered nanomembranes, operating at both telecom and visible wavelengths, is reported. Optical characterization of these resonators reveals quality factors as high as 3.8×10³ in the telecom wavelength range (1520-1570 nm) by interfacing a TiO₂ VRUMs with a tapered optical fiber. In addition, a splitting in the fundamental modes is experimentally observed due to the broken rotational symmetry in our resonators. This mode splitting indicates coupling between clockwise and counterclockwise traveling whispering gallery modes of the VRUMs. Moreover, we show that our biocompatible rolled-up TiO₂ resonators function at several positions along the tube, making them promising candidates for multiplexing and biosensing applications.
Long range laser traversing system
NASA Technical Reports Server (NTRS)
Caudill, L. O. (Inventor)
1974-01-01
The relative azimuth bearing between first and second spaced terrestrial points which may be obscured from each other by intervening terrain is measured by placing at one of the points a laser source for projecting a collimated beam upwardly in the vertical plane. The collimated laser beam is detected at the second point by positioning the optical axis of a receiving instrument for the laser beam in such a manner that the beam intercepts the optical axis. In response to the optical axis intercepting the beam, the beam is deflected into two different ray paths by a beam splitter having an apex located on the optical axis. The energy in the ray paths is detected by separate photoresponsive elements that drive logic networks for proving indications of: (1) the optical axis intercepting the beam; (2) the beam being on the left of the optical axis and (3) the beam being on the right side of the optical axis.
Tectonic and kinematics of curved orogenic systems: insights from AMS analysis and paleomagnetism
NASA Astrophysics Data System (ADS)
Cifelli, Francesca; Mattei, Massimo
2016-04-01
During the past few years, paleomagnetism has been considered a unique tool for constraining kinematic models of curved orogenic systems, because of its great potential in quantifying vertical axis rotations and in discriminating between primary and secondary (orocline s.l.) arcs. In fact, based on the spatio-temporal relationships between deformation and vertical axis rotation, curved orogens can be subdivided as primary or secondary (oroclines s.l.), if they formed respectively in a self-similar manner without undergoing important variations in their original curved shape or if their curvature in map-view is the result of a bending about a vertical axis of rotation. In addition to the kinematics of the arc and the timing of its curvature, a crucial factor for understanding the origin of belts curvature is the knowledge of the geodynamic process governing arc formation. In this context, the detailed reconstruction of the rotational history is mainly based on paleomagnetic and structural analyses (fold axes, kinematic indicators), which include the magnetic fabric. In fact, in curved fold and thrust belts, assuming that the magnetic lineation is tectonically originated and formed during layer-parallel shortening (LPS) before vertical axis rotations, the orientation of the magnetic lineation often strictly follows the curvature of the orogeny. This assumption represents a fundamental prerequisite to fully understand the origin of orogenic arcs and to unravel the geodynamic processes responsible for their curvature. We present two case studies: the central Mediterranean arcs and the Alborz Mts in Iran. The Mediterranean area has represented an attractive region to apply paleomagnetic analysis, as it shows a large number of narrow arcs, whose present-day shape has been driven by the space-time evolution of the Mediterranean subduction system, which define a irregular and rather diffuse plate boundary. The Alborz Mts. form a sinuous range over 1,200 km long, defining from west to east a salient with a southward concavity which results in the wrapping of the South Caspian basin to the north, and a southward reentrant with apex which encircles the Central Iranian block to the south. The integration of paleomagnetic and AMS data indicates that this orogen started to form as an almost straight E-W oriented range and acquired its present-day curved shape by means of opposite vertical axis rotations. Such a process was probably caused by the relative motion between different rigid blocks (South Caspian, Central Iran, and the Eastern Iranian Blocks) forming the collision zone and hence must be a crustal to lithospheric-scale process.
NASA Astrophysics Data System (ADS)
Carlson, C. W.; Pluhar, C. J.; Glen, J. M.; Farner, M. J.
2012-12-01
Accommodating ~20-25% of the dextral-motion between the Pacific and North American plates the Walker Lane is represented as an elongate, NW oriented, region of active tectonics positioned between the northwesterly-translating Sierra Nevada microplate and the east-west extension of the Basin and Range. This region of transtension is being variably accommodated on regional-scale systems of predominantly strike-slip faulting. At the western edge of the central Walker Lane (ca. 38°-39°N latitude) is a region of crustal-scale blocks bounded by wedge-shaped depositional-basins and normal-fault systems, here defined as the west-central Walker Lane (WCWL). Devoid of obvious strike-slip faulting, the presence of tectonic-block vertical-axis rotations in the WCWL represents unrecognized components of dextral-shearing and/or changes of strain-accommodation over time. We use paleomagnetic reference directions for Eureka Valley Tuff (EVT) members of the late Miocene Stanislaus Group as spatial and temporal markers for documentation of tectonic-block vertical-axis rotations near Bridgeport, CA. Study-site rotations revealed discrete rotational domains of mean vertical-axis rotation ranging from ~10°-30° with heterogeneous regional distribution. Additionally, the highest measured magnitudes of vertical-axis rotation (~50°-60° CW) define a 'Region of High Strain' that includes the wedge-shaped Bridgeport Valley (Basin). This study revealed previously-unrecognized tectonic rotation of reference direction sites from prior studies for two (By-Day and Upper) of the three members of the EVT, resulting in under-estimates of regional strain accommodation by these studies. Mean remanent directions and virtual geomagnetic poles utilized in our study yielded a recalculated reference direction for the By-Day member of: Dec.=353.2°; Inc.= 43.7°; α95=10.1, in agreement with new measurements in the stable Sierra Nevada. This recalculated direction confirmed the presence of previously unrecognized reference site rotations, and provided an additional reference direction for determining vertical-axis rotation magnitudes. We present a kinematic model based on mean rotation magnitudes of ~30° CW for the Sweetwater Mountains and Bodie Hills that accounts for rotational-strain accommodation of dextral shear in the WCWL since the late Miocene. This model considers rotational magnitudes, paleostrain indicators, edge-effects, and strain-accommodating structures of rotating crustal blocks to represent changes in regional strain accommodation over time. The results and models presented here elucidate the complicated and evolving nature of the WCWL, and further understanding of variations in strain accommodation for the Walker Lane.
Counter-rotating vortex pairs in the wake of a vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Rolin, Vincent; Porté-Agel, Fernando
2017-04-01
Despite the rising popularity of vertical axis wind turbines, or VAWTs, the wakes behind these machines is much less well understood than those behind horizontal axis wind turbines, or HAWTs. A thorough understanding of wakes is important as they can cause turbines in wind farms to produce less power than anticipated and increase the fatigue loading on turbines due to vibrations. In order to gain a deeper understanding of the wake behind a vertical axis wind turbine in atmospheric flow stereo-PIV is implemented in a boundary-layer wind tunnel to produce snapshots of the 3-component velocity field in the wake at various downstream positions. The boundaries of the wake are readily observed due to the high velocity gradients and turbulence present here. Two pairs of counter-rotating vortices similar to those in the wake of yawed HAWTs are also observed. An examination of the momentum fluxes behind the turbine demonstrates that the mean flow induced by these vortices entrains a large quantity of momentum from the unperturbed boundary layer flow above the wake. This effect proves to play an even more significant role than turbulence in reintroducing momentum into the wake. In order to comprehend why the VAWT produces these vortices we modify the double-multiple stream-tube model typically used to predict VAWT performance to incorporate crosswind forces. The similarity between VAWT and yawed HAWT wakes is found not to be coincidental as both cases feature rotors which exert a lateral thrust on the incoming wind which leads to the creation of counter-rotating vortex pairs.
NASA Technical Reports Server (NTRS)
Wood, Scott; Clement, Gilles; Denise, Pierre; Reschke, Millard
2005-01-01
Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both horizontal and torsional eye velocity as a function of the varying linear acceleration along the lateral plane. The purpose of this study was to examine whether the modulation of these ocular reflexes would be modified by different head-on-trunk positions. Ten human subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias velocity of the eye movements across multiple cycles for each head-on-trunk position. Consistent with previous studies, the modulation of torsional eye movements was greater at 0.125 Hz while the modulation of horizontal eye movements was greater at 0.5 Hz. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of both torsional and horizontal ocular reflexes, on the other hand, shifted towards alignment with the head. These results are consistent with the modulation of torsional and horizontal ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural head axis.
Convective Sedimentation of Colloidal Particles in a Bowl.
Stiles; Kagan
1999-08-01
A physical model, which regards a colloidal dispersion as a single fluid continuum, is used to investigate cellular convection accompanying gravitational sedimentation in a hemispherical bowl with a thin cylindrical shaft along its vertical axis of symmetry. We have adapted the stream-function-vorticity form of the Navier-Stokes equations to describe momentum conservation in axially symmetric containers. These hydrodynamic equations have been coupled to the mass balance equation for binary hydrodynamic diffusion in the presence of a vertical gravitational field. Using finite-element software we have solved the equations governing coupled diffusive and hydrodynamic flow. A rapidly intensifying horizontal toroidal vortex develops around the axis of the bowl. This vortex is characterized by downward barycentric flow along the curved surface of the bowl and upward flow in the vicinity of its axis. We find that after a short period of time this large-scale cellular convection associated with the curved boundary of the bowl greatly enhances the rate of sedimentation. Copyright 1999 Academic Press.
Resistive switching characteristics of thermally oxidized TiN thin films
NASA Astrophysics Data System (ADS)
Biju, K. P.
2018-04-01
Resistive switching characteristics of thermally oxidized TiN thin films and mechanisms were investigated.XPS results indicates Ti-O content decreases with sputter etching and Ti 2p peak shift towards lower binding energy due to formation of Ti-O-N and Ti-N. Pt/TiO2/TiON/TiN stack exhibits both clockwise switching (CWS) and counter clockwise switching(CCWS) characteristic depending on polarity of the applied voltage. However the transition from CCWS to CWS is irreversible. Two stable switching modes with opposite switching polarity and different electrical characteristics are found to coexist in the same memory cell. Clockwise switching shows filamentary characteristics that lead to faster switching with excellent retention at high temperature. Counter-clockwise switching exhibits homogeneous conduction with slower switching and moderate retention. The field-induced switching in both CCWS and CWS might be due to inhomogeneous defect distribution due to thermal oxidation.
Plasticity of the human otolith-ocular reflex
NASA Technical Reports Server (NTRS)
Wall, C. 3rd; Smith, T. R.; Furman, J. M.
1992-01-01
The eye movement response to earth vertical axis rotation in the dark, a semicircular canal stimulus, can be altered by prior exposure to combined visual-vestibular stimuli. Such plasticity of the vestibulo-ocular reflex has not been described for earth horizontal axis rotation, a dynamic otolith stimulus. Twenty normal human subjects underwent one of two types of adaptation paradigms designed either to attenuate or enhance the gain of the semicircular canal-ocular reflex prior to undergoing otolith-ocular reflex testing with horizontal axis rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about a vertical axis with a 0.2 Hz optokinetic stripe pattern that was deliberately mismatched in peak velocity. Pre- and post-adaptation horizontal axis rotations were at 60 degrees/s in the dark and produced a modulation in the slow component velocity of nystagmus having a frequency of 0.17 Hz due to putative stimulation of the otolith organs. Results showed that the magnitude of this modulation component response was altered in a manner similar to the alteration in semicircular canal-ocular responses. These results suggest that physiologic alteration of the vestibulo-ocular reflex using deliberately mismatched visual and semicircular canal stimuli induces changes in both canal-ocular and otolith-ocular responses. We postulate, therefore, that central nervous system pathways responsible for controlling the gains of canal-ocular and otolith-ocular reflexes are shared.
NASA Technical Reports Server (NTRS)
Vance, W.
1973-01-01
The design and application of a vertical axis wind rotor is reported that operates as a two stage turbine wherein the wind impinging on the concave side is circulated through the center of the rotor to the back of the convex side, thus decreasing what might otherwise be a high negative pressure region. Successful applications of this wind rotor to water pumps, ship propulsion, and building ventilators are reported. Also shown is the feasibility of using the energy in ocean waves to drive the rotor. An analysis of the impact of rotor aspect ratio on rotor acceleration shows that the amount of venting between rotor vanes has a very significant effect on rotor speed for a given wind speed.
Three-dimensional organization of vestibular related eye movements to rotational motion in pigeons
NASA Technical Reports Server (NTRS)
Dickman, J. D.; Beyer, M.; Hess, B. J.
2000-01-01
During rotational motions, compensatory eye movement adjustments must continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined. Rotations about different head axes produced horizontal, vertical, and torsional eye movements, whose component magnitude was dependent upon the cosine of the stimulus axis relative to the animal's visual axis. Thus, the three-dimensional organization of the VOR in pigeons appears to be compensatory for any direction of head rotation. Frequency responses of the horizontal, vertical, and torsional slow phase components exhibited high pass filter properties with dominant time constants of approximately 3 s.
NASA Astrophysics Data System (ADS)
Sullivan, W. N.
The Darrieus-type Vertical Axis Wind Turbine (VAWT) presents a variety of unusual structural problems to designers. The level of understanding of these structural problems governs, to a large degree, the success or failure of today's rotor designs. A survey is presented of the technology available for rotor structural design with emphasis on the DOE research program now underway. Itemizations are included of the major structural issues unique to the VAWT along with discussion of available analysis techniques for each problem area. It is concluded that tools are available to at least approximately address the most important problems. However, experimental data for confirmation is rather limited in terms of volume and the range of rotor configurations tested.
Aeroelastic equations of motion of a Darrieus vertical-axis wind-turbine blade
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Kvaternik, R. G.
1979-01-01
The second-degree nonlinear aeroelastic equations of motion for a slender, flexible, nonuniform, Darrieus vertical-axis wind turbine blade which is undergoing combined flatwise bending, edgewise bending, torsion, and extension are developed using Hamilton's principle. The blade aerodynamic loading is obtained from strip theory based on a quasi-steady approximation of two-dimensional incompressible unsteady airfoil theory. The derivation of the equations has its basis in the geometric nonlinear theory of elasticity and the resulting equations are consistent with the small deformation approximation in which the elongations and shears are negligible compared to unity. These equations are suitable for studying vibrations, static and dynamic aeroelastic instabilities, and dynamic response. Several possible methods of solution of the equations, which have periodic coefficients, are discussed.
Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Mehmed, Oral; Johnson, Dexter; Montague, Gerald; Duffy, Kirsten; Jansen, Ralph
2005-01-01
The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig is an apparatus for vibration testing of turbomachine blades in a vacuum at rotational speeds from 0 to 40,000 rpm. This rig includes (1) a vertically oriented shaft on which is mounted an assembly comprising a rotor holding the blades to be tested, (2) two actively controlled heteropolar radial magnetic bearings at opposite ends of the shaft, and (3) an actively controlled magnetic thrust bearing at the upper end of the shaft. This rig is a more capable successor to a prior apparatus, denoted the Dynamic Spin Rig (DSR), that included a vertically oriented shaft with a mechanical thrust bearing at the upper end and a single actively controlled heteropolar radial magnetic bearing at the lower end.
OPTICAL TRANSCRIBING OSCILLOSCOPE
Kerns, Q.A.
1961-09-26
A device is designed for producing accurate graphed waveforms of very fast electronic pulses. The fast pulse is slowly tracked on a cathode ray tube and a pair of photomultiplier tubes, exposed to the pulse trace, view separate vertical portions thereof at each side of a fixed horizontal reference. Each phototube produces an output signal indicative of vertical movement of the exposed trace, which simultaneous signals are compared in a difference amplifier. The amplifier produces a difference signal which, when applied to the cathode ray tube, maintains the trace on the reference. A graphic recorder receives the amplified difference signal at an x-axis input, while a y-axis input is synchronized with the tracking time of the cathode ray tube and therefore graphs the enlarged waveshape.
A Bayesian Account of Visual-Vestibular Interactions in the Rod-and-Frame Task.
Alberts, Bart B G T; de Brouwer, Anouk J; Selen, Luc P J; Medendorp, W Pieter
2016-01-01
Panoramic visual cues, as generated by the objects in the environment, provide the brain with important information about gravity direction. To derive an optimal, i.e., Bayesian, estimate of gravity direction, the brain must combine panoramic information with gravity information detected by the vestibular system. Here, we examined the individual sensory contributions to this estimate psychometrically. We asked human subjects to judge the orientation (clockwise or counterclockwise relative to gravity) of a briefly flashed luminous rod, presented within an oriented square frame (rod-in-frame). Vestibular contributions were manipulated by tilting the subject's head, whereas visual contributions were manipulated by changing the viewing distance of the rod and frame. Results show a cyclical modulation of the frame-induced bias in perceived verticality across a 90° range of frame orientations. The magnitude of this bias decreased significantly with larger viewing distance, as if visual reliability was reduced. Biases increased significantly when the head was tilted, as if vestibular reliability was reduced. A Bayesian optimal integration model, with distinct vertical and horizontal panoramic weights, a gain factor to allow for visual reliability changes, and ocular counterroll in response to head tilt, provided a good fit to the data. We conclude that subjects flexibly weigh visual panoramic and vestibular information based on their orientation-dependent reliability, resulting in the observed verticality biases and the associated response variabilities.
A Bayesian Account of Visual–Vestibular Interactions in the Rod-and-Frame Task
de Brouwer, Anouk J.; Medendorp, W. Pieter
2016-01-01
Abstract Panoramic visual cues, as generated by the objects in the environment, provide the brain with important information about gravity direction. To derive an optimal, i.e., Bayesian, estimate of gravity direction, the brain must combine panoramic information with gravity information detected by the vestibular system. Here, we examined the individual sensory contributions to this estimate psychometrically. We asked human subjects to judge the orientation (clockwise or counterclockwise relative to gravity) of a briefly flashed luminous rod, presented within an oriented square frame (rod-in-frame). Vestibular contributions were manipulated by tilting the subject’s head, whereas visual contributions were manipulated by changing the viewing distance of the rod and frame. Results show a cyclical modulation of the frame-induced bias in perceived verticality across a 90° range of frame orientations. The magnitude of this bias decreased significantly with larger viewing distance, as if visual reliability was reduced. Biases increased significantly when the head was tilted, as if vestibular reliability was reduced. A Bayesian optimal integration model, with distinct vertical and horizontal panoramic weights, a gain factor to allow for visual reliability changes, and ocular counterroll in response to head tilt, provided a good fit to the data. We conclude that subjects flexibly weigh visual panoramic and vestibular information based on their orientation-dependent reliability, resulting in the observed verticality biases and the associated response variabilities. PMID:27844055
Inamassu-Lemes, Sheila Marques; Fuziy, Acácio; Costa, André Luiz Ferreira; Carvalho, Paulo Eduardo Guedes; Nahás-Scocate, Ana Carla Raphaelli
2016-01-01
The purpose of this study was to evaluate the dentoskeletal and soft tissue effects resulting from treatment with Klammt's elastic open activator (EOA) functional orthopedic appliance in patients with Class II malocclusion characterized by mandibular deficiency. Teleradiographs were evaluated in the lateral aspect of the initial (T1) and final (T2) orthopedic phases for 16 patients with Class II, Division 1 malocclusion. The age range was from 9 to 11.2 years, with a mean age of 9.9 years. The cephalometric points were demarcated, and cephalometric measurements were obtained by the same investigator to avoid interobserver variability. The EOA promoted increased lower anterior facial height (LAFH), increased effective mandibular length, clockwise rotation of the mandible, retrusion and verticalization of the upper incisors, proclination and protrusion of the lower incisors, extrusion of the upper molars, mesial movement of the lower molars and anterior projection of the lower lip. Skeletal changes characterized by an increase in mandibular length and dentoalveolar changes with an emphasis on the verticalization and retrusion of the upper incisors, proclination of the lower incisors and mesial positioning of the lower molars were key to improving the occlusal relationship and esthetic facial factors. The EOA is well indicated in patients with Class II malocclusion due to mandibular deficiency with increased overbite, proclined upper incisors and verticalized lower incisors.
NASA Technical Reports Server (NTRS)
Stevens, M. E.; Roskam, J.
1985-01-01
The problem of determining the vertical axis control requirements for landing a VTOL aircraft on a moving ship deck in various sea states is examined. Both a fixed-base piloted simulation and a nonpiloted simulation were used to determine the landing performance as influenced by thrust-to-weight ratio, vertical damping, and engine lags. The piloted simulation was run using a fixed-based simulator at Ames Research center. Simplified versions of an existing AV-8A Harrier model and an existing head-up display format were used. The ship model used was that of a DD963 class destroyer. Simplified linear models of the pilot, aircraft, ship motion, and ship air-wake turbulence were developed for the nonpiloted simulation. A unique aspect of the nonpiloted simulation was the development of a model of the piloting strategy used for shipboard landing. This model was refined during the piloted simulation until it provided a reasonably good representation of observed pilot behavior.
Accuracy of saccades to remembered targets as a function of body orientation in space
NASA Technical Reports Server (NTRS)
Vogelstein, Joshua T.; Snyder, Lawrence H.; Angelaki, Dora E.
2003-01-01
A vertical asymmetry in memory-guided saccadic eye movements has been previously demonstrated in humans and in rhesus monkeys. In the upright orientation, saccades generally land several degrees above the target. The origin of this asymmetry has remained unknown. In this study, we investigated whether the asymmetry in memory saccades is dependent on body orientation in space. Thus animals performed memory saccades in four different body orientations: upright, left-side-down (LSD), right-side-down (RSD), and supine. Data in all three rhesus monkeys confirm previous observations regarding a significant upward vertical asymmetry. Saccade errors made from LSD and RSD postures were partitioned into components made along the axis of gravity and along the vertical body axis. Up/down asymmetry persisted only in body coordinates but not in gravity coordinates. However, this asymmetry was generally reduced in tilted positions. Therefore the upward bias seen in memory saccades is egocentric although orientation in space might play a modulatory role.
NASA Astrophysics Data System (ADS)
Cho, Il-Joo; Yoon, Euisik
2009-08-01
In this paper, a new three-axis electromagnetically actuated micromirror structure has been proposed and fabricated. It is electromagnetically actuated at low voltage using an external magnetic field. The main purpose of this work was to obtain a three-axis actuated micromirror in a mechanically robust structure with large static angular and vertical displacement at low actuation voltage for fine alignment among optical components in an active alignment module as well as conventional optical systems. The mirror plate and torsion bars are made of bulk silicon using a SOI wafer, and the actuation coils are made of electroplated Au. The maximum static deflection angles were measured as ±4.2° for x-axis actuation and ±9.2° for y-axis actuation, respectively. The maximum static vertical displacement was measured as ±42 µm for z-axis actuation. The actuation voltages were below 3 V for all actuation. The simulated resonant frequencies are several kHz, and these imply that the fabricated micromirror can be operated in sub-millisecond order. The measured radius of curvature (ROC) of the fabricated micromirror is 7.72 cm, and the surface roughness of the reflector is below 1.29 nm which ensure high optical performance such as high directionality and reflectivity. The fabricated micromirror has demonstrated large actuated displacement at low actuation voltage, and it enables us to compensate a larger misalignment value when it is used in an active alignment module. The robust torsion bar and lifting bar structure formed by bulk silicon allowed the proposed micromirror to have greater operating stability. The additional degree of freedom with z-axis actuation can decrease the difficulty in the assembly of optical components and increase the coupling efficiency between optical components.
Pulling a Door Open by Pushing on It
ERIC Educational Resources Information Center
van den Berg, Willem H.
2007-01-01
Ordinarily, opening a door by pulling on the knob or handle causes a net torque on the door, and hence an angular acceleration, about a "vertical" axis. However, it may be that the top or bottom of the door sticks to the door frame; this horizontal force perpendicular to the plane of the door causes a torque on the door about a "horizontal" axis.…
NASA Astrophysics Data System (ADS)
Huang, Ya; Griffin, Michael J.
2008-04-01
Nonlinear biodynamic responses are evident in many studies of the apparent masses of sitting and standing subjects in static postures that require muscle activity for postural control. In the present study, 12 male subjects adopted a relaxed semi-supine posture assumed to involve less muscle activity than during static sitting and standing. The supine subjects were exposed to two types of vertical vibration (in the x-axis of the semi-supine body): (i) continuous random vibration (0.25-20 Hz) at five magnitudes (0.125, 0.25, 0.5, 0.75, and 1.0 m s -2 rms); (ii) intermittent random vibration (0.25-20 Hz) alternately at 0.25 and 1.0 m s -2 rms. With continuous random vibration, the dominant primary resonance frequency in the median normalised apparent mass decreased from 10.35 to 7.32 Hz as the vibration magnitude increased from 0.125 to 1.0 m s -2 rms. This nonlinear response was apparent in both the vertical ( x-axis) apparent mass and in the horizontal ( z-axis) cross-axis apparent mass. As the vibration magnitude increased from 0.25 to 1.0 m s -2 rms, the median resonance frequency of the apparent mass with intermittent random vibration decreased from 9.28 to 8.06 Hz whereas, over the same range of magnitudes with continuous random vibration, the resonance frequency decreased from 9.62 to 7.81 Hz. The median change in the resonance frequency (between 0.25 and 1.0 m s -2 rms) was 1.37 Hz with the intermittent random vibration and 1.71 with the continuous random vibration. With the intermittent vibration, the resonance frequency was higher at the high magnitude and lower at the low magnitude than with continuous vibration of the same magnitudes. The response was typical of thixotropy that may be a primary cause of the nonlinear biodynamic responses to whole-body vibration.
Quantifying deformation in North Borneo with GPS
NASA Astrophysics Data System (ADS)
Mustafar, Mohamad Asrul; Simons, Wim J. F.; Tongkul, Felix; Satirapod, Chalermchon; Omar, Kamaludin Mohd; Visser, Pieter N. A. M.
2017-10-01
The existence of intra-plate deformation of the Sundaland platelet along its eastern edge in North Borneo, South-East Asia, makes it an interesting area that still is relatively understudied. In addition, the motion of the coastal area of North-West Borneo is directed toward a frontal fold-and-thrust belt and has been fueling a long debate on the possible geophysical sources behind it. At present this fold-and-thrust belt is not generating significant seismic activity and may also not be entirely active due to a decreasing shelfal extension from south to north. Two sets of Global Positioning System (GPS) data have been used in this study; the first covering a time period from 1999 until 2004 (ending just before the Giant Sumatra-Andaman earthquake) to determine the continuous Sundaland tectonic plate motion, and the second from 2009 until 2011 to investigate the current deformations of North Borneo. Both absolute and relative positioning methods were carried out to investigate horizontal and vertical displacements. Analysis of the GPS results indicates a clear trend of extension along coastal regions of Sarawak and Brunei in North Borneo. On the contrary strain rate tensors in Sabah reveal that only insignificant and inconsistent extension and compression occurs throughout North-West Borneo. Moreover, station velocities and rotation rate tensors on the northern part of North Borneo suggest a clockwise (micro-block) rotation. The first analysis of vertical displacements recorded by GPS in North-West Borneo points to low subsidence rates along the western coastal regions of Sabah and inconsistent trends between the Crocker and Trusmadi mountain ranges. These results have not been able to either confirm or reject the hypothesis that gravity sliding is the main driving force behind the local motions in North Borneo. The ongoing Sundaland-Philippine Sea plate convergence may also still play an active role in the present-day deformation (crustal shortening) in North Borneo and the possible clockwise rotation of the northern part of North Borneo as a micro-block. However, more observations need to be collected to determine if the northern part of North Borneo indeed is (slowly) moving independently.
Dynamics of a spherical tippe top
NASA Astrophysics Data System (ADS)
Cross, Rod
2018-05-01
Experimental and theoretical results are presented concerning the inversion of a spherical tippe top. It was found that the top rises quickly while it is sliding and then more slowly when it starts rolling, in a manner similar to that observed previously with a spinning egg. As the top rises it rotates about the horizontal Y axis, an effect that is closely analogous to rotation of the top about the vertical Z axis. Both effects can be described in terms of precession about the respective axes. Steady precession about the Z axis arises from the normal reaction force in the Z direction, while precession about the Y axis arises from the friction force in the Y direction.
Dakin, Roslyn; Fellows, Tyee K; Altshuler, Douglas L
2016-08-02
Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly. We examined the influence of pattern velocity on avian flight by manipulating the motion of patterns on the walls of a tunnel traversed by Anna's hummingbirds. Contrary to prediction, we found that lateral course control is not based on regulating nasal-to-temporal pattern velocity. Instead, birds closely monitored feature height in the vertical axis, and steered away from taller features even in the absence of nasal-to-temporal pattern velocity cues. For vertical course control, we observed that birds adjusted their flight altitude in response to upward motion of the horizontal plane, which simulates vertical descent. Collectively, our results suggest that birds avoid collisions using visual cues in the vertical axis. Specifically, we propose that birds monitor the vertical extent of features in the lateral visual field to assess distances to the side, and vertical pattern velocity to avoid collisions with the ground. These distinct strategies may derive from greater need to avoid collisions in birds, compared with small insects.
NASA Astrophysics Data System (ADS)
Guo, Wei; Kang, Hai-gui; Chen, Bing; Xie, Yu; Wang, Yin
2016-03-01
Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF (User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.
1985-10-31
61A-50-020 (30 Oct-6 Nov 1985) --- Large photo plankton vortex along the coast of New Zealand's South Island, about 100 kilometers to the north by northeast of Christchurch. Southern hemisphere vortices are clearly clockwise as opposed to counter-clockwise in the northern hemisphere.
Panico, Francesco; Sagliano, Laura; Grossi, Dario; Trojano, Luigi
2016-06-01
The aim of this study is to clarify the specific role of the cerebellum during prism adaptation procedure (PAP), considering its involvement in early prism exposure (i.e., in the recalibration process) and in post-exposure phase (i.e., in the after-effect, related to spatial realignment). For this purpose we interfered with cerebellar activity by means of cathodal transcranial direct current stimulation (tDCS), while young healthy individuals were asked to perform a pointing task on a touch screen before, during and after wearing base-left prism glasses. The distance from the target dot in each trial (in terms of pixels) on horizontal and vertical axes was recorded and served as an index of accuracy. Results on horizontal axis, that was shifted by prism glasses, revealed that participants who received cathodal stimulation showed increased rightward deviation from the actual position of the target while wearing prisms and a larger leftward deviation from the target after prisms removal. Results on vertical axis, in which no shift was induced, revealed a general trend in the two groups to improve accuracy through the different phases of the task, and a trend, more visible in cathodal stimulated participants, to worsen accuracy from the first to the last movements in each phase. Data on horizontal axis allow to confirm that the cerebellum is involved in all stages of PAP, contributing to early strategic recalibration process, as well as to spatial realignment. On vertical axis, the improving performance across the different stages of the task and the worsening accuracy within each task phase can be ascribed, respectively, to a learning process and to the task-related fatigue. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sinton, J. M.; Rubin, K. H.
2009-12-01
Many mid-ocean ridge eruptions show significant internal chemical heterogeneity; in general, the amount of chemical heterogeneity within eruptions scales with erupted volume. These variations reflect magmatic processes occurring in magma reservoirs prior to or possibly during eruption. For example, systematic variations in Mg# with along-axis distance in the early 90’s Aldo-Kihi (S. EPR near 17.5°S), 1996 N. Gorda, 1993 Co-Axial (Juan de Fuca Ridge), and 1991-2 and 2005-6 9°50’N EPR eruptions is unlikely to be related to fractionation during emplacement, and rather reflects variations in sub-axial magma reservoirs prior to eruption. Such variations are inconsistent with well-mixed sub-axial reservoirs and, in some cases, require relatively long-lived, systematic variations in reservoir temperatures along axis. Chemical heterogeneity within the Aldo-Kihi eruption preserves spatial variations in mantle-derived isotopic and trace element ratios with implications for the temporal and spatial scales of magma injections to the crust and along-axis mixing within shallow reservoirs. These spatial variations are difficult to reconcile with significant (> ~1 km) along-axis magma transport, as are striking correlations of chemical compositions with surface geological discontinuities or seismically imaged sub-axial magma chamber reflectors in the S. Hump (S. EPR), 9°50’N EPR, N. Gorda and 1975-1984 Krafla (N. Iceland) eruptive units. Rather, spatial correlations between surface lava compositions and sub-axial magma chamber properties or long-lived axial morphology suggest that most of the erupted magma was transported nearly vertically from the underlying reservoirs to the surface during these eruptions. In the case of the Krafla eruption, coincident deformation suggests a component of lateral melt migration at depth, despite chemical evidence for vertical transport of erupted lava from more than one chemical reservoir. In addition, along-ridge movement of earthquake epicenters during the 1992 Co-Axial and 1996 Gorda eruptions implies migration of stress release during these eruptions, even though vertical transport better explains chemical patterns. The nature of transport for most eruptions is unclear because of lack of systematic chemical patterns; this presentation emphasizes those cases where vertical transport appears to be required.
2013-01-01
Background Rotation of the torso while reaching produces torques (e.g., Coriolis torque) that deviate the arm from its planned trajectory. To ensure an accurate reaching movement, the brain may take these perturbing torques into account during movement planning or, alternatively, it may correct hand trajectory during movement execution. Irrespective of the process selected, it is expected that an underestimation of trunk rotation would likely induce inaccurate shoulder and elbow torques, resulting in hand deviation. Nonetheless, it is still undetermined to what extent a small error in the perception of trunk rotations, translating into an inappropriate selection of motor commands, would affect reaching accuracy. Methods To investigate, we adapted a biomechanical model (J Neurophysiol 89: 276-289, 2003) to predict the consequences of underestimating trunk rotations on right hand reaching movements performed during either clockwise or counter clockwise torso rotations. Results The results revealed that regardless of the degree to which the torso rotation was underestimated, the amplitude of hand deviation was much larger for counter clockwise rotations than for clockwise rotations. This was attributed to the fact that the Coriolis and centripetal joint torques were acting in the same direction during counter clockwise rotation yet in opposite directions during clockwise rotations, effectively cancelling each other out. Conclusions These findings suggest that in order to anticipate and compensate for the interaction torques generated during torso rotation while reaching, the brain must have an accurate prediction of torso rotation kinematics. The present study proposes that when designing upper limb prostheses controllers, adding a sensor to monitor trunk kinematics may improve prostheses control and performance. PMID:23758968
Detection technology research on the one-way clutch of automatic brake adjuster
NASA Astrophysics Data System (ADS)
Jiang, Wensong; Luo, Zai; Lu, Yi
2013-10-01
In this article, we provide a new testing method to evaluate the acceptable quality of the one-way clutch of automatic brake adjuster. To analysis the suitable adjusting brake moment which keeps the automatic brake adjuster out of failure, we build a mechanical model of one-way clutch according to the structure and the working principle of one-way clutch. The ranges of adjusting brake moment both clockwise and anti-clockwise can be calculated through the mechanical model of one-way clutch. Its critical moment, as well, are picked up as the ideal values of adjusting brake moment to evaluate the acceptable quality of one-way clutch of automatic brake adjuster. we calculate the ideal values of critical moment depending on the different structure of one-way clutch based on its mechanical model before the adjusting brake moment test begin. In addition, an experimental apparatus, which the uncertainty of measurement is ±0.1Nm, is specially designed to test the adjusting brake moment both clockwise and anti-clockwise. Than we can judge the acceptable quality of one-way clutch of automatic brake adjuster by comparing the test results and the ideal values instead of the EXP. In fact, the evaluation standard of adjusting brake moment applied on the project are still using the EXP provided by manufacturer currently in China, but it would be unavailable when the material of one-way clutch changed. Five kinds of automatic brake adjusters are used in the verification experiment to verify the accuracy of the test method. The experimental results show that the experimental values of adjusting brake moment both clockwise and anti-clockwise are within the ranges of theoretical results. The testing method provided by this article vividly meet the requirements of manufacturer's standard.
Aksu-Dinar Fault System: Its bearing on the evolution of the Isparta Angle (SW Turkey)
NASA Astrophysics Data System (ADS)
Kaymakci, Nuretdin; Özacar, Arda; Langereis, Cornelis G.; Özkaptan, Murat; Gülyüz, Erhan; van Hinsbergen, Douwe J. J.; Uzel, Bora; McPhee, Peter; Sözbilir, Hasan
2017-04-01
The Isparta Angle is a triangular structure in SW Turkey with NE-SW trending western and NW-SE trending eastern flanks. Aksu Fault is located within the core of this structure and have been taken-up large E-W shortening and sinistral translation since the Late Miocene. It is an inherited structure which emplaced Antalya nappes over the Beydaǧları Platform during the late Eocene to Late Miocene and was reactivated by the Pliocene as a high angle reverse fault to accommodate the counter-clockwise rotation of Beydaǧları and SW Anatolia. On the other hand, the Dinar Fault is a normal fault with slight sinistral component has been active since Pliocene. These two structures are collinear and delimit areas with clockwise and counter-clockwise rotations. The areas to the north and east of these structures rotated clockwise while southern and western areas are rotated counter-clockwise. We claim that the Dinar-Aksu Fault System facilitate rotational deformation in the region as a scissor like mechanism about a pivot point north of Burdur. This mechanism resulted in the normal motion along the Dinar and reverse motion along the Aksu faults with combined sinistral translation component on both structures. We claim that the driving force for the motion of these faults and counter-clockwise rotation of the SW Anatolia seems to be slab-pull forces exerted by the east dipping Antalya Slab, a relic of Tethys oceanic lithosphere. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Dinar Fault, Aksu Fault, Isparta Angle, SW Turkey, Burdur Pivot, Normal Fault, Reverse Fault
Support mechanism for a mirrored surface or other arrangement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cutburth, R.W.
1987-02-03
A mechanism is described for supporting first means including a planer surface for movement relative to a vertical plane defined by particular intersecting x and y axes which extend horizontally and vertically, respectively, the mechanism comprising: (a) second means including a plurality of segments of an annular surface which forms part of a sphere whose center defines the intersection of the x and y axes. The annular surface defines a z axis extending through the intersection of the x and y axes perpendicular to the vertical plane; (b) third means connecting the planer surface including first means with the secondmore » means such that the planer surface is positionably within the vertical plane and is itself intersected by the z axis at a particular point thereon. The third means includes bearing means disposed between the first means and the segments of the annular surface of the second means for allowing the first means to move in any direction on the annular surface segments including certain specific directions which allow the planer surface to pivot back and forth to a limited extent about both the x and y axes relative to the vertical plane; and (c) fourth means interconnecting the first and second means and cooperating with the third means for limiting the movement of the first means to the certain specific directions.« less
Observation and analysis of halo current in EAST
NASA Astrophysics Data System (ADS)
Chen, Da-Long; Shen, Biao; Qian, Jin-Ping; Sun, You-Wen; Liu, Guang-Jun; Shi, Tong-Hui; Zhuang, Hui-Dong; Xiao, Bing-Jia
2014-06-01
Plasma in a typically elongated cross-section tokamak (for example, EAST) is inherently unstable against vertical displacement. When plasma loses the vertical position control, it moves downward or upward, leading to disruption, and a large halo current is generated helically in EAST typically in the scrape-off layer. When flowing into the vacuum vessel through in-vessel components, the halo current will give rise to a large J × B force acting on the vessel and the in-vessel components. In EAST VDE experiment, part of the eddy current is measured in halo sensors, due to the large loop voltage. Primary experimental data demonstrate that the halo current first lands on the outer plate and then flows clockwise, and the analysis of the information indicates that the maximum halo current estimated in EAST is about 0.4 times the plasma current and the maximum value of TPF × Ih/IP0 is 0.65, furthermore Ih/Ip0 and TPF × Ih/Ip0 tend to increase with the increase of Ip0. The test of the strong gas injection system shows good success in increasing the radiated power, which may be effective in reducing the halo current.
Continued development and application of far-infrared detection techniques
NASA Technical Reports Server (NTRS)
Low, F. J.
1974-01-01
The development of a balloon gondola and pointing system are discussed which can be used with the low background far infrared telescope. Flight test progress of the new gondola is reported using a 3-axis system which would provide much greater capabilities. In this design both a polar and declination axis are use and are maintained in the proper orientation by a free handing (vertical) azimuth shaft.
Pathway Ranking for In-place Sediment Management (CU1209). Site 2 Report - Pearl Harbor
2006-04-01
type resistance cell. The probe is configured with two pairs of stainless steel electrodes, the outer pair through which a known current is imposed...the “bioinhibited” (no oxygen control) deployment at BPA . Vertical axis is dissolved oxygen concentration, and horizontal axis is sample record at 6...99 Table 5-7. BFSD results from site BPA . Numbers in the Flux Rate Confidence column indicate the
Finding Lagrangian Structures via the Application of Braid Theory
2010-10-16
the horizontal plane is the physical domain and the vertical axis is time. These three dimensional...three dimensional strands are projected onto the plane containing the x-axis and time then Figure 2a becomes Figure 2b. The collection of strands make...trajectories shown in the physical plane . An “x” represents the initial condition of the trajectory and a dot represents the current position. (b) The
The effect of solidity on the performance of H-rotor Darrieus turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, S. M. Rakibul, E-mail: rakibulhassan21@gmail.com; Ali, Mohammad, E-mail: mali@me.buet.ac.bd; Islam, Md. Quamrul, E-mail: quamrul@me.buet.ac.bd
Utilization of wind energy has been investigated for a long period of time by different researchers in different ways. Out of which, the Horizontal Axis Wind Turbine and the Vertical Axis Wind Turbine have now advanced design, but still there is scope to improve their efficiency. The Vertical Axis Wind Turbine (VAWT) has the advantage over Horizontal Axis Wind Turbine (HAWT) for working on omnidirectional air flow without any extra control system. A modified H-rotor Darrieus type VAWT is analysed in this paper, which is a lift based wind turbine. The effect of solidity (i.e. chord length, no. of blades)more » on power coefficient (C{sub P}) of H-rotor for different tip speed ratios is numerically investigated. The study is conducted using time dependent RANS equations using SST k-ω model. SIMPLE scheme is used as pressure-velocity coupling and in all cases, the second order upwind discretization scheme is chosen for getting more accurate solution. In results, different parameters are compared, which depict the performance of the modified H-rotor Darrieus type VAWT. Double layered H-rotor having inner layer blades with longer chord gives higher power coefficient than those have inner layer blades with smaller chord.« less
Learning dynamic control of body yaw orientation.
Vimal, Vivekanand Pandey; Lackner, James R; DiZio, Paul
2018-05-01
To investigate the role of gravitational cues in the learning of a dynamic balancing task, we placed blindfolded subjects in a device programmed with inverted pendulum dynamics about the yaw axis. Subjects used a joystick to try and maintain a stable orientation at the direction of balance during 20 100 s-long trials. They pressed a trigger button on the joystick to indicate whenever they felt at the direction of balance. Three groups of ten subjects each participated. One group balanced with their body and the yaw axis vertical, and thus did not have gravitational cues to help them to determine their angular position. They showed minimal learning, inaccurate indications of the direction of balance, and a characteristic pattern of positional drifting away from the balance point. A second group balanced with the yaw axis pitched 45° from the gravitational vertical and had gravity relevant position cues. The third group balanced with their yaw axis horizontal where they had gravity-dependent cues about body position in yaw. Groups 2 and 3 showed better initial balancing performance and more learning across trials than Group 1. These results indicate that in the absence of vision, the integration of transient semicircular canal and somatosensory signals about angular acceleration is insufficient for determining angular position during dynamic balancing; direct position-dependent gravity cues are necessary.
Friction measurement in a hip wear simulator.
Saikko, Vesa
2016-05-01
A torque measurement system was added to a widely used hip wear simulator, the biaxial rocking motion device. With the rotary transducer, the frictional torque about the drive axis of the biaxial rocking motion mechanism was measured. The principle of measuring the torque about the vertical axis above the prosthetic joint, used earlier in commercial biaxial rocking motion simulators, was shown to sense only a minor part of the total frictional torque. With the present method, the total frictional torque of the prosthetic hip was measured. This was shown to consist of the torques about the vertical axis above the joint and about the leaning axis. Femoral heads made from different materials were run against conventional and crosslinked polyethylene acetabular cups in serum lubrication. Regarding the femoral head material and the type of polyethylene, there were no categorical differences in frictional torque with the exception of zirconia heads, with which the lowest values were obtained. Diamond-like carbon coating of the CoCr femoral head did not reduce friction. The friction factor was found to always decrease with increasing load. High wear could increase the frictional torque by 75%. With the present system, friction can be continuously recorded during long wear tests, so the effect of wear on friction with different prosthetic hips can be evaluated. © IMechE 2016.
The influence of mechanical gear on the efficiency of small hydropower
NASA Astrophysics Data System (ADS)
Ferenc, Zbigniew; Sambor, Aleksandra
2017-11-01
Pursuant to the "Strategy of development of renewable energy", an increase in the share of renewable energy sources in the national fuel-energy balance up to 14% by 2020 is planned in the structure of usage of primary energy carriers. The change in the participation of the clean energy in the energy balance may be done not only by the erection of new and renovation of the already existing plants, but also through an improvement of their energetic efficiency. The study presents the influence of the mechanical gear used on the quantity of energy produced by a small hydropower on the basis of SHP Rzepcze in Opole province in 2005-2010. The primary kinematic system was composed of a Francis turbine of a vertical axis, a toothed intersecting axis gear of 1:1 ratio, a belt gear of a double ratio. After a modernization the system was simplified by means of reducing the intersecting axis gear and the double ratio of the belt gear. The new kinematic system utilized a single-ratio belt gear of a vertical axis. After the kinematic system was rearranged, a significant improvement of efficiency of the small hydropower was concluded, which translates into an increase of the amount of energy produced.
Classifying Particles By Acoustic Levitation
NASA Technical Reports Server (NTRS)
Barmatz, Martin B.; Stoneburner, James D.
1983-01-01
Separation technique well suited to material processing. Apparatus with rectangular-cross-section chamber used to measure equilibrium positions of low-density spheres in gravitational field. Vertical acoustic forces generated by two opposing compression drivers exciting fundamental plane-wave mode at 1.2 kHz. Additional horizontal drivers centered samples along vertical axis. Applications in fusion-target separation, biological separation, and manufacturing processes in liquid or gas media.
NASA Astrophysics Data System (ADS)
Wu, You-Lin; Lin, Jing-Jenn; Lin, Shih-Hung; Sung, Yi-Hsing
2017-11-01
Hysteretic current-voltage (I-V) characteristics are quite common in metal-insulator-metal (MIM) devices used for resistive switching random access memory (RRAM). Two types of hysteretic I-V curves are usually observed, figure eight and counter figure eight (counter-clockwise and clockwise in the positive voltage sweep direction, respectively). In this work, a clockwise hysteretic I-V curve was found for an MIM device with polystyrene (PS)/ZnO nanorods stack as an insulator layer. Three distinct regions I ∼ V, I ∼ V2, and I ∼ V0.6 are observed in the double logarithmic plot of the I-V curves, which cannot be explained completely with the conventional trap-controlled space-charge-limited-current (SCLC) model. A model based on the energy band with two separate traps plus local energy variation and trap-controlled SCLC has been developed, which can successfully describe the behavior of the clockwise hysteretic I-V characteristics obtained in this work.
Flight Control System Analysis and Design for a Remotely Piloted Vehicle with Thrust Vectoring Unit.
1980-12-01
about the X-axis (slug-ft 2) Ixz Product of inertia (slug-ft 2 ) ly Moi,;ent of inertia about Y-axis (slug-ft 2) Iz Moment of inertia about Z-axis (slug...domain n Load factor (g’s) P Roll rate (rad/sec) xi p Perturbation roll rate (rad/sec) Q Pitch rate (rad/sec) q Perturbation pitch rate (rad/sec...was decided to employ a scale factor of 1.75 in increasing the vertical tail area. This choice was somewhat aruitrary since no documentation could be
NASA Technical Reports Server (NTRS)
Muraca, R. J.; Stephens, M. V.; Dagenhart, J. R.
1975-01-01
A general analysis capable of predicting performance characteristics of cross-wind axis turbines was developed, including the effects of airfoil geometry, support struts, blade aspect ratio, windmill solidity, blade interference and curved flow. The results were compared with available wind tunnel results for a catenary blade shape. A theoretical performance curve for an aerodynamically efficient straight blade configuration was also presented. In addition, a linearized analytical solution applicable for straight configurations was developed. A listing of the computer program developed for numerical solutions of the general performance equations is included in the appendix.
Biased Feedback in Spatial Recall Yields a Violation of Delta Rule Learning
Lipinski, John; Spencer, John P.; Samuelson, Larissa K.
2010-01-01
This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4° towards the vertical axis (Towards condition) or 4° further away from the vertical axis (Away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) in the Away condition produced a stronger experience-dependent change over blocks than in the Towards condition. This violates delta rule learning. Subsequent simulations of the Dynamic Field Theory of spatial cognition provide a theoretically unified account of these results. PMID:20702881
On the wake of a Darrieus turbine
NASA Technical Reports Server (NTRS)
Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.
1981-01-01
The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.
Structural design of the Sandia 34-M Vertical Axis Wind Turbine
NASA Astrophysics Data System (ADS)
Berg, D. E.
Sandia National Laboratories, as the lead DOE laboratory for Vertical Axis Wind Turbine (VAWT) development, is currently designing a 34-meter diameter Darrieus-type VAWT. This turbine will be a research test bed which provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. The design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. The analytic tools used in this design are discussed and the conceptual design procedure is described.
Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine
NASA Astrophysics Data System (ADS)
Fuchs, Roman; Nordborg, Henrik
2012-11-01
We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.
Vertical axis wind turbine power regulation through centrifugally pumped lift spoiling
NASA Astrophysics Data System (ADS)
Klimas, P. C.; Sladky, J. F., Jr.
This paper describes an approach for lowering the rated windspeeds of Darrieus-type vertical axis wind turbines (VAWTs) whose blades are hollow aluminum extrusions. The blades, which when rotating act as centrifugal pumps, are fitted with a series of small perforations distributed along a portion of the blades' span. By valving the ends of the hollow blades, flow into the blade ends and out of the perforations may be controlled. This flow can induce premature aerodynamic stall on the blade elements, thereby reducing both the rated power of the turbine and its cost-of-energy. The concept has been proven on the Sandia National Laboratories 5-m diameter research VAWT and force balance and flow visualization wind tunnel tests have been conducted using a blade section designed for the VAWT application.
Field test report of the Department of Energy's 100-kW vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Nellums, R. O.
1985-02-01
Three second generation Darrieus type vertical axis wind turbines of approximately 120 kW capacity per unit were installed in 1980-1981. Through March 1984, over 9000 hours of operation had been accumulated, including 6600 hours of operation on the unit installed in Bushland, Texas. The turbines were heavily instrumented and have yielded a large amount of test data. Test results of this program, including aerodynamic, structural, drive train, and economic data are presented. Among the most favorable results were an aerodynamic peak performance coefficient of 0.41; fundamental structural integrity requiring few repairs and no major component replacements as of March 1984; and an average prototype fabrication cost of approximately $970 per peak kilowatt of output. A review of potential design improvements is presented.
Design, performance and economics of the DAF Indal 50 kW and 375 kW vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Schienbein, L. A.; Malcolm, D. J.
1982-03-01
A review of the development and performance of the DAF Indal 50 kW vertical axis Darrieus wind turbines shows that a high level of technical development and reliability has been achieved. Features of the drive train, braking and control systems are discussed and performance details are presented. A description is given of a wind-diesel hybrid presently being tested. Details are also presented of a 375 kW VAWT planned for production in late 1982. A discussion of the economics of both the 50 kW and 375 kW VAWTs is included, showing the effects of charge rate, installed cost, operating cost, performance and efficiency. The energy outputs are translated into diesel fuel cost savings for remote communities.
Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field
NASA Astrophysics Data System (ADS)
Feng, Jinglang; Hou, Xiyun
2017-07-01
Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.
Biased feedback in spatial recall yields a violation of delta rule learning.
Lipinski, John; Spencer, John P; Samuelson, Larissa K
2010-08-01
This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4 degrees toward the vertical axis (toward condition) or 4 degrees farther away from the vertical axis (away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) produced a stronger experience-dependent change over blocks in the away condition than in the toward condition. This violates delta rule learning. Subsequent simulations of the dynamic field theory of spatial cognition provide a theoretically unified account of these results.
Tropical Cyclone Genesis: A Dynamician's Point of View
NASA Astrophysics Data System (ADS)
Bouali, Safieddine; Leys, Jos
The paper focuses the route to the maturity of a cyclone as a twist process of the Hadley cell. The approach is qualified by a "dynamician's viewpoint" since the aerologic mechanism of the cyclone genesis is replicated without the classical tools of the meteorological fluid framework. Indeed, we introduce a pure dynamical model of a 2D vertical rotor of an airparcel to emulate the Hadley cell. Twisted by an appropriate feedback to inject geophysical forcing, the simulation displays two stretched solenoid rolls with clockwise and anticlockwise paths representing the Hadley belts wrapping the Earth. When the forcing parameter is higher, computations simulate overlapped whirlwind funnels revealing strong similarities with the structure of cyclones, hurricanes, and typhoons described in the atmospheric science literature. We conjecture that ocean-atmosphere interactions separate and convert a "slice" of the Hadley rotor into a fully tropical cyclone.
NASA Astrophysics Data System (ADS)
Choi, Jongsoo; Wang, Thomas; Oldham, Kenn
2018-01-01
The high performance and small size of MEMS based scanners has allowed various optical imaging techniques to be realized in a small form factor. Many such devices are resonant scanners, and thus their linear and nonlinear dynamic behaviors have been studied in the past. Thin-film piezoelectric materials, in contrast, provide sufficient energy density to achieve both large static displacements and high-frequency resonance, but large deformation can in turn influence dynamic scanner behavior. This paper reports on the influence of very large stroke translation of a piezoelectric vertical actuator on its resonant behavior, which may not be otherwise explained fully by common causes of resonance shift such as beam stiffening or nonlinear forcing. To examine the change of structural compliance over the course of scanner motion, a model has been developed that includes internal forces from residual stress and the resultant additional multi-axis coupling among actuator leg structures. Like some preceding vertical scanning micro-actuators, the scanner of this work has four legs, with each leg featuring four serially connected thin-film PZT unimorphs that allow the scanner to generate larger than 400 µm of vertical displacement at 14 V DC. Using an excitation near one or more resonances, the input voltage can be lowered, and complementary multi-axis rotations can be also generated, but change of the resonant frequencies with scanner height needs to be understood to maximize scanner performance. The presented model well predicts the experimental observation of the decrease of the resonant frequencies of the scanner with the increase of a dc bias voltage. Also, the effects of the magnitude and uniformity of residual stress across the scanner structure on the natural frequencies have been studied.
Perception of Fechner Illusory Colors in Alzheimer Disease Patients
Kaubrys, Gintaras; Bukina, Vera; Bingelytė, Ieva; Taluntis, Vladas
2016-01-01
Background Alzheimer disease (AD) primarily affects cognition. A variety of visual disorders was established in AD. Fechner illusory colors are produced by a rotating disk with a black and white pattern. The purpose of our research was to explore the perception of illusory colors in AD. Material/Methods W recruited 40 AD patients (MMSE ≥14) and 40 normal controls (CG group) matched by age, education, gender in this prospective, cross-sectional, case-control study. An achromatic Benham’s disk attached to a device to control the speed and direction of rotation was used to produce illusory colors. Primary, secondary, and tertiary RGB system colors were used for matching of illusory and physical colors. Results Subjects in the AD group perceived less illusory colors in 5 arcs (p<0.05) of the 8 arcs assessed. The biggest difference was found between AD and CG groups for pure blue (χ2=26.87, p<0.001 clockwise, χ2=22.75, p<0.001 counter-clockwise). Groups did not differ in perception of pure yellow opponent colors (p>0.05). Mixed colors of the blue-yellow axis were perceived less often in AD, but more frequently than pure blue (#0000FF). The sequence of colors on Benham’s disk followed a complex pattern, different from the order of physical spectral colors and opponent processes-based colors. Conclusions AD patients retained reduced perception of illusory colors. The perception of pure blue illusory color is almost absent in AD. The asymmetrical shift to the yellow opponent is observed in AD with red prevailing over green constituent. This may indicate cortical rather than retinal impairment. PMID:27902677
Kreiling, Jill A; Balantac, Zaneta L; Crawford, Andrew R; Ren, Yuexin; Toure, Jamal; Zchut, Sigalit; Kochilas, Lazaros; Creton, Robbert
2008-01-01
Vertebrate embryos generate striking Ca(2+) patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca(2+) during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca(2+) along the dorsal-ventral axis, with higher Ca(2+) concentrations in the ventral margin and lower Ca(2+) concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca(2+) pump with 0.5 microM thapsigargin elevates cytosolic Ca(2+) in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left-right asymmetry. Brain defects include a left-right reversal of pitx2 expression in the dorsal diencephalon and a left-right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca(2+) pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca(2+) pump during gastrulation inhibits expression of no tail (ntl) and left-right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer's vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca(2+) plays a role in Kupffer's vesicle function, influencing ciliary motility and translating the vesicle's counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca(2+) plays an additional role in the formation of Kupffer's vesicle.
Properties of solar ephemeral regions at the emergence stage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuhong; Zhang, Jun, E-mail: shuhongyang@nao.cas.cn, E-mail: zjun@nao.cas.cn
2014-01-20
For the first time, we statistically study the properties of ephemeral regions (ERs) and quantitatively determine their parameters at the emergence stage based on a sample of 2988 ERs observed by the Solar Dynamics Observatory. During the emergence process, there are three kinds of kinematic performances, i.e., separation of dipolar patches, shift of the ER's magnetic centroid, and rotation of the ER's axis. The average emergence duration, flux emergence rate, separation velocity, shift velocity, and angular speed are 49.3 minutes, 2.6 × 10{sup 15} Mx s{sup –1}, 1.1 km s{sup –1}, 0.9 km s{sup –1}, and 0.°6 minute{sup –1}, respectively.more » At the end of emergence, the mean magnetic flux, separation distance, shift distance, and rotation angle are 9.3 × 10{sup 18} Mx, 4.7 Mm, 1.1 Mm, and 12.°9, respectively. We also find that the higher the ER magnetic flux is, (1) the longer the emergence lasts, (2) the higher the flux emergence rate is, (3) the further the two polarities separate, (4) the lower the separation velocity is, (5) the larger the shift distance is, (6) the slower the ER shifts, and (7) the lower the rotation speed is. However, the rotation angle seems not to depend on the magnetic flux. Not only at the start time, but also at the end time, the ERs are randomly oriented in both the northern and the southern hemispheres. Finally, neither the anti-clockwise-rotated ERs nor the clockwise rotated ones dominate the northern or the southern hemisphere.« less
Thurtell, M J; Black, R A; Halmagyi, G M; Curthoys, I S; Aw, S T
1999-05-01
Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations. The effect of vertical eye-in-head position on the compensatory eye rotation response to passive and active high acceleration yaw head rotations was examined in eight normal human subjects. The stimuli consisted of brief, low amplitude (15-25 degrees ), high acceleration (4,000-6,000 degrees /s2) yaw head rotations with respect to the trunk (peak velocity was 150-350 degrees /s). Eye and head rotations were recorded in three-dimensional space using the magnetic search coil technique. The input-output kinematics of the three-dimensional vestibuloocular reflex (VOR) were assessed by finding the difference between the inverted eye velocity vector and the head velocity vector (both referenced to a head-fixed coordinate system) as a time series. During passive head impulses, the head and eye velocity axes aligned well with each other for the first 47 ms after the onset of the stimulus, regardless of vertical eye-in-head position. After the initial 47-ms period, the degree of alignment of the eye and head velocity axes was modulated by vertical eye-in-head position. When fixation was on a target 20 degrees up, the eye and head velocity axes remained well aligned with each other. However, when fixation was on targets at 0 and 20 degrees down, the eye velocity axis tilted forward relative to the head velocity axis. During active head impulses, the axis tilt became apparent within 5 ms of the onset of the stimulus. When fixation was on a target at 0 degrees, the velocity axes remained well aligned with each other. When fixation was on a target 20 degrees up, the eye velocity axis tilted backward, when fixation was on a target 20 degrees down, the eye velocity axis tilted forward. The findings show that the VOR compensates very well for head motion in the early part of the response to unpredictable high acceleration stimuli-the eye position- dependence of the VOR does not become apparent until 47 ms after the onset of the stimulus. In contrast, the response to active high acceleration stimuli shows eye position-dependence from within 5 ms of the onset of the stimulus. A model using a VOR-Listing's law compromise strategy did not accurately predict the patterns observed in the data, raising questions about how the eye position-dependence of the VOR is generated. We suggest, in view of recent findings, that the phenomenon could arise due to the effects of fibromuscular pulleys on the functional pulling directions of the rectus muscles.
Fixed Base Modal Testing Using the NASA GRC Mechanical Vibration Facility
NASA Technical Reports Server (NTRS)
Staab, Lucas D.; Winkel, James P.; Suarez, Vicente J.; Jones, Trevor M.; Napolitano, Kevin L.
2016-01-01
The Space Power Facility at NASA's Plum Brook Station houses the world's largest and most powerful space environment simulation facilities, including the Mechanical Vibration Facility (MVF), which offers the world's highest-capacity multi-axis spacecraft shaker system. The MVF was designed to perform sine vibration testing of a Crew Exploration Vehicle (CEV)-class spacecraft with a total mass of 75,000 pounds, center of gravity (cg) height above the table of 284 inches, diameter of 18 feet, and capability of 1.25 gravity units peak acceleration in the vertical and 1.0 gravity units peak acceleration in the lateral directions. The MVF is a six-degree-of-freedom, servo-hydraulic, sinusoidal base-shake vibration system that has the advantage of being able to perform single-axis sine vibration testing of large structures in the vertical and two lateral axes without the need to reconfigure the test article for each axis. This paper discusses efforts to extend the MVF's capabilities so that it can also be used to determine fixed base modes of its test article without the need for an expensive test-correlated facility simulation.
Computational analysis of vertical axis wind turbine arrays
NASA Astrophysics Data System (ADS)
Bremseth, J.; Duraisamy, K.
2016-10-01
Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.
A multidimensional model of the effect of gravity on the spatial orientation of the monkey
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Young, L. R.; Oman, C. M.; Shelhamer, M. J.
1993-01-01
A "sensory conflict" model of spatial orientation was developed. This mathematical model was based on concepts derived from observer theory, optimal observer theory, and the mathematical properties of coordinate rotations. The primary hypothesis is that the central nervous system of the squirrel monkey incorporates information about body dynamics and sensory dynamics to develop an internal model. The output of this central model (expected sensory afference) is compared to the actual sensory afference, with the difference defined as "sensory conflict." The sensory conflict information is, in turn, used to drive central estimates of angular velocity ("velocity storage"), gravity ("gravity storage"), and linear acceleration ("acceleration storage") toward more accurate values. The model successfully predicts "velocity storage" during rotation about an earth-vertical axis. The model also successfully predicts that the time constant of the horizontal vestibulo-ocular reflex is reduced and that the axis of eye rotation shifts toward alignment with gravity following postrotatory tilt. Finally, the model predicts the bias, modulation, and decay components that have been observed during off-vertical axis rotations (OVAR).
Continuously Deformation Monitoring of Subway Tunnel Based on Terrestrial Point Clouds
NASA Astrophysics Data System (ADS)
Kang, Z.; Tuo, L.; Zlatanova, S.
2012-07-01
The deformation monitoring of subway tunnel is of extraordinary necessity. Therefore, a method for deformation monitoring based on terrestrial point clouds is proposed in this paper. First, the traditional adjacent stations registration is replaced by sectioncontrolled registration, so that the common control points can be used by each station and thus the error accumulation avoided within a section. Afterwards, the central axis of the subway tunnel is determined through RANSAC (Random Sample Consensus) algorithm and curve fitting. Although with very high resolution, laser points are still discrete and thus the vertical section is computed via the quadric fitting of the vicinity of interest, instead of the fitting of the whole model of a subway tunnel, which is determined by the intersection line rotated about the central axis of tunnel within a vertical plane. The extraction of the vertical section is then optimized using RANSAC for the purpose of filtering out noises. Based on the extracted vertical sections, the volume of tunnel deformation is estimated by the comparison between vertical sections extracted at the same position from different epochs of point clouds. Furthermore, the continuously extracted vertical sections are deployed to evaluate the convergent tendency of the tunnel. The proposed algorithms are verified using real datasets in terms of accuracy and computation efficiency. The experimental result of fitting accuracy analysis shows the maximum deviation between interpolated point and real point is 1.5 mm, and the minimum one is 0.1 mm; the convergent tendency of the tunnel was detected by the comparison of adjacent fitting radius. The maximum error is 6 mm, while the minimum one is 1 mm. The computation cost of vertical section abstraction is within 3 seconds/section, which proves high efficiency..
Ranz, Ellyn C; Russell Esposito, Elizabeth; Wilken, Jason M; Neptune, Richard R
2016-08-01
Passive-dynamic ankle-foot orthoses are commonly prescribed to augment impaired ankle muscle function, however their design and prescription are largely qualitative. One design includes a footplate and cuff, and flexible strut connecting the two. During gait, deflection occurs along the strut, with the greatest deflection at a central bending axis. The vertical location of the axis can affect lower extremity biomechanics. The goal of this study was to investigate the influence of bending axis location on gait performance. For thirteen participants with unilateral ankle muscle weakness, an additive manufacturing framework was used to fabricate passive-dynamic ankle-foot orthosis struts with central and off-center bending axes. Participants walked overground while electromyographic, kinetic and kinematic data were collected for three different bending axes: proximal (high), central (middle) and distal (low), and the participants indicated their order of bending axis preference after testing. Gait measures and preference effect sizes were examined during six regions of the gait cycle. A few differences between bending axes were observed: in the first double-leg support peak plantarflexion angle, peak dorsiflexion moment and positive hip work, in the early single-leg support peak knee extension moment and positive ankle and knee work, and in the late single-leg support gastrocnemius activity and vertical ground reaction force impulse. In addition, preference was strongly related to various gait measures. Despite the observed statistical differences, altering bending axis location did not produce large and consistent changes in gait performance. Thus, individual preference and comfort may be more important factors guiding prescription. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yakushin, Sergei B; Bukharina, Svetlana E; Raphan, Theodore; Buttner-Ennever, Jean; Cohen, Bernard
2003-10-01
Alterations in the gain of the vertical angular vestibulo-ocular reflex (VOR) are dependent on the head position in which the gain changes were produced. We determined how long gravity-dependent gain changes last in monkeys after four hours of adaptation, and whether the adaptation is mediated through the nodulus and uvula of the vestibulocerebellum. Vertical VOR gains were adaptively modified by rotation about an interaural axis, in phase or out of phase with the visual surround. Vertical VOR gains were modified with the animals in one of three orientations: upright, left-side down, or right-side down. Monkeys were tested in darkness for up to four days after adaptation using sinusoidal rotation about an interaural axis that was incrementally tilted in 10 degrees steps from vertical to side down positions. Animals were unrestrained in their cages in normal light conditions between tests. Gravity-dependent gain changes lasted for a day or less after adaptation while upright, but persisted for two days or more after on-side adaptation. These data show that gravity-dependent gain changes can last for prolonged periods after only four hours of adaptation in monkeys, as in humans. They also demonstrate that natural head movements made while upright do not provide an adequate stimulus for rapid recovery of vertical VOR gains that were induced on side. In two animals, the nodulus and uvula were surgically ablated. Vertical gravity-dependent gain changes were not significantly different before and after surgery, indicating that the nodulus and uvula do not have a critical role in producing them.
ROTATING MOTIONS AND MODELING OF THE ERUPTING SOLAR POLAR-CROWN PROMINENCE ON 2010 DECEMBER 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yingna; Van Ballegooijen, Adriaan, E-mail: ynsu@head.cfa.harvard.edu
2013-02-10
A large polar-crown prominence composed of different segments spanning nearly the entire solar disk erupted on 2010 December 6. Prior to the eruption, the filament in the active region part split into two layers: a lower layer and an elevated layer. The eruption occurs in several episodes. Around 14:12 UT, the lower layer of the active region filament breaks apart: One part ejects toward the west, while the other part ejects toward the east, which leads to the explosive eruption of the eastern quiescent filament. During the early rise phase, part of the quiescent filament sheet displays strong rolling motionmore » (observed by STEREO-B) in the clockwise direction (viewed from east to west) around the filament axis. This rolling motion appears to start from the border of the active region, then propagates toward the east. The Atmospheric Imaging Assembly (AIA) observes another type of rotating motion: In some other parts of the erupting quiescent prominence, the vertical threads turn horizontal, then turn upside down. The elevated active region filament does not erupt until 18:00 UT, when the erupting quiescent filament has already reached a very large height. We develop two simplified three-dimensional models that qualitatively reproduce the observed rolling and rotating motions. The prominence in the models is assumed to consist of a collection of discrete blobs that are tied to particular field lines of a helical flux rope. The observed rolling motion is reproduced by continuous twist injection into the flux rope in Model 1 from the active region side. Asymmetric reconnection induced by the asymmetric distribution of the magnetic fields on the two sides of the filament may cause the observed rolling motion. The rotating motion of the prominence threads observed by AIA is consistent with the removal of the field line dips in Model 2 from the top down during the eruption.« less
Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone
NASA Astrophysics Data System (ADS)
Allen, M. B.; Kheirkhah, M.; Emami, M.
2009-04-01
New offset determinations for right-lateral strike-slip faults in Iran redefine the kinematics of the Arabia-Eurasia collision. A series of right-lateral strike-slip faults is present across Iran between 48° and 57° E. Fault strikes vary between NW-SE and NNW-SSE. Individual faults west of ~53° E were active in the late Tertiary, but have limited evidence of activity. Faults east of ~53° E are seismically active and/or have geomorphic evidence for Holocene slip. None of the faults affects the GPS-derived regional velocity field, indicating active slip rates are ≤2 mm/yr. We estimate overall slip on these faults from offset geological and geomorphic markers, based on observations from satellite imagery, digital topography, geology maps and our own fieldwork observations, and combine these results with published estimates for fault slip in the east of the study area. Total offset of the Takab, Soltanieh, Indes, Bid Hand, Qom, Kashan, Deh Shir, Anar, Daviran, Kuh Banan and Dehu faults is at least 270 km and possibly higher. Other faults (e.g. Rafsanjan) have unknown amounts of right-lateral slip. Collectively, these faults are inferred to have accommodated part of the Arabia-Eurasia convergence by two mechanisms: (1) anti-clockwise, vertical axis rotations; (2) strain partitioning with coeval NE-SW crustal thickening in the Turkish-Iranian plateau to produce ~350 km of north-south plate convergence. The strike-slip faulting across Iran requires along-strike lengthening of the deformation zone. This was possible until the Pliocene, when the Afghan crust collided with the western margin of the Indian plate, thereby sealing off a free face at the eastern side of the Arabia-Eurasia collision zone. Continuing Arabia-Eurasia plate convergence had to be accommodated in new ways and new areas, leading to the present pattern of faulting from eastern Iran to western Turkey.
Image characterization metrics for muon tomography
NASA Astrophysics Data System (ADS)
Luo, Weidong; Lehovich, Andre; Anashkin, Edward; Bai, Chuanyong; Kindem, Joel; Sossong, Michael; Steiger, Matt
2014-05-01
Muon tomography uses naturally occurring cosmic rays to detect nuclear threats in containers. Currently there are no systematic image characterization metrics for muon tomography. We propose a set of image characterization methods to quantify the imaging performance of muon tomography. These methods include tests of spatial resolution, uniformity, contrast, signal to noise ratio (SNR) and vertical smearing. Simulated phantom data and analysis methods were developed to evaluate metric applicability. Spatial resolution was determined as the FWHM of the point spread functions in X, Y and Z axis for 2.5cm tungsten cubes. Uniformity was measured by drawing a volume of interest (VOI) within a large water phantom and defined as the standard deviation of voxel values divided by the mean voxel value. Contrast was defined as the peak signals of a set of tungsten cubes divided by the mean voxel value of the water background. SNR was defined as the peak signals of cubes divided by the standard deviation (noise) of the water background. Vertical smearing, i.e. vertical thickness blurring along the zenith axis for a set of 2 cm thick tungsten plates, was defined as the FWHM of vertical spread function for the plate. These image metrics provided a useful tool to quantify the basic imaging properties for muon tomography.
Design of h-Darrieus vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.
2015-05-01
Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.
Radiation Measurements on Mars
2013-12-09
Micrograys are unit of measurement for absorbed radiation dose. The vertical axis is in micrograys per day. The RAD instrument on NASA Curiosity Mars rover monitors the natural radiation environment at the surface of Mars.
Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jinglang; Hou, Xiyun, E-mail: jinglang@nju.edu.cn, E-mail: silence@nju.edu.cn
2017-07-01
Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circularmore » restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.« less
Improved double-multiple streamtube model for the Darrieus-type vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Berg, D. E.
Double streamtube codes model the curved blade (Darrieus-type) vertical axis wind turbine (VAWT) as a double actuator fish arrangement (one half) and use conservation of momentum principles to determine the forces acting on the turbine blades and the turbine performance. Sandia National Laboratories developed a double multiple streamtube model for the VAWT which incorporates the effects of the incident wind boundary layer, nonuniform velocity between the upwind and downwind sections of the rotor, dynamic stall effects and local blade Reynolds number variations. The theory underlying this VAWT model is described, as well as the code capabilities. Code results are compared with experimental data from two VAWT's and with the results from another double multiple streamtube and a vortex filament code. The effects of neglecting dynamic stall and horizontal wind velocity distribution are also illustrated.
NASA Astrophysics Data System (ADS)
Sutherland, Herbert J.
1988-08-01
Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to equivalent gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system.
NASA Astrophysics Data System (ADS)
Surya Raj, G.; Sangeetha, N.; Prince, M.
2018-02-01
Generation of wind energy is a must to meet out additional demand. To meet out the additional demand several long term plans were considered now being taken up for generation of energy for the fast developing industries. Detailed researches were since taken up to improve the efficiency of such vertical axis wind turbine (VAWT). In this work VAWT with diffuser and without diffuser arrangement are considered for experimental and analysis. Five diffusers were since provided around its blades of VAWT which will be placed inside a pentagon shaped fabricated structure. In this power output of the diffuser based VAWT arrangement were studied in both numerical and experimental methods and related with that of a bared VAWT. Finally, it was found that the output power of diffuser based VAWT generates approximately two times than that of bared VAWT.
Wind tunnel study of helical and straight-bladed vertical-axis wind turbine wakes
NASA Astrophysics Data System (ADS)
Bagheri, Maryam; Araya, Daniel
2017-11-01
It is hypothesized that blade curvature can serve as a passive means to control fluid entrainment and wake recovery in vertical-axis wind turbine (VAWT) arrays. We test this experimentally in a wind tunnel using two different VAWT configurations, one with straight blades and another with helical blades, keeping all other experimental parameters fixed. A small-scale, commercially available VAWT (15W max power) is used as the baseline wind tunnel model in each case. The commercial VAWT blades are replaced with either straight or helical blades that are 3D-printed extrusions of the same airfoil cross-section. Results from smoke flow visualization, three-component wake velocity measurements, and turbine power data are presented. These results give insight into the potential use of VAWTs with curved blades in utility-scale wind farms.
Sivamani, Seralathan; T, Micha Premkumar; Sohail, Mohammed; T, Mohan; V, Hariram
2017-12-01
Performance and load testing data of a three bladed two stage LENZ type vertical axis wind turbine from the experiments conducted in an open environment condition at Hindustan Institute of Technology and Science, Chennai (location 23.2167°N, 72.6833°E) are presented here. Low-wind velocity ranging from 2 to 11 m/s is available everywhere irrespective of climatic seasons and this data provides the support to the researchers using numerical tool to validate and develop an enhanced Lenz type design. Raw data obtained during the measurements are processed and presented in the form so as to compare with other typical outputs. The data is measured at different wind speeds prevalent in the open field condition ranging from 3 m/s to 9 m/s.
Omnidirectional, circularly polarized, cylindrical microstrip antenna
NASA Technical Reports Server (NTRS)
Stanton, Philip H. (Inventor)
1985-01-01
A microstrip cylindrical antenna comprised of two concentric subelements on a ground cylinder, a vertically polarized (E-field parallel to the axis of the antenna cylinder) subelement on the inside and a horizontally polarized (E-field perpendicular to the axis) subelement on the outside. The vertical subelement is a wraparound microstrip radiator. A Y-shaped microstrip patch configuration is used for the horizontally polarized radiator that is wrapped 1.5 times to provide radiating edges on opposite sides of the cylindrical antenna for improved azimuthal pattern uniformity. When these subelements are so fed that their far fields are equal in amplitude and phased 90.degree. from each other, a circularly polarized EM wave results. By stacking a plurality of like antenna elements on the ground cylinder, a linear phased array antenna is provided that can be beam steered to the desired elevation angle.
Guy cable design and damping for vertical axis wind turbines
NASA Technical Reports Server (NTRS)
Carne, T. G.
1981-01-01
Guy cables are frequently used to support vertical axis wind turbines since guying the turbine reduces some of the structural requirements on the tower. The guys must be designed to provide both the required strength and the required stiffness at the top of the turbine. The axial load which the guys apply to the tower, bearings, and foundations is an undesirable consequence of using guys to support the turbine. Limiting the axial load so that it does not significantly affect the cost of the turbine is an important objective of the cable design. The lateral vibrations of the cables is another feature of the cable design which needs to be considered. These aspects of the cable design are discussed, and a technique for damping cable vibrations was mathematically analyzed and demonstrated with experimental data.
NASA Astrophysics Data System (ADS)
Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.
1988-09-01
The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.
SOLARIS 3-axis high load, low profile, high precision motorized positioner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acome, Eric; Van Every, Eric; Deyhim, Alex, E-mail: adc@adc9001.com
A 3-axis optical table, shown in Figure 1, was designed, fabricated, and assembled for the SOLARIS synchrotron facility at the Jagiellonian University in Krakow, Poland. To accommodate the facility, the table was designed to be very low profile, as seen in Figure 2, and bear a high load. The platform has degrees of freedom in the vertical (Z) direction as well as horizontal transversal (X and Y) directions. The table is intended to sustain loads as large as 1500 kg which will be sufficient to support a variety of equipment to measure and facilitate synchrotron radiation. After assembly, the tablemore » was tested and calibrated to find its position error in the vertical direction. ADC has extensive experience designing and building custom complex high precision motion systems [1,2].« less
Design of multi-energy Helds coupling testing system of vertical axis wind power system
NASA Astrophysics Data System (ADS)
Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.
2016-08-01
The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).
Vertically stabilized elongated cross-section tokamak
Sheffield, George V.
1977-01-01
This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.
Spiral optical designs for nonimaging applications
NASA Astrophysics Data System (ADS)
Zamora, Pablo; Benítez, Pablo; Miñano, Juan C.; Vilaplana, Juan; Buljan, Marina
2011-10-01
Manufacturing technologies as injection molding or embossing specify their production limits for minimum radii of the vertices or draft angle for demolding, for instance. In some demanding nonimaging applications, these restrictions may limit the system optical efficiency or affect the generation of undesired artifacts on the illumination pattern. A novel manufacturing concept is presented here, in which the optical surfaces are not obtained from the usual revolution symmetry with respect to a central axis (z axis), but they are calculated as free-form surfaces describing a spiral trajectory around z axis. The main advantage of this new concept lies in the manufacturing process: a molded piece can be easily separated from its mold just by applying a combination of rotational movement around axis z and linear movement along axis z, even for negative draft angles. Some of these spiral symmetry examples will be shown here, as well as their simulated results.
Spiral nonimaging optical designs
NASA Astrophysics Data System (ADS)
Zamora, Pablo; Benítez, Pablo; Miñano, Juan C.; Vilaplana, Juan
2011-10-01
Manufacturing technologies as injection molding or embossing specify their production limits for minimum radii of the vertices or draft angle for demolding, for instance. In some demanding nonimaging applications, these restrictions may limit the system optical efficiency or affect the generation of undesired artifacts on the illumination pattern. A novel manufacturing concept is presented here, in which the optical surfaces are not obtained from the usual revolution symmetry with respect to a central axis (z axis), but they are calculated as free-form surfaces describing a spiral trajectory around z axis. The main advantage of this new concept lies in the manufacturing process: a molded piece can be easily separated from its mold just by applying a combination of rotational movement around axis z and linear movement along axis z, even for negative draft angles. Some of these spiral symmetry examples will be shown here, as well as their simulated results.
Novel freeform optical surface design with spiral symmetry
NASA Astrophysics Data System (ADS)
Zamora, Pablo; Benítez, Pablo; Miñano, Juan C.; Vilaplana, Juan
2011-10-01
Manufacturing technologies as injection molding or embossing specify their production limits for minimum radii of the vertices or draft angle for demolding, for instance. These restrictions may limit the system optical efficiency or affect the generation of undesired artifacts on the illumination pattern when dealing with optical design. A novel manufacturing concept is presented here, in which the optical surfaces are not obtained from the usual revolution symmetry with respect to a central axis (z axis), but they are calculated as free-form surfaces describing a spiral trajectory around z axis. The main advantage of this new concept lies in the manufacturing process: a molded piece can be easily separated from its mold just by applying a combination of rotational movement around axis z and linear movement along axis z, even for negative draft angles. The general designing procedure will be described in detail.
Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro
2015-01-01
A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1 = ω2 + ω3. This relation enabled to lay out the flow tube by two different ways, the SS type and the JS type. In the SS type, the flow tube was introduced from the upper side of the apparatus into the sun axis of the first rotary frame and connected to the planet axis of the second rotary frame like a double letter SS. In the JS type, the flow tube was introduced from the bottom of the apparatus into the sun axis reaching the upper side of the planet axis an inversed letter J, followed by distribution as in the SS type. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3 : 2 : 5, v/v) for lower phase mobile and (1 : 4 : 5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) – CCW (ω2) – CCW (ω3) by the JS type flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) – CW (ω2) – CW (ω3) by the JS type flow tube distribution. A series of experiments on peak resolution and stationary phase retention revealed that better partition efficiencies were obtained at the flow rate of 0.5 mL/min (column 1) and 0.8 mL/min (column 2) for lower phase mobile and 0.2 mL/min (column 1) and 0.4 mL/min (column 2) for upper phase mobile when using the left-handed multilayer coil (total capacity: 57.0 mL for column 1 and 75.0 mL for column 2) under the rotation speeds of approximately ω1 = 300 rpm, ω2 = 150 rpm and ω3 = 150 rpm. PMID:25805719
Reduced Oblique Effect in Children with Autism Spectrum Disorders (ASD)
Sysoeva, Olga V.; Davletshina, Maria A.; Orekhova, Elena V.; Galuta, Ilia A.; Stroganova, Tatiana A.
2016-01-01
People are very precise in the discrimination of a line orientation relative to the cardinal (vertical and horizontal) axes, while their orientation discrimination sensitivity along the oblique axes is less refined. This difference in discrimination sensitivity along cardinal and oblique axes is called the “oblique effect.” Given that the oblique effect is a basic feature of visual processing with an early developmental origin, its investigation in children with Autism Spectrum Disorder (ASD) may shed light on the nature of visual sensory abnormalities frequently reported in this population. We examined line orientation sensitivity along oblique and vertical axes in a sample of 26 boys with ASD (IQ > 68) and 38 typically developing (TD) boys aged 7–15 years, as well as in a subsample of carefully IQ-matched ASD and TD participants. Children were asked to detect the direction of tilt of a high-contrast black-and-white grating relative to vertical (90°) or oblique (45°) templates. The oblique effect was reduced in children with ASD as compared to TD participants, irrespective of their IQ. This reduction was due to poor orientation sensitivity along the vertical axis in ASD children, while their ability to discriminate line orientation along the oblique axis was unaffected. We speculate that this deficit in sensitivity to vertical orientation may reflect disrupted mechanisms of early experience-dependent learning that takes place during the critical period for orientation selectivity. PMID:26834540
Lee, Songil; Kyung, Gyouhyung; Lee, Jungyong; Moon, Seung Ki; Park, Kyoung Jong
2016-11-01
Recently, some smartphones have introduced index finger interaction functions on the rear surface. The current study investigated the effects of task type, phone width, and hand length on grasp, index finger reach zone, discomfort, and muscle activation during such interaction. We considered five interaction tasks (neutral, comfortable, maximum, vertical, and horizontal strokes), two device widths (60 and 90 mm) and three hand lengths. Horizontal (vertical) strokes deviated from the horizontal axis in the range from -10.8° to -13.5° (81.6-88.4°). Maximum strokes appeared to be excessive as these caused 43.8% greater discomfort than did neutral strokes. The 90-mm width also appeared to be excessive as it resulted in 12.3% increased discomfort relative to the 60-mm width. The small-hand group reported 11.9-18.2% higher discomfort ratings, and the percent maximum voluntary exertion of their flexor digitorum superficialis muscle, pertaining to index finger flexion, was also 6.4% higher. These findings should be considered to make smartphone rear interaction more comfortable. Practitioner Summary: Among neutral, comfortable, maximum, horizontal, and vertical index finger strokes on smartphone rear surfaces, maximum vs. neutral strokes caused 43.8% greater discomfort. Horizontal (vertical) strokes deviated from the horizontal (vertical) axis. Discomfort increased by 12.3% with 90-mm- vs. 60-mm-wide devices. Rear interaction regions of five commercialised smartphones should be lowered 20 to 30 mm for more comfortable rear interaction.
2004-09-17
AeroVironment's test director Jim Daley, backup pilot Rik Meininger, stability and controls engineer Derek Lisoski and pilot Wyatt Sadler (clockwise from bottom left) closely monitor systems testing of the Pathfinder-Plus solar aircraft from the control station.
The Advantage of Mentally Rotating Clockwise
ERIC Educational Resources Information Center
Liesefeld, Heinrich R.; Zimmer, Hubert D.
2011-01-01
The time taken to decide whether a character is shown in its mirror or normal version has been shown to increase approximately linearly with the angular departure from an up-right position. Additionally, in some studies, decisions took longer for clockwise tilted characters than for counterclockwise tilted ones. Other studies do not report the…
Tactile stimulations and wheel rotation responses: toward augmented lane departure warning systems
Tandonnet, Christophe; Burle, Borís; Vidal, Franck; Hasbroucq, Thierry
2014-01-01
When an on-board system detects a drift of a vehicle to the left or to the right, in what way should the information be delivered to the driver? Car manufacturers have so far neglected relevant results from Experimental Psychology and Cognitive Neuroscience. Here we show that this situation possibly led to the sub-optimal design of a lane departure warning system (AFIL, PSA Peugeot Citroën) implemented in commercially available automobile vehicles. Twenty participants performed a two-choice reaction time task in which they were to respond by clockwise or counter-clockwise wheel-rotations to tactile stimulations of their left or right wrist. They performed poorer when responding counter-clockwise to the right vibration and clockwise to the left vibration (incompatible mapping) than when responding according to the reverse (compatible) mapping. This suggests that AFIL implements the worse (incompatible) mapping for the operators. This effect depended on initial practice with the interface. The present research illustrates how basic approaches in Cognitive Science may benefit to Human Factors Engineering and ultimately improve man-machine interfaces and show how initial learning can affect interference effects. PMID:25324791
Method and apparatus for measuring shear modulus and viscosity of a monomolecular film
Abraham, B.M.; Miyano, K.; Ketterson, J.B.
1983-10-18
Apparatus for measuring the shear modulus of a monomolecular film comprises a circular trough having inwardly sloping sides containing a liquid for supporting the monolayer on the surface thereof; a circular rotor suspended above the trough such that the lower surface of the rotor contacts the surface of the liquid, positioned such that the axis of the rotor is concentric with the axis of the trough and freely rotable about its axis; means for hydrostatically compressing the monolayer in the annular region formed between the rotor and the sides of the trough; and means for rotating the trough about its axis. Preferably, hydrostatic compression of the monolayer is achieved by removing liquid from the bottom of the trough (decreasing the surface area) while raising the trough vertically along its axis to maintain the monolayer at a constant elevation (and maintain rotor contact). In order to measure viscosity, a means for rotating the rotor about its axis is added to the apparatus.
Method and apparatus for measuring shear modulus and viscosity of a monomolecular film
Abraham, Bernard M.; Miyano, Kenjiro; Ketterson, John B.
1985-01-01
Instrument for measuring the shear modulus of a monomolecular film comprises a circular trough having inwardly sloping sides containing a liquid for supporting the monolayer on the surface thereof; a circular rotor suspended above the trough such that the lower surface of the rotor contacts the surface of the liquid, positioned such that the axis of the rotor is concentric with the axis of the trough and freely rotable about its axis; apparatus for hydrostatically compressing the monolayer in the annular region formed between the rotor and the sides of the trough; and apparatus for rotating the trough about its axis. Preferably, hydrostatic compression of the monolayer is achieved by removing liquid from the bottom of the trough (decreasing the surface area) while raising the trough vertically along its axis to maintain the monolayer at a constant elevation (and maintain rotor contact). In order to measure viscosity, a apparatus for rotating the rotor about its axis is added to the apparatus.
Zebra finches have a light-dependent magnetic compass similar to migratory birds.
Pinzon-Rodriguez, Atticus; Muheim, Rachel
2017-04-01
Birds have a light-dependent magnetic compass that provides information about the spatial alignment of the geomagnetic field. It is proposed to be located in the avian retina and mediated by a light-induced, radical-pair mechanism involving cryptochromes as sensory receptor molecules. To investigate how the behavioural responses of birds under different light spectra match with cryptochromes as the primary magnetoreceptor, we examined the spectral properties of the magnetic compass in zebra finches. We trained birds to relocate a food reward in a spatial orientation task using magnetic compass cues. The birds were well oriented along the trained magnetic compass axis when trained and tested under low-irradiance 521 nm green light. In the presence of a 1.4 MHz radio-frequency electromagnetic (RF)-field, the birds were disoriented, which supports the involvement of radical-pair reactions in the primary magnetoreception process. Birds trained and tested under 638 nm red light showed a weak tendency to orient ∼45 deg clockwise of the trained magnetic direction. Under low-irradiance 460 nm blue light, they tended to orient along the trained magnetic compass axis, but were disoriented under higher irradiance light. Zebra finches trained and tested under high-irradiance 430 nm indigo light were well oriented along the trained magnetic compass axis, but disoriented in the presence of a RF-field. We conclude that magnetic compass responses of zebra finches are similar to those observed in nocturnally migrating birds and agree with cryptochromes as the primary magnetoreceptor, suggesting that light-dependent, radical-pair-mediated magnetoreception is a common property for all birds, including non-migratory species. © 2017. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Naik, Deepak kumar; Maity, K. P.
2018-03-01
Plasma arc cutting (PAC) is a high temperature thermal cutting process employed for the cutting of extensively high strength material which are difficult to cut through any other manufacturing process. This process involves high energized plasma arc to cut any conducting material with better dimensional accuracy in lesser time. This research work presents the effect of process parameter on to the dimensional accuracy of PAC process. The input process parameters were selected as arc voltage, standoff distance and cutting speed. A rectangular plate of 304L stainless steel of 10 mm thickness was taken for the experiment as a workpiece. Stainless steel is very extensively used material in manufacturing industries. Linear dimension were measured following Taguchi’s L16 orthogonal array design approach. Three levels were selected to conduct the experiment for each of the process parameter. In all experiments, clockwise cut direction was followed. The result obtained thorough measurement is further analyzed. Analysis of variance (ANOVA) and Analysis of means (ANOM) were performed to evaluate the effect of each process parameter. ANOVA analysis reveals the effect of input process parameter upon leaner dimension in X axis. The results of the work shows that the optimal setting of process parameter values for the leaner dimension on the X axis. The result of the investigations clearly show that the specific range of input process parameter achieved the improved machinability.
Simulator certification methods and the vertical motion simulator
NASA Technical Reports Server (NTRS)
Showalter, T. W.
1981-01-01
The vertical motion simulator (VMS) is designed to simulate a variety of experimental helicopter and STOL/VTOL aircraft as well as other kinds of aircraft with special pitch and Z axis characteristics. The VMS includes a large motion base with extensive vertical and lateral travel capabilities, a computer generated image visual system, and a high speed CDC 7600 computer system, which performs aero model calculations. Guidelines on how to measure and evaluate VMS performance were developed. A survey of simulation users was conducted to ascertain they evaluated and certified simulators for use. The results are presented.
The relation of motion sickness to the spatial-temporal properties of velocity storage
NASA Technical Reports Server (NTRS)
Dai, Mingjia; Kunin, Mikhail; Raphan, Theodore; Cohen, Bernard; Young, L. R. (Principal Investigator)
2003-01-01
Tilting the head in roll to or from the upright while rotating at a constant velocity (roll while rotating, RWR) alters the position of the semicircular canals relative to the axis of rotation. This produces vertical and horizontal nystagmus, disorientation, vertigo, and nausea. With recurrent exposure, subjects habituate and can make more head movements before experiencing overpowering motion sickness. We questioned whether promethazine lessened the vertigo or delayed the habituation, whether habituation of the vertigo was related to the central vestibular time constant, i.e., to the time constant of velocity storage, and whether the severity of the motion sickness was related to deviation of the axis of eye velocity from gravity. Sixteen subjects received promethazine and placebo in a double-blind, crossover study in two consecutive 4-day test series 1 month apart, termed series I and II. Horizontal and vertical eye movements were recorded with video-oculography while subjects performed roll head movements of approx. 45 degrees over 2 s to and from the upright position while being rotated at 138 degrees /s around a vertical axis. Motion sickness was scaled from 1 (no sickness) to an endpoint of 20, at which time the subject was too sick to continue or was about to vomit. Habituation was determined by the number of head movements that subjects made before reaching the maximum motion sickness score of 20. Head movements increased steadily in each session with repeated testing, and there was no difference between the number of head movements made by the promethazine and placebo groups. Horizontal and vertical angular vestibulo-ocular reflex (aVOR) time constants declined in each test, with the declines being closely correlated to the increase in the number of head movements. The strength of vertiginous sensation was associated with the amount of deviation of the axis of eye velocity from gravity; the larger the deviation of the eye velocity axis from gravity, the more severe the motion sickness. Thus, promethazine neither reduced the nausea associated with RWR, nor retarded or hastened habituation. The inverse relationship between the aVOR time constants and number of head movements to motion sickness, and the association of the severity of motion sickness with the extent, strength, and time of deviation of eye velocity from gravity supports the postulate that the spatiotemporal properties of velocity storage, which are processed between the nodulus and uvula of the vestibulocerebellum and the vestibular nuclei, are likely to represent the source of the conflict responsible for producing motion sickness.
Pettorossi, V E; Errico, P; Ferraresi, A; Barmack, N H
1999-02-15
Prolonged binocular optokinetic stimulation (OKS) in the rabbit induces a high-velocity negative optokinetic afternystagmus (OKAN II) that persists for several hours. We have taken advantage of this uniform nystagmus to study how changes in static head orientation in the pitch plane might influence the orientation of the nystagmus. After horizontal OKS, the rotation axis of the OKAN II remained almost constant in space as it was kept aligned with the gravity vector when the head was pitched by as much as 80 degrees up and 35 degrees down. Moreover, during reorientation, slow-phase eye velocity decreased according to the head pitch angle. Thereafter, we analyzed the space orientation of OKAN II after optokinetic stimulation during which the head and/or the OKS were pitched upward and downward. The rotation axis of OKAN II did not remain aligned with an earth vertical axis nor a head vertical axis, but it tended to be aligned with that of the OKS respace. The slow-phase eye velocity of OKAN II was also affected by the head pitch angle during OKS, because maximal OKAN II velocity occurred at the same head pitch angle as that during optokinetic stimulation. We suggest that OKAN II is coded in gravity-centered rather than in head-centered coordinates, but that this coordinate system may be influenced by optokinetic and vestibular stimulation. Moreover, the velocity attenuation of OKAN II seems to depend on the mismatch between the space-centered nystagmus rotation axis orientation and that of the "remembered" head-centered optokinetic pathway activated by OKS.
NASA Technical Reports Server (NTRS)
Dai, M.; Raphan, T.; Kozlovskaya, I.; Cohen, B.
1996-01-01
Horizontal movements of both eyes were recorded simultaneously using scleral search coils in 2 rhesus monkeys before and after the COSMOS 2229 space-flight of 1992-1993. Another 9 monkeys were tested at comparable time intervals and served as controls. Ocular vergence, defined as the difference in horizontal position between the left and right eyes, was measured during off-vertical yaw axis rotation (OVAR) in darkness. Vergence was modulated sinusoidally as a function of head position with regard to gravity during OVAR. The amplitude of peak-to-peak modulation increased with increments in tilt of the angle of the rotational axis (OVAR tilt angle) that ranged from 15 degrees to 90 degrees. Of the 11 monkeys tested, 1 had no measurable modulation in vergence. In the other 10, the mean amplitude of the peak to peak modulation was 5.5 degrees +/- 1.3 degrees at 90 degrees tilt. Each of these monkeys had maximal vergence when its nose was pointed close to upward (gravity back; mean phase: -0.9 degree +/- 26 degrees). After space flight, the modulation in vergence was reduced by over 50% for the two flight monkeys, but the phase of vergence modulation was not altered. The reduction in vergence modulation was sustained for the 11-day postflight testing period. We conclude that changes in vergence are induced in monkeys by the sinusoidal component of gravity acting along the naso-occipital axis during yaw axis OVAR, and that the modulation of the vergence reflex is significantly less sensitive to linear acceleration after space flight.
Pilot-in-the-Loop CFD Method Development
2015-02-01
expensive alternatives [1]. ALM represents the blades as a set of segments along with each blade axis and the ADM represents the entire rotor as...fine grid, Δx = 1.00 m Figure 4 – Time-averaged vertical velocity distributions on downwash and rotor disk plane for hybrid and loose coupling...cases with fine and coarse grid refinement levels. Figure 4 shows the time-averaged distributions of vertical velocities on both downwash and rotor disk
NASA Astrophysics Data System (ADS)
Cross, Rod
2018-03-01
Experimental and theoretical results are presented concerning the rise of a spinning egg. It was found that an egg rises quickly while it is sliding and then more slowly when it starts rolling. The angular momentum of the egg projected in the XZ plane changed in the same direction as the friction torque, as expected, by rotating away from the vertical Z axis. The latter result does not explain the rise. However, an even larger effect arises from the Y component of the angular momentum vector. As the egg rises, the egg rotates about the Y axis, an effect that is closely analogous to rotation of the egg about the Z axis. Both effects can be described in terms of precession about the respective axes. Steady precession about the Z axis arises from the normal reaction force in the Z direction, while precession about the Y axis arises from the friction force in the Y direction. Precession about the Z axis ceases if the normal reaction force decreases to zero, and precession about the Y axis ceases if the friction force decreases to zero.
NASA Technical Reports Server (NTRS)
Hein, L. A.; Myers, W. N.
1980-01-01
Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.
Interferometric rotation sensor
NASA Technical Reports Server (NTRS)
Walsh, T. M.
1972-01-01
Sensor generates interference fringes varying in number (horizontally and vertically) as a function of the total angular deviation relative to the line-of-sight axis. Device eliminates errors from zero or null shift due to lack of electrical circuitry stability.
Large Wind Turbine Design Characteristics and R and D Requirements
NASA Technical Reports Server (NTRS)
Lieblein, S. (Editor)
1979-01-01
Detailed technical presentations on large wind turbine research and development activities sponsored by public and private organizations are presented. Both horizontal and vertical axis machines are considered with emphasis on their structural design.
NASA Astrophysics Data System (ADS)
Thissen, Christopher J.
Permanent deformation records aspects of how material moves through a tectonic environment. The methods required to measure deformation vary based on rock type, deformation process, and the geological question of interest. In this thesis we develop two new methods for measuring permanent deformation in rocks. The first method uses the autocorrelation function to measure the anisotropy present in two-dimensional photomicrographs and three-dimensional X-ray tomograms of rocks. The method returns very precise estimates for the deformation parameters and works best for materials where the deformation is recorded as a shape change of distinct fabric elements, such as grains. Our method also includes error estimates. Image analysis techniques can focus the method on specific fabric elements, such as quartz grains. The second method develops a statistical technique for measuring the symmetry in a distribution of crystal orientations, called a lattice-preferred orientation (LPO). We show that in many cases the symmetry of the LPO directly constrains the symmetry of the deformation, such axial flattening vs. pure shear vs. simple shear. In addition to quantifying the symmetry, the method uses the full crystal orientation to estimate symmetry rather than pole figures. Pole figure symmetry can often be misleading. This method works best for crystal orientations measured in samples deformed by dislocation creep, but otherwise can be used on any mineral without requiring information about slip systems. In Chapter 4 we show how deformation measurements can be used to inform regional tectonic and orogenic models in the Pacific Northwestern United States. A suite of measurements from the Olympic Mountains shows that uplift and deformation of the range is consistent with an orogenic wedge model driven by subduction of the Juan de Fuca plate, and not northward forearc migration of the Oregon block. The deformation measurements also show that deformation within the Olympic Mountains is essentially two-dimensional. We use this constraint to develop a suite of orogenic deformation models that use slab height and erosion rate data as boundary conditions. We use the models to show that influx of sediments distributed along an accretionary front can greatly reduce deformation required to maintain wedge taper. Due to the two-dimensional nature of deformation in the Olympics, a series of two-dimensional transects across the peninsula provides an approximation for non-elastic deformation across the Peninsula. We show how the shallow slab height and deeper exhumation at the core of peninsula led to the domal structure of the Olympics. This model also explains the counter-clockwise vertical axis rotations north of the peninsula, and clockwise rotations south of the peninsula through horizontal shear, similar to opening a gate. Finally, the horizontal surface velocities predicted by the models suggests that up to 15% of GPS velocities may reflect non-elastic, permanent translation of material towards the rear of the wedge.
NASA Astrophysics Data System (ADS)
Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J.
2011-12-01
Oceanic propagating rifts create migrating transform fault zones on the seafloor that leave a wake of deformed and rotated crustal blocks between abandoned transform fault stands. Faulting and rotation kinematics in these areas are inferred from bathymetric lineaments and earthquake focal mechanisms, but the details of crustal deformation associated with migrating oceanic transforms is inhibited by limited seafloor exposures and access. A similar propagating rift and migrating transform system occurs in thick oceanic-like crust of Northern Iceland, providing an additional perspective on kinematics of these systems. The Tjörnes Fracture Zone (TFZ) in Northern Iceland is a broad region of deformation thought to have formed ~7 Ma. Right-lateral motion is accommodated mostly on two WNW-trending seismically active fault zones, the Grímsey Seismic Zone and the Húsavík-Flatey Fault (HFF), spaced ~40 km apart. Both are primarily offshore; however, deformation south of the HFF is partly exposed on land over an area of >10 km (N/S) and >25 km (E/W) on the peninsula of Flateyjarskagi. Previous work has shown that average lava flow orientations progressively change from 160°/12° SW (~20 km south from HFF), to 183°/25° NW (~12 km S of HFF), and 212°/33° NW (~6 km S of HFF). Dike orientations also progressively change from 010°/85° SE (parallel to the Northern Rift Zone), clockwise to 110°/75° SW (nearly parallel to the HFF) near the HFF. Pervasive strike-slip faulting is evident along the HFF as well as on isolated faults to the south. Between these, NNE-striking left-lateral, oblique-slip faults occur near the HFF but appear to decrease in occurrence to the south. These relationships have been interpreted as either the result of transform shear deformation (secondary features) or construction in a stress field that varies as the transform is approached (primary features). Paleomagnetic data from across the area can test these hypotheses. Mean paleomagnetic remanence directions of normal polarity lavas from two areas ~6 and ~12 km south of the HFF both have easterly declinations and moderate positive inclinations, with nearly antipodal reverse directions. Dikes sampled in the area ~6 km south of HFF reveal remanence directions indistinguishable from those of the lavas at the 95% confidence level. After tilt correction, the mean remanence directions for the area ~6km south of the HFF are statistically distinct from the expected Geocentric Axial Dipole (GAD) direction suggesting an additional ~40° or more of vertical-axis rotation. Tilt-corrected remanence directions of lavas ~12 km south of the HFF are nearly coincident with the GAD suggesting little additional rotation. Geological field relations and fault-slip data imply a two-stage reconstruction involving tilting followed by approximately vertical-axis rotations. The deformation within the TFZ may be analogous to that of migrating oceanic transform faults, transform faults associated with propagating rifts, and microplates.
The orientation of the cervical vertebral column in unrestrained awake animals. I. Resting position.
Vidal, P P; Graf, W; Berthoz, A
1986-01-01
The orientation of the cervical vertebral column was studied by X-ray photography of the region containing the head and the neck in nine unrestrained species of vertebrates (man, monkey, cat, rabbit, guinea pig, rat, chicken, frog, lizard). In addition, the orientation of the horizontal semicircular canals was measured in four species using landmarks on the skull. In all vertebrates studied, with the exception of frog and lizard, the general orientation of the cervical vertebral column was vertical when animals were at rest, and not horizontal or oblique as suggested by the macroscopic appearance of the neck. The posture of the animal, whether lying, sitting or standing, had little effect on this general vertical orientation, although some variability was noticed depending on the species. This finding prompted the definition of a resting zone, where the cervical column can take any orientation within a narrow range around a mean position. The cervical vertebral column composes part of the S-shaped structure of the entire vertebral column, with one inflection around the cervico-thoracic (C7/Th1) junction. This feature is already noticable in the lizard. The vertical orientation of the cervical vertebral column is interpreted to provide a stable and energy saving balance of the head. Furthermore, when the head is lowered or raised, the atlanto-occipital and cervico-thoracic junctions are predominantly involved, while the entire cervical column largely preserves its intrinsic configuration. The curved configuration of the cervico-thoracic vertebral column embedded in long spring-like muscles is interpreted to function as a shock absorber. At rest, animals did not hold their heads with the horizontal canals oriented earth horizontally all the time, but often maintained them pitched up by ca. 5 deg, as has been reported for man. At other times, presumably when the vigilance level increased, the horizontal canals were brought into the earth horizontal plane. The vertical orientation of the cervical column results in a vertical positioning of the odontoid process of the axis (second cervical vertebra, C2), which thus provides the axis of rotation for yaw movements of the head. This axis corresponds to that of the horizontal semicircular canals. The vertical organization of the cervical vertebral column in birds and mammals, whether the animal is quadrupedal or bipedal, points to a common organizational principle for eye and head movement systems.(ABSTRACT TRUNCATED AT 400 WORDS)
A numerical analysis to evaluate Betz's Law for vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Thönnißen, F.; Marnett, M.; Roidl, B.; Schröder, W.
2016-09-01
The upper limit for the energy conversion rate of horizontal axis wind turbines (HAWT) is known as the Betz limit. Often this limit is also applied to vertical axis wind turbines (VAWT). However, a literature review reveals that early analytical and recent numerical approaches predicted values for the maximum power output of VAWTs close to or even higher than the Betz limit. Thus, it can be questioned whether the application of Betz's Law to VAWTs is justified. To answer this question, the current approach combines a free vortex model with a 2D inviscid panel code to represent the flow field of a generic VAWT. To ensure the validity of the model, an active blade pitch control system is used to avoid flow separation. An optimal pitch curve avoiding flow separation is determined for one specific turbine configuration by applying an evolutionary algorithm. The analysis yields a net power output that is slightly (≈6%) above the Betz limit. Besides the numerical result of an increased energy conversion rate, especially the identification of two physical power increasing mechanisms shows, that the application of Betz's Law to VAWTs is not justified.
Fish schooling as a basis for vertical axis wind turbine farm design.
Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O
2010-09-01
Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.
Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow
NASA Astrophysics Data System (ADS)
Rolin, Vincent; Porté-Agel, Fernando
2015-04-01
Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.
System providing limit switch function with simultaneous absolute position output
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2006-01-01
A limit and position sensing system includes a sensor assembly and an emitter. The sensor assembly includes first and second electrical conductors arranged in opposing parallel planes. The first electrical conductor is coiled outwardly from either end thereof in a clockwise fashion to form a first coil region and a second coil region. The second electrical conductor forms a single coil with portions of the single coil's rings lying between the first end and second end of the first electrical conductor being parallel to an axis of the first electrical conductor's plane. Ferromagnetic material is aligned with the first and second electrical conductors and spans beyond (a) the first and second ends of the first electrical conductor, and (b) the portions of the rings of the second electrical conductor's single coil that lie between the first end and second end of the first electrical conductor. The emitter is spaced apart from the sensor assembly and transmits a periodic electromagnetic wave towards the sensor assembly.
NASA Astrophysics Data System (ADS)
Hinojosa-Corona, A.; Nissen, E.; Limon-Tirado, J. F.; Arrowsmith, R.; Krishnan, A.; Saripalli, S.; Oskin, M. E.; Glennie, C. L.; Arregui, S. M.; Fletcher, J. M.; Teran, O. J.
2013-05-01
Aerial LiDAR surveys reconstruct with amazing fidelity the sinuosity of terrain relief. In this research we explore the 3D deformation field at the surface after a big earthquake (M7.2) by comparing pre- to post-event aerial LiDAR point clouds. The April 4 2010 earthquake produced a NW-SE surface rupture ~110km long with right-lateral normal slip up to 3m in magnitude over a very favorable target: scarcely vegetated and unaltered desert mountain range, sierras El Mayor and Cucapah, in northern Baja California, close to the US-México border. It is a plate boundary region between the Pacific and North American plates. The pre-event LiDAR with lower point density (0.013-0.033 pts m-2) required filtering and post-processing before comparing with the denser (9-18 pts m-2) more accurate post event dataset. The 3D surface displacement field was determined using an adaptation of the Iterative Closest Point (ICP) algorithm, implemented in the open source Point Cloud Library (PCL). The LiDAR datasets are first split into a grid of windows, and for each one, ICP iteratively converges on the rigid body transformation (comprising translations and rotations) that best aligns the pre- to post-event points. Perturbing the pre- and post-event point clouds independently with a synthetic right lateral inverse displacements of known magnitude along a proposed fault, ICP recovered the synthetically introduced translations. Windows with dimensions of 100-200m gave the best results for datasets with these densities. The simplified surface rupture photo interpreted and mapped in the field, delineates very well the vertical displacements patterns unveiled by ICP. The method revealed block rotations, some with clockwise and others counter clockwise direction along the simplified surface rupture. As ground truth, displacements from ICP have similar values as those measured in the field along the main rupture by Fletcher and collaborators. The vertical component was better estimated than the horizontal having the latter problems in flat areas as expected. Hybrid approaches, as simple differencing, could be taken in these areas. Outliers were removed from results. ICP detected extraction from quarries developed between the two dates of LiDAR collection and expressed as a negative vertical displacement close to the sites. To improve the accuracy of the 3D displacement field, we intend to reprocess the pre-event source survey data to reduce the systematic error introduced by the sensor. Multidisciplinary approach will be needed to make tectonic inferences from the 3D displacement field revealed by ICP, about the processes at depth expressed at surface.
A 20-KW Wind Energy Conversion System (WECS) at the Marine Corps Air Station, Kaneohe, Hawaii.
1983-01-01
of propellers and that vertical-axis wind turbines would be more efficient. Several turbines such as the Darrieus and gyro-mill, of this type are... wind turbines , wind systems siting, alternate energy systems, remote site power generation. 20 ABSTRACT (Con!,,u,. - r r... .. do I(3 lI - d #,d e...Corps Air Station (MCAS) Kaneohe Bay, Hawaii. The wind turbine generator chosen for the evaluation was a horizontal-axis-propeller- downwind rotor
Power optimal single-axis articulating strategies
NASA Technical Reports Server (NTRS)
Kumar, Renjith R.; Heck, Michael L.
1991-01-01
Power optimal single axis articulating PV array motion for Space Station Freedom is investigated. The motivation is to eliminate one of the articular joints to reduce Station costs. Optimal (maximum power) Beta tracking is addressed for local vertical local horizontal (LVLH) and non-LVLH attitudes. Effects of intra-array shadowing are also presented. Maximum power availability while Beta tracking is compared to full sun tracking and optimal alpha tracking. The results are quantified in orbital and yearly minimum, maximum, and average values of power availability.
Test results of the DOE/Sandia 17 meter VAWT
NASA Technical Reports Server (NTRS)
Nellums, R. O.; Worstell, M. H.
1979-01-01
A review is given of the test program of a 17 meter Vertical Axis Wind Turbine VAWT. Performance test results are discussed including difficulties encountered during the VAWT operation along with ways of solving these problems.
NASA Astrophysics Data System (ADS)
1983-03-01
Described is the successful fabrication, installation, and checkout of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs). The turbines are Darrieus-type VAWTs with rotors 17 meters (55 feet) in diameter and 25.15 meters (83 feet) in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable at: (1) Wind Systems Test Center, Rocky Flats, Colorado; (2) the US Department of Agriculture Conservation and Production Research Center at Bushland, Texas; and (3) Tisbury Water Authority, Vineyard Haven, Massachusetts, on the island of Martha's Vineyard. The fourth turbine is stored at Bushland, Texas awaiting selection of an erection site.
The Oregon State University wind studies. [economic feasibility of windpowered generators
NASA Technical Reports Server (NTRS)
Wilson, R. E.
1973-01-01
The economic feasibility of commercial use of wind generated power in selected areas of Oregon is assessed. A number of machines for generating power have been examined. These include the Savonius rotor, translators, conventional wind turbines, the circulation controlled rotor and the vertical axis winged turbine. Of these machines, the conventional wind turbine and the vertical axis winged turbine show the greatest promise on the basis of the power developed per unit of rotor blade area. Attention has been focused on the structural and fatigue analysis of rotors since the economics of rotary winged, wind generated power depends upon low cost, long lifetime rotors. Analysis of energy storage systems and tower design has also been undertaken. An economic means of energy storage has not been found to date. Tower design studies have produced cost estimates that are in general agreement with the cost of the updated Putnam 110-foot tower.
Aerodynamic Interactions between Pairs of Vertical-Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Brownstein, Ian; Dabiri, John
2017-11-01
Increased power production has been observed in downstream vertical-axis wind turbines (VAWTs) when positioned offset from the wake of upstream turbines. This effect was found to exist in both laboratory and field environments with pairs of co- and counter-rotating turbines. It is hypothesized that the observed power production enhancement is due to flow acceleration adjacent to the upstream turbine caused by bluff body blockage, which increases the incident freestream velocity on appropriately positioned downstream turbines. This type of flow acceleration has been observed in computational and laboratory studies of VAWTs and will be further investigated here using 3D-PTV measurements around pairs of laboratory-scale VAWTs. These measurements will be used to understand the mechanisms behind the performance enhancement effect and seek to determine optimal separation distances and angles between turbines based on turbine design parameters. These results will lead to recommendations for optimizing the power production of VAWT wind farms which utilize this effect.
Aerodynamic performance of a small vertical axis wind turbine using an overset grid method
NASA Astrophysics Data System (ADS)
Bangga, Galih; Solichin, Mochammad; Daman, Aida; Sa'adiyah, Devy; Dessoky, Amgad; Lutz, Thorsten
2017-08-01
The present paper aims to asses the aerodynamic performance of a small vertical axis wind turbine operating at a small wind speed of 5 m/s for 6 different tip speed ratios (λ=2-7). The turbine consists of two blades constructed using the NACA 0015 airfoil. The study is carried out using computational fluid dynamics (CFD) methods employing an overset grid approach. The (URANS) SST k - ω is used as the turbulence model. For the preliminary study, simulations of the NACA 0015 under static conditions for a broad range of angle of attack and a rotating two-bladed VAWT are carried out. The results are compared with available measurement data and a good agreement is obtained. The simulations demonstrate that the maximum power coefficient attained is 0.45 for λ=4. The aerodynamic loads hysteresis are presented showing that the dynamic stall effect decreases with λ.
Location of aerodynamic noise sources from a 200 kW vertical-axis wind turbine
NASA Astrophysics Data System (ADS)
Ottermo, Fredric; Möllerström, Erik; Nordborg, Anders; Hylander, Jonny; Bernhoff, Hans
2017-07-01
Noise levels emitted from a 200 kW H-rotor vertical-axis wind turbine have been measured using a microphone array at four different positions, each at a hub-height distance from the tower. The microphone array, comprising 48 microphones in a spiral pattern, allows for directional mapping of the noise sources in the range of 500 Hz to 4 kHz. The produced images indicate that most of the noise is generated in a narrow azimuth-angle range, compatible with the location where increased turbulence is known to be present in the flow, as a result of the previous passage of a blade and its support arms. It is also shown that a semi-empirical model for inflow-turbulence noise seems to produce noise levels of the correct order of magnitude, based on the amount of turbulence that could be expected from power extraction considerations.
NASA Astrophysics Data System (ADS)
Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.
2016-09-01
A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.
Increased Sensitivity to Mirror Symmetry in Autism
Perreault, Audrey; Gurnsey, Rick; Dawson, Michelle; Mottron, Laurent; Bertone, Armando
2011-01-01
Can autistic people see the forest for the trees? Ongoing uncertainty about the integrity and role of global processing in autism gives special importance to the question of how autistic individuals group local stimulus attributes into meaningful spatial patterns. We investigated visual grouping in autism by measuring sensitivity to mirror symmetry, a highly-salient perceptual image attribute preceding object recognition. Autistic and non-autistic individuals were asked to detect mirror symmetry oriented along vertical, oblique, and horizontal axes. Both groups performed best when the axis was vertical, but across all randomly-presented axis orientations, autistics were significantly more sensitive to symmetry than non-autistics. We suggest that under some circumstances, autistic individuals can take advantage of parallel access to local and global information. In other words, autistics may sometimes see the forest and the trees, and may therefore extract from noisy environments genuine regularities which elude non-autistic observers. PMID:21559337
Human vertical eye movement responses to earth horizontal pitch
NASA Technical Reports Server (NTRS)
Wall, C. 3rd; Petropoulos, A. E.
1993-01-01
The vertical eye movements in humans produced in response to head-over-heels constant velocity pitch rotation about a horizontal axis resemble those from other species. At 60 degrees/s these are persistent and tend to have non-reversing slow components that are compensatory to the direction of rotation. In most, but not all subjects, the slow component velocity was well characterized by a rapid build-up followed by an exponential decay to a non-zero baseline. Super-imposed was a cyclic or modulation component whose frequency corresponded to the time for one revolution and whose maximum amplitude occurred during a specific head orientation. All response components (exponential decay, baseline and modulation) were larger during pitch backward compared to pitch forward runs. Decay time constants were shorter during the backward runs, thus, unlike left to right yaw axis rotation, pitch responses display significant asymmetries between paired forward and backward runs.
Performance testing of a 50 kW VAWT in a built-up environment
NASA Technical Reports Server (NTRS)
Schienbein, L. A.
1981-01-01
The results of performance tests of a DAF Indal 50 kW vertical axis wind turbine are presented. Results of limited free stream turbulence and vertical wind shear measurements at the site are also presented. The close agreement between measured and predicted energy outputs, required to verify the wind turbine power output performance relationship, was not attained. A discussion is presented of factors that may have contributed to the lack of better agreement.
ERIC Educational Resources Information Center
De Luca, R.; Fedullo, A.
2009-01-01
A vertical light ray coming from infinity is reflected by a primary parabolic mirror M[subscript 1] having focus at F[subscript 1]. At a small distance from F[subscript 1] a secondary mirror M[subscript 2], symmetric with respect to the vertical axis, is placed. One would like to find the analytic equation of the mirror M[subscript 2], so that all…
Effects of Froude number and geometry on water entry of a 2-D ellipse
NASA Astrophysics Data System (ADS)
Zhang, Xu; Liu, Pei-qing; Qu, Qiu-lin; Wang, Rui; Agarwal, Ramesh K.
2018-05-01
By using the finite volume method with volume of fluid model and global dynamic mesh technique, the effects of Froude number and geometry on the water entry process of a 2-D ellipse are investigated numerically. For the time history of the vertical force, the computational fluid dynamics (CFD) results match the experimental data much better than the classical potential-flow theories due to the consideration of the viscosity, turbulence, surface tension, gravity, and compressibility. The results show that the position of peak pressure on ellipse shifts from the spray root to the bottom of ellipse at a critical time. The critical time changes with the geometry and Froude number. By studying the vertical force, the ellipse water entry process can be divided into the initial and late stages based on the critical dimensionless time of about 0.1. The geometry of the ellipse plays a dominant role in the initial stage, while the Froude number is more important in the late stage of entry. The classical Wagner theory is extended to the ellipse water entry, and the predicted maximum value of vertical force coefficient in the initial stage is 4πa/b that matches the CFD results very well, where a and b are the horizontal axis and vertical axis of the ellipse parallel and perpendicular to the initial calm water surface, respectively.
Moore, Steven T; Clément, Gilles; Dai, Mingjai; Raphan, Theodore; Solomon, David; Cohen, Bernard
2003-01-01
In this paper we review space flight experiments performed by our laboratory. Rhesus monkeys were tested before and after 12 days in orbit on COSMOS flights 2044 (1989) and 2229 (1992-1993). There was a long-lasting decrease in post-flight ocular counter-rolling (70%) and vergence (50%) during off-vertical axis rotation. In one animal, the orientation of optokinetic after-nystagmus shifted by 28 degrees from the spatial vertical towards the body vertical early post-flight. Otolith-ocular and perceptual responses were also studied in four astronauts on the 17-day Neurolab shuttle mission (STS-90) in 1998. Ocular counter-rolling was unchanged in response to 1-g and 0.5-g Gy centrifugation during and after flight and to post-flight static roll tilts relative to pre-flight values. Orientation of the optokinetic nystagmus eye velocity axis to gravito-inertial acceleration (GIA) during centrifugation was also unaltered by exposure to microgravity. Perceptual orientation to the GIA was maintained in-flight, and subjects did not report sensation of translation during constant velocity centrifugation. These studies suggest that percepts and ocular responses to tilt are determined by sensing the body vertical relative to the GIA. The findings also raise the possibility that 'artificial gravity' during the Neurolab flight counteracted adaptation of these otolith-ocular responses.
Becker, Mark W; Miller, James R; Liu, Taosheng
2013-04-01
Previous research has suggested that two color patches can be consolidated into visual short-term memory (VSTM) via an unlimited parallel process. Here we examined whether the same unlimited-capacity parallel process occurs for two oriented grating patches. Participants viewed two gratings that were presented briefly and masked. In blocks of trials, the gratings were presented either simultaneously or sequentially. In Experiments 1 and 2, the presentation of the stimuli was followed by a location cue that indicated the grating on which to base one's response. In Experiment 1, participants responded whether the target grating was oriented clockwise or counterclockwise with respect to vertical. In Experiment 2, participants indicated whether the target grating was oriented along one of the cardinal directions (vertical or horizontal) or was obliquely oriented. Finally, in Experiment 3, the location cue was replaced with a third grating that appeared at fixation, and participants indicated whether either of the two test gratings matched this probe. Despite the fact that these responses required fairly coarse coding of the orientation information, across all methods of responding we found superior performance for sequential over simultaneous presentations. These findings suggest that the consolidation of oriented gratings into VSTM is severely limited in capacity and differs from the consolidation of color information.
A Numerical Study on the Effects of Street‒canyon Aspect‒ratio on Reactive Pollutant Dispersion
NASA Astrophysics Data System (ADS)
Park, S. J.; Kim, J.
2014-12-01
In this study, the effects of street‒canyon aspect‒ratio on reactive pollutant dispersion were investigated using the coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons with different aspect ratios and flow regimes were classified according to the building height. For each flow regime, dispersion characteristics were investigated in views of reactive pollutant concentration and VOCs‒NOX ratio. Finally, the relations between pollutant concentration and aspect ratio in urban street canyons were investigated. In the case of H/S = 1.0 (H is building height and S is street width), one clockwise‒rotating vortex appeared vertically and the reverse and outward flows were dominant near the street bottom. In the case of H/S = 2.0, two counter‒rotating vortices appeared vertically in the street canyon. The primary (secondary) vortex rotating clockwise (counterclockwise) was formed in upper (lower) layer. The flow patterns affected the reactive pollutant concentration in street canyons. As building height increased, mean concentration of NO decreased when one vortex was generated in street canyons and increased when two vortexes appeared in street canyons. O3 concentration showed almost contrasted tendency with those of NO because O3 was depleted by the NO titration.
Opportunity View During Exploration in 'Duck Bay,' Sols 1506-1510 (Vertical)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings on the 1,506th through 1,510th Martian days, or sols, of Opportunity's mission on Mars (April 19-23, 2008). North is at the top. This view is presented as a vertical projection with geometric seam correction. The site is within an alcove called 'Duck Bay' in the western portion of Victoria Crater. Victoria Crater is about 800 meters (half a mile) wide. Opportunity had descended into the crater at the top of Duck Bay 7 months earlier. By the time the rover acquired this view, it had examined rock layers inside the rim. Opportunity was headed for a closer look at the base of a promontory called 'Cape Verde,' the cliff at about the 2-o'clock position of this image, before leaving Victoria. The face of Cape Verde is about 6 meters (20 feet) tall. Just clockwise from Cape Verde is the main bowl of Victoria Crater, with sand dunes at the bottom. A promontory called 'Cabo Frio,' at the southern side of Duck Bay, stands near the 6-o'clock position of the image.Influence of magnetic field on zebrafish activity and orientation in a plus maze.
Osipova, Elena A; Pavlova, Vera V; Nepomnyashchikh, Valentin A; Krylov, Viacheslav V
2016-01-01
We describe an impact of the geomagnetic field (GMF) and its modification on zebrafish's orientation and locomotor activity in a plus maze with four arms oriented to the north, east, south and west. Zebrafish's directional preferences were bimodal in GMF: they visited two arms oriented in opposed directions (east-west) most frequently. This bimodal preference remained stable for same individuals across experiments divided by several days. When the horizontal GMF component was turned 90° clockwise, the preference accordingly shifted by 90° to arms oriented to the north and south. Other modifications of GMF (reversal of both vertical and horizontal GMF components; reversal of vertical component only; and reversal of horizontal component only) did not exert any discernible effect on the orientation of zebrafish. The 90° turn of horizontal component also resulted in a significant increase of fish's locomotor activity in comparison with the natural GMF. This increase became even more pronounced when the horizontal component was repeatedly turned by 90° and back with 1min interval between turns. Our results show that GMF and its variations should be taken into account when interpreting zebrafish's directional preferences and locomotor activity in mazes and other experimental devices. Copyright © 2015. Published by Elsevier B.V.
Sakamoto, Sadanori; Iguchi, Masaki
2018-06-08
Less attention to a balance task reduces the center of foot pressure (COP) variability by automating the task. However, it is not fully understood how the degree of postural automaticity influences the voluntary movement and anticipatory postural adjustments. Eleven healthy young adults performed a bipedal, eyes closed standing task under the three conditions: Control (C, standing task), Single (S, standing + reaction tasks), and Dual (D, standing + reaction + mental tasks). The reaction task was flexing the right shoulder to an auditory stimulus, which causes counter-clockwise rotational torque, and the mental task was arithmetic task. The COP variance before the reaction task was reduced in the D condition compared to that in the C and S conditions. On average the onsets of the arm movement and the vertical torque (Tz, anticipatory clockwise rotational torque) were both delayed, and the maximal Tz slope (the rate at which the torque develops) became less steep in the D condition compared to those in the S condition. When these data in the D condition were expressed as a percentage of those in the S condition, the arm movement onset and the Tz slope were positively and negatively, respectively, correlated with the COP variance. By using the mental-task induced COP variance reduction as the indicator of postural automaticity, our data suggest that the balance task for those with more COP variance reduction is less cognitively demanding, leading to the shorter reaction time probably due to the attention shift from the automated balance task to the reaction task. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, X B; Yin, Y F; Yao, H M; Han, Y H; Wang, N; Ge, Z L
2016-07-01
To investigate the stress distribution on the maxillary anterior teeth retracted with sliding mechanics and micro-implant anchorage using different retraction hook heights and positions. DICOM image data including maxilla and upper teeth were obtained with cone-beam CT. The three-dimensional finite element model was constructed using Mimics software. Brackets and archwire model were constructed using Creo software. The models were instantiated using Pro/Engineer software. Abaqus software was used to simulate the sliding mechanics by loading 2 N force on 0, 2, 4, 6, 8, 10 mm retraction hooks and three different positions, repectively. Rotation of the occlusal plane, the initial displacement and stress distribution of teeth were analyzed. Lingual rotation of maxillary central incisor(0.021°), gingival movement of the maxillary first molar(0.005 mm), and clockwise rotation of the maxillary occlusal plane(0.012°) were observed when the force application point located at the archwire level (0 mm). In contrast, 0.235° labial rotation of the maxillary central incisor, 0.015 mm occlusal movement of the maxillary first molar, and 0.075° anti-clockwise rotation of the maxillary occlusal plane were observed when the force application point located at the higher level(10 mm retraction hook). The more the force application point was located posteriorly at the archwire level, the less lingual rotation of the maxillary central incisor and the more buccal displacement of maxillary first molar was observed. Maxillary anterior tooth rotation and retraction, vertical displacement of posterior segment, and rotation of the occlusal plane could be controlled by adjusting the height and position of the retraction hook in space closure using miniscrew and sliding mechanics.
Sullivan, W.N.
An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.