Sample records for clonal cell lines

  1. Lentiviral and targeted cellular barcoding reveals ongoing clonal dynamics of cell lines in vitro and in vivo

    PubMed Central

    2014-01-01

    Background Cell lines are often regarded as clonal, even though this simplifies what is known about mutagenesis, transformation and other processes that destabilize them over time. Monitoring these clonal dynamics is important for multiple areas of biomedical research, including stem cell and cancer biology. Tracking the contributions of individual cells to large populations, however, has been constrained by limitations in sensitivity and complexity. Results We utilize cellular barcoding methods to simultaneously track the clonal contributions of tens of thousands of cells. We demonstrate that even with optimal culturing conditions, common cell lines including HeLa, K562 and HEK-293 T exhibit ongoing clonal dynamics. Starting a population with a single clone diminishes but does not eradicate this phenomenon. Next, we compare lentiviral and zinc-finger nuclease barcode insertion approaches, finding that the zinc-finger nuclease protocol surprisingly results in reduced clonal diversity. We also document the expected reduction in clonal complexity when cells are challenged with genotoxic stress. Finally, we demonstrate that xenografts maintain clonal diversity to a greater extent than in vitro culturing of the human non-small-cell lung cancer cell line HCC827. Conclusions We demonstrate the feasibility of tracking and quantifying the clonal dynamics of entire cell populations within multiple cultured cell lines. Our results suggest that cell heterogeneity should be considered in the design and interpretation of in vitro culture experiments. Aside from clonal cell lines, we propose that cellular barcoding could prove valuable in modeling the clonal behavior of heterogeneous cell populations over time, including tumor populations treated with chemotherapeutic agents. PMID:24886633

  2. Beating the odds: The poisson distribution of all input cells during limiting dilution grossly underestimates whether a cell line is clonally-derived or not.

    PubMed

    Zhou, Yizhou; Shaw, David; Lam, Cynthia; Tsukuda, Joni; Yim, Mandy; Tang, Danming; Louie, Salina; Laird, Michael W; Snedecor, Brad; Misaghi, Shahram

    2017-09-23

    Establishing that a cell line was derived from a single cell progenitor and defined as clonally-derived for the production of clinical and commercial therapeutic protein drugs has been the subject of increased emphasis in cell line development (CLD). Several regulatory agencies have expressed that the prospective probability of clonality for CHO cell lines is assumed to follow the Poisson distribution based on the input cell count. The probability of obtaining monoclonal progenitors based on the Poisson distribution of all cells suggests that one round of limiting dilution may not be sufficient to assure the resulting cell lines are clonally-derived. We experimentally analyzed clonal derivatives originating from single cell cloning (SCC) via one round of limiting dilution, following our standard legacy cell line development practice. Two cell populations with stably integrated DNA spacers were mixed and subjected to SCC via limiting dilution. Cells were cultured in the presence of selection agent, screened, and ranked based on product titer. Post-SCC, the growing cell lines were screened by PCR analysis for the presence of identifying spacers. We observed that the percentage of nonclonal populations was below 9%, which is considerably lower than the determined probability based on the Poisson distribution of all cells. These results were further confirmed using fluorescence imaging of clonal derivatives originating from SCC via limiting dilution of mixed cell populations expressing GFP or RFP. Our results demonstrate that in the presence of selection agent, the Poisson distribution of all cells clearly underestimates the probability of obtaining clonally-derived cell lines. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 2017. © 2017 American Institute of Chemical Engineers.

  3. Development of a new canine osteosarcoma cell line.

    PubMed

    Séguin, B; Zwerdling, T; McCallan, J L; DeCock, H E V; Dewe, L L; Naydan, D K; Young, A E; Bannasch, D L; Foreman, O; Kent, M S

    2006-12-01

    Establishing a canine osteosarcoma (OSA) cell line can be useful to develop in vivo and in vitro models of OSA. The goal of this study was to develop, characterize and authenticate a new canine OSA cell line and a clone. A cell line and a clone were developed with standard cell culture techniques from a naturally occurring OSA in a dog. The clonal cell line induced a tumour after injection in RAG 1-deficient mouse. Histology was consistent with OSA. The original tumour from the dog and the tumour induced in the mouse were both reactive with vimentin and osteonectin (ON). The parent cell line and clonal cell line were reactive with ON, osteocalcin and alkaline phosphatase. Loss of heterozygosity was found in the same three microsatellite markers in the parent and clonal cell lines, and the tumour tissue grown in the mouse.

  4. Generation of genome-modified Drosophila cell lines using SwAP.

    PubMed

    Franz, Alexandra; Brunner, Erich; Basler, Konrad

    2017-10-02

    The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.

  5. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, D.; Oborn, C.J.; Li, M.L.

    1987-09-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appearedmore » to represent myoepithelial cells. The cell lines were examined for expression of {beta}-casein mRNA in the presence or absence of prolactin. The inducibility of {beta}-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types.« less

  6. Different osteochondral potential of clonal cell lines derived from adult human trabecular bone.

    PubMed

    Osyczka, Anna M; Nöth, Ulrich; Danielson, Keith G; Tuan, Rocky S

    2002-06-01

    Cells derived from human trabecular bones have been shown to have multipotential differentiation ability along osteogenic, chondrogenic, and adipogenic lineages. In this study, we have derived two clonal sublines of human trabecular bone cells by means of stable transduction with human papilloma virus E6/E7 genes. Our results showed that these clonal sublines differ in their osteochondral potential, but are equally adipogenic, indicative of the heterogeneous nature of the parental cell population. The availability of these cell lines should be useful for the analysis of the mechanisms regulating the differentiation of adult mesenchymal progenitor cells.

  7. Comparison of stem morphology and anatomy of two alfalfa clonal lines exhibiting divergent cell wall composition

    USDA-ARS?s Scientific Manuscript database

    In previous research, two alfalfa clonal lines (252, 1283) were identified that exhibited environmentally stable differences in stem cell walls. Compared to stems of 1283, stems of 252 have a higher cell wall concentration and greater amounts of lignin and cellulose but reduced levels of pectic suga...

  8. Selection of Phage Display Peptides Targeting Human Pluripotent Stem Cell-Derived Progenitor Cell Lines.

    PubMed

    Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David

    2016-01-01

    The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling.

  9. Seven diverse human embryonic stem cell-derived chondrogenic clonal embryonic progenitor cell lines display site-specific cell fates.

    PubMed

    Sternberg, Hal; Kidd, Jennifer; Murai, James T; Jiang, Jianjie; Rinon, Ariel; Erickson, Isaac E; Funk, Walter D; Wang, Qian; Chapman, Karen B; Vangsness, C Thomas; West, Michael D

    2013-03-01

    The transcriptomes of seven diverse clonal human embryonic progenitor cell lines with chondrogenic potential were compared with that of bone marrow-derived mesenchymal stem cells (MSCs). The cell lines 4D20.8, 7PEND24, 7SMOO32, E15, MEL2, SK11 and SM30 were compared with MSCs using immunohistochemical methods, gene expression microarrays and quantitative real-time PCR. In the undifferentiated progenitor state, each line displayed unique combinations of site-specific markers, including AJAP1, ALDH1A2, BMP5, BARX1, HAND2, HOXB2, LHX1, LHX8, PITX1, TBX15 and ZIC2, but none of the lines expressed the MSC marker CD74. The lines showed diverse responses when differentiated in the presence of combinations of TGF-β3, BMP2, 4, 6 and 7 and GDF5, with the lines 4D20.8, SK11, SM30 and MEL2 showing osteogenic markers in some differentiation conditions. The line 7PEND24 showed evidence of regenerating articular cartilage and, in some conditions, markers of tendon differentiation. The scalability of site-specific clonal human embryonic stem cell-derived embryonic progenitor cell lines may provide novel models for the study of differentiation and methods for preparing purified and identified cells types for use in therapy.

  10. Involvement of histone methyltransferase GLP in HIV-1 latency through catalysis of H3K9 dimethylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Donglin; Qu, Xiying; Li, Lin

    Understanding the mechanism of HIV-1 latency is crucial to eradication of the viral reservoir in HIV-1-infected individuals. However, the role of histone methyltransferase (HMT) G9a-like protein (GLP) in HIV-1 latency is still unclear. In the present work, we established four clonal cell lines containing HIV-1 vector. We found that the integration sites of most clonal cell lines favored active gene regions. However, we also observed hypomethylation of CpG of HIV 5′LTR in all four clonal cell lines. Additionally, 5′-deoxy-5′-methylthioadenosine (MTA), a broad-spectrum histone methyltransferase inhibitor, was used to examine the role of histone methylation in HIV-1 latency. MTA was foundmore » to decrease the level of H3K9 dimethylation, causing reactivation of latent HIV-1 in C11 cells. GLP knockdown by small interfering RNA clearly induced HIV-1 LTR expression. Results suggest that GLP may play a significant role in the maintenance of HIV-1 latency by catalyzing dimethylation of H3K9. - Highlights: ► We have established an in vitro model of HIV-1 latency. ► The integration sites of most clonal cell lines favor in active gene regions. ► Hypomethylation occurs in CpG islands of HIV 5′LTR in all four clonal cell lines. ► MTA can reactivate latent HIV-1 by decreasing the level of H3K9 me2 in C11 cells. ► HMT GLP may play a significant role in the maintenance of HIV-1 latency.« less

  11. Acetyl-CoA carboxylase in Reuber hepatoma cells: variation in enzyme activity, insulin regulation, and cellular lipid content.

    PubMed

    Bianchi, A; Evans, J L; Nordlund, A C; Watts, T D; Witters, L A

    1992-01-01

    Reuber hepatoma cells are useful cultured lines for the study of insulin action, lipid and lipoprotein metabolism, and the regulation of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid biosynthesis. During investigations in different clonal lines of these cells, we have uncovered marked intercellular variability in the activity, enzyme content, and insulin regulation of ACC paralleled by differences in cellular neutral lipid (triglyceride) content. Two contrasting clonal lines, Fao and H356A-1, have been studied in detail. Several features distinguish these two lines, including differences in ACC activity and enzyme kinetics, the content of the two major hepatic ACC isozymes (Mr 280,000 and 265,000 Da) and their heteroisozymic complex, the extent of ACC phosphorylation, and the ability of ACC to be activated on stimulation by insulin and insulinomimetic agonists. As studied by Nile Red staining and fluorescence-activated cell sorting, these two lines also display marked differences in neutral lipid content, which correlates with both basal levels of ACC activity and inhibition of ACC by the fatty acid analog, 5-(tetradecyloxy)-2-furoic acid (TOFA). These results emphasize the importance of characterization of any particular clonal line of Reuber cells for studies of enzyme regulation, substrate metabolism, and hormone action. With respect to ACC, studies in contrasting clonal lines of Reuber cells could provide valuable clues to understanding both the complex mechanisms of intracellular ACC regulation in the absence and presence of hormones and its regulatory role(s) in overall hepatic lipid metabolism.

  12. Two clonal cell lines of immortalized human corneal endothelial cells show either differentiated or precursor cell characteristics.

    PubMed

    Valtink, Monika; Gruschwitz, Rita; Funk, Richard H W; Engelmann, Katrin

    2008-01-01

    Access to primary human corneal endothelial cells (HCEC) is limited and donor-derived differences between cultures exacerbate the issue of data reproducibility, whereas cell lines can provide sufficient numbers of homogenous cells for multiple experiments. An immortalized HCEC population was adapted to serum-free culture medium and repeated cloning was performed. Clonally grown cells were propagated under serum-free conditions and growth curves were recorded. Cells were characterized immunocytochemically for junctional proteins, collagens, Na,K-ATPase and HCEC-specific 9.3.E-antigen. Ultrastructure was monitored by scanning and transmission electron microscopy. Two clonal cell lines, HCEC-B4G12 and HCEC-H9C1, could be isolated and expanded, which differed morphologically: B4G12 cells were polygonal, strongly adherent and formed a strict monolayer, H9C1 cells were less adherent and formed floating spheres. The generation time of B4G12 cells was 62.26 +/- 14.5 h and that of H9C1 cells 44.05 +/- 5.05 h. Scanning electron microscopy revealed that B4G12 cells had a smooth cell surface, while H9C1 cells had numerous thin filopodia. Both cell lines expressed ZO-1 and occludin adequately, and little but well detectable amounts of connexin-43. Expression of HCEC-specific 9.3.E-antigen was found commensurately in both cell lines, while expression of Na,K-ATPase alpha1 was higher in H9C1 cells than in B4G12 cells. B4G12 cells expressed collagen IV abundantly and almost no collagen III, while H9C1 cells expressed both collagens at reasonable amounts. It is concluded that the clonal cell line B4G12 represents an ideal model of differentiated HCEC, while H9C1 may reflect features of developing or transitional HCEC. Copyright 2008 S. Karger AG, Basel.

  13. Changes of heterogeneous cell populations in the Ishikawa cell line during long-term culture: Proposal for an in vitro clonal evolution model of tumor cells.

    PubMed

    Kasai, Fumio; Hirayama, Noriko; Ozawa, Midori; Iemura, Masashi; Kohara, Arihiro

    2016-06-01

    Genomic changes in tumor cell lines can occur during culture, leading to differences between cell lines carrying the same name. In this study, genome profiles between low and high passages were investigated in the Ishikawa 3-H-12 cell line (JCRB1505). Cells contained between 43 and 46 chromosomes and the modal number changed from 46 to 45 during culture. Cytogenetic analysis revealed that a translocation t(9;14), observed in all metaphases, is a robust marker for this cell line. Single-nucleotide polymorphism microarrays showed a heterogeneous copy number in the early passages and distinct profiles at late passages. These results demonstrate that cell culture can lead to elimination of ancestral clones by sequential selection, resulting in extensive replacement with a novel clone. Our observations on Ishikawa cells in vitro are different from the in vivo heterogeneity in which ancestral clones are often retained during tumor evolution and suggest a model for in vitro clonal evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Conditionally immortalized stem cell lines from human spinal cord retain regional identity and generate functional V2a interneurons and motorneurons.

    PubMed

    Cocks, Graham; Romanyuk, Nataliya; Amemori, Takashi; Jendelova, Pavla; Forostyak, Oksana; Jeffries, Aaron R; Perfect, Leo; Thuret, Sandrine; Dayanithi, Govindan; Sykova, Eva; Price, Jack

    2013-06-07

    The use of immortalized neural stem cells either as models of neural development in vitro or as cellular therapies in central nervous system (CNS) disorders has been controversial. This controversy has centered on the capacity of immortalized cells to retain characteristic features of the progenitor cells resident in the tissue of origin from which they were derived, and the potential for tumorogenicity as a result of immortalization. Here, we report the generation of conditionally immortalized neural stem cell lines from human fetal spinal cord tissue, which addresses these issues. Clonal neural stem cell lines were derived from 10-week-old human fetal spinal cord and conditionally immortalized with an inducible form of cMyc. The derived lines were karyotyped, transcriptionally profiled by microarray, and assessed against a panel of spinal cord progenitor markers with immunocytochemistry. In addition, the lines were differentiated and assessed for the presence of neuronal fate markers and functional calcium channels. Finally, a clonal line expressing eGFP was grafted into lesioned rat spinal cord and assessed for survival, differentiation characteristics, and tumorogenicity. We demonstrate that these clonal lines (a) retain a clear transcriptional signature of ventral spinal cord progenitors and a normal karyotype after extensive propagation in vitro, (b) differentiate into relevant ventral neuronal subtypes with functional T-, L-, N-, and P/Q-type Ca(2+) channels and spontaneous calcium oscillations, and (c) stably engraft into lesioned rat spinal cord without tumorogenicity. We propose that these cells represent a useful tool both for the in vitro study of differentiation into ventral spinal cord neuronal subtypes, and for examining the potential of conditionally immortalized neural stem cells to facilitate functional recovery after spinal cord injury or disease.

  15. Next-generation sequencing traces human induced pluripotent stem cell lines clonally generated from heterogeneous cancer tissue.

    PubMed

    Ishikawa, Tetsuya

    2017-05-26

    To investigate genotype variation among induced pluripotent stem cell (iPSC) lines that were clonally generated from heterogeneous colon cancer tissues using next-generation sequencing. Human iPSC lines were clonally established by selecting independent single colonies expanded from heterogeneous primary cells of S-shaped colon cancer tissues by retroviral gene transfer ( OCT3/4 , SOX2 , and KLF4 ). The ten iPSC lines, their starting cancer tissues, and the matched adjacent non-cancerous tissues were analyzed using next-generation sequencing and bioinformatics analysis using the human reference genome hg19. Non-synonymous single-nucleotide variants (SNVs) (missense, nonsense, and read-through) were identified within the target region of 612 genes related to cancer and the human kinome. All SNVs were annotated using dbSNP135, CCDS, RefSeq, GENCODE, and 1000 Genomes. The SNVs of the iPSC lines were compared with the genotypes of the cancerous and non-cancerous tissues. The putative genotypes were validated using allelic depth and genotype quality. For final confirmation, mutated genotypes were manually curated using the Integrative Genomics Viewer. In eight of the ten iPSC lines, one or two non-synonymous SNVs in EIF2AK2 , TTN , ULK4 , TSSK1B , FLT4 , STK19 , STK31 , TRRAP , WNK1 , PLK1 or PIK3R5 were identified as novel SNVs and were not identical to the genotypes found in the cancer and non-cancerous tissues. This result suggests that the SNVs were de novo or pre-existing mutations that originated from minor populations, such as multifocal pre-cancer (stem) cells or pre-metastatic cancer cells from multiple, different clonal evolutions, present within the heterogeneous cancer tissue. The genotypes of all ten iPSC lines were different from the mutated ERBB2 and MKNK2 genotypes of the cancer tissues and were identical to those of the non-cancerous tissues and that found in the human reference genome hg19. Furthermore, two of the ten iPSC lines did not have any confirmed mutated genotypes, despite being derived from cancerous tissue. These results suggest that the traceability and preference of the starting single cells being derived from pre-cancer (stem) cells, stroma cells such as cancer-associated fibroblasts, and immune cells that co-existed in the tissues along with the mature cancer cells. The genotypes of iPSC lines derived from heterogeneous cancer tissues can provide information on the type of starting cell that the iPSC line was generated from.

  16. Sub-clonal analysis of the murine C1498 acute myeloid leukaemia cell line reveals genomic and immunogenic diversity.

    PubMed

    Driss, Virginie; Leprêtre, Frédéric; Briche, Isabelle; Mopin, Alexia; Villenet, Céline; Figeac, Martin; Quesnel, Bruno; Brinster, Carine

    2017-12-01

    In acute myeloid leukaemia (AML)-affected patients, the presence of heterogeneous sub-clones at diagnosis has been shown to be responsible for minimal residual disease and relapses. The role played by the immune system in this leukaemic sub-clonal hierarchy and maintenance remains unknown. As leukaemic sub-clone immunogenicity could not be evaluated in human AML xenograft models, we assessed the sub-clonal diversity of the murine C1498 AML cell line and the immunogenicity of its sub-clones in immune-competent syngeneic mice. The murine C1498 cell line was cultured in vitro and sub-clonal cells were generated after limiting dilution. The genomic profiles of 6 different sub-clones were analysed by comparative genomic hybridization arrays (CGH). The sub-clones were then injected into immune-deficient and - competent syngeneic mice. The immunogenicities of the sub-clones was evaluated through 1) assessment of mouse survival, 2) determination of leukaemic cell infiltration into organs by flow cytometry and the expression of a fluorescent reporter gene, 3) assessment of the CTL response ex vivo and 4) detection of residual leukaemic cells in the organs via amplification of the genomic reporter gene by real-time PCR (qPCR). Genomic analyses revealed heterogeneity among the parental cell line and its derived sub-clones. When injected individually into immune-deficient mice, all sub-clones induced cases of AML with different kinetics. However, when administered into immune-competent animals, some sub-clones triggered AML in which no mice survived, whereas others elicited reduced lethality rates. The AML-surviving mice presented efficient anti-leukaemia CTL activity ex vivo and eliminated the leukaemic cells in vivo. We showed that C1498 cell sub-clones presented genomic heterogeneity and differential immunogenicity resulting either in immune escape or elimination. Such findings could have potent implications for new immunotherapeutic strategies in patients with AML. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  17. Fluorescent transgenic mice suitable for multi-color aggregation chimera studies.

    PubMed

    Ohtsuka, Masato; Miura, Hiromi; Gurumurthy, Channabasavaiah B; Kimura, Minoru; Inoko, Hidetoshi; Yoshimura, Shinichi; Sato, Masahiro

    2012-11-01

    We recently reported a novel method of mouse transgenesis called Pronuclear Injection-based Targeted Transgenisis (PITT) using which a series of fluorescent transgenic (Tg) mice lines were generated. These lines, unlike those generated using conventional random integration methods, express the transgenes faithfully and reproducibly generation after generation. Because of this superior nature, these lines are ideal for the generation of multi-colored aggregation chimeras that can be used to study cell-cell interactions and lineage analyses in living embryos/organs, where the transgenes can be detected and the clonal origin of a given cell population easily traced by its distinct fluorescence. In this study, to verify if Tg fluorescent mice generated through PITT were suitable for such applications, we sought to generate chimeric blastocysts and chimeric-Tg mice by aggregating two- or three-colored 8-cell embryos. Our analyses using these models led to the following observations. First, we noticed that cell mixing was infrequent during the stages of morula to early blastocyst. Second, chimeric fetuses obtained after aggregation of the two-colored 8-cell embryos exhibited uniform cell mixing. And third, in the organs of adult chimeric mice, the mode of cell distribution could be either clonal or polyclonal, as previously pointed out by others. Implications of our novel and improved Tg-chimeric mice approach for clonal cell lineage and developmental studies are discussed.

  18. Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization

    PubMed Central

    Roberts, Brock; Haupt, Amanda; Tucker, Andrew; Grancharova, Tanya; Arakaki, Joy; Fuqua, Margaret A.; Nelson, Angelique; Hookway, Caroline; Ludmann, Susan A.; Mueller, Irina A.; Yang, Ruian; Horwitz, Rick; Rafelski, Susanne M.; Gunawardane, Ruwanthi N.

    2017-01-01

    We present a CRISPR/Cas9 genome-editing strategy to systematically tag endogenous proteins with fluorescent tags in human induced pluripotent stem cells (hiPSC). To date, we have generated multiple hiPSC lines with monoallelic green fluorescent protein tags labeling 10 proteins representing major cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, nuclear lamin B1, nonmuscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome-editing methodology using Cas9/crRNA ribonuclear protein and donor plasmid coelectroporation, followed by fluorescence-based enrichment of edited cells, typically resulted in <0.1–4% homology-directed repair (HDR). Twenty-five percent of clones generated from each edited population were precisely edited. Furthermore, 92% (36/39) of expanded clonal lines displayed robust morphology, genomic stability, expression and localization of the tagged protein to the appropriate subcellular structure, pluripotency-marker expression, and multilineage differentiation. It is our conclusion that, if cell lines are confirmed to harbor an appropriate gene edit, pluripotency, differentiation potential, and genomic stability are typically maintained during the clonal line–generation process. The data described here reveal general trends that emerged from this systematic gene-tagging approach. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community. PMID:28814507

  19. Cell lines derived from feline fibrosarcoma display unstable chromosomal aneuploidy and additionally centrosome number aberrations.

    PubMed

    von Erichsen, J; Hecht, W; Löhberg-Gruene, C; Reinacher, M

    2012-07-01

    The purpose of the study was to evaluate clonality and presence of numerical chromosomal and centrosomal aberrations in 5 established feline fibrosarcoma cell lines and in a fetal dermal fibroblast cell line as a control. The clonality of all cell lines was examined using limited-dilution cloning. The number of chromosomes was counted in metaphase spreads. The immunocytochemical analysis of centrosome numbers was performed by indirect immunofluorescence using a monoclonal antibody that targets γ-tubulin, a well-characterized component of centrosomes. Monoclonal cell populations could be established from all cell lines. In all feline fibrosarcoma cell lines, the number of chromosomes deviated abnormally from the normal feline chromosome number of 2n = 38, ranging from 19 to 155 chromosomes per cell. Centrosome hyperamplification was observed in all 5 feline fibrosarcoma cell lines with a proportion of cells (5.7 to 15.2%) having more than 2 centrosomes. In the control cell line, only 0.6% of the cells had more than 2 centrosomes. In conclusion, the examinations revealed that centrosome hyperamplification occurs in feline fibrosarcoma cell lines. The feline fibrosarcoma cell lines possessed 10 to 25 times as many cells with centrosome hyperamplification as the control cell line. These observations suggest an association of numerical centrosome aberrations with karyotype instability by increasing the frequency of chromosome missegregation. The results of this study may be helpful for further characterization of feline fibrosarcomas and may contribute to the knowledge of cytogenetic factors that may be important for the pathogenesis of feline fibrosarcomas.

  20. Analysis of proviral integration in human mammary epithelial cell lines immortalized by retroviral infection with a temperature-sensitive SV40 T-antigen construct.

    PubMed

    Stamps, A C; Davies, S C; Burman, J; O'Hare, M J

    1994-06-15

    A panel of eight conditionally immortal lines derived by infection of human breast epithelial cells with an amphotropic retrovirus transducing a ts mutant of SV40 large T-antigen was analyzed with respect to individual retroviral integration patterns. Each line contained multiple integration sites which were clonal and stable over extended passage. Similar integration patterns were observed between individual lines arising separately from the same stock of pre-immortal cells, suggesting a common progenitor. Retroviral integration analysis of pre-immortal cells at different stages of pre-crisis growth showed changes indicative of a progressive transition from polyclonality to clonality as the cells approached crisis. Each of the immortal lines contained a sub-set of the integration sites of their pre-immortal progenitors, with individual combinations and copy numbers of sites. Since all the cell lines appeared to originate from single foci in separate flasks, it is likely that each set arose from a common clone of pre-immortal cells as the result of separate genetic events. There was no evidence from this analysis to suggest that specific integration sites played any part either in the selection of pre-crisis clones or in the subsequent establishment of immortal lines.

  1. Osteoblasts are target cells for transformation in c-fos transgenic mice

    PubMed Central

    1993-01-01

    We have generated transgenic mice expressing the proto-oncogene c-fos from an H-2Kb class I MHC promoter as a tool to identify and isolate cell populations which are sensitive to altered levels of Fos protein. All homozygous H2-c-fosLTR mice develop osteosarcomas with a short latency period. This phenotype is specific for c-fos as transgenic mice expressing the fos- and jun-related genes, fosB and c-jun, from the same regulatory elements do not develop any pathology despite high expression in bone tissues. The c-fos transgene is not expressed during embryogenesis but is expressed after birth in bone tissues before the onset of tumor formation, specifically in putative preosteoblasts, bone- forming osteoblasts, osteocytes, as well as in osteoblastic cells present within the tumors. Primary and clonal cell lines established from c-fos-induced tumors expressed high levels of exogenous c-fos as well as the bone cell marker genes, type I collagen, alkaline phosphatase, and osteopontin/2ar. In contrast, osteocalcin/BGP expression was either low or absent. All cell lines were tumorigenic in vivo, some of which gave rise to osteosarcomas, expressing exogenous c- fos mRNA, and Fos protein in osteoblastic cells. Detailed analysis of one osteogenic cell line, P1, and several P1-derived clonal cell lines indicated that bone-forming osteoblastic cells were transformed by Fos. The regulation of osteocalcin/BGP and alkaline phosphatase gene expression by 1,25-dihydroxyvitamin D3 was abrogated in P1-derived clonal cells, whereas glucocorticoid responsiveness was unaltered. These results suggest that high levels of Fos perturb the normal growth control of osteoblastic cells and exert specific effects on the expression of the osteoblast phenotype. PMID:8335693

  2. HIV integration sites in latently infected cell lines: evidence of ongoing replication.

    PubMed

    Symons, Jori; Chopra, Abha; Malatinkova, Eva; De Spiegelaere, Ward; Leary, Shay; Cooper, Don; Abana, Chike O; Rhodes, Ajantha; Rezaei, Simin D; Vandekerckhove, Linos; Mallal, Simon; Lewin, Sharon R; Cameron, Paul U

    2017-01-13

    Assessing the location and frequency of HIV integration sites in latently infected cells can potentially inform our understanding of how HIV persists during combination antiretroviral therapy. We developed a novel high throughput sequencing method to evaluate HIV integration sites in latently infected cell lines to determine whether there was virus replication or clonal expansion in these cell lines observed as multiple integration events at the same position. We modified a previously reported method using random DNA shearing and PCR to allow for high throughput robotic processing to identify the site and frequency of HIV integration in latently infected cell lines. Latently infected cell lines infected with intact virus demonstrated multiple distinct HIV integration sites (28 different sites in U1, 110 in ACH-2 and 117 in J1.1 per 150,000 cells). In contrast, cell lines infected with replication-incompetent viruses (J-Lat cells) demonstrated single integration sites. Following in vitro passaging of the ACH-2 cell line, we observed a significant increase in the frequency of unique HIV integration sites and there were multiple mutations and large deletions in the proviral DNA. When the ACH-2 cell line was cultured with the integrase inhibitor raltegravir, there was a significant decrease in the number of unique HIV integration sites and a transient increase in the frequency of 2-LTR circles consistent with virus replication in these cells. Cell lines latently infected with intact HIV demonstrated multiple unique HIV integration sites indicating that these cell lines are not clonal and in the ACH-2 cell line there was evidence of low level virus replication. These findings have implications for the use of latently infected cell lines as models of HIV latency and for the use of these cells as standards.

  3. Physiological concentrations of interleukin-6 directly promote insulin secretion, signal transduction, nitric oxide release, and redox status in a clonal pancreatic β-cell line and mouse islets.

    PubMed

    da Silva Krause, Mauricio; Bittencourt, Aline; Homem de Bittencourt, Paulo Ivo; McClenaghan, Neville H; Flatt, Peter R; Murphy, Colin; Newsholme, Philip

    2012-09-01

    Interleukin-6 (IL6) has recently been reported to promote insulin secretion in a glucagon-like peptide-1-dependent manner. Herein, the direct effects of IL6 (at various concentrations from 0 to 1000 pg/ml) on pancreatic β-cell metabolism, AMP-activated protein kinase (AMPK) signaling, insulin secretion, nitrite release, and redox status in a rat clonal β-cell line and mouse islets are reported. Chronic insulin secretion (in μg/mg protein per 24  h) was increased from 128·7±7·3 (no IL6) to 178·4±7·7 (at 100  pg/ml IL6) in clonal β-cells and increased significantly in islets incubated in the presence of 5·5  mM glucose for 2  h, from 0·148 to 0·167±0·003  ng/islet. Pretreatment with IL6 also induced a twofold increase in basal and nutrient-stimulated insulin secretion in subsequent 20 min static incubations. IL6 enhanced both glutathione (GSH) and glutathione disulphide (GSSG) by nearly 20% without changing intracellular redox status (GSSG/GSH). IL6 dramatically increased iNOS expression (by ca. 100-fold) with an accompanying tenfold rise in nitrite release in clonal β-cells. Phosphorylated AMPK levels were elevated approximately twofold in clonal β-cells and mouse islet cells. Calmodulin-dependent protein kinase kinase levels (CaMKK), an upstream kinase activator of AMPK, were also increased by 50% after IL6 exposure (in β-cells and islets). Our data have demonstrated that IL6 can stimulate β-cell-dependent insulin secretion via direct cell-based mechanisms. AMPK, CaMKK (an upstream kinase activator of AMPK), and the synthesis of nitric oxide appear to alter cell metabolism to benefit insulin secretion. In summary, IL6 exerts positive effects on β-cell signaling, metabolism, antioxidant status, and insulin secretion.

  4. CHROMOSOME 11 ABERRATIONS IN SMALL COLONY L5178Y TK-/-MUTANTS EARLY IN THEIR CLONAL HISTORY

    EPA Science Inventory

    The authors have developed a cytogenetic technique that allows observation of chromosome rearrangements associated with TK-/- mutagenesis of the L5178Y/TK+/-3.7.2C cell line early in mutant clonal history. For a series of mutagenic treatments they show that the major proportion (...

  5. Establishing Clonal Cell Lines with Endothelial-Like Potential from CD9hi, SSEA-1− Cells in Embryonic Stem Cell-Derived Embryoid Bodies

    PubMed Central

    Lian, Qizhou; Yeo, KengSuan; Que, Jianwen; Tan, EileenKhiaWay; Yu, Fenggang; Yin, Yijun; Salto-Tellez, Manuel; Oakley, Reida Menshawe El; Lim, Sai-Kiang

    2006-01-01

    Background Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. Methodology/Principal Findings We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r2 = 0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9hi, SSEA-1− while ESCs are CD9lo, SSEA-1+. Isolation of CD9hi, SSEA-1− cells that constituted 1%–10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r2 = 0.95) and a propensity to differentiate into endothelial-like cells. Conclusions By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with endothelial-like potential from mouse ESCs. PMID:17183690

  6. Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization.

    PubMed

    Roberts, Brock; Haupt, Amanda; Tucker, Andrew; Grancharova, Tanya; Arakaki, Joy; Fuqua, Margaret A; Nelson, Angelique; Hookway, Caroline; Ludmann, Susan A; Mueller, Irina A; Yang, Ruian; Horwitz, Rick; Rafelski, Susanne M; Gunawardane, Ruwanthi N

    2017-10-15

    We present a CRISPR/Cas9 genome-editing strategy to systematically tag endogenous proteins with fluorescent tags in human induced pluripotent stem cells (hiPSC). To date, we have generated multiple hiPSC lines with monoallelic green fluorescent protein tags labeling 10 proteins representing major cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, nuclear lamin B1, nonmuscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome-editing methodology using Cas9/crRNA ribonuclear protein and donor plasmid coelectroporation, followed by fluorescence-based enrichment of edited cells, typically resulted in <0.1-4% homology-directed repair (HDR). Twenty-five percent of clones generated from each edited population were precisely edited. Furthermore, 92% (36/39) of expanded clonal lines displayed robust morphology, genomic stability, expression and localization of the tagged protein to the appropriate subcellular structure, pluripotency-marker expression, and multilineage differentiation. It is our conclusion that, if cell lines are confirmed to harbor an appropriate gene edit, pluripotency, differentiation potential, and genomic stability are typically maintained during the clonal line-generation process. The data described here reveal general trends that emerged from this systematic gene-tagging approach. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community. © 2017 Roberts, Haupt, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Variable effects of dexamethasone on protein synthesis in clonal rat osteosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, B.O.; Kream, B.E.

    1988-05-01

    We examined the effects of dexamethasone on protein synthesis in clonal rat osteoblastic osteosarcoma (ROS) cell lines by measuring the incorporation of (/sup 3/H)proline into collagenase-digestible and noncollagen protein in the cell layer and medium of the cultures. In ROS 17/2 and subclone C12 of ROS 17/2.8, dexamethasone decreased collagen synthesis with no change in DNA content of the cultures. In ROS 17/2.8 and its subclone G2, dexamethasone stimulated collagen and noncollagen protein synthesis, with a concomitant decrease in the DNA content of the cells. These data indicate that ROS cell lines are phenotypically heterogeneous and suggest that in normalmore » bone there may be distinct subpopulations of osteoblasts with varying phenotypic traits with respect to the regulation of protein synthesis.« less

  8. Novel immortal human cell lines reveal subpopulations in the nucleus pulposus

    PubMed Central

    2014-01-01

    Introduction Relatively little is known about cellular subpopulations in the mature nucleus pulposus (NP). Detailed understanding of the ontogenetic, cellular and molecular characteristics of functional intervertebral disc (IVD) cell populations is pivotal to the successful development of cell replacement therapies and IVD regeneration. In this study, we aimed to investigate whether phenotypically distinct clonal cell lines representing different subpopulations in the human NP could be generated using immortalization strategies. Methods Nondegenerate healthy disc material (age range, 8 to 15 years) was obtained as surplus surgical material. Early passage NP monolayer cell cultures were initially characterized using a recently established NP marker set. NP cells were immortalized by simian virus 40 large T antigen (SV40LTag) and human telomerase reverse transcriptase expression. Immortalized cells were clonally expanded and characterized based on collagen type I, collagen type II, α1 (COL2A1), and SRY-box 9 (SOX9) protein expression profiles, as well as on expression of a subset of established in vivo NP cell lineage markers. Results A total of 54 immortal clones were generated. Profiling of a set of novel NP markers (CD24, CA12, PAX1, PTN, FOXF1 and KRT19 mRNA) in a representative set of subclones substantiated successful immortalization of multiple cellular subpopulations from primary isolates and confirmed their NP origin and/or phenotype. We were able to identify two predominant clonal NP subtypes based on their morphological characteristics and their ability to induce SOX9 and COL2A1 under conventional differentiation conditions. In addition, cluster of differentiation 24 (CD24)–negative NP responder clones formed spheroid structures in various culture systems, suggesting the preservation of a more immature phenotype compared to CD24-positive nonresponder clones. Conclusions Here we report the generation of clonal NP cell lines from nondegenerate human IVD tissue and present a detailed characterization of NP cellular subpopulations. Differential cell surface marker expression and divergent responses to differentiation conditions suggest that the NP subtypes may correspond to distinct maturation stages and represent distinct NP cell subpopulations. Hence, we provide evidence that the immortalization strategy that we applied is capable of detecting cell heterogeneity in the NP. Our cell lines yield novel insights into NP biology and provide promising new tools for studies of IVD development, cell function and disease. PMID:24972717

  9. Novel immortal human cell lines reveal subpopulations in the nucleus pulposus.

    PubMed

    van den Akker, Guus G H; Surtel, Don A M; Cremers, Andy; Rodrigues-Pinto, Ricardo; Richardson, Stephen M; Hoyland, Judith A; van Rhijn, Lodewijk W; Welting, Tim J M; Voncken, Jan Willem

    2014-06-27

    Relatively little is known about cellular subpopulations in the mature nucleus pulposus (NP). Detailed understanding of the ontogenetic, cellular and molecular characteristics of functional intervertebral disc (IVD) cell populations is pivotal to the successful development of cell replacement therapies and IVD regeneration. In this study, we aimed to investigate whether phenotypically distinct clonal cell lines representing different subpopulations in the human NP could be generated using immortalization strategies. Nondegenerate healthy disc material (age range, 8 to 15 years) was obtained as surplus surgical material. Early passage NP monolayer cell cultures were initially characterized using a recently established NP marker set. NP cells were immortalized by simian virus 40 large T antigen (SV40LTag) and human telomerase reverse transcriptase expression. Immortalized cells were clonally expanded and characterized based on collagen type I, collagen type II, α1 (COL2A1), and SRY-box 9 (SOX9) protein expression profiles, as well as on expression of a subset of established in vivo NP cell lineage markers. A total of 54 immortal clones were generated. Profiling of a set of novel NP markers (CD24, CA12, PAX1, PTN, FOXF1 and KRT19 mRNA) in a representative set of subclones substantiated successful immortalization of multiple cellular subpopulations from primary isolates and confirmed their NP origin and/or phenotype. We were able to identify two predominant clonal NP subtypes based on their morphological characteristics and their ability to induce SOX9 and COL2A1 under conventional differentiation conditions. In addition, cluster of differentiation 24 (CD24)-negative NP responder clones formed spheroid structures in various culture systems, suggesting the preservation of a more immature phenotype compared to CD24-positive nonresponder clones. Here we report the generation of clonal NP cell lines from nondegenerate human IVD tissue and present a detailed characterization of NP cellular subpopulations. Differential cell surface marker expression and divergent responses to differentiation conditions suggest that the NP subtypes may correspond to distinct maturation stages and represent distinct NP cell subpopulations. Hence, we provide evidence that the immortalization strategy that we applied is capable of detecting cell heterogeneity in the NP. Our cell lines yield novel insights into NP biology and provide promising new tools for studies of IVD development, cell function and disease.

  10. Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells.

    PubMed

    Spidel, Jared L; Vaessen, Benjamin; Chan, Yin Yin; Grasso, Luigi; Kline, J Bradford

    2016-12-01

    Single-cell based amplification of immunoglobulin variable regions is a rapid and powerful technique for cloning antigen-specific monoclonal antibodies (mAbs) for purposes ranging from general laboratory reagents to therapeutic drugs. From the initial screening process involving small quantities of hundreds or thousands of mAbs through in vitro characterization and subsequent in vivo experiments requiring large quantities of only a few, having a robust system for generating mAbs from cloning through stable cell line generation is essential. A protocol was developed to decrease the time, cost, and effort required by traditional cloning and expression methods by eliminating bottlenecks in these processes. Removing the clonal selection steps from the cloning process using a highly efficient ligation-independent protocol and from the stable cell line process by utilizing bicistronic plasmids to generate stable semi-clonal cell pools facilitated an increased throughput of the entire process from plasmid assembly through transient transfections and selection of stable semi-clonal cell pools. Furthermore, the time required by a single individual to clone, express, and select stable cell pools in a high-throughput format was reduced from 4 to 6months to only 4 to 6weeks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus.

    PubMed

    Osada, Masako; Singh, Varan J; Wu, Kenmin; Sant'Angelo, Derek B; Pezzano, Mark

    2013-01-01

    Thymic microenvironments are essential for the proper development and selection of T cells critical for a functional and self-tolerant adaptive immune response. While significant turnover occurs, it is unclear whether populations of adult stem cells contribute to the maintenance of postnatal thymic epithelial microenvironments. Here, the slow cycling characteristic of stem cells and their property of label-retention were used to identify a K5-expressing thymic stromal cell population capable of generating clonal cell lines that retain the capacity to differentiate into a number of mesenchymal lineages including adipocytes, chondrocytes and osteoblasts suggesting a mesenchymal stem cell-like phenotype. Using cell surface analysis both culture expanded LRCs and clonal thymic mesenchymal cell lines were found to express Sca1, PDGFRα, PDGFRβ,CD29, CD44, CD49F, and CD90 similar to MSCs. Sorted GFP-expressing stroma, that give rise to TMSC lines, contribute to thymic architecture when reaggregated with fetal stroma and transplanted under the kidney capsule of nude mice. Together these results show that the postnatal thymus contains a population of mesenchymal stem cells that can be maintained in culture and suggests they may contribute to the maintenance of functional thymic microenvironments.

  12. Effect of HSP27 on Human Breast Tumor Cell Growth and Motility

    DTIC Science & Technology

    1999-08-01

    the small stress protein, HSP27 , on growth and motility characteristics of normal and tumor-derived human mammary cell lines. We hypothesized that...cells overexpressing HSP27 would show increased motility, altered chemotactic properties, increased resistance to heat killing and to certain drugs...Donna has prepared and studied 19 clonal MDA23 1 breast tumor cell lines that overexpress human HSP27 , and determined that, while heat resistance is

  13. Method for rapid isolation of sensitive mutants

    DOEpatents

    Freyer, James P.

    1997-01-01

    Sensitive mammalian cell mutants are rapidly isolated using flow cytometry. A first population of clonal spheroids is established to contain both normal and mutant cells. The population may be naturally occurring or may arise from mutagenized cells. The first population is then flow sorted by size to obtain a second population of clonal spheroids of a first uniform size. The second population is then exposed to a DNA-damaging agent that is being investigated. The exposed second population is placed in a growth medium to form a third population of clonal spheroids comprising spheroids of increased size from the mammalian cells that are resistant to the DNA-damaging agent and spheroids of substantially the first uniform size formed from the mammalian cells that are sensitive to the DNA-damaging agent. The third population is not flow sorted to differentiate the spheroids formed from resistant mammalian cells from spheroids formed from sensitive mammalian cells. The spheroids formed from sensitive mammalian cells are now treated to recover viable sensitive cells from which a sensitive cell line can be cloned.

  14. Method for rapid isolation of sensitive mutants

    DOEpatents

    Freyer, J.P.

    1997-07-29

    Sensitive mammalian cell mutants are rapidly isolated using flow cytometry. A first population of clonal spheroids is established to contain both normal and mutant cells. The population may be naturally occurring or may arise from mutagenized cells. The first population is then flow sorted by size to obtain a second population of clonal spheroids of a first uniform size. The second population is then exposed to a DNA-damaging agent that is being investigated. The exposed second population is placed in a growth medium to form a third population of clonal spheroids comprising spheroids of increased size from the mammalian cells that are resistant to the DNA-damaging agent and spheroids of substantially the first uniform size formed from the mammalian cells that are sensitive to the DNA-damaging agent. The third population is not flow sorted to differentiate the spheroids formed from resistant mammalian cells from spheroids formed from sensitive mammalian cells. The spheroids formed from sensitive mammalian cells are now treated to recover viable sensitive cells from which a sensitive cell line can be cloned. 15 figs.

  15. Multiplexing clonality: combining RGB marking and genetic barcoding

    PubMed Central

    Cornils, Kerstin; Thielecke, Lars; Hüser, Svenja; Forgber, Michael; Thomaschewski, Michael; Kleist, Nadja; Hussein, Kais; Riecken, Kristoffer; Volz, Tassilo; Gerdes, Sebastian; Glauche, Ingmar; Dahl, Andreas; Dandri, Maura; Roeder, Ingo; Fehse, Boris

    2014-01-01

    RGB marking and DNA barcoding are two cutting-edge technologies in the field of clonal cell marking. To combine the virtues of both approaches, we equipped LeGO vectors encoding red, green or blue fluorescent proteins with complex DNA barcodes carrying color-specific signatures. For these vectors, we generated highly complex plasmid libraries that were used for the production of barcoded lentiviral vector particles. In proof-of-principle experiments, we used barcoded vectors for RGB marking of cell lines and primary murine hepatocytes. We applied single-cell polymerase chain reaction to decipher barcode signatures of individual RGB-marked cells expressing defined color hues. This enabled us to prove clonal identity of cells with one and the same RGB color. Also, we made use of barcoded vectors to investigate clonal development of leukemia induced by ectopic oncogene expression in murine hematopoietic cells. In conclusion, by combining RGB marking and DNA barcoding, we have established a novel technique for the unambiguous genetic marking of individual cells in the context of normal regeneration as well as malignant outgrowth. Moreover, the introduction of color-specific signatures in barcodes will facilitate studies on the impact of different variables (e.g. vector type, transgenes, culture conditions) in the context of competitive repopulation studies. PMID:24476916

  16. Somatically Acquired LINE-1 Insertions in Normal Esophagus Undergo Clonal Expansion in Esophageal Squamous Cell Carcinoma.

    PubMed

    Doucet-O'Hare, Tara T; Sharma, Reema; Rodić, Nemanja; Anders, Robert A; Burns, Kathleen H; Kazazian, Haig H

    2016-09-01

    Squamous cell carcinoma of the esophagus (SCC) is the most common form of esophageal cancer in the world and is typically diagnosed at an advanced stage when successful treatment is challenging. Understanding the mutational profile of this cancer may identify new treatment strategies. Because somatic retrotransposition has been shown in tumors of the gastrointestinal system, we focused on LINE-1 (L1) mobilization as a source of genetic instability in this cancer. We hypothesized that retrotransposition is ongoing in SCC patients. The expression of L1 encoded proteins is necessary for retrotransposition to occur; therefore, we evaluated the expression of L1 open reading frame 1 protein (ORF1p). Using immunohistochemistry, we detected ORF1p expression in all four SCC cases evaluated. Using L1-seq, we identified and validated 74 somatic insertions in eight tumors of the nine evaluated. Of these, 12 insertions appeared to be somatic, not genetically inherited, and sub-clonal (i.e., present in less than one copy per genome equivalent) in the adjacent normal esophagus (NE), while clonal in the tumor. Our results indicate that L1 retrotransposition is active in SCC of the esophagus and that insertion events are present in histologically NE that expands clonally in the subsequent tumor. © 2016 WILEY PERIODICALS, INC.

  17. Detection and isolation of rare cells by 2-step enrichment high-speed flow cytometry/cell sorting and single cell LEAP laser ablation

    NASA Astrophysics Data System (ADS)

    Zordan, M. D.; Leary, James F.

    2011-02-01

    The clonal isolation of rare cells, especially cancer and stem cells, in a population is important to the development of improved medical treatment. We have demonstrated that the Laser-Enabled Analysis and Processing (LEAP, Cyntellect Inc., San Diego, CA) instrument can be used to efficiently produce single cell clones by photoablative dilution. Additionally, we have also shown that cells present at low frequencies can be cloned by photoablative dilution after they are pre-enriched by flow cytometry based cell sorting. Circulating tumor cells were modeled by spiking isolated peripheral blood cells with cells from the lung carcinoma cell line A549. Flow cytometry based cell sorting was used to perform an enrichment sort of A549 cells directly into a 384 well plate. Photoablative dilution was performed with the LEAPTM instrument to remove any contaminating cells, and clonally isolate 1 side population cell per well. We were able to isolate and grow single clones of side population cells using this method at greater than 90% efficiency. We have developed a 2 step method that is able to perform the clonal isolation of rare cells based on a medically relevant functional phenotype.

  18. Characterization of cancer stem-like cells derived from a side population of a human gallbladder carcinoma cell line, SGC-996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xin-xing; Wang, Jian, E-mail: dr_wangjian@yahoo.com.cn; Wang, Hao-lu

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We sorted SP cells from a human gallbladder carcinoma cell lines, SGC-996. Black-Right-Pointing-Pointer SP cells displayed higher proliferation and stronger clonal-generating capability. Black-Right-Pointing-Pointer SP cells showed more migratory and invasive abilities. Black-Right-Pointing-Pointer SP cells were more resistant and tumorigenic than non-SP counterparts. Black-Right-Pointing-Pointer ABCG2 might be a candidate as a marker for SP cells. -- Abstract: The cancer stem cell (CSC) hypothesis proposes that CSCs, which can renew themselves proliferate infinitely, and escape chemotherapy, become the root of recurrence and metastasis. Previous studies have verified that side population (SP) cells, characterized by their ability to efflux lipophilic substratemore » Hoechst 33342, to share many characteristics of CSCs in multiplying solid tumors. The purpose of this study was to sort SP cells from a human gallbladder carcinoma cell line, SGC-996 and to preliminarily identify the biological characteristics of SP cells from the cell line. Using flow cytometry we effectively sorted SP cells from the cell line SGC-996. SP cells not only displayed higher proliferative, stronger clonal-generating, more migratory and more invasive capacities, but showed stronger resistance. Furthermore, our experiments demonstrated that SP cells were more tumorigenic than non-SP counterparts in vivo. Real-time PCR analysis and immunocytochemistry showed that the expression of ATP-binding cassette subfamily G member 2 (ABCG2) was significantly higher in SP cells. Hence, these results collectively suggest that SP cells are progenitor/stem-like cells and ABCG2 might be a candidate marker for SP cells in human gallbladder cancer.« less

  19. Generation of human cortical neurons from a new immortal fetal neural stem cell line.

    PubMed

    Cacci, E; Villa, A; Parmar, M; Cavallaro, M; Mandahl, N; Lindvall, O; Martinez-Serrano, A; Kokaia, Z

    2007-02-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology.

  20. Functional and genetic analysis of haplotypic sequence variation at the nicastrin genomic locus

    PubMed Central

    Hamilton, Gillian; Killick, Richard; Lambert, Jean-Charles; Amouyel, Philippe; Carrasquillo, Minerva M.; Pankratz, V. Shane; Graff-Radford, Neill R.; Dickson, Dennis W.; Petersen, Ronald C.; Younkin, Steven G.; Powell, John F.; Wade-Martins, Richard

    2013-01-01

    Nicastrin (NCSTN) is a component of the γ-secretase complex and therefore potentially a candidate risk gene for Alzheimer's disease. Here, we have developed a novel functional genomics methodology to express common locus haplotypes to assess functional differences. DNA recombination was used to engineer 5 bacterial artificial chromosomes (BACs) to each express a different haplotype of the NCSTN locus. Each NCSTN-BAC was delivered to knockout nicastrin (Ncstn−/−) cells and clonal NCSTN-BAC+/Ncstn−/− cell lines were created for functional analyses. We showed that all NCSTN-BAC haplotypes expressed nicastrin protein and rescued γ-secretase activity and amyloid beta (Aβ) production in NCSTN-BAC+/Ncstn−/− lines. We then showed that genetic variation at the NCSTN locus affected alternative splicing in human postmortem brain tissue. However, there was no robust functional difference between clonal cell lines rescued by each of the 5 different haplotypes. Finally, there was no statistically significant association of NCSTN with disease risk in the 4 cohorts. We therefore conclude that it is unlikely that common variation at the NCSTN locus is a risk factor for Alzheimer's disease. PMID:22405046

  1. Cytogenetic and molecular genetic characterization of immortalized human ovarian surface epithelial cell lines: consistent loss of chromosome 13 and amplification of chromosome 20.

    PubMed

    Jin, Yuesheng; Zhang, Hao; Tsao, Sai Wah; Jin, Charlotte; Lv, Mei; Strömbeck, Bodil; Wiegant, Joop; Wan, Thomas Shek Kong; Yuen, Po Wing; Kwong, Yok-Lam

    2004-01-01

    This study aimed at identifying the genetic events involved in immortalization of ovarian epithelial cells, which might be important steps in ovarian carcinogenesis. The genetic profiles of five human ovarian surface epithelial (HOSE) cell lines immortalized by retroviral transfection of the human papillomavirus (HPV) E6/E7 genes were thoroughly characterized by chromosome banding and fluorescence in situ hybridization (FISH), at various passages pre- and post-crisis. In pre-crisis, most cells had simple, non-clonal karyotypic changes. Telomere association was the commonest aberration, suggesting that tolermase dysfunction might be an important genetic event leading to cellular crisis. After immortalization post-crisis, however, the karyotypic patterns were non-random. Loss of genetic materials was a characteristic feature. The commonest numerical aberrations were -13, -14, -16, -17, -18, and +5. Among them, loss of chromosome 13 was common change observed in all lines. The only recurrent structural aberration was homogeneously staining regions (hsr) observed in three lines. FISH and combined binary ratio labeling (COBRA)-FISH showed in two cases that the hsrs were derived from chromosome 20. Clonal evolution was observed in four of the lines. In one line, hsr was the only change shared by all subclones, suggesting that it might be a primary event in cell immortalization. The results of the present study suggested that loss of chromosome 13 and the amplification of chromosome 20 might be early genetic events involved in ovarian cell immortalization, and might be useful targets for the study of genomic aberrations in ovarian carcinogenesis.

  2. Systemic Mastocytosis with Smoldering Multiple Myeloma: Report of a Case

    PubMed Central

    Garcia, Gwenalyn; Ying, Liu; Hurford, Matthew; Odaimi, Marcel

    2016-01-01

    Systemic mastocytosis (SM) is a disease characterized by a clonal infiltration of mast cells affecting various tissues of the body. It is grouped into six different subtypes according to the World Health Organization classification. It is called indolent systemic mastocytosis (ISM) when there is no evidence of end organ dysfunction, while the presence of end organ dysfunction defines aggressive systemic mastocytosis (ASM). When SM coexists with a clonal hematological disorder, it is classified as systemic mastocytosis with associated clonal hematological nonmast cell lineage disease (SM-AHNMD). Over 80% of SM-AHNMD cases involve disorders of the myeloid cell lines. To our knowledge, there are only 8 reported cases to date of SM associated with a plasma cell disorder. We report a patient with ISM who was found to have concomitant smoldering multiple myeloma. His disease later progressed to ASM. We discuss this rare association between SM and a plasma cell disorder, and potential common pathophysiologic mechanisms linking the two disorders will be reviewed. We also discuss prognostic factors in SM as well as the management options considered during the evolution of the patient's disease. PMID:27293930

  3. 19-nor vitamin-D analogs: a new class of potent inhibitors of proliferation and inducers of differentiation of human myeloid leukemia cell lines.

    PubMed

    Asou, H; Koike, M; Elstner, E; Cambell, M; Le, J; Uskokovic, M R; Kamada, N; Koeffler, H P

    1998-10-01

    We have studied the in vitro biological activities and mechanisms of action of 1,25-dihydroxyvitamin D3 (1,25D3) and nine potent 1,25D3 analogs on proliferation and differentiation of myeloid leukemia cell lines (HL-60, retinoic acid-resistant HL-60 [RA-res HL-60], NB4 and Kasumi-1). The common novel structural motiff for almost all the analogs included removal of C-19 (19-nor); each also had unsaturation of the side chain. All the compounds were potent; for example, the concentration of analogs producing a 50% clonal inhibition (ED50) ranged between 1 x 10(-9) to 4 x 10(-11) mol/L when using the HL-60 cell line. The most active compound [1, 25(OH)2-16,23E-diene-26-trifluoro-19-nor-cholecalciferol (Ro 25-9716)] had an ED50 of 4 x 10(-11) mol/L; in contrast, the 1,25D3 produced an ED50 of 10(-9) mol/L with the HL-60 target cells. Ro 25-9716 (10(-9) mol/L, 3 days) was a strong inducer of myeloid differentiation because it caused 92% of the HL-60 cells to express CD11b and 75% of these cells to reduce nitroblue tetrazolium (NBT). This compound (10(-8) mol/L, 4 days) also caused HL-60 cells to arrest in the G1 phase of the cell cycle (88% cells in G1 v 48% of the untreated control cells). The p27(kip-1), a cyclin-dependent kinase inhibitor which is important in blocking the cell cycle, was induced more quickly and potently by Ro 25-9716 (10(-7) mol/L, 0 to 5 days) than by 1,25D3, suggesting a possible mechanism by which these analogs inhibit proliferation of leukemic growth. The NB4 promyelocytic leukemia cells cultured with the Ro 25-9716 were also inhibited in their clonal proliferation (ED50, 5 x 10(-11) mol/L) and their expression of CD11b was enhanced (80% positive [10(-9) mol/L, 4 days] v 27% untreated NB4 cells). Moreover, the combination of Ro 25-9716 (10(-9) mol/L) and all-trans retinoic acid (ATRA, 10(-7) mol/L) induced 92% of the NB4 cells to reduce NBT, whereas only 26% of the cells became NBT positive after a similar exposure to the combination of 1,25D3 and ATRA. Surprisingly, Ro 25-9716 also inhibited the clonal growth of poorly differentiated leukemia cell lines (RA-res HL-60 [ED50, 4 x 10(-9) mol/L] and Kasumi-1 [ED50, 5 x 10(-10) mol/L]). For HL-60 cells, Ro 25-9716 markedly decreased the percent of the cells in S phase of the cell cycle and increased the expression of the cyclin-dependent kinase inhibitor, p27(kip-1). In summary, 19-nor vitamin D3 compounds strongly induced differentiation and inhibited clonal proliferation of various myeloid leukemia cell lines, suggesting a therapeutic niche for their use in myeloid leukemia.

  4. Genetic resistance to rhabdovirus infection in teleost fish is paralleled to the derived cell resistance status.

    PubMed

    Verrier, Eloi R; Langevin, Christelle; Tohry, Corinne; Houel, Armel; Ducrocq, Vincent; Benmansour, Abdenour; Quillet, Edwige; Boudinot, Pierre

    2012-01-01

    Genetic factors of resistance and predisposition to viral diseases explain a significant part of the clinical variability observed within host populations. Predisposition to viral diseases has been associated to MHC haplotypes and T cell immunity, but a growing repertoire of innate/intrinsic factors are implicated in the genetic determinism of the host susceptibility to viruses. In a long-term study of the genetics of host resistance to fish rhabdoviruses, we produced a collection of double-haploid rainbow trout clones showing a wide range of susceptibility to Viral Hemorrhagic Septicemia Virus (VHSV) waterborne infection. The susceptibility of fibroblastic cell lines derived from these clonal fish was fully consistent with the susceptibility of the parental fish clones. The mechanisms determining the host resistance therefore did not associate with specific host immunity, but rather with innate or intrinsic factors. One cell line was resistant to rhabdovirus infection due to the combination of an early interferon IFN induction--that was not observed in the susceptible cells--and of yet unknown factors that hamper the first steps of the viral cycle. The implication of IFN was well consistent with the wide range of resistance of this genetic background to VSHV and IHNV, to the birnavirus IPNV and the orthomyxovirus ISAV. Another cell line was even more refractory to the VHSV infection through different antiviral mechanisms. This collection of clonal fish and isogenic cell lines provides an interesting model to analyze the relative contribution of antiviral pathways to the resistance to different viruses.

  5. Lamarck Will Not Lie Down.

    ERIC Educational Resources Information Center

    Lewin, Roger

    1981-01-01

    Describes recent research by Edward Steele appearing to support the Lamarckian theory of inheritance. Steele suggests that a mutant somatic cell favored by the environment will undergo clonal expansion. Altered genetic materials from these cells is then picked up by C-type viruses and inserted into the germ line genome. (CS)

  6. Regeneration of multiple shoots from transgenic potato events facilitates the recovery of phenotypically normal lines: assessing a cry9Aa2 gene conferring insect resistance

    PubMed Central

    2011-01-01

    Background The recovery of high performing transgenic lines in clonal crops is limited by the occurrence of somaclonal variation during the tissue culture phase of transformation. This is usually circumvented by developing large populations of transgenic lines, each derived from the first shoot to regenerate from each transformation event. This study investigates a new strategy of assessing multiple shoots independently regenerated from different transformed cell colonies of potato (Solanum tuberosum L.). Results A modified cry9Aa2 gene, under the transcriptional control of the CaMV 35S promoter, was transformed into four potato cultivars using Agrobacterium-mediated gene transfer using a nptII gene conferring kanamycin resistance as a selectable marker gene. Following gene transfer, 291 transgenic lines were grown in greenhouse experiments to assess somaclonal variation and resistance to potato tuber moth (PTM), Phthorimaea operculella (Zeller). Independently regenerated lines were recovered from many transformed cell colonies and Southern analysis confirmed whether they were derived from the same transformed cell. Multiple lines regenerated from the same transformed cell exhibited a similar response to PTM, but frequently exhibited a markedly different spectrum of somaclonal variation. Conclusions A new strategy for the genetic improvement of clonal crops involves the regeneration and evaluation of multiple shoots from each transformation event to facilitate the recovery of phenotypically normal transgenic lines. Most importantly, regenerated lines exhibiting the phenotypic appearance most similar to the parental cultivar are not necessarily derived from the first shoot regenerated from a transformed cell colony, but can frequently be a later regeneration event. PMID:21995716

  7. Generation of human cortical neurons from a new immortal fetal neural stem cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cacci, E.; Villa, A.; Parmar, M.

    2007-02-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markersmore » like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology.« less

  8. Construction and properties of a cell line constitutively expressing the herpes simplex virus glycoprotein B dependent on functional alpha 4 protein synthesis.

    PubMed Central

    Arsenakis, M; Hubenthal-Voss, J; Campadelli-Fiume, G; Pereira, L; Roizman, B

    1986-01-01

    We report the construction of a cell line constitutively expressing the glycoprotein B (gB) of herpes simplex virus (HSV) 1. The cell line was constructed in two steps. In the first, a baby hamster kidney cell line was transfected with the DNA of a plasmid containing the neomycin phosphotransferase gene that confers resistance to the antibiotic G418 and the gene specifying a temperature-sensitive (ts-) alpha 4 protein of HSV-1, the major viral regulatory protein. A clonal cell line, alpha 4/c113, selected for resistance to the antibiotic G418, expressed high levels of alpha 4 protein constitutively. Superinfection of these cells with HSV-2 resulted in twofold induction of the resident HSV-1 alpha 4 gene. In the second step, alpha 4/c113 cells were transfected with the DNA of a plasmid carrying the gB gene and the mouse methotrexate resistance dihydrofolate reductase gene. A clonal cell line, alpha 4/c113/gB, selected for methotrexate resistance expressed gB constitutively. Expression of both gB and alpha 4 continued unabated for at least 32 serial passages. Cells passaged serially in medium containing both methotrexate and G418 after passage 10 contained a higher copy number of the alpha 4 gene and produced larger amounts of both gB and alpha 4 proteins than did cells maintained in medium containing methotrexate alone. Expression of gB was dependent on the presence of functional alpha 4 protein inasmuch as expression of gB ceased on shift up to nonpermissive temperatures, when shifted to permissive temperatures, the cell line reinitiated expression of gB after a delay commensurate with the length of incubation at the nonpermissive temperature, and the cell-resident HSV-1 gB gene was expressed at the nonpermissive temperature in cells infected with a recombinant expressing a ts+ alpha 4 protein and an HSV-2 gB. The properties of the alpha 4/c113 cell line suggest that it may express other viral genes induced by alpha 4 protein constitutively, provided that the product is not toxic to the cells. Images PMID:3022001

  9. Intratumoral genetic heterogeneity in metastatic melanoma is accompanied by variation in malignant behaviors.

    PubMed

    Anaka, Matthew; Hudson, Christopher; Lo, Pu-Han; Do, Hongdo; Caballero, Otavia L; Davis, Ian D; Dobrovic, Alexander; Cebon, Jonathan; Behren, Andreas

    2013-10-11

    Intratumoral heterogeneity is a major obstacle for the treatment of cancer, as the presence of even minor populations that are insensitive to therapy can lead to disease relapse. Increased clonal diversity has been correlated with a poor prognosis for cancer patients, and we therefore examined genetic, transcriptional, and functional diversity in metastatic melanoma. Amplicon sequencing and SNP microarrays were used to profile somatic mutations and DNA copy number changes in multiple regions from metastatic lesions. Clonal genetic and transcriptional heterogeneity was also assessed in single cell clones from early passage cell lines, which were then subjected to clonogenicity and drug sensitivity assays. MAPK pathway and tumor suppressor mutations were identified in all regions of the melanoma metastases analyzed. In contrast, we identified copy number abnormalities present in only some regions in addition to homogeneously present changes, suggesting ongoing genetic evolution following metastatic spread. Copy number heterogeneity from a tumor was represented in matched cell line clones, which also varied in their clonogenicity and drug sensitivity. Minor clones were identified based on dissimilarity to the parental cell line, and these clones were the most clonogenic and least sensitive to drugs. Finally, treatment of a polyclonal cell line with paclitaxel to enrich for drug-resistant cells resulted in the adoption of a gene expression profile with features of one of the minor clones, supporting the idea that these populations can mediate disease relapse. Our results support the hypothesis that minor clones might have major consequences for patient outcomes in melanoma.

  10. Immortality of cancers

    PubMed Central

    Duesberg, Peter; McCormack, Amanda

    2013-01-01

    Immortality is a common characteristic of cancers, but its origin and purpose are still unclear. Here we advance a karyotypic theory of immortality based on the theory that carcinogenesis is a form of speciation. Accordingly, cancers are generated from normal cells by random karyotypic rearrangements and selection for cancer-specific reproductive autonomy. Since such rearrangements unbalance long-established mitosis genes, cancer karyotypes vary spontaneously but are stabilized perpetually by clonal selections for autonomy. To test this theory we have analyzed neoplastic clones, presumably immortalized by transfection with overexpressed telomerase or with SV40 tumor virus, for the predicted clonal yet flexible karyotypes. The following results were obtained: (1) All immortal tumorigenic lines from cells transfected with overexpressed telomerase had clonal and flexible karyotypes; (2) Searching for the origin of such karyotypes, we found spontaneously increasing, random aneuploidy in human fibroblasts early after transfection with overexpressed telomerase; (3) Late after transfection, new immortal tumorigenic clones with new clonal and flexible karyotypes were found; (4) Testing immortality of one clone during 848 unselected generations showed the chromosome number was stable, but the copy numbers of 36% of chromosomes drifted ± 1; (5) Independent immortal tumorigenic clones with individual, flexible karyotypes arose after individual latencies; (6) Immortal tumorigenic clones with new flexible karyotypes also arose late from cells of a telomerase-deficient mouse rendered aneuploid by SV40 virus. Because immortality and tumorigenicity: (1) correlated exactly with individual clonal but flexible karyotypes; (2) originated simultaneously with such karyotypes; and (3) arose in the absence of telomerase, we conclude that clonal and flexible karyotypes generate the immortality of cancers. PMID:23388461

  11. Establishment and characterization of scleroderma fibroblast clonal cell lines by introduction of the hTERT gene

    PubMed Central

    Kapanadze, Bagrat; Morris, Erin; Smith, Edwin; Trojanowska, Maria

    2010-01-01

    Abstract Lack of an adequate experimental model has hindered the ability to fully understand scleroderma (SSc) pathogenesis. Current SSc research is based on the study of cultured fibroblasts from skin biopsies. In depth characterization of the SSc fibroblast phenotype is hindered by the limited lifespan and heterogeneity of these cells. The goal of this study was to isolate high collagen-producing fibroblasts from SSc biopsies and extend their lifespan with hTERT immortalization to enable characterization of their phenotype. Fibroblasts from two pairs of closely matched normal and SSc biopsies were infected with an hTERT lentivirus. Infected colonies were isolated, cultured into clonal cell lines and analysed with respect to profibrotic gene expression. The mRNA levels of nine profibrotic genes were measured by quantitative real-time PCR. Protein levels were assessed by Western blot. The hTERT SSc clones were heterogeneous with regards to expression of the profibrotic genes measured. A subset of the SSc clones showed elevated expression levels of collagen I, connective tissue growth factor and thrombospondin 1 mRNA, while expression of other genes was not significantly changed. Elevated expression of collagen I protein and mRNA was correlative with elevated expression of connective tissue growth factor. Several hTERT clones expressed high levels of pSmad1, Smad1 and TGF-βRI indicative of altered TGF-β signalling. A portion of SSc clones expressed several profibrotic genes. This study demonstrates that select characteristics of the SSc phenotype are expressed in a subset of activated fibroblasts in culture. The clonal SSc cell lines may present a new and useful model to investigate the mechanisms involved in SSc fibrosis. PMID:19432820

  12. Establishment and characterization of scleroderma fibroblast clonal cell lines by introduction of the hTERT gene.

    PubMed

    Kapanadze, Bagrat; Morris, Erin; Smith, Edwin; Trojanowska, Maria

    2010-05-01

    Lack of an adequate experimental model has hindered the ability to fully understand scleroderma (SSc) pathogenesis. Current SSc research is based on the study of cultured fibroblasts from skin biopsies. In depth characterization of the SSc fibroblast phenotype is hindered by the limited lifespan and heterogeneity of these cells. The goal of this study was to isolate high collagen-producing fibroblasts from SSc biopsies and extend their lifespan with hTERT immortalization to enable characterization of their phenotype. Fibroblasts from two pairs of closely matched normal and SSc biopsies were infected with an hTERT lentivirus. Infected colonies were isolated, cultured into clonal cell lines and analysed with respect to profibrotic gene expression. The mRNA levels of nine profibrotic genes were measured by quantitative real-time PCR. Protein levels were assessed by Western blot. The hTERT SSc clones were heterogeneous with regards to expression of the profibrotic genes measured. A subset of the SSc clones showed elevated expression levels of collagen I, connective tissue growth factor and thrombospondin 1 mRNA, while expression of other genes was not significantly changed. Elevated expression of collagen I protein and mRNA was correlative with elevated expression of connective tissue growth factor. Several hTERT clones expressed high levels of pSmad1, Smad1 and TGF-betaRI indicative of altered TGF-beta signalling. A portion of SSc clones expressed several profibrotic genes. This study demonstrates that select characteristics of the SSc phenotype are expressed in a subset of activated fibroblasts in culture. The clonal SSc cell lines may present a new and useful model to investigate the mechanisms involved in SSc fibrosis.

  13. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org; Lazarova, Darina L., E-mail: dlazarova@tcmedc.org; Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116,more » does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or reverse butyrate resistance.« less

  14. A comparative genomic hybridization approach to study gene copy number variations among Chinese hamster cell lines.

    PubMed

    Vishwanathan, Nandita; Bandyopadhyay, Arpan; Fu, Hsu-Yuan; Johnson, Kathryn C; Springer, Nathan M; Hu, Wei-Shou

    2017-08-01

    Chinese Hamster Ovary (CHO) cells are aneuploid in nature. The genome of recombinant protein producing CHO cell lines continuously undergoes changes in its structure and organization. We analyzed nine cell lines, including parental cell lines, using a comparative genomic hybridization (CGH) array focused on gene-containing regions. The comparison of CGH with copy-number estimates from sequencing data showed good correlation. Hierarchical clustering of the gene copy number variation data from CGH data revealed the lineage relationships between the cell lines. On analyzing the clones of a clonal population, some regions with altered genomic copy number status were identified indicating genomic changes during passaging. A CGH array is thus an effective tool in quantifying genomic alterations in industrial cell lines and can provide insights into the changes in the genomic structure during cell line derivation and long term culture. Biotechnol. Bioeng. 2017;114: 1903-1908. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Establishment of two new cell lines derived from human breast carcinomas with HER-2/neu amplification.

    PubMed Central

    Meltzer, P.; Leibovitz, A.; Dalton, W.; Villar, H.; Kute, T.; Davis, J.; Nagle, R.; Trent, J.

    1991-01-01

    Two human cell lines (UACC-812 and 893), both containing significant amplification of the HER-2/neu gene, were established from biopsy specimens of breast carcinomas. One patient had Stage II breast carcinoma; the other had metastatic disease. Characterisation of these lines has revealed that both are highly aneuploid containing multiple clonal chromosome alterations, have doubling times near 100 h, and are oestrogen and progesterone receptor negative. Electron microscopy demonstrates that both lines contain numerous microvilli, cytoplasmic filaments, multivesicular bodies, and desmosomes. Immunoblot analysis for P-glycoprotein using the monoclonal antibody C219 was negative for both patient cell lines. These relatively rare cell lines may represent a useful model to investigate human breast carcinomas. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1674877

  16. Production of cloned embryos from caprine mammary epithelial cells expressing recombinant human β-defensin-3.

    PubMed

    Liu, Jun; Luo, Yan; Liu, Qingqing; Zheng, Liming; Yang, Zhongcai; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Zhang, Yong

    2013-03-01

    Transgenic animals that express antimicrobial agents in their milk can inhibit bacterial pathogens that cause mastitis. Our objective was to produce human β-defensin-3 (HBD3) transgenic embryos by nuclear transfer using goat mammary epithelial cells (GMECs) as donor cells. Three GMEC lines (GMEC1, GMEC2, and GMEC3) were transfected with a HBD3 mammary-specific expression vector by electroporation. There was a difference (P < 0.05) in the rate of geneticin-resistant colony formation among cell lines GMEC1, GMEC2, and GMEC3 (39 and 47 vs. 19 colonies per 3 × 10(6) cells, respectively). After inducing expression, the mRNA and protein of HBD3 were detected by reverse transcription polymerase chain reaction and Western blot analysis in transgenic cells. Transgenic clonal cells expressing HBD3 were used as donor cells to investigate development of cloned embryos. There were no significant differences in rates of cleavage or blastocyst formation of cloned embryos from transgenic (GMEC1T2 and GMEC2T3) and nontransgenic (GMEC1 and GMEC2) GMECs (72.3 ± 5.0%, 69.5 ± 2.3%, 61.8 ± 4.8%, and 70.0 ± 2%; and 16.8 ± 0.5%, 17.5 ± 0.7%, 16.7 ± 0.9%, and 17.5 ± 0.6%, respectively). However, the fusion rate, cleavage rate, and blastocyst formation rate of cloned embryos from a transgenic clonal cell line (GMEC2T6, 50.7 ± 2.1%, 55.5 ± 2.0%, and 11.1 ± 0.6%) were lower than those of other groups (P < 0.05). We concluded that genetic modification of GMECs might not influence the in vitro development of cloned embryos, but that some of the transgenic clonal cells were not suitable for nuclear transfer to produce transgenic goats, because of low developmental rates. However, transgenic GMECs expressing HBD3 might be used as donor cells for producing transgenic goats that express increased concentrations of β-defensins in their milk. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Role of TGR-B1-Mediated Down Regulation of NF-kB/Rel Activity During Growth Arrest of Breast Cancer Cells

    DTIC Science & Technology

    2001-05-01

    gallate ( EGCG ), which has been shown to inhibit the induction of NF-KB and growth of breast cancer cell lines in vitro. EGCG reduced NF-KB levels in the...demonstrated activation of NF-KB is induced upon over-expression of Her-2/neu. Thus, studies were initiated with green tea pholyphenol, epigallocatechin -3...NF639 cell line derived from an MMTV-Her-2/neu mouse tumor. NF639 clonal isolates resistant to EGCG appear to display elevated levels of NF-KB. Overall

  18. Genetic Resistance to Rhabdovirus Infection in Teleost Fish Is Paralleled to the Derived Cell Resistance Status

    PubMed Central

    Verrier, Eloi R.; Langevin, Christelle; Tohry, Corinne; Houel, Armel; Ducrocq, Vincent; Benmansour, Abdenour; Quillet, Edwige; Boudinot, Pierre

    2012-01-01

    Genetic factors of resistance and predisposition to viral diseases explain a significant part of the clinical variability observed within host populations. Predisposition to viral diseases has been associated to MHC haplotypes and T cell immunity, but a growing repertoire of innate/intrinsic factors are implicated in the genetic determinism of the host susceptibility to viruses. In a long-term study of the genetics of host resistance to fish rhabdoviruses, we produced a collection of double-haploid rainbow trout clones showing a wide range of susceptibility to Viral Hemorrhagic Septicemia Virus (VHSV) waterborne infection. The susceptibility of fibroblastic cell lines derived from these clonal fish was fully consistent with the susceptibility of the parental fish clones. The mechanisms determining the host resistance therefore did not associate with specific host immunity, but rather with innate or intrinsic factors. One cell line was resistant to rhabdovirus infection due to the combination of an early interferon IFN induction - that was not observed in the susceptible cells - and of yet unknown factors that hamper the first steps of the viral cycle. The implication of IFN was well consistent with the wide range of resistance of this genetic background to VSHV and IHNV, to the birnavirus IPNV and the orthomyxovirus ISAV. Another cell line was even more refractory to the VHSV infection through different antiviral mechanisms. This collection of clonal fish and isogenic cell lines provides an interesting model to analyze the relative contribution of antiviral pathways to the resistance to different viruses. PMID:22514610

  19. Clonal analysis of human embryonic stem cell differentiation into teratomas.

    PubMed

    Blum, Barak; Benvenisty, Nissim

    2007-08-01

    Differentiation of human embryonic stem cells (HESCs) can be studied in vivo through the induction of teratomas in immune-deficient mice. Cells within the teratomas differentiate into all three embryonic germ layers. However, the exact nature of the proliferation and differentiation of HESCs within the teratoma is not fully characterized, and it is not clear whether the differentiation is cell autonomous or affected by neighboring cells. Here, we establish a genetic approach to study the clonality of differentiation in teratomas using a mixture of HESC lines. We first demonstrate, by means of 5-bromo-2'-deoxyuridine incorporation, that cell proliferation occurs throughout the teratoma, and that there are no clusters of undifferentiated-proliferating cells. Using a combination of laser capture microdissection and DNA fingerprinting analysis, we show that different cell lines contribute mutually to the same distinctive tissue structures. Further support for the nonclonal differentiation within the teratoma was achieved by fluorescence in situ hybridization analysis of sex chromosomes. We therefore suggest that in vivo differentiation of HESCs is polyclonal and, thus, may not be cell autonomous, stressing the need for a three-dimensional growth in order to achieve complex differentiation of HESCs. Disclosure of potential conflicts of interest is found at the end of this article.

  20. Effect of aspirin on tumour cell colony formation and evolution.

    PubMed

    Wodarz, Dominik; Goel, Ajay; Boland, C Richard; Komarova, Natalia L

    2017-09-01

    Aspirin is known to reduce the risk of colorectal cancer (CRC) incidence, but the underlying mechanisms are not fully understood. In a previous study, we quantified the in vitro growth kinetics of different CRC tumour cell lines treated with varying doses of aspirin, measuring the rate of cell division and cell death. Here, we use these measured parameters to calculate the chances of successful clonal expansion and to determine the evolutionary potential of the tumour cell lines in the presence and absence of aspirin. The calculations indicate that aspirin increases the probability that a single tumour cell fails to clonally expand. Further, calculations suggest that aspirin increases the evolutionary potential of an expanding tumour cell colony. An aspirin-treated tumour cell population is predicted to result in the accumulation of more mutations (and is thus more virulent and more difficult to treat) than a cell population of the same size that grew without aspirin. This indicates a potential trade-off between delaying the onset of cancer and increasing its evolutionary potential through chemoprevention. Further work needs to investigate to what extent these findings apply to in vivo settings, and to what degree they contribute to the epidemiologically documented aspirin-mediated protection. © 2017 The Author(s).

  1. The Therapeutic Effect of the Antitumor Drug 11 Beta and Related Molecules on Polycystic Kidney Disease

    DTIC Science & Technology

    2017-10-01

    structure central to the pathogenesis of ADPKD. The team at Yale employed CRISPR - Cas9 genome editing technology to generate two isogenic cell lines...possibilities may have contributed to this result, including a clonal effect perhaps from off target CRISPR /Cas9 activity leading to a rescue...Pkd1 knockout background; this cell line is another control for any off-target genetic in the CRISPR /Cas9 editing procedure. This will establish

  2. Single Cell Proteolytic Assays to Investigate Cancer Clonal Heterogeneity and Cell Dynamics Using an Efficient Cell Loading Scheme

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Cheng, Yu-Heng; Ingram, Patrick; Yoon, Euisik

    2016-06-01

    Proteolytic degradation of the extracellular matrix (ECM) is critical in cancer invasion, and recent work suggests that heterogeneous cancer populations cooperate in this process. Despite the importance of cell heterogeneity, conventional proteolytic assays measure average activity, requiring thousands of cells and providing limited information about heterogeneity and dynamics. Here, we developed a microfluidic platform that provides high-efficiency cell loading and simple valveless isolation, so the proteolytic activity of a small sample (10-100 cells) can be easily characterized. Combined with a single cell derived (clonal) sphere formation platform, we have successfully demonstrated the importance of microenvironmental cues for proteolytic activity and also investigated the difference between clones. Furthermore, the platform allows monitoring single cells at multiple time points, unveiling different cancer cell line dynamics in proteolytic activity. The presented tool facilitates single cell proteolytic analysis using small samples, and our findings illuminate the heterogeneous and dynamic nature of proteolytic activity.

  3. Clonal variation in proliferation rate of cultures of GPK cells.

    PubMed

    Riley, P A; Hola, M

    1981-09-01

    Pedigrees of twenty-six clones of a line of keratocytes derived from guinea-pig ear epidermis (GPK cells) were analysed from time-lapse film. The mean interdivision time (IDT) for the culture was 1143 +/- 215 (SD) min. The mean generation rates (mean reciprocal interdivision times) of clones varied over a range of 3.93--10.2 x 10(-4)/min and the standard deviation of the clonal mean generation rates was 16.8% of the average value. Transient intraclonal variations in IDT due to mitoses in a plane perpendicular to the substratum were observed. The data were also analysed on the basis of cell location in sixteen equal zones (quadrats) of the filmed area. The mean generation rate of quadrats was 8.73 x 10(-4)/min (SD = 4.9%). The spatial distribution showed some clustering of cells. The mean local density of the clones (2.25 +/- 0.62 cells/10(-4) cm2) was significantly higher than the quadrat density (1.76 +/- 0.8 cells/10(-4) cm2). There was no significant correlation between clonal density and mean generation rates, whereas for quadrats a significant negative correlation was found (P = 2.7%). The results support the proposition that cell lineage is the major determinant of the proliferation rate of subconfluent cultures.

  4. Clonal population of adult stem cells: life span and differentiation potential.

    PubMed

    Seruya, Mitchel; Shah, Anup; Pedrotty, Dawn; du Laney, Tracey; Melgiri, Ryan; McKee, J Andrew; Young, Henry E; Niklason, Laura E

    2004-01-01

    Adult stem cells derived from bone marrow, connective tissue, and solid organs can exhibit a range of differentiation potentials. Some controversy exists regarding the classification of mesenchymal stem cells as bona fide stem cells, which is in part derived from the limited ability to propagate true clonal populations of precursor cells. We isolated putative mesenchymal stem cells from the connective tissue of an adult rat (rMSC), and generated clonal populations via three rounds of dilutional cloning. The replicative potential of the clonal rMSC line far exceeded Hayflick's limit of 50-70 population doublings. The high capacity for self-renewal in vitro correlated with telomerase activity, as demonstrated by telomerase repeat amplification protocol (TRAP) assay. Exposure to nonspecific differentiation culture medium revealed multilineage differentiation potential of rMSC clones. Immunostaining confirmed the appearance of mesodermal phenotypes, including adipocytes possessing lipid-rich vacuoles, chondrocytes depositing pericellular type II collagen, and skeletal myoblasts expressing MyoD1. Importantly, the spectrum of differentiation capability was sustained through repeated passaging. Furthermore, serum-free conditions that led to high-efficiency smooth muscle differentiation were identified. rMSCs plated on collagen IV-coated surfaces and exposed to transforming growth factor-beta1 (TGF-beta1) differentiated into a homogeneous population expressing alpha-actin and calponin. Hence, clonogenic analysis confirmed the presence of a putative MSC population derived from the connective tissue of rat skeletal muscle. The ability to differentiate into a smooth muscle cell (SMC) phenotype, combined with a high proliferative capacity, make such a connective tissue-derived MSC population ideal for applications in vascular tissue construction.

  5. Genetic tagging of tumor cells with retrovirus vectors: Clonal analysis of tumor growth and metastasis in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korczak; Robson, I.B.; Lamarche, C.

    1988-08-01

    Retrovirus vector infection was used to introduce large numbers of unique genetic markers into tumor cell populations for the purpose of analyzing comparative changes in the clonal composition of metastatic versus that of nonmetastatic tumors during their progressive growth in vivo. The cell lines were SP1, a nonmetastatic, aneuploid mouse mammary adenocarcinoma, and SP1HU9L, a metastatic variant of SP1. Cells were infected with ..delta..e..delta..rhoMoTn, a replication-defective retrovirus vector which possesses the dominant selectable neo gene and crippled long terminal repeats. G418/sup r/ colonies were obtained at a frequency of 4 x 10/sup -3/. Southern blot analysis of a number ofmore » clones provided evidence of random and heritable integration of one or two copies of the proviral DNA. Clonal equation of primary tumor growth and the nature of lineage relationships among spontaneous metastases and primary tumors were analyzed by subcutaneously injecting 10/sup 5/ cells from a pooled mixture of 3.6 x 10/sup 2/ G418/sup r/ SP1HU9L or 10/sup 4/ G418/sup r/ SP1 colonies into syngeneic CBA/J mice. The most striking finding was the relative clonal homogeneity of advanced primary tumors; they invariably consisted of a small number (less than 10) of distinct clones despite the fact that hundreds of thousands of uniquely marked clones had been injected.« less

  6. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny

    PubMed Central

    Sato, Sachiko; Rancourt, Ann; Sato, Yukiko; Satoh, Masahiko S.

    2016-01-01

    Mammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells. We found that cell fate varied significantly, indicating that, in contrast to the assumption, the HeLa cell line is composed of highly heterogeneous cells. Furthermore, our results reveal that only a limited number of cells are immortal and renew themselves, giving rise to the remaining cells. These cells have reduced reproductive ability, creating a functionally heterogeneous cell population. Hence, the HeLa cell line is maintained by the limited number of immortal cells, which could be putative cancer stem cells. PMID:27003384

  7. Intratumoral genetic heterogeneity in metastatic melanoma is accompanied by variation in malignant behaviors

    PubMed Central

    2013-01-01

    Background Intratumoral heterogeneity is a major obstacle for the treatment of cancer, as the presence of even minor populations that are insensitive to therapy can lead to disease relapse. Increased clonal diversity has been correlated with a poor prognosis for cancer patients, and we therefore examined genetic, transcriptional, and functional diversity in metastatic melanoma. Methods Amplicon sequencing and SNP microarrays were used to profile somatic mutations and DNA copy number changes in multiple regions from metastatic lesions. Clonal genetic and transcriptional heterogeneity was also assessed in single cell clones from early passage cell lines, which were then subjected to clonogenicity and drug sensitivity assays. Results MAPK pathway and tumor suppressor mutations were identified in all regions of the melanoma metastases analyzed. In contrast, we identified copy number abnormalities present in only some regions in addition to homogeneously present changes, suggesting ongoing genetic evolution following metastatic spread. Copy number heterogeneity from a tumor was represented in matched cell line clones, which also varied in their clonogenicity and drug sensitivity. Minor clones were identified based on dissimilarity to the parental cell line, and these clones were the most clonogenic and least sensitive to drugs. Finally, treatment of a polyclonal cell line with paclitaxel to enrich for drug-resistant cells resulted in the adoption of a gene expression profile with features of one of the minor clones, supporting the idea that these populations can mediate disease relapse. Conclusion Our results support the hypothesis that minor clones might have major consequences for patient outcomes in melanoma. PMID:24119551

  8. Selective Inhibition of Tumor Growth by Clonal NK Cells Expressing an ErbB2/HER2-Specific Chimeric Antigen Receptor

    PubMed Central

    Schönfeld, Kurt; Sahm, Christiane; Zhang, Congcong; Naundorf, Sonja; Brendel, Christian; Odendahl, Marcus; Nowakowska, Paulina; Bönig, Halvard; Köhl, Ulrike; Kloess, Stephan; Köhler, Sylvia; Holtgreve-Grez, Heidi; Jauch, Anna; Schmidt, Manfred; Schubert, Ralf; Kühlcke, Klaus; Seifried, Erhard; Klingemann, Hans G; Rieger, Michael A; Tonn, Torsten; Grez, Manuel; Wels, Winfried S

    2015-01-01

    Natural killer (NK) cells are an important effector cell type for adoptive cancer immunotherapy. Similar to T cells, NK cells can be modified to express chimeric antigen receptors (CARs) to enhance antitumor activity, but experience with CAR-engineered NK cells and their clinical development is still limited. Here, we redirected continuously expanding and clinically usable established human NK-92 cells to the tumor-associated ErbB2 (HER2) antigen. Following GMP-compliant procedures, we generated a stable clonal cell line expressing a humanized CAR based on ErbB2-specific antibody FRP5 harboring CD28 and CD3ζ signaling domains (CAR 5.28.z). These NK-92/5.28.z cells efficiently lysed ErbB2-expressing tumor cells in vitro and exhibited serial target cell killing. Specific recognition of tumor cells and antitumor activity were retained in vivo, resulting in selective enrichment of NK-92/5.28.z cells in orthotopic breast carcinoma xenografts, and reduction of pulmonary metastasis in a renal cell carcinoma model, respectively. γ-irradiation as a potential safety measure for clinical application prevented NK cell replication, while antitumor activity was preserved. Our data demonstrate that it is feasible to engineer CAR-expressing NK cells as a clonal, molecularly and functionally well-defined and continuously expandable cell therapeutic agent, and suggest NK-92/5.28.z cells as a promising candidate for use in adoptive cancer immunotherapy. PMID:25373520

  9. Identification of a role for the nuclear receptor EAR-2 in the maintenance of clonogenic status within the leukemia cell hierarchy

    PubMed Central

    Ichim, CV; Atkins, HL; Iscove, NN; Wells, RA

    2016-01-01

    Identification of genes that regulate clonogenicity of acute myelogenous leukemia (AML) cells is hindered by the difficulty of isolating pure populations of cells with defined proliferative abilities. By analyzing the growth of clonal siblings in low passage cultures of the cell line OCI/AML4 we resolved this heterogeneous population into strata of distinct clonogenic potential, permitting analysis of the transcriptional signature of single cells with defined proliferative abilities. By microarray analysis we showed that the expression of the orphan nuclear receptor EAR-2 (NR2F6) is greater in leukemia cells with extensive proliferative capacity than in those that have lost proliferative ability. EAR-2 is expressed highly in long-term hematopoietic stem cells, relative to short-term hematopoietic stem and progenitor cells, and is downregulated in AML cells after induction of differentiation. Exogenous expression of EAR-2 increased the growth of U937 cells and prevented the proliferative arrest associated with terminal differentiation, and blocked differentiation of U937 and 32Dcl3 cells. Conversely, silencing of EAR-2 by short-hairpin RNA initiated terminal differentiation of these cell lines. These data identify EAR-2 as an important factor in the regulation of clonogenicity and differentiation, and establish that analysis of clonal siblings allows the elucidation of differences in gene expression within the AML hierarchy. PMID:21637284

  10. Telomeric fusion and chromosome instability in multiple tissues of a patient with mosaic Ullrich-Turner syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawyer, J.R.; North, P.E.; Hassed, S.J.

    1997-04-14

    We describe the cytogenetic evolution of multiple cell lines in the gonadal tissue of a 10-year-old girl with mosaic Ullrich-Turner syndrome (UTS) involving clonal telomeric associations (tas) of the Y chromosome. G-band analysis of all tissues showed at least 2 cell lines; 45,X and 46,X,tas(Y;21)(q12;p13). However, analysis of left gonadal tissue of this patient showed the evolution of 2 additional cell lines, one designated 45,X,tas(Y;21)(q12;p13),-22 and the other 46,X,tas(Y;21)(q12;p13),+tas(Y;14)(q12;p13),-22. Fluorescence in situ hybridization (FISH) analysis of interphase nuclei from uncultured gonadal tissue confirmed the findings of aneuploidy in the left gonadal tissue and extended the findings of aneuploidy to themore » tissue of the right gonad. The chromosome findings in the gonadal tissue of this patient suggest a preneoplastic karyotype relating to several distinct tumor associations. The clonal evolution of telomeric fusions indicates chromosome instability and suggests the extra copy of the Y chromosome may have resulted from a fusion-related malsegregation. In addition, the extra Y suggests low-level amplification of a putative gonadoblastoma gene, while the loss of chromosome 22 suggests the loss of heterozygosity for genes on chromosome 22. This case demonstrates the utility of the study of gonadal tissue in 45X46,XY UTS patients, and provides evidence that clonal telomeric fusions may, in rare cases, be associated with chromosomal malsegregation and with the subsequent evolution of unstable karyotypes. 27 refs., 3 figs.« less

  11. Establishment and Characterization of Novel Human Primary and Metastatic Anaplastic Thyroid Cancer Cell Lines and Their Genomic Evolution Over a Year as a Primagraft

    PubMed Central

    Okamoto, Ryoko; Nagata, Yasunobu; Kanojia, Deepika; Venkatesan, Subhashree; M. T., Anand; Braunstein, Glenn D.; Said, Jonathan W.; Doan, Ngan B.; Ho, Quoc; Akagi, Tadayuki; Gery, Sigal; Liu, Li-zhen; Tan, Kar Tong; Chng, Wee Joo; Yang, Henry; Ogawa, Seishi; Koeffler, H. Phillip

    2015-01-01

    Context: Anaplastic thyroid cancer (ATC) has no effective treatment, resulting in a high rate of mortality. We established cell lines from a primary ATC and its lymph node metastasis, and investigated the molecular factors and genomic changes associated with tumor growth. Objective: The aim of the study was to understand the molecular and genomic changes of highly aggressive ATC and its clonal evolution to develop rational therapies. Design: We established unique cell lines from primary (OGK-P) and metastatic (OGK-M) ATC specimen, as well as primagraft from the metastatic ATC, which was serially xeno-transplanted for more than 1 year in NOD scid gamma mice were established. These cell lines and primagraft were used as tools to examine gene expression, copy number changes, and somatic mutations using RNA array, SNP Chip, and whole exome sequencing. Results: Mice carrying sc (OGK-P and OGK-M) tumors developed splenomegaly and neutrophilia with high expression of cytokines including CSF1, CSF2, CSF3, IL-1β, and IL-6. Levels of HIF-1α and its targeted genes were also elevated in these tumors. The treatment of tumor carrying mice with Bevacizumab effectively decreased tumor growth, macrophage infiltration, and peripheral WBCs. SNP chip analysis showed homozygous deletion of exons 3–22 of the PARD3 gene in the cells. Forced expression of PARD3 decreased cell proliferation, motility, and invasiveness, restores cell-cell contacts and enhanced cell adhesion. Next generation exome sequencing identified the somatic changes present in the primary, metastatic, and primagraft tumors demonstrating evolution of the mutational signature over the year of passage in vivo. Conclusion: To our knowledge, we established the first paired human primary and metastatic ATC cell lines offering unique possibilities for comparative functional investigations in vitro and in vivo. Our exome sequencing also identified novel mutations, as well as clonal evolution in both the metastasis and primagraft. PMID:25365311

  12. Mechanism of Action of Presynaptic Neurotoxins

    DTIC Science & Technology

    1986-07-01

    Green, 1981;. (2) There are no consistent effeects of the toxin on neurotransmftter synthesis , storage, degradation, or uptake (Collingrldge et al...Transport by Nitrendipine fit a Clonal Cell Line. ýL Biol. Chem,. 257, 13189-13192. Van Heyningen W.E. (1963) The Fixation of Tetanus Toxin, Strychnine

  13. Endocrine-Therapy-Resistant ESR1 Variants Revealed by Genomic Characterization of Breast-Cancer-Derived Xenografts

    PubMed Central

    Li, Shunqiang; Shen, Dong; Shao, Jieya; Crowder, Robert; Liu, Wenbin; Prat, Aleix; He, Xiaping; Liu, Shuying; Hoog, Jeremy; Lu, Charles; Ding, Li; Griffith, Obi L.; Miller, Christopher; Larson, Dave; Fulton, Robert S.; Harrison, Michelle; Mooney, Tom; McMichael, Joshua F.; Luo, Jingqin; Tao, Yu; Goncalves, Rodrigo; Schlosberg, Christopher; Hiken, Jeffrey F.; Saied, Laila; Sanchez, Cesar; Giuntoli, Therese; Bumb, Caroline; Cooper, Crystal; Kitchens, Robert T.; Lin, Austin; Phommaly, Chanpheng; Davies, Sherri R.; Zhang, Jin; Kavuri, Megha Shyam; McEachern, Donna; Dong, Yi Yu; Ma, Cynthia; Pluard, Timothy; Naughton, Michael; Bose, Ron; Suresh, Rama; McDowell, Reida; Michel, Loren; Aft, Rebecca; Gillanders, William; DeSchryver, Katherine; Wilson, Richard K.; Wang, Shaomeng; Mills, Gordon B.; Gonzalez-Angulo, Ana; Edwards, John R.; Maher, Christopher; Perou, Charles M.; Mardis, Elaine R.; Ellis, Matthew J.

    2013-01-01

    SUMMARY To characterize patient-derived xenografts (PDXs) for functional studies, we made whole-genome comparisons with originating breast cancers representative of the major intrinsic subtypes. Structural and copy number aberrations were found to be retained with high fidelity. However, at the single-nucleotide level, variable numbers of PDX-specific somatic events were documented, although they were only rarely functionally significant. Variant allele frequencies were often preserved in the PDXs, demonstrating that clonal representation can be transplantable. Estrogen-receptor-positive PDXs were associated with ESR1 ligand-binding-domain mutations, gene amplification, or an ESR1/YAP1 translocation. These events produced different endocrine-therapy-response phenotypes in human, cell line, and PDX endocrine-response studies. Hence, deeply sequenced PDX models are an important resource for the search for genome-forward treatment options and capture endocrine-drug-resistance etiologies that are not observed in standard cell lines. The originating tumor genome provides a benchmark for assessing genetic drift and clonal representation after transplantation. PMID:24055055

  14. CHARACTERIZATION OF AN EQUINE MACROPHAGE CELL LINE: APPLICATION TO STUDIES OF EIAV INFECTION

    PubMed Central

    Fidalgo-Carvalho, Isabel; Craigo, Jodi K.; Barnes, Shannon; Costa-Ramos, Carolina; Montelaro, Ronald C.

    2009-01-01

    EIAV is a monocyte/macrophage tropic virus. To date, even though EIAV has been under investigation for numerous years, very few details have been elucidated about EIAV/macrophage interactions. This is largely due to the absence of an equine macrophage cell line that would support viral replication. Herein we describe the spontaneous immortalization and generation of a clonal equine macrophage-like (EML) cell line with the functional and immunophenotype characteristics of differentiated equine monocyte derived macrophage(s) (eMDM(s)). These cells possess strong non-specific esterase (NSE) activity, are able to phagocytose fluorescent bioparticles, and produce nitrites in response to LPS. The EML-3C cell line expresses the EIAV receptor for cellular entry (ELR1) and supports replication of the virulent EIAVPV biological clone. Thus, EML-3C cells provide a useful cell line possessing equine macrophage related properties for the growth and study of EIAV infection as well as of other equine macrophage tropic viruses. PMID:19038510

  15. Fibroblast growth factor 2 restrains Ras-driven proliferation of malignant cells by triggering RhoA-mediated senescence.

    PubMed

    Costa, Erico T; Forti, Fábio L; Matos, Tatiana G F; Dermargos, Alexandre; Nakano, Fábio; Salotti, Jacqueline; Rocha, Kátia M; Asprino, Paula F; Yoshihara, Celina K; Koga, Marianna M; Armelin, Hugo A

    2008-08-01

    Fibroblast growth factor 2 (FGF2) is considered to be a bona fide oncogenic factor, although results from our group and others call this into question. Here, we report that exogenous recombinant FGF2 irreversibly inhibits proliferation by inducing senescence in Ras-dependent malignant mouse cells, but not in immortalized nontumorigenic cell lines. We report the following findings in K-Ras-dependent malignant Y1 adrenocortical cells and H-Ras V12-transformed BALB-3T3 fibroblasts: (a) FGF2 inhibits clonal growth and tumor onset in nude and immunocompetent BALB/c mice, (b) FGF2 irreversibly blocks the cell cycle, and (c) FGF2 induces the senescence-associated beta-galactosidase with no accompanying signs of apoptosis or necrosis. The tyrosine kinase inhibitor PD173074 completely protected malignant cells from FGF2. In Y1 adrenal cells, reducing the constitutively high levels of K-Ras-GTP using the dominant-negative RasN17 mutant made cells resistant to FGF2 cytotoxicity. In addition, transfection of the dominant-negative RhoA-N19 into either Y1 or 3T3-B61 malignant cell lines yielded stable clonal transfectants that were unable to activate RhoA and were resistant to the FGF2 stress response. We conclude that in Ras-dependent malignant cells, FGF2 interacts with its cognate receptors to trigger a senescence-like process involving RhoA-GTP. Surprisingly, attempts to select FGF2-resistant cells from the Y1 and 3T3-B61 cell lines yielded only rare clones that (a) had lost the overexpressed ras oncogene, (b) were dependent on FGF2 for proliferation, and (c) were poorly tumorigenic. Thus, FGF2 exerted a strong negative selection that Ras-dependent malignant cells could rarely overcome.

  16. Establishment of a novel feline leukemia virus (FeLV)-negative B-cell cell line from a cat with B-cell lymphoma.

    PubMed

    Mochizuki, Hiroyuki; Takahashi, Masashi; Nishigaki, Kazuo; Ide, Tetsuya; Goto-Koshino, Yuko; Watanabe, Shinya; Sato, Hirofumi; Sato, Masahiko; Kotera, Yukiko; Fujino, Yasuhito; Ohno, Koichi; Uchida, Kazuyuki; Tsujimoto, Hajime

    2011-04-15

    We established a novel feline B-cell line, MS4, from the neoplastic pleural effusion of a cat with cutaneous B-cell lymphoma. Immunophenotype staining of the MS4 cells was positive for CD20, CD79α, and IgA and negative for CD3, CD4, CD5, CD8α, CD18, CD21, CD22, IgM, IgG, Ig light chain, and MHC class II. PCR analysis for immunoglobulin heavy chain gene rearrangements revealed a monoclonal rearrangement, whereas no clonal rearrangement of the T-cell receptor γ gene was detected. Southern blotting with an exogenous feline leukemia virus (FeLV) U3 probe revealed no integration of exogenous FeLV provirus. The MS4 cell line is the first FeLV-negative feline B-cell lymphoma cell line, and may be used to investigate the pathogenesis of spontaneously occurring feline lymphoma and the development of new therapies. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality

    PubMed Central

    Bárcena, Paloma; Jara-Acevedo, María; Tabernero, María Dolores; López, Antonio; Sánchez, María Luz; García-Montero, Andrés C.; Muñoz-García, Noemí; Vidriales, María Belén; Paiva, Artur; Lecrevisse, Quentin; Lima, Margarida; Langerak, Anton W.; Böttcher, Sebastian; van Dongen, Jacques J.M.

    2015-01-01

    Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56low NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56low NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94hi/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality. PMID:26556869

  18. Defining Clonal Color in Fluorescent Multi-Clonal Tracking

    PubMed Central

    Wu, Juwell W.; Turcotte, Raphaël; Alt, Clemens; Runnels, Judith M.; Tsao, Hensin; Lin, Charles P.

    2016-01-01

    Clonal heterogeneity and selection underpin many biological processes including development and tumor progression. Combinatorial fluorescent protein expression in germline cells has proven its utility for tracking the formation and regeneration of different organ systems. Such cell populations encoded by combinatorial fluorescent proteins are also attractive tools for understanding clonal expansion and clonal competition in cancer. However, the assignment of clonal identity requires an analytical framework in which clonal markings can be parameterized and validated. Here we present a systematic and quantitative method for RGB analysis of fluorescent melanoma cancer clones. We then demonstrate refined clonal trackability of melanoma cells using this scheme. PMID:27073117

  19. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq.

    PubMed

    Reinius, Björn; Mold, Jeff E; Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard

    2016-11-01

    Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and freshly isolated human CD8 + T cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells' transcriptomes, with levels dependent on the cells' transcriptional activity. Notably, clonal aRME was detected, but it was surprisingly scarce (<1% of genes) and mainly affected the most weakly expressed genes. Consequently, the overwhelming majority of aRME occurs transiently within individual cells, and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells.

  20. Generation of Isogenic Human iPS Cell Line Precisely Corrected by Genome Editing Using the CRISPR/Cas9 System.

    PubMed

    Grobarczyk, Benjamin; Franco, Bénédicte; Hanon, Kevin; Malgrange, Brigitte

    2015-10-01

    Genome engineering and human iPS cells are two powerful technologies, which can be combined to highlight phenotypic differences and identify pathological mechanisms of complex diseases by providing isogenic cellular material. However, very few data are available regarding precise gene correction in human iPS cells. Here, we describe an optimized stepwise protocol to deliver CRISPR/Cas9 plasmids in human iPS cells. We highlight technical issues especially those associated to human stem cell culture and to the correction of a point mutation to obtain isogenic iPS cell line, without inserting any resistance cassette. Based on a two-steps clonal isolation protocol (mechanical picking followed by enzymatic dissociation), we succeed to select and expand corrected human iPS cell line with a great efficiency (more than 2% of the sequenced colonies). This protocol can also be used to obtain knock-out cell line from healthy iPS cell line by the NHEJ pathway (with about 15% efficiency) and reproduce disease phenotype. In addition, we also provide protocols for functional validation tests after every critical step.

  1. Immortal, telomerase-negative cell lines derived from a Li-Fraumeni syndrome patient exhibit telomere length variability and chromosomal and minisatellite instabilities.

    PubMed

    Tsutsui, Takeki; Kumakura, Shin-Ichi; Tamura, Yukiko; Tsutsui, Takeo W; Sekiguchi, Mizuki; Higuchi, Tokihiro; Barrett, J Carl

    2003-05-01

    Five immortal cell lines derived from a Li-Fraumeni syndrome patient (MDAH 087) with a germline mutant p53 allele were characterized with respect to telomere length and genomic instability. The remaining wild-type p53 allele is lost in the cell lines. Telomerase activity was undetectable in all immortal cell lines. Five subclones of each cell line and five re-subclones of each of the subclones also showed undetectable telomerase activity. All five immortal cell lines exhibited variability in the mean length of terminal restriction fragments (TRFs). Subclones of each cell line, and re-subclones of the subclones also showed TRF variability, indicating that the variability is owing to clonal heterogeneity. Chromosome aberrations were observed at high frequencies in these cell lines including the subclones and re-subclones, and the principal types of aberrations were breaks, double minute chromosomes and dicentric chromosomes. In addition, minisatellite instability detected by DNA fingerprints was observed in the immortal cell lines. However, all of the cell lines were negative for microsatellite instability. As minisatellite sequences are considered recombinogenic in mammalian cells, these results suggest that recombination rates can be increased in these cell lines. Tumor-derived human cell lines, HT1080 cells and HeLa cells that also lack p53 function, exhibited little genomic instability involving chromosomal and minisatellite instabilities, indicating that chromosomal and minisatellite instabilities observed in the immortal cell lines lacking telomerase activity could not result from loss of p53 function.

  2. A TALEN genome editing system to generate human stem cell-based disease models

    PubMed Central

    Ding, Qiurong; Lee, Youn-Kyoung; Schaefer, Esperance A. K.; Peters, Derek T.; Veres, Adrian; Kim, Kevin; Kuperwasser, Nicolas; Motola, Daniel L.; Meissner, Torsten B.; Hendriks, William T.; Trevisan, Marta; Gupta, Rajat M.; Moisan, Annie; Banks, Eric; Friesen, Max; Schinzel, Robert T.; Xia, Fang; Tang, Alexander; Xia, Yulei; Figueroa, Emmanuel; Wann, Amy; Ahfeldt, Tim; Daheron, Laurence; Zhang, Feng; Rubin, Lee L.; Peng, Lee F.; Chung, Raymond T.; Musunuru, Kiran; Cowan, Chad A.

    2012-01-01

    SUMMARY Transcription activator-like effector nucleases (TALENs) are a new class of engineered nucleases that are easier to design to cleave at desired sites in a genome than previous types of nucleases. We report the use of TALENs to rapidly and efficiently generate mutant alleles of 15 genes in cultured somatic cells or human pluripotent stem cells, the latter of which we differentiated both the targeted lines and isogenic control lines into various metabolic cell types. We demonstrate cell-autonomous phenotypes directly linked to disease—dyslipidemia, insulin resistance, hypoglycemia, lipodystrophy, motor neuron death, and hepatitis C infection. We find little evidence of TALEN off-target effects, but each clonal line nevertheless harbors a significant number of unique mutations. Given the speed and ease with which we were able to derive and characterize these cell lines, we anticipate TALEN-mediated genome editing of human cells becoming a mainstay for the investigation of human biology and disease. PMID:23246482

  3. Diagnostic Utility of a Clonality Test for Lymphoproliferative Diseases in Koreans Using the BIOMED-2 PCR Assay

    PubMed Central

    Kim, Young; Choi, Yoo Duk; Choi, Chan

    2013-01-01

    Background A clonality test for immunoglobulin (IG) and T cell receptor (TCR) is a useful adjunctive method for the diagnosis of lymphoproliferative diseases (LPDs). Recently, the BIOMED-2 multiplex polymerase chain reaction (PCR) assay has been established as a standard method for assessing the clonality of LPDs. We tested clonality in LPDs in Koreans using the BIOMED-2 multiplex PCR and compared the results with those obtained in European, Taiwanese, and Thai participants. We also evaluated the usefulness of the test as an ancillary method for diagnosing LPDs. Methods Two hundred and nineteen specimens embedded in paraffin, including 78 B cell lymphomas, 80 T cell lymphomas and 61 cases of reactive lymphadenitis, were used for the clonality test. Results Mature B cell malignancies showed 95.7% clonality for IG, 2.9% co-existing clonality, and 4.3% polyclonality. Mature T cell malignancies exhibited 83.8% clonality for TCR, 8.1% co-existing clonality, and 16.2% polyclonality. Reactive lymphadenitis showed 93.4% polyclonality for IG and TCR. The majority of our results were similar to those obtained in Europeans. However, the clonality for IGK of B cell malignancies and TCRG of T cell malignancies was lower in Koreans than Europeans. Conclusions The BIOMED-2 multiplex PCR assay was a useful adjunctive method for diagnosing LPDs. PMID:24255634

  4. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq

    PubMed Central

    Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard

    2016-01-01

    Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here, we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and in vivo human CD8+ T-cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells’ transcriptomes, with levels dependent on the cells’ transcriptional activity. Importantly, clonal aRME was detected but was surprisingly scarce (<1% of genes) and affected mainly the most low-expressed genes. Consequently, the overwhelming portion of aRME occurs transiently within individual cells and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells. PMID:27668657

  5. A strategy to accelerate protein production from a pool of clones in Chinese hamster ovary cells for toxicology studies.

    PubMed

    Hu, Zhilan; Hsu, Wendy; Pynn, Abby; Ng, Domingos; Quicho, Donna; Adem, Yilma; Kwong, Zephie; Mauger, Brad; Joly, John; Snedecor, Bradley; Laird, Michael W; Andersen, Dana C; Shen, Amy

    2017-11-01

    In the biopharmaceutical industry, a clonally derived cell line is typically used to generate material for investigational new drug (IND)-enabling toxicology studies. The same cell line is then used to generate material for clinical studies. If a pool of clones can be used to produce material for IND-enabling toxicology studies (Pool for Tox (PFT) strategy) during the time a lead clone is being selected for clinical material production, the toxicology studies can be accelerated significantly (approximately 4 months at Genentech), leading to a potential acceleration of 4 months for the IND submission. We explored the feasibility of the PFT strategy with three antibodies-mAb1, mAb2, and mAb3-at the 2 L scale. For each antibody, two lead cell lines were identified that generated material with similar product quality to the material generated from the associated pool. For two antibody molecules, mAb1 and mAb2, the material generated by the lead cell lines from 2 L bioreactors was tested in an accelerated stability study and was shown to have stability comparable to the material generated by the associated pool. Additionally, we used this approach for two antibody molecules, mAb4 and mAb5, at Tox and GMP production. The materials from the Tox batch at 400 L scale and three GMP batches at 2000 L scale have comparable product quality attributes for both molecules. Our results demonstrate the feasibility of using a pool of clonally derived cell lines to generate material of similar product quality and stability for use in IND-enabling toxicology studies as was derived from the final production clone, which enabled significant acceleration of timelines into clinical development. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1449-1455, 2017. © 2017 American Institute of Chemical Engineers.

  6. Chemical-Induced Erythrocytosis in Wistar Rats: Assessment as a Model for Human Polycythemia.

    DTIC Science & Technology

    1985-05-01

    polycythemic condition are unusual features that are more typically found in polycythemia vera, an autonomous myeloproliferative disorder in man that results...polycythemia vera, an autonomous myeloproliferative disorder in man that results from clonal neoplasia of bone marrow stem cells. However, the data described...5 and stroma cell lines [55]. These diseases are commonly termed ’ myeloproliferative disorders’, or better, ’myelodysplastic disease’ which emphasizes

  7. Comparison of stem morphology and anatomy of two alfalfa clonal lines exhibiting divergent cell wall composition.

    PubMed

    Gronwald, John W; Bucciarelli, Bruna

    2013-08-30

    In previous research, two alfalfa clonal lines (252 and 1283) were identified that exhibited environmentally stable differences in stem cell walls. Compared with stems of 1283, stems of 252 have a higher cell wall concentration and greater amounts of lignin and cellulose but reduced levels of pectic sugar residues. These results suggest greater deposition of secondary xylem and a reduction in pith in stems of 252 compared with 1283. The stem morphology and anatomy of first-cut and second-cut harvests of field-grown 1283 and 252 were examined. For both harvests, stems of 1283 were thicker and had a higher leaf/stem ratio compared with stems of 252. Stem cross-sections of both genotypes were stained for lignin, and the proportions of stem area that were pith and secondary xylem were measured using ImageJ. Stems of 252 exhibited greater deposition of secondary xylem and a reduction in pith proportion compared with stems of 1283 for the first-cut harvest, but this difference was not statistically significant for the second-cut harvest. The results indicate that the proportions of secondary xylem and pith are not environmentally stable in these two genotypes and hence cannot be the sole basis for the differences in cell wall concentration/composition. © 2012 Society of Chemical Industry.

  8. Adipose cell differentiation: evidence for a two-step process in the polyamine-dependent Ob1754 clonal line.

    PubMed Central

    Amri, E Z; Dani, C; Doglio, A; Etienne, J; Grimaldi, P; Ailhaud, G

    1986-01-01

    A subclone of preadipocyte Ob17 cells has been isolated (Ob1754 clonal line). Confluent Ob1754 cells treated with an inhibitor of spermidine and spermine synthesis, methylglyoxal bis(guanylhydrazone), were totally dependent upon putrescine addition for the expression of glycerol-3-phosphate dehydrogenase which behaved as a late marker of adipose conversion. Under these conditions, the early expression of lipoprotein lipase during growth arrest remained unchanged. Studies at the mRNA level showed that the expression of unidentified pOb24 and pGH3 mRNAs, which was parallel to that of lipoprotein lipase, is independent of polyamine addition whereas the late emergence of glycerol-3-phosphate dehydrogenase mRNA was putrescine-dependent and co-ordinated with the expression of pAL422 mRNA encoding for a myelin-P2 homologue [Bernlohr, Angus, Lane, Bolanowski & Kelly (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5468-5472]. The appearance of lipoprotein lipase preceded DNA synthesis and post-confluent mitoses which were both putrescine-dependent and which took place before the appearance of glycerol-3-phosphate dehydrogenase. Thus the adipose conversion of Ob1754 cells involves the expression of at least two separate sets of markers which are differently regulated. Images Fig. 3. Fig. 6. PMID:3800927

  9. Integrative genomic and functional analysis of human oral squamous cell carcinoma cell lines reveals synergistic effects of FAT1 and CASP8 inactivation.

    PubMed

    Hayes, Tyler F; Benaich, Nathan; Goldie, Stephen J; Sipilä, Kalle; Ames-Draycott, Ashley; Cai, Wenjun; Yin, Guangliang; Watt, Fiona M

    2016-12-01

    Oral squamous cell carcinoma (OSCC) is genetically highly heterogeneous, which contributes to the challenges of treatment. To create an in vitro model that accurately reflects this heterogeneity, we generated a panel of HPV-negative OSCC cell lines. By whole exome sequencing of the lines and matched patient blood samples, we demonstrate that the mutational spectrum of the lines is representative of primary OSCC in The Cancer Genome Atlas. We show that loss of function mutations in FAT1 (an atypical cadherin) and CASP8 (Caspase 8) frequently occur in the same tumour. OSCC cells with inactivating FAT1 mutations exhibited reduced intercellular adhesion. Knockdown of FAT1 and CASP8 individually or in combination in OSCC cells led to increased cell migration and clonal growth, resistance to Staurosporine-induced apoptosis and, in some cases, increased terminal differentiation. The OSCC lines thus represent a valuable resource for elucidating the impact of different mutations on tumour behaviour. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. [B lymphocyte clonal evolution of human reactive lymph nodes revealed by lineage tree analysis].

    PubMed

    Tabibian-Keissar, Hilla; Schiby, Ginette; Azogui-Rosenthal, Noemie; Hazanov, Helena; Rakovsky, Aviya Shapira; Michaeli, Miri; Rosenblatt, Kinneret; Mehr, Ramit; Barshack, Iris

    2013-06-01

    Hypermutation and selection processes, characterizing T-dependent B cell responses taking place in germinal centers of lymph nodes, lead to B cell receptor affinity maturation. Those immune responses lead to the development of memory B cells and plasma cells that secrete high amounts of antibody molecules. The dynamics of B cell clonal evolution during affinity maturation has significant importance in infectious and autoimmune diseases, malignancies and aging. Immunoglobulin (Ig) gene mutational Lineage tree construction by comparing variable regions of Ig-gene sequences to the Ig germline gene is an interesting approach for studying B cell cLonal evolution. Lineage tree shapes and Ig gene mutations can be evaluated not only qualitatively and intuitively, but also quantitatively, and thus reveal important information related to hypermutation and selection. In this paper we describe the experimental protocols that we used for PCR amplification of Igvariable region genes from human formalin fixed paraffin embedded reactive lymph node tissues and the subsequent bioinformatical analyses of sequencing data using Ig mutational lineage trees. B cell populations of three out of four reactive Lymph node tissues were composed of several clones. Most of the Ig gene mutational lineage trees were small and narrow. Significant differences were not detected by quantification of Lineage trees. B lymphocyte clones that were detected in human reactive lymph node tissues represent major responding clones in normal polyclonal immune response. This result is in line with the polyclonal profile of B Lymphocyte populations that reside in reactive lymph node tissues.

  11. Subclones in B-lymphoma cell lines: isogenic models for the study of gene regulation

    PubMed Central

    Quentmeier, Hilmar; Pommerenke, Claudia; Ammerpohl, Ole; Geffers, Robert; Hauer, Vivien; MacLeod, Roderick AF; Nagel, Stefan; Romani, Julia; Rosati, Emanuela; Rosén, Anders; Uphoff, Cord C; Zaborski, Margarete; Drexler, Hans G

    2016-01-01

    Genetic heterogeneity though common in tumors has been rarely documented in cell lines. To examine how often B-lymphoma cell lines are comprised of subclones, we performed immunoglobulin (IG) heavy chain hypermutation analysis. Revealing that subclones are not rare in B-cell lymphoma cell lines, 6/49 IG hypermutated cell lines (12%) consisted of subclones with individual IG mutations. Subclones were also identified in 2/284 leukemia/lymphoma cell lines exhibiting bimodal CD marker expression. We successfully isolated 10 subclones from four cell lines (HG3, SU-DHL-5, TMD-8, U-2932). Whole exome sequencing was performed to molecularly characterize these subclones. We describe in detail the clonal structure of cell line HG3, derived from chronic lymphocytic leukemia. HG3 consists of three subclones each bearing clone-specific aberrations, gene expression and DNA methylation patterns. While donor patient leukemic cells were CD5+, two of three HG3 subclones had independently lost this marker. CD5 on HG3 cells was regulated by epigenetic/transcriptional mechanisms rather than by alternative splicing as reported hitherto. In conclusion, we show that the presence of subclones in cell lines carrying individual mutations and characterized by sets of differentially expressed genes is not uncommon. We show also that these subclones can be useful isogenic models for regulatory and functional studies. PMID:27566572

  12. Development and characterization of a novel human Waldenström Macroglobulinemia cell line (RPCI-WM1; Roswell Park Cancer Institute-Waldenström Macroglobulinemia 1)

    PubMed Central

    Chitta, Kasyapa S.; Paulus, Aneel; Ailawadhi, Sikander; Foster, Barbara A.; Moser, Michael T.; Starostik, Petr; Masood, Aisha; Sher, Taimur; Miller, Kena C.; Iancu, Dan M.; Conroy, Jeffrey; Nowak, Norma J.; Sait, Sheila N.; Personett, David A.; Coleman, Morton; Furman, Richard R.; Martin, Peter; Ansell, Stephen M.; Lee, Kelvin; Chanan-Khan, Asher A.

    2015-01-01

    Understanding the biology of Waldenström Macroglobulinemia is hindered by a lack of preclinical models. We report a novel cell line, RPCI-WM1, from a patient treated for WM. The cell line secreted human IgM (hIgM) with k-light chain restriction identical to the primary tumor. The cell line has a modal chromosomal number of 46 and harbors chromosomal changes such as deletion of 6q21, monoallelic deletion of 9p21 (CDKN2A), 13q14 (RB1) and 18q21 (BCL-2) with a consistent amplification of 14q32 (IgH) identical to its founding tumor sample. Clonal relationship was confirmed by identical CDR3 length and single nucleotide polymorphisms as well as a matching IgH sequence of the cell line and founding tumor. Both also harbor a heterozygous, non-synonymous mutation at amino acid 265 in MYD88 gene (L265P). The cell line expresses most of the cell surface markers present on the parent cells. Over all, RPCI-WM1 represents a valuable model to study WM. PMID:22812491

  13. Development and characterization of a novel human Waldenström macroglobulinemia cell line: RPCI-WM1, Roswell Park Cancer Institute - Waldenström Macroglobulinemia 1.

    PubMed

    Chitta, Kasyapa S; Paulus, Aneel; Ailawadhi, Sikander; Foster, Barbara A; Moser, Michael T; Starostik, Petr; Masood, Aisha; Sher, Taimur; Miller, Kena C; Iancu, Dan M; Conroy, Jeffrey; Nowak, Norma J; Sait, Sheila N; Personett, David A; Coleman, Morton; Furman, Richard R; Martin, Peter; Ansell, Stephen M; Lee, Kelvin; Chanan-Khan, Asher A

    2013-02-01

    Understanding the biology of Waldenström macroglobulinemia is hindered by a lack of preclinical models. We report a novel cell line, RPCI-WM1, from a patient treated for WM. The cell line secretes human immunoglobulin M (h-IgM) with κ-light chain restriction identical to the primary tumor. The cell line has a modal chromosomal number of 46 and harbors chromosomal changes such as deletion of 6q21, monoallelic deletion of 9p21 (CDKN2A), 13q14 (RB1) and 18q21 (BCL-2), with a consistent amplification of 14q32 (immunoglobulin heavy chain; IgH) identical to its founding tumor sample. The clonal relationship is confirmed by identical CDR3 length and single nucleotide polymorphisms as well as a matching IgH sequence of the cell line and founding tumor. Both also harbor a heterozygous, non-synonymous mutation at amino acid 265 in the MYD88 gene (L265P). The cell line expresses most of the cell surface markers present on the parent cells. Overall, RPCI-WM1 represents a valuable model to study Waldenström macroglobulinemia.

  14. Biochemical and pharmacological characterization of the thyrotropin releasing hormone (TRH) receptor from clonal GH sub 4 C sub 1 pituitary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, W.J.

    1987-01-01

    The effect of drugs with anesthetic properties on the activity of the pituitary thyrotropin-releasing hormone (TRH) receptor was determined in the clonal GH{sub 4}C{sub 1} somatomammotropic cell line. Classic local anesthetics and other drugs with anesthetic activity inhibited binding of ({sup 3}H)methyl-TRH to cell receptors at concentrations known to produce anesthetic effects on the membrane. The inhibition of TRH receptor binding by tetracaine was competitive and temperature and pH dependent. Verapamil and tetracaine inhibited TRH-stimulated prolactin secretion at concentrations that inhibited peptide binding. TRH-stimulated prolactin secretion was equivalent with or without Ca{sup 2+} channel activity. Verapamil and tetracaine also inhibitedmore » basal prolactin and secretion stimulated by drugs that bypass membrane receptors, db-cAMP and TPA. These results indicate that inhibition of TRH binding and responses by diverse drugs results from an anesthetic effect on the cell membrane.« less

  15. Neural Stem Cells Injected into the Sound-Damaged Cochlea Migrate Throughout the Cochlea and Express Markers of Hair Cells, Supporting Cells, and Spiral Ganglion Cells

    PubMed Central

    Corliss, Deborah A.; Gray, Brianna; Anderson, Julia K.; Bobbin, Richard P.; Snyder, Evan Y.; Cotanche, Douglas A.

    2007-01-01

    Most cases of hearing loss are caused by the death or dysfunction of one of the many cochlear cell types. We examined whether cells from a neural stem cell line could replace cochlear cell types lost after exposure to intense noise. For this purpose, we transplanted a clonal stem cell line into the scala tympani of sound damaged mice and guinea pigs. Utilizing morphological, protein expression and genetic criteria, stem cells were found with characteristics of both neural tissues (satellite, spiral ganglion and Schwann cells) and cells of the organ of Corti (hair cells, supporting cells). Additionally, noise-exposed, stem cell-injected animals exhibited a small but significant increase in the number of satellite cells and Type I spiral ganglion neurons compared to non-injected noise-exposed animals. These results indicate that cells of this neural stem cell line migrate from the scala tympani to Rosenthal's canal and the organ of Corti. Moreover, it suggests that cells of this neural stem cell line may derive some information needed from the microenvironment of the cochlea to differentiate into replacement cells in the cochlea. PMID:17659854

  16. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity.

    PubMed

    Marusyk, Andriy; Tabassum, Doris P; Altrock, Philipp M; Almendro, Vanessa; Michor, Franziska; Polyak, Kornelia

    2014-10-02

    Cancers arise through a process of somatic evolution that can result in substantial sub-clonal heterogeneity within tumours. The mechanisms responsible for the coexistence of distinct sub-clones and the biological consequences of this coexistence remain poorly understood. Here we used a mouse xenograft model to investigate the impact of sub-clonal heterogeneity on tumour phenotypes and the competitive expansion of individual clones. We found that tumour growth can be driven by a minor cell subpopulation, which enhances the proliferation of all cells within a tumour by overcoming environmental constraints and yet can be outcompeted by faster proliferating competitors, resulting in tumour collapse. We developed a mathematical modelling framework to identify the rules underlying the generation of intra-tumour clonal heterogeneity. We found that non-cell-autonomous driving of tumour growth, together with clonal interference, stabilizes sub-clonal heterogeneity, thereby enabling inter-clonal interactions that can lead to new phenotypic traits.

  17. Generation and characterization of rat liver stem cell lines and their engraftment in a rat model of liver failure

    PubMed Central

    Kuijk, Ewart W.; Rasmussen, Shauna; Blokzijl, Francis; Huch, Meritxell; Gehart, Helmuth; Toonen, Pim; Begthel, Harry; Clevers, Hans; Geurts, Aron M.; Cuppen, Edwin

    2016-01-01

    The rat is an important model for liver regeneration. However, there is no in vitro culture system that can capture the massive proliferation that can be observed after partial hepatectomy in rats. We here describe the generation of rat liver stem cell lines. Rat liver stem cells, which grow as cystic organoids, were characterized by high expression of the stem cell marker Lgr5, by the expression of liver progenitor and duct markers, and by low expression of hepatocyte markers, oval cell markers, and stellate cell markers. Prolonged cultures of rat liver organoids depended on high levels of WNT-signalling and the inhibition of BMP-signaling. Upon transplantation of clonal lines to a Fah−/− Il2rg−/− rat model of liver failure, the rat liver stem cells engrafted into the host liver where they differentiated into areas with FAH and Albumin positive hepatocytes. Rat liver stem cell lines hold potential as consistent reliable cell sources for pharmacological, toxicological or metabolic studies. In addition, rat liver stem cell lines may contribute to the development of regenerative medicine in liver disease. To our knowledge, the here described liver stem cell lines represent the first organoid culture system in the rat. PMID:26915950

  18. Multidisciplinary insight into clonal expansion of HTLV-1-infected cells in adult T-cell leukemia via modeling by deterministic finite automata coupled with high-throughput sequencing.

    PubMed

    Farmanbar, Amir; Firouzi, Sanaz; Park, Sung-Joon; Nakai, Kenta; Uchimaru, Kaoru; Watanabe, Toshiki

    2017-01-31

    Clonal expansion of leukemic cells leads to onset of adult T-cell leukemia (ATL), an aggressive lymphoid malignancy with a very poor prognosis. Infection with human T-cell leukemia virus type-1 (HTLV-1) is the direct cause of ATL onset, and integration of HTLV-1 into the human genome is essential for clonal expansion of leukemic cells. Therefore, monitoring clonal expansion of HTLV-1-infected cells via isolation of integration sites assists in analyzing infected individuals from early infection to the final stage of ATL development. However, because of the complex nature of clonal expansion, the underlying mechanisms have yet to be clarified. Combining computational/mathematical modeling with experimental and clinical data of integration site-based clonality analysis derived from next generation sequencing technologies provides an appropriate strategy to achieve a better understanding of ATL development. As a comprehensively interdisciplinary project, this study combined three main aspects: wet laboratory experiments, in silico analysis and empirical modeling. We analyzed clinical samples from HTLV-1-infected individuals with a broad range of proviral loads using a high-throughput methodology that enables isolation of HTLV-1 integration sites and accurate measurement of the size of infected clones. We categorized clones into four size groups, "very small", "small", "big", and "very big", based on the patterns of clonal growth and observed clone sizes. We propose an empirical formal model based on deterministic finite state automata (DFA) analysis of real clinical samples to illustrate patterns of clonal expansion. Through the developed model, we have translated biological data of clonal expansion into the formal language of mathematics and represented the observed clonality data with DFA. Our data suggest that combining experimental data (absolute size of clones) with DFA can describe the clonality status of patients. This kind of modeling provides a basic understanding as well as a unique perspective for clarifying the mechanisms of clonal expansion in ATL.

  19. Characterization of a cultured human T-cell line with genetically altered ribonucleotide reductase activity. Model for immunodeficiency.

    PubMed

    Waddell, D; Ullman, B

    1983-04-10

    From human CCRF-CEM T-cells growing in continuous culture, we have selected, isolated, and characterized a clonal cell line, APHID-D2, with altered ribonucleotide reductase activity. In comparative growth rate experiments, the APHID-D2 cell line is less sensitive than the parental cell line to growth inhibition by deoxyadenosine in the presence of 10 microM erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase. The APHID-D2 cell line has elevated levels of all four dNTPs. The resistance of the APHID-D2 cell line to growth inhibition by deoxyadenosine and the abnormal dNTP levels can be explained by the fact that the APHID-D2 ribonucleotide reductase, unlike the parental ribonucleotide reductase, is not normally sensitive to inhibition by dATP. These results suggest that the allosteric site of ribonucleotide reductase which binds both dATP and ATP is altered in the APHID-D2 line. The isolation of a mutant clone of human T-cells which contains a ribonucleotide reductase that has lost its normal sensitivity to dATP and which is resistant to deoxyadenosine-mediated growth inhibition suggests that a primary pathogenic target of accumulated dATP in lymphocytes from patients with adenosine deaminase deficiency may be the cellular ribonucleotide reductase.

  20. Quantitative stability of hematopoietic stem and progenitor cell clonal output in rhesus macaques receiving transplants

    PubMed Central

    Koelle, Samson J.

    2017-01-01

    Autologous transplantation of hematopoietic stem and progenitor cells lentivirally labeled with unique oligonucleotide barcodes flanked by sequencing primer targets enables quantitative assessment of the self-renewal and differentiation patterns of these cells in a myeloablative rhesus macaque model. Compared with other approaches to clonal tracking, this approach is highly quantitative and reproducible. We documented stable multipotent long-term hematopoietic clonal output of monocytes, granulocytes, B cells, and T cells from a polyclonal pool of hematopoietic stem and progenitor cells in 4 macaques observed for up to 49 months posttransplantation. A broad range of clonal behaviors characterized by contribution level and biases toward certain cell types were extremely stable over time. Correlations between granulocyte and monocyte clonalities were greatest, followed by correlations between these cell types and B cells. We also detected quantitative expansion of T cell–biased clones consistent with an adaptive immune response. In contrast to recent data from a nonquantitative murine model, there was little evidence for clonal succession after initial hematopoietic reconstitution. These findings have important implications for human hematopoiesis, given the similarities between macaque and human physiologies. PMID:28087539

  1. Expression and regulation of glycoprotein C gene of herpes simplex virus 1 resident in a clonal L-cell line.

    PubMed Central

    Arsenakis, M; Tomasi, L F; Speziali, V; Roizman, B; Campadelli-Fiume, G

    1986-01-01

    Ltk- cells were transfected with a plasmid containing the entire domain of glycoprotein C (gC), a true gamma or gamma 2 gene of herpes simplex virus 1 (HSV-1) and the methotrexate-resistant mouse dihydrofolate reductase mutant gene. The resulting methotrexate-resistant cell line was cloned; of the 39 clonal lines tested only 1, L3153(28), expressed gC after infection with HSV-1(MP), a gC- mutant, and none expressed gC constitutively. The induction of gC was optimal at multiplicities ranging between 0.5 and 2 PFU per cell, and the quantities produced were equivalent to or higher than those made by methotrexate-resistant gC- L cells infected with wild-type (gC+) virus. The gC gene resident in the L3153(28) cells was regulated as a beta gene inasmuch as the amounts of gC made in infected L3153(28) cells exposed to concentrations of phosphonoacetate that inhibited viral DNA synthesis were higher than those made in the absence of the drug, gC was induced at both permissive and nonpermissive temperatures by the DNA- mutant tsHA1 carrying a lesion in the gene specifying the major DNA-binding protein and which does not express gamma 2 genes at the nonpermissive temperature, and gC was induced only at the permissive temperature in cells infected with ts502 containing a mutation in the alpha 4 gene. The gC induced in L3153(28) cells was made earlier and processed faster to the mature form than that induced in a gC- clone of methotrexate-resistant cells infected with wild-type virus. Unlike virus stocks made in gC- cells, HSV-1(MP) made in L3153(28) cells was susceptible to neutralization by anti-gC monoclonal antibody. Images PMID:3009854

  2. Re-analysis of the cell line NALM-1 karyotype by GTG-banding, spectral karyotyping, and whole chromosome painting.

    PubMed

    Pelz, Antje-Friederike; Weilepp, Gisela; Wieacker, Peter F

    2005-01-01

    Chronic myelogenous leukemia (CML) is a clonal bone marrow disease with progression from a chronic phase to an aggressive blast crisis. The cell line NALM-1 was originally established by Minowada and coworkers from the peripheral blood of a patient in CML blastic crisis. A karyotype analysis of the NALM-1 cell line was performed in the 1970s. To the best of our knowledge, this karyotype was not re-analyzed by molecular cytogenetic techniques, although this cell line is the source of many molecular investigations including expression studies. To establish this cell line as a CML control in our own laboratory, NALM-1 was analyzed by GTG banding, fluorescence in situ hybridization, and spectral karyotyping. Our results differ from the original publication of Sonta and coworkers. We describe for the first time the karyotype of the NALM-1 cell line: 44,X,-X,der(7)t(7;9;15)(q10;?;q15),der(9)t(9;9)(p24;q33 approximately q34)t(9;22)(q34;q11),der(15)t(7;9;15) (?;?;q15),der(22)t(9;22)(q34;q11).

  3. Diagnostic value of immunoglobulin κ light chain gene rearrangement analysis in B-cell lymphomas.

    PubMed

    Kokovic, Ira; Jezersek Novakovic, Barbara; Novakovic, Srdjan

    2015-03-01

    Analysis of the immunoglobulin κ light chain (IGK) gene is an alternative method for B-cell clonality assessment in the diagnosis of mature B-cell proliferations in which the detection of clonal immunoglobulin heavy chain (IGH) gene rearrangements fails. The aim of the present study was to evaluate the added value of standardized BIOMED-2 assay for the detection of clonal IGK gene rearrangements in the diagnostic setting of suspected B-cell lymphomas. With this purpose, 92 specimens from 80 patients with the final diagnosis of mature B-cell lymphoma (37 specimens), mature T-cell lymphoma (26 specimens) and reactive lymphoid proliferation (29 specimens) were analyzed for B-cell clonality. B-cell clonality analysis was performed using the BIOMED-2 IGH and IGK gene clonality assays. The determined sensitivity of the IGK assay was 67.6%, while the determined sensitivity of the IGH assay was 75.7%. The sensitivity of combined IGH+IGK assay was 81.1%. The determined specificity of the IGK assay was 96.2% in the group of T-cell lymphomas and 96.6% in the group of reactive lesions. The determined specificity of the IGH assay was 84.6% in the group of lymphomas and 86.2% in the group of reactive lesions. The comparison of GeneScan (GS) and heteroduplex pretreatment-polyacrylamide gel electrophoresis (HD-PAGE) methods for the analysis of IGK gene rearrangements showed a higher efficacy of GS analysis in a series of 27 B-cell lymphomas analyzed by both methods. In the present study, we demonstrated that by applying the combined IGH+IGK clonality assay the overall detection rate of B-cell clonality was increased by 5.4%. Thus, we confirmed the added value of the standardized BIOMED-2 IGK assay for assessment of B-cell clonality in suspected B-cell lymphomas with inconclusive clinical and cyto/histological diagnosis.

  4. Selection of early-occurring mutations dictates hormone-independent progression in mouse mammary tumor lines.

    PubMed

    Gattelli, Albana; Zimberlin, María N; Meiss, Roberto P; Castilla, Lucio H; Kordon, Edith C

    2006-11-01

    Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions.

  5. TALEN mediated targeted editing of GM2/GD2-synthase gene modulates anchorage independent growth by reducing anoikis resistance in mouse tumor cells

    PubMed Central

    Mahata, Barun; Banerjee, Avisek; Kundu, Manjari; Bandyopadhyay, Uday; Biswas, Kaushik

    2015-01-01

    Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics. PMID:25762467

  6. TALEN mediated targeted editing of GM2/GD2-synthase gene modulates anchorage independent growth by reducing anoikis resistance in mouse tumor cells.

    PubMed

    Mahata, Barun; Banerjee, Avisek; Kundu, Manjari; Bandyopadhyay, Uday; Biswas, Kaushik

    2015-03-12

    Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics.

  7. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Yuka; Hagiwara, Natsumi; Radisky, Derek C.

    2014-09-10

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells.more » Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination.« less

  8. The relationship of aplastic anemia and PNH.

    PubMed

    Young, Neal S; Maciejewski, Jaroslaw P; Sloand, Elaine; Chen, Guiben; Zeng, Weihua; Risitano, Antonio; Miyazato, Akira

    2002-08-01

    Bone marrow failure has been regarded as one of the triad of clinical manifestations of paroxysmal noctumal hemoglobinuria (PNH), and PNH in turn has been described as a late clonal disease evolving in patients recovering from aplastic anemia. Better understanding of the pathophysiology of both diseases and improved tests for cell surface glycosylphosphatidylinositol (GPI)-linked proteins has radically altered this view. Flow cytometry of granulocytes shows evidence of an expanded PNH clone in a large proportion of marrow failure patients at the time of presentation: in our large NIH series, about 1/3 of over 200 aplastic anemia cases and almost 20% of more than 100 myelodysplasia cases. Clonal PNH expansion (rather than bone marrow failure) is strongly linked to the histocompatability antigen HLA.-DR2 in all clinical varieties of the disease, suggesting an immune component to its pathophysiology. An extrinsic mechanism of clonal expansion is also more consistent with knock-out mouse models and culture experiments with primary cells and cell lines, which have failed to demonstrate an intrinsic proliferative advantage for PNH cells. DNA chip analysis of multiple paired normal and PIG-A mutant cell lines and lymphoblastoid cells do not show any consistent differences in levels of gene expression. In aplastic anemia/PNH there is surprisingly limited utilization of the V-beta chain of the T cell receptor, and patients' dominant T cell clones, which are functionally inhibitory of autologous hematopoiesis, use identical CDR3 regions for antigen binding. Phenotypically normal cells from PNH patients proliferate more poorly in culture than do the same patient's PNH cells, and the normal cells are damaged as a result of apoptosis and overexpress Fas. Differences in protein degradation might play a dual role in pathophysiology, as GPI-linked proteins lacking an anchor would be predicted to be processed by the proteasome machinery and displayed in a class I H.A. context, in contrast to the normal pathway of cell surface membrane recycling, lysosomal degradation, and presentation by class II HLA. The strong relationship between a chronic, organ-specific immune destructive process and the expansion of a single mutant stem cell clone remains frustratingly enigmatic but likely to be the result of interesting biologic processes, with mechanisms that potentially can be extended to the role of inflammation in producing premalignant syndromes.

  9. Purification of Bone Marrow Clonal Cells from Patients with Myelodysplastic Syndrome via IGF-IR

    PubMed Central

    He, Qi; Chang, Chun-Kang; Xu, Feng; Zhang, Qing-Xia; Shi, Wen-Hui; Li, Xiao

    2015-01-01

    Malignant clonal cells purification can greatly benefit basic and clinical studies in myelodysplastic syndrome (MDS). In this study, we investigated the potential of using type 1 insulin-like growth factor receptor (IGF-IR) as a marker for purification of malignant bone marrow clonal cells from patients with MDS. The average percentage of IGF-IR expression in CD34+ bone marrow cells among 15 normal controls was 4.5%, 70% of which also express the erythroid lineage marker CD235a. This indicates that IGF-IR mainly express in erythropoiesis. The expression of IGF-IR in CD34+ cells of 55 MDS patients was significantly higher than that of cells from the normal controls (54.0 vs. 4.5%). Based on the pattern of IGF-IR expression in MDS patients and normal controls, sorting of IGF-IR-positive and removal of CD235a-positive erythroid lineage cells with combination of FISH detection were performed on MDS samples with chromosomal abnormalities. The percentage of malignant clonal cells significantly increased after sorting. The enrichment effect was more significant in clonal cells with a previous percentage lower than 50%. This enrichment effect was present in samples from patients with +8, 5q-/-5, 20q-/-20 or 7q-/-7 chromosomal abnormalities. These data suggest that IGF-IR can be used as a marker for MDS bone marrow clonal cells and using flow cytometry for positive IGF-IR sorting may effectively purify MDS clonal cells. PMID:26469401

  10. CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oue, Erika; Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; Global Center of Excellence

    Highlights: Black-Right-Pointing-Pointer Oral cancer cells synthesize CXCL2. Black-Right-Pointing-Pointer CXCL2 synthesized by oral cancer is involved in osteoclastogenesis. Black-Right-Pointing-Pointer CXCL2-neutralizing antibody inhibited osteoclastogenesis induced by oral cancer cells. Black-Right-Pointing-Pointer We first report the role of CXCL2 in cancer-associated bone destruction. -- Abstract: To explore the mechanism of bone destruction associated with oral cancer, we identified factors that stimulate osteoclastic bone resorption in oral squamous cell carcinoma. Two clonal cell lines, HSC3-C13 and HSC3-C17, were isolated from the maternal oral cancer cell line, HSC3. The conditioned medium from HSC3-C13 cells showed the highest induction of Rankl expression in the mouse stromal cellmore » lines ST2 and UAMS-32 as compared to that in maternal HSC3 cells and HSC3-C17 cells, which showed similar activity. The conditioned medium from HSC3-C13 cells significantly increased the number of osteoclasts in a co-culture with mouse bone marrow cells and UAMS-32 cells. Xenograft tumors generated from these clonal cell lines into the periosteal region of the parietal bone in athymic mice showed that HSC3-C13 cells caused extensive bone destruction and a significant increase in osteoclast numbers as compared to HSC3-C17 cells. Gene expression was compared between HSC3-C13 and HSC3-C17 cells by using microarray analysis, which showed that CXCL2 gene was highly expressed in HSC3-C13 cells as compared to HSC3-C17 cells. Immunohistochemical staining revealed the localization of CXCL2 in human oral squamous cell carcinomas. The increase in osteoclast numbers induced by the HSC3-C13-conditioned medium was dose-dependently inhibited by addition of anti-human CXCL2-neutralizing antibody in a co-culture system. Recombinant CXCL2 increased the expression of Rankl in UAMS-32 cells. These results indicate that CXCL2 is involved in bone destruction induced by oral cancer. This is the first report showing the role of CXCL2 in cancer-associated bone destruction.« less

  11. Establishment and Characterization of a Highly Tumourigenic and Cancer Stem Cell Enriched Pancreatic Cancer Cell Line as a Well Defined Model System

    PubMed Central

    Fredebohm, Johannes; Boettcher, Michael; Eisen, Christian; Gaida, Matthias M.; Heller, Anette; Keleg, Shereen; Tost, Jörg; Greulich-Bode, Karin M.; Hotz-Wagenblatt, Agnes; Lathrop, Mark; Giese, Nathalia A.; Hoheisel, Jörg D.

    2012-01-01

    Standard cancer cell lines do not model the intratumoural heterogeneity situation sufficiently. Clonal selection leads to a homogeneous population of cells by genetic drift. Heterogeneity of tumour cells, however, is particularly critical for therapeutically relevant studies, since it is a prerequisite for acquiring drug resistance and reoccurrence of tumours. Here, we report the isolation of a highly tumourigenic primary pancreatic cancer cell line, called JoPaca-1 and its detailed characterization at multiple levels. Implantation of as few as 100 JoPaca-1 cells into immunodeficient mice gave rise to tumours that were histologically very similar to the primary tumour. The high heterogeneity of JoPaca-1 was reflected by diverse cell morphology and a substantial number of chromosomal aberrations. Comparative whole-genome sequencing of JoPaca-1 and BxPC-3 revealed mutations in genes frequently altered in pancreatic cancer. Exceptionally high expression of cancer stem cell markers and a high clonogenic potential in vitro and in vivo was observed. All of these attributes make this cell line an extremely valuable model to study the biology of and pharmaceutical effects on pancreatic cancer. PMID:23152778

  12. Establishment and characterization of fetal fibroblast cell lines for generating human lysozyme transgenic goats by somatic cell nuclear transfer.

    PubMed

    Liu, Jun; Luo, Yan; Zheng, Liming; Liu, Qingqing; Yang, Zhongcai; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Zhang, Yong

    2013-10-01

    This study was performed to qualify goat fetal fibroblast (GFF) cell lines for genetic modification and somatic cell nuclear transfer (SCNT) to produce human lysozyme (hLYZ) transgenic goats. Nine GFF cell lines were established from different fetuses, and the proliferative lifespan and chromosomal stability were analyzed. The results suggested that cell lines with a longer lifespan had stable chromosomes compared with those of cells lines with a shorter lifespan. According to the proliferative lifespan, we divided GFF cell lines into two groups: cell lines with a long lifespan (GFF1/2/7/8/9; group L) and cell lines with a short lifespan (GFF3/4/5/6; group S). Next, a hLYZ expression vector was introduced into these cell lines by electroporation. The efficiencies of colony formation, expansion in culture, and the quality of transgenic clonal cell lines were significant higher in group L than those in group S. The mean fusion rate and blastocyst rate in group L were higher than those in group S (80.3 ± 1.7 vs. 65.1 ± 4.2 % and 19.5 ± 0.6 vs. 15.1 ± 1.1 %, respectively, P < 0.05). After transferring cloned embryos into the oviducts of recipient goats, three live kids were born. PCR and Southern blot analyses confirmed integration of the transgene in cloned goats. In conclusion, the lifespan of GFF cell lines has a major effect on the efficiency to produce transgenic cloned goats. Therefore, the proliferative lifespan of primary cells may be used as a criterion to characterize the quality of cell lines for genetic modification and SCNT.

  13. Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing.

    PubMed

    Hughes, Andrew E O; Magrini, Vincent; Demeter, Ryan; Miller, Christopher A; Fulton, Robert; Fulton, Lucinda L; Eades, William C; Elliott, Kevin; Heath, Sharon; Westervelt, Peter; Ding, Li; Conrad, Donald F; White, Brian S; Shao, Jin; Link, Daniel C; DiPersio, John F; Mardis, Elaine R; Wilson, Richard K; Ley, Timothy J; Walter, Matthew J; Graubert, Timothy A

    2014-07-01

    Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.

  14. Generation of Stable Knockout Mammalian Cells by TALEN-Mediated Locus-Specific Gene Editing.

    PubMed

    Mahata, Barun; Biswas, Kaushik

    2017-01-01

    Precise and targeted genome editing using Transcription Activator-Like Effector Endonucleases (TALENs) has been widely used and proven to be an extremely effective and specific knockout strategy in both cultured cells and animal models. The current chapter describes a protocol for the construction and generation of TALENs using serial and hierarchical digestion and ligation steps, and using the synthesized TALEN pairs to achieve locus-specific targeted gene editing in mammalian cell lines using a modified clonal selection strategy in an easy and cost-efficient manner.

  15. An atlas of B-cell clonal distribution in the human body.

    PubMed

    Meng, Wenzhao; Zhang, Bochao; Schwartz, Gregory W; Rosenfeld, Aaron M; Ren, Daqiu; Thome, Joseph J C; Carpenter, Dustin J; Matsuoka, Nobuhide; Lerner, Harvey; Friedman, Amy L; Granot, Tomer; Farber, Donna L; Shlomchik, Mark J; Hershberg, Uri; Luning Prak, Eline T

    2017-09-01

    B-cell responses result in clonal expansion, and can occur in a variety of tissues. To define how B-cell clones are distributed in the body, we sequenced 933,427 B-cell clonal lineages and mapped them to eight different anatomic compartments in six human organ donors. We show that large B-cell clones partition into two broad networks-one spans the blood, bone marrow, spleen and lung, while the other is restricted to tissues within the gastrointestinal (GI) tract (jejunum, ileum and colon). Notably, GI tract clones display extensive sharing of sequence variants among different portions of the tract and have higher frequencies of somatic hypermutation, suggesting extensive and serial rounds of clonal expansion and selection. Our findings provide an anatomic atlas of B-cell clonal lineages, their properties and tissue connections. This resource serves as a foundation for studies of tissue-based immunity, including vaccine responses, infections, autoimmunity and cancer.

  16. CD10/NEP in non-small cell lung carcinomas. Relationship to cellular proliferation.

    PubMed Central

    Ganju, R K; Sunday, M; Tsarwhas, D G; Card, A; Shipp, M A

    1994-01-01

    The cell surface metalloproteinase CD10/neutral endopeptidase 24.11 (NEP) hydrolyzes a variety of peptide substrates and reduces cellular responses to specific peptide hormones. Because CD10/NEP modulates peptide-mediated proliferation of small cell carcinomas of the lung (SCLC) and normal fetal bronchial epithelium, we evaluated the enzyme's expression in non-small cell lung carcinomas (NSCLC). Bronchoalveolar and large cell carcinoma cell lines had low levels of CD10/NEP expression whereas squamous, adenosquamous, and adenocarcinoma cell lines had higher and more variable levels of the cell surface enzyme. Regional variations in CD10/NEP immunostaining in primary NSCLC specimens prompted us to correlate CD10/NEP expression with cell growth. In primary carcinomas of the lung, clonal NSCLC cell lines and SV40-transformed fetal airway epithelium, subsets of cells expressed primarily CD10/NEP or the proliferating cell nuclear antigen (PCNA). Cultured airway epithelial cells had the lowest levels of CD10/NEP expression when the highest percentage of cells were actively dividing; in addition, these cells grew more rapidly when cell surface CD10/NEP was inhibited. NSCLC cell lines had receptors for a variety of mitogenic peptides known to be CD10/NEP substrates, underscoring the functional significance of growth-related variability in CD10/NEP expression. Images PMID:7962523

  17. Clonal Evolution and Blast Crisis Correlate with Enhanced Proteolytic Activity of Separase in BCR-ABL b3a2 Fusion Type CML under Imatinib Therapy.

    PubMed

    Haaß, Wiltrud; Kleiner, Helga; Weiß, Christel; Haferlach, Claudia; Schlegelberger, Brigitte; Müller, Martin C; Hehlmann, Rüdiger; Hofmann, Wolf-Karsten; Fabarius, Alice; Seifarth, Wolfgang

    2015-01-01

    Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors and may therefore explain the cytogenetic results of CML patients.

  18. The human urothelium consists of multiple clonal units, each maintained by a stem cell.

    PubMed

    Gaisa, Nadine T; Graham, Trevor A; McDonald, Stuart A C; Cañadillas-Lopez, Sagrario; Poulsom, Richard; Heidenreich, Axel; Jakse, Gerhard; Tadrous, Paul J; Knuechel, Ruth; Wright, Nicholas A

    2011-10-01

    Little is known about the clonal architecture of human urothelium. It is likely that urothelial stem cells reside within the basal epithelial layer, yet lineage tracing from a single stem cell as a means to show the presence of a urothelial stem cell has never been performed. Here, we identify clonally related cell areas within human bladder mucosa in order to visualize epithelial fields maintained by a single founder/stem cell. Sixteen frozen cystectomy specimens were serially sectioned. Patches of cells deficient for the mitochondrially encoded enzyme cytochrome c oxidase (CCO) were identified using dual-colour enzyme histochemistry. To show that these patches represent clonal proliferations, small CCO-proficient and -deficient areas were individually laser-capture microdissected and the entire mitochondrial genome (mtDNA) in each area was PCR amplified and sequenced to identify mtDNA mutations. Immunohistochemistry was performed for the different cell layers of the urothelium and adjacent mesenchyme. CCO-deficient patches could be observed in normal urothelium of all cystectomy specimens. The two-dimensional length of these negative patches varied from 2-3 cells (about 30 µm) to 4.7 mm. Each cell area within a CCO-deficient patch contained an identical somatic mtDNA mutation, indicating that the patch was a clonal unit. Patches contained all the mature cell differentiation stages present in the urothelium, suggesting the presence of a stem cell. Our results demonstrate that the normal mucosa of human bladder contains stem cell-derived clonal units that actively replenish the urothelium during ageing. The size of the clonal unit attributable to each stem cell was broadly distributed, suggesting replacement of one stem cell clone by another. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Mixed epithelial and stromal tumor of the middle ear: The first case report.

    PubMed

    Michal, Michael; Skálová, Alena; Kazakov, Dmitry V; Pecková, Květoslava; Heidenreich, Filip; Grossmann, Petr; Michal, Michal

    2017-03-01

    We report a tumor arising in the middle ear of a 65-year-old female patient that was composed of an ovarian-type stroma (OS) and an epithelial component. The tumor consisted of irregular, polypoid masses containing multiple variably sized cystic spaces, which were invariably surrounded by the OS. The cystic spaces were lined by flat, cuboidal, or columnar epithelial cells, in most parts showing mucinous differentiation. The epithelial lining of the cysts strongly expressed cytokeratins AE1-3, CK7, CK8, CK18, CK19, EMA, and S100 protein. The stroma expressed CD34 and smooth muscle actin. No cytological atypia or mitoses were present, and the proliferative activity was less than 1% in both components. The clonality analysis proved the clonal nature of the neoplasm. We believe that this tumor is a new member in the family of neoplasms containing the OS, and therefore we propose the term mixed epithelial and stromal tumor of the middle ear. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Chromosome aberrations of clonal origin are present in astronauts' blood lymphocytes.

    PubMed

    George, K; Durante, M; Willingham, V; Cucinotta, F A

    2004-01-01

    Radiation-induced chromosome translocations remain in peripheral blood cells over many years, and can potentially be used to measure retrospective doses or prolonged low-dose rate exposures. However, several recent studies have indicated that some individuals possess clones of cells with balanced chromosome abnormalities, which can result in an overestimation of damage and, therefore, influence the accuracy of dose calculations. We carefully examined the patterns of chromosome damage found in the blood lymphocytes of twelve astronauts, and also applied statistical methods to screen for the presence of potential clones. Cells with clonal aberrations were identified in three of the twelve individuals. These clonal cells were present in samples collected both before and after space flight, and yields are higher than previously reported for healthy individuals in this age range (40-52 years of age). The frequency of clonal damage appears to be even greater in chromosomes prematurely condensed in interphase, when compared with equivalent analysis in metaphase cells. The individuals with clonal aberrations were followed-up over several months and the yields of all clones decreased during this period. Since clonal aberrations may be associated with increased risk of tumorigenesis, it is important to accurately identify cells containing clonal rearrangements for risk assessment as well as biodosimetry. Copyright 2003 S. Karger AG, Basel

  1. Chromosome aberrations of clonal origin are present in astronauts' blood lymphocytes

    NASA Technical Reports Server (NTRS)

    George, K.; Durante, M.; Willingham, V.; Cucinotta, F. A.

    2004-01-01

    Radiation-induced chromosome translocations remain in peripheral blood cells over many years, and can potentially be used to measure retrospective doses or prolonged low-dose rate exposures. However, several recent studies have indicated that some individuals possess clones of cells with balanced chromosome abnormalities, which can result in an overestimation of damage and, therefore, influence the accuracy of dose calculations. We carefully examined the patterns of chromosome damage found in the blood lymphocytes of twelve astronauts, and also applied statistical methods to screen for the presence of potential clones. Cells with clonal aberrations were identified in three of the twelve individuals. These clonal cells were present in samples collected both before and after space flight, and yields are higher than previously reported for healthy individuals in this age range (40-52 years of age). The frequency of clonal damage appears to be even greater in chromosomes prematurely condensed in interphase, when compared with equivalent analysis in metaphase cells. The individuals with clonal aberrations were followed-up over several months and the yields of all clones decreased during this period. Since clonal aberrations may be associated with increased risk of tumorigenesis, it is important to accurately identify cells containing clonal rearrangements for risk assessment as well as biodosimetry. Copyright 2003 S. Karger AG, Basel.

  2. Expression of extracellular calcium (Ca2 + o)-sensing receptor in the clonal osteoblast-like cell lines, UMR-106 and SAOS-2

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Kifor, O.; Chattopadhyay, N.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2 + o) homeostasis in parathyroid gland and kidney. More recent data have suggested the presence of this receptor in additional tissues, such as brain, intestine and skin. In this study, we examined the expression of the CaR in the rat and human osteosarcoma cell lines, UMR-106 and SAOS-2, respectively, which possess osteoblast-like characteristics. Both immunocytochemistry and Western blot analysis, using a polyclonal antiserum specific for the CaR, detected CaR protein in UMR-106 and SAOS-2 cells. The use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by nucleotide sequencing of the amplified products, also identified CaR transcripts in each cell line. Therefore, taken together, our data strongly suggest that the osteoblast-like cell lines, UMR-106 and SAOS-2, possess both CaR protein and mRNA very similar if not identical to those in parathyroid and kidney.

  3. Identification of different ALK mutations in a pair of neuroblastoma cell lines established at diagnosis and relapse.

    PubMed

    Chen, Lindi; Humphreys, Angharad; Turnbull, Lisa; Bellini, Angela; Schleiermacher, Gudrun; Salwen, Helen; Cohn, Susan L; Bown, Nick; Tweddle, Deborah A

    2016-12-27

    Anaplastic Lymphoma Kinase (ALK) is a transmembrane receptor kinase that belongs to the insulin receptor superfamily and has previously been shown to play a role in cell proliferation, migration and invasion in neuroblastoma. Activating ALK mutations are reported in both hereditary and sporadic neuroblastoma tumours, and several ALK inhibitors are currently under clinical evaluation as novel treatments for neuroblastoma. Overall, mutations at codons F1174, R1275 and F1245 together account for ~85% of reported ALK mutations in neuroblastoma. NBLW and NBLW-R are paired cell lines originally derived from an infant with metastatic MYCN amplified Stage IVS (Evans Criteria) neuroblastoma, at diagnosis and relapse, respectively. Using both Sanger and targeted deep sequencing, this study describes the identification of distinct ALK mutations in these paired cell lines, including the rare R1275L mutation, which has not previously been reported in a neuroblastoma cell line. Analysis of the sensitivity of NBLW and NBLW-R cells to a panel of ALK inhibitors (TAE-684, Crizotinib, Alectinib and Lorlatinib) revealed differences between the paired cell lines, and overall NBLW-R cells with the F1174L mutation were more resistant to ALK inhibitor induced apoptosis compared with NBLW cells. This pair of cell lines represents a valuable pre-clinical model of clonal evolution of ALK mutations associated with neuroblastoma progression.

  4. Successful Immunosuppressive Therapy for Severe Infectious Mononucleosis in a Patient with Clonal Proliferation of EBV-infected CD8-positive Cells.

    PubMed

    Hosoi, Hiroki; Sonoki, Takashi; Murata, Shogo; Mushino, Toshiki; Kuriyama, Kodai; Nishikawa, Akinori; Hanaoka, Nobuyoshi; Ohshima, Koichi; Imadome, Ken-Ichi; Nakakuma, Hideki

    2015-01-01

    A 30-year-old woman was diagnosed with severe infectious mononucleosis (IM). The Epstein-Barr virus (EBV) had infected both CD19- and CD8-positive cells, and clonal proliferation of EBV-infected cells and T-cells was detected. Although we suspected malignant lymphoma, her condition improved following immunosuppressive therapy. A similar case was recently reported; therefore, this case is the second case of IM with EBV-infected CD8-positive cells and clonal proliferation of EBV-infected cells. Our results demonstrate that the clonal proliferation of EBV-infected cells is not always an indication for chemotherapy in the primary infection phase and that monitoring the EBV viral load is useful for therapeutic decision-making.

  5. Aging, clonal hematopoiesis and preleukemia: not just bad luck?

    PubMed

    Shlush, Liran I; Zandi, Sasan; Itzkovitz, Shalev; Schuh, Andre C

    2015-11-01

    Chronological human aging is associated with a number of changes in the hematopoietic system, occurring at many levels from stem to mature cells, and the marrow microenvironment as well. This review will focus mainly on the aging of hematopoietic stem and progenitor cells (HSPCs), and on the associated increases in the incidence of hematological malignancies. HSPCs manifest reduced function and acquire molecular changes with chronological aging. Furthermore, while for many years it has been known that the human hematopoietic system becomes increasingly clonal with chronological aging (clonal hematopoiesis), only in the last few years has it become clear that clonal hematopoiesis may result from the accumulation of preleukemic mutations in HSPCs. Such mutations confer a selective advantage that leads to clonal hematopoiesis, and that may occasionally result in the development of leukemia, and define the existence of both preleukemic stem cells, and of 'preleukemia' as a clinical entity. While it is well appreciated that clonal hematopoiesis is very common in the elderly, several questions remain unanswered: why and how does clonal hematopoiesis develop? How is clonal hematopoiesis related to the age-related changes observed in the hematopoietic system? And why do only some individuals with clonal hematopoiesis develop leukemia?

  6. Antiproliferative and Antiangiogenic Effects of Punica granatum Juice (PGJ) in Multiple Myeloma (MM)

    PubMed Central

    Tibullo, Daniele; Caporarello, Nunzia; Giallongo, Cesarina; Anfuso, Carmelina Daniela; Genovese, Claudia; Arlotta, Carmen; Puglisi, Fabrizio; Parrinello, Nunziatina L.; Bramanti, Vincenzo; Romano, Alessandra; Lupo, Gabriella; Toscano, Valeria; Avola, Roberto; Brundo, Maria Violetta; Di Raimondo, Francesco; Raccuia, Salvatore Antonio

    2016-01-01

    Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of clonal plasma cells (PC) in the bone marrow (BM) leading to bone destruction and BM failure. Despite recent advances in pharmacological therapy, MM remains a largely incurable pathology. Therefore, novel effective and less toxic agents are urgently necessary. In the last few years, pomegranate has been studied for its potential therapeutic properties including treatment and prevention of cancer. Pomegranate juice (PGJ) contains a number of potential active compounds including organic acids, vitamins, sugars, and phenolic components that are all responsible of the pro-apoptotic effects observed in tumor cell line. The aim of present investigation is to assess the antiproliferative and antiangiogenic potential of the PGJ in human multiple myeloma cell lines. Our data demonstrate the anti-proliferative potential of PGJ in MM cells; its ability to induce G0/G1 cell cycle block and its anti-angiogenic effects. Interestingly, sequential combination of bortezomib/PGJ improved the cytotoxic effect of the proteosome inhibitor. We investigated the effect of PGJ on angiogenesis and cell migration/invasion. Interestingly, we observed an inhibitory effect on the tube formation, microvessel outgrowth aorting ring and decreased cell migration and invasion as showed by wound-healing and transwell assays, respectively. Analysis of angiogenic genes expression in endothelial cells confirmed the anti-angiogenic properties of pomegranate. Therefore, PGJ administration could represent a good tool in order to identify novel therapeutic strategies for MM treatment, exploiting its anti-proliferative and anti-angiogenic effects. Finally, the present research supports the evidence that PGJ could play a key role of a future therapeutic approach for treatment of MM in order to optimize the pharmacological effect of bortezomib, especially as adjuvant after treatment. PMID:27706074

  7. Single-cell cloning and expansion of human induced pluripotent stem cells by a microfluidic culture device.

    PubMed

    Matsumura, Taku; Tatsumi, Kazuya; Noda, Yuichiro; Nakanishi, Naoyuki; Okonogi, Atsuhito; Hirano, Kunio; Li, Liu; Osumi, Takashi; Tada, Takashi; Kotera, Hidetoshi

    2014-10-10

    The microenvironment of cells, which includes basement proteins, shear stress, and extracellular stimuli, should be taken into consideration when examining physiological cell behavior. Although microfluidic devices allow cellular responses to be analyzed with ease at the single-cell level, few have been designed to recover cells. We herein demonstrated that a newly developed microfluidic device helped to improve culture conditions and establish a clonality-validated human pluripotent stem cell line after tracing its growth at the single-cell level. The device will be a helpful tool for capturing various cell types in the human body that have not yet been established in vitro. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. T-cell stimuli independently sum to regulate an inherited clonal division fate

    PubMed Central

    Marchingo, J. M.; Prevedello, G.; Kan, A.; Heinzel, S.; Hodgkin, P. D.; Duffy, K. R.

    2016-01-01

    In the presence of antigen and costimulation, T cells undergo a characteristic response of expansion, cessation and contraction. Previous studies have revealed that population-level reproducibility is a consequence of multiple clones exhibiting considerable disparity in burst size, highlighting the requirement for single-cell information in understanding T-cell fate regulation. Here we show that individual T-cell clones resulting from controlled stimulation in vitro are strongly lineage imprinted with highly correlated expansion fates. Progeny from clonal families cease dividing in the same or adjacent generations, with inter-clonal variation producing burst-size diversity. The effects of costimulatory signals on individual clones sum together with stochastic independence; therefore, the net effect across multiple clones produces consistent, but heterogeneous population responses. These data demonstrate that substantial clonal heterogeneity arises through differences in experience of clonal progenitors, either through stochastic antigen interaction or by differences in initial receptor sensitivities. PMID:27869196

  9. Evolution of oesophageal adenocarcinoma from metaplastic columnar epithelium without goblet cells in Barrett's oesophagus.

    PubMed

    Lavery, Danielle L; Martinez, Pierre; Gay, Laura J; Cereser, Biancastella; Novelli, Marco R; Rodriguez-Justo, Manuel; Meijer, Sybren L; Graham, Trevor A; McDonald, Stuart A C; Wright, Nicholas A; Jansen, Marnix

    2016-06-01

    Barrett's oesophagus commonly presents as a patchwork of columnar metaplasia with and without goblet cells in the distal oesophagus. The presence of metaplastic columnar epithelium with goblet cells on oesophageal biopsy is a marker of cancer progression risk, but it is unclear whether clonal expansion and progression in Barrett's oesophagus is exclusive to columnar epithelium with goblet cells. We developed a novel method to trace the clonal ancestry of an oesophageal adenocarcinoma across an entire Barrett's segment. Clonal expansions in Barrett's mucosa were identified using cytochrome c oxidase enzyme histochemistry. Somatic mutations were identified through mitochondrial DNA sequencing and single gland whole exome sequencing. By tracing the clonal origin of an oesophageal adenocarcinoma across an entire Barrett's segment through a combination of histopathological spatial mapping and clonal ordering, we find that this cancer developed from a premalignant clonal expansion in non-dysplastic ('cardia-type') columnar metaplasia without goblet cells. Our data demonstrate the premalignant potential of metaplastic columnar epithelium without goblet cells in the context of Barrett's oesophagus. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution

    PubMed Central

    Humphries, Adam; Cereser, Biancastella; Gay, Laura J.; Miller, Daniel S. J.; Das, Bibek; Gutteridge, Alice; Elia, George; Nye, Emma; Jeffery, Rosemary; Poulsom, Richard; Novelli, Marco R.; Rodriguez-Justo, Manuel; McDonald, Stuart A. C.; Wright, Nicholas A.; Graham, Trevor A.

    2013-01-01

    The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution. Numerous individual crypts from six colonic adenomas and a hyperplastic polyp were microdissected and characterized for genetic lesions. Clones deficient in cytochrome c oxidase (CCO−) were identified by histochemical staining followed by mtDNA sequencing. Topographical maps of clone locations were constructed using a combination of these data. Multilineage differentiation within clones was demonstrated by immunofluorescence. Methylation patterns of adenomatous crypts were determined by clonal bisulphite sequencing; methylation pattern diversity was compared with a mathematical model to infer to clonal dynamics. Individual adenomatous crypts were clonal for mtDNA mutations and contained both mucin-secreting and neuroendocrine cells, demonstrating that the crypt contained a multipotent stem cell. The intracrypt methylation pattern was consistent with the crypts containing multiple competing stem cells. Adenomas were epigenetically diverse populations, suggesting that they were relatively mitotically old populations. Intratumor clones typically showed less diversity in methylation pattern than the tumor as a whole. Mathematical modeling suggested that recent clonal sweeps encompassing the whole adenoma had not occurred. Adenomatous crypts within human tumors contain actively dividing stem cells. Adenomas appeared to be relatively mitotically old populations, pocketed with occasional newly generated subclones that were the result of recent rapid clonal expansion. Relative stasis and occasional rapid subclone growth may characterize colorectal tumorigenesis. PMID:23766371

  11. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution.

    PubMed

    Humphries, Adam; Cereser, Biancastella; Gay, Laura J; Miller, Daniel S J; Das, Bibek; Gutteridge, Alice; Elia, George; Nye, Emma; Jeffery, Rosemary; Poulsom, Richard; Novelli, Marco R; Rodriguez-Justo, Manuel; McDonald, Stuart A C; Wright, Nicholas A; Graham, Trevor A

    2013-07-02

    The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution. Numerous individual crypts from six colonic adenomas and a hyperplastic polyp were microdissected and characterized for genetic lesions. Clones deficient in cytochrome c oxidase (CCO(-)) were identified by histochemical staining followed by mtDNA sequencing. Topographical maps of clone locations were constructed using a combination of these data. Multilineage differentiation within clones was demonstrated by immunofluorescence. Methylation patterns of adenomatous crypts were determined by clonal bisulphite sequencing; methylation pattern diversity was compared with a mathematical model to infer to clonal dynamics. Individual adenomatous crypts were clonal for mtDNA mutations and contained both mucin-secreting and neuroendocrine cells, demonstrating that the crypt contained a multipotent stem cell. The intracrypt methylation pattern was consistent with the crypts containing multiple competing stem cells. Adenomas were epigenetically diverse populations, suggesting that they were relatively mitotically old populations. Intratumor clones typically showed less diversity in methylation pattern than the tumor as a whole. Mathematical modeling suggested that recent clonal sweeps encompassing the whole adenoma had not occurred. Adenomatous crypts within human tumors contain actively dividing stem cells. Adenomas appeared to be relatively mitotically old populations, pocketed with occasional newly generated subclones that were the result of recent rapid clonal expansion. Relative stasis and occasional rapid subclone growth may characterize colorectal tumorigenesis.

  12. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade

    PubMed Central

    McGranahan, Nicholas; Furness, Andrew J. S.; Rosenthal, Rachel; Ramskov, Sofie; Lyngaa, Rikke; Saini, Sunil Kumar; Jamal-Hanjani, Mariam; Wilson, Gareth A.; Birkbak, Nicolai J.; Hiley, Crispin T.; Watkins, Thomas B. K.; Shafi, Seema; Murugaesu, Nirupa; Mitter, Richard; Akarca, Ayse U.; Linares, Joseph; Marafioti, Teresa; Henry, Jake Y.; Van Allen, Eliezer M.; Miao, Diana; Schilling, Bastian; Schadendorf, Dirk; Garraway, Levi A.; Makarov, Vladimir; Rizvi, Naiyer A.; Snyder, Alexandra; Hellmann, Matthew D.; Merghoub, Taha; Wolchok, Jedd D.; Shukla, Sachet A.; Wu, Catherine J.; Peggs, Karl S.; Chan, Timothy A.; Hadrup, Sine R.; Quezada, Sergio A.; Swanton, Charles

    2016-01-01

    As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8+ tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non–small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy–induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens. PMID:26940869

  13. Insights in Anaphylaxis and Clonal Mast Cell Disorders.

    PubMed

    González-de-Olano, David; Álvarez-Twose, Iván

    2017-01-01

    The prevalence of anaphylaxis among patients with clonal mast cell disorders (MCD) is clearly higher comparing to the general population. Due to a lower frequency of symptoms outside of acute episodes, clonal MCD in the absence of skin lesions might sometimes be difficult to identify which may lead to underdiagnosis, and anaphylaxis is commonly the presenting symptom in these patients. Although the release of mast cell (MC) mediators upon MC activation might present with a wide variety of symptoms, particular clinical features typically characterize MC mediator release episodes in patients with clonal MCD without skin involvement. Final diagnosis requires a bone marrow study, and it is recommended that this should be done in reference centers. In this article, we address the main triggers for anaphylaxis, risk factors, clinical presentation, diagnosis, and management of patients with MC activation syndromes (MCASs), with special emphasis on clonal MCAS [systemic mastocytosis and mono(clonal) MC activations syndromes].

  14. Insights in Anaphylaxis and Clonal Mast Cell Disorders

    PubMed Central

    González-de-Olano, David; Álvarez-Twose, Iván

    2017-01-01

    The prevalence of anaphylaxis among patients with clonal mast cell disorders (MCD) is clearly higher comparing to the general population. Due to a lower frequency of symptoms outside of acute episodes, clonal MCD in the absence of skin lesions might sometimes be difficult to identify which may lead to underdiagnosis, and anaphylaxis is commonly the presenting symptom in these patients. Although the release of mast cell (MC) mediators upon MC activation might present with a wide variety of symptoms, particular clinical features typically characterize MC mediator release episodes in patients with clonal MCD without skin involvement. Final diagnosis requires a bone marrow study, and it is recommended that this should be done in reference centers. In this article, we address the main triggers for anaphylaxis, risk factors, clinical presentation, diagnosis, and management of patients with MC activation syndromes (MCASs), with special emphasis on clonal MCAS [systemic mastocytosis and mono(clonal) MC activations syndromes]. PMID:28740494

  15. Epigenetic Alterations Associated With CCCTC-Binding Factor Deregulation in Prostate Cancer

    DTIC Science & Technology

    2013-09-01

    cancer cells. (Months 1‐12)  a. Establish cell cultures of human prostate cancer (PC‐3 and PPC‐1) cell  lines, HPECs, non‐tumorigenic HPV16  E6  and/or  E7 ...and non‐tumorigenic HPV16  E6   5 and/or  E7  prostate cell lines. We have had to rederive these due to leakage from the  promoter leading to clonal...and control scrambled shRNA.  f. To test the tumorigenic ability of CTCF shRNA infected non‐tumorigenic  E6 / E7  cells using colony forming assays and

  16. Restricted T cell receptor repertoire in CLL-like monoclonal B cell lymphocytosis and early stage CLL.

    PubMed

    Blanco, Gonzalo; Vardi, Anna; Puiggros, Anna; Gómez-Llonín, Andrea; Muro, Manuel; Rodríguez-Rivera, María; Stalika, Evangelia; Abella, Eugenia; Gimeno, Eva; López-Sánchez, Manuela; Senín, Alicia; Calvo, Xavier; Abrisqueta, Pau; Bosch, Francesc; Ferrer, Ana; Stamatopoulos, Kostas; Espinet, Blanca

    2018-01-01

    Analysis of the T cell receptor (TR) repertoire of chronic lymphocytic leukemia-like monoclonal B cell lymphocytosis (CLL-like MBL) and early stage CLL is relevant for understanding the dynamic interaction of expanded B cell clones with bystander T cells. Here we profiled the T cell receptor β chain (TRB) repertoire of the CD4 + and CD8 + T cell fractions from 16 CLL-like MBL and 13 untreated, Binet stage A/Rai stage 0 CLL patients using subcloning analysis followed by Sanger sequencing. The T cell subpopulations of both MBL and early stage CLL harbored restricted TRB gene repertoire, with CD4 + T cell clonal expansions whose frequency followed the numerical increase of clonal B cells. Longitudinal analysis in MBL cases revealed clonal persistence, alluding to persistent antigen stimulation. In addition, the identification of shared clonotypes among different MBL/early stage CLL cases pointed towards selection of the T cell clones by common antigenic elements. T cell clonotypes previously described in viral infections and immune disorders were also detected. Altogether, our findings evidence that antigen-mediated TR restriction occurs early in clonal evolution leading to CLL and may further increase together with B cell clonal expansion, possibly suggesting that the T cell selecting antigens are tumor-related.

  17. Use of planar array electrophysiology for the development of robust ion channel cell lines.

    PubMed

    Clare, Jeffrey J; Chen, Mao Xiang; Downie, David L; Trezise, Derek J; Powell, Andrew J

    2009-01-01

    The tractability of ion channels as drug targets has been significantly improved by the advent of planar array electrophysiology platforms which have dramatically increased the capacity for electrophysiological profiling of lead series compounds. However, the data quality and through-put obtained with these platforms is critically dependent on the robustness of the expression reagent being used. The generation of high quality, recombinant cell lines is therefore a key step in the early phase of ion channel drug discovery and this can present significant challenges due to the diversity and organisational complexity of many channel types. This article focuses on several complex and difficult to express ion channels and illustrates how improved stable cell lines can be obtained by integration of planar array electrophysiology systems into the cell line generation process per se. By embedding this approach at multiple stages (e.g., during development of the expression strategy, during screening and validation of clonal lines, and during characterisation of the final cell line), the cycle time and success rate in obtaining robust expression of complex multi-subunit channels can be significantly improved. We also review how recent advances in this technology (e.g., population patch clamp) have further widened the versatility and applicability of this approach.

  18. Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line.

    PubMed

    Zhang, Lin; Inniss, Mara C; Han, Shu; Moffat, Mark; Jones, Heather; Zhang, Baohong; Cox, Wendy L; Rance, James R; Young, Robert J

    2015-01-01

    To meet product quality and cost parameters for therapeutic monoclonal antibody (mAb) production, cell lines are required to have excellent growth, stability, and productivity characteristics. In particular, cell line generation stability is critical to the success of a program, especially where high cell line generation numbers are required for large in-market supply. However, a typical process for developing such cell lines is laborious, lengthy, and costly. In this study, we applied a FLP/FRT recombinase-mediated cassette exchange (RMCE) system to build a site-specific integration (SSI) system for mAb expression in the commercially relevant CHOK1SV cell line. Using a vector with a FRT-flanked mAb expression cassette, we generated a clonal cell line with good productivity, long-term production stability, and low mAb gene-copy number indicating the vector was located in a 'hot-spot.' A SSI host cell line was made by removing the mAb genes from the 'hot-spot' by RMCE, creating a 'landing pad' containing two recombination cassettes that allow targeting of one or two copies of recombinant genes. Cell lines made from this host exhibited excellent growth and productivity profiles, and stability for at least 100 generations in the absence of selection agents. Importantly, while clones containing two copies had higher productivity than single copy clones, both were stable over many generations. Taken together, this study suggests the use of FLP-based RMCE to develop SSI host cells for mAb production in CHOK1SV offers significant savings in both resources and overall cell line development time, leading to a shortened 'time-to-clinic' for therapeutic mAbs. © 2015 American Institute of Chemical Engineers.

  19. Development and characterization of a mouse floxed Bmp2 osteoblast cell line that retains osteoblast genotype and phenotype

    PubMed Central

    Wu, Li-an; Feng, Junsheng; Wang, Lynn; Mu, Yan-dong; Baker, Andrew; Donly, Kevin J.; Harris, Stephen E.; MacDougall, Mary; Chen, Shuo

    2011-01-01

    Bone morphogenetic protein 2 (Bmp2) is essential for osteoblast differentiation and osteogenesis. Generation of floxed Bmp2 osteoblast cell lines is a valuable tool for studying the effects of Bmp2 on osteoblast differentiation and its signaling pathways during skeletal metabolism. Due to relatively limited sources of primary osteoblasts, we have developed cell lines that serve as good surrogate models for the study of osteoblast cell differentiation and bone mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 osteoblast cell lines. Primary mouse floxed Bmp2 osteoblasts were transfected with pSV3-neo and clonally selected. These transfected cells were verified by PCR and immunohistochemistry. To determine the genotype and phenotype of the immortalized cells, cell morphology, proliferation, differentiation and mineralization were analyzed. Also, expression of osteoblast-related gene markers including Runx2, Osx, ATF4, Dlx3, bone sialoprotein, dentin matrix protein 1, osteonectin, osteocalcin and osteopontin were examined by quantitative RT-PCR and immunohistochemistry. These results showed that immortalized floxed Bmp2 osteoblasts had a higher proliferation rate but preserved their genotypic and phenotypic characteristics similar to the primary cells. Thus, we, for the first time, describe the development of immortalized mouse floxed Bmp2 osteoblast cell lines and present a useful model to study osteoblast biology mediated by BMP2 and its downstream signaling transduction pathways. PMID:21271257

  20. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.

    PubMed

    Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro

    2018-01-01

    Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.

  1. A CRISPR-Cas9 Generated MDCK Cell Line Expressing Human MDR1 Without Endogenous Canine MDR1 (cABCB1): An Improved Tool for Drug Efflux Studies.

    PubMed

    Karlgren, Maria; Simoff, Ivailo; Backlund, Maria; Wegler, Christine; Keiser, Markus; Handin, Niklas; Müller, Janett; Lundquist, Patrik; Jareborg, Anne-Christine; Oswald, Stefan; Artursson, Per

    2017-09-01

    Madin-Darby canine kidney (MDCK) II cells stably transfected with transport proteins are commonly used models for drug transport studies. However, endogenous expression of especially canine MDR1 (cMDR1) confounds the interpretation of such studies. Here we have established an MDCK cell line stably overexpressing the human MDR1 transporter (hMDR1; P-glycoprotein), and used CRISPR-Cas9 gene editing to knockout the endogenous cMDR1. Genomic screening revealed the generation of a clonal cell line homozygous for a 4-nucleotide deletion in the canine ABCB1 gene leading to a frameshift and a premature stop codon. Knockout of cMDR1 expression was verified by quantitative protein analysis and functional studies showing retained activity of the human MDR1 transporter. Application of this cell line allowed unbiased reclassification of drugs previously defined as both substrates and non-substrates in different studies using commonly used MDCK-MDR1 clones. Our new MDCK-hMDR1 cell line, together with a previously developed control cell line, both with identical deletions in the canine ABCB1 gene and lack of cMDR1 expression represent excellent in vitro tools for use in drug discovery. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Metabolomic and proteomic analysis of a clonal insulin-producing beta-cell line (INS-1 832/13).

    PubMed

    Fernandez, Céline; Fransson, Ulrika; Hallgard, Elna; Spégel, Peter; Holm, Cecilia; Krogh, Morten; Wårell, Kristofer; James, Peter; Mulder, Hindrik

    2008-01-01

    Metabolites generated from fuel metabolism in pancreatic beta-cells control exocytosis of insulin, a process which fails in type 2 diabetes. To identify and quantify these metabolites, global and unbiased analysis of cellular metabolism is required. To this end, polar metabolites, extracted from the clonal 832/13 beta-cell line cultured at 2.8 and 16.7 mM glucose for 48 h, were derivatized followed by identification and quantification, using gas chromatography (GC) and mass spectrometry (MS). After culture at 16.7 mM glucose for 48 h, 832/13 beta-cells exhibited a phenotype reminiscent of glucotoxicity with decreased content and secretion of insulin. The metabolomic analysis revealed alterations in the levels of 7 metabolites derived from glycolysis, the TCA cycle and pentose phosphate shunt, and 4 amino acids. Principal component analysis of the metabolite data showed two clusters, corresponding to the cells cultured at 2.8 and 16.7 mM glucose, respectively. Concurrent changes in protein expression were analyzed by 2-D gel electrophoresis followed by LC-MS/MS. The identities of 86 spots corresponding to 75 unique proteins that were significantly different in 832/13 beta-cells cultured at 16.7 mM glucose were established. Only 5 of these were found to be metabolic enzymes that could be involved in the metabolomic alterations observed. Anticipated changes in metabolite levels in cells exposed to increased glucose were observed, while changes in enzyme levels were much less profound. This suggests that substrate availability, allosteric regulation, and/or post-translational modifications are more important determinants of metabolite levels than enzyme expression at the protein level.

  3. Generation and functional characterization of a clonal murine periportal Kupffer cell line from H-2Kb -tsA58 mice.

    PubMed

    Dory, Daniel; Echchannaoui, Hakim; Letiembre, Maryse; Ferracin, Fabrizia; Pieters, Jean; Adachi, Yoshiyuki; Akashi, Sachiko; Zimmerli, Werner; Landmann, Regine

    2003-07-01

    Murine Kupffer cells (KCs) are heterogeneous and survive only for a short time in vitro. Here, a clonal, murine KC line was generated from transgenic mice, expressing the thermolabile mutant tsA58 of the Simian virus 40 large T antigen under the control of the H-2K(b) promoter. Thirty-three degrees Celsius and 37 degrees C but not 39 degrees C have been permissive for growth of the clone; it required conditioned media from hepatocytes and endothelial cells for proliferation. In contrast to primary cells, the cells of the clone were uniform, survived detachment, and could therefore be analyzed by cytofluorimetry. The clone, as primary KCs, constitutively expressed nonspecific esterase, peroxidase, MOMA-2, BM8, scavenger receptor A, CD14, and Toll-like receptor 4 (TLR4); the antigen-presenting molecules CD40, CD80, and CD1d; and endocytosed dextran-fluorescein isothiocyanate. It lacked complement, Fc receptors, F4/80 marker, and the phagosomal coat protein tryptophan aspartate-containing coat protein (TACO). The clone exhibited CD14- and TLR4/MD2-independent, plasma-dependent lipopolysaccharide (LPS) binding, Escherichia coli and Streptococcus pneumoniae phagocytosis, and LPS- and interferon-gamma-induced NO production but no tumor necrosis factor alpha, interleukin (IL)-6, or IL-10 release. The large size, surface-marker expression, and capacity to clear gram-negative and -positive bacteria indicate that the clone was derived from the periportal, large KC subpopulation. The clone allows molecular studies of anti-infective and immune functions of KCs.

  4. Generation of stable PDX derived cell lines using conditional reprogramming.

    PubMed

    Borodovsky, Alexandra; McQuiston, Travis J; Stetson, Daniel; Ahmed, Ambar; Whitston, David; Zhang, Jingwen; Grondine, Michael; Lawson, Deborah; Challberg, Sharon S; Zinda, Michael; Pollok, Brian A; Dougherty, Brian A; D'Cruz, Celina M

    2017-12-06

    Efforts to develop effective cancer therapeutics have been hindered by a lack of clinically predictive preclinical models which recapitulate this complex disease. Patient derived xenograft (PDX) models have emerged as valuable tools for translational research but have several practical limitations including lack of sustained growth in vitro. In this study, we utilized Conditional Reprogramming (CR) cell technology- a novel cell culture system facilitating the generation of stable cultures from patient biopsies- to establish PDX-derived cell lines which maintain the characteristics of the parental PDX tumor. Human lung and ovarian PDX tumors were successfully propagated using CR technology to create stable explant cell lines (CR-PDX). These CR-PDX cell lines maintained parental driver mutations and allele frequency without clonal drift. Purified CR-PDX cell lines were amenable to high throughput chemosensitivity screening and in vitro genetic knockdown studies. Additionally, re-implanted CR-PDX cells proliferated to form tumors that retained the growth kinetics, histology, and drug responses of the parental PDX tumor. CR technology can be used to generate and expand stable cell lines from PDX tumors without compromising fundamental biological properties of the model. It offers the ability to expand PDX cells in vitro for subsequent 2D screening assays as well as for use in vivo to reduce variability, animal usage and study costs. The methods and data detailed here provide a platform to generate physiologically relevant and predictive preclinical models to enhance drug discovery efforts.

  5. Formation of solid tumors by a single multinucleated cancer cel

    PubMed Central

    Weihua, Zhang; Lin, Qingtang; Ramoth, Asa J.; Fan, Dominic; Fidler, Isaiah J.

    2011-01-01

    BACKGROUND Large multinucleated cells (MNC) commonly exist in tumorigenic cancer cell lines widely used in research, but their contributions to tumorigenesis are unknown. METHODS In this study, we characterized MNCs in the murine fibrosarcoma cell line UV-2237 in vitro and in vivo at a single cell level. RESULTS We observed that MNCs originated from a rare subpopulation of mononuclear cells; MNCs were positive for a senescent marker, β-galacosidase (SA-β-Gal); MNCs were responsible for the majority of clonogenic activity when cultured in hard agar; MNCs were more resistant to chemotherapeutic agents than were mononuclear cells; MNCs could undergo asymmetric division (producing mononuclear cells) and self-renewal in vitro and in vivo; and, most importantly a single MNC produced orthotopic subcutaneous tumors (composed mainly of mononuclear cells) that gave rise to spontaneous lung metastases in nude mice. CONCLUSIONS MNCs can be growth-arrested under stress, are highly resistant to chemotherapy, and can generate clonal orthotopic metastatic tumors PMID:21365635

  6. Human embryonic stem cell-derived neural crest cells capable of expressing markers of osteochondral or meningeal-choroid plexus differentiation.

    PubMed

    Sternberg, Hal; Jiang, Jianjie; Sim, Pamela; Kidd, Jennifer; Janus, Jeffrey; Rinon, Ariel; Edgar, Ron; Shitrit, Alina; Larocca, David; Chapman, Karen B; Binette, Francois; West, Michael D

    2014-01-01

    The transcriptome and fate potential of three diverse human embryonic stem cell-derived clonal embryonic progenitor cell lines with markers of cephalic neural crest are compared when differentiated in the presence of combinations of TGFβ3, BMP4, SCF and HyStem-C matrices. The cell lines E69 and T42 were compared with MEL2, using gene expression microarrays, immunocytochemistry and ELISA. In the undifferentiated progenitor state, each line displayed unique markers of cranial neural crest including TFAP2A and CD24; however, none expressed distal HOX genes including HOXA2 or HOXB2, or the mesenchymal stem cell marker CD74. The lines also showed diverse responses when differentiated in the presence of exogenous BMP4, BMP4 and TGFβ3, SCF, and SCF and TGFβ3. The clones E69 and T42 showed a profound capacity for expression of endochondral ossification markers when differentiated in the presence of BMP4 and TGFβ3, choroid plexus markers in the presence of BMP4 alone, and leptomeningeal markers when differentiated in SCF without TGFβ3. The clones E69 and T42 may represent a scalable source of primitive cranial neural crest cells useful in the study of cranial embryology, and potentially cell-based therapy.

  7. Aldosterone induces clonal β-cell failure through glucocorticoid receptor

    PubMed Central

    Chen, Fang; Liu, Jia; Wang, Yanyang; Wu, Tijun; Shan, Wei; Zhu, Yunxia; Han, Xiao

    2015-01-01

    Aldosterone excess causes insulin resistance in peripheral tissues and directly impairs the function of clonal β-cell. The aim of this study was to investigate the molecular mechanisms involved in the aldosterone-induced impairment of clonal β-cells. As expected, aldosterone induced apoptosis and β-cell dysfunction, including impairment of insulin synthesis and secretion, which were reversed by Glucocorticoid receptor (GR) antagonists or GR-specific siRNA. However, mineralocorticoid receptor (MR) antagonists or MR-specific siRNA had no effect on impairment of clonal β-cells induced by aldosterone. Besides, aldosterone significantly decreased expression and activity of MafA, while activated JNK and p38 MAPK in a GR-dependent manner. In addition, JNK inhibitors (SP600125) and/or p38 inhibitors (SB203580) could abolish the effect of aldosterone on MafA expression and activity. Importantly, overexpression of JNK1 or p38 reversed the protective effect of a GR antagonist on the decrease of MafA expression and activity. Furthermore, aldosterone inhibits MafA expression at the transcriptional and post-transcriptional level through activation of JNK and p38, respectively. Consequently, overexpression of MafA increased synthesis and secretion of insulin, and decreased apoptosis in clonal β-cells exposed to aldosterone. These findings identified aldosterone as an inducer of clonal β-cell failure that operates through the GR-MAPK-MafA signaling pathway. PMID:26287126

  8. Molecular Characteristics of Mantle Cell Lymphoma Presenting with Clonal Plasma Cell Component

    PubMed Central

    Visco, Carlo; Hoeller, Sylvia; Malik, Jeffrey T.; Xu-Monette, Zijun Y.; Wiggins, Michele L.; Liu, Jessica; Sanger, Warren G.; Liu, Zhongfeng; Chang, Julie; Ranheim, Erik A.; Gradowski, Joel F.; Serrrano, Sergio; Wang, Huan-You; Liu, Qingquan; Dave, Sandeep; Olsen, Brian; Gascoyne, Randy D.; Campo, Elias; Swerdlow, Steven H.; Chan, Wing C.; Tzankov, Alexander; Young, Ken H.

    2011-01-01

    The normal counterparts of mantle cell lymphoma (MCL) are naïve quiescent B-cells that have not been processed through the germinal center (GC). For this reason, while lymphomas arising from GC or post-GC B-cells often exhibit plasmacytic differentiation, MCL rarely presents with plasmacytic features. Seven cases of MCL with a monotypic plasma cell (PC) population were collected from six centers and studied by immunohistochemistry, FICTION (Fluorescence immunophenotyping and Interphase Cytogenetics as a Tool for the Investigation of Neoplasms), capillary gel electrophoresis, and restriction fragment length polymorphism of immunoglobulin heavy chain analysis (RFLP/IgH) of microdissections of each of the MCL and PC populations to assess their clonal relationship. Clinical presentation was rather unusual compared to typical MCL, with two cases arising from extranodal soft-tissues of the head. All MCL cases were morphologically and immunohistochemically typical, bearing the t(11;14)(q13;q32). In all cases PC populations were clonal. In 5 of the 7 cases, the MCL and PC clones showed identical restriction fragments, indicating a common clonal origin of the neoplastic populations. The two cases with clonal diversity denoted the coexistence of two different tumors in a composite lymphoma/plasma cell neoplasm. Our findings suggest that MCL can present with a PC component that is often clonally related to the lymphoma, representing a rare but unique biological variant of this tumor. PMID:21263238

  9. Rearrangements of genes for the antigen receptor on T cells as markers of lineage and clonality in human lymphoid neoplasms.

    PubMed

    Waldmann, T A; Davis, M M; Bongiovanni, K F; Korsmeyer, S J

    1985-09-26

    The T alpha and T beta chains of the heterodimeric T-lymphocyte antigen receptor are encoded by separated DNA segments that recombine during T-cell development. We have used rearrangements of the T beta gene as a widely applicable marker of clonality in the T-cell lineage. We show that the T beta genes are used in both the T8 and T4 subpopulations of normal T cells and that Sézary leukemia, adult T-cell leukemia, and the non-B-lineage acute lymphoblastic leukemias are clonal expansions of T cells. Furthermore, circulating T cells from a patient with the T8-cell-predominantly lymphocytosis associated with granulocytopenia are shown to be monoclonal. Finally, the sensitivity and specificity of this tumor-associated marker have been exploited to monitor the therapy of a patient with adult T-cell leukemia. These unique DNA rearrangements provide insights into the cellular origin, clonality, and natural history of T-cell neoplasia.

  10. Clonal origin of Epstein-Barr virus (EBV)-infected T/NK-cell subpopulations in EBV-positive T/NK-cell lymphoproliferative disorders of childhood.

    PubMed

    Ohga, Shouichi; Ishimura, Masataka; Yoshimoto, Goichi; Miyamoto, Toshihiro; Takada, Hidetoshi; Tanaka, Tamami; Ohshima, Koichi; Ogawa, Yoshiyasu; Imadome, Ken-Ichi; Abe, Yasunobu; Akashi, Koichi; Hara, Toshiro

    2011-05-01

    In Japan, chronic active Epstein-Barr virus infection (CAEBV) may manifest with infection of T-cells or NK-cells, clonal lymphoid proliferations, and overt lymphoid malignancy. These EBV-positive lymphoproliferative disorders (EBV(+)LPD) of childhood are related to, but distinct from the infectious mononucleosis-like CAEBV seen in Western populations. The clonal nature of viral infection within lymphoid subsets of patients with EBV(+)LPD of childhood is not well described. Viral distribution and clonotype were assessed within T-cell subsets, NK-cells, and CD34(+)stem cells following high purity cell sorting. Six Japanese patients with EBV(+)LPD of childhood (3 T-cell LPD and 3 NK-cell LPD) were recruited. Prior to immunochemotherapy, viral loads and clonal analyses of T-cell subsets, NK-cells, and CD34(+)stem cells were studied by high-accuracy cell sorting (>99.5%), Southern blotting and real-time polymerase chain reaction. Patient 1 had a monoclonal proliferation of EBV-infected γδT-cells and carried a lower copy number of EBV in αβT-cells. Patients 2 and 3 had clonal expansions of EBV-infected CD4(+)T-cells, and lower EBV load in NK-cells. Patients 4, 5 and 6 had EBV(+)NK-cell expansions with higher EBV load than T-cells. EBV-terminal repeats were determined as clonal bands in the minor targeted populations of 5 patients. The size of terminal repeats indicated the same clonotype in minor subsets as in the major subsets of four patients. EBV was not, however, detected in the bone marrow-derived CD34(+)stem cells of patients. A single EBV clonotype may infect multiple NK-cell and T-cell subsets of patients with EBV(+)LPD of childhood. CD34(+)stem cells are spared, suggesting infection of more differentiated elements. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Detecting truly clonal alterations from multi-region profiling of tumours

    PubMed Central

    Werner, Benjamin; Traulsen, Arne; Sottoriva, Andrea; Dingli, David

    2017-01-01

    Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty on whether alterations found in those samples are actually present in all tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting the need of denser sampling of tumours at relapse. PMID:28344344

  12. Detecting truly clonal alterations from multi-region profiling of tumours

    NASA Astrophysics Data System (ADS)

    Werner, Benjamin; Traulsen, Arne; Sottoriva, Andrea; Dingli, David

    2017-03-01

    Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty on whether alterations found in those samples are actually present in all tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting the need of denser sampling of tumours at relapse.

  13. Flower-deficient mice have reduced susceptibility to skin papilloma formation

    PubMed Central

    Petrova, Evgeniya; López-Gay, Jesús M.; Rhiner, Christa; Moreno, Eduardo

    2012-01-01

    SUMMARY Skin papillomas arise as a result of clonal expansion of mutant cells. It has been proposed that the expansion of pretumoral cell clones is propelled not only by the increased proliferation capacity of mutant cells, but also by active cell selection. Previous studies in Drosophila describe a clonal selection process mediated by the Flower (Fwe) protein, whereby cells that express certain Fwe isoforms are recognized and forced to undergo apoptosis. It was further shown that knock down of fwe expression in Drosophila can prevent the clonal expansion of dMyc-overexpressing pretumoral cells. Here, we study the function of the single predicted mouse homolog of Drosophila Fwe, referred to as mFwe, by clonal overexpression of mFwe isoforms in Drosophila and by analyzing mFwe knock-out mice. We show that clonal overexpression of certain mFwe isoforms in Drosophila also triggers non-autonomous cell death, suggesting that Fwe function is evolutionarily conserved. Although mFwe-deficient mice display a normal phenotype, they develop a significantly lower number of skin papillomas upon exposure to DMBA/TPA two-stage skin carcinogenesis than do treated wild-type and mFwe heterozygous mice. Furthermore, mFwe expression is higher in papillomas and the papilloma-surrounding skin of treated wild-type mice compared with the skin of untreated wild-type mice. Thus, we propose that skin papilloma cells take advantage of mFwe activity to facilitate their clonal expansion. PMID:22362363

  14. Inhibition of agouti-related peptide expression by glucose in a clonal hypothalamic neuronal cell line is mediated by glycolysis, not oxidative phosphorylation.

    PubMed

    Cheng, Hui; Isoda, Fumiko; Belsham, Denise D; Mobbs, Charles V

    2008-02-01

    The regulation of neuroendocrine electrical activity and gene expression by glucose is mediated through several distinct metabolic pathways. Many studies have implicated AMP and ATP as key metabolites mediating neuroendocrine responses to glucose, especially through their effects on AMP-activated protein kinase (AMPK), but other studies have suggested that glycolysis, and in particular the cytoplasmic conversion of nicotinamide adenine dinucleotide (NAD+) to reduced NAD (NADH), may play a more important role than oxidative phosphorylation for some effects of glucose. To address these molecular mechanisms further, we have examined the regulation of agouti-related peptide (AgRP) in a clonal hypothalamic cell line, N-38. AgRP expression was induced monotonically as glucose concentrations decreased from 10 to 0.5 mm glucose and with increasing concentrations of glycolytic inhibitors. However, neither pyruvate nor 3-beta-hydroxybutyrate mimicked the effect of glucose to reduce AgRP mRNA, but on the contrary, produced the opposite effect of glucose and actually increased AgRP mRNA. Nevertheless, 3beta-hydroxybutyrate mimicked the effect of glucose to increase ATP and to decrease AMPK phosphorylation. Similarly, inhibition of AMPK by RNA interference increased, and activation of AMPK decreased, AgRP mRNA. Additional studies demonstrated that neither the hexosamine nor the pentose/carbohydrate response element-binding protein pathways mediate the effects of glucose on AgRP expression. These studies do not support that either ATP or AMPK mediate effects of glucose on AgRP in this hypothalamic cell line but support a role for glycolysis and, in particular, NADH. These studies support that cytoplasmic or nuclear NADH, uniquely produced by glucose metabolism, mediates effects of glucose on AgRP expression.

  15. Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines.

    PubMed

    Rops, Angelique L; van der Vlag, Johan; Jacobs, Cor W; Dijkman, Henry B; Lensen, Joost F; Wijnhoven, Tessa J; van den Heuvel, Lambert P; van Kuppevelt, Toin H; Berden, Jo H

    2004-12-01

    The culture and establishment of glomerular cell lines has proven to be an important tool for the understanding of glomerular cell functions in glomerular physiology and pathology. Especially, the recent establishment of a conditionally immortalized visceral epithelial cell line has greatly boosted the research on podocyte biology. Glomeruli were isolated from H-2Kb-tsA58 transgenic mice that contain a gene encoding a temperature-sensitive variant of the SV40 large tumor antigen, facilitating proliferative growth at 33 degrees C and differentiation at 37 degrees C. Glomerular endothelial cells were isolated from glomerular outgrowth by magnetic beads loaded with CD31, CD105, GSL I-B4, and ULEX. Clonal cell lines were characterized by immunofluorescence staining with antibodies/lectins specific for markers of endothelial cells, podocytes, and mesangial cells. Putative glomerular endothelial cell lines were analyzed for (1) cytokine-induced expression of adhesion molecules; (2) tube formation on Matrigel coating; and (3) the presence of fenestrae. As judged by immunostaining for Wilms tumor-1, smooth muscle actin (SMA), podocalyxin, and von Willebrand factor (vWF), we obtained putative endothelial, podocyte and mesangial cell lines. The mouse glomerular endothelial cell clone #1 (mGEnC-1) was positive for vWF, podocalyxin, CD31, CD105, VE-cadherin, GSL I-B4, and ULEX, internalized acetylated-low-density lipoprotein (LDL), and showed increased expression of adhesion molecules after activation with proinflammatory cytokines. Furthermore, mGEnC-1 formed tubes and contained nondiaphragmed fenestrae. The mGEnC-1 represents a conditionally immortalized cell line with various characteristics of differentiated glomerular endothelial cells when cultured at 37 degrees C. Most important, mGEnC-1 contains nondiaphragmed fenestrae, which is a unique feature of glomerular endothelial cells.

  16. Clonal analysis of stem cells in differentiation and disease.

    PubMed

    Colom, Bartomeu; Jones, Philip H

    2016-12-01

    Tracking the fate of individual cells and their progeny by clonal analysis has redefined the concept of stem cells and their role in health and disease. The maintenance of cell turnover in adult tissues is achieved by the collective action of populations of stem cells with an equal likelihood of self-renewal or differentiation. Following injury stem cells exhibit striking plasticity, switching from homeostatic behavior in order to repair damaged tissues. The effects of disease states on stem cells are also being uncovered, with new insights into how somatic mutations trigger clonal expansion in early neoplasia. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Improved clonality detection in B-cell lymphoma using a semi-nested modification of the BIOMED-2 PCR assay for IGH rearrangement: A paraffin-embedded tissue study.

    PubMed

    Sakamoto, Yuma; Masaki, Ayako; Aoyama, Satsuki; Han, Shusen; Saida, Kosuke; Fujii, Kana; Takino, Hisashi; Murase, Takayuki; Iida, Shinsuke; Inagaki, Hiroshi

    2017-09-01

    The BIOMED-2 PCR protocol for targeting the IGH gene is widely employed for detecting clonality in B-cell malignancies. Unfortunately, the detection of clonality with this method is not very sensitive when paraffin sections are used as a DNA source. To increase the sensitivity, we devised a semi-nested modification of a JH consensus primer. The clonality detection rates of three assays were compared: the standard BIOMED-2, BIOMED-2 assay followed by BIOMED-2 re-amplification, and BIOMED-2 assay followed by semi-nested BIOMED-2. We tested more than 100 cases using paraffin-embedded tissues of various B-cell lymphomas, and found that the clonality detection rates with the above three assays were 63.9%, 79.6%, and 88.0%, respectively. While BIOMED-2 re-amplification was significantly more sensitive than the standard BIOMED-2, the semi-nested BIOMED-2 was significantly more sensitive than both the standard BIOMED-2 and BIOMED-2 re-amplification. An increase in sensitivity was observed in all lymphoma subtypes examined. In conclusion, tumor clonality may be detected in nearly 90% of B-cell lymphoma cases with semi-nested BIOMED-2. This ancillary assay may be useful when the standard BIOMED-2 fails to detect clonality in histopathologically suspected B-cell lymphomas. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  18. Synchrony of clonal cell proliferation and contiguity of clonally related cells: production of mosaicism in the ventricular zone of developing mouse neocortex

    NASA Technical Reports Server (NTRS)

    Cai, L.; Hayes, N. L.; Nowakowski, R. S.

    1997-01-01

    We have analyzed clonal cell proliferation in the ventricular zone (VZ) of the early developing mouse neocortex with a replication-incompetent retrovirus encoding human placental alkaline phosphatase (AP). The retrovirus was injected into the lateral ventricles on embryonic day 11 (E11), i.e., at the onset of neuronogenesis. Three days postinjection, on E14, a total of 259 AP-labeled clones of various sizes were found in 7 fetal brains. There are approximately 7 cell cycles between E11 and E14 (), and there is a 1-2 cell cycle delay between retroviral injection and the production of a retrovirally labeled "founder" cell; thus, we estimate that the "age" of the clones was about 5-6 cell cycles. Almost one-half of the clones (48.3%) identified were pure proliferating clones containing cells only in the VZ. Another 18.5% contained both proliferating and postproliferative cells, and 33.2% contained only postproliferative cells. It was striking that over 90% of the clonally related proliferating cells occurred in clusters of two or more apparently contiguous cells, and about 73% of the proliferating cells occurred in clusters of three or more cells. Regardless of the number of cells in the clone, these clusters were tightly packed and confined to a single level of the VZ. This clustering of proliferating cells indicates that clonally related cells maintain neighbor-neighbor relationships as they undergo interkinetic nuclear migration and progress through several cell cycles, and, as a result, the ventricular zone is a mosaic of small clusters of clonally related and synchronously cycling cells. In addition, cells in the intermediate zone and the cortical plate were also frequently clustered, indicating that they became postproliferative at a similar time and that the output of the VZ is influenced by its mosaic structure.

  19. Clonality in myeloproliferative disorders: Analysis by means of polymerase chain reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliland, D.G.; Blanchard, K.L.; Levy, J.

    1991-08-01

    The myeloproliferative syndromes are acquired disorders of hematopoiesis that provide insights into the transition from somatic cell mutation to neoplasia. The clonal origin of specific blood cells can be assessed in patients with X chromosome-linked polymorphisms, taking advantage of random inactivation of the X chromosome. The authors have adapted the PCR for determination of clonality on as few as 100 cells, including individual colonies grown in culture. Amplifying a polymorphic portion of the X chromosome-linked phosphoglycerate kinase (PGK) gene after selective digestion of the active X chromosome with a methylation-sensitive restriction enzyme gave results fully concordant with standard Southern blottingmore » of DNA samples form normal (polyclonal) polymorphonuclear cells (PMN) as well as clonal PMN from patients with myelodysplastic syndrome and polycythemia vera (PCV). They have used this technique to demonstrate heterogeneity of lineage involvement in patients with PCV. The same clinical phenotype may arise from clonal proliferation of different hematopoietic progenitors.« less

  20. Reconstruction of cartilage with clonal mesenchymal stem cell-acellular dermal matrix in cartilage defect model in nonhuman primates.

    PubMed

    Ma, Anlun; Jiang, Li; Song, Lijun; Hu, Yanxin; Dun, Hao; Daloze, Pierre; Yu, Yonglin; Jiang, Jianyuan; Zafarullah, Muhammad; Chen, Huifang

    2013-07-01

    Articular cartilage defects are commonly associated with trauma, inflammation and osteoarthritis. Mesenchymal stem cell (MSC)-based therapy is a promising novel approach for repairing articular cartilage. Direct intra-articular injection of uncommitted MSCs does not regenerate high-quality cartilage. This study explored utilization of a new three-dimensional, selected chondrogenic clonal MSC-loaded monkey acellular dermal matrix (MSC-ADM) scaffold to repair damaged cartilage in an experimental model of knee joint cartilage defect in Cynomolgus monkeys. MSCs were characterized for cell size, cell yield, phenotypes, proliferation and chondrogenic differentiation capacity. Chondrogenic differentiation assays were performed at different MSC passages by sulfated glycosaminoglycans (sGAG), collagen, and fluorescence activated cell sorter (FACS) analysis. Selected chondrogenic clonal MSCs were seeded onto ADM scaffold with the sandwich model and MSC-loaded ADM grafts were analyzed by confocal microscopy and scanning electron microscopy. Cartilage defects were treated with normal saline, clonal MSCs and clonal MSC-ADM grafts, respectively. The clinical parameters, and histological and immunohistochemical examinations were evaluated at weeks 8, 16, 24 post-treatment, respectively. Polyclonal and clonal MSCs could differentiate into the chondrogenic lineage after stimulation with suitable chondrogenic factors. They expressed mesenchymal markers and were negative for hematopoietic markers. Articular cartilage defects were considerably improved and repaired by selected chondrogenic clonal MSC-based treatment, particularly, in MSC-ADM-treated group. The histological scores in MSC-ADM-treated group were consistently higher than those of other groups. Our results suggest that selected chondrogenic clonal MSC-loaded ADM grafts could improve the cartilage lesions in Cynomolgus monkey model, which may be applicable for repairing similar human cartilage defects. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A highly reproducible quantitative viral outgrowth assay for the measurement of the replication-competent latent HIV-1 reservoir.

    PubMed

    Fun, Axel; Mok, Hoi Ping; Wills, Mark R; Lever, Andrew M

    2017-02-24

    Cure of Human Immunodeficiency Virus (HIV) infection remains elusive due to the persistence of HIV in a latent reservoir. Strategies to eradicate latent infection can only be evaluated with robust, sensitive and specific assays to quantitate reactivatable latent virus. We have taken the standard peripheral blood mononuclear cell (PBMC) based viral outgrowth methodology and from it created a logistically simpler and more highly reproducible assay to quantify replication-competent latent HIV in resting CD4 + T cells, both increasing accuracy and decreasing cost and labour. Purification of resting CD4 + T cells from whole PBMC is expedited and achieved in 3 hours, less than half the time of conventional protocols. Our indicator cell line, SupT1-CCR5 cells (a clonal cell line expressing CD4, CXCR4 and CCR5) provides a readily available standardised readout. Reproducibility compares favourably to other published assays but with reduced cost, labour and assay heterogeneity without compromising sensitivity.

  2. Arrested development of the myxozoan parasite, Myxobolus cerebralis, in certain populations of mitochondrial 16S lineage III Tubifex tubifex.

    PubMed

    Baxa, D V; Kelley, G O; Mukkatira, K S; Beauchamp, K A; Rasmussen, C; Hedrick, R P

    2008-01-01

    Laboratory populations of Tubifex tubifex from mitochondrial (mt)16S ribosomal DNA (rDNA) lineage III were generated from single cocoons of adult worms releasing the triactinomyxon stages (TAMs) of the myxozoan parasite, Myxobolus cerebralis. Subsequent worm populations from these cocoons, referred to as clonal lines, were tested for susceptibility to infection with the myxospore stages of M. cerebralis. Development and release of TAMs occurred in five clonal lines, while four clonal lines showed immature parasitic forms that were not expelled from the worm (non-TAM producers). Oligochaetes from TAM- and non-TAM-producing clonal lines were confirmed as lineage III based on mt16S rDNA and internal transcribed spacer region 1 (ITS1) sequences, but these genes did not differentiate these phenotypes. In contrast, random amplified polymorphic DNA analyses of genomic DNA demonstrated unique banding patterns that distinguished the phenotypes. Cohabitation of parasite-exposed TAM- and non-TAM-producing phenotypes showed an overall decrease in expected TAM production compared to the same exposure dose of the TAM-producing phenotype without cohabitation. These studies suggest that differences in susceptibility to parasite infection can occur in genetically similar T. tubifex populations, and their coexistence may affect overall M. cerebralis production, a factor that may influence the severity of whirling disease in wild trout populations.

  3. Arrested development of the myxozoan parasite, Myxobolus cerebralis, in certain populations of mitochondrial 16S lineage III Tubifex tubifex

    USGS Publications Warehouse

    Baxa, D.V.; Kelley, G.O.; Mukkatira, K.S.; Beauchamp, K.A.; Rasmussen, C.; Hedrick, R.P.

    2008-01-01

    Laboratory populations of Tubifex tubifex from mitochondrial (mt)16S ribosomal DNA (rDNA) lineage III were generated from single cocoons of adult worms releasing the triactinomyxon stages (TAMs) of the myxozoan parasite, Myxobolus cerebralis. Subsequent worm populations from these cocoons, referred to as clonal lines, were tested for susceptibility to infection with the myxospore stages of M. cerebralis. Development and release of TAMs occurred in five clonal lines, while four clonal lines showed immature parasitic forms that were not expelled from the worm (non-TAM producers). Oligochaetes from TAM- and non-TAM-producing clonal lines were confirmed as lineage III based on mt16S rDNA and internal transcribed spacer region 1 (ITS1) sequences, but these genes did not differentiate these phenotypes. In contrast, random amplified polymorphic DNA analyses of genomic DNA demonstrated unique banding patterns that distinguished the phenotypes. Cohabitation of parasite-exposed TAM- and non-TAM-producing phenotypes showed an overall decrease in expected TAM production compared to the same exposure dose of the TAM-producing phenotype without cohabitation. These studies suggest that differences in susceptibility to parasite infection can occur in genetically similar T. tubifex populations, and their coexistence may affect overall M. cerebralis production, a factor that may influence the severity of whirling disease in wild trout populations. ?? 2007 Springer-Verlag.

  4. Generation of immortal cell lines from the adult pituitary: role of cAMP on differentiation of SOX2-expressing progenitor cells to mature gonadotropes.

    PubMed

    Kim, Ginah L; Wang, Xiaomei; Chalmers, Jennifer A; Thompson, David R; Dhillon, Sandeep S; Koletar, Margaret M; Belsham, Denise D

    2011-01-01

    The pituitary is a complex endocrine tissue composed of a number of unique cell types distinguished by the expression and secretion of specific hormones, which in turn control critical components of overall physiology. The basic function of these cells is understood; however, the molecular events involved in their hormonal regulation are not yet fully defined. While previously established cell lines have provided much insight into these regulatory mechanisms, the availability of representative cell lines from each cell lineage is limited, and currently none are derived from adult pituitary. We have therefore used retroviral transfer of SV40 T-antigen to mass immortalize primary pituitary cell culture from an adult mouse. We have generated 19 mixed cell cultures that contain cells from pituitary cell lineages, as determined by RT-PCR analysis and immunocytochemistry for specific hormones. Some lines expressed markers associated with multipotent adult progenitor cells or transit-amplifying cells, including SOX2, nestin, S100, and SOX9. The progenitor lines were exposed to an adenylate cyclase activator, forskolin, over 7 days and were induced to differentiate to a more mature gonadotrope cell, expressing significant levels of α-subunit, LHβ, and FSHβ mRNAs. Additionally, clonal populations of differentiated gonadotropes were exposed to 30 nM gonadotropin-releasing hormone and responded appropriately with a significant increase in α-subunit and LHβ transcription. Further, exposure of the lines to a pulse paradigm of GnRH, in combination with 17β-estradiol and dexamethasone, significantly increased GnRH receptor mRNA levels. This array of adult-derived pituitary cell models will be valuable for both studies of progenitor cell characteristics and modulation, and the molecular analysis of individual pituitary cell lineages.

  5. Biological and Clinical Implications of Clonal Heterogeneity and Clonal Evolution in Multiple Myeloma.

    PubMed

    Bianchi, Giada; Ghobrial, Irene M

    Clonal heterogeneity and clonal evolution have emerged as critical concepts in the field of oncology over the past four decades, largely thanks to the implementation of novel technologies such as comparative genomic hybridization, whole genome/exome sequencing and epigenetic analysis. Along with the identification of cancer stem cells in the majority of neoplasia, the recognition of intertumor and intratumor variability has provided a novel perspective to understand the mechanisms behind tumor evolution and its implication in terms of treatment failure and cancer relapse or recurrence. First hypothesized over two decades ago, clonal heterogeneity and clonal evolution have been confirmed in multiple myeloma (MM), an incurable cancer of plasma cells, almost universally preceded by a pre-malignant conditioned named monoclonal gammopathy of undetermined significance (MGUS). The genetic events and molecular mechanisms underlying such evolution have been difficult to dissect. Moreover, while a role for the bone marrow microenvironment in supporting MM cell survival, proliferation and drug-resistance has been well established, whether it is directly involved in driving evolution from MGUS to MM is at present unclear. We present in this review a historical excursus on the concepts of clonal heterogeneity and clonal evolution in MM with a special emphasis on their role in the progression from MGUS to MM; the contribution of the microenvironment; and the clinical implications in terms of resistance to treatment and disease relapse/recurrence.

  6. Biological and Clinical Implications of Clonal Heterogeneity and Clonal Evolution in Multiple Myeloma

    PubMed Central

    Bianchi, Giada; Ghobrial, Irene M.

    2015-01-01

    Clonal heterogeneity and clonal evolution have emerged as critical concepts in the field of oncology over the past four decades, largely thanks to the implementation of novel technologies such as comparative genomic hybridization, whole genome/exome sequencing and epigenetic analysis. Along with the identification of cancer stem cells in the majority of neoplasia, the recognition of intertumor and intratumor variability has provided a novel perspective to understand the mechanisms behind tumor evolution and its implication in terms of treatment failure and cancer relapse or recurrence. First hypothesized over two decades ago, clonal heterogeneity and clonal evolution have been confirmed in multiple myeloma (MM), an incurable cancer of plasma cells, almost universally preceded by a pre-malignant conditioned named monoclonal gammopathy of undetermined significance (MGUS). The genetic events and molecular mechanisms underlying such evolution have been difficult to dissect. Moreover, while a role for the bone marrow microenvironment in supporting MM cell survival, proliferation and drug-resistance has been well established, whether it is directly involved in driving evolution from MGUS to MM is at present unclear. We present in this review a historical excursus on the concepts of clonal heterogeneity and clonal evolution in MM with a special emphasis on their role in the progression from MGUS to MM; the contribution of the microenvironment; and the clinical implications in terms of resistance to treatment and disease relapse/recurrence. PMID:25705146

  7. PyClone: statistical inference of clonal population structure in cancer.

    PubMed

    Roth, Andrew; Khattra, Jaswinder; Yap, Damian; Wan, Adrian; Laks, Emma; Biele, Justina; Ha, Gavin; Aparicio, Samuel; Bouchard-Côté, Alexandre; Shah, Sohrab P

    2014-04-01

    We introduce PyClone, a statistical model for inference of clonal population structures in cancers. PyClone is a Bayesian clustering method for grouping sets of deeply sequenced somatic mutations into putative clonal clusters while estimating their cellular prevalences and accounting for allelic imbalances introduced by segmental copy-number changes and normal-cell contamination. Single-cell sequencing validation demonstrates PyClone's accuracy.

  8. FUNCTIONAL SUBCLONE PROFILING FOR PREDICTION OF TREATMENT-INDUCED INTRA-TUMOR POPULATION SHIFTS AND DISCOVERY OF RATIONAL DRUG COMBINATIONS IN HUMAN GLIOBLASTOMA

    PubMed Central

    Reinartz, Roman; Wang, Shanshan; Kebir, Sied; Silver, Daniel J.; Wieland, Anja; Zheng, Tong; Küpper, Marius; Rauschenbach, Laurèl; Fimmers, Rolf; Shepherd, Timothy M.; Trageser, Daniel; Till, Andreas; Schäfer, Niklas; Glas, Martin; Hillmer, Axel M.; Cichon, Sven; Smith, Amy A.; Pietsch, Torsten; Liu, Ying; Reynolds, Brent A.; Yachnis, Anthony; Pincus, David W.; Simon, Matthias; Brüstle, Oliver; Steindler, Dennis A.; Scheffler, Björn

    2016-01-01

    Purpose Investigation of clonal heterogeneity may be key to understanding mechanisms of therapeutic failure in human cancer. However, little is known on the consequences of therapeutic intervention on the clonal composition of solid tumors. Experimental Design Here, we used 33 single cell-derived subclones generated from five clinical glioblastoma specimens for exploring intra- and inter-individual spectra of drug resistance profiles in vitro. In a personalized setting, we explored whether differences in pharmacological sensitivity among subclones could be employed to predict drug-dependent changes to the clonal composition of tumors. Results Subclones from individual tumors exhibited a remarkable heterogeneity of drug resistance to a library of potential anti-glioblastoma compounds. A more comprehensive intra-tumoral analysis revealed that stable genetic and phenotypic characteristics of co-existing subclones could be correlated with distinct drug sensitivity profiles. The data obtained from differential drug response analysis could be employed to predict clonal population shifts within the naïve parental tumor in vitro and in orthotopic xenografts. Furthermore, the value of pharmacological profiles could be shown for establishing rational strategies for individualized secondary lines of treatment. Conclusions Our data provide a previously unrecognized strategy for revealing functional consequences of intra-tumor heterogeneity by enabling predictive modeling of treatment-related subclone dynamics in human glioblastoma. PMID:27521447

  9. Selection of Early-Occurring Mutations Dictates Hormone-Independent Progression in Mouse Mammary Tumor Lines▿

    PubMed Central

    Gattelli, Albana; Zimberlin, María N.; Meiss, Roberto P.; Castilla, Lucio H.; Kordon, Edith C.

    2006-01-01

    Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions. PMID:16971449

  10. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.

    PubMed

    Yumlu, Saniye; Stumm, Jürgen; Bashir, Sanum; Dreyer, Anne-Kathrin; Lisowski, Pawel; Danner, Eric; Kühn, Ralf

    2017-05-15

    Human induced pluripotent stem cells (hiPSCs) represent an ideal in vitro platform to study human genetics and biology. The recent advent of programmable nucleases makes also the human genome amenable to experimental genetics through either the correction of mutations in patient-derived iPSC lines or the de novo introduction of mutations into otherwise healthy iPSCs. The production of specific and sometimes complex genotypes in multiple cell lines requires efficient and streamlined gene editing technologies. In this article we provide protocols for gene editing in hiPSCs. We presently achieve high rates of gene editing at up to three loci using a modified iCRISPR system. This system includes a doxycycline inducible Cas9 and sgRNA/reporter plasmids for the enrichment of transfected cells by fluorescence-activated cell sorting (FACS). Here we cover the selection of target sites, vector construction, transfection, and isolation and genotyping of modified hiPSC clones. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cancer stem cells: A product of clonal evolution?

    PubMed

    van Niekerk, Gustav; Davids, Lester M; Hattingh, Suzèl M; Engelbrecht, Anna-Mart

    2017-03-01

    The cancer stem cell (CSC) model has emerged as a prominent paradigm for explaining tumour heterogeneity. CSCs in tumour recurrence and drug resistance have also been implicated in a number of studies. In fact, CSCs are often identified by their expression of drug-efflux proteins which are also highly expressed in normal stem cells. Similarly, pro-survival or proliferation signalling often exhibited by stem cells is regularly reported as being upregulated by CSC. Here we review evidence suggesting that many aspects of CSCs are more readily described by clonal evolution. As an example, cancer cells often exhibit copy number gains of genes involved in drug-efflux proteins and pro-survival signalling. Consequently, clonal selection for stem cell traits may result in cancer cells developing "stemness" traits which impart a fitness advantage, without strictly following a CSC model. Finally, since symmetric cell division would give rise to more cells than asymmetric division, it is expected that more advanced tumours would depart from a CSC. Collectively, these observations suggest clonal evolution may explain many aspects of the CSC. © 2016 UICC.

  12. Cell size control and a cell-intrinsic maturation program in proliferating oligodendrocyte precursor cells.

    PubMed

    Gao, F B; Raff, M

    1997-09-22

    We have used clonal analysis and time-lapse video recording to study the proliferative behavior of purified oligodendrocyte precursor cells isolated from the perinatal rat optic nerve growing in serum-free cultures. First, we show that the cell cycle time of precursor cells decreases with increasing concentrations of PDGF, the main mitogen for these cells, suggesting that PDGF levels may regulate the cell cycle time during development. Second, we show that precursor cells isolated from embryonic day 18 (E18) nerves differ from precursor cells isolated from postnatal day 7 (P7) or P14 nerves in a number of ways: they have a simpler morphology, and they divide faster and longer before they stop dividing and differentiate into postmitotic oligodendrocytes. Third, we show that purified E18 precursor cells proliferating in culture progressively change their properties to resemble postnatal cells, suggesting that progressive maturation is an intrinsic property of the precursors. Finally, we show that precursor cells, especially mature ones, sometimes divide unequally, such that one daughter cell is larger than the other; in each of these cases the larger daughter cell divides well before the smaller one, suggesting that the precursor cells, just like single-celled eucaryotes, have to reach a threshold size before they can divide. These and other findings raise the possibility that such stochastic unequal divisions, rather than the stochastic events occurring in G1 proposed by "transition probability" models, may explain the random variability of cell cycle times seen within clonal cell lines in culture.

  13. Cell Size Control and a Cell-intrinsic Maturation Program in Proliferating Oligodendrocyte Precursor Cells

    PubMed Central

    Gao, Fen-Biao; Raff, Martin

    1997-01-01

    We have used clonal analysis and time-lapse video recording to study the proliferative behavior of purified oligodendrocyte precursor cells isolated from the perinatal rat optic nerve growing in serum-free cultures. First, we show that the cell cycle time of precursor cells decreases with increasing concentrations of PDGF, the main mitogen for these cells, suggesting that PDGF levels may regulate the cell cycle time during development. Second, we show that precursor cells isolated from embryonic day 18 (E18) nerves differ from precursor cells isolated from postnatal day 7 (P7) or P14 nerves in a number of ways: they have a simpler morphology, and they divide faster and longer before they stop dividing and differentiate into postmitotic oligodendrocytes. Third, we show that purified E18 precursor cells proliferating in culture progressively change their properties to resemble postnatal cells, suggesting that progressive maturation is an intrinsic property of the precursors. Finally, we show that precursor cells, especially mature ones, sometimes divide unequally, such that one daughter cell is larger than the other; in each of these cases the larger daughter cell divides well before the smaller one, suggesting that the precursor cells, just like single-celled eucaryotes, have to reach a threshold size before they can divide. These and other findings raise the possibility that such stochastic unequal divisions, rather than the stochastic events occurring in G1 proposed by “transition probability” models, may explain the random variability of cell cycle times seen within clonal cell lines in culture. PMID:9298991

  14. Genetic Heterogeneity and Clonal Evolution of Tumor Cells and their Impact on Precision Cancer Medicine.

    PubMed

    Sabaawy, Hatem E

    2013-11-18

    The efficacy of targeted therapies in leukemias and solid tumors depends upon the accurate detection and sustained targeting of initial and evolving driver mutations and/or aberrations in cancer cells. Tumor clonal evolution of the diverse populations of cancer cells during cancer progression contributes to the longitudinal variations of clonal, morphological, anatomical, and molecular heterogeneity of tumors. Moreover, drug-resistant subclones present at initiation of therapy or emerging as a result of targeted therapies represent major challenges for achieving success of personalized therapies in providing meaningful improvement in cancer survival rates. Here, I briefly portray tumor cell clonal evolution at the cellular and molecular levels, and present the multiple types of genetic heterogeneity in tumors, with a focus on their impact on the implementation of personalized or precision cancer medicine.

  15. Effects of chemical and physical agents on recombination events in cells of the germ line of male and female Drosophila melanogaster.

    PubMed

    Würgler, F E

    1991-01-01

    Genotoxic agents can induce mutations as well as recombination in the genetic material. The fruit fly Drosophila melanogaster was one of the first assay systems to test physical and chemical agents for recombinogenic effects. Such effects can be observed in cells of the germ line as well as in somatic cells. At present information is available on 54 agents, among them 48 chemicals that have been tested in cells of the germ line of males and/or females. Effects on meiotic recombination in female germ cells cannot simply be classified as positive or negative since for a number of agents, depending on the chromosome region studied, recombination frequencies may be increased, unaffected or decreased. The male germ line of D. melanogaster represents a unique situation because meiotic recombination does not occur. Among 25 agents tested in male germ cells 24 did induce male recombination, among them alkylating, intercalating and cross-linking agents, direct-acting ones as well as compounds needing metabolic activation. With several compounds the frequency of induced recombination is highest in the heterochromatic regions near the centromeres. In brood pattern analyses, e.g., after exposure of adult males to ionizing radiation, the first appearance of crossover progeny is indicative of the sampling of exposed spermatocytes. In premeiotic cells of the male and the female germ line mitotic recombination can occur. Upon clonal expansion of the recombinant cells, clusters of identical crossovers can be observed.

  16. Complexities and sequence similarities of mRNA populations of cholinergic (NS20-Y) and adrenergic (N1E-115) murine neuroblastoma cell lines.

    PubMed

    Strauss, W L

    1990-07-01

    The clonal murine neuroblastoma cell lines NS20-Y and N1E-115 have been proposed as models for examining the commitment of neural crest cells to either the cholinergic or adrenergic phenotype, respectively. The validity of this model depends in part on the extent to which these two cell lines have diverged as a result of their transformed, rather than neuronal properties. In order to quantitate differences in gene expression between NS20-Y and N1E-115 cells, the mRNA complexity of each cell type was determined. An analysis of the kinetics of hybridization of NS20-Y cell mRNA with cDNA prepared from NS20-Y cell mRNA demonstrated the presence of approximately 11,700 mRNA species assuming an average length of 1900 nucleotides. A similar analysis using mRNA isolated from N1E-115 cells and cDNA prepared from N1E-115 cell mRNA demonstrated that the adrenergic cell line expressed approximately 11,600 mRNA species. The species of mRNA expressed by each cell line were resolved into high, intermediate, and low abundance populations. In order to determine whether mRNAs were expressed by the cholinergic, but not by the adrenergic cell line, NS20-Y cDNA was hybridized to an excess of N1E-115 cell mRNA. An analysis of the solution hybridization kinetics from this procedure demonstrated that the two cell lines do not differ significantly in the nucleotide complexity of their mRNA populations. The extensive similarity between the two mRNA populations suggests that only a small number of genes are expressed differentially between the two cell lines and supports their use as models for the differentiation of cholinergic and adrenergic neurons.

  17. Presentation of antigen to T lymphocytes by non-immune B-cell hybridoma clones: evidence for specific and non-specific presentation

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Atassi, M. Z.

    1988-01-01

    Non-immune SJL (H-2s) spleen cells were fused with (H-2d) Balb/c 653-myeloma cells and the hybridomas were cloned by two limiting dilutions. The resulting hybrid B- cell clones were tested for their antigen presentation capability to SJL T-cell lines that were specific for either lysozyme or myoglobin. In proliferative assays, 53% of the antigen presenting B-cell clones were able to present both myoglobin and lysozyme (general presenters) while the other 47% presented specifically either myoglobin or lysozyme (specific presenters). The ability to selectively present either myoglobin or lysozyme indicates that antigen presentation at the clonal level can be specific or non-specific depending on the particular B-cell clone.

  18. Presentation of antigen to T lymphocytes by non-immune B-cell hybridoma clones: evidence for specific and non-specific presentation

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Zouhair Atassi, M. Z.

    1989-01-01

    Non-immune SJL (H-2s) spleen cells were fused with non-secreting, non-antigen presenting (H-2d) Balb/c 653-myeloma cells and the hybridomas were cloned by two limiting dilutions. The resulting hybrid B-cell clones were tested for their antigen presentation capability to SJL T-cell lines that were specific for either lysozyme or myoglobin. In proliferative assays, 53% of the antigen presenting B-cell clones presented both myoglobin and lysozyme (general presenters) while the other 47% presented specifically either myoglobin or lysozyme (specific presenters). The ability to selectively present either myoglobin or lysozyme indicates that antigen presentation at the clonal level can be specific or non-specific depending on the particular B-cell clone.

  19. VDJ-Seq: Deep Sequencing Analysis of Rearranged Immunoglobulin Heavy Chain Gene to Reveal Clonal Evolution Patterns of B Cell Lymphoma.

    PubMed

    Jiang, Yanwen; Nie, Kui; Redmond, David; Melnick, Ari M; Tam, Wayne; Elemento, Olivier

    2015-12-28

    Understanding tumor clonality is critical to understanding the mechanisms involved in tumorigenesis and disease progression. In addition, understanding the clonal composition changes that occur within a tumor in response to certain micro-environment or treatments may lead to the design of more sophisticated and effective approaches to eradicate tumor cells. However, tracking tumor clonal sub-populations has been challenging due to the lack of distinguishable markers. To address this problem, a VDJ-seq protocol was created to trace the clonal evolution patterns of diffuse large B cell lymphoma (DLBCL) relapse by exploiting VDJ recombination and somatic hypermutation (SHM), two unique features of B cell lymphomas. In this protocol, Next-Generation sequencing (NGS) libraries with indexing potential were constructed from amplified rearranged immunoglobulin heavy chain (IgH) VDJ region from pairs of primary diagnosis and relapse DLBCL samples. On average more than half million VDJ sequences per sample were obtained after sequencing, which contain both VDJ rearrangement and SHM information. In addition, customized bioinformatics pipelines were developed to fully utilize sequence information for the characterization of IgH-VDJ repertoire within these samples. Furthermore, the pipeline allows the reconstruction and comparison of the clonal architecture of individual tumors, which enables the examination of the clonal heterogeneity within the diagnosis tumors and deduction of clonal evolution patterns between diagnosis and relapse tumor pairs. When applying this analysis to several diagnosis-relapse pairs, we uncovered key evidence that multiple distinctive tumor evolutionary patterns could lead to DLBCL relapse. Additionally, this approach can be expanded into other clinical aspects, such as identification of minimal residual disease, monitoring relapse progress and treatment response, and investigation of immune repertoires in non-lymphoma contexts.

  20. Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin

    PubMed Central

    Roy, Jahnabi; Wycislo, Kathryn L.; Pondenis, Holly; Fan, Timothy M.

    2017-01-01

    Osteosarcoma is the most common bone cancer in dogs and people. In order to improve clinical outcomes, it is necessary to identify proteins that are differentially expressed by metastatic cells. Membrane bound proteins are responsible for multiple pro-metastatic functions. Therefore characterizing the differential expression of membranous proteins between metastatic and non-metastatic clonal variants will allow the discovery of druggable targets and consequently improve treatment methodology. The objective of this investigation was to systemically identify the membrane-associated proteomics of metastatic and non-metastatic variants of human and canine origin. Two clonal variants of divergent in vivo metastatic potential from human and canine origins were used. The plasma membranes were isolated and peptide fingerprinting was used to identify differentially expressed proteins. Selected proteins were further validated using western blotting, flow cytometry, confocal microscopy and immunohistochemistry. Over 500 proteins were identified for each cell line with nearly 40% of the proteins differentially regulated. Conserved between both species, metastatic variants demonstrated significant differences in expression of membrane proteins that are responsible for pro-metastatic functions. Additionally, CD147, CD44 and vimentin were validated using various biochemical techniques. Taken together, through a comparative proteomic approach we have identified several differentially expressed cell membrane proteins that will help in the development of future therapeutics. PMID:28910304

  1. Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin.

    PubMed

    Roy, Jahnabi; Wycislo, Kathryn L; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2017-01-01

    Osteosarcoma is the most common bone cancer in dogs and people. In order to improve clinical outcomes, it is necessary to identify proteins that are differentially expressed by metastatic cells. Membrane bound proteins are responsible for multiple pro-metastatic functions. Therefore characterizing the differential expression of membranous proteins between metastatic and non-metastatic clonal variants will allow the discovery of druggable targets and consequently improve treatment methodology. The objective of this investigation was to systemically identify the membrane-associated proteomics of metastatic and non-metastatic variants of human and canine origin. Two clonal variants of divergent in vivo metastatic potential from human and canine origins were used. The plasma membranes were isolated and peptide fingerprinting was used to identify differentially expressed proteins. Selected proteins were further validated using western blotting, flow cytometry, confocal microscopy and immunohistochemistry. Over 500 proteins were identified for each cell line with nearly 40% of the proteins differentially regulated. Conserved between both species, metastatic variants demonstrated significant differences in expression of membrane proteins that are responsible for pro-metastatic functions. Additionally, CD147, CD44 and vimentin were validated using various biochemical techniques. Taken together, through a comparative proteomic approach we have identified several differentially expressed cell membrane proteins that will help in the development of future therapeutics.

  2. Whole-organism clone tracing using single-cell sequencing.

    PubMed

    Alemany, Anna; Florescu, Maria; Baron, Chloé S; Peterson-Maduro, Josi; van Oudenaarden, Alexander

    2018-04-05

    Embryonic development is a crucial period in the life of a multicellular organism, during which limited sets of embryonic progenitors produce all cells in the adult body. Determining which fate these progenitors acquire in adult tissues requires the simultaneous measurement of clonal history and cell identity at single-cell resolution, which has been a major challenge. Clonal history has traditionally been investigated by microscopically tracking cells during development, monitoring the heritable expression of genetically encoded fluorescent proteins and, more recently, using next-generation sequencing technologies that exploit somatic mutations, microsatellite instability, transposon tagging, viral barcoding, CRISPR-Cas9 genome editing and Cre-loxP recombination. Single-cell transcriptomics provides a powerful platform for unbiased cell-type classification. Here we present ScarTrace, a single-cell sequencing strategy that enables the simultaneous quantification of clonal history and cell type for thousands of cells obtained from different organs of the adult zebrafish. Using ScarTrace, we show that a small set of multipotent embryonic progenitors generate all haematopoietic cells in the kidney marrow, and that many progenitors produce specific cell types in the eyes and brain. In addition, we study when embryonic progenitors commit to the left or right eye. ScarTrace reveals that epidermal and mesenchymal cells in the caudal fin arise from the same progenitors, and that osteoblast-restricted precursors can produce mesenchymal cells during regeneration. Furthermore, we identify resident immune cells in the fin with a distinct clonal origin from other blood cell types. We envision that similar approaches will have major applications in other experimental systems, in which the matching of embryonic clonal origin to adult cell type will ultimately allow reconstruction of how the adult body is built from a single cell.

  3. Long-term cryopreservation of Greek fir embryogenic cell lines: recovery, maturation and genetic fidelity.

    PubMed

    Krajňáková, Jana; Sutela, Suvi; Aronen, Tuija; Gömöry, Dušan; Vianello, Angelo; Häggman, Hely

    2011-08-01

    In coniferous species, including Greek fir (Abies cephalonica Loud), the involvement of somatic embryo plants in breeding and reforestation programs is dependent on the success of long-term cryostorage of embryogenic cultures during clonal field testing. In the present study on Greek fir, we assayed the recovery, morphological characteristics and genetic fidelity of embryogenic cell lines 6 and 8 during proliferation and maturation after long-term cryostorage. Our results indicate successful recovery of both cell lines after 6 years in cryostorage. In the maturation phase, both cell lines were capable of producing somatic embryos although some differences were detected among experiments. However, these changes were more dependent on the differences in the components of the maturation media or in the experimental set-up than on the long-term cryostorage. During both proliferation and maturation phases, the morphological fidelity of the embryogenic cultures as well as of the somatic embryos were alike before and after cryopreservation. The genetic fidelity of the cryopreserved cell line 6 that was assayed by random amplified polymorphic DNA (i.e. RAPD) markers demonstrated some changes in the RAPD profiles. The results indicate possible genetic aberrations caused by long-term cryopreservation or somaclonal variation during the proliferation stage. However, in spite of these changes the embryogenic cultures did not lose their proliferation or maturation abilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Identification and removal of low-complexity sites in allele-specific analysis of ChIP-seq data.

    PubMed

    Waszak, Sebastian M; Kilpinen, Helena; Gschwind, Andreas R; Orioli, Andrea; Raghav, Sunil K; Witwicki, Robert M; Migliavacca, Eugenia; Yurovsky, Alisa; Lappalainen, Tuuli; Hernandez, Nouria; Reymond, Alexandre; Dermitzakis, Emmanouil T; Deplancke, Bart

    2014-01-15

    High-throughput sequencing technologies enable the genome-wide analysis of the impact of genetic variation on molecular phenotypes at unprecedented resolution. However, although powerful, these technologies can also introduce unexpected artifacts. We investigated the impact of library amplification bias on the identification of allele-specific (AS) molecular events from high-throughput sequencing data derived from chromatin immunoprecipitation assays (ChIP-seq). Putative AS DNA binding activity for RNA polymerase II was determined using ChIP-seq data derived from lymphoblastoid cell lines of two parent-daughter trios. We found that, at high-sequencing depth, many significant AS binding sites suffered from an amplification bias, as evidenced by a larger number of clonal reads representing one of the two alleles. To alleviate this bias, we devised an amplification bias detection strategy, which filters out sites with low read complexity and sites featuring a significant excess of clonal reads. This method will be useful for AS analyses involving ChIP-seq and other functional sequencing assays. The R package abs filter for library clonality simulations and detection of amplification-biased sites is available from http://updepla1srv1.epfl.ch/waszaks/absfilter

  5. Alphavirus production is inhibited in neurofibromin 1-deficient cells through activated RAS signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolokoltsova, Olga A.; Domina, Aaron M.; Kolokoltsov, Andrey A.

    2008-07-20

    Virus-host interactions essential for alphavirus pathogenesis are poorly understood. To address this shortcoming, we coupled retrovirus insertional mutagenesis and a cell survival selection strategy to generate clonal cell lines broadly resistant to Sindbis virus (SINV) and other alphaviruses. Resistant cells had significantly impaired SINV production relative to wild-type (WT) cells, although virus binding and fusion events were similar in both sets of cells. Analysis of the retroviral integration sites identified the neurofibromin 1 (NF1) gene as disrupted in alphavirus-resistant cell lines. Subsequent analysis indicated that expression of NF1 was significantly reduced in alphavirus-resistant cells. Importantly, independent down-regulation of NF1 expressionmore » in WT HEK 293 cells decreased virus production and increased cell viability during SINV infection, relative to infected WT cells. Additionally, we observed hyperactive RAS signalling in the resistant HEK 293 cells, which was anticipated because NF1 is a negative regulator of RAS. Expression of constitutively active RAS (HRAS-G12V) in a WT HEK 293 cell line resulted in a marked delay in virus production, compared with infected cells transfected with parental plasmid or dominant-negative RAS (HRAS-S17N). This work highlights novel host cell determinants required for alphavirus pathogenesis and suggests that RAS signalling may play an important role in neuronal susceptibility to SINV infection.« less

  6. A Medium-Throughput Single Cell CRISPR-Cas9 Assay to Assess Gene Essentiality.

    PubMed

    Grassian, A R; Scales, T M E; Knutson, S K; Kuntz, K W; McCarthy, N J; Lowe, C E; Moore, J D; Copeland, R A; Keilhack, H; Smith, J J; Wickenden, J A; Ribich, S

    2015-01-01

    Target selection for oncology is a crucial step in the successful development of therapeutics. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 editing of specific loci offers an alternative method to RNA interference and small molecule inhibitors for determining whether a cell line is dependent on a specific gene product for proliferation or survival. In our initial studies using CRISPR-Cas9 to verify the dependence on EZH2 activity for proliferation of a SMARCB1/SNF5/INI1 mutant malignant rhabdoid tumor (MRT) cell line, we noted that the initial reduction in proliferation was lost over time. We hypothesized that in the few cells that retain proliferative capacity, at least one allele of EZH2 remains functional. To verify this, we developed an assay to analyze 10s-100s of clonal cell populations for target gene disruption using restriction digest and fluorescent fragment length analyses. Our results clearly show that in cell lines in which EZH2 is essential for proliferation, at least one potentially functional allele of EZH2 is retained in the clones that survive. This assay clearly indicates whether or not a specific gene is essential for survival and/or proliferation in a given cell line. Such data can aid the development of more robust therapeutics by increasing confidence in target selection.

  7. Clonal Expansion (CE) Models in Cancer Risk Assessment

    EPA Science Inventory

    Cancer arises when cells accumulate sufficient critical mutations. Carcinogens increase the probability of mutation during cell division or promote clonal expansion within stages. Multistage CE models recapitulate this process and provide a framework for incorporating relevant da...

  8. Subcloning the RBL-2H3 mucosal mast cell line reduces Ca2+ response heterogeneity at the single-cell level.

    PubMed

    Kuchtey, J; Fewtrell, C

    1996-03-01

    Ca2+ imaging experiments have revealed that for a wide variety of cell types, including RBL-2H3 mucosal mast cells, there are considerable cell-to-cell differences of the Ca2+ responses of individual cells. This heterogeneity is evident in both the shape and latency of the responses. Mast cells within a single microscopic field of view, which have experienced identical culture conditions and experimental preparation, display a wide variety of responses upon antigen stimulation. We have subcloned the RBL-2H3 mucosal mast cell line to test the hypothesis that genetic heterogeneity within the population is the cause of the Ca2+ response heterogeneity. We found that cell-to-cell variability was significantly reduced in four of five clonal lines. The response heterogeneity remaining within the clones was not an experimental artifact caused by differences in the amount of fura-2 loaded by individual cells. Factors other than genetic heterogeneity must partly account for Ca2+ response heterogeneity. It is possible that the complex shapes and variability of the Ca2+ responses are reflections of the fact that there are multiple factors underlying the Ca2-response to antigen stimulation. Small differences from cell to cell in one or more of these factors could be a cause of the remaining Ca2+ response heterogeneity.

  9. CLONAL MEMORY

    PubMed Central

    McMichael, A. J.; Williamson, A. R.

    1974-01-01

    A single clone of B cells producing anti-DNP antibody recognizable by the isoelectric-focusing spectrum has been used, in a double transfer system, to study clonal memory. Trasnsferable B memory develops between 4 and 7 days after the first transfer with antigen. B-memory cells thus proliferate before or concomitantly with antibody-forming cells. PMID:4545165

  10. A Common Origin for B-1a and B-2 Lymphocytes in Clonal Pre- Hematopoietic Stem Cells.

    PubMed

    Hadland, Brandon K; Varnum-Finney, Barbara; Mandal, Pankaj K; Rossi, Derrick J; Poulos, Michael G; Butler, Jason M; Rafii, Shahin; Yoder, Mervin C; Yoshimoto, Momoko; Bernstein, Irwin D

    2017-06-06

    Recent evidence points to the embryonic emergence of some tissue-resident innate immune cells, such as B-1a lymphocytes, prior to and independently of hematopoietic stem cells (HSCs). However, whether the full hematopoietic repertoire of embryonic HSCs initially includes these unique lineages of innate immune cells has been difficult to assess due to lack of clonal assays that identify and assess HSC precursor (pre-HSC) potential. Here, by combining index sorting of single embryonic hemogenic precursors with in vitro HSC maturation and transplantation assays, we analyze emerging pre-HSCs at the single-cell level, revealing their unique stage-specific properties and clonal lineage potential. Remarkably, clonal pre-HSCs detected between E9.5 and E11.5 contribute to the complete B cell repertoire, including B-1a lymphocytes, revealing a previously unappreciated common precursor for all B cell lineages at the pre-HSC stage and a second embryonic origin for B-1a lymphocytes. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Advances for Studying Clonal Evolution in Cancer

    PubMed Central

    Raphael, Benjamin J.; Chen, Feng; Wendl, Michael C.

    2013-01-01

    The “clonal evolution” model of cancer emerged and “evolved” amid ongoing advances in technology, especially in recent years during which next generation sequencing instruments have provided ever higher resolution pictures of the genetic changes in cancer cells and heterogeneity in tumors. It has become increasingly clear that clonal evolution is not a single sequential process, but instead frequently involves simultaneous evolution of multiple subclones that co-exist because they are of similar fitness or are spatially separated. Co-evolution of subclones also occurs when they complement each other’s survival advantages. Recent studies have also shown that clonal evolution is highly heterogeneous: different individual tumors of the same type may undergo very different paths of clonal evolution. New methodological advancements, including deep digital sequencing of a mixed tumor population, single cell sequencing, and the development of more sophisticated computational tools, will continue to shape and reshape the models of clonal evolution. In turn, these will provide both an improved framework for the understanding of cancer progression and a guide for treatment strategies aimed at the elimination of all, rather than just some, of the cancer cells within a patient. PMID:23353056

  12. Advances for studying clonal evolution in cancer.

    PubMed

    Ding, Li; Raphael, Benjamin J; Chen, Feng; Wendl, Michael C

    2013-11-01

    The "clonal evolution" model of cancer emerged and "evolved" amid ongoing advances in technology, especially in recent years during which next generation sequencing instruments have provided ever higher resolution pictures of the genetic changes in cancer cells and heterogeneity in tumors. It has become increasingly clear that clonal evolution is not a single sequential process, but instead frequently involves simultaneous evolution of multiple subclones that co-exist because they are of similar fitness or are spatially separated. Co-evolution of subclones also occurs when they complement each other's survival advantages. Recent studies have also shown that clonal evolution is highly heterogeneous: different individual tumors of the same type may undergo very different paths of clonal evolution. New methodological advancements, including deep digital sequencing of a mixed tumor population, single cell sequencing, and the development of more sophisticated computational tools, will continue to shape and reshape the models of clonal evolution. In turn, these will provide both an improved framework for the understanding of cancer progression and a guide for treatment strategies aimed at the elimination of all, rather than just some, of the cancer cells within a patient. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Reducing Time and Increasing Sensitivity in Sample Preparation for Adherent Mammalian Cell Metabolomics

    PubMed Central

    Lorenz, Matthew A.; Burant, Charles F.; Kennedy, Robert T.

    2011-01-01

    A simple, fast, and reproducible sample preparation procedure was developed for relative quantification of metabolites in adherent mammalian cells using the clonal β-cell line INS-1 as a model sample. The method was developed by evaluating the effect of different sample preparation procedures on high performance liquid chromatography- mass spectrometry quantification of 27 metabolites involved in glycolysis and the tricarboxylic acid cycle on a directed basis as well as for all detectable chromatographic features on an undirected basis. We demonstrate that a rapid water rinse step prior to quenching of metabolism reduces components that suppress electrospray ionization thereby increasing signal for 26 of 27 targeted metabolites and increasing total number of detected features from 237 to 452 with no detectable change of metabolite content. A novel quenching technique is employed which involves addition of liquid nitrogen directly to the culture dish and allows for samples to be stored at −80 °C for at least 7 d before extraction. Separation of quenching and extraction steps provides the benefit of increased experimental convenience and sample stability while maintaining metabolite content similar to techniques that employ simultaneous quenching and extraction with cold organic solvent. The extraction solvent 9:1 methanol: chloroform was found to provide superior performance over acetonitrile, ethanol, and methanol with respect to metabolite recovery and extract stability. Maximal recovery was achieved using a single rapid (~1 min) extraction step. The utility of this rapid preparation method (~5 min) was demonstrated through precise metabolite measurements (11% average relative standard deviation without internal standards) associated with step changes in glucose concentration that evoke insulin secretion in the clonal β-cell line INS-1. PMID:21456517

  14. Kinetics of cell division in epidermal maintenance

    NASA Astrophysics Data System (ADS)

    Klein, Allon M.; Doupé, David P.; Jones, Phillip H.; Simons, Benjamin D.

    2007-08-01

    The rules governing cell division and differentiation are central to understanding the mechanisms of development, aging, and cancer. By utilizing inducible genetic labeling, recent studies have shown that the clonal population in transgenic mouse epidermis can be tracked in vivo. Drawing on these results, we explain how clonal fate data may be used to infer the rules of cell division and differentiation underlying the maintenance of adult murine tail-skin. We show that the rates of cell division and differentiation may be evaluated by considering the long-time and short-time clone fate data, and that the data is consistent with cells dividing independently rather than synchronously. Motivated by these findings, we consider a mechanism for cancer onset based closely on the model for normal adult skin. By analyzing the expected changes to clonal fate in cancer emerging from a simple two-stage mutation, we propose that clonal fate data may provide a novel method for studying the earliest stages of the disease.

  15. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties

    PubMed Central

    Gudjonsson, Thorarinn; Villadsen, René; Nielsen, Helga Lind; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William

    2002-01-01

    The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC+) and epithelial-specific antigen (ESA+) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC−/ESA+). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC+/ESA+ epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC−/ESA+ epithelial cell line was able to generate itself as well as MUC+/ESA+ epithelial cells and Thy-1+/α-smooth muscle actin+ (ASMA+) myoepithelial cells. The MUC−/ESA+ epithelial cell line further differed from the MUC+/ESA+ epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC+/ESA+ epithelial cell line formed acinus-like spheres. In contrast, the MUC−/ESA+ epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by inoculating the extracellular matrix-embedded cells subcutaneously in nude mice. Thus, MUC−/ESA+ epithelial cells within the luminal epithelial lineage may function as precursor cells of terminal duct lobular units in the human breast. PMID:11914275

  16. World Health Organization-defined eosinophilic disorders: 2017 update on diagnosis, risk stratification, and management.

    PubMed

    Gotlib, Jason

    2017-11-01

    The eosinophilias encompass a broad range of nonhematologic (secondary or reactive) and hematologic (primary, clonal) disorders with potential for end-organ damage. Hypereosinophilia has generally been defined as a peripheral blood eosinophil count greater than 1500/mm 3 and may be associated with tissue damage. After exclusion of secondary causes of eosinophilia, diagnostic evaluation of primary eosinophilias relies on a combination of morphologic review of the blood and marrow, standard cytogenetics, fluorescent in situ-hybridization, flow immunocytometry, and T-cell clonality assessment to detect histopathologic or clonal evidence for an acute or chronic myeloid or lymphoproliferative disorder. Disease prognosis relies on identifying the subtype of eosinophilia. After evaluation of secondary causes of eosinophilia, the 2016 World Health Organization endorses a semi-molecular classification scheme of disease subtypes which includes the major category "myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB, or FGFR1 or with PCM1-JAK2," and the "MPN subtype, chronic eosinophilic leukemia, not otherwise specified" (CEL, NOS). Lymphocyte-variant hypereosinophilia is an aberrant T-cell clone-driven reactive eosinophila, and idiopathic hypereosinophilic syndrome (HES) is a diagnosis of exclusion. The goal of therapy is to mitigate eosinophil-mediated organ damage. For patients with milder forms of eosinophilia (e.g., < 1500/mm 3 ) without symptoms or signs of organ involvement, a watch and wait approach with close-follow-up may be undertaken. Identification of rearranged PDGFRA or PDGFRB is critical because of the exquisite responsiveness of these diseases to imatinib. Corticosteroids are first-line therapy for patients with lymphocyte-variant hypereosinophilia and HES. Hydroxyurea and interferon-alpha have demonstrated efficacy as initial treatment and steroid-refractory cases of HES. In addition to hydroxyurea, second line cytotoxic chemotherapy agents and hematopoietic cell transplant have been used for aggressive forms of HES and CEL with outcomes reported for limited numbers of patients. The use of antibodies against interleukin-5 (IL-5) (mepolizumab), the IL-5 receptor (benralizumab), and CD52 (alemtuzumab), as well as other targets on eosinophils remains an active area of investigation. © 2017 Wiley Periodicals, Inc.

  17. Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.

    PubMed

    Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P

    2012-01-01

    Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  18. HIV genetic information and clonal growth

    Cancer.gov

    Based on an analysis of blood cells from five HIV-infected individuals, NCI researchers have identified more than 2,400 HIV DNA insertion sites. Analysis of these sites showed that there is extensive clonal expansion (growth) of HIV infected cells.

  19. The Hayflick Limit May Determine the Effective Clonal Diversity of Naive T Cells.

    PubMed

    Ndifon, Wilfred; Dushoff, Jonathan

    2016-06-15

    Having a large number of sufficiently abundant T cell clones is important for adequate protection against diseases. However, as shown in this paper and elsewhere, between young adulthood and >70 y of age the effective clonal diversity of naive CD4/CD8 T cells found in human blood declines by a factor of >10. (Effective clonal diversity accounts for both the number and the abundance of T cell clones.) The causes of this observation are incompletely understood. A previous study proposed that it might result from the emergence of certain rare, replication-enhancing mutations in T cells. In this paper, we propose an even simpler explanation: that it results from the loss of T cells that have attained replicative senescence (i.e., the Hayflick limit). Stochastic numerical simulations of naive T cell population dynamics, based on experimental parameters, show that the rate of homeostatic T cell proliferation increases after the age of ∼60 y because naive T cells collectively approach replicative senescence. This leads to a sharp decline of effective clonal diversity after ∼70 y, in agreement with empirical data. A mathematical analysis predicts that, without an increase in the naive T cell proliferation rate, this decline will occur >50 yr later than empirically observed. These results are consistent with a model in which exhaustion of the proliferative capacity of naive T cells causes a sharp decline of their effective clonal diversity and imply that therapeutic potentiation of thymopoiesis might either prevent or reverse this outcome. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. High-throughput analysis of spatio-temporal dynamics in Dictyostelium

    PubMed Central

    Sawai, Satoshi; Guan, Xiao-Juan; Kuspa, Adam; Cox, Edward C

    2007-01-01

    We demonstrate a time-lapse video approach that allows rapid examination of the spatio-temporal dynamics of Dictyostelium cell populations. Quantitative information was gathered by sampling life histories of more than 2,000 mutant clones from a large mutagenesis collection. Approximately 4% of the clonal lines showed a mutant phenotype at one stage. Many of these could be ordered by clustering into functional groups. The dataset allows one to search and retrieve movies on a gene-by-gene and phenotype-by-phenotype basis. PMID:17659086

  1. Post-irradiation somatic mutation and clonal stabilisation time in the human colon.

    PubMed Central

    Campbell, F; Williams, G T; Appleton, M A; Dixon, M F; Harris, M; Williams, E D

    1996-01-01

    BACKGROUND: Colorectal crypts are clonal units in which somatic mutation of marker genes in stem cells leads to crypt restricted phenotypic conversion initially involving part of the crypt, later the whole crypt. Studies in mice show that the time taken for the great majority of mutated crypts to be completely converted, the clonal stabilisation time, is four weeks in the colon and 21 weeks in the ileum. Differences in the clonal stabilisation time between tissues and species are thought to reflect differences in stem cell organisation and crypt kinetics. AIM: To study the clonal stabilisation time in the human colorectum. METHODS: Stem cell mutation can lead to crypt restricted loss of O-acetylation of sialomucins in subjects heterozygous for O-acetyltransferase gene activity. mPAS histochemistry was used to visualise and quantify crypts partially or wholly involved by the mutant phenotype in 21 informative cases who had undergone colectomy up to 34 years after radiotherapy. RESULTS: Radiotherapy was followed by a considerable increase in the discordant crypt frequency that remained significantly increased for many years. The proportion of discordant crypts showing partial involvement was initially high but fell to normal levels about 12 months after irradiation. CONCLUSIONS: Crypts wholly involved by a mutant phenotype are stable and persistent while partially involved crypts are transient. The clonal stabilisation time is approximately one year in the human colon compared with four weeks in the mouse. The most likely reason for this is a difference in the number of stem cells in a crypt stem cell niche, although differences in stem cell cycle time and crypt fission may also contribute. These findings are of relevance to colorectal gene therapy and carcinogenesis in stem cell systems. PMID:8944567

  2. Efficient PRNP deletion in bovine genome using gene-editing technologies in bovine cells

    PubMed Central

    Choi, WooJae; Kim, Eunji; Yum, Soo-Young; Lee, ChoongIl; Lee, JiHyun; Moon, JoonHo; Ramachandra, Sisitha; Malaweera, Buddika Oshadi; Cho, JongKi; Kim, Jin-Soo; Kim, SeokJoong; Jang, Goo

    2015-01-01

    abstract Even though prion (encoded by the PRNP gene) diseases like bovine spongiform encephalopathy (BSE) are fatal neurodegenerative diseases in cattle, their study via gene deletion has been limited due to the absence of cell lines or mutant models. In this study, we aim to develop an immortalized fibroblast cell line in which genome-engineering technology can be readily applied to create gene-modified clones for studies. To this end, this study is designed to 1) investigate the induction of primary fibroblasts to immortalization by introducing Bmi-1 and hTert genes; 2) investigate the disruption of the PRNP in those cells; and 3) evaluate the gene expression and embryonic development using knockout (KO) cell lines. Primary cells from a male neonate were immortalized with Bmi-1and hTert. Immortalized cells were cultured for more than 180 days without any changes in their doubling time and morphology. Furthermore, to knockout the PRNP gene, plasmids that encode transcription activator-like effector nuclease (TALEN) pairs were transfected into the cells, and transfected single cells were propagated. Mutated clonal cell lines were confirmed by T7 endonuclease I assay and sequencing. Four knockout cell lines were used for somatic cell nuclear transfer (SCNT), and the resulting embryos were developed to the blastocyst stage. The genes (CSNK2A1, FAM64A, MPG and PRND) were affected after PRNP disruption in immortalized cells. In conclusion, we established immortalized cattle fibroblasts using Bmi-1 and hTert genes, and used TALENs to knockout the PRNP gene in these immortalized cells. The efficient PRNP KO is expected to be a useful technology to develop our understanding of in vitro prion protein functions in cattle. PMID:26217959

  3. Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium

    PubMed Central

    Lescroart, Fabienne; Hamou, Wissam; Francou, Alexandre; Théveniau-Ruissy, Magali; Kelly, Robert G.; Buckingham, Margaret

    2015-01-01

    Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease. PMID:25605943

  4. Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium.

    PubMed

    Lescroart, Fabienne; Hamou, Wissam; Francou, Alexandre; Théveniau-Ruissy, Magali; Kelly, Robert G; Buckingham, Margaret

    2015-02-03

    Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease.

  5. TP53-dependent chromosome instability is associated with transient reductions in telomere length in immortal telomerase-positive cell lines

    NASA Technical Reports Server (NTRS)

    Schwartz, J. L.; Jordan, R.; Liber, H.; Murnane, J. P.; Evans, H. H.

    2001-01-01

    Telomere shortening in telomerase-negative somatic cells leads to the activation of the TP53 protein and the elimination of potentially unstable cells. We examined the effect of TP53 gene expression on both telomere metabolism and chromosome stability in immortal, telomerase-positive cell lines. Telomere length, telomerase activity, and chromosome instability were measured in multiple clones isolated from three related human B-lymphoblast cell lines that vary in TP53 expression; TK6 cells express wild-type TP53, WTK1 cells overexpress a mutant form of TP53, and NH32 cells express no TP53 protein. Clonal variations in both telomere length and chromosome stability were observed, and shorter telomeres were associated with higher levels of chromosome instability. The shortest telomeres were found in WTK1- and NH32-derived cells, and these cells had 5- to 10-fold higher levels of chromosome instability. The primary marker of instability was the presence of dicentric chromosomes. Aneuploidy and other stable chromosome alterations were also found in clones showing high levels of dicentrics. Polyploidy was found only in WTK1-derived cells. Both telomere length and chromosome instability fluctuated in the different cell populations with time in culture, presumably as unstable cells and cells with short telomeres were eliminated from the growing population. Our results suggest that transient reductions in telomere lengths may be common in immortal cell lines and that these alterations in telomere metabolism can have a profound effect on chromosome stability. Copyright 2000 Wiley-Liss, Inc.

  6. Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines.

    PubMed

    Chen, Xuan; Wang, Cong; Guan, Shanghui; Liu, Yuan; Han, Lihui; Cheng, Yufeng

    2016-07-01

    Telomerase is a type of reverse transcriptase that is overexpressed in almost all human tumor cells, but not in normal tissues, which provides an opportunity for radiosensitization targeting telomerase. Zidovudine, abacavir and lamivudine are reverse transcriptase inhibitors that have been applied in clinical practice for several years. We sought to explore the radiosensitization effect of these three drugs on human esophageal cancer cell lines. Eca109 and Eca9706 cells were treated with zidovudine, abacavir and lamivudine for 48 h before irradiation was administered. Samples were collected 1 h after irradiation. Clonal efficiency assay was used to evaluate the effect of the combination of these drugs with radiation doses of 2, 4, 6 and 8 Gy. DNA damage was measured by comet assay. Telomerase activity (TA) and relative telomere length (TL) were detected and evaluated by real-time PCR. Apoptosis rates were assessed by flow cytometric analysis. The results showed that all the drugs tested sensitized the esophageal squamous cell carcinoma (ESCC) cell lines to radiation through an increase in radiation-induced DNA damage and cell apoptosis, deregulation of TA and decreasing the shortened TL caused by radiation. Each of the drugs investigated (zidovudine, abacavir and lamivudine) could be used for sensitizing human esophageal cancer cell lines to radiation. Consequently, the present study supports the potential of these three drugs as therapeutic agents for the radiosensitization of esophageal squamous cell cancer.

  7. Clonal mature adipocyte production of proliferative-competent daughter cells requires lipid export prior to cell division

    USDA-ARS?s Scientific Manuscript database

    Numerous in vitro observations have been published to show that mature adipocytes may resume proliferation and begin to populate the adipofibroblast fraction or form other cell types. In the present study, we evaluated clonal cultures of mature pig-derived adipocytes as they began to reestablish the...

  8. Universality of clone dynamics during tissue development

    NASA Astrophysics Data System (ADS)

    Rulands, Steffen; Lescroart, Fabienne; Chabab, Samira; Hindley, Christopher J.; Prior, Nicole; Sznurkowska, Magdalena K.; Huch, Meritxell; Philpott, Anna; Blanpain, Cedric; Simons, Benjamin D.

    2018-05-01

    The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution of their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease1,2. But what can be learnt from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.

  9. Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells

    PubMed Central

    Chan, Charles K. F.; Lindau, Paul; Jiang, Wen; Chen, James Y.; Zhang, Lillian F.; Chen, Ching-Cheng; Seita, Jun; Sahoo, Debashis; Kim, Jae-Beom; Lee, Andrew; Park, Sujin; Nag, Divya; Gong, Yongquan; Kulkarni, Subhash; Luppen, Cynthia A.; Theologis, Alexander A.; Wan, Derrick C.; DeBoer, Anthony; Seo, Eun Young; Vincent-Tompkins, Justin D.; Loh, Kyle; Walmsley, Graham G.; Kraft, Daniel L.; Wu, Joseph C.; Longaker, Michael T.; Weissman, Irving L.

    2013-01-01

    Organs are composites of tissue types with diverse developmental origins, and they rely on distinct stem and progenitor cells to meet physiological demands for cellular production and homeostasis. How diverse stem cell activity is coordinated within organs is not well understood. Here we describe a lineage-restricted, self-renewing common skeletal progenitor (bone, cartilage, stromal progenitor; BCSP) isolated from limb bones and bone marrow tissue of fetal, neonatal, and adult mice. The BCSP clonally produces chondrocytes (cartilage-forming) and osteogenic (bone-forming) cells and at least three subsets of stromal cells that exhibit differential expression of cell surface markers, including CD105 (or endoglin), Thy1 [or CD90 (cluster of differentiation 90)], and 6C3 [ENPEP glutamyl aminopeptidase (aminopeptidase A)]. These three stromal subsets exhibit differential capacities to support hematopoietic (blood-forming) stem and progenitor cells. Although the 6C3-expressing subset demonstrates functional stem cell niche activity by maintaining primitive hematopoietic stem cell (HSC) renewal in vitro, the other stromal populations promote HSC differentiation to more committed lines of hematopoiesis, such as the B-cell lineage. Gene expression analysis and microscopic studies further reveal a microenvironment in which CD105-, Thy1-, and 6C3-expressing marrow stroma collaborate to provide cytokine signaling to HSCs and more committed hematopoietic progenitors. As a result, within the context of bone as a blood-forming organ, the BCSP plays a critical role in supporting hematopoiesis through its generation of diverse osteogenic and hematopoietic-promoting stroma, including HSC supportive 6C3(+) niche cells. PMID:23858471

  10. High Inter-Individual Diversity of Point Mutations, Insertions, and Deletions in Human Influenza Virus Nucleoprotein-Specific Memory B Cells

    PubMed Central

    Bussmann, Bianca M.; Horn, Susanne; Sieg, Michael; Jassoy, Christian

    2015-01-01

    The diversity of virus-specific antibodies and of B cells among different individuals is unknown. Using single-cell cloning of antibody genes, we generated recombinant human monoclonal antibodies from influenza nucleoprotein-specific memory B cells in four adult humans with and without preceding influenza vaccination. We examined the diversity of the antibody repertoires and found that NP-specific B cells used numerous immunoglobulin genes. The heavy chains (HCs) originated from 26 and the kappa light chains (LCs) from 19 different germ line genes. Matching HC and LC chains gave rise to 43 genetically distinct antibodies that bound influenza NP. The median lengths of the CDR3 of the HC, kappa and lambda LC were 14, 9 and 11 amino acids, respectively. We identified changes at 13.6% of the amino acid positions in the V gene of the antibody heavy chain, at 8.4 % in the kappa and at 10.6 % in the lambda V gene. We identified somatic insertions or deletions in 8.1% of the variable genes. We also found several small groups of clonal relatives that were highly diversified. Our findings demonstrate broadly diverse memory B cell repertoires for the influenza nucleoprotein. We found extensive variation within individuals with a high number of point mutations, insertions, and deletions, and extensive clonal diversification. Thus, structurally conserved proteins can elicit broadly diverse and highly mutated B-cell responses. PMID:26086076

  11. Long-term Culture and Cloning of Primary Human Bronchial Basal Cells that Maintain Multipotent Differentiation Capacity and CFTR Channel Function.

    PubMed

    Peters-Hall, Jennifer Ruth; Coquelin, Melissa L; Torres, Michael J; LaRanger, Ryan; Alabi, Busola Ruth; Sho, Sei; Calva-Moreno, Jose Francisco; Thomas, Philip J; Shay, Jerry William

    2018-05-03

    While primary cystic fibrosis (CF) and non-CF human bronchial epithelial basal cells (HBECs) accurately represent in vivo phenotypes, one barrier to their wider use has been a limited ability to clone and expand cells in sufficient numbers to produce rare genotypes using genome editing tools. Recently, conditional reprogramming of cells (CRC) with a ROCK inhibitor and culture on an irradiated fibroblast feeder layer resulted in extension of the lifespan of HBECs, but differentiation capacity and CF transmembrane conductance regulator (CFTR) function decreased as a function of passage. This report details modifications to the standard HBEC CRC protocol (Mod CRC), including the use of bronchial epithelial growth medium instead of F-medium and 2% oxygen instead of 21% oxygen, that extend HBEC lifespan while preserving multipotent differentiation capacity and CFTR function. Critically, Mod CRC conditions support clonal growth of primary HBECs from a single cell and the resulting clonal HBEC population maintains multipotent differentiation capacity, including CFTR function, permitting gene editing of these cells. As a proof of concept, CRISPR/Cas9 genome editing and cloning was used to introduce insertions/deletions in CFTR exon 11. Mod CRC conditions overcome many barriers to the expanded use of HBECs for basic research and drug screens. Importantly, Mod CRC conditions support the creation of isogenic cell lines in which CFTR is mutant or wild-type in the same genetic background with no history of CF to enable determination of the primary defects of mutant CFTR.

  12. Marked heterogeneity in growth characteristics of myoblast clonal cultures and myoblast mixed cultures obtained from the same individual.

    PubMed

    Maier, Andrea B; Cohen, Ron; Blom, Joke; van Heemst, Diana; Westendorp, Rudi G J

    2012-01-01

    Sarcopenia is defined as an age-related decrease in skeletal muscle mass and function while adjacent satellite cells are unable to compensate for this loss. However, myoblast cultures can be established even in the presence of sarcopenia. It is yet unknown whether satellite cells from failing muscle in older age are equally affected, as human satellite cells have been assessed using myoblast mixed cultures and not by using myoblast clonal cultures. We questioned to what extent myoblast mixed cultures reflect the in vivo characteristics of single satellite cells from adult skeletal muscle. We established a myoblast mixed culture and three myoblast clonal cultures out of the same muscle biopsy and cultured these cells for 100 days. Replicative capacity and oxidative stress resistance were compared. We found marked heterogeneity between the myoblast clonal cultures that all had a significantly lower replicative capacity when compared to the mixed culture. Replicative capacity of the clonal cultures was inversely related to the β-galactosidase activity after exposure to oxidative stress. Addition of L-carnosine enhanced the remaining replicative capacity in all cultures with a concomitant marginal decrease in β-galactosidase activity. It is concluded that myoblast mixed cultures in vitro do not reflect the marked heterogeneity between single isolated satellite cells. The consequences of the heterogeneity on muscle performance remain to be established. Copyright © 2011 S. Karger AG, Basel.

  13. Anaphylaxis as a clinical manifestation of clonal mast cell disorders.

    PubMed

    Matito, A; Alvarez-Twose, I; Morgado, J M; Sánchez-Muñoz, L; Orfao, A; Escribano, L

    2014-08-01

    Clonal mast cell disorders comprise a heterogeneous group of disorders characterized by the presence of gain of function KIT mutations and a constitutively altered activation-associated mast cell immunophenotype frequently associated with clinical manifestations related to the release of mast cells mediators. These disorders do not always fulfil the World Health Organization (WHO)-proposed criteria for mastocytosis, particularly when low-sensitive diagnostic approaches are performed. Anaphylaxis is a frequent presentation of clonal mast cell disorders, particularly in mastocytosis patients without typical skin lesions. The presence of cardiovascular symptoms, e.g., hypotension, occurring after a hymenoptera sting or spontaneously in the absence of cutaneous manifestations such as urticaria is characteristic and differs from the presentation of anaphylaxis in the general population without mastocytosis.

  14. Automated analysis of clonal cancer cells by intravital imaging

    PubMed Central

    Coffey, Sarah Earley; Giedt, Randy J; Weissleder, Ralph

    2013-01-01

    Longitudinal analyses of single cell lineages over prolonged periods have been challenging particularly in processes characterized by high cell turn-over such as inflammation, proliferation, or cancer. RGB marking has emerged as an elegant approach for enabling such investigations. However, methods for automated image analysis continue to be lacking. Here, to address this, we created a number of different multicolored poly- and monoclonal cancer cell lines for in vitro and in vivo use. To classify these cells in large scale data sets, we subsequently developed and tested an automated algorithm based on hue selection. Our results showed that this method allows accurate analyses at a fraction of the computational time required by more complex color classification methods. Moreover, the methodology should be broadly applicable to both in vitro and in vivo analyses. PMID:24349895

  15. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells.

    PubMed

    Takada, Honami; Imadome, Ken-Ichi; Shibayama, Haruna; Yoshimori, Mayumi; Wang, Ludan; Saitoh, Yasunori; Uota, Shin; Yamaoka, Shoji; Koyama, Takatoshi; Shimizu, Norio; Yamamoto, Kouhei; Fujiwara, Shigeyoshi; Miura, Osamu; Arai, Ayako

    2017-01-01

    Epstein-Barr virus (EBV) has been detected in several T- and NK-cell neoplasms such as extranodal NK/T-cell lymphoma nasal type, aggressive NK-cell leukemia, EBV-positive peripheral T-cell lymphoma, systemic EBV-positive T-cell lymphoma of childhood, and chronic active EBV infection (CAEBV). However, how this virus contributes to lymphomagenesis in T or NK cells remains largely unknown. Here, we examined NF-κB activation in EBV-positive T or NK cell lines, SNT8, SNT15, SNT16, SNK6, and primary EBV-positive and clonally proliferating T/NK cells obtained from the peripheral blood of patients with CAEBV. Western blotting, electrophoretic mobility shift assays, and immunofluorescent staining revealed persistent NF-κB activation in EBV-infected cell lines and primary cells from patients. Furthermore, we investigated the role of EBV in infected T cells. We performed an in vitro infection assay using MOLT4 cells infected with EBV. The infection directly induced NF-κB activation, promoted survival, and inhibited etoposide-induced apoptosis in MOLT4 cells. The luciferase assay suggested that LMP1 mediated NF-κB activation in MOLT4 cells. IMD-0354, a specific inhibitor of NF-κB that suppresses NF-κB activation in cell lines, inhibited cell survival and induced apoptosis. These results indicate that EBV induces NF-κB-mediated survival signals in T and NK cells, and therefore, may contribute to the lymphomagenesis of these cells.

  16. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells

    PubMed Central

    Shibayama, Haruna; Yoshimori, Mayumi; Wang, Ludan; Saitoh, Yasunori; Uota, Shin; Yamaoka, Shoji; Koyama, Takatoshi; Shimizu, Norio; Yamamoto, Kouhei; Fujiwara, Shigeyoshi; Miura, Osamu

    2017-01-01

    Epstein–Barr virus (EBV) has been detected in several T- and NK-cell neoplasms such as extranodal NK/T-cell lymphoma nasal type, aggressive NK-cell leukemia, EBV-positive peripheral T-cell lymphoma, systemic EBV-positive T-cell lymphoma of childhood, and chronic active EBV infection (CAEBV). However, how this virus contributes to lymphomagenesis in T or NK cells remains largely unknown. Here, we examined NF-κB activation in EBV-positive T or NK cell lines, SNT8, SNT15, SNT16, SNK6, and primary EBV-positive and clonally proliferating T/NK cells obtained from the peripheral blood of patients with CAEBV. Western blotting, electrophoretic mobility shift assays, and immunofluorescent staining revealed persistent NF-κB activation in EBV-infected cell lines and primary cells from patients. Furthermore, we investigated the role of EBV in infected T cells. We performed an in vitro infection assay using MOLT4 cells infected with EBV. The infection directly induced NF-κB activation, promoted survival, and inhibited etoposide-induced apoptosis in MOLT4 cells. The luciferase assay suggested that LMP1 mediated NF-κB activation in MOLT4 cells. IMD-0354, a specific inhibitor of NF-κB that suppresses NF-κB activation in cell lines, inhibited cell survival and induced apoptosis. These results indicate that EBV induces NF-κB-mediated survival signals in T and NK cells, and therefore, may contribute to the lymphomagenesis of these cells. PMID:28346502

  17. Human ES cells – haematopoiesis and transplantation strategies*

    PubMed Central

    Kaufman, DS; Thomson, JA

    2002-01-01

    Human embryonic stem (ES) cells provide a novel opportunity to study early developmental events in a human system. We have used human ES cell lines, including clonally derived lines, to evaluate haematopoiesis. Co-culture of the human ES cells with irradiated bone marrow stromal cell lines in the presence of fetal bovine serum (FBS), but without other exogenous cytokines, leads to differentiation of the human ES cells within a matter of days. A portion of these differentiated cells express CD34, the best-defined marker for early haematopoietic cells. Haematopoietic colony-forming cells (CFCs) are demonstrated by methylcellulose assay. Myeloid, erythroid, megakaryocyte and multipotential CFCs can all be derived under these conditions. Enrichment of CD34+ cells derived from the human ES cells markedly increases the yield of CFCs, as would be expected for cells derived from adult bone marrow or umbilical cord blood. Transcription factors are also expressed in a manner consistent with haematopoietic differentiation. This system now presents the potential to evaluate specific conditions needed to induce or support events in early human blood development. Human ES cells are also a novel source of cells for transplantation therapies. The immunogenicity of ES cell-derived cells is unknown. The unique properties of ES cells afford the opportunity to explore novel mechanisms to prevent immune-mediated rejection. Potential strategies to overcome rejection will be presented, including creation of haematopoietic chimerism as a means to successfully transplant cells and tissues derived from human ES cells. PMID:12033728

  18. FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis.

    PubMed

    Kilby, N J; Davies, G J; Snaith, M R

    1995-11-01

    FLP site-specific recombinase was expressed in stably transformed tobacco and Arabidopsis. FLP-expressing tobacco lines were crossed with other transformed tobacco lines that contained a stably integrated FLP recognition target construct(s). The target construct consisted of two directly-oriented FLP recognition targets (FRTs), flanking a hygromycin resistance cassette located between a GUS coding region and an upstream 35S CaMV promoter. Excision of the hygromycin resistance cassette by FLP-mediated recombination between FRTs brings the GUS coding region under the transcriptional control of the CaMV 35S promoter. In the absence of FLP-mediated recombination, the GUS gene is transcriptionally silent. GUS activity was observed in the progeny of all crosses made between FLP recombinase-expressing and target-containing tobacco lines, but not in the selfs of parents. The predicted recombination product remaining after excision was confirmed by PCR and Southern analysis. In Arabidopsis, inducible expression of FLP recombinase was achieved from the soybean Gmhsp 17.6L heat-shock promoter. Heat-shock induction of FLP expression in plants containing the target construct led to activation of constitutive GUS expression in a subset of cells, whose progeny, therefore, were GUS-positive. A variety of clonal sectors were produced in plants derived from seed that was heat-shocked during germination. The ability to control the timing of GUS activation was demonstrated by heat-shock of unopened flower heads which produced large sectors. It was concluded that heat-shock-induced expression of FLP recombinase provides a readily controllable method for generating marked clonal sectors in Arabidopsis, the size and distribution of which reflects the timing of applied heat-shock.

  19. FACS single cell index sorting is highly reliable and determines immune phenotypes of clonally expanded T cells.

    PubMed

    Penter, Livius; Dietze, Kerstin; Bullinger, Lars; Westermann, Jörg; Rahn, Hans-Peter; Hansmann, Leo

    2018-03-14

    FACS index sorting allows the isolation of single cells with retrospective identification of each single cell's high-dimensional immune phenotype. We experimentally determine the error rate of index sorting and combine the technology with T cell receptor sequencing to identify clonal T cell expansion in aplastic anemia bone marrow as an example. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer

    PubMed Central

    Murtaza, Muhammed; Dawson, Sarah-Jane; Pogrebniak, Katherine; Rueda, Oscar M.; Provenzano, Elena; Grant, John; Chin, Suet-Feung; Tsui, Dana W. Y.; Marass, Francesco; Gale, Davina; Ali, H. Raza; Shah, Pankti; Contente-Cuomo, Tania; Farahani, Hossein; Shumansky, Karey; Kingsbury, Zoya; Humphray, Sean; Bentley, David; Shah, Sohrab P.; Wallis, Matthew; Rosenfeld, Nitzan; Caldas, Carlos

    2015-01-01

    Circulating tumour DNA analysis can be used to track tumour burden and analyse cancer genomes non-invasively but the extent to which it represents metastatic heterogeneity is unknown. Here we follow a patient with metastatic ER-positive and HER2-positive breast cancer receiving two lines of targeted therapy over 3 years. We characterize genomic architecture and infer clonal evolution in eight tumour biopsies and nine plasma samples collected over 1,193 days of clinical follow-up using exome and targeted amplicon sequencing. Mutation levels in the plasma samples reflect the clonal hierarchy inferred from sequencing of tumour biopsies. Serial changes in circulating levels of sub-clonal private mutations correlate with different treatment responses between metastatic sites. This comparison of biopsy and plasma samples in a single patient with metastatic breast cancer shows that circulating tumour DNA can allow real-time sampling of multifocal clonal evolution. PMID:26530965

  1. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer.

    PubMed

    Murtaza, Muhammed; Dawson, Sarah-Jane; Pogrebniak, Katherine; Rueda, Oscar M; Provenzano, Elena; Grant, John; Chin, Suet-Feung; Tsui, Dana W Y; Marass, Francesco; Gale, Davina; Ali, H Raza; Shah, Pankti; Contente-Cuomo, Tania; Farahani, Hossein; Shumansky, Karey; Kingsbury, Zoya; Humphray, Sean; Bentley, David; Shah, Sohrab P; Wallis, Matthew; Rosenfeld, Nitzan; Caldas, Carlos

    2015-11-04

    Circulating tumour DNA analysis can be used to track tumour burden and analyse cancer genomes non-invasively but the extent to which it represents metastatic heterogeneity is unknown. Here we follow a patient with metastatic ER-positive and HER2-positive breast cancer receiving two lines of targeted therapy over 3 years. We characterize genomic architecture and infer clonal evolution in eight tumour biopsies and nine plasma samples collected over 1,193 days of clinical follow-up using exome and targeted amplicon sequencing. Mutation levels in the plasma samples reflect the clonal hierarchy inferred from sequencing of tumour biopsies. Serial changes in circulating levels of sub-clonal private mutations correlate with different treatment responses between metastatic sites. This comparison of biopsy and plasma samples in a single patient with metastatic breast cancer shows that circulating tumour DNA can allow real-time sampling of multifocal clonal evolution.

  2. Efficient CRISPR/Cas9-assisted gene targeting enables rapid and precise genetic manipulation of mammalian neural stem cells

    PubMed Central

    Bressan, Raul Bardini; Dewari, Pooran Singh; Kalantzaki, Maria; Gangoso, Ester; Matjusaitis, Mantas; Garcia-Diaz, Claudia; Blin, Carla; Grant, Vivien; Bulstrode, Harry; Gogolok, Sabine; Skarnes, William C.

    2017-01-01

    Mammalian neural stem cell (NSC) lines provide a tractable model for discovery across stem cell and developmental biology, regenerative medicine and neuroscience. They can be derived from foetal or adult germinal tissues and continuously propagated in vitro as adherent monolayers. NSCs are clonally expandable, genetically stable, and easily transfectable – experimental attributes compatible with targeted genetic manipulations. However, gene targeting, which is crucial for functional studies of embryonic stem cells, has not been exploited to date in NSC lines. Here, we deploy CRISPR/Cas9 technology to demonstrate a variety of sophisticated genetic modifications via gene targeting in both mouse and human NSC lines, including: (1) efficient targeted transgene insertion at safe harbour loci (Rosa26 and AAVS1); (2) biallelic knockout of neurodevelopmental transcription factor genes; (3) simple knock-in of epitope tags and fluorescent reporters (e.g. Sox2-V5 and Sox2-mCherry); and (4) engineering of glioma mutations (TP53 deletion; H3F3A point mutations). These resources and optimised methods enable facile and scalable genome editing in mammalian NSCs, providing significant new opportunities for functional genetic analysis. PMID:28096221

  3. Cementogenic potential of multipotential mesenchymal stem cells purified from the human periodontal ligament.

    PubMed

    Torii, Daisuke; Konishi, Kiyoshi; Watanabe, Nobuyuki; Goto, Shinichi; Tsutsui, Takeki

    2015-01-01

    The periodontal ligament (PDL) consists of a group of specialized connective tissue fibers embedded in the alveolar bone and cementum that are believed to contain progenitors for mineralized tissue-forming cell lineages. These progenitors may contribute to regenerative cell therapy or tissue engineering methods aimed at recovery of tissue formation and functions lost in periodontal degenerative changes. Some reports using immortal clonal cell lines of cementoblasts, which are cells containing mineralized tissue-forming cell lineages, have shown that their phenotypic alteration and gene expression are associated with mineralization. Immortal, multipotential PDL-derived cell lines may be useful biological tools for evaluating differentiation-inducing agents. In this study, we confirmed the gene expression and mineralization potential of primary and immortal human PDL cells and characterized their immunophenotype. Following incubation with mineralization induction medium containing β-glycerophosphate, ascorbic acid, and dexamethasone, normal human PDL (Pel) cells and an immortal derivative line (Pelt) cells showed higher levels of mineralization compared with cells grown in normal growth medium. Both cell types were positive for putative surface antigens of mesenchymal cells (CD44, CD73, CD90, and CD105). They were also positive for stage-specific embryonic antigen-3, a marker of multipotential stem cells. Furthermore, PDL cells expressed cementum attachment protein and cementum protein 1 when cultured with recombinant human bone morphogenetic protein-2 or -7. The results suggest that normal and immortal human PDL cells contain multipotential mesenchymal stem cells with cementogenic potential.

  4. Integration Site and Clonal Expansion in Human Chronic Retroviral Infection and Gene Therapy

    PubMed Central

    Niederer, Heather A.; Bangham, Charles R. M.

    2014-01-01

    Retroviral vectors have been successfully used therapeutically to restore expression of genes in a range of single-gene diseases, including several primary immunodeficiency disorders. Although clinical trials have shown remarkable results, there have also been a number of severe adverse events involving malignant outgrowth of a transformed clonal population. This clonal expansion is influenced by the integration site profile of the viral integrase, the transgene expressed, and the effect of the viral promoters on the neighbouring host genome. Infection with the pathogenic human retrovirus HTLV-1 also causes clonal expansion of cells containing an integrated HTLV-1 provirus. Although the majority of HTLV-1-infected people remain asymptomatic, up to 5% develop an aggressive T cell malignancy. In this review we discuss recent findings on the role of the genomic integration site in determining the clonality and the potential for malignant transformation of cells carrying integrated HTLV-1 or gene therapy vectors, and how these results have contributed to the understanding of HTLV-1 pathogenesis and to improvements in gene therapy vector safety. PMID:25365582

  5. Selfish cells in altruistic cell society - a theoretical oncology.

    PubMed

    Chigira, M

    1993-09-01

    In multicellular organisms, internal evolution of individual cells is strictly forbidden and 'evolutional' DNA replication should be performed only by the sexual reproduction system. Wholistic negative control system called 'homeostasis' serves all service to germ line cells. All somatic cells are altruistic to the germ line cells. However, in malignant tumors, it seems that individual cells replicate and behave 'selfishly' and evolve against the internal microenvironment. Tumor cells only express the occult selfishness which is programmed in normal cells a priori. This phenomenon is based on the failure of identical DNA replication, and results in 'autonomy' and 'anomie' of cellular society as shown in tumor cells. Genetic programs of normal cells connote this cellular autonomy and anomie introduced by the deletion of regulators on structure genes. It is rather paradoxical that the somatic cells get their freedom from wholistic negative regulation programmed internally. However, this is not a true paradox, since multicellular organisms have clearly been evolved from 'monads' in which cells proliferate without wholistic regulation. Somatic cells revolt against germ cell DNA, called 'selfish replicator' by Dawkins. It is an inevitable destiny that the 'selfishness' coded in genome should be revenged by itself. Selfish replicator in germ cell line should be revolted by its selfishness in the expansion of somatic cells, since they have an orthogenesis to get more selfishness in order to increase their genome. Tumor heterogeneity and progression can be fully explained by this self-contradictory process which produces heterogeneous gene copies different from the original clone in the tumor, although 'selfish' gene replication is the final target of being. Furthermore, we have to discard the concept of clonality of tumor cells since genetic instability is a fundamental feature of tumors. Finally, tumor cells and proto-oncogenes can be considered as the ultimate parasite to germ line cells.

  6. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    PubMed

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  7. CD3-CD4+ lymphoid variant of hypereosinophilic syndrome: nodal and extranodal histopathological and immunophenotypic features of a peripheral indolent clonal T-cell lymphoproliferative disorder.

    PubMed

    Lefèvre, Guillaume; Copin, Marie-Christine; Roumier, Christophe; Aubert, Hélène; Avenel-Audran, Martine; Grardel, Nathalie; Poulain, Stéphanie; Staumont-Sallé, Delphine; Seneschal, Julien; Salles, Gilles; Ghomari, Kamel; Terriou, Louis; Leclech, Christian; Morati-Hafsaoui, Chafika; Morschhauser, Franck; Lambotte, Olivier; Ackerman, Félix; Trauet, Jacques; Geffroy, Sandrine; Dumezy, Florent; Capron, Monique; Roche-Lestienne, Catherine; Taieb, Alain; Hatron, Pierre-Yves; Dubucquoi, Sylvain; Hachulla, Eric; Prin, Lionel; Labalette, Myriam; Launay, David; Preudhomme, Claude; Kahn, Jean-Emmanuel

    2015-08-01

    The CD3(-)CD4(+) lymphoid variant of hypereosinophilic syndrome is characterized by hypereosinophilia and clonal circulating CD3(-)CD4(+) T cells. Peripheral T-cell lymphoma has been described during this disease course, and we observed in our cohort of 23 patients 2 cases of angio-immunoblastic T-cell lymphoma. We focus here on histopathological (n=12 patients) and immunophenotypic (n=15) characteristics of CD3(-)CD4(+) lymphoid variant of hypereosinophilic syndrome. Atypical CD4(+) T cells lymphoid infiltrates were found in 10 of 12 CD3(-)CD4(+) L-HES patients, in lymph nodes (n=4 of 4 patients), in skin (n=9 of 9) and other extra-nodal tissues (gut, lacrymal gland, synovium). Lymph nodes displayed infiltrates limited to the interfollicular areas or even an effacement of nodal architecture, associated with proliferation of arborizing high endothelial venules and increased follicular dendritic cell meshwork. Analysis of 2 fresh skin samples confirmed the presence of CD3(-)CD4(+) T cells. Clonal T cells were detected in at least one tissue in 8 patients, including lymph nodes (n=4 of 4): the same clonal T cells were detected in blood and in at least one biopsy, with a maximum delay of 23 years between samples. In the majority of cases, circulating CD3(-)CD4(+) T cells were CD2(hi) (n=9 of 14), CD5(hi) (n=12 of 14), and CD7(-)(n=4 of 14) or CD7(low) (n=10 of 14). Angio-immunoblastic T-cell lymphoma can also present with CD3(-)CD4(+) T cells; despite other common histopathological and immunophenotypic features, CD10 expression and follicular helper T-cell markers were not detected in lymphoid variant of hypereosinophilic syndrome patients, except in both patients who developed angio-immunoblastic T-cell lymphoma, and only at T-cell lymphoma diagnosis. Taken together, persistence of tissular clonal T cells and histopathological features define CD3(-)CD4(+) lymphoid variant of hypereosinophilic syndrome as a peripheral indolent clonal T-cell lymphoproliferative disorder, which should not be confused with angio-immunoblastic T-cell lymphoma. Copyright© Ferrata Storti Foundation.

  8. CD3−CD4+ lymphoid variant of hypereosinophilic syndrome: nodal and extranodal histopathological and immunophenotypic features of a peripheral indolent clonal T-cell lymphoproliferative disorder

    PubMed Central

    Lefèvre, Guillaume; Copin, Marie-Christine; Roumier, Christophe; Aubert, Hélène; Avenel-Audran, Martine; Grardel, Nathalie; Poulain, Stéphanie; Staumont-Sallé, Delphine; Seneschal, Julien; Salles, Gilles; Ghomari, Kamel; Terriou, Louis; Leclech, Christian; Morati-Hafsaoui, Chafika; Morschhauser, Franck; Lambotte, Olivier; Ackerman, Félix; Trauet, Jacques; Geffroy, Sandrine; Dumezy, Florent; Capron, Monique; Roche-Lestienne, Catherine; Taieb, Alain; Hatron, Pierre-Yves; Dubucquoi, Sylvain; Hachulla, Eric; Prin, Lionel; Labalette, Myriam; Launay, David; Preudhomme, Claude; Kahn, Jean-Emmanuel

    2015-01-01

    The CD3−CD4+ lymphoid variant of hypereosinophilic syndrome is characterized by hypereosinophilia and clonal circulating CD3−CD4+ T cells. Peripheral T-cell lymphoma has been described during this disease course, and we observed in our cohort of 23 patients 2 cases of angio-immunoblastic T-cell lymphoma. We focus here on histopathological (n=12 patients) and immunophenotypic (n=15) characteristics of CD3−CD4+ lymphoid variant of hypereosinophilic syndrome. Atypical CD4+ T cells lymphoid infiltrates were found in 10 of 12 CD3−CD4+ L-HES patients, in lymph nodes (n=4 of 4 patients), in skin (n=9 of 9) and other extra-nodal tissues (gut, lacrymal gland, synovium). Lymph nodes displayed infiltrates limited to the interfollicular areas or even an effacement of nodal architecture, associated with proliferation of arborizing high endothelial venules and increased follicular dendritic cell meshwork. Analysis of 2 fresh skin samples confirmed the presence of CD3−CD4+ T cells. Clonal T cells were detected in at least one tissue in 8 patients, including lymph nodes (n=4 of 4): the same clonal T cells were detected in blood and in at least one biopsy, with a maximum delay of 23 years between samples. In the majority of cases, circulating CD3−CD4+ T cells were CD2hi (n=9 of 14), CD5hi (n=12 of 14), and CD7−(n=4 of 14) or CD7low (n=10 of 14). Angio-immunoblastic T-cell lymphoma can also present with CD3−CD4+ T cells; despite other common histopathological and immunophenotypic features, CD10 expression and follicular helper T-cell markers were not detected in lymphoid variant of hypereosinophilic syndrome patients, except in both patients who developed angio-immunoblastic T-cell lymphoma, and only at T-cell lymphoma diagnosis. Taken together, persistence of tissular clonal T cells and histopathological features define CD3−CD4+ lymphoid variant of hypereosinophilic syndrome as a peripheral indolent clonal T-cell lymphoproliferative disorder, which should not be confused with angio-immunoblastic T-cell lymphoma. PMID:25682606

  9. [Study of androgen receptor and phosphoglycerate kinase gene polymorphism in major cellular components of the so-called pulmonary sclerosing hemangioma].

    PubMed

    Qi, Feng-jie; Zhang, Xiu-wei; Zhang, Yong-xing; Dai, Shun-dong; Wang, En-hua

    2006-05-01

    To study the clonality of polygonal cells and surface cuboidal cells in the so-called pulmonary sclerosing hemangioma (PSH). 17 female surgically resected PSH were found. The polygonal cells and surface cuboidal cells of the 17 PSH cases were microdissected from routine hematoxylin and eosin-stained sections. Genomic DNA was extracted, pretreated through incubation with methylation-sensitive restrictive endonuclease HhaI or HpaII, and amplified by nested polymerase chain reaction for X chromosome-linked androgen receptor (AR) and phosphoglycerate kinase (PGK) genes. The length polymorphism of AR gene was demonstrated by denaturing polyacrylamide gel electrophoresis and silver staining. The PGK gene products were treated with Bst XI and resolved on agarose gel. Amongst the 17 female cases of PSH, 15 samples were successfully amplified for AR and PGK genes. The rates of polymorphism were 53% (8/15) and 27% (4/15) for AR and PGK genes respectively. Polygonal cells and surface cuboidal cells of 10 cases which were suitable for clonality study, showed the same loss of alleles (clonality ratio = 0) or unbalanced methylation pattern (clonality ratio < 0.25). The polygonal cells and surface cuboidal cells in PSH demonstrate patterns of monoclonal proliferation, indicating that both represent true neoplastic cells.

  10. Conditional expression of RET/PTC induces a weak oncogenic drive in thyroid PCCL3 cells and inhibits thyrotropin action at multiple levels.

    PubMed

    Wang, Jianwei; Knauf, Jeffrey A; Basu, Saswata; Puxeddu, Efisio; Kuroda, Hiroaki; Santoro, Massimo; Fusco, Alfredo; Fagin, James A

    2003-07-01

    Chromosomal rearrangements linking the promoter(s) and N-terminal domain of unrelated gene(s) to the C terminus of RET result in constitutively activated chimeric forms of the receptor in thyroid cells (RET/PTC). RET/PTC rearrangements are thought to be tumor-initiating events; however, the early biological consequences of RET/PTC activation are unknown. To explore this, we generated clonal lines derived from well-differentiated rat thyroid PCCL3 cells with doxycycline-inducible expression of either RET/PTC1 or RET/PTC3. As previously shown in other cell types, RET/PTC1 and RET/PTC3 oligomerized and displayed constitutive tyrosine kinase activity. Neither RET/PTC1 nor RET/PTC3 conferred cells with the ability to grow in the absence of TSH, likely because of concomitant stimulation of both DNA synthesis and apoptosis, resulting in no net growth in the cell population. Effects of RET/PTC on DNA synthesis and apoptosis did not require direct interaction of the oncoprotein with either Shc or phospholipase Cgamma. Acute expression of the oncoprotein decreased TSH-mediated growth stimulation due to interference of TSH signaling by RET/PTC at multiple levels. Taken together, these data indicate that RET/PTC is a weak tumor-initiating event and that TSH action is disrupted by this oncoprotein at several points, and also predict that secondary genetic or epigenetic changes are required for clonal expansion.

  11. Establishment of stem cell lines from nuclear transferred and parthenogenetically activated mouse oocytes for therapeutic cloning.

    PubMed

    Ju, Jin Young; Park, Chun Young; Gupta, Mukesh Kumar; Uhm, Sang Jun; Paik, Eun Chan; Ryoo, Zae Young; Cho, Youl Hee; Chung, Kil Saeng; Lee, Hoon Taek

    2008-05-01

    To establish embryonic stem cell lines from nuclear transfer of somatic cell nuclei isolated from the same oocyte donor and from parthenogenetic activation. The study also evaluated the effect of the micromanipulation procedure on the outcome of somatic cell nuclear transfer in mice. Randomized, prospective study. Hospital-based assisted reproductive technology laboratory. F(1) (C57BL/6 x 129P3/J) mice. Metaphase II-stage oocytes were either parthenogenetically activated or nuclear transferred with cumulus cell nuclei or parthenogenetically activated after a sham-manipulation procedure. Embryogenesis and embryonic stem cell establishment. The development rate to morula/blastocyst of nuclear transferred oocytes (27.9% +/- 5.9%) was significantly lower than that of the sham-manipulated (84.1% +/- 5.6%) or parthenogenetic (98.6% +/- 1.4%) groups. A sharp decrease in cleavage potential was obvious in the two- to four-cell transition for the nuclear transferred embryos (79.0% +/- 4.6% and 43.3% +/- 5.0%), implying incomplete nuclear reprogramming in arrested oocytes. However, the cleavage, as well as the development rate, of parthenogenetic and sham-manipulated groups did not differ significantly. The embryonic stem cell line establishment rate was higher from parthenogenetically activated oocytes (15.7%) than nuclear transferred (4.3%) or sham-manipulated oocytes (12.5%). Cell colonies from all groups displayed typical morphology of mice embryonic stem cells and could be maintained successfully with undifferentiated morphology after continuous proliferation for more than 120 passages still maintaining normal karyotype. All these cells were positive for mice embryonic stem cell markers such as Oct-4 and SSEA-1 based on immunocytochemistry and reverse transcriptase-polymerase chain reaction. The clonal origin of the ntES cell line and the parthenogenetic embryonic stem cell lines were confirmed by polymerase chain reaction analysis of the polymorphic markers. Blastocyst injection experiments demonstrated that these lines contributed to resulting chimeras and are germ-line competent. We report the establishment of ntES cell lines from somatic cells isolated from same individual. Our data also suggest that embryo micromanipulation procedure during the nuclear transfer procedure influences the developmental ability and embryonic stem cell establishment rate of nuclear transferred embryos.

  12. Validation of the REMA score for predicting mast cell clonality and systemic mastocytosis in patients with systemic mast cell activation symptoms.

    PubMed

    Alvarez-Twose, I; González-de-Olano, D; Sánchez-Muñoz, L; Matito, A; Jara-Acevedo, M; Teodosio, C; García-Montero, A; Morgado, J M; Orfao, A; Escribano, L

    2012-01-01

    A variable percentage of patients with systemic mast cell (MC) activation symptoms meet criteria for systemic mastocytosis (SM). We prospectively evaluated the clinical utility of the REMA score versus serum baseline tryptase (sBt) levels for predicting MC clonality and SM in 158 patients with systemic MC activation symptoms in the absence of mastocytosis in the skin (MIS). World Health Organization criteria for SM were applied in all cases. MC clonality was defined as the presence of KIT-mutated MC or by a clonal HUMARA test. The REMA score consisted of the assignment of positive or negative points as follows: male (+1), female (-1), sBt <15 μg/l (-1) or >25 μg/l (+2), presence (-2) or absence (+1) of pruritus, hives or angioedema and presence (+3) of presyncope or syncope. Efficiency of the REMA score for predicting MC clonality and SM was assessed by receiver operating characteristic (ROC) curve analyses and compared to those obtained by means of sBt levels alone. Molecular studies revealed the presence of clonal MC in 68/80 SM cases and in 11/78 patients who did not meet the criteria for SM. ROC curve analyses confirmed the greater sensitivity and a similar specificity of the REMA score versus sBt levels (84 vs. 59% and 74 vs. 70% for MC clonality and 87 vs. 62% and 73 vs. 71% for SM, respectively). Our results confirm the clinical utility of the REMA score to predict MC clonality and SM in patients suffering from systemic MC activation symptoms without MIS. Copyright © 2011 S. Karger AG, Basel.

  13. Clonal tracing of Sox9+ liver progenitors in oval cell injury

    PubMed Central

    Tarlow, Branden D.; Finegold, Milton J.; Grompe, Markus

    2014-01-01

    Proliferating ducts, termed “oval cells”, have long thought to be bipotential, i.e. produce both biliary ducts and hepatocytes during chronic liver injury. The precursor to oval cells is considered to be a facultative liver stem cell (LSC). Recent lineage tracing experiments indicated that the LSC is Sox9+ and can replace the bulk of hepatocyte mass in several settings. However, no clonal relationship between Sox9+ cells and the two epithelial liver lineages was established. We labeled Sox9+ mouse liver cells at low density with a multicolor fluorescent confetti reporter. Organoid formation validated the progenitor activity of the labeled population. Sox9+ cells were traced in multiple oval cell injury models using both histology and FACS. Surprisingly, only rare clones containing both hepatocytes and oval cells were found in any experiment. Quantitative analysis showed that Sox9+ cells contributed only minimally (<1%) to the hepatocyte pool, even in classic oval cell injury models. In contrast, clonally marked mature hepatocytes demonstrated the ability to self-renew in all classic mouse oval cell activation injuries. A hepatocyte chimera model to trace hepatocytes and non-parenchymal cells also demonstrated the prevalence of hepatocyte-driven regeneration in mouse oval cell injury models. Conclusion Sox9+ ductal progenitor cells give rise to clonal oval cell proliferation and bipotential organoids but rarely produce hepatocytes in vivo. Hepatocytes themselves are the predominant source of new parenchyma cells in prototypical mouse models of oval cell activation. PMID:24700457

  14. NTCP-Reconstituted In Vitro HBV Infection System.

    PubMed

    Sun, Yinyan; Qi, Yonghe; Peng, Bo; Li, Wenhui

    2017-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as a functional receptor for hepatitis B virus (HBV). Expressing human NTCP in human hepatoma HepG2 cells (HepG2-NTCP) renders these cells susceptible for HBV infection. The HepG2-NTCP stably transfected cell line provides a much-needed and easily accessible platform for studying the virus. HepG2-NTCP cells could also be used to identify chemicals targeting key steps of the virus life cycle including HBV covalent closed circular (ccc) DNA, and enable the development of novel antivirals against the infection.Many factors may contribute to the efficiency of HBV infection on HepG2-NTCP cells, with clonal differences among cell line isolates, the source of viral inoculum, and infection medium among the most critical ones. Here, we provide detailed protocols for efficient HBV infection of HepG2-NTCP cells in culture; generation and selection of single cell clones of HepG2-NTCP; production of infectious HBV virion stock through DNA transfection of recombinant plasmid that enables studying primary clinical HBV isolates; and assessing the infection with immunostaining of HBV antigens and Southern blot analysis of HBV cccDNA.

  15. Genetic Analysis of earl field growth of loblolly pine clones and seedlings from the same full-sib families

    Treesearch

    Brian Baltunis; Dudley Huber; Tim Wite

    2006-01-01

    The Forest Biology Research Cooperative recently established a series of loblolly pine clonal trials known as CCLONES (Comparing Clonal Lines on Experimental Sites). There are three primary levels of genetic structure in this study (parental, full-sib family, clone) that strengthen the power of CCLONES for examining genetic mechanisms and interactions with cultural...

  16. Analysis of the clonal repertoire of gene-corrected cells in gene therapy.

    PubMed

    Paruzynski, Anna; Glimm, Hanno; Schmidt, Manfred; Kalle, Christof von

    2012-01-01

    Gene therapy-based clinical phase I/II studies using integrating retroviral vectors could successfully treat different monogenetic inherited diseases. However, with increased efficiency of this therapy, severe side effects occurred in various gene therapy trials. In all cases, integration of the vector close to or within a proto-oncogene contributed substantially to the development of the malignancies. Thus, the in-depth analysis of integration site patterns is of high importance to uncover potential clonal outgrowth and to assess the safety of gene transfer vectors and gene therapy protocols. The standard and nonrestrictive linear amplification-mediated PCR (nrLAM-PCR) in combination with high-throughput sequencing exhibits technologies that allow to comprehensively analyze the clonal repertoire of gene-corrected cells and to assess the safety of the used vector system at an early stage on the molecular level. It enables clarifying the biological consequences of the vector system on the fate of the transduced cell. Furthermore, the downstream performance of real-time PCR allows a quantitative estimation of the clonality of individual cells and their clonal progeny. Here, we present a guideline that should allow researchers to perform comprehensive integration site analysis in preclinical and clinical studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla

    PubMed Central

    McCaughtry, Tom M.; Baldwin, Troy A.; Wilken, Matthew S.; Hogquist, Kristin A.

    2008-01-01

    The thymic medulla is generally held to be a specialized environment for negative selection. However, many self-reactive thymocytes first encounter ubiquitous self-antigens in the cortex. Cortical epithelial cells are vital for positive selection, but whether such cells can also promote negative selection is controversial. We used the HYcd4 model, where T cell receptor for antigen (TCR) expression is appropriately timed and a ubiquitous self-antigen drives clonal deletion in male mice. We demonstrated unambiguously that this deletion event occurs in the thymic cortex. However, the kinetics in vivo indicated that apoptosis was activated asynchronously relative to TCR activation. We found that radioresistant antigen-presenting cells and, specifically, cortical epithelial cells do not efficiently induce apoptosis, although they do cause TCR activation. Rather, thymocytes undergoing clonal deletion were preferentially associated with rare CD11c+ cortical dendritic cells, and elimination of such cells impaired deletion. PMID:18936237

  18. Hierarchy of stroma-derived factors in supporting growth of stroma-dependent hemopoietic cells: membrane-bound SCF is sufficient to confer stroma competence to epithelial cells.

    PubMed

    Friel, Jutta; Itoh, Katsuhiko; Bergholz, Ulla; Jücker, Manfred; Stocking, Carol; Harrison, Paul; Ostertag, Wolfram

    2002-03-01

    Hemopoiesis takes place in a microenvironment where hemopoietic cells are closely associated with stroma by various interactions. Stroma coregulates the proliferation and differentiation of hemopoietic cells. Stroma-hemopoietic-cell contact can be supported by locally produced membrane associated growth factors. The stroma derived growth factor, stem cell factor (SCF) is important in hemopoiesis. We examined the different biological interactions of membrane bound and soluble SCF with human hemopoietic cells expressing the SCF receptor, c-kit. To analyze the function of the SCF isoforms in inducing the proliferation of hemopoietic TF1 or Cord blood (CB) CD34+ cells we used stroma cell lines that differ in their presentation of no SCF, membrane SCF, or soluble SCF. We established a new coculture system using an epithelial cell line that excludes potential interfering effects with other known stroma encoded hemopoietic growth factors. We show that soluble SCF, in absence of membrane-bound SCF, inhibits long term clonal growth of primary or established CD34+ hemopoietic cells, whereas membrane-inserted SCF "dominantly" induces long term proliferation of these cells. We demonstrate a hierarchy of these SCF isoforms in the interaction of stroma with hemopoietic TF1 cells. Membrane-bound SCF is "dominant" over soluble SCF, whereas soluble SCF acts epistatically in interacting with hemopoietic cells compared with other stroma derived factors present in SCF deficient stroma. A hierarchy of stroma cell lines can be arranged according to their presentation of membrane SCF or soluble SCF. In our model system, membrane-bound SCF expression is sufficient to confer stroma properties to an epithelial cell line but soluble SCF does not.

  19. Concepts of Cell Lineage in Mammalian Embryos.

    PubMed

    Papaioannou, Virginia E

    2016-01-01

    Cell lineage is the framework for understanding cellular diversity, stability of differentiation, and its relationship to pluripotency. The special condition of in utero development in mammals has presented challenges to developmental biologists in tracing cell lineages but modern imaging and cell marking techniques have allowed the gradual elucidation of lineage relationships. Early experimental embryology approaches had limited resolution and relied of suboptimal cell markers and considerable disturbance to the embryos. Transgenic technology introduced genetic markers, particularly fluorescent proteins that, combined with sophisticated imaging modalities, greatly increase resolution and allow clonal analysis within lineages. The concept of cell lineage has also undergone evolution as it became possible to trace the lineage of cells based not only on their physical location or attributes but also on their gene expression pattern, thus opening up mechanistic lines of investigation into the determinants of cell lineage. © 2016 Elsevier Inc. All rights reserved.

  20. Pancreatic cancer cell lines as patient-derived avatars: genetic characterisation and functional utility.

    PubMed

    Knudsen, Erik S; Balaji, Uthra; Mannakee, Brian; Vail, Paris; Eslinger, Cody; Moxom, Christopher; Mansour, John; Witkiewicz, Agnieszka K

    2018-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is a therapy recalcitrant disease with the worst survival rate of common solid tumours. Preclinical models that accurately reflect the genetic and biological diversity of PDAC will be important for delineating features of tumour biology and therapeutic vulnerabilities. 27 primary PDAC tumours were employed for genetic analysis and development of tumour models. Tumour tissue was used for derivation of xenografts and cell lines. Exome sequencing was performed on the originating tumour and developed models. RNA sequencing, histological and functional analyses were employed to determine the relationship of the patient-derived models to clinical presentation of PDAC. The cohort employed captured the genetic diversity of PDAC. From most cases, both cell lines and xenograft models were developed. Exome sequencing confirmed preservation of the primary tumour mutations in developed cell lines, which remained stable with extended passaging. The level of genetic conservation in the cell lines was comparable to that observed with patient-derived xenograft (PDX) models. Unlike historically established PDAC cancer cell lines, patient-derived models recapitulated the histological architecture of the primary tumour and exhibited metastatic spread similar to that observed clinically. Detailed genetic analyses of tumours and derived models revealed features of ex vivo evolution and the clonal architecture of PDAC. Functional analysis was used to elucidate therapeutic vulnerabilities of relevance to treatment of PDAC. These data illustrate that with the appropriate methods it is possible to develop cell lines that maintain genetic features of PDAC. Such models serve as important substrates for analysing the significance of genetic variants and create a unique biorepository of annotated cell lines and xenografts that were established simultaneously from same primary tumour. These models can be used to infer genetic and empirically determined therapeutic sensitivities that would be germane to the patient. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Analyses of the combination of 6-MP and dasatinib in cell culture

    PubMed Central

    KAUR, GURMEET; BEHRSING, HOLGER; PARCHMENT, RALPH E.; MILLIN, MYRTLE DAVIS; TEICHER, BEVERLY A.

    2013-01-01

    A major tenet of cancer therapeutics is that combinations of anticancer agents with different mechanisms of action and different toxicities may be effective treatment regimens. Evaluation of additivity/synergy in cell culture may be used to identify drug combination opportunities and to assess risk of additive/synergistic toxicity. The combination of 6-mercaptopurine and dasatinib was assessed for additivity/synergy using the combination index (CI) method and a response surface method in six human tumor cell lines including MCF-7 and MDA-MB-468 breast cancer, NCI-H23 and NCI-H460 non-small cell lung cancer, and A498 and 786-O renal cell cancer, based on two experimental end-points: ATP content and colony formation. Clonal colony formation by human bone marrow CFU-GM was used to assess risk of enhanced toxicity. The concentration ranges tested for each drug were selected to encompass the clinical Cmax concentrations. The combination regimens were found to be additive to sub-additive by both methods of data analysis, but synergy was not detected. The non-small cell lung cancer cell lines were the most responsive among the tumor lines tested and the renal cell carcinoma lines were the least responsive. The bone marrows CFU-GM were more sensitive to the combination regimens than were the tumor cell lines. Based upon these data, it appears that the possibility of enhanced efficacy from combining 6-mercaptopurine (6-MP) and dasatinib would be associated with increased risk of severe bone marrow toxicity, so the combination is unlikely to provide a therapeutic advantage for treating solid tumor patients where adequate bone marrow function must be preserved. PMID:23652925

  2. Strategic deployment of CHO expression platforms to deliver Pfizer's Monoclonal Antibody Portfolio.

    PubMed

    Scarcelli, John J; Shang, Tanya Q; Iskra, Tim; Allen, Martin J; Zhang, Lin

    2017-11-01

    Development of stable cell lines for expression of large-molecule therapeutics represents a significant portion of the time and effort required to advance a molecule to enabling regulatory toxicology studies and clinical evaluation. Our development strategy employs two different approaches for cell line development based on the needs of a particular project: a random integration approach for projects where high-level expression is critical, and a site-specific integration approach for projects in which speed and reduced employee time spend is a necessity. Here we describe both our random integration and site-specific integration platforms and their applications in support of monoclonal antibody development and production. We also compare product quality attributes of monoclonal antibodies produced with a nonclonal cell pool or clonal cell lines derived from the two platforms. Our data suggests that material source (pools vs. clones) does not significantly alter the examined product quality attributes. Our current practice is to leverage this observation with our site-specific integration platform, where material generated from cell pools is used for an early molecular assessment of a given candidate to make informed decisions around development strategy. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1463-1467, 2017. © 2017 American Institute of Chemical Engineers.

  3. GACD: Integrated Software for Genetic Analysis in Clonal F1 and Double Cross Populations.

    PubMed

    Zhang, Luyan; Meng, Lei; Wu, Wencheng; Wang, Jiankang

    2015-01-01

    Clonal species are common among plants. Clonal F1 progenies are derived from the hybridization between 2 heterozygous clones. In self- and cross-pollinated species, double crosses can be made from 4 inbred lines. A clonal F1 population can be viewed as a double cross population when the linkage phase is determined. The software package GACD (Genetic Analysis of Clonal F1 and Double cross) is freely available public software, capable of building high-density linkage maps and mapping quantitative trait loci (QTL) in clonal F1 and double cross populations. Three functionalities are integrated in GACD version 1.0: binning of redundant markers (BIN); linkage map construction (CDM); and QTL mapping (CDQ). Output of BIN can be directly used as input of CDM. After adding the phenotypic data, the output of CDM can be used as input of CDQ. Thus, GACD acts as a pipeline for genetic analysis. GACD and example datasets are freely available from www.isbreeding.net. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Production of CMAH Knockout Preimplantation Embryos Derived From Immortalized Porcine Cells Via TALE Nucleases.

    PubMed

    Moon, JoonHo; Lee, Choongil; Kim, Su Jin; Choi, Ji-Yei; Lee, Byeong Chun; Kim, Jin-Soo; Jang, Goo

    2014-05-27

    Although noncancerous immortalized cell lines have been developed by introducing genes into human and murine somatic cells, such cell lines have not been available in large domesticated animals like pigs. For immortalizing porcine cells, primary porcine fetal fibroblasts were isolated and cultured using the human telomerase reverse transcriptase (hTERT) gene. After selecting cells with neomycin for 2 weeks, outgrowing colonized cells were picked up and subcultured for expansion. Immortalized cells were cultured for more than 9 months without changing their doubling time (~24 hours) or their diameter (< 20 µm) while control cells became replicatively senescent during the same period. Even a single cell expanded to confluence in 100 mm dishes. Furthermore, to knockout the CMAH gene, designed plasmids encoding a transcription activator-like effector nuclease (TALENs) pairs were transfected into the immortalized cells. Each single colony was analyzed by the mutation-sensitive T7 endonuclease I assay, fluorescent PCR, and dideoxy sequencing to obtain three independent clonal populations of cells that contained biallelic modifications. One CMAH knockout clone was chosen and used for somatic cell nuclear transfer. Cloned embryos developed to the blastocyst stage. In conclusion, we demonstrated that immortalized porcine fibroblasts were successfully established using the human hTERT gene, and the TALENs enabled biallelic gene disruptions in these immortalized cells.

  5. Production of CMAH Knockout Preimplantation Embryos Derived From Immortalized Porcine Cells Via TALE Nucleases

    PubMed Central

    Moon, JoonHo; Lee, Choongil; Kim, Su Jin; Choi, Ji-Yei; Lee, Byeong Chun; Kim, Jin-Soo; Jang, Goo

    2014-01-01

    Although noncancerous immortalized cell lines have been developed by introducing genes into human and murine somatic cells, such cell lines have not been available in large domesticated animals like pigs. For immortalizing porcine cells, primary porcine fetal fibroblasts were isolated and cultured using the human telomerase reverse transcriptase (hTERT) gene. After selecting cells with neomycin for 2 weeks, outgrowing colonized cells were picked up and subcultured for expansion. Immortalized cells were cultured for more than 9 months without changing their doubling time (~24 hours) or their diameter (< 20 µm) while control cells became replicatively senescent during the same period. Even a single cell expanded to confluence in 100 mm dishes. Furthermore, to knockout the CMAH gene, designed plasmids encoding a transcription activator-like effector nuclease (TALENs) pairs were transfected into the immortalized cells. Each single colony was analyzed by the mutation-sensitive T7 endonuclease I assay, fluorescent PCR, and dideoxy sequencing to obtain three independent clonal populations of cells that contained biallelic modifications. One CMAH knockout clone was chosen and used for somatic cell nuclear transfer. Cloned embryos developed to the blastocyst stage. In conclusion, we demonstrated that immortalized porcine fibroblasts were successfully established using the human hTERT gene, and the TALENs enabled biallelic gene disruptions in these immortalized cells. PMID:24866481

  6. Functional heterogeneity and heritability in CHO cell populations.

    PubMed

    Davies, Sarah L; Lovelady, Clare S; Grainger, Rhian K; Racher, Andrew J; Young, Robert J; James, David C

    2013-01-01

    In this study, we address the hypothesis that it is possible to exploit genetic/functional variation in parental Chinese hamster ovary (CHO) cell populations to isolate clonal derivatives that exhibit superior, heritable attributes for biomanufacturing--new parental cell lines which are inherently more "fit for purpose." One-hundred and ninety-nine CHOK1SV clones were isolated from a donor CHOK1SV parental population by limiting dilution cloning and microplate image analysis, followed by primary analysis of variation in cell-specific proliferation rate during extended deep-well microplate suspension culture of individual clones to accelerate genetic drift in isolated cultures. A subset of 100 clones were comparatively evaluated for transient production of a recombinant monoclonal antibody (Mab) and green fluorescent protein following transfection of a plasmid vector encoding both genes. The heritability of both cell-specific proliferation rate and Mab production was further assessed using a subset of 23 clones varying in functional capability that were subjected to cell culture regimes involving both cryopreservation and extended sub-culture. These data showed that whilst differences in transient Mab production capability were not heritable per se, clones exhibiting heritable variation in specific proliferation rate, endocytotic transfectability and N-glycan processing were identified. Finally, for clonal populations most "evolved" by extended sub-culture in vitro we investigated the relationship between cellular protein biomass content, specific proliferation rate and cell surface N-glycosylation. Rapid-specific proliferation rate was inversely correlated to CHO cell size and protein content, and positively correlated to cell surface glycan content, although substantial clone-specific variation in ability to accumulate cell biomass was evident. Taken together, our data reveal the dynamic nature of the CHO cell functional genome and the potential to evolve and isolate CHO cell variants with improved functional properties in vitro. Copyright © 2012 Wiley Periodicals, Inc.

  7. Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland.

    PubMed

    Lilja, Anna M; Rodilla, Veronica; Huyghe, Mathilde; Hannezo, Edouard; Landragin, Camille; Renaud, Olivier; Leroy, Olivier; Rulands, Steffen; Simons, Benjamin D; Fre, Silvia

    2018-06-01

    Recent lineage tracing studies have revealed that mammary gland homeostasis relies on unipotent stem cells. However, whether and when lineage restriction occurs during embryonic mammary development, and which signals orchestrate cell fate specification, remain unknown. Using a combination of in vivo clonal analysis with whole mount immunofluorescence and mathematical modelling of clonal dynamics, we found that embryonic multipotent mammary cells become lineage-restricted surprisingly early in development, with evidence for unipotency as early as E12.5 and no statistically discernable bipotency after E15.5. To gain insights into the mechanisms governing the switch from multipotency to unipotency, we used gain-of-function Notch1 mice and demonstrated that Notch activation cell autonomously dictates luminal cell fate specification to both embryonic and basally committed mammary cells. These functional studies have important implications for understanding the signals underlying cell plasticity and serve to clarify how reactivation of embryonic programs in adult cells can lead to cancer.

  8. Clonal expansion of Epstein-Barr virus (EBV)-infected γδ T cells in patients with chronic active EBV disease and hydroa vacciniforme-like eruptions.

    PubMed

    Wada, Taizo; Toga, Akiko; Sakakibara, Yasuhisa; Toma, Tomoko; Hasegawa, Minoru; Takehara, Kazuhiko; Shigemura, Tomonari; Agematsu, Kazunaga; Yachie, Akihiro

    2012-10-01

    Chronic active Epstein-Barr virus (EBV) disease (CAEBV) is a systemic EBV-positive lymphoproliferative disorder characterized by fever, lymphadenopathy, and splenomegaly. Patients with CAEBV may present with cutaneous symptoms, including hypersensitivity to mosquito bites and hydroa vacciniforme (HV)-like eruptions. HV is a rare photodermatosis characterized by vesicles and crust formation after exposure to sunlight, with onset in childhood, and is associated with latent EBV infection. While γδ T cells have recently been demonstrated to be the major EBV-infected cell population in HV, the immunophenotypic features of EBV-infected γδ T cells in CAEBV with HV-like eruptions or HV remain largely undetermined. We describe three patients with CAEBV whose γδ T cells were found to be the major cellular target of EBV. HV-like eruptions were observed in two of these patients. A clonally expanded subpopulation of γδ T cells that were highly activated and T cell receptor Vγ9- and Vδ2-positive cells was demonstrated in all patients. We also show that the clonally expanded γδ T cells infiltrated into the HV-like eruptions in one patient from whom skin biopsy specimens were available. These results suggest the pathogenic roles of clonally expanded γδ T cells infected by EBV in patients with CAEBV and HV-like eruptions.

  9. Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells.

    PubMed

    Frölich, Daniela; Giesecke, Claudia; Mei, Henrik E; Reiter, Karin; Daridon, Capucine; Lipsky, Peter E; Dörner, Thomas

    2010-09-01

    Rechallenge with T cell-dependent Ags induces memory B cells to re-enter germinal centers (GCs) and undergo further expansion and differentiation into plasma cells (PCs) and secondary memory B cells. It is currently not known whether the expanded population of memory B cells and PCs generated in secondary GCs are clonally related, nor has the extent of proliferation and somatic hypermutation of their precursors been delineated. In this study, after secondary tetanus toxoid (TT) immunization, TT-specific PCs increased 17- to 80-fold on days 6-7, whereas TT-specific memory B cells peaked (delayed) on day 14 with a 2- to 22-fold increase. Molecular analyses of V(H)DJ(H) rearrangements of individual cells revealed no major differences of gene usage and CDR3 length between TT-specific PCs and memory B cells, and both contained extensive evidence of somatic hypermutation with a pattern consistent with GC reactions. This analysis identified clonally related TT-specific memory B cells and PCs. Within clusters of clonally related cells, sequences shared a number of mutations but also could contain additional base pair changes. The data indicate that although following secondary immunization PCs can derive from memory B cells without further somatic hypermutation, in some circumstances, likely within GC reactions, asymmetric mutation can occur. These results suggest that after the fate decision to differentiate into secondary memory B cells or PCs, some committed precursors continue to proliferate and mutate their V(H) genes.

  10. Clonality analysis of lymphoid proliferations using the BIOMED-2 clonality assays: a single institution experience

    PubMed Central

    Kokovic, Ira; Novakovic, Barbara Jezersek; Cerkovnik, Petra; Novakovic, Srdjan

    2014-01-01

    Background Clonality determination in patients with lymphoproliferative disorders can improve the final diagnosis. The aim of our study was to evaluate the applicative value of standardized BIOMED-2 gene clonality assay protocols for the analysis of clonality of lymphocytes in a group of different lymphoid proliferations. Materials and methods. With this purpose, 121 specimens from 91 patients with suspected lymphoproliferations submitted for routine diagnostics from January to December 2011 were retrospectively analyzed. According to the final diagnosis, our series comprised 32 cases of B-cell lymphomas, 38 cases of non-Hodgkin’s T-cell lymphomas and 51 cases of reactive lymphoid proliferations. Clonality testing was performed using the BIOMED-2 clonality assays. Results The determined sensitivity of the TCR assay was 91.9%, while the sensitivity of the IGH assay was 74.2%. The determined specificity of the IGH assay was 73.3% in the group of lymphomas and 87.2% in the group of reactive lesions. The determined specificity of the TCR assay was 62.5% in the group of lymphomas and 54.3% in the group of reactive lesions. Conclusions In the present study, we confirmed the utility of standardized BIOMED-2 clonality assays for the detection of clonality in a routine diagnostical setting of non-Hodgkin’s lymphomas. Reactions for the detection of the complete IGH rearrangements and reactions for the detection of the TCR rearrangements are a good choice for clonality testing of a wide range of lymphoid proliferations and specimen types while the reactions for the detection of incomplete IGH rearrangements have not shown any additional diagnostic value. PMID:24991205

  11. Clinical implications of somatic mutations in aplastic anemia and myelodysplastic syndrome in genomic age.

    PubMed

    Maciejewski, Jaroslaw P; Balasubramanian, Suresh K

    2017-12-08

    Recent technological advances in genomics have led to the discovery of new somatic mutations and have brought deeper insights into clonal diversity. This discovery has changed not only the understanding of disease mechanisms but also the diagnostics and clinical management of bone marrow failure. The clinical applications of genomics include enhancement of current prognostic schemas, prediction of sensitivity or refractoriness to treatments, and conceptualization and selective application of targeted therapies. However, beyond these traditional clinical aspects, complex hierarchical clonal architecture has been uncovered and linked to the current concepts of leukemogenesis and stem cell biology. Detection of clonal mutations, otherwise typical of myelodysplastic syndrome, in the course of aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria has led to new pathogenic concepts in these conditions and created a new link between AA and its clonal complications, such as post-AA and paroxysmal nocturnal hemoglobinuria. Distinctions among founder vs subclonal mutations, types of clonal evolution (linear or branching), and biological features of individual mutations (sweeping, persistent, or vanishing) will allow for better predictions of the biologic impact they impart in individual cases. As clonal markers, mutations can be used for monitoring clonal dynamics of the stem cell compartment during physiologic aging, disease processes, and leukemic evolution. © 2016 by The American Society of Hematology. All rights reserved.

  12. Establishment of high reciprocal connectivity between clonal cortical neurons is regulated by the Dnmt3b DNA methyltransferase and clustered protocadherins.

    PubMed

    Tarusawa, Etsuko; Sanbo, Makoto; Okayama, Atsushi; Miyashita, Toshio; Kitsukawa, Takashi; Hirayama, Teruyoshi; Hirabayashi, Takahiro; Hasegawa, Sonoko; Kaneko, Ryosuke; Toyoda, Shunsuke; Kobayashi, Toshihiro; Kato-Itoh, Megumi; Nakauchi, Hiromitsu; Hirabayashi, Masumi; Yagi, Takeshi; Yoshimura, Yumiko

    2016-12-02

    The specificity of synaptic connections is fundamental for proper neural circuit function. Specific neuronal connections that underlie information processing in the sensory cortex are initially established without sensory experiences to a considerable extent, and then the connections are individually refined through sensory experiences. Excitatory neurons arising from the same single progenitor cell are preferentially connected in the postnatal cortex, suggesting that cell lineage contributes to the initial wiring of neurons. However, the postnatal developmental process of lineage-dependent connection specificity is not known, nor how clonal neurons, which are derived from the same neural stem cell, are stamped with the identity of their common neural stem cell and guided to form synaptic connections. We show that cortical excitatory neurons that arise from the same neural stem cell and reside within the same layer preferentially establish reciprocal synaptic connections in the mouse barrel cortex. We observed a transient increase in synaptic connections between clonal but not nonclonal neuron pairs during postnatal development, followed by selective stabilization of the reciprocal connections between clonal neuron pairs. Furthermore, we demonstrate that selective stabilization of the reciprocal connections between clonal neuron pairs is impaired by the deficiency of DNA methyltransferase 3b (Dnmt3b), which determines DNA-methylation patterns of genes in stem cells during early corticogenesis. Dnmt3b regulates the postnatal expression of clustered protocadherin (cPcdh) isoforms, a family of adhesion molecules. We found that cPcdh deficiency in clonal neuron pairs impairs the whole process of the formation and stabilization of connections to establish lineage-specific connection reciprocity. Our results demonstrate that local, reciprocal neural connections are selectively formed and retained between clonal neurons in layer 4 of the barrel cortex during postnatal development, and that Dnmt3b and cPcdhs are required for the establishment of lineage-specific reciprocal connections. These findings indicate that lineage-specific connection reciprocity is predetermined by Dnmt3b during embryonic development, and that the cPcdhs contribute to postnatal cortical neuron identification to guide lineage-dependent synaptic connections in the neocortex.

  13. [Lymphocytic Clonal Expansion in Adult Patients with Epstein-Barr Virus-Associated Lymphoproliferative Disease].

    PubMed

    Zhong, Feng-Luan; Zhang, Hong-Yu; Zhang, Qian; Feng, Jia; Zhang, Wen-Li; Xu, Lei; Xu, Hai-Chan; Wen, Juan-Juan; Meng, Qing-Xiang

    2017-12-01

    To explore the lymphocytic clonal expansion in adult patients with Epstein-Barr virus-associated lymphoproliferative diseases (EBV+LPD), and to investigate the experimental methods for EBV+LPD cells so as to provide a more objective measure for the diagnosis, classification and prognosis in the early stage of this disease. Peripheral blood samples from 5 patients with EBV+LPD, 4 patients with adult infectious mononucleosis(IM) as negative control and 3 patients with acute NK-cell leukemia(ANKL) as positive control were collected. Prior to immunochemotherapy, viral loads and clonality were analysed by flow cytometry (FCM), T cell receptor gene rearrangement (TCR) was detected by real-time polymerase chain reaction (RT-PCR), and diversity of EB virus terminal repeat (EBV-TR) was detected by Southern blot. FCM showed only 1 case with clonal TCRVβ in 5 patients with EBV+LPD, TCR clonal expansion could be detected both in patients with IM(4 of 4) and 4 patients with EBV+LPD(4 of 5), Out of patients with EBV+LPD, 1 patient displayed a monoclonal band and 2 patients showed oligoclonal bands when detecting EBV-TR by southen blot. Detecting the diversity of EBV-TR by Southern blot may be the most objective way to reflex clonal transformation of EBV+LPD, which is of great benefit to the diagnosis, classification and prognosis in the early stage of this disease.

  14. Neural stem cells induce the formation of their physical niche during organogenesis

    PubMed Central

    Riebesehl, Bea F; Ambrosio, Elizabeth M; Stolper, Julian S; Lischik, Colin Q; Dross, Nicolas

    2017-01-01

    Most organs rely on stem cells to maintain homeostasis during post-embryonic life. Typically, stem cells of independent lineages work coordinately within mature organs to ensure proper ratios of cell types. Little is known, however, on how these different stem cells locate to forming organs during development. Here we show that neuromasts of the posterior lateral line in medaka are composed of two independent life-long lineages with different embryonic origins. Clonal analysis and 4D imaging revealed a hierarchical organisation with instructing and responding roles: an inner, neural lineage induces the formation of an outer, border cell lineage (nBC) from the skin epithelium. Our results demonstrate that the neural lineage is necessary and sufficient to generate nBCs highlighting self-organisation principles at the level of the entire embryo. We hypothesise that induction of surrounding tissues plays a major role during the establishment of vertebrate stem cell niches. PMID:28950935

  15. Improved clonality detection in Hodgkin lymphoma using a semi-nested modification of the BIOMED-2 PCR assay for IGH and IGK rearrangements: A paraffin-embedded tissue study.

    PubMed

    Han, Shusen; Masaki, Ayako; Sakamoto, Yuma; Takino, Hisashi; Murase, Takayuki; Iida, Shinsuke; Inagaki, Hiroshi

    2018-05-01

    The BIOMED-2 PCR protocols targeting IGH and IGK genes may be useful for detecting clonality in Hodgkin lymphoma (HL). The clonality detection rates, however, have not been very high with these methods using paraffin-embedded tumor sections. We previously described the usefulness of the semi-nested BIOMED-2 IGH assay in B-cell malignancies. In this study, we devised a novel semi-nested BIOMED-2 IGK assay. Employing 58 cases of classical HL, we carried out the standard BIOMED-2, BIOMED-2 followed by BIOMED-2 re-amplification, and BIOMED-2 followed by semi-nested BIOMED-2, all targeting IGH and IGK, using paraffin-embedded tissues. In both IGH and IGK assays, semi-nested assays yielded significantly higher clonality detection rates than the standard assays and re-amplification assays. Clonality was detected in 13/58 (22.4%) classical HL cases using the standard IGH/IGK assays while it was detected in 38/58 (65.5%) cases using semi-nested IGH/IGK assays. The detection rates were not associated with the HL subtypes, CD30-positive cell density, CD20-positive cell density, or Epstein-Barr virus (EBV) positivity. In conclusion, tumor clonality was detected in nearly two-thirds of classical HL cases using semi-nested BIOMED-2 IGH/IGK assays using paraffin tumor sections. These semi-nested assays may be useful when the standard IGH/IGK assays fail to detect clonality in histopathologically suspected HLs. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  16. Usefullness of IGH/TCR PCR studies in lymphoproliferative disorders with inconclusive clonality by flow cytometry.

    PubMed

    Ribera, Jordi; Zamora, Lurdes; Juncà, Jordi; Rodríguez, Inés; Marcé, Silvia; Cabezón, Marta; Millá, Fuensanta

    2013-07-25

    In up to 5-15% of studies of lymphoproliferative disorders (LPD) flow cytometry (FCM) or immunomorphologic methods cannot discriminate malignant from reactive processes. The aim of this work was to determine the usefulness of PCR for solving these diagnostic uncertainties. We analyzed IGH and TCRγ genes by PCR in 106 samples with inconclusive FCM results. A clonal result was registered in 36/106 studies, with a LPD being confirmed in 27 (75%) of these cases. Specifically, 9/9 IGH clonal and 16/25 TCRγ clonal results were finally diagnosed with LPD. Additionally, 2 clonal TCRγ samples with suspicion of undefined LPD were finally diagnosed with T LPD. Although polyclonal results were obtained in 47 of the cases studied (38 IGH and 9 TCRγ), hematologic neoplasms were diagnosed in 4/38 IGH polyclonal and in 1/9 TCRγ polyclonal studies. There were also 14 PCR polyclonal results (4 IGH, 10 TCRγ), albeit non-conclusive. Of these, 2/4 were eventually diagnosed with B-cell lymphoma and 3/10 with T-cell LPD. In 8 IGH samples the results of PCR techniques were non-informative but in 3/8 cases a B lymphoma was finally confirmed. We concluded that PCR is a useful technique to identify LPD when FCM is inconclusive. A PCR clonal B result is indicative of malignancy but IGH polyclonal and non-conclusive results do not exclude lymphoid neoplasms. Interpretation of T-cell clonality should be based on all the available clinical and analytical data. © 2013 Clinical Cytometry Society. Copyright © 2013 Clinical Cytometry Society.

  17. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells

    PubMed Central

    Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z.; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung’u, Thumbi; Walker, Bruce D.; Rosenberg, Eric S.; Yu, Xu G.

    2017-01-01

    HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells. PMID:28628034

  18. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells.

    PubMed

    Lee, Guinevere Q; Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung'u, Thumbi; Walker, Bruce D; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias

    2017-06-30

    HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells.

  19. Analysis of clonal expansions through the normal and premalignant human breast epithelium reveals the presence of luminal stem cells.

    PubMed

    Cereser, Biancastella; Jansen, Marnix; Austin, Emily; Elia, George; McFarlane, Taneisha; van Deurzen, Carolien Hm; Sieuwerts, Anieta M; Daidone, Maria G; Tadrous, Paul J; Wright, Nicholas A; Jones, Louise; McDonald, Stuart Ac

    2018-01-01

    It is widely accepted that the cell of origin of breast cancer is the adult mammary epithelial stem cell; however, demonstrating the presence and location of tissue stem cells in the human breast has proved difficult. Furthermore, we do not know the clonal architecture of the normal and premalignant mammary epithelium or its cellular hierarchy. Here, we use deficiency in the mitochondrial enzyme cytochrome c oxidase (CCO), typically caused by somatic mutations in the mitochondrial genome, as a means to perform lineage tracing in the human mammary epithelium. PCR sequencing of laser-capture microdissected cells in combination with immunohistochemistry for markers of lineage differentiation was performed to determine the clonal nature of the mammary epithelium. We have shown that in the normal human breast, clonal expansions (defined here by areas of CCO deficiency) are typically uncommon and of limited size, but can occur at any site within the adult mammary epithelium. The presence of a stem cell population was shown by demonstrating multi-lineage differentiation within CCO-deficient areas. Interestingly, we observed infrequent CCO deficiency that was restricted to luminal cells, suggesting that niche succession, and by inference stem cell location, is located within the luminal layer. CCO-deficient areas appeared large within areas of ductal carcinoma in situ, suggesting that the rate of clonal expansion was altered in the premalignant lesion. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  20. Disruptive chemicals, senescence and immortality

    PubMed Central

    Carnero, Amancio; Blanco-Aparicio, Carmen; Kondoh, Hiroshi; Lleonart, Matilde E.; Martinez-Leal, Juan Fernando; Mondello, Chiara; Ivana Scovassi, A.; Bisson, William H.; Amedei, Amedeo; Roy, Rabindra; Woodrick, Jordan; Colacci, Annamaria; Vaccari, Monica; Raju, Jayadev; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Salem, Hosni K.; Memeo, Lorenzo; Forte, Stefano; Singh, Neetu; Hamid, Roslida A.; Ryan, Elizabeth P.; Brown, Dustin G.; Wise, John Pierce; Wise, Sandra S.; Yasaei, Hemad

    2015-01-01

    Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated ‘selection and succession’ of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of ‘driver mutations’ enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible for the initiation of clonal evolution? What are the roles of genotoxic and non-genotoxic carcinogens in carcinogenesis? What are the underlying mechanisms responsible for chemical carcinogen-induced cellular immortality? Here, we explore the possible mechanisms of cellular immortalization, the contribution of immortalization to tumorigenesis and the mechanisms by which chemical carcinogens may contribute to these processes. PMID:26106138

  1. The role of idiotypic interactions in the adaptive immune system: a belief-propagation approach

    NASA Astrophysics Data System (ADS)

    Bartolucci, Silvia; Mozeika, Alexander; Annibale, Alessia

    2016-08-01

    In this work we use belief-propagation techniques to study the equilibrium behaviour of a minimal model for the immune system comprising interacting T and B clones. We investigate the effect of the so-called idiotypic interactions among complementary B clones on the system’s activation. Our results show that B-B interactions increase the system’s resilience to noise, making clonal activation more stable, while increasing the cross-talk between different clones. We derive analytically the noise level at which a B clone gets activated, in the absence of cross-talk, and find that this increases with the strength of idiotypic interactions and with the number of T cells sending signals to the B clones. We also derive, analytically and numerically, via population dynamics, the critical line where clonal cross-talk arises. Our approach allows us to derive the B clone size distribution, which can be experimentally measured and gives important information about the adaptive immune system response to antigens and vaccination.

  2. Co-culture of clonal beta cells with GLP-1 and glucagon-secreting cell line impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins.

    PubMed

    Green, Alastair D; Vasu, Srividya; Moffett, R Charlotte; Flatt, Peter R

    2016-06-01

    We investigated the direct effects on insulin releasing MIN6 cells of chronic exposure to GLP-1, glucagon or a combination of both peptides secreted from GLUTag L-cell and αTC1.9 alpha-cell lines in co-culture. MIN6, GLUTag and αTC1.9 cell lines exhibited high cellular hormone content and release of insulin, GLP-1 and glucagon, respectively. Co-culture of MIN6 cells with GLUTag cells significantly increased cellular insulin content, beta-cell proliferation, insulin secretory responses to a range of established secretogogues and afforded protection against exposure cytotoxic concentrations of glucose, lipid, streptozotocin or cytokines. Benefits of co-culture of MIN6 cells with αTC1.9 alphacells were limited to enhanced beta-cell proliferation with marginal positive actions on both insulin secretion and cellular protection. In contrast, co-culture of MIN6 with GLUTag cells plus αTC1.9 cells, markedly enhanced both insulin secretory responses and protection against beta-cell toxins compared with co-culture with GLUTag cells alone. These data indicate important long-term effects of conjoint GLP-1 and glucagon exposure on beta-cell function. This illustrates the possible functional significance of alpha-cell GLP-1 production as well as direct beneficial effects of dual agonism at beta-cell GLP-1 and glucagon receptors. Copyright © 2016 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  3. Radiation-induced transmissable chromosomal instability in haemopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Kadhim, M. A.; Wright, E. G.

    Heritable radiation-induced genetic alterations have long been assumed to be ``fixed'' within the first cell division. However, there is a growing body of evidence that a considerable fraction of cells surviving radiation exposure appear normal, but a variety of mutational changes arise in their progeny due to a transmissible genomic instability. In our investigations of G-banded metaphases, non-clonal cytogenetic aberrations, predominantly chromatid-type aberrations, have been observed in the clonal descendants of murine and human haemopoietic stem cells surviving low doses (~1 track per cell) of alpha-particle irradiations. The data are consistent with a transmissible genetic instability induced in a stem cell resulting in a diversity of chromosomal aberrations in its clonal progeny many cell divisions later. Recent studies have demonstrated that the instability phenotype persists in vivo and that the expression of chromosomal instability has a strong dependence on the genetic characteristics of the irradiated cell. At the time when cytogenetic aberrations are detected, an increased incidence of hprt mutations and apoptotic cells have been observed in the clonal descendants of alpha-irradiated murine haemopoietic stem cells. Thus, delayed chromosomal abnormalities, delayed cell death by apoptosis and late-arising specific gene mutations may reflect diverse consequences of radiation-induced genomic instability. The relationship, if any, between these effects is not established. Current studies suggest that expression of these delayed heritable effects is determined by the type of radiation exposure, type of cell and a variety of genetic factors.

  4. Cell subpopulation deconvolution reveals breast cancer heterogeneity based on DNA methylation signature.

    PubMed

    Wen, Yanhua; Wei, Yanjun; Zhang, Shumei; Li, Song; Liu, Hongbo; Wang, Fang; Zhao, Yue; Zhang, Dongwei; Zhang, Yan

    2017-05-01

    Tumour heterogeneity describes the coexistence of divergent tumour cell clones within tumours, which is often caused by underlying epigenetic changes. DNA methylation is commonly regarded as a significant regulator that differs across cells and tissues. In this study, we comprehensively reviewed research progress on estimating of tumour heterogeneity. Bioinformatics-based analysis of DNA methylation has revealed the evolutionary relationships between breast cancer cell lines and tissues. Further analysis of the DNA methylation profiles in 33 breast cancer-related cell lines identified cell line-specific methylation patterns. Next, we reviewed the computational methods in inferring clonal evolution of tumours from different perspectives and then proposed a deconvolution strategy for modelling cell subclonal populations dynamics in breast cancer tissues based on DNA methylation. Further analysis of simulated cancer tissues and real cell lines revealed that this approach exhibits satisfactory performance and relative stability in estimating the composition and proportions of cellular subpopulations. The application of this strategy to breast cancer individuals of the Cancer Genome Atlas's identified different cellular subpopulations with distinct molecular phenotypes. Moreover, the current and potential future applications of this deconvolution strategy to clinical breast cancer research are discussed, and emphasis was placed on the DNA methylation-based recognition of intra-tumour heterogeneity. The wide use of these methods for estimating heterogeneity to further clinical cohorts will improve our understanding of neoplastic progression and the design of therapeutic interventions for treating breast cancer and other malignancies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Short-Term Grafting of Human Neural Stem Cells: Electrophysiological Properties and Motor Behavioral Amelioration in Experimental Parkinsons Disease.

    PubMed

    Martnez-Serrano, Alberto; Pereira, Marta P; Avaliani, Natalia; Nelke, Anna; Kokaia, Merab; Ramos-Moreno, Tania

    2016-12-13

    Cell replacement therapy in Parkinsons disease (PD) still lacks a study addressing the acquisition of electrophysiological properties of human grafted neural stem cells and their relation with the emergence of behavioral recovery after transplantation in the short term. Here we study the electrophysiological and biochemical profiles of two ventral mesencephalic human neural stem cell (NSC) clonal lines (C30-Bcl-XL and C32-Bcl-XL) that express high levels of Bcl-XL to enhance their neurogenic capacity, after grafting in an in vitro parkinsonian model. Electrophysiological recordings show that the majority of the cells derived from the transplants are not mature at 6 weeks after grafting, but 6.7% of the studied cells showed mature electrophysiological profiles. Nevertheless, parallel in vivo behavioral studies showed a significant motor improvement at 7 weeks postgrafting in the animals receiving C30-Bcl-XL, the cell line producing the highest amount of TH+ cells. Present results show that, at this postgrafting time point, behavioral amelioration highly correlates with the spatial dispersion of the TH+ grafted cells in the caudate putamen. The spatial dispersion, along with a high number of dopaminergic-derived cells, is crucial for behavioral improvements. Our findings have implications for long-term standardization of stem cell-based approaches in Parkinsons disease.

  6. Establishment and transformation of telomerase-immortalized human small airway epithelial cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Previous studies from this laboratory have identified a number of causally linked genes including the novel tumor suppressor Betaig-h3 that were differentially expressed in radiation induced tumorigenic BEP2D cells. To extend these studies using a genomically more stable bronchial cell line, we show here that ectopic expression of the catalytic subunit of telomerase (hTERT) in primary human small airway epithelial (SAE) cells resulted in the generation of several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal. Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings. The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice. These cells show no alteration in the p53 gene but a decrease in p16 expression. Exponentially growing SAEh cells were exposed to graded doses of 1 GeV/nucleon of 56Fe ions accelerated at the Brookhaven National Laboratory. Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation. Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium. These findings indicate that hTERT-immortalized cells, being diploid and chromosomal stable, should be a useful model in assessing mechanism of radiation carcinogenesis.

  7. Infliximab induces clonal expansion of γδ-T cells in Crohn's disease: a predictor of lymphoma risk?

    PubMed

    Kelsen, Jens; Dige, Anders; Schwindt, Heinrich; D'Amore, Francesco; Pedersen, Finn S; Agnholt, Jørgen; Christensen, Lisbet A; Dahlerup, Jens F; Hvas, Christian L

    2011-03-31

    Concominant with the widespread use of combined immunotherapy in the management of Crohn's disease (CD), the incidence of hepato-splenic gamma-delta (γδ)-T cell lymphoma has increased sharply in CD patients. Malignant transformation of lymphocytes is believed to be a multistep process resulting in the selection of malignant γδ-T cell clones. We hypothesised that repeated infusion of anti-TNF-α agents may induce clonal selection and that concurrent treatment with immunomodulators further predisposes patients to γδ-T cell expansion. We investigated dynamic changes in the γδ-T cells of patient with CD following treatment with infliximab (Remicade®; n=20) or adalimumab (Humira®; n=26) using flow cytometry. In patients with a high γδ-T cell level, the γδ-T cells were assessed for clonality. Of these 46 CD patients, 35 had a γδ-T cells level (mean 1.6%) comparable to healthy individuals (mean 2.2%), and 11 CD patients (24%) exhibited an increased level of γδ-T cells (5-15%). In the 18 patients also receiving thiopurines or methotrexate, the average baseline γδ-T cell level was 4.4%. In three male CD patients with a high baseline value, the γδ-T cell population increased dramatically following infliximab therapy. A fourth male patient also on infliximab monotherapy presented with 20% γδ-T cells, which increased to 25% shortly after treatment and was 36% between infusions. Clonality studies revealed an oligoclonal γδ-T cell pattern with dominant γδ-T cell clones. In support of our clinical findings, in vitro experiments showed a dose-dependent proliferative effect of anti-TNF-α agents on γδ-T cells. CD patients treated with immunomodulators had constitutively high levels of γδ-T cells. Infliximab exacerbated clonal γδ-T cell expansion in vivo and induced γδ-T cell proliferation in vitro. Overall, young, male CD patients with high baseline γδ-T cell levels may be at an increased risk of developing malignant γδ-T cell lymphomas following treatment with anti-TNF-α agents.

  8. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.

    PubMed

    Fan, Lianchun; Kadura, Ibrahim; Krebs, Lara E; Hatfield, Christopher C; Shaw, Margaret M; Frye, Christopher C

    2012-04-01

    Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high-producing clones among a large population of low- and non-productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)-based methotrexate (MTX) selection and glutamine synthetase (GS)-based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS-CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L-MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS-knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (∼2%) of bi-allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine-dependent growth of all GS-knockout cell lines. Full evaluation of the GS-knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two- to three-fold through the use of GS-knockout cells as parent cells. The selection stringency was significantly increased, as indicated by the large reduction of non-producing and low-producing cells after 25 µM L-MSX selection, and resulted in a six-fold efficiency improvement in identifying similar numbers of high-productive cell lines for a given recombinant monoclonal antibody. The potential impact of GS-knockout cells on recombinant protein quality is also discussed. Copyright © 2011 Wiley Periodicals, Inc.

  9. Clonal evolution models of tumor heterogeneity.

    PubMed

    Shlush, Liran I; Hershkovitz, Dov

    2015-01-01

    Somatic/clonal evolution is the process of sequential acquisition of vertically transmittable genetic/epigenetic elements in multicellular organisms. Cancer is the result of somatic evolution. Understanding the processes that shape the evolution of individual tumors might help us to treat cancer more efficiently. The initiating genetic/epigenetic events occur in functional cells and provide the cell of origin a selective advantage under a changing environment. The initiating genetic events tend to be enriched in specific tissues (and are sometimes specific for those tissues), as different tissues undergo different changes in the environment that will activate selective forces on different cells of origin. For the initial clonal expansion to occur premalignant clones need to have a relative fitness advantage over their competitors. It is estimated that the premalignant phase can take several years. Once the premalignant clonal expansion is established, the premalignant cells will contribute to the changing environment and will start competing among themselves. In late stages of cancer evolution the environmental changes might be similar across different tissues, including a lack of physical space, a shortage of energy, and activation of the immune system, and more and more of the hallmarks of cancer will evolve. In this review we will explore the possible clinical relevance of the heterogeneity that evolves during this long somatic evolution. Above all, it should be stressed that the earlier the clonal expansion is recognized, the less diverse and less fit for survival the cells in the population are.

  10. Clonal heterogeneity as a driver of disease variability in the evolution of myeloproliferative neoplasms.

    PubMed

    Prick, Janine; de Haan, Gerald; Green, Anthony R; Kent, David G

    2014-10-01

    Myeloproliferative neoplasms (MPNs) are clonal hematological diseases in which cells of the myelo-erythroid lineage are overproduced and patients are predisposed to leukemic transformation. Hematopoietic stem cells are the suspected disease-initiating cells, and these cells must acquire a clonal advantage relative to nonmutant hematopoietic stem cells to perpetuate disease. In 2005, several groups identified a single gain-of-function point mutation in JAK2 that associated with the majority of MPNs, and subsequent studies have led to a comprehensive understanding of the mutational landscape in MPNs. However, confusion still exists as to how a single genetic aberration can be associated with multiple distinct disease entities. Many explanations have been proposed, including JAK2V617F homozygosity, individual patient heterogeneity, and the differential regulation of downstream JAK2 signaling pathways. Several groups have made knock-in mouse models expressing JAK2V617F and have observed divergent phenotypes, each recapitulating some aspects of disease. Intriguingly, most of these models do not observe a strong hematopoietic stem cell self-renewal advantage compared with wild-type littermate controls, raising the question of how a clonal advantage is established in patients with MPNs. This review summarizes the current molecular understanding of MPNs and the diversity of disease phenotypes and proposes that the increased proliferation induced by JAK2V617F applies a selection pressure on the mutant clone that results in highly diverse clonal evolution in individuals. Copyright © 2014 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  11. Microsatellites within the feline androgen receptor are suitable for X chromosome-linked clonality testing in archival material.

    PubMed

    Farwick, Nadine M; Klopfleisch, Robert; Gruber, Achim D; Weiss, Alexander Th A

    2017-04-01

    Objectives A hallmark of neoplasms is their origin from a single cell; that is, clonality. Many techniques have been developed in human medicine to utilise this feature of tumours for diagnostic purposes. One approach is X chromosome-linked clonality testing using polymorphisms of genes encoded by genes on the X chromosome. The aim of this study was to determine if the feline androgen receptor gene was suitable for X chromosome-linked clonality testing. Methods The feline androgen receptor gene was characterised and used to test clonality of feline lymphomas by PCR and polyacrylamide gel electrophoresis, using archival formalin-fixed, paraffin-embedded material. Results Clonality of the feline lymphomas under study was confirmed and the gene locus was shown to represent a suitable target in clonality testing. Conclusions and relevance Because there are some pitfalls of using X chromosome-linked clonality testing, further studies are necessary to establish this technique in the cat.

  12. Recent advances in understanding clonal haematopoiesis in aplastic anaemia

    PubMed Central

    Stanley, Natasha; Olson, Timothy S.; Babushok, Daria V.

    2016-01-01

    Summary Acquired aplastic anaemia (AA) is an immune-mediated bone marrow failure disorder inextricably linked to clonal haematopoiesis. The majority of AA patients have somatic mutations and/or structural chromosomal abnormalities detected as early as at diagnosis. In contrast to other conditions linked to clonal haematopoiesis, the clonal signature of AA reflects its immune pathophysiology. The most common alterations are clonal expansions of cells lacking glycophosphotidylinositol-anchored proteins, loss of human leucocyte antigen alleles, and mutations in BCOR/BCORL1, ASXL1 and DNMT3A. Here, we present the current knowledge of clonal haematopoiesis in AA as it relates to aging, inherited bone marrow failure, and the grey-zone overlap of AA and myelodysplastic syndrome (MDS). We conclude by discussing the significance of clonal haematopoiesis both for improved diagnosis of AA, as well as for a more precise, personalized approach to prognostication of outcomes and therapy choices. PMID:28107566

  13. Recent advances in understanding clonal haematopoiesis in aplastic anaemia.

    PubMed

    Stanley, Natasha; Olson, Timothy S; Babushok, Daria V

    2017-05-01

    Acquired aplastic anaemia (AA) is an immune-mediated bone marrow failure disorder inextricably linked to clonal haematopoiesis. The majority of AA patients have somatic mutations and/or structural chromosomal abnormalities detected as early as at diagnosis. In contrast to other conditions linked to clonal haematopoiesis, the clonal signature of AA reflects its immune pathophysiology. The most common alterations are clonal expansions of cells lacking glycophosphotidylinositol-anchored proteins, loss of human leucocyte antigen alleles, and mutations in BCOR/BCORL1, ASXL1 and DNMT3A. Here, we present the current knowledge of clonal haematopoiesis in AA as it relates to aging, inherited bone marrow failure, and the grey-zone overlap of AA and myelodysplastic syndrome (MDS). We conclude by discussing the significance of clonal haematopoiesis both for improved diagnosis of AA, as well as for a more precise, personalized approach to prognostication of outcomes and therapy choices. © 2017 John Wiley & Sons Ltd.

  14. Long interspersed element-1 protein expression is a hallmark of many human cancers.

    PubMed

    Rodić, Nemanja; Sharma, Reema; Sharma, Rajni; Zampella, John; Dai, Lixin; Taylor, Martin S; Hruban, Ralph H; Iacobuzio-Donahue, Christine A; Maitra, Anirban; Torbenson, Michael S; Goggins, Michael; Shih, Ie-Ming; Duffield, Amy S; Montgomery, Elizabeth A; Gabrielson, Edward; Netto, George J; Lotan, Tamara L; De Marzo, Angelo M; Westra, William; Binder, Zev A; Orr, Brent A; Gallia, Gary L; Eberhart, Charles G; Boeke, Jef D; Harris, Chris R; Burns, Kathleen H

    2014-05-01

    Cancers comprise a heterogeneous group of human diseases. Unifying characteristics include unchecked abilities of tumor cells to proliferate and spread anatomically, and the presence of clonal advantageous genetic changes. However, universal and highly specific tumor markers are unknown. Herein, we report widespread long interspersed element-1 (LINE-1) repeat expression in human cancers. We show that nearly half of all human cancers are immunoreactive for a LINE-1-encoded protein. LINE-1 protein expression is a common feature of many types of high-grade malignant cancers, is rarely detected in early stages of tumorigenesis, and is absent from normal somatic tissues. Studies have shown that LINE-1 contributes to genetic changes in cancers, with somatic LINE-1 insertions seen in selected types of human cancers, particularly colon cancer. We sought to correlate this observation with expression of the LINE-1-encoded protein, open reading frame 1 protein, and found that LINE-1 open reading frame 1 protein is a surprisingly broad, yet highly tumor-specific, antigen. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Clonal differences in generation times of GPK epithelial cells in monolayer culture.

    PubMed

    Riley, P A; Hola, M

    1980-01-01

    Pedigrees of cells in eight clones of guinea pig keratocyte (GPK) cells in monolayer culture were analyzed from a time-lapse film. The generation times and the position in the field of observation were recorded up to the sixth generation when the cultures were still subconfluent. Statistical analysis of the results indicates that the position in the culture has less significance than the clonal origin of the cell in determining the interval between successive mitoses.

  16. Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines

    PubMed Central

    2010-01-01

    To overcome loss of stem-like properties and spontaneous differentiation those hinder the expansion and application of human mesenchymal stem cells (hMSCs), we have clonally isolated permanent and stable human MSC lines by ectopic overexpression of primary cell cultures of hMSCs with HPV 16 E6E7 and human telomerase reverse transcriptase (hTERT) genes. These cells were found to have a differentiation potential far beyond the ordinary hMSCs. They expressed trophoectoderm and germline specific markers upon differentiation with BMP4 and retinoic acid, respectively. Furthermore, they displayed higher osteogenic and neural differentiation efficiency than primary hMSCs or hMSCs expressed HPV16 E6E7 alone with a decrease in methylation level as proven by a global CpG island methylation profile analysis. Notably, the demethylated CpG islands were highly associated with development and differentiation associated genes. Principal component analysis further pointed out the expression profile of the cells converged toward embryonic stem cells. These data demonstrate these cells not only are a useful tool for the studies of cell differentiation both for the mesenchymal and neurogenic lineages, but also provide a valuable source of cells for cell therapy studies in animal models of skeletal and neurological disorders. PMID:20670406

  17. Genomic instability and tumorigenic induction in immortalized human bronchial epithelial cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Hei, T. K.; Piao, C. Q.; Wu, L. J.; Willey, J. C.; Hall, E. J.

    1998-11-01

    Carcinogenesis is postulated to be a progressive multistage process characterized by an increase in genomic instability and clonal selection with each mutational event endowing a selective growth advantage. Genomic instability as manifested by the amplification of specific gene fragments is common among tumor and transformed cells. In the present study, immortalized human bronchial (BEP2D) cells were irradiated with graded doses of either 1GeV/nucleon 56Fe ions or 150 keV/μm alpha particles. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Tumorigenic cells showed neither ras mutations nor deletion in the p16 tumor suppressor gene. In contrast, they harbored mutations in the p53 gene and over-expressed cyclin D1. Genomic instability among transformed cells at various stage of the carcinogenic process was examined based on frequencies of PALA resistance. Incidence of genomic instability was highest among established tumor cell lines relative to transformed, non-tumorigenic and control cell lines. Treatment of BEP2D cells with a 4 mM dose of the aminothiol WR-1065 significantly reduced their neoplastic transforming response to 56Fe particles. This model provides an opportunity to study the cellular and molecular mechanisms involved in malignant transformation of human epithelial cells by heavy ions.

  18. Isolation and characterization of dexamethasone-resistant mutants from human lymphoid cell line CEM-C7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, J.M.; Thompson, E.B.

    1981-06-01

    Fifty-four independent dexamethasone-resistant clones were isolated from the clonal, glucocorticoid-sensitive human leukemic T-cell line CEM-C7. Resistance to 1 ..mu..M dexamethasone was acquired spontaneously at a rate of 2.6 x 10/sup -5/ per cell per generation as determined by fluctuation analysis. After mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), the phenotypic expression time for dexamethasone resistance was determined to be 3 days. The mutagens ICR 191 and MNNG were effective in increasing the dexamethasone-resistant fraction of cells in mutagenized cultures; ICR 191 produced a 35.6-fold increase, and MNNG produced an 8.5-fold increase. All the spontaneous dexamethasone-resistant clones contained glucocorticoid receptors, usually less than halfmore » of the amount found in the parental clone. They are therefore strikingly different from dexamethasone-resistant clones derived from the mouse cell lines S49 and W7. Dexamethasone-resistant clones isolated after mutagenesis of CEM-C7 contained, on the average, lower concentrations of receptor than did those isolated spontaneously, and one clone contained no detectable receptor. These results are consistent with a mutational origin for dexamethasone resistance in these human cells at a haploid or functionally hemizygous locus. They also suggest that this is a useful system for mutation assay.« less

  19. Telomere dynamics and homeostasis in a transmissible cancer.

    PubMed

    Ujvari, Beata; Pearse, Anne-Maree; Taylor, Robyn; Pyecroft, Stephen; Flanagan, Cassandra; Gombert, Sara; Papenfuss, Anthony T; Madsen, Thomas; Belov, Katherine

    2012-01-01

    Devil Facial Tumour Disease (DFTD) is a unique clonal cancer that threatens the world's largest carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii) with extinction. This transmissible cancer is passed between individual devils by cell implantation during social interactions. The tumour arose in a Schwann cell of a single devil over 15 years ago and since then has expanded clonally, without showing signs of replicative senescence; in stark contrast to a somatic cell that displays a finite capacity for replication, known as the "Hayflick limit". In the present study we investigate the role of telomere length, measured as Telomere Copy Number (TCN), and telomerase and shelterin gene expression, as well as telomerase activity in maintaining hyperproliferation of Devil Facial Tumour (DFT) cells. Our results show that DFT cells have short telomeres. DFTD TCN does not differ between geographic regions or between strains. However, TCN has increased over time. Unlimited cell proliferation is likely to have been achieved through the observed up-regulation of the catalytic subunit of telomerase (TERT) and concomitant activation of telomerase. Up-regulation of the central component of shelterin, the TRF1-intercating nuclear factor 2 (TINF2) provides DFT a mechanism for telomere length homeostasis. The higher expression of both TERT and TINF2 may also protect DFT cells from genomic instability and enhance tumour proliferation. DFT cells appear to monitor and regulate the length of individual telomeres: i.e. shorter telomeres are elongated by up-regulation of telomerase-related genes; longer telomeres are protected from further elongation by members of the shelterin complex, which may explain the lack of spatial and strain variation in DFT telomere copy number. The observed longitudinal increase in gene expression in DFT tissue samples and telomerase activity in DFT cell lines might indicate a selection for more stable tumours with higher proliferative potential.

  20. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging

    NASA Astrophysics Data System (ADS)

    Flusberg, Deborah A.; Sorger, Peter K.

    2013-06-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.

  1. Breast tumor heterogeneity: cancer stem cells or clonal evolution?

    PubMed

    Campbell, Lauren L; Polyak, Kornelia

    2007-10-01

    Breast tumors are composed of a variety of cell types with distinct morphologies and behaviors. It is not clear how this tumor heterogeneity comes about. Two popular concepts that attempt to explain this are the cancer stem cell hypothesis and the clonal evolution model. Each of these ideas has been investigated for some time, leading to the accumulation of numerous findings that are used to support one or the other. Although the two views share some similarities, they are fundamentally different notions with very different clinical implications. Analysis of the research backing each concept, along with a review of the results of our recent study investigating putative breast cancer stem cells, suggests how the cancer stem cell hypothesis and the clonal evolution model may be involved in generating breast tumor heterogeneity. An understanding of this process will allow the development of more effective ways to treat and prevent breast cancer.

  2. Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations

    PubMed Central

    Schreiber, Frank; Dal Co, Alma; Kiviet, Daniel J.; Littmann, Sten

    2017-01-01

    While we have good understanding of bacterial metabolism at the population level, we know little about the metabolic behavior of individual cells: do single cells in clonal populations sometimes specialize on different metabolic pathways? Such metabolic specialization could be driven by stochastic gene expression and could provide individual cells with growth benefits of specialization. We measured the degree of phenotypic specialization in two parallel metabolic pathways, the assimilation of glucose and arabinose. We grew Escherichia coli in chemostats, and used isotope-labeled sugars in combination with nanometer-scale secondary ion mass spectrometry and mathematical modeling to quantify sugar assimilation at the single-cell level. We found large variation in metabolic activities between single cells, both in absolute assimilation and in the degree to which individual cells specialize in the assimilation of different sugars. Analysis of transcriptional reporters indicated that this variation was at least partially based on cell-to-cell variation in gene expression. Metabolic differences between cells in clonal populations could potentially reduce metabolic incompatibilities between different pathways, and increase the rate at which parallel reactions can be performed. PMID:29253903

  3. Muscle Stem Cells Undergo Extensive Clonal Drift during Tissue Growth via Meox1-Mediated Induction of G2 Cell-Cycle Arrest.

    PubMed

    Nguyen, Phong Dang; Gurevich, David Baruch; Sonntag, Carmen; Hersey, Lucy; Alaei, Sara; Nim, Hieu Tri; Siegel, Ashley; Hall, Thomas Edward; Rossello, Fernando Jaime; Boyd, Sarah Elizabeth; Polo, Jose Maria; Currie, Peter David

    2017-07-06

    Organ growth requires a careful balance between stem cell self-renewal and lineage commitment to ensure proper tissue expansion. The cellular and molecular mechanisms that mediate this balance are unresolved in most organs, including skeletal muscle. Here we identify a long-lived stem cell pool that mediates growth of the zebrafish myotome. This population exhibits extensive clonal drift, shifting from random deployment of stem cells during development to reliance on a small number of dominant clones to fuel the vast majority of muscle growth. This clonal drift requires Meox1, a homeobox protein that directly inhibits the cell-cycle checkpoint gene ccnb1. Meox1 initiates G 2 cell-cycle arrest within muscle stem cells, and disrupting this G 2 arrest causes premature lineage commitment and the resulting defects in muscle growth. These findings reveal that distinct regulatory mechanisms orchestrate stem cell dynamics during organ growth, beyond the G 0 /G 1 cell-cycle inhibition traditionally associated with maintaining tissue-resident stem cells. Copyright © 2017. Published by Elsevier Inc.

  4. Corrective recombination of mouse immunoglobulin kappa alleles in Abelson murine leukemia virus-transformed pre-B cells.

    PubMed Central

    Feddersen, R M; Van Ness, B G

    1990-01-01

    Previous characterization of mouse immunoglobulin kappa gene rearrangement products cloned from murine plasmacytomas has indicated that two recombination events can take place on a single kappa allele (R. M. Feddersen and B. G. Van Ness, Proc. Natl. Acad. Sci. USA 82:4792-4797, 1985; M. A. Shapiro and M. Weigert, J. Immunol. 139:3834-3839, 1987). To determine whether multiple recombinations on a single kappa allele can contribute to the formation of productive V-J genes through corrective recombinations, we have examined several Abelson murine leukemia virus-transformed pre-B-cell clones which rearrange the kappa locus during cell culture. Clonal cell lines which had rearranged one kappa allele nonproductively while maintaining the other allele in the germ line configuration were grown, and secondary subclones, which subsequently expressed kappa protein, were isolated and examined for further kappa rearrangement. A full spectrum of rearrangement patterns was observed in this sequential cloning, including productive and nonproductive recombinations of the germ line allele and secondary recombinations of the nonproductive allele. The results show that corrective V-J recombinations, with displacement of the nonproductive kappa gene, occur with a significant frequency (6 of 17 kappa-producing subclones). Both deletion and maintenance of the primary (nonfunctional) V-J join, as a reciprocal product, were observed. Images PMID:2153918

  5. Hunting the mechanisms of self-renewal of immortal cell populations by means of real-time imaging of living cells.

    PubMed

    Kvitko, O V; Koneva, I I; Sheiko, Y I; Anisovich, M V

    2005-12-01

    The causes of the indefinite propagation of immortalized cell populations remain insufficiently understood, that hinders the research of such fundamental processes as ageing and cancer. In this study the interrelations between clonal proliferation and abnormalities of mitotic divisions in the immortalized cell line established from the mouse embryo were investigated with the aid of computerized microscopy of living cells. 3 mitoses with three daughter cells and 7 asymmetric mitoses which generated two daughter cells of conspicuously different sizes were registered among 71 mitotic divisions in the individual cell genealogy. Abnormal mitotic divisions either did not slow the proliferation in cell clones compared with progenies of cells that divided by means of normal mitoses or were followed by the acceleration of divisions in consecutive cell generations. These data suggest that abnormal mitotic divisions may contribute to the maintenance of the immortalized state of cell populations by means of generating chromosomal instability.

  6. Ultra-sensitive Sequencing Identifies High Prevalence of Clonal Hematopoiesis-Associated Mutations throughout Adult Life.

    PubMed

    Acuna-Hidalgo, Rocio; Sengul, Hilal; Steehouwer, Marloes; van de Vorst, Maartje; Vermeulen, Sita H; Kiemeney, Lambertus A L M; Veltman, Joris A; Gilissen, Christian; Hoischen, Alexander

    2017-07-06

    Clonal hematopoiesis results from somatic mutations in hematopoietic stem cells, which give an advantage to mutant cells, driving their clonal expansion and potentially leading to leukemia. The acquisition of clonal hematopoiesis-driver mutations (CHDMs) occurs with normal aging and these mutations have been detected in more than 10% of individuals ≥65 years. We aimed to examine the prevalence and characteristics of CHDMs throughout adult life. We developed a targeted re-sequencing assay combining high-throughput with ultra-high sensitivity based on single-molecule molecular inversion probes (smMIPs). Using smMIPs, we screened more than 100 loci for CHDMs in more than 2,000 blood DNA samples from population controls between 20 and 69 years of age. Loci screened included 40 regions known to drive clonal hematopoiesis when mutated and 64 novel candidate loci. We identified 224 somatic mutations throughout our cohort, of which 216 were coding mutations in known driver genes (DNMT3A, JAK2, GNAS, TET2, and ASXL1), including 196 point mutations and 20 indels. Our assay's improved sensitivity allowed us to detect mutations with variant allele frequencies as low as 0.001. CHDMs were identified in more than 20% of individuals 60 to 69 years of age and in 3% of individuals 20 to 29 years of age, approximately double the previously reported prevalence despite screening a limited set of loci. Our findings support the occurrence of clonal hematopoiesis-associated mutations as a widespread mechanism linked with aging, suggesting that mosaicism as a result of clonal evolution of cells harboring somatic mutations is a universal mechanism occurring at all ages in healthy humans. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Evolution of Tumor Clones in Adult Acute Lymphoblastic Leukemia.

    PubMed

    Smirnova, S Yu; Sidorova, Yu V; Ryzhikova, N V; Sychevskaya, K A; Parovichnikova, E N; Sudarikov, A B

    2016-01-01

    Clonal instability of a tumor cell population in acute lymphoblastic leukemia (ALL) may complicate the monitoring of a minimal residual disease (MRD) by means of patient-specific targets identified at the disease onset. Most of the data concerning the possible instability of rearranged clonal TCR and IG genes during disease recurrence were obtained for ALL in children. The appropriate features of adult ALL, which are known to differ from those of childhood ALL in certain biological characteristics and prognosis, remain insufficiently studied. The aim of this study was to assess the stability of IG and TCR gene rearrangements in adult ALL. Rearrangements were identified according to the BIOMED-2 protocol (PCR followed by fragment analysis). Mismatch in clonal rearrangements at onset and relapse was identified in 83% of patients, indicating clonal instability during treatment. Clonal evolution and diversity of IG and TCR gene rearrangements may be one of the tumor progression mechanisms. New rearrangements may emerge due to residual VDJ-recombinase activity in tumor cells. Also, many clonal IG and TCR gene rearrangements may be present at different levels at a diagnosis, but less abundant clones may be "invisible" due to limited detection sensitivity. Later, major clones may disappear in the course of chemotherapy, while others may proliferate. Investigation of clonal evolution and heterogeneity in ALL and their impact on the treatment efficacy will contribute to the identification of new prognostic factors and the development of therapeutic approaches.

  8. Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus

    PubMed Central

    van den Akker, Guus G. H.; Surtel, Don A. M.; Cremers, Andy; Richardson, Stephen M.; Hoyland, Judith A.; van Rhijn, Lodewijk W.

    2016-01-01

    Introduction Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. Methods Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ). Results The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. Conclusion We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair. PMID:26794306

  9. Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus.

    PubMed

    van den Akker, Guus G H; Surtel, Don A M; Cremers, Andy; Richardson, Stephen M; Hoyland, Judith A; van Rhijn, Lodewijk W; Voncken, Jan Willem; Welting, Tim J M

    2016-01-01

    Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ). The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair.

  10. Zebrafish as a model to assess cancer heterogeneity, progression and relapse

    PubMed Central

    Blackburn, Jessica S.; Langenau, David M.

    2014-01-01

    Clonal evolution is the process by which genetic and epigenetic diversity is created within malignant tumor cells. This process culminates in a heterogeneous tumor, consisting of multiple subpopulations of cancer cells that often do not contain the same underlying mutations. Continuous selective pressure permits outgrowth of clones that harbor lesions that are capable of enhancing disease progression, including those that contribute to therapy resistance, metastasis and relapse. Clonal evolution and the resulting intratumoral heterogeneity pose a substantial challenge to biomarker identification, personalized cancer therapies and the discovery of underlying driver mutations in cancer. The purpose of this Review is to highlight the unique strengths of zebrafish cancer models in assessing the roles that intratumoral heterogeneity and clonal evolution play in cancer, including transgenesis, imaging technologies, high-throughput cell transplantation approaches and in vivo single-cell functional assays. PMID:24973745

  11. Cell-to-cell movement of plastids in plants.

    PubMed

    Thyssen, Gregory; Svab, Zora; Maliga, Pal

    2012-02-14

    Our objective was to test whether or not plastids and mitochondria, the two DNA-containing organelles, move between cells in plants. As our experimental approach, we grafted two different species of tobacco, Nicotiana tabacum and Nicotiana sylvestris. Grafting triggers formation of new cell-to-cell contacts, creating an opportunity to detect cell-to-cell organelle movement between the genetically distinct plants. We initiated tissue culture from sliced graft junctions and selected for clonal lines in which gentamycin resistance encoded in the N. tabacum nucleus was combined with spectinomycin resistance encoded in N. sylvestris plastids. Here, we present evidence for cell-to-cell movement of the entire 161-kb plastid genome in these plants, most likely in intact plastids. We also found that the related mitochondria were absent, suggesting independent movement of the two DNA-containing organelles. Acquisition of plastids from neighboring cells provides a mechanism by which cells may be repopulated with functioning organelles. Our finding supports the universality of intercellular organelle trafficking and may enable development of future biotechnological applications.

  12. Long-Term Production and Delivery of Human Growth Hormone In vivo

    NASA Astrophysics Data System (ADS)

    Heartlein, Michael W.; Roman, Victoria A.; Jiang, Ji-Lei; Sellers, Joan W.; Zuliani, Antoinette M.; Treco, Douglas A.; Selden, Richard F.

    1994-11-01

    The application of somatic cell gene therapy to large patient populations will require the development of safe and practical approaches to the generation and characterization of genetically manipulated cells. Transkaryotic implantation is a gene therapy system based on the production of clonal strains of engineered primary and secondary cells, using nonviral methods. We demonstrate here that, on implantation, these clonal cell strains stably and reproducibly deliver pharmacologic quantities of protein for the lifetime of the experimental animals.

  13. Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis.

    PubMed Central

    Qin, Y; Duquette, P; Zhang, Y; Talbot, P; Poole, R; Antel, J

    1998-01-01

    The cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients is characterized by increased concentrations of immunoglobulin (Ig), which on electrophoretic analysis shows restricted heterogeneity (oligoclonal bands). CSF Ig is composed of both serum and intrathecally produced components. To examine the properties of intrathecal antibody-producing B cells, we analyzed Ig heavy-chain variable (V(H)) region genes of B cells recovered from the CSF of 12 MS patients and 15 patients with other neurological diseases (OND). Using a PCR technique, we could detect rearrangements of Ig V(H) genes in all samples. Sequence analysis of complementarity-determining region 3 (CDR3) of rearranged VDJ genes revealed expansion of a dominant clone or clones in 10 of the 12 MS patients. B cell clonal expansion was identified in 3 of 15 OND. The nucleotide sequences of V(H) genes from clonally expanded CSF B cells in MS patients demonstrated the preferential usage of the V(H) IV family. There were numerous somatic mutations, mainly in the CDRs, with a high replacement-to-silent ratio; the mutations were distributed in a way suggesting that these B cells had been positively selected through their antigen receptor. Our results demonstrate that in MS CSF, there is a high frequency of clonally expanded B cells that have properties of postgerminal center memory or antibody-forming lymphocytes. PMID:9727074

  14. 3′UTR-truncated Hmga2 cDNA causes MPN-like hematopoiesis by conferring a clonal growth advantage at the level of HSC in mice

    PubMed Central

    Ikeda, Kazuhiko; Mason, Philip J.

    2011-01-01

    Overexpression of high mobility group AT-hook 2 (HMGA2) is found in a number of benign and malignant tumors, including the clonal PIGA− cells in 2 cases of paroxysmal nocturnal hemoglobinuria (PNH) and some myeloproliferative neoplasms (MPNs), and recently in hematopoietic cell clones resulting from gene therapy procedures. In nearly all these cases overexpression is because of deletions or translocations that remove the 3′ untranslated region (UTR) which contains binding sites for the regulatory micro RNA let-7. We were therefore interested in the effect of HMGA2 overexpression in hematopoietic tissues in transgenic mice (ΔHmga2 mice) carrying a 3′UTR-truncated Hmga2 cDNA. ΔHmga2 mice expressed increased levels of HMGA2 protein in various tissues including hematopoietic cells and showed proliferative hematopoiesis with increased numbers in all lineages of peripheral blood cells, hypercellular bone marrow (BM), splenomegaly with extramedullary erythropoiesis and erythropoietin-independent erythroid colony formation. ΔHmga2-derived BM cells had a growth advantage over wild-type cells in competitive repopulation and serial transplantation experiments. Thus overexpression of HMGA2 leads to proliferative hematopoiesis with clonal expansion at the stem cell and progenitor levels and may account for the clonal expansion in PNH and MPNs and in gene therapy patients after vector insertion disrupts the HMGA2 locus. PMID:21460244

  15. Preneoplastic lesion growth driven by the death of adjacent normal stem cells

    PubMed Central

    Chao, Dennis L.; Eck, J. Thomas; Brash, Douglas E.; Maley, Carlo C.; Luebeck, E. Georg

    2008-01-01

    Clonal expansion of premalignant lesions is an important step in the progression to cancer. This process is commonly considered to be a consequence of sustaining a proliferative mutation. Here, we investigate whether the growth trajectory of clones can be better described by a model in which clone growth does not depend on a proliferative advantage. We developed a simple computer model of clonal expansion in an epithelium in which mutant clones can only colonize space left unoccupied by the death of adjacent normal stem cells. In this model, competition for space occurs along the frontier between mutant and normal territories, and both the shapes and the growth rates of lesions are governed by the differences between mutant and normal cells' replication or apoptosis rates. The behavior of this model of clonal expansion along a mutant clone's frontier, when apoptosis of both normal and mutant cells is included, matches the growth of UVB-induced p53-mutant clones in mouse dorsal epidermis better than a standard exponential growth model that does not include tissue architecture. The model predicts precancer cell mutation and death rates that agree with biological observations. These results support the hypothesis that clonal expansion of premalignant lesions can be driven by agents, such as ionizing or nonionizing radiation, that cause cell killing but do not directly stimulate cell replication. PMID:18815380

  16. Clonal populations of amniotic cells by dilution and direct plating: evidence for hidden diversity.

    PubMed

    Wilson, Patricia G; Devkota, Lorna; Payne, Tiffany; Crisp, Laddie; Winter, Allison; Wang, Zhan

    2012-01-01

    Fetal cells are widely considered a superior cell source for regenerative medicine; fetal cells show higher proliferative capacity and have undergone fewer replicative cycles that could generate spontaneous mutations. Fetal cells in amniotic fluid were among the first normal primary cells to be cultured ex vivo, but the undefined composition of amniotic fluid has hindered advance for regenerative applications. We first developed a highly efficient method to generate clonal populations by dilution of amniocentesis samples in media and direct plating without intervening refrigeration, centrifugation, or exposure of cells to the paracrine effects in mixed cell cultures. More than 40 clonal populations were recovered from 4 amniocentesis samples and representative clones were characterized by flow cytometry, conventional assays for differentiation potential, immunofluorescence imaging, and transcript analysis. The results revealed previously unreported diversity among stromal and epithelial cell types and identified unique cell types that could be lost or undetected in mixed cell populations. The differentiation potential of amniotic cells proved to be uncoupled from expression of definitive cell surface or cytoplasmic markers for stromal and epithelial cells. Evidence for diversity among stromal and epithelial cells in amniotic fluid bears on interpretations applied to molecular and functional tests of amniotic cell populations.

  17. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma.

    PubMed

    Beà, Sílvia; Valdés-Mas, Rafael; Navarro, Alba; Salaverria, Itziar; Martín-Garcia, David; Jares, Pedro; Giné, Eva; Pinyol, Magda; Royo, Cristina; Nadeu, Ferran; Conde, Laura; Juan, Manel; Clot, Guillem; Vizán, Pedro; Di Croce, Luciano; Puente, Diana A; López-Guerra, Mónica; Moros, Alexandra; Roue, Gael; Aymerich, Marta; Villamor, Neus; Colomo, Lluís; Martínez, Antonio; Valera, Alexandra; Martín-Subero, José I; Amador, Virginia; Hernández, Luis; Rozman, Maria; Enjuanes, Anna; Forcada, Pilar; Muntañola, Ana; Hartmann, Elena M; Calasanz, María J; Rosenwald, Andreas; Ott, German; Hernández-Rivas, Jesús M; Klapper, Wolfram; Siebert, Reiner; Wiestner, Adrian; Wilson, Wyndham H; Colomer, Dolors; López-Guillermo, Armando; López-Otín, Carlos; Puente, Xose S; Campo, Elías

    2013-11-05

    Mantle cell lymphoma (MCL) is an aggressive tumor, but a subset of patients may follow an indolent clinical course. To understand the mechanisms underlying this biological heterogeneity, we performed whole-genome and/or whole-exome sequencing on 29 MCL cases and their respective matched normal DNA, as well as 6 MCL cell lines. Recurrently mutated genes were investigated by targeted sequencing in an independent cohort of 172 MCL patients. We identified 25 significantly mutated genes, including known drivers such as ataxia-telangectasia mutated (ATM), cyclin D1 (CCND1), and the tumor suppressor TP53; mutated genes encoding the anti-apoptotic protein BIRC3 and Toll-like receptor 2 (TLR2); and the chromatin modifiers WHSC1, MLL2, and MEF2B. We also found NOTCH2 mutations as an alternative phenomenon to NOTCH1 mutations in aggressive tumors with a dismal prognosis. Analysis of two simultaneous or subsequent MCL samples by whole-genome/whole-exome (n = 8) or targeted (n = 19) sequencing revealed subclonal heterogeneity at diagnosis in samples from different topographic sites and modulation of the initial mutational profile at the progression of the disease. Some mutations were predominantly clonal or subclonal, indicating an early or late event in tumor evolution, respectively. Our study identifies molecular mechanisms contributing to MCL pathogenesis and offers potential targets for therapeutic intervention.

  18. Glutamine-derived 2-hydroxyglutarate is associated with disease progression in plasma cell malignancies

    PubMed Central

    Gonsalves, Wilson I.; Hitosugi, Taro; Ghosh, Toshi; Jevremovic, Dragan; Petterson, Xuan-Mai; Wellik, Linda; Kumar, Shaji K.; Nair, K. Sreekumaran

    2018-01-01

    The production of the oncometabolite 2-hydroxyglutarate (2-HG) has been associated with c-MYC overexpression. c-MYC also regulates glutamine metabolism and drives progression of asymptomatic precursor plasma cell (PC) malignancies to symptomatic multiple myeloma (MM). However, the presence of 2-HG and its clinical significance in PC malignancies is unknown. By performing 13C stable isotope resolved metabolomics (SIRM) using U[13C6]Glucose and U[13C5]Glutamine in human myeloma cell lines (HMCLs), we show that 2-HG is produced in clonal PCs and is derived predominantly from glutamine anaplerosis into the TCA cycle. Furthermore, the 13C SIRM studies in HMCLs also demonstrate that glutamine is preferentially utilized by the TCA cycle compared with glucose. Finally, measuring the levels of 2-HG in the BM supernatant and peripheral blood plasma from patients with precursor PC malignancies such as smoldering MM (SMM) demonstrates that relatively elevated levels of 2-HG are associated with higher levels of c-MYC expression in the BM clonal PCs and with a subsequent shorter time to progression (TTP) to MM. Thus, measuring 2-HG levels in BM supernatant or peripheral blood plasma of SMM patients offers potential early identification of those patients at high risk of progression to MM, who could benefit from early therapeutic intervention. PMID:29321378

  19. Clonal analysis of synovial fluid stem cells to characterize and identify stable mesenchymal stromal cell/mesenchymal progenitor cell phenotypes in a porcine model: a cell source with enhanced commitment to the chondrogenic lineage.

    PubMed

    Ando, Wataru; Kutcher, Josh J; Krawetz, Roman; Sen, Arindom; Nakamura, Norimasa; Frank, Cyril B; Hart, David A

    2014-06-01

    Previous studies have demonstrated that porcine synovial membrane stem cells can adhere to a cartilage defect in vivo through the use of a tissue-engineered construct approach. To optimize this model, we wanted to compare effectiveness of tissue sources to determine whether porcine synovial fluid, synovial membrane, bone marrow and skin sources replicate our understanding of synovial fluid mesenchymal stromal cells or mesenchymal progenitor cells from humans both at the population level and the single-cell level. Synovial fluid clones were subsequently isolated and characterized to identify cells with a highly characterized optimal phenotype. The chondrogenic, osteogenic and adipogenic potentials were assessed in vitro for skin, bone marrow, adipose, synovial fluid and synovial membrane-derived stem cells. Synovial fluid cells then underwent limiting dilution analysis to isolate single clonal populations. These clonal populations were assessed for proliferative and differentiation potential by use of standardized protocols. Porcine-derived cells demonstrated the same relationship between cell sources as that demonstrated previously for humans, suggesting that the pig may be an ideal preclinical animal model. Synovial fluid cells demonstrated the highest chondrogenic potential that was further characterized, demonstrating the existence of a unique clonal phenotype with enhanced chondrogenic potential. Porcine stem cells demonstrate characteristics similar to those in human-derived mesenchymal stromal cells from the same sources. Synovial fluid-derived stem cells contain an inherent phenotype that may be optimal for cartilage repair. This must be more fully investigated for future use in the in vivo tissue-engineered construct approach in this physiologically relevant preclinical porcine model. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Identification of genuine primary pulmonary NK cell lymphoma via clinicopathologic observation and clonality assay.

    PubMed

    Gong, Li; Wei, Long-Xiao; Huang, Gao-Sheng; Zhang, Wen-Dong; Wang, Lu; Zhu, Shao-Jun; Han, Xiu-Juan; Yao, Li; Lan, Miao; Li, Yan-Hong; Zhang, Wei

    2013-08-19

    Extranodal natural killer (NK)/T-cell lymphoma, nasal type, is an uncommon lymphoma associated with the Epstein-Barr virus (EBV). It most commonly involves the nasal cavity and upper respiratory tract. Primary pulmonary NK/T cell lymphoma is extremely rare. If a patient with a NK or T-cell tumor has an unusual reaction to treatment or an unusual prognosis, it is wise to differentiate NK from T-cell tumors. The clinicopathologic characteristics, immunophenotype, EBV in situ hybridization, and T cell receptor (TCR) gene rearrangement of primary pulmonary NK cell lymphoma from a 73-year-old Chinese woman were investigated and the clonal status was determined using female X-chromosomal inactivation mosaicism and polymorphisms at the phosphoglycerate kinase (PGK) gene. The lesion showed the typical histopathologic characteristics and immunohistochemical features of NK/T cell lymphoma. However, the sample was negative for TCR gene rearrangement. A clonality assay demonstrated that the lesion was monoclonal. It is concluded that this is the first recorded case of genuine primary pulmonary NK cell lymphoma. The purpose of the present work is to recommend that pathologists carefully investigate the whole lesion to reduce the likelihood that primary pulmonary NK cell lymphoma will be misdiagnosed as an infectious lesion. In addition, TCR gene rearrangement and clonal analysis, which is based on female X-chromosomal inactivation mosaicism and polymorphisms at PGK and androgen receptor (AR) loci, were found to play important roles in differentiating NK cell lymphoma from T cell lymphoma. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5205300349457729.

  1. Disruptive chemicals, senescence and immortality.

    PubMed

    Carnero, Amancio; Blanco-Aparicio, Carmen; Kondoh, Hiroshi; Lleonart, Matilde E; Martinez-Leal, Juan Fernando; Mondello, Chiara; Scovassi, A Ivana; Bisson, William H; Amedei, Amedeo; Roy, Rabindra; Woodrick, Jordan; Colacci, Annamaria; Vaccari, Monica; Raju, Jayadev; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Salem, Hosni K; Memeo, Lorenzo; Forte, Stefano; Singh, Neetu; Hamid, Roslida A; Ryan, Elizabeth P; Brown, Dustin G; Wise, John Pierce; Wise, Sandra S; Yasaei, Hemad

    2015-06-01

    Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated 'selection and succession' of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of 'driver mutations' enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible for the initiation of clonal evolution? What are the roles of genotoxic and non-genotoxic carcinogens in carcinogenesis? What are the underlying mechanisms responsible for chemical carcinogen-induced cellular immortality? Here, we explore the possible mechanisms of cellular immortalization, the contribution of immortalization to tumorigenesis and the mechanisms by which chemical carcinogens may contribute to these processes. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Growth and differentiation of a murine interleukin-3-producing myelomonocytic leukemia cell line in a protein-free chemically defined medium.

    PubMed

    Kajigaya, Y; Ikuta, K; Sasaki, H; Matsuyama, S

    1990-10-01

    We established the continuous growth of WEHI-3B D+ cells in protein-free chemically defined F-12 medium by stepwise decreases in the concentration of fetal calf serum. This cell line, designated as WEHI-3B-Y1, has now been propagated in protein-free F-12 medium for 3 years. The population-doubling time of the cells in culture is about 24 hr. WEHI-3B-Y1 cells are immature undifferentiated cells which show positive staining for naphthol ASD chloroacetate esterase and alpha-naphthyl butyrate esterase and spontaneously exhibit a low level of differentiation to mature granulocytes and macrophages. Medium conditioned by WEHI-3B-Y1 cells stimulated the proliferation of an interleukin-3 (IL-3)-dependent FDCP-2 cell line. This conditioned medium was shown to have erythroid burst-promoting activity when assayed using normal murine bone marrow. The colony formation of WEHI-3B-Y1 cells in semi-solid agar culture was not stimulated by purified recombinant human granulocyte colony-stimulating factor (rhG-CSF). However, in the presence of human transferrin, rhG-CSF enhanced the number of colonies of WEHI-3B-Y1 cells but did not induce their differentiation. These results suggest that WEHI-3B-Y1 cells cultured in protein-free medium produced murine IL-3. In addition, human G-CSF enhanced the clonal growth but did not induce the differentiation of WEHI-3B-Y1 cells cultured in serum-free medium.

  3. Immortalization of human prostate epithelial cells by HPV 16 E6/E7 open reading frames.

    PubMed

    Choo, C K; Ling, M T; Chan, K W; Tsao, S W; Zheng, Z; Zhang, D; Chan, L C; Wong, Y C

    1999-08-01

    The exact pathogenesis for prostate cancer is not known. Progress made in prostate cancer research has been slow, largely due to the lack of suitable in vitro models. Here, we report our work on the immortalization of a human prostate epithelial cell line and show that it can be used as a model to study prostate tumorigenesis. Replication-defective retrovirus harboring the human papillomavirus (HPV) type 16 E6 and E7 open reading frames was used to infect primary human prostate epithelial cells. Polymerase chain reaction, followed by Southern hybridization for the HPV 16 E6/E7, Western blot for prostatic acid phosphatase, telomeric repeat amplification protocol assay for telomerase activity, two-dimensional gels for cytokeratins, and cytogenetic analysis were undertaken to characterized the infected cells. The retrovirus-infected cell line, HPr-1, continued to grow in culture for more than 80 successive passages. Normal primary cells failed to proliferate after passage 6. HPr-1 cells bore close resemblance to normal primary prostate epithelial cells, both morphologically and biochemically. However, they possessed telomerase activity and proliferated indefinitely. Cytogenetic analysis of HPr-1 cells revealed a human male karyotype with clonal abnormalities and the appearance of multiple double minutes. The HPr-1 cells expressed prostatic acid phosphatase and cytokeratins K8 and K18, proving that they were prostate epithelial cells. They were benign in nude mice tumor formation and soft agar colony formation assay. The HPr-1 cell line is an in vitro representation of early prostate neoplastic progression. Copyright 1999 Wiley-Liss, Inc.

  4. Stimulation of cAMP signalling allows isolation of clonal pancreatic precursor cells from adult mouse pancreas.

    PubMed

    Yamamoto, T; Yamato, E; Taniguchi, H; Shimoda, M; Tashiro, F; Hosoi, M; Sato, T; Fujii, S; Miyazaki, J-I

    2006-10-01

    Duct cells of the pancreas are thought to include latent progenitors of islet endocrine cells that can be induced to differentiate by appropriate morphogens. Here we developed a method for isolating pancreatic ductal epithelial cells from adult mice that overcomes the shortcomings of previous methods. Pancreatic ductal cells were grown in serum-free DMEM/F12 medium in the presence of cholera toxin or 8-bromo-cyclic adenosine monophosphate, which is known to be an intracellular cAMP generator. Single cell cloning was performed by limiting dilution in serum-free medium. The isolated clonal cells expressed high levels of cytokeratin and Ipf1 (formerly known as Pdx-1). Adenovirus-mediated expression of ngn3 (also known as Neurog3) and Ptf1a in these cells induced expression of insulin and somatostatin, and of carboxypeptidase A, respectively. Furthermore, albumin production was induced by dexamethasone or by long-term culture in serum-containing medium. Stimulation of the cAMP-dependent signalling allowed us to isolate clonal pancreatic ductal cells from adult mice. These cells are able to partially differentiate into endocrine cells, exocrine cells and hepatocyte-like cells and are therefore considered to have the characteristics of endodermal progenitor cells.

  5. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice.

    PubMed

    Fuster, José J; MacLauchlan, Susan; Zuriaga, María A; Polackal, Maya N; Ostriker, Allison C; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A B; Cooper, Matthew A; Andrés, Vicente; Hirschi, Karen K; Martin, Kathleen A; Walsh, Kenneth

    2017-02-24

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2 -mutant cells in atherosclerosis-prone, low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome-mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. Copyright © 2017, American Association for the Advancement of Science.

  6. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice

    PubMed Central

    Fuster, José J.; MacLauchlan, Susan; Zuriaga, María A.; Polackal, Maya N.; Ostriker, Allison C.; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A. B.; Cooper, Matthew A.; Andrés, Vicente; Hirschi, Karen K.; Martin, Kathleen A.; Walsh, Kenneth

    2017-01-01

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2-mutant cells in atherosclerosis-prone, low-density lipoprotein receptor–deficient (Ldlr−/−) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome–mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. PMID:28104796

  7. Clinical, biological, and molecular characteristics of clonal mast cell disorders presenting with systemic mast cell activation symptoms.

    PubMed

    Alvarez-Twose, Iván; González de Olano, David; Sánchez-Muñoz, Laura; Matito, Almudena; Esteban-López, Maria I; Vega, Arantza; Mateo, Maria Belén; Alonso Díaz de Durana, Maria D; de la Hoz, Belén; Del Pozo Gil, Maria D; Caballero, Teresa; Rosado, Ana; Sánchez Matas, Isabel; Teodósio, Cristina; Jara-Acevedo, María; Mollejo, Manuela; García-Montero, Andrés; Orfao, Alberto; Escribano, Luis

    2010-06-01

    Systemic mast cell activation disorders (MCADs) are characterized by severe and systemic mast cell (MC) mediators-related symptoms frequently associated with increased serum baseline tryptase (sBt). To analyze the clinical, biological, and molecular characteristics of adult patients presenting with systemic MC activation symptoms/anaphylaxis in the absence of skin mastocytosis who showed clonal (c) versus nonclonal (nc) MCs and to provide indication criteria for bone marrow (BM) studies. Eighty-three patients were studied. Patients showing clonal BM MCs were grouped into indolent systemic mastocytosis without skin lesions (ISMs(-); n = 48) and other c-MCADs (n = 3)-both with CD25(++) BM MCs and either positive mast/stem cell growth factor receptor gene (KIT) mutation or clonal human androgen receptor assay (HUMARA) tests-and nc-MCAD (CD25-negative BM MCs in the absence of KIT mutation; n = 32) and compared for their clinical, biological, and molecular characteristics. Most clonal patients (48/51; 94%) met the World Health Organization criteria for systemic mastocytosis and were classified as ISMs(-), whereas the other 3 c-MCAD and all nc-MCAD patients did not. In addition, although both patients with ISMs(-) and patients with nc-MCAD presented with idiopathic and allergen-induced anaphylaxis, the former showed a higher frequency of men, cardiovascular symptoms, and insect bite as a trigger, together with greater sBt. Based on a multivariate analysis, a highly efficient model to predict clonality before BM sampling was built that includes male sex (P = .01), presyncopal and/or syncopal episodes (P = .009) in the absence of urticaria and angioedema (P = .003), and sBt >25 microg/L (P = .006) as independent predictive factors. Patients with c-MCAD and ISMs(-) display unique clinical and laboratory features different from nc-MCAD patients. A significant percentage of c-MCAD patients can be considered as true ISMs(-) diagnosed at early phases of the disease. Copyright (c) 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  8. Age-related mutations associated with clonal hematopoietic expansion and malignancies.

    PubMed

    Xie, Mingchao; Lu, Charles; Wang, Jiayin; McLellan, Michael D; Johnson, Kimberly J; Wendl, Michael C; McMichael, Joshua F; Schmidt, Heather K; Yellapantula, Venkata; Miller, Christopher A; Ozenberger, Bradley A; Welch, John S; Link, Daniel C; Walter, Matthew J; Mardis, Elaine R; Dipersio, John F; Chen, Feng; Wilson, Richard K; Ley, Timothy J; Ding, Li

    2014-12-01

    Several genetic alterations characteristic of leukemia and lymphoma have been detected in the blood of individuals without apparent hematological malignancies. The Cancer Genome Atlas (TCGA) provides a unique resource for comprehensive discovery of mutations and genes in blood that may contribute to the clonal expansion of hematopoietic stem/progenitor cells. Here, we analyzed blood-derived sequence data from 2,728 individuals from TCGA and discovered 77 blood-specific mutations in cancer-associated genes, the majority being associated with advanced age. Remarkably, 83% of these mutations were from 19 leukemia and/or lymphoma-associated genes, and nine were recurrently mutated (DNMT3A, TET2, JAK2, ASXL1, TP53, GNAS, PPM1D, BCORL1 and SF3B1). We identified 14 additional mutations in a very small fraction of blood cells, possibly representing the earliest stages of clonal expansion in hematopoietic stem cells. Comparison of these findings to mutations in hematological malignancies identified several recurrently mutated genes that may be disease initiators. Our analyses show that the blood cells of more than 2% of individuals (5-6% of people older than 70 years) contain mutations that may represent premalignant events that cause clonal hematopoietic expansion.

  9. ASXL1/EZH2 mutations promote clonal expansion of neoplastic HSC and impair erythropoiesis in PMF.

    PubMed

    Triviai, Ioanna; Zeschke, Silke; Rentel, Jan; Spanakis, Marios; Scherer, Theo; Gabdoulline, Razif; Panagiota, Victoria; Thol, Felicitas; Heuser, Michael; Stocking, Carol; Kröger, Nicolaus

    2018-06-15

    Primary myelofibrosis (PMF) is a hematopoietic stem cell (HSC) disease, characterized by aberrant differentiation of all myeloid lineages and profound disruption of the bone marrow niche. PMF samples carry several mutations, but their cell origin and hierarchy in regulating the different waves of clonal and aberrant myeloproliferation from the prime HSC compartment is poorly understood. Genotyping of >2000 colonies from CD133+HSC and progenitors from PMF patients confirmed the complex genetic heterogeneity within the neoplastic population. Notably, mutations in chromatin regulators ASXL1 and/or EZH2 were identified as the first genetic lesions, preceding both JAK2-V617F and CALR mutations, and are thus drivers of clonal myelopoiesis in a PMF subset. HSC from PMF patients with double ASXL1/EZH2 mutations exhibited significantly higher engraftment in immunodeficient mice than those from patients without histone modifier mutations. EZH2 mutations correlate with aberrant erythropoiesis in PMF patients, exemplified by impaired maturation and cell cycle arrest of erythroid progenitors. These data underscore the importance of post-transcriptional modifiers of histones in neoplastic stem cells, whose clonal growth sustains aberrant myelopoiesis and expansion of pre-leukemic clones in PMF.

  10. Turning rice meiosis into mitosis

    PubMed Central

    Mieulet, Delphine; Jolivet, Sylvie; Rivard, Maud; Cromer, Laurence; Vernet, Aurore; Mayonove, Pauline; Pereira, Lucie; Droc, Gaëtan; Courtois, Brigitte; Guiderdoni, Emmanuel; Mercier, Raphael

    2016-01-01

    Introduction of clonal reproduction through seeds (apomixis) in crops has the potential to revolutionize agriculture by allowing self-propagation of any elite variety, in particular F1 hybrids. In the sexual model plant Arabidopsis thaliana synthetic clonal reproduction through seeds can be artificially implemented by (i) combining three mutations to turn meiosis into mitosis (MiMe) and (ii) crossing the obtained clonal gametes with a line expressing modified CENH3 and whose genome is eliminated in the zygote. Here we show that additional combinations of mutations can turn Arabidopsis meiosis into mitosis and that a combination of three mutations in rice (Oryza sativa) efficiently turns meiosis into mitosis, leading to the production of male and female clonal diploid gametes in this major crop. Successful implementation of the MiMe technology in the phylogenetically distant eudicot Arabidopsis and monocot rice opens doors for its application to any flowering plant and paves the way for introducing apomixis in crop species. PMID:27767093

  11. Abundant constitutive expression of the immediate-early 94K protein from cytomegalovirus (Colburn) in a DNA-transfected mouse cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeang, K.T.; Cho, M.S.; Hayward, G.S.

    1984-10-01

    A 94-kilodalton phosphoprotein known as IE94 is the only viral polypeptide synthesized in abundance under immediate-early conditions after infection by cytomegalovirus (CMV) strain Colburn in either permissive primate or nonpermissive rodent cells. The authors isolated a clonal Ltk/sup +/ cell line which expressed the /sup 35/methionine-labeled IE94 polypeptide in sufficient abundance to be visualized directly in autoradiographs after gel electrophoresis of total-cell-culture protein extracts. The IE94 polypeptide synthesized in the transfected cells was indistinguishable in size and overall net charge from that produced in virus-infected cells. In addition, the IE94 protein expressed in LH/sub 2/p198-3 cells was phosphorylated (presumably bymore » a cellular protein kinase) and generated similar phosphopeptide patterns after partial tryptic digestion to those obtained with the CMV IE94 protein from infected cells. The cell line contained two to four stably integrated copies of the IE94 gene and synthesized a single virus-specific mRNA of 2.5 kilobases detectable on Northern blots. A new antigen, detectable by indirect anticomplement immunofluorescence with monoclonal antibody against the human CMV IE68 protein, was present in the nuclei of more than 95% of the LH/sub 2/l198-3 cells. This evidence suggests that (unlike most herpesvirus genes) the CMV IE94 gene, together with its complex promoter and spliced mRNA structure, may contain all of the regulatory elements necessary for strong constitutive expression in mammalian cells in the absence of other viral factors.« less

  12. Sezary syndrome cells unlike normal circulating T lymphocytes fail to migrate following engagement of NT1 receptor.

    PubMed

    Magazin, Marilyn; Poszepczynska-Guigné, Ewa; Bagot, Martine; Boumsell, Laurence; Pruvost, Christelle; Chalon, Pascale; Culouscou, Jean-Michel; Ferrara, Pascual; Bensussan, Armand

    2004-01-01

    Circulating malignant Sezary cells are a clonal proliferation of CD4+CD45RO+ T lymphocytes primarily involving the skin. To study the biology of these malignant T lymphocytes, we tested their ability to migrate in chemotaxis assays. Previously, we had shown that the neuropeptide neurotensin (NT) binds to freshly isolated Sezary malignant cells and induces through NT1 receptors the cell migration of the cutaneous T cell lymphoma cell line Cou-L. Here, we report that peripheral blood Sezary cells as well as the Sezary cell line Pno fail to migrate in response to neurotensin although they are capable of migrating to the chemokine stromal-cell-derived factor 1 alpha. This is in contrast with normal circulating CD4+ or CD8+ lymphocytes, which respond to both types of chemoattractants except after ex vivo short-time anti-CD3 monoclonal antibody activation, which abrogates the neurotensin-induced lymphocyte migration. Furthermore, we demonstrate that neurotensin-responsive T lymphocytes express the functional NT1 receptor responsible for chemotaxis. In these cells, but not in Sezary cells, neurotensin induces recruitment of phosphatidylinositol-3 kinase, and redistribution of phosphorylated cytoplasmic tyrosine kinase focal adhesion kinase and filamentous actin. Taken together, these results, which show functional distinctions between normal circulating lymphocytes and Sezary syndrome cells, contribute to further understanding of the physiopathology of these atypical cells.

  13. Metabolic heterogeneity in clonal microbial populations.

    PubMed

    Takhaveev, Vakil; Heinemann, Matthias

    2018-02-21

    In the past decades, numerous instances of phenotypic diversity were observed in clonal microbial populations, particularly, on the gene expression level. Much less is, however, known about phenotypic differences that occur on the level of metabolism. This is likely explained by the fact that experimental tools probing metabolism of single cells are still at an early stage of development. Here, we review recent exciting discoveries that point out different causes for metabolic heterogeneity within clonal microbial populations. These causes range from ecological factors and cell-inherent dynamics in constant environments to molecular noise in gene expression that propagates into metabolism. Furthermore, we provide an overview of current methods to quantify the levels of metabolites and biomass components in single cells. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Infectious mononucleosis accompanied by clonal proliferation of EBV-infected cells and infection of CD8-positive cells.

    PubMed

    Arai, Ayako; Yamaguchi, Takeshi; Komatsu, Honami; Imadome, Ken-Ichi; Kurata, Morito; Nagata, Kaoru; Miura, Osamu

    2014-01-01

    A 22-year-old male was admitted for a sustained fever of 2 months, lymphadenopathy, and liver dysfunction. Anti-VCA-IgM antibody was positive, with elevated Epstein-Barr virus (EBV)-DNA load in the peripheral blood. Liver biopsy revealed infiltration of CD8-positive and EBV-positive cells. Most peripheral blood mononuclear cells (PBMCs) were also positive for CD8, and showed detectable levels of EBV-DNA. Monoclonal proliferation of EBV-infected cells was detected in the PBMCs by Southern blotting for EBV-terminal repeat (EBV-TR). Although EBV-positive T-cell lymphoproliferative disease (EBV-T-LPD) was suspected, the symptoms spontaneously resolved within 12 months. Anti-VCA-IgM antibody and the clonal band of EBV-TR were negative 1 year after the onset, while anti-EBNA antibody was positive. The final diagnosis was thus confirmed as infectious mononucleosis (IM). Our results indicate that EBV-infected CD8-positive cells and clonal proliferation of EBV-infected cells may be temporally detected in IM. EBV-T-LPDs should be carefully excluded in such cases.

  15. Role of Intestinal Epithelial Cells in Immune Effects Mediated by Gram-Positive Probiotic Bacteria: Involvement of Toll-Like Receptors

    PubMed Central

    Vinderola, Gabriel; Matar, Chantal; Perdigon, Gabriela

    2005-01-01

    The mechanisms by which probiotic bacteria exert their effects on the immune system are not completely understood, but the epithelium may be a crucial player in the orchestration of the effects induced. In a previous work, we observed that some orally administered strains of lactic acid bacteria (LAB) increased the number of immunoglobulin A (IgA)-producing cells in the small intestine without a concomitant increase in the CD4+ T-cell population, indicating that some LAB strains induce clonal expansion only of B cells triggered to produce IgA. The present work aimed to study the cytokines induced by the interaction of probiotic LAB with murine intestinal epithelial cells (IEC) in healthy animals. We focused our investigation mainly on the secretion of interleukin 6 (IL-6) necessary for the clonal expansion of B cells previously observed with probiotic bacteria. The role of Toll-like receptors (TLRs) in such interaction was also addressed. The cytokines released by primary cultures of IEC in animals fed with Lactobacillus casei CRL 431 or Lactobacillus helveticus R389 were determined. Cytokines were also determined in the supernatants of primary cultures of IEC of unfed animals challenged with different concentrations of viable or nonviable lactobacilli and Escherichia coli, previously blocked or not with anti-TLR2 and anti-TLR4. We concluded that the small intestine is the place where a major distinction would occur between probiotic LAB and pathogens. This distinction comprises the type of cytokines released and the magnitude of the response, cutting across the line that separates IL-6 necessary for B-cell differentiation, which was the case with probiotic lactobacilli, from inflammatory levels of IL-6 for pathogens. PMID:16148174

  16. Highly sensitive and unbiased approach for elucidating antibody repertoires

    PubMed Central

    Lin, Sherry G.; Ba, Zhaoqing; Du, Zhou; Zhang, Yu; Hu, Jiazhi; Alt, Frederick W.

    2016-01-01

    Developing B lymphocytes undergo V(D)J recombination to assemble germ-line V, D, and J gene segments into exons that encode the antigen-binding variable region of Ig heavy (H) and light (L) chains. IgH and IgL chains associate to form the B-cell receptor (BCR), which, upon antigen binding, activates B cells to secrete BCR as an antibody. Each of the huge number of clonally independent B cells expresses a unique set of IgH and IgL variable regions. The ability of V(D)J recombination to generate vast primary B-cell repertoires results from a combinatorial assortment of large numbers of different V, D, and J segments, coupled with diversification of the junctions between them to generate the complementary determining region 3 (CDR3) for antigen contact. Approaches to evaluate in depth the content of primary antibody repertoires and, ultimately, to study how they are further molded by secondary mutation and affinity maturation processes are of great importance to the B-cell development, vaccine, and antibody fields. We now describe an unbiased, sensitive, and readily accessible assay, referred to as high-throughput genome-wide translocation sequencing-adapted repertoire sequencing (HTGTS-Rep-seq), to quantify antibody repertoires. HTGTS-Rep-seq quantitatively identifies the vast majority of IgH and IgL V(D)J exons, including their unique CDR3 sequences, from progenitor and mature mouse B lineage cells via the use of specific J primers. HTGTS-Rep-seq also accurately quantifies DJH intermediates and V(D)J exons in either productive or nonproductive configurations. HTGTS-Rep-seq should be useful for studies of human samples, including clonal B-cell expansions, and also for following antibody affinity maturation processes. PMID:27354528

  17. Infliximab Induces Clonal Expansion of γδ-T Cells in Crohn's Disease: A Predictor of Lymphoma Risk?

    PubMed Central

    Kelsen, Jens; Dige, Anders; Schwindt, Heinrich; D'Amore, Francesco; Pedersen, Finn S.; Agnholt, Jørgen; Christensen, Lisbet A.; Dahlerup, Jens F.; Hvas, Christian L.

    2011-01-01

    Background Concominant with the widespread use of combined immunotherapy in the management of Crohn's disease (CD), the incidence of hepato-splenic gamma-delta (γδ)-T cell lymphoma has increased sharply in CD patients. Malignant transformation of lymphocytes is believed to be a multistep process resulting in the selection of malignant γδ-T cell clones. We hypothesised that repeated infusion of anti-TNF-α agents may induce clonal selection and that concurrent treatment with immunomodulators further predisposes patients to γδ-T cell expansion. Methodology/Principal Findings We investigated dynamic changes in the γδ-T cells of patient with CD following treatment with infliximab (Remicade®; n = 20) or adalimumab (Humira®; n = 26) using flow cytometry. In patients with a high γδ-T cell level, the γδ-T cells were assessed for clonality. Of these 46 CD patients, 35 had a γδ-T cells level (mean 1.6%) comparable to healthy individuals (mean 2.2%), and 11 CD patients (24%) exhibited an increased level of γδ-T cells (5–15%). In the 18 patients also receiving thiopurines or methotrexate, the average baseline γδ-T cell level was 4.4%. In three male CD patients with a high baseline value, the γδ-T cell population increased dramatically following infliximab therapy. A fourth male patient also on infliximab monotherapy presented with 20% γδ-T cells, which increased to 25% shortly after treatment and was 36% between infusions. Clonality studies revealed an oligoclonal γδ-T cell pattern with dominant γδ-T cell clones. In support of our clinical findings, in vitro experiments showed a dose-dependent proliferative effect of anti-TNF-α agents on γδ-T cells. Conclusion/Significance CD patients treated with immunomodulators had constitutively high levels of γδ-T cells. Infliximab exacerbated clonal γδ-T cell expansion in vivo and induced γδ-T cell proliferation in vitro. Overall, young, male CD patients with high baseline γδ-T cell levels may be at an increased risk of developing malignant γδ-T cell lymphomas following treatment with anti-TNF-α agents. PMID:21483853

  18. Assessing T cell clonal size distribution: a non-parametric approach.

    PubMed

    Bolkhovskaya, Olesya V; Zorin, Daniil Yu; Ivanchenko, Mikhail V

    2014-01-01

    Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.

  19. Clonal expansion under the microscope: studying lymphocyte activation and differentiation using live-cell imaging.

    PubMed

    Polonsky, Michal; Chain, Benjamin; Friedman, Nir

    2016-03-01

    Clonal expansion of lymphocytes is a hallmark of vertebrate adaptive immunity. A small number of precursor cells that recognize a specific antigen proliferate into expanded clones, differentiate and acquire various effector and memory phenotypes, which promote effective immune responses. Recent studies establish a large degree of heterogeneity in the level of expansion and in cell state between and within expanding clones. Studying these processes in vivo, while providing insightful information on the level of heterogeneity, is challenging due to the complex microenvironment and the inability to continuously track individual cells over extended periods of time. Live cell imaging of ex vivo cultures within micro fabricated arrays provides an attractive methodology for studying clonal expansion. These experiments facilitate continuous acquisition of a large number of parameters on cell number, proliferation, death and differentiation state, with single-cell resolution on thousands of expanding clones that grow within controlled environments. Such data can reveal stochastic and instructive mechanisms that contribute to observed heterogeneity and elucidate the sequential order of differentiation events. Intercellular interactions can also be studied within these arrays by following responses of a controlled number of interacting cells, all trapped within the same microwell. Here we describe implementations of live-cell imaging within microwell arrays for studies of lymphocyte clonal expansion, portray insights already gained from these experiments and outline directions for future research. These tools, together with in vivo experiments tracking single-cell responses, will expand our understanding of adaptive immunity and the ways by which it can be manipulated.

  20. Extreme lymphocytosis with myelomonocytic morphology in a horse with diffuse large B-cell lymphoma.

    PubMed

    Meichner, Kristina; Kraszeski, Blaire H; Durrant, Jessica R; Grindem, Carol B; Breuhaus, Babetta A; Moore, Peter F; Neel, Jennifer A; Linder, Keith E; Borst, Luke B; Fogle, Jonathan E; Tarigo, Jaime L

    2017-03-01

    An 11-year-old, 443-kg Haflinger mare was presented to the North Carolina State University Veterinary Teaching Hospital with a 2-week history of lethargy and a 3-day duration of anorexia, pyrexia, tachycardia, and ventral edema. Severe pitting edema, peripheral lymphadenopathy, and a caudal abdominal mass were noted on physical examination. An extreme leukocytosis (154.3 × 10 3 /μL) and microscopic hematologic findings suggestive of myelomonocytic leukemia were observed. Serum protein electrophoresis revealed a monoclonal gammopathy and urine protein electrophoresis revealed a monoclonal light chain proteinuria. Necropsy and histopathology confirmed widespread neoplastic infiltration in many organs with a heterogenous population of cells; there was no apparent evidence of bone marrow involvement. Immunohistochemistry confirmed presence of a majority of B cells with a limited antigen expression, admixed with a lower number of T cells. Molecular clonality analysis of IgH2, IgH3, and kappa-deleting element (KDE, B cell) on whole blood and KDE on infiltrated tissues revealed clonal rearrangements, and the KDE intron clones that amplified in blood and in infiltrated tissue were identical. In contrast, the clonality analysis of T-cell receptor γ revealed no clonality on blood cells and infiltrated tissues. In conjunction with the histopathologic changes, the lesion was interpreted to be composed of neoplastic B cells with a reactive T-cell population. Polymerase chain reaction testing for equine herpes virus 5 was negative. The final diagnosis was diffuse large B-cell lymphoma with a marked hematogenous component. © 2016 American Society for Veterinary Clinical Pathology.

  1. Regional assignment of seven genes on chromosome 1 of man by use of man-Chinese hamster somatic cell hybrids. II. Results obtained after induction of breaks in chromosome 1 by X-irradiation.

    PubMed

    Burgerhout, W G; Smit, S L; Jongsma, A P

    1977-01-01

    The position of genes coding for PGD, PPH1, UGPP, GuK1, PGM1, Pep-C, and FH on human chromosome 1 was investigated by analysis of karyotype and enzyme phenotypes in man-Chinese hamster somatic cell hybrids carrying aberrations involving chromosome 1. Suitable hybrid cell lines were obtained by X-irradiation of hybrid cells carrying an intact chromosome 1 and by fusion of human cells from a clonal population carrying a translocation involving chromosome 1 with Chinese hamster cells. The latter human cell population had been isolated following X-irradiation of primary Lesch-Nyhan fibroblasts. In addition, products of de novo chromosome breakage in the investigated hybrid lines were utilized. By integrating the results of these analyses with earlier findings in our laboratory, the following positions of genes are deduced: PGD and PPH1 in 1p36 leads to 1p34; PGM1 in 1p32; UGPP in 1q21 leads to 1q23; GuK1 in 1q31 leads to 1q42; Pep-C in 1q42; and FH in 1qter leads to 1q42.

  2. Cloning of an osteoblastic cell line involved in the formation of osteoclast-like cells.

    PubMed

    Yamashita, T; Asano, K; Takahashi, N; Akatsu, T; Udagawa, N; Sasaki, T; Martin, T J; Suda, T

    1990-12-01

    Experiments have been carried out to determine the mechanisms involved in the formation of osteoclast-like cells from spleen cells in mice. Osteoclasts were defined as tartrate-resistant acid phosphatase-positive multinucleated cells (TRACP-positive MNCs) in which specific calcitonin receptors were identified by autoradiography with labeled salmon calcitonin. Furthermore, cultures rich in these cells produced resorption pits when grown on dentine slices. Several clonal cell lines were obtained from fetal mouse calvariae and screened for their ability to induce TRACP-positive MNCs in response to 1 alpha, 25-dihydroxyvitamin D3 [1 alpha, 25(OH)2D3] in co-cultures with spleen cells. A cell line, KS-4, was identified with the greatest potency in inducing osteoclast-like cell formation in co-culture with spleen cells. The capacity of KS-4 cells to produce this effect was much greater than that of two bone marrow-derived stromal cell lines (MC3T3-G2/PA6 and ST2 cells), which we have previously shown to be effective in this system but to require treatment with dexamethasone in addition to 1 alpha, 25(OH)2D3 (Udagawa et al.: Endocrinology 125:1805-1813, 1989). Parathyroid hormone (PTH) increased cAMP production in KS-4 cells, and PTH and interleukin-1 alpha also induced TRACP-positive MNCs in co-cultures with spleen cells. Contact between living KS-4 and spleen cells was necessary for osteoclast formation to take place, since this did not occur when the two populations were separated by a membrane filter, or when the KS-4 cells were killed by fixation. Separate cultures of either spleen cells or KS-4 cells formed no TRACP-positive MNCs. KS-4 cells synthesized predominantly type I collagen, formed bone nodules without added of beta-glycerophosphate in a long-term culture, and expressed increasing alkaline phosphatase activity after confluence in culture. These results indicate that the KS-4 cells have properties consistent with progression toward the osteoblast phenotype and represent a single cell line with the ability to promote osteoclast formation by a contact-requiring process.

  3. New Insights in the Cytogenetic Practice: Karyotypic Chaos, Non-Clonal Chromosomal Alterations and Chromosomal Instability in Human Cancer and Therapy Response

    PubMed Central

    Rangel, Nelson; Forero-Castro, Maribel; Rondón-Lagos, Milena

    2017-01-01

    Recently, non-clonal chromosomal alterations previously unappreciated are being proposed to be included in cytogenetic practice. The aim of this inclusion is to obtain a greater understanding of chromosomal instability (CIN) and tumor heterogeneity and their role in cancer evolution and therapy response. Although several genetic assays have allowed the evaluation of the variation in a population of cancer cells, these assays do not provide information at the level of individual cells, therefore limiting the information of the genomic diversity within tumors (heterogeneity). The karyotype is one of the few available cytogenetic techniques that allow us not only to identify the chromosomal alterations present within a single cell, but also allows us to profile both clonal (CCA) and non-clonal chromosomal alterations (NCCAs). A greater understanding of CIN and tumor heterogeneity in cancer could not only improve existing therapeutic regimens but could also be used as targets for the design of new therapeutic approaches. In this review we indicate the importance and significance of karyotypic chaos, NCCAs and CIN in the prognosis of human cancers. PMID:28587191

  4. Breast Cancer Brain Metastases: Clonal Evolution in Clinical Context.

    PubMed

    Saunus, Jodi M; McCart Reed, Amy E; Lim, Zhun Leong; Lakhani, Sunil R

    2017-01-13

    Brain metastases are highly-evolved manifestations of breast cancer arising in a unique microenvironment, giving them exceptional adaptability in the face of new extrinsic pressures. The incidence is rising in line with population ageing, and use of newer therapies that stabilise metastatic disease burden with variable efficacy throughout the body. Historically, there has been a widely-held view that brain metastases do not respond to circulating therapeutics because the blood-brain-barrier (BBB) restricts their uptake. However, emerging data are beginning to paint a more complex picture where the brain acts as a sanctuary for dormant, subclinical proliferations that are initially protected by the BBB, but then exposed to dynamic selection pressures as tumours mature and vascular permeability increases. Here, we review key experimental approaches and landmark studies that have charted the genomic landscape of breast cancer brain metastases. These findings are contextualised with the factors impacting on clonal outgrowth in the brain: intrinsic breast tumour cell capabilities required for brain metastatic fitness, and the neural niche, which is initially hostile to invading cells but then engineered into a tumour-support vehicle by the successful minority. We also discuss how late detection, abnormal vascular perfusion and interstitial fluid dynamics underpin the recalcitrant clinical behaviour of brain metastases, and outline active clinical trials in the context of precision management.

  5. Promotion of initiated cells by radiation-induced cell inactivation.

    PubMed

    Heidenreich, W F; Paretzke, H G

    2008-11-01

    Cells on the way to carcinogenesis can have a growth advantage relative to normal cells. It has been hypothesized that a radiation-induced growth advantage of these initiated cells might be induced by an increased cell replacement probability of initiated cells after inactivation of neighboring cells by radiation. Here Monte Carlo simulations extend this hypothesis for larger clones: The effective clonal expansion rate decreases with clone size. This effect is stronger for the two-dimensional than for the three-dimensional situation. The clones are irregular, far from a circular shape. An exposure-rate dependence of the effective clonal expansion rate could come in part from a minimal recovery time of the initiated cells for symmetric cell division.

  6. Chromosome aberrations in T lymphocytes carrying adult T-cell leukemia-associated antigens (ATLA) from healthy adults.

    PubMed

    Fukuhara, S; Hinuma, Y; Gotoh, Y I; Uchino, H

    1983-01-01

    Chromosomes were studied in cultured T lymphocytes carrying adult T-cell leukemia-associated antigens (ATLA) that were obtained from five Japanese anti-ATLA seropositive healthy adults. Chromosomally abnormal cells were observed in three of the five healthy adults, and these cells were clonal in two subjects. All cells examined in one subject had rearrangements of chromosome nos. 7 and 14. Clonal cells from the second had a minute chromosome of unknown origin. A few cells in the third had nonclonal rearrangements of chromosomes. Thus, ATLA-positive T lymphocytes in some anti-ATLA seropositive healthy people have chromosome aberrations.

  7. Selection for avian leukosis virus integration sites determines the clonal progression of B-cell lymphomas

    PubMed Central

    Malhotra, Sanandan; Justice, James; Morgan, Robin

    2017-01-01

    Avian leukosis virus (ALV) is a simple retrovirus that causes a wide range of tumors in chickens, the most common of which are B-cell lymphomas. The viral genome integrates into the host genome and uses its strong promoter and enhancer sequences to alter the expression of nearby genes, frequently inducing tumors. In this study, we compare the preferences for ALV integration sites in cultured cells and in tumors, by analysis of over 87,000 unique integration sites. In tissue culture we observed integration was relatively random with slight preferences for genes, transcription start sites and CpG islands. We also observed a preference for integrations in or near expressed and spliced genes. The integration pattern in cultured cells changed over the course of selection for oncogenic characteristics in tumors. In comparison to tissue culture, ALV integrations are more highly selected for proximity to transcription start sites in tumors. There is also a significant selection of ALV integrations away from CpG islands in the highly clonally expanded cells in tumors. Additionally, we utilized a high throughput method to quantify the magnitude of clonality in different stages of tumorigenesis. An ALV-induced tumor carries between 700 and 3000 unique integrations, with an average of 2.3 to 4 copies of proviral DNA per infected cell. We observed increasing tumor clonality during progression of B-cell lymphomas and identified gene players (especially TERT and MYB) and biological processes involved in tumor progression. PMID:29099869

  8. Expression of lumican in hidroacanthoma simplex and clonal-type seborrheic keratosis as a potent differential diagnostic marker.

    PubMed

    Takayama, Ryoko; Ansai, Shin-Ichi; Ishiwata, Toshiyuki; Yamamoto, Tetsushi; Matsuda, Yoko; Naito, Zenya; Kawana, Seiji

    2014-08-01

    Lumican, a member of the small leucine-rich proteoglycan family, regulates the assembly and diameter of collagen fibers in the extracellular matrix of various tissues. The lumican expression correlates with pathological conditions and the growth and metastasis of various malignancies. In cutaneous neoplasms, the lumican expression is lower in advanced-stage malignant melanomas that invade the dermis than in early-stage melanomas. Furthermore, we have recently reported that the expression pattern of lumican is different from that of actinic keratosis and the Bowen disease. Lumican is positive in the poroid cells of intraepidermal sweat ducts; therefore, we examined the expression patterns of lumican in acanthotic-type seborrheic keratosis and Pinkus-type poroma followed by clonal-type seborrheic keratosis and hidroacanthoma simplex. The neoplastic cells of acanthotic-type seborrheic keratosis exhibited positive immunostaining in only 1 of 31 cases (3.23%), whereas the poroid cells of Pinkus-type poroma exhibited positive immunoreactivity in 26 of 28 patients (92.8%). In the hidroacanthoma simplex cases, lumican was expressed in poroid cells forming intraepidermal nests in 22 of 28 patients (78.6%), whereas the neoplastic cells in most cases of clonal-type seborrheic keratosis were negative for lumican. In some seborrheic keratosis cases that were positive for lumican in neoplastic cells, lumican was observed in squamoid cells but not in basaloid cells. Therefore, it is necessary to evaluate the immunoreactivity of lumican in seborrheic keratosis and in basaloid cells. These findings suggest that lumican is a potent differential diagnostic marker that distinguishes hidroacanthoma simplex from clonal-type seborrheic keratosis.

  9. Characterization of the OmyY1 region on the rainbow trout Y chromosome

    USGS Publications Warehouse

    Phillips, Ruth B.; DeKoning, Jenefer J.; Brunelli, Joseph P.; Faber-Hammond, Joshua J.; Hansen, John D.; Christensen, Kris A.; Renn, Suzy C.P.; Thorgaard, Gary H.

    2013-01-01

    We characterized the male-specific region on the Y chromosome of rainbow trout, which contains both sdY (the sex-determining gene) and the male-specific genetic marker, OmyY1. Several clones containing the OmyY1 marker were screened from a BAC library from a YY clonal line and found to be part of an 800 kb BAC contig. Using fluorescence in situ hybridization (FISH), these clones were localized to the end of the short arm of the Y chromosome in rainbow trout, with an additional signal on the end of the X chromosome in many cells. We sequenced a minimum tiling path of these clones using Illumina and 454 pyrosequencing. The region is rich in transposons and rDNA, but also appears to contain several single-copy protein-coding genes. Most of these genes are also found on the X chromosome; and in several cases sex-specific SNPs in these genes were identified between the male (YY) and female (XX) homozygous clonal lines. Additional genes were identified by hybridization of the BACs to the cGRASP salmonid 4x44K oligo microarray. By BLASTn evaluations using hypothetical transcripts of OmyY1-linked candidate genes as query against several EST databases, we conclude at least 12 of these candidate genes are likely functional, and expressed.

  10. Current Progresses of Single Cell DNA Sequencing in Breast Cancer Research.

    PubMed

    Liu, Jianlin; Adhav, Ragini; Xu, Xiaoling

    2017-01-01

    Breast cancers display striking genetic and phenotypic diversities. To date, several hypotheses are raised to explain and understand the heterogeneity, including theories for cancer stem cell (CSC) and clonal evolution. According to the CSC theory, the most tumorigenic cells, while maintaining themselves through symmetric division, divide asymmetrically to generate non-CSCs with less tumorigenic and metastatic potential, although they can also dedifferentiate back to CSCs. Clonal evolution theory recapitulates that a tumor initially arises from a single cell, which then undergoes clonal expansion to a population of cancer cells. During tumorigenesis and evolution process, cancer cells undergo different degrees of genetic instability and consequently obtain varied genetic aberrations. Yet the heterogeneity in breast cancers is very complex, poorly understood and subjected to further investigation. In recent years, single cell sequencing (SCS) technology developed rapidly, providing a powerful new way to better understand the heterogeneity, which may lay foundations to some new strategies for breast cancer therapies. In this review, we will summarize development of SCS technologies and recent advances of SCS in breast cancer.

  11. Clonal Populations of Amniotic Cells by Dilution and Direct Plating: Evidence for Hidden Diversity

    PubMed Central

    Wilson, Patricia G.; Devkota, Lorna; Payne, Tiffany; Crisp, Laddie; Winter, Allison; Wang, Zhan

    2012-01-01

    Fetal cells are widely considered a superior cell source for regenerative medicine; fetal cells show higher proliferative capacity and have undergone fewer replicative cycles that could generate spontaneous mutations. Fetal cells in amniotic fluid were among the first normal primary cells to be cultured ex vivo, but the undefined composition of amniotic fluid has hindered advance for regenerative applications. We first developed a highly efficient method to generate clonal populations by dilution of amniocentesis samples in media and direct plating without intervening refrigeration, centrifugation, or exposure of cells to the paracrine effects in mixed cell cultures. More than 40 clonal populations were recovered from 4 amniocentesis samples and representative clones were characterized by flow cytometry, conventional assays for differentiation potential, immunofluorescence imaging, and transcript analysis. The results revealed previously unreported diversity among stromal and epithelial cell types and identified unique cell types that could be lost or undetected in mixed cell populations. The differentiation potential of amniotic cells proved to be uncoupled from expression of definitive cell surface or cytoplasmic markers for stromal and epithelial cells. Evidence for diversity among stromal and epithelial cells in amniotic fluid bears on interpretations applied to molecular and functional tests of amniotic cell populations. PMID:23024659

  12. Significant genetic and phenotypic changes arising from clonal growth of a single spore of an arbuscular mycorrhizal fungus over multiple generations.

    PubMed

    Ehinger, Martine O; Croll, Daniel; Koch, Alexander M; Sanders, Ian R

    2012-11-01

    Arbuscular mycorrhizal fungi (AMF) are highly successful plant symbionts. They reproduce clonally producing multinucleate spores. It has been suggested that some AMF harbor genetically different nuclei. However, recent advances in sequencing the Glomus irregulare genome have indicated very low within-fungus polymorphism. We tested the null hypothesis that, with no genetic differences among nuclei, no significant genetic or phenotypic variation would occur among clonal single spore lines generated from one initial AMF spore. Furthermore, no additional variation would be expected in the following generations of single spore lines. Genetic diversity contained in one initial spore repeatedly gave rise to genetically different variants of the fungus with novel phenotypes. The genetic changes represented quantitative changes in allele frequencies, most probably as a result of changes in the frequency of genetic variation partitioned on different nuclei. The genetic and phenotypic variation is remarkable, given that it arose repeatedly from one clonal individual. Our results highlight the dynamic nature of AMF genetics. Even though within-fungus genetic variation is low, some is probably partitioned among nuclei and potentially causes changes in the phenotype. Our results are important for understanding AMF genetics, as well as for researchers and biotechnologists hoping to use AMF genetic diversity for the improvement of AMF inoculum. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  13. Isolation and culture of rabbit embryonic stem cells.

    PubMed

    Honda, Arata

    2013-01-01

    Mammalian stem cells are invaluable research resources for the study of cell and embryonic development as well as practical tools for use in the production of genetically engineered animals and further therapeutics. It is important that we further our knowledge and understanding of a variety of stem cells from several different animal species before trials in humans commence. Here we describe methods for establishing rabbit embryonic stem (rES) cell lines with indefinite proliferation potential. rES cells attain maximum proliferation potential when cultured at a feeder cell density of one-sixth of that of full confluency. Higher and lower densities of feeder cells induced ES cell differentiation or division arrest. Fibroblast growth factor (FGF)2 can maintain the undifferentiated status of rES cells; however leukemia inhibitory factor (LIF) is dispensable. Under optimized conditions, rES cells could be passaged by trypsinization 50 times. This culture system enabled efficient gene transduction and clonal expansion from single cells. rES cells grew as flat monolayer cell colonies, as reported for monkey and human ES cells, and expressed pluripotency markers. Embryoid bodies and teratomas formed readily in vitro and in vivo, respectively. Characterization of ES cells from different species is important for establishing common features of pluripotency. We have demonstrated the similarity of ES cells between rabbit and humans. These cell lines could be applied directly using gene-targeting techniques, or in combination with induced pluripotent stem cells. Thus, rES cells are a suitable model for studying human transplantation therapy and disease treatments.

  14. Cell lineage analysis in human brain using endogenous retroelements

    PubMed Central

    Evrony, Gilad D.; Lee, Eunjung; Mehta, Bhaven K.; Benjamini, Yuval; Johnson, Robert M.; Cai, Xuyu; Yang, Lixing; Haseley, Psalm; Lehmann, Hillel S.; Park, Peter J.; Walsh, Christopher A.

    2015-01-01

    Summary Somatic mutations occur during brain development and are increasingly implicated as a cause of neurogenetic disease. However, the patterns in which somatic mutations distribute in the human brain are unknown. We used high-coverage whole-genome sequencing of single neurons from a normal individual to identify spontaneous somatic mutations as clonal marks to track cell lineages in human brain. Somatic mutation analyses in >30 locations throughout the nervous system identified multiple lineages and sub-lineages of cells marked by different LINE-1 (L1) retrotransposition events and subsequent mutation of poly-A microsatellites within L1. One clone contained thousands of cells limited to the left middle frontal gyrus, whereas a second distinct clone contained millions of cells distributed over the entire left hemisphere. These patterns mirror known somatic mutation disorders of brain development, and suggest that focally distributed mutations are also prevalent in normal brains. Single-cell analysis of somatic mutation enables tracing of cell lineage clones in human brain. PMID:25569347

  15. Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsurumi, Chizuko; Firat, Elke; Gaedicke, Simone

    2009-09-04

    Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPIImore » expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.« less

  16. Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts.

    PubMed

    Tsurumi, Chizuko; Firat, Elke; Gaedicke, Simone; Huai, Jisen; Mandal, Pankaj Kumar; Niedermann, Gabriele

    2009-09-04

    Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPII expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.

  17. Frequent Nuclear/Cytoplasmic Localization of β-Catenin without Exon 3 Mutations in Malignant Melanoma

    PubMed Central

    Rimm, David L.; Caca, Karel; Hu, Gang; Harrison, Frank B.; Fearon, Eric R.

    1999-01-01

    β-Catenin has a critical role in E-cadherin-mediated cell-cell adhesion, and it also functions as a downstream signaling molecule in the wnt pathway. Mutations in the putative glycogen synthase kinase 3β phosphorylation sites near the β-catenin amino terminus have been found in some cancers and cancer cell lines. The mutations render β-catenin resistant to regulation by a complex containing the glycogen synthase kinase 3β, adenomatous polyposis coli, and axin proteins. As a result, β-catenin accumulates in the cytosol and nucleus and activates T-cell factor/lymphoid enhancing factor transcription factors. Previously, 6 of 27 melanoma cell lines were found to have β-catenin exon 3 mutations affecting the N-terminal phosphorylation sites (Rubinfeld B, Robbins P, Elgamil M, Albert I, Porfiri E, Polakis P: Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 1997, 275:1790–1792). To assess the role of β-catenin defects in primary melanomas, we undertook immunohistochemical and DNA sequencing studies in 65 melanoma specimens. Nuclear and/or cytoplasmic localization of β-catenin, a potential indicator of wnt pathway activation, was seen focally within roughly one third of the tumors, though a clonal somatic mutation in β-catenin was found in only one case (codon 45 Ser→Pro). Our findings demonstrate that β-catenin mutations are rare in primary melanoma, in contrast to the situation in melanoma cell lines. Nonetheless, activation of β-catenin, as indicated by its nuclear and/or cytoplasmic localization, appears to be frequent in melanoma, and in some cases, it may reflect focal and transient activation of the wnt pathway within the tumor. PMID:10027390

  18. Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations

    DOE PAGES

    Garbe, James C.; Vrba, Lukas; Sputova, Klara; ...

    2014-10-29

    Telomerase reactivation and immortalization are critical for human carcinoma progression. However, little is known about the mechanisms controlling this crucial step, due in part to the paucity of experimentally tractable model systems that can examine human epithelial cell immortalization as it might occur in vivo. We achieved efficient non-clonal immortalization of normal human mammary epithelial cells (HMEC) by directly targeting the 2 main senescence barriers encountered by cultured HMEC. The stress-associated stasis barrier was bypassed using shRNA to p16INK4; replicative senescence due to critically shortened telomeres was bypassed in post-stasis HMEC by c-MYC transduction. Thus, 2 pathologically relevant oncogenic agentsmore » are sufficient to immortally transform normal HMEC. The resultant non-clonal immortalized lines exhibited normal karyotypes. Most human carcinomas contain genomically unstable cells, with widespread instability first observed in vivo in pre-malignant stages; in vitro, instability is seen as finite cells with critically shortened telomeres approach replicative senescence. Our results support our hypotheses that: (1) telomere-dysfunction induced genomic instability in pre-malignant finite cells may generate the errors required for telomerase reactivation and immortalization, as well as many additional “passenger” errors carried forward into resulting carcinomas; (2) genomic instability during cancer progression is needed to generate errors that overcome tumor suppressive barriers, but not required per se; bypassing the senescence barriers by direct targeting eliminated a need for genomic errors to generate immortalization. Achieving efficient HMEC immortalization, in the absence of “passenger” genomic errors, should facilitate examination of telomerase regulation during human carcinoma progression, and exploration of agents that could prevent immortalization.« less

  19. Synthesis of clonality and polyploidy in vertebrate animals by hybridization between two sexual species.

    PubMed

    Choleva, Lukáš; Janko, Karel; De Gelas, Koen; Bohlen, Jörg; Šlechtová, Věra; Rábová, Marie; Ráb, Petr

    2012-07-01

    Because most clonal vertebrates have hybrid genomic constitutions, tight linkages are assumed among hybridization, clonality, and polyploidy. However, predictions about how these processes mechanistically relate during the switch from sexual to clonal reproduction have not been validated. Therefore, we performed a crossing experiment to test the hypothesis that interspecific hybridization per se initiated clonal diploid and triploid spined loaches (Cobitis) and their gynogenetic reproduction. We reared two F1 families resulting from the crossing of 14 pairs of two sexual species, and found their diploid hybrid constitution and a 1:1 sex ratio. While males were infertile, females produced unreduced nonrecombinant eggs (100%). Synthetic triploid females and males (96.3%) resulted in each of nine backcrossed families from eggs of synthesized diploid F1s fertilized by haploid sperm from sexual males. Five individuals (3.7%) from one backcross family were genetically identical to the somatic cells of the mother and originated via gynogenesis; the sperm of the sexual male only triggered clonal development of the egg. Our reconstruction of the evolutionary route from sexuality to clonality and polyploidy in these fish shows that clonality and gynogenesis may have been directly triggered by interspecific hybridization and that polyploidy is a consequence, not a cause, of clonality. © 2012 The Author(s).

  20. Modulation of NF-kappaB activation in Theileria annulata-infected cloned cell lines is associated with detection of parasite-dependent IKK signalosomes and disruption of the actin cytoskeleton.

    PubMed

    Schmuckli-Maurer, Jacqueline; Kinnaird, Jane; Pillai, Sreerekha; Hermann, Pascal; McKellar, Sue; Weir, William; Dobbelaere, Dirk; Shiels, Brian

    2010-02-01

    Apicomplexan parasites within the genus Theileria have the ability to induce continuous proliferation and prevent apoptosis of the infected bovine leukocyte. Protection against apoptosis involves constitutive activation of the bovine transcription factor NF-kappaB in a parasite-dependent manner. Activation of NF-kappaB is thought to involve recruitment of IKK signalosomes at the surface of the macroschizont stage of the parasite, and it has been postulated that additional host proteins with adaptor or scaffolding function may be involved in signalosome formation. In this study two clonal cell lines were identified that show marked differences in the level of activated NF-kappaB. Further characterization of these lines demonstrated that elevated levels of activated NF-kappaB correlated with increased resistance to cell death and detection of parasite-associated IKK signalosomes, supporting results of our previous studies. Evidence was also provided for the existence of host- and parasite-dependent NF-kappaB activation pathways that are influenced by the architecture of the actin cytoskeleton. Despite this influence, it appears that the primary event required for formation of the parasite-dependent IKK signalosome is likely to be an interaction between a signalosome component and a parasite-encoded surface ligand.

  1. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid

    PubMed Central

    2013-01-01

    Background Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. Results We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Conclusion Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity. PMID:23597229

  2. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid.

    PubMed

    Andres, Devon; Keyser, Brian M; Petrali, John; Benton, Betty; Hubbard, Kyle S; McNutt, Patrick M; Ray, Radharaman

    2013-04-18

    Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity.

  3. Overexpression of Hiwi Inhibits the Cell Growth of Chronic Myeloid Leukemia K562 Cells and Enhances Their Chemosensitivity to Daunomycin.

    PubMed

    Wang, Yalin; Jiang, Yan; Bian, Cuicui; Dong, Yi; Ma, Chao; Hu, Xiaolin; Liu, Ziling

    2015-09-01

    Chronic myeloid leukemia (CML) is a clonal disorder characterized by excessive accumulation of myeloid cells in the peripheral blood. In the present study, to investigate the role of Hiwi in leukemogenesis, lentivirus-mediated Hiwi overexpression was performed in a CML cell line, K562 cells. Our data revealed that Hiwi protein expression was undetectable in K562 cells, and its overexpression suppressed cell proliferation, induced cell cycle arrest at G0/G1 and G2/M phases, and promoted apoptosis in K562 cells in vitro. Expression of anti-apoptotic protein, Bcl-2, was decreased in cells expressing Hiwi, whereas that of pro-apoptotic proteins, Bax, activated caspase-3, -9, and cleaved poly (ADP-ribose) polymerase were increased. Additionally, Hiwi upregulation enhanced the chemosensitivity of CML cells to daunomycin. Our study illustrates that expression deletion of Hiwi may be involved in the pathogenesis of human CML and suggests a possible role of Hiwi in regulating the cell growth, cell cycle, and apoptosis of CML cells in vitro.

  4. Identification and Single-Cell Functional Characterization of an Endodermally Biased Pluripotent Substate in Human Embryonic Stem Cells.

    PubMed

    Allison, Thomas F; Smith, Andrew J H; Anastassiadis, Konstantinos; Sloane-Stanley, Jackie; Biga, Veronica; Stavish, Dylan; Hackland, James; Sabri, Shan; Langerman, Justin; Jones, Mark; Plath, Kathrin; Coca, Daniel; Barbaric, Ivana; Gokhale, Paul; Andrews, Peter W

    2018-05-09

    Human embryonic stem cells (hESCs) display substantial heterogeneity in gene expression, implying the existence of discrete substates within the stem cell compartment. To determine whether these substates impact fate decisions of hESCs we used a GFP reporter line to investigate the properties of fractions of putative undifferentiated cells defined by their differential expression of the endoderm transcription factor, GATA6, together with the hESC surface marker, SSEA3. By single-cell cloning, we confirmed that substates characterized by expression of GATA6 and SSEA3 include pluripotent stem cells capable of long-term self-renewal. When clonal stem cell colonies were formed from GATA6-positive and GATA6-negative cells, more of those derived from GATA6-positive cells contained spontaneously differentiated endoderm cells than similar colonies derived from the GATA6-negative cells. We characterized these discrete cellular states using single-cell transcriptomic analysis, identifying a potential role for SOX17 in the establishment of the endoderm-biased stem cell state. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Frequency and clonality of peripheral γδ T cells in psoriasis patients receiving anti-tumour necrosis factor-α therapy

    PubMed Central

    Kelsen, J; Dige, A; Christensen, M; D'Amore, F; Iversen, L

    2014-01-01

    Hepatosplenic γδ T cell lymphoma (HSTCL) has been observed in patients with Crohn's disease (CD) who received anti-tumour necrosis factor (TNF)-α agents and thiopurines, but only one case was reported in a psoriasis patient worldwide. This difference could be due to differences in either the nature of the inflammatory diseases or in the use of immunomodulators. We investigated the impact of anti-TNF-α agents on the level and repertoire of γδ T cells in peripheral blood from psoriasis patients. Forty-five men and 10 women who were treated with anti-TNF-α agents for psoriasis were monitored for a median 11 months for the level and clonality of γδ T cells via flow cytometry and polymerase chain reaction (PCR) analysis of T cell receptor gamma (TCR-γ) gene rearrangements. Seventeen men had a repeated analysis within 48 h of the infliximab infusion to reveal a possible expansion of γδ T cells, as observed previously in CD patients. Ten psoriasis patients who were never exposed to biologicals and 20 healthy individuals served as controls. In the majority of psoriasis patients, the level and clonal pattern of γδ T cells was remarkably stable during infliximab treatment. A single male patient repeatedly experienced a significant increase in the level of γδ T cells after infliximab infusions. A monoclonal γδ T cell repertoire in a polyclonal background tended to be more frequent in anti-TNF-α-treated patients than naive patients, suggesting that anti-TNF-α therapy may promote the clonal selection of γδ T cells in psoriasis patients. PMID:24635218

  6. In vivo Clonal Tracking of Hematopoietic Stem and Progenitor Cells Marked by Five Fluorescent Proteins using Confocal and Multiphoton Microscopy

    PubMed Central

    Malide, Daniela; Métais, Jean-Yves; Dunbar, Cynthia E.

    2014-01-01

    We developed and validated a fluorescent marking methodology for clonal tracking of hematopoietic stem and progenitor cells (HSPCs) with high spatial and temporal resolution to study in vivo hematopoiesis using the murine bone marrow transplant experimental model. Genetic combinatorial marking using lentiviral vectors encoding fluorescent proteins (FPs) enabled cell fate mapping through advanced microscopy imaging. Vectors encoding five different FPs: Cerulean, EGFP, Venus, tdTomato, and mCherry were used to concurrently transduce HSPCs, creating a diverse palette of color marked cells. Imaging using confocal/two-photon hybrid microscopy enables simultaneous high resolution assessment of uniquely marked cells and their progeny in conjunction with structural components of the tissues. Volumetric analyses over large areas reveal that spectrally coded HSPC-derived cells can be detected non-invasively in various intact tissues, including the bone marrow (BM), for extensive periods of time following transplantation. Live studies combining video-rate multiphoton and confocal time-lapse imaging in 4D demonstrate the possibility of dynamic cellular and clonal tracking in a quantitative manner. PMID:25145579

  7. Serial measurement of type-specific human papillomavirus load enables classification of cervical intraepithelial neoplasia lesions according to occurring human papillomavirus-induced pathway.

    PubMed

    Verhelst, Stefanie; Poppe, Willy A J; Bogers, Johannes J; Depuydt, Christophe E

    2017-03-01

    This retrospective study examined whether human papillomavirus (HPV) type-specific viral load changes measured in two or three serial cervical smears are predictive for the natural evolution of HPV infections and correlate with histological grades of cervical intraepithelial neoplasia (CIN), allowing triage of HPV-positive women. A cervical histology database was used to select consecutive women with biopsy-proven CIN in 2012 who had at least two liquid-based cytology samples before the diagnosis of CIN. Before performing cytology, 18 different quantitative PCRs allowed HPV type-specific viral load measurement. Changes in HPV-specific load between measurements were assessed by linear regression, with calculation of coefficient of determination (R) and slope. All infections could be classified into one of five categories: (i) clonal progressing process (R≥0.85; positive slope), (ii) simultaneously occurring clonal progressive and transient infection, (iii) clonal regressing process (R≥0.85; negative slope), (iv) serial transient infection with latency [R<0.85; slopes (two points) between 0.0010 and -0.0010 HPV copies/cell/day], and (v) transient productive infection (R<0.85; slope: ±0.0099 HPV copies/cell/day). Three hundred and seven women with CIN were included; 124 had single-type infections and 183 had multiple HPV types. Only with three consecutive measurements could a clonal process be identified in all CIN3 cases. We could clearly demonstrate clonal regressing lesions with a persistent linear decrease in viral load (R≥0.85; -0.003 HPV copies/cell/day) in all CIN categories. Type-specific viral load increase/decrease in three consecutive measurements enabled classification of CIN lesions in clonal HPV-driven transformation (progression/regression) and nonclonal virion-productive (serial transient/transient) processes.

  8. Aging-Induced Stem Cell Mutations as Drivers for Disease and Cancer

    PubMed Central

    Adams, Peter D.; Jasper, Heinrich; Rudolph, K. Lenhard

    2015-01-01

    Aging is characterized by a decrease in genome integrity, impaired organ maintenance, and an increased risk of cancer, which coincide with clonal dominance of expanded mutant stem and progenitor cell populations in aging tissues, such as the intestinal epithelium, the hematopoietic system, and the male germline. Here we discuss possible explanations for age-associated increases in the initiation and/or progression of mutant stem/progenitor clones and highlight the roles of stem cell quiescence, replication-associated DNA damage, telomere shortening, epigenetic alterations, and metabolic challenges as determinants of stem cell mutations and clonal dominance in aging. PMID:26046760

  9. Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma.

    PubMed

    Hao, Jia-Jie; Lin, De-Chen; Dinh, Huy Q; Mayakonda, Anand; Jiang, Yan-Yi; Chang, Chen; Jiang, Ye; Lu, Chen-Chen; Shi, Zhi-Zhou; Xu, Xin; Zhang, Yu; Cai, Yan; Wang, Jin-Wu; Zhan, Qi-Min; Wei, Wen-Qiang; Berman, Benjamin P; Wang, Ming-Rong; Koeffler, H Phillip

    2016-12-01

    Esophageal squamous cell carcinoma (ESCC) is among the most common malignancies, but little is known about its spatial intratumoral heterogeneity (ITH) and temporal clonal evolutionary processes. To address this, we performed multiregion whole-exome sequencing on 51 tumor regions from 13 ESCC cases and multiregion global methylation profiling for 3 of these 13 cases. We found an average of 35.8% heterogeneous somatic mutations with strong evidence of ITH. Half of the driver mutations located on the branches of tumor phylogenetic trees targeted oncogenes, including PIK3CA, NFE2L2 and MTOR, among others. By contrast, the majority of truncal and clonal driver mutations occurred in tumor-suppressor genes, including TP53, KMT2D and ZNF750, among others. Interestingly, phyloepigenetic trees robustly recapitulated the topological structures of the phylogenetic trees, indicating a possible relationship between genetic and epigenetic alterations. Our integrated investigations of spatial ITH and clonal evolution provide an important molecular foundation for enhanced understanding of tumorigenesis and progression in ESCC.

  10. Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer?

    PubMed Central

    Grove, Carolyn S.; Vassiliou, George S.

    2014-01-01

    Acute myeloid leukaemia (AML) is an uncontrolled clonal proliferation of abnormal myeloid progenitor cells in the bone marrow and blood. Advances in cancer genomics have revealed the spectrum of somatic mutations that give rise to human AML and drawn our attention to its molecular evolution and clonal architecture. It is now evident that most AML genomes harbour small numbers of mutations, which are acquired in a stepwise manner. This characteristic, combined with our ability to identify mutations in individual leukaemic cells and our detailed understanding of normal human and murine haematopoiesis, makes AML an excellent model for understanding the principles of cancer evolution. Furthermore, a better understanding of how AML evolves can help us devise strategies to improve the therapy and prognosis of AML patients. Here, we draw from recent advances in genomics, clinical studies and experimental models to describe the current knowledge of the clonal evolution of AML and its implications for the biology and treatment of leukaemias and other cancers. PMID:25056697

  11. Punctuated Copy Number Evolution and Clonal Stasis in Triple-Negative Breast Cancer

    PubMed Central

    Gao, Ruli; Davis, Alexander; McDonald, Thomas O.; Sei, Emi; Shi, Xiuqing; Wang, Yong; Tsai, Pei-Ching; Casasent, Anna; Waters, Jill; Zhang, Hong; Meric-Bernstam, Funda; Michor, Franziska; Navin, Nicholas E.

    2016-01-01

    Aneuploidy is a hallmark of breast cancer; however, our knowledge of how these complex genomic rearrangements evolve during tumorigenesis is limited. In this study we developed a highly multiplexed single-nucleus-sequencing method to investigate copy number evolution in triple-negative breast cancer patients. We sequenced 1000 single cells from 12 patients and identified 1–3 major clonal subpopulations in each tumor that shared a common evolutionary lineage. We also identified a minor subpopulation of non-clonal cells that were classified as: 1) metastable, 2) pseudo-diploid, or 3) chromazemic. Phylogenetic analysis and mathematical modeling suggest that these data are unlikely to be explained by the gradual accumulation of copy number events over time. In contrast, our data challenge the paradigm of gradual evolution, showing that the majority of copy number aberrations are acquired at the earliest stages of tumor evolution, in short punctuated bursts, followed by stable clonal expansions that form the tumor mass. PMID:27526321

  12. Differential expression of CD44 and CD24 markers discriminates the epitheliod from the fibroblastoid subset in a sarcomatoid renal carcinoma cell line: evidence suggesting the existence of cancer stem cells in both subsets as studied with sorted cells.

    PubMed

    Hsieh, Chin-Hsuan; Hsiung, Shih-Chieh; Yeh, Chi-Tai; Yen, Chih-Feng; Chou, Yah-Huei Wu; Lei, Wei-Yi; Pang, See-Tong; Chuang, Cheng-Keng; Liao, Shuen-Kuei

    2017-02-28

    Epithelioid and fibroblastoid subsets coexist in the human sarcomatoid renal cell carcinoma (sRCC) cell line, RCC52, according to previous clonal studies. Herein, using monoclonal antibodies to CD44 and CD24 markers, we identified and isolated these two populations, and showed that CD44bright/CD24dim and CD44bright/CD24bright phenotypes correspond to epithelioid and fibroblastoid subsets, respectively. Both sorted subsets displayed different levels of tumorigenicity in xenotransplantation, indicating that each harbored its own cancer stem cells (CSCs). The CD44bright/CD24bright subset, associated with higher expression of MMP-7, -8 and TIMP-1 transcripts, showed greater migratory/invasive potential than the CD44bright/CD24dim subset, which was associated with higher expression of MMP-2, -9 and TIMP-2 transcripts. Both subsets differentially expressed stemness gene products c-Myc, Oct4A, Notch1, Notch2 and Notch3, and the RCC stem cell marker, CD105 in 4-5% of RCC52 cells. These results suggest the presence of CSCs in both sRCC subsets for the first time and should therefore be considered potential therapeutic targets for this aggressive malignancy.

  13. Monoclonal B-cell lymphocytosis in healthy blood donors: an unexpectedly common finding.

    PubMed

    Shim, Youn K; Rachel, Jane M; Ghia, Paolo; Boren, Jeff; Abbasi, Fatima; Dagklis, Antonis; Venable, Geri; Kang, Jiyeon; Degheidy, Heba; Plapp, Fred V; Vogt, Robert F; Menitove, Jay E; Marti, Gerald E

    2014-02-27

    Circulating monoclonal B cells may be detected in healthy adults, a condition called monoclonal B-cell lymphocytosis (MBL). MBL has also been identified in donated blood, but no systematic study of blood donors has been reported. Using sensitive and specific laboratory methods, we detected MBL in 149 (7.1%; 95% confidence interval, 6.0% to 8.3%) of 2098 unique donors ages 45 years or older in a Midwestern US regional blood center between 2010 and 2011. Most of the 149 donors had low-count MBL, including 99 chronic lymphocytic leukemia-like (66.4%), 22 atypical (14.8%), and 19 CD5(-) (12.8%) immunophenotypes. However, 5 donors (3.4%) had B-cell clonal counts above 500 cells per µL, including 3 with 1693 to 2887 cells per µL; the clone accounted for nearly all their circulating B cells. Four donors (2.7%) had 2 distinct MBL clones. Of 51 MBL samples in which immunoglobulin heavy chain (IGH)V-D-J genotypes could be determined, 71% and 29% used IGHV3- and IGHV4-family genes, respectively. Sequencing revealed 82% with somatic hypermutation, whereas 18% had >98% germ-line identity, including 5 with entirely germ-line sequences. In conclusion, MBL prevalence is much higher in blood donors than previously reported, and although uncommon, the presence of high-count MBL warrants further investigations to define the biological fate of the transfused cells in recipients.

  14. Complex interactions in EML cell stimulation by stem cell factor and IL-3.

    PubMed

    Ye, Zhi-jia; Gulcicek, Erol; Stone, Kathryn; Lam, Tukiet; Schulz, Vincent; Weissman, Sherman M

    2011-03-22

    Erythroid myeloid lymphoid (EML) cells are an established multipotent hematopoietic precursor cell line that can be maintained in medium including stem cell factor (SCF). EML cultures contain a heterogeneous mixture of cells, including a lineage-negative, CD34+ subset of cells that propagate rapidly in SCF and can clonally regenerate the mixed population. A second major subset of EML cells consists of lineage-negative. CD34- cells that can be propagated in IL-3 but grow slowly, if at all, in SCF, although they express the SCF receptor (c-kit). The response of these cells to IL-3 is stimulated synergistically by SCF, and we present evidence that both the synergy and the inhibition of c-kit responses may be mediated by direct interaction with IL-3 receptor. Further, the relative level of tyrosine phosphorylation of various substrates by either cytokine alone differs from that produced by the combination of the two cytokines, suggesting that cell signaling by the combination of the two cytokines differs from that produced by either alone.

  15. Complex interactions in EML cell stimulation by stem cell factor and IL-3

    PubMed Central

    Ye, Zhi-jia; Gulcicek, Erol; Stone, Kathryn; Lam, Tukiet; Schulz, Vincent; Weissman, Sherman M.

    2011-01-01

    Erythroid myeloid lymphoid (EML) cells are an established multipotent hematopoietic precursor cell line that can be maintained in medium including stem cell factor (SCF). EML cultures contain a heterogeneous mixture of cells, including a lineage-negative, CD34+ subset of cells that propagate rapidly in SCF and can clonally regenerate the mixed population. A second major subset of EML cells consists of lineage-negative. CD34− cells that can be propagated in IL-3 but grow slowly, if at all, in SCF, although they express the SCF receptor (c-kit). The response of these cells to IL-3 is stimulated synergistically by SCF, and we present evidence that both the synergy and the inhibition of c-kit responses may be mediated by direct interaction with IL-3 receptor. Further, the relative level of tyrosine phosphorylation of various substrates by either cytokine alone differs from that produced by the combination of the two cytokines, suggesting that cell signaling by the combination of the two cytokines differs from that produced by either alone. PMID:21383156

  16. Development and characterization of a hydrogen peroxide-resistant cholangiocyte cell line: A novel model of oxidative stress-related cholangiocarcinoma genesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanan, Raynoo; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002; Techasen, Anchalee

    Oxidative stress is a cause of inflammation–related diseases, including cancers. Cholangiocarcinoma is a liver cancer with bile duct epithelial cell phenotypes. Our previous studies in animal and human models indicated that oxidative stress is a major cause of cholangiocarcinoma development. Hydrogen peroxide (H{sub 2}O{sub 2}) can generate hydroxyl radicals, which damage lipids, proteins, and nucleic acids, leading to cell death. However, some cells can survive by adapting to oxidative stress conditions, and selective clonal expansion of these resistant cells would be involved in oxidative stress-related carcinogenesis. The present study aimed to establish H{sub 2}O{sub 2}-resistant cell line from an immortal cholangiocytemore » cell line (MMNK1) by chronic treatment with low-concentration H{sub 2}O{sub 2} (25 μM). After 72 days of induction, H{sub 2}O{sub 2}-resistant cell lines (ox-MMNK1-L) were obtained. The ox-MMNK1-L cell line showed H{sub 2}O{sub 2}-resistant properties, increasing the expression of the anti-oxidant genes catalase (CAT), superoxide dismutase-1 (SOD1), superoxide dismutase-2 (SOD2), and superoxide dismutase-3 (SOD3) and the enzyme activities of CAT and intracellular SODs. Furthermore, the resistant cells showed increased expression levels of an epigenetics-related gene, DNA methyltransferase-1 (DNMT1), when compared to the parental cells. Interestingly, the ox-MMNK1-L cell line had a significantly higher cell proliferation rate than the MMNK1 normal cell line. Moreover, ox-MMNK1-L cells showed pseudopodia formation and the loss of cell-to-cell adhesion (multi-layers) under additional oxidative stress (100 μM H{sub 2}O{sub 2}). These findings suggest that H{sub 2}O{sub 2}-resistant cells can be used as a model of oxidative stress-related cholangiocarcinoma genesis through molecular changes such as alteration of gene expression and epigenetic changes. - Highlights: • An H{sub 2}O{sub 2}-resistant ox-MMNK1-L cells was established from immortalized cholangiocytes. • The resistance was acquired by daily treatment of low H{sub 2}O{sub 2} (25 μM) for 15 passages. • The cells highly expressed catalase, SODs and DNMT1 with rapid cell proliferation. • Pseudopodia and the loss of cell-to-cell adhesion appeared by 100 μM H{sub 2}O{sub 2} treatment. • The resistant cells can be used as a model of oxidative stress-related carcinogenesis.« less

  17. Monitoring the dynamics of clonal tumour evolution in vivo using secreted luciferases.

    PubMed

    Charles, Joël P; Fuchs, Jeannette; Hefter, Mirjam; Vischedyk, Jonas B; Kleint, Maximilian; Vogiatzi, Fotini; Schäfer, Jonas A; Nist, Andrea; Timofeev, Oleg; Wanzel, Michael; Stiewe, Thorsten

    2014-06-03

    Tumours are heterogeneous cell populations that undergo clonal evolution during tumour progression, metastasis and response to therapy. Short hairpin RNAs (shRNAs) generate stable loss-of-function phenotypes and are versatile experimental tools to explore the contribution of individual genetic alterations to clonal evolution. In these experiments tumour cells carrying shRNAs are commonly tracked with fluorescent reporters. While this works well for cell culture studies and leukaemia mouse models, fluorescent reporters are poorly suited for animals with solid tumours--the most common tumour types in cancer patients. Here we develop a toolkit that uses secreted luciferases to track the fate of two different shRNA-expressing tumour cell clones competitively, both in vitro and in vivo. We demonstrate that secreted luciferase activities can be measured robustly in the blood stream of tumour-bearing mice to accurately quantify, in a minimally invasive manner, the dynamic evolution of two genetically distinct tumour subclones in preclinical mouse models of tumour development, metastasis and therapy.

  18. Monitoring the dynamics of clonal tumour evolution in vivo using secreted luciferases

    PubMed Central

    Charles, Joël P.; Fuchs, Jeannette; Hefter, Mirjam; Vischedyk, Jonas B.; Kleint, Maximilian; Vogiatzi, Fotini; Schäfer, Jonas A.; Nist, Andrea; Timofeev, Oleg; Wanzel, Michael; Stiewe, Thorsten

    2014-01-01

    Tumours are heterogeneous cell populations that undergo clonal evolution during tumour progression, metastasis and response to therapy. Short hairpin RNAs (shRNAs) generate stable loss-of-function phenotypes and are versatile experimental tools to explore the contribution of individual genetic alterations to clonal evolution. In these experiments tumour cells carrying shRNAs are commonly tracked with fluorescent reporters. While this works well for cell culture studies and leukaemia mouse models, fluorescent reporters are poorly suited for animals with solid tumours—the most common tumour types in cancer patients. Here we develop a toolkit that uses secreted luciferases to track the fate of two different shRNA-expressing tumour cell clones competitively, both in vitro and in vivo. We demonstrate that secreted luciferase activities can be measured robustly in the blood stream of tumour-bearing mice to accurately quantify, in a minimally invasive manner, the dynamic evolution of two genetically distinct tumour subclones in preclinical mouse models of tumour development, metastasis and therapy. PMID:24889111

  19. Small and big Hodgkin-Reed-Sternberg cells of Hodgkin lymphoma cell lines L-428 and L-1236 lack consistent differences in gene expression profiles and are capable to reconstitute each other.

    PubMed

    Rengstl, Benjamin; Kim, Sooji; Döring, Claudia; Weiser, Christian; Bein, Julia; Bankov, Katrin; Herling, Marco; Newrzela, Sebastian; Hansmann, Martin-Leo; Hartmann, Sylvia

    2017-01-01

    The hallmark of classical Hodgkin lymphoma (cHL) is the presence of giant, mostly multinucleated Hodgkin-Reed-Sternberg (HRS) cells. Whereas it has recently been shown that giant HRS cells evolve from small Hodgkin cells by incomplete cytokinesis and re-fusion of tethered sister cells, it remains unsolved why this phenomenon particularly takes place in this lymphoma and what the differences between these cell types of variable sizes are. The aim of the present study was to characterize microdissected small and giant HRS cells by gene expression profiling and to assess differences of clonal growth behavior as well as susceptibility toward cytotoxic intervention between these different cell types to provide more insight into their distinct cellular potential. Applying stringent filter criteria, only two differentially expressed genes between small and giant HRS cells, SHFM1 and LDHB, were identified. With looser filter criteria, 13 genes were identified to be differentially overexpressed in small compared to giant HRS cells. These were mainly related to energy metabolism and protein synthesis, further suggesting that small Hodgkin cells resemble the proliferative compartment of cHL. SHFM1, which is known to be involved in the generation of giant cells, was downregulated in giant RS cells at the RNA level. However, reduced mRNA levels of SHFM1, LDHB and HSPA8 did not translate into decreased protein levels in giant HRS cells. In cell culture experiments it was observed that the fraction of small and big HRS cells was adjusted to the basic level several days after enrichment of these populations via cell sorting, indicating that small and big HRS cells can reconstitute the full spectrum of cells usually observed in the culture. However, assessment of clonal growth of HRS cells indicated a significantly reduced potential of big HRS cells to form single cell colonies. Taken together, our findings pinpoint to strong similarities but also some differences between small and big HRS cells.

  20. Clonal yeast biofilms can reap competitive advantages through cell differentiation without being obligatorily multicellular

    PubMed Central

    Hanghøj, Kristian Ebbesen; Andersen, Kaj Scherz; Boomsma, Jacobus J.

    2016-01-01

    How differentiation between cell types evolved is a fundamental question in biology, but few studies have explored single-gene phenotypes that mediate first steps towards division of labour with selective advantage for groups of cells. Here, we show that differential expression of the FLO11 gene produces stable fractions of Flo11+ and Flo11− cells in clonal Saccharomyces cerevisiae biofilm colonies on medium with intermediate viscosity. Differentiated Flo11+/− colonies, consisting of adhesive and non-adhesive cells, obtain a fourfold growth advantage over undifferentiated colonies by overgrowing glucose resources before depleting them, rather than depleting them while they grow as undifferentiated Flo11− colonies do. Flo11+/− colonies maintain their structure and differentiated state by switching non-adhesive cells to adhesive cells with predictable probability. Mixtures of Flo11+ and Flo11− cells from mutant strains that are unable to use this epigenetic switch mechanism produced neither integrated colonies nor growth advantages, so the condition-dependent selective advantages of differentiated FLO11 expression can only be reaped by clone-mate cells. Our results show that selection for cell differentiation in clonal eukaryotes can evolve before the establishment of obligate undifferentiated multicellularity, and without necessarily leading to more advanced organizational complexity. PMID:27807261

  1. Identification of the APC/C co-factor FZR1 as a novel therapeutic target for multiple myeloma.

    PubMed

    Crawford, Lisa J; Anderson, Gordon; Johnston, Cliona K; Irvine, Alexandra E

    2016-10-25

    Multiple Myeloma (MM) is a haematological neoplasm characterised by the clonal proliferation of malignant plasma cells in the bone marrow. The success of proteasome inhibitors in the treatment of MM has highlighted the importance of the ubiquitin proteasome system (UPS) in the pathogenesis of this disease. In this study, we analysed gene expression of UPS components to identify novel therapeutic targets within this pathway in MM. Here we demonstrate how this approach identified previously validated and novel therapeutic targets. In addition we show that FZR1 (Fzr), a cofactor of the multi-subunit E3 ligase complex anaphase-promoting complex/cyclosome (APC/C), represents a novel therapeutic target in myeloma. The APC/C associates independently with two cofactors, Fzr and Cdc20, to control cell cycle progression. We found high levels of FZR1 in MM primary cells and cell lines and demonstrate that expression is further increased on adhesion to bone marrow stromal cells (BMSCs). Specific knockdown of either FZR1 or CDC20 reduced viability and induced growth arrest of MM cell lines, and resulted in accumulation of APC/CFzr substrate Topoisomerase IIα (TOPIIα) or APC/CCdc20 substrate Cyclin B. Similar effects were observed following treatment with proTAME, an inhibitor of both APC/CFzr and APC/CCdc20. Combinations of proTAME with topoisomerase inhibitors, etoposide and doxorubicin, significantly increased cell death in MM cell lines and primary cells, particularly if TOPIIα levels were first increased through pre-treatment with proTAME. Similarly, combinations of proTAME with the microtubule inhibitor vincristine resulted in enhanced cell death. This study demonstrates the potential of targeting the APC/C and its cofactors as a therapeutic approach in MM.

  2. Heterogeneity of Clonal Expansion and Maturation-Linked Mutation Acquisition in Hematopoietic Progenitors in Human Acute Myeloid Leukemia

    PubMed Central

    Walter, Roland B.; Laszlo, George S.; Lionberger, Jack M.; Pollard, Jessica A.; Harrington, Kimberly H.; Gudgeon, Chelsea J.; Othus, Megan; Rafii, Shahin; Meshinchi, Soheil; Appelbaum, Frederick R.; Bernstein, Irwin D.

    2014-01-01

    Recent technological advances led to an appreciation of the genetic complexity of human acute myeloid leukemia (AML) but underlying progenitor cells remain poorly understood because their rarity precludes direct study. We developed a co-culture method integrating hypoxia, aryl hydrocarbon receptor inhibition, and micro-environmental support via human endothelial cells to isolate these cells. X-chromosome inactivation studies of the least mature precursors derived following prolonged culture of CD34+/CD33− cells revealed polyclonal growth in highly curable AMLs, suggesting mutations necessary for clonal expansion were acquired in more mature progenitors. Consistently, in core-binding factor (CBF) leukemias with known complementing mutations, immature precursors derived following prolonged culture of CD34+/CD33− cells harbored neither mutation or the CBF mutation alone, whereas more mature precursors often carried both mutations. These results were in contrast to those with leukemias with poor prognosis that showed clonal dominance in the least mature precursors. These data indicate heterogeneity among progenitors in human AML that may have prognostic and therapeutic implications. PMID:24721792

  3. Rapid and simple immunophenotypic characterization of lymphocytes using a new test.

    PubMed

    Bellido, M; Rubiol, E; Ubeda, J; Estivill, C; López, O; Manteiga, R; Nomdedéu, J F

    1998-08-01

    In this paper, we report our experience of lymphocyte phenotyping of a series of 108 consecutive samples using a simple flow cytometry test (Lymphogram). The kit consists of a combination of 5 different markers conjugated with three fluorochromes (CD8-FITC, CD19-FITC, CD56-PE, CD3-PE, CD4-PECy5) in the same tube. This allows identification of different T-cells, NK subpopulations and B lymphocytes. The samples were divided into three groups: samples with absolute lymphocytosis (> 5 x 10(9)/L) (n = 50), samples with relative lymphocytosis (> 50%) (n = 24) and other categories for which a lymphocyte immunophenotype was required (T-cell lymphoma and estimation of blood involvement in chronic lymphoproliferative disorders (CLPD) (n = 34). When CD19+ cells exceeded the normal range or there was a suspicion of CLPD without B-cell lymphopenia, clonality was investigated by means of light chain restriction analysis. In the first group, 29 samples were abnormal (10 CLPD, 3 polyclonal B-cell lymphocytosis, 13 inversions of the CD4/CD8 ratio and 3 cases with CD4 lymphocytosis) and 21 samples were regarded as normal. In the second group 7 samples showed abnormalities (2 CLPD, 3 inverted CD4/CD8 ratios and 2 with a relative increase in CD4 cells). In one sample from the third group B-cell clonality without lymphocytosis was detected whereas in 18 samples a polyclonal pattern was observed. The presence of B-cell lymphopenia precluded further clonality study in 13 samples. Lymphogram associated with clonality analysis is a rapid, easy and cheap method of assessing lymphocyte phenotypes in the majority of clinically relevant situations.

  4. Novel synthetic monoketone transmute radiation-triggered NFκB-dependent TNFα cross-signaling feedback maintained NFκB and favors neuroblastoma regression.

    PubMed

    Aravindan, Sheeja; Natarajan, Mohan; Awasthi, Vibhudutta; Herman, Terence S; Aravindan, Natarajan

    2013-01-01

    Recently, we demonstrated that radiation (IR) instigates the occurrence of a NFκB-TNFα feedback cycle which sustains persistent NFκB activation in neuroblastoma (NB) cells and favors survival advantage and clonal expansion. Further, we reported that curcumin targets IR-induced survival signaling and NFκB dependent hTERT mediated clonal expansion in human NB cells. Herein, we investigated the efficacy of a novel synthetic monoketone, EF24, a curcumin analog in inhibiting persistent NFκB activation by disrupting the IR-induced NFκB-TNFα-NFκB feedback signaling in NB and subsequent mitigation of survival advantage and clonal expansion. EF24 profoundly suppressed the IR-induced NFκB-DNA binding activity/promoter activation and, maintained the NFκB repression by deterring NFκB-dependent TNFα transactivation/intercellular secretion in genetically varied human NB (SH-SY5Y, IMR-32, SK-PN-DW, MC-IXC and SK-N-MC) cell types. Further, EF24 completely suppressed IR-induced NFκB-TNFα cross-signaling dependent transactivation/translation of pro-survival IAP1, IAP2 and Survivin and subsequent cell survival. In corroboration, EF24 treatment maximally blocked IR-induced NFκB dependent hTERT transactivation/promoter activation, telomerase activation and consequent clonal expansion. EF24 displayed significant regulation of IR-induced feedback dependent NFκB and NFκB mediated survival signaling and complete regression of NB xenograft. Together, the results demonstrate for the first time that, novel synthetic monoketone EF24 potentiates radiotherapy and mitigates NB progression by selectively targeting IR-triggered NFκB-dependent TNFα-NFκB cross-signaling maintained NFκB mediated survival advantage and clonal expansion.

  5. Novel Synthetic Monoketone Transmute Radiation-Triggered NFκB-Dependent TNFα Cross-Signaling Feedback Maintained NFκB and Favors Neuroblastoma Regression

    PubMed Central

    Aravindan, Sheeja; Natarajan, Mohan; Awasthi, Vibhudutta; Herman, Terence S.; Aravindan, Natarajan

    2013-01-01

    Recently, we demonstrated that radiation (IR) instigates the occurrence of a NFκB-TNFα feedback cycle which sustains persistent NFκB activation in neuroblastoma (NB) cells and favors survival advantage and clonal expansion. Further, we reported that curcumin targets IR-induced survival signaling and NFκB dependent hTERT mediated clonal expansion in human NB cells. Herein, we investigated the efficacy of a novel synthetic monoketone, EF24, a curcumin analog in inhibiting persistent NFκB activation by disrupting the IR-induced NFκB-TNFα-NFκB feedback signaling in NB and subsequent mitigation of survival advantage and clonal expansion. EF24 profoundly suppressed the IR-induced NFκB-DNA binding activity/promoter activation and, maintained the NFκB repression by deterring NFκB-dependent TNFα transactivation/intercellular secretion in genetically varied human NB (SH-SY5Y, IMR-32, SK–PN–DW, MC-IXC and SK–N-MC) cell types. Further, EF24 completely suppressed IR-induced NFκB-TNFα cross-signaling dependent transactivation/translation of pro-survival IAP1, IAP2 and Survivin and subsequent cell survival. In corroboration, EF24 treatment maximally blocked IR-induced NFκB dependent hTERT transactivation/promoter activation, telomerase activation and consequent clonal expansion. EF24 displayed significant regulation of IR-induced feedback dependent NFκB and NFκB mediated survival signaling and complete regression of NB xenograft. Together, the results demonstrate for the first time that, novel synthetic monoketone EF24 potentiates radiotherapy and mitigates NB progression by selectively targeting IR-triggered NFκB-dependent TNFα-NFκB cross-signaling maintained NFκB mediated survival advantage and clonal expansion. PMID:23967300

  6. Unexpected heterogeneity derived from Cas9 ribonucleoprotein-introduced clonal cells at the HPRT1 locus.

    PubMed

    Sakuma, Tetsushi; Mochida, Keiji; Nakade, Shota; Ezure, Toru; Minagawa, Sachi; Yamamoto, Takashi

    2018-04-01

    Single-cell cloning is an essential technique for establishing genome-edited cell clones mediated by programmable nucleases such as CRISPR-Cas9. However, residual genome-editing activity after single-cell cloning may cause heterogeneity in the clonal cells. Previous studies showed efficient mutagenesis and rapid degradation of CRISPR-Cas9 components in cultured cells by introducing Cas9 ribonucleoproteins (RNPs). In this study, we investigated how the timing for single-cell cloning of Cas9 RNP-transfected cells affected the heterogeneity of the resultant clones. We carried out transfection of Cas9 RNPs targeting several loci in the HPRT1 gene in HCT116 cells, followed by single-cell cloning at 24, 48, 72 hr and 1 week post-transfection. After approximately 3 weeks of incubation, the clonal cells were collected and genotyped by high-resolution microchip electrophoresis and Sanger sequencing. Unexpectedly, long-term incubation before single-cell cloning resulted in highly heterogeneous clones. We used a lipofection method for transfection, and the media containing transfectable RNPs were not removed before single-cell cloning. Therefore, the active Cas9 RNPs were considered to be continuously incorporated into cells during the precloning incubation. Our findings provide a warning that lipofection of Cas9 RNPs may cause continuous introduction of gene mutations depending on the experimental procedures. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  7. Sensitivity to sequencing depth in single-cell cancer genomics.

    PubMed

    Alves, João M; Posada, David

    2018-04-16

    Querying cancer genomes at single-cell resolution is expected to provide a powerful framework to understand in detail the dynamics of cancer evolution. However, given the high costs currently associated with single-cell sequencing, together with the inevitable technical noise arising from single-cell genome amplification, cost-effective strategies that maximize the quality of single-cell data are critically needed. Taking advantage of previously published single-cell whole-genome and whole-exome cancer datasets, we studied the impact of sequencing depth and sampling effort towards single-cell variant detection. Five single-cell whole-genome and whole-exome cancer datasets were independently downscaled to 25, 10, 5, and 1× sequencing depth. For each depth level, ten technical replicates were generated, resulting in a total of 6280 single-cell BAM files. The sensitivity of variant detection, including structural and driver mutations, genotyping, clonal inference, and phylogenetic reconstruction to sequencing depth was evaluated using recent tools specifically designed for single-cell data. Altogether, our results suggest that for relatively large sample sizes (25 or more cells) sequencing single tumor cells at depths > 5× does not drastically improve somatic variant discovery, characterization of clonal genotypes, or estimation of single-cell phylogenies. We suggest that sequencing multiple individual tumor cells at a modest depth represents an effective alternative to explore the mutational landscape and clonal evolutionary patterns of cancer genomes.

  8. Telomere Dynamics and Homeostasis in a Transmissible Cancer

    PubMed Central

    Ujvari, Beata; Pearse, Anne-Maree; Taylor, Robyn; Pyecroft, Stephen; Flanagan, Cassandra; Gombert, Sara; Papenfuss, Anthony T.; Madsen, Thomas; Belov, Katherine

    2012-01-01

    Background Devil Facial Tumour Disease (DFTD) is a unique clonal cancer that threatens the world's largest carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii) with extinction. This transmissible cancer is passed between individual devils by cell implantation during social interactions. The tumour arose in a Schwann cell of a single devil over 15 years ago and since then has expanded clonally, without showing signs of replicative senescence; in stark contrast to a somatic cell that displays a finite capacity for replication, known as the “Hayflick limit”. Methodology/Principal Findings In the present study we investigate the role of telomere length, measured as Telomere Copy Number (TCN), and telomerase and shelterin gene expression, as well as telomerase activity in maintaining hyperproliferation of Devil Facial Tumour (DFT) cells. Our results show that DFT cells have short telomeres. DFTD TCN does not differ between geographic regions or between strains. However, TCN has increased over time. Unlimited cell proliferation is likely to have been achieved through the observed up-regulation of the catalytic subunit of telomerase (TERT) and concomitant activation of telomerase. Up-regulation of the central component of shelterin, the TRF1-intercating nuclear factor 2 (TINF2) provides DFT a mechanism for telomere length homeostasis. The higher expression of both TERT and TINF2 may also protect DFT cells from genomic instability and enhance tumour proliferation. Conclusions/Significance DFT cells appear to monitor and regulate the length of individual telomeres: i.e. shorter telomeres are elongated by up-regulation of telomerase-related genes; longer telomeres are protected from further elongation by members of the shelterin complex, which may explain the lack of spatial and strain variation in DFT telomere copy number. The observed longitudinal increase in gene expression in DFT tissue samples and telomerase activity in DFT cell lines might indicate a selection for more stable tumours with higher proliferative potential. PMID:22952882

  9. Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells

    PubMed Central

    MacLean, Glenn A.; Menne, Tobias F.; Guo, Guoji; Sanchez, Danielle J.; Park, In-Hyun; Daley, George Q.; Orkin, Stuart H.

    2012-01-01

    Trisomy 21 is associated with hematopoietic abnormalities in the fetal liver, a preleukemic condition termed transient myeloproliferative disorder, and increased incidence of acute megakaryoblastic leukemia. Human trisomy 21 pluripotent cells of various origins, human embryionic stem (hES), and induced pluripotent stem (iPS) cells, were differentiated in vitro as a model to recapitulate the effects of trisomy on hematopoiesis. To mitigate clonal variation, we isolated disomic and trisomic subclones from the same parental iPS line, thereby generating subclones isogenic except for chromosome 21. Under differentiation conditions favoring development of fetal liver-like, γ-globin expressing, definitive hematopoiesis, we found that trisomic cells of hES, iPS, or isogenic origins exhibited a two- to fivefold increase in a population of CD43+(Leukosialin)/CD235+(Glycophorin A) hematopoietic cells, accompanied by increased multilineage colony-forming potential in colony-forming assays. These findings establish an intrinsic disturbance of multilineage myeloid hematopoiesis in trisomy 21 at the fetal liver stage. PMID:23045682

  10. Generation of a conditional analog-sensitive kinase in human cells using CRISPR/Cas9-mediated genome engineering.

    PubMed

    Moyer, Tyler C; Holland, Andrew J

    2015-01-01

    The ability to rapidly and specifically modify the genome of mammalian cells has been a long-term goal of biomedical researchers. Recently, the clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 system from bacteria has been exploited for genome engineering in human cells. The CRISPR system directs the RNA-guided Cas9 nuclease to a specific genomic locus to induce a DNA double-strand break that may be subsequently repaired by homology-directed repair using an exogenous DNA repair template. Here we describe a protocol using CRISPR/Cas9 to achieve bi-allelic insertion of a point mutation in human cells. Using this method, homozygous clonal cell lines can be constructed in 5-6 weeks. This method can also be adapted to insert larger DNA elements, such as fluorescent proteins and degrons, at defined genomic locations. CRISPR/Cas9 genome engineering offers exciting applications in both basic science and translational research. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Neoplastic transformation of SV40-immortalized human urinary tract epithelial cells by in vitro exposure to 3-methylcholanthrene.

    PubMed

    Reznikoff, C A; Loretz, L J; Christian, B J; Wu, S Q; Meisner, L F

    1988-08-01

    Normal human urinary tract epithelial cells (HUC) were neoplastically transformed in vitro using a step-wise strategy. First, a partially transformed non-virus-producing cell line was obtained after infection of HUC with simian virus 40 (SV40). This cell line (SV-HUC-1) was demonstrated to be clonal in origin, as 100% of cells contained at least five of seven marker chromosomes. Marker chromosomes were formed by balanced translocations resulting in a 'pseudodiploid' cell line. SV-HUC-1 showed altered growth properties in vitro (e.g. anchorage independent growth) but failed to form tumors in athymic nude mice, even after 3 years in culture (80 passages). In the studies reported here, SV-HUC-1 at early passages (P15-P19) were exposed to 3-methylcholanthrene (MCA) in three separate experiments. After a six-week post-treatment period of cell culture, cells were inoculated s.c. into athymic nude mice. In all experiments, MCA-treated SV-HUC-1 formed carcinomas in mice usually with a latent period of 5-8 weeks. These carcinomas showed heterogeneity with respect to histopathologies and growth properties in the mice and karyotypes. All the tumors retained SV-HUC-1 chromosome markers, but each independent transformant was aneuploid and contained unique new marker chromosomes. Chromosomes usually altered in tumor cells included numbers 3, 5, 6, 9, 11 and 13. Mutations in the ras family of cellular proto-oncogenes resulting in altered mobility of the p21 protein product were not detected in six cell lines established from independently derived tumors. It is not yet known whether other cellular proto-oncogenes are activated in these tumorigenic transformants. Neither control SV-HUC-1 (which were not exposed to MCA), nor early passage HUC exposed to MCA formed tumors when inoculated into mice. Thus, the tumorigenic transformation of HUC resulted from the combined actions of SV40 and MCA.

  12. TALEN- and CRISPR/Cas9-Mediated Gene Editing in Human Pluripotent Stem Cells Using Lipid-Based Transfection.

    PubMed

    Hendriks, William T; Jiang, Xin; Daheron, Laurence; Cowan, Chad A

    2015-08-03

    Using custom-engineered nuclease-mediated genome editing, such as Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) RNA-guided Cas9 nucleases, human pluripotent stem cell (hPSC) lines with knockout or mutant alleles can be generated and differentiated into various cell types. This strategy of genome engineering in hPSCs will prove invaluable for studying human biology and disease. Here, we provide a detailed protocol for design and construction of TALEN and CRISPR vectors, testing of their nuclease activity, and delivery of TALEN or CRISPR vectors into hPSCs. In addition, we describe the use of single-stranded oligodeoxynucleotides (ssODNs) to introduce or repair point mutations. Next, we describe the identification of edited hPSC clones without antibiotic selection, including their clonal selection, genotyping, and expansion for downstream applications. Copyright © 2015 John Wiley & Sons, Inc.

  13. Myeloid transformation of plasma cell myeloma: molecular evidence of clonal evolution revealed by next generation sequencing.

    PubMed

    Gralewski, Jonathon H; Post, Ginell R; van Rhee, Frits; Yuan, Youzhong

    2018-02-20

    Plasma cell myeloma (PCM) is a neoplasm of terminally differentiated B lymphocytes with molecular heterogeneity. Although therapy-related myeloid neoplasms are common in plasma cell myeloma patients after chemotherapy, transdifferentiation of plasma cell myeloma into myeloid neoplasms has not been reported in literature. Here we report a very rare case of myeloid neoplasm transformed from plasma cell myeloma. A 60-year-old man with a history of plasma cell myeloma with IGH-MAF gene rearrangement and RAS/RAF mutations developed multiple soft tissue lesions one year following melphalan-based chemotherapy and autologous stem cell transplant. Morphological and immunohistochemical characterization of the extramedullary disease demonstrated that the tumor cells were derived from the monocyte-macrophage lineage. Next generation sequencing (NGS) studies detected similar clonal aberrations in the diagnostic plasma cell population and post-therapy neoplastic cells, including IGH-MAF rearrangement, multiple genetic mutations in RAS signaling pathway proteins, and loss of tumor suppressor genes. Molecular genetic analysis also revealed unique genomic alterations in the transformed tumor cells, including gain of NF1 and loss of TRAF3. To our knowledge, this is the first case of myeloid sarcoma transdifferentiated from plasma cell neoplasm. Our findings in this unique case suggest clonal evolution of plasma cell myeloma to myeloma neoplasm and the potential roles of abnormal RAS/RAF signaling pathway in lineage switch or transdifferentiation.

  14. The maintenance of sex: Ronald Fisher meets the Red Queen.

    PubMed

    Green, David; Mason, Chris

    2013-08-21

    Sex in higher diploids carries a two-fold cost of males that should reduce its fitness relative to cloning, and result in its extinction. Instead, sex is widespread and clonal species face early obsolescence. One possible reason is that sex is an adaptation that allows organisms to respond more effectively to endless changes in their environment. The purpose of this study was to model mutation and selection in a diploid organism in an evolving environment and ascertain their support for sex. We used a computational approach to model finite populations where a haploid environment subjects a diploid host to endlessly evolving change. Evolution in both populations is primarily through adoption of novel advantageous mutations within a large allele space. Sex outcompetes cloning by two complementary mechanisms. First, sexual diploids adopt advantageous homozygous mutations more rapidly than clonal ones under conditions of lag load (the gap between the actual adaptation of the diploid population and its theoretical optimum). This rate advantage can offset the higher fecundity of cloning. Second, a relative advantage to sex emerges where populations are significantly polymorphic, because clonal polymorphism runs the risk of clonal interference caused by selection on numerous lines of similar adaptation. This interference extends allele lifetime and reduces the rate of adaptation. Sex abolishes the interference, making selection faster and elevating population fitness. Differences in adaptation between sexual and clonal populations increase markedly with the number of loci under selection, the rate of mutation in the host, and a rapidly evolving environment. Clonal interference in these circumstances leads to conditions where the greater fecundity of clones is unable to offset their poor adaptation. Sexual and clonal populations then either co-exist, or sex emerges as the more stable evolutionary strategy. Sex can out-compete clones in a rapidly evolving environment, such as that characterized by pathogens, where clonal interference reduces the adaptation of clonal populations and clones adopt advantageous mutations more slowly. Since all organisms carry parasitic loads, the model is of potentially general applicability.

  15. Enhanced activation of human T cell clones specific for virus-like particles expressing the HIV V3 loop in the presence of HIV V3 loop-specific polyclonal antibodies

    PubMed Central

    Peifang, S.; Pira, G. L.; Fenoglio, D.; Harris, S.; Costa, M. G.; Venturino, V.; Dessì, V.; Layton, G.; Laman, J.; Huisman, J. G.; Manca, F.

    1994-01-01

    Recombinant virus-like particles (VLP), formed by the yeast Ty p1 protein, carrying the HIV gp120 V3 loop on their surface (V3-VLP) have been tested in vitro for immunogenicity and antigenicity by using VLP p1-specific human CD4+ T cell lines and clones. VLP-specific human T cell lines and clones were generated from normal individuals, indicating that VLP-specific precursor cells present in the peripheral lymphocyte pool can be induced to expand clonally upon antigen challenge in vitro, in the absence of previous immunization. It was also shown that V3-specific polyclonal antibodies enhance V3-VLP-induced activation of VLP-specific T cell clones. Antibody-dependent potentiation has been shown previously in other antigen systems, and it depends on enhanced uptake of complexed antigen by Fc receptor-positive antigen-presenting cells. Since in this case antigen is internalized by presenting cells as a complex, it can be inferred that a similar event of antibody-mediated antigen uptake can take place with V3-specific B cells, resulting in presentation by the B cells of T helper epitopes derived from processing of the VLP p1 moiety. This suggests that T helper cells specific for the carrier VLP p1 protein can be activated to provide help to V3-specific B cells in the presence of the appropriate antigen construct. PMID:7915974

  16. YThe BigH3 Tumor Suppressor Gene in Radiation-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Shao, G.; Piao, C.; Hei, T.

    Carcinogenesis is a multi-stage process with sequences of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer Previous studies from this laboratory have identified a 7 fold down- regulation of the novel tumor suppressor Big-h3 among radiation induced tumorigenic BEP2D cells Furthermore ectopic re-expression of this gene suppresses tumorigenic phenotype and promotes the sensitivity of these tumor cells to etoposide-induced apoptosis To extend these studies using a genomically more stable bronchial cell line we ectopically expresses the catalytic subunit of telomerase hTERT in primary human small airway epithelial SAE cells and generated several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice These cells show no alteration in the p53 gene but a decrease in p16 expression Exponentially growing SAEh cells were exposed to graded doses of 1 GeV nucleon of 56 Fe ions accelerated at the Brookhaven National Laboratory Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium These findings indicate

  17. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hongzhen; Zhou Jianjun; Miki, Jun

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin {alpha}2{beta}1{sup hi} and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetalmore » bovine serum and 5 {mu}g/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.« less

  18. Generation of WNK1 knockout cell lines by CRISPR/Cas-mediated genome editing.

    PubMed

    Roy, Ankita; Goodman, Joshua H; Begum, Gulnaz; Donnelly, Bridget F; Pittman, Gabrielle; Weinman, Edward J; Sun, Dandan; Subramanya, Arohan R

    2015-02-15

    Sodium-coupled SLC12 cation chloride cotransporters play important roles in cell volume and chloride homeostasis, epithelial fluid secretion, and renal tubular salt reabsorption. These cotransporters are phosphorylated and activated indirectly by With-No-Lysine (WNK) kinases through their downstream effector kinases, Ste20- and SPS1-related proline alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Multiple WNK kinases can coexist within a single cell type, although their relative contributions to SPAK/OSR1 activation and salt transport remain incompletely understood. Deletion of specific WNKs from cells that natively express a functional WNK-SPAK/OSR1 network will help resolve these knowledge gaps. Here, we outline a simple method to selectively knock out full-length WNK1 expression from mammalian cells using RNA-guided clustered regularly interspaced short palindromic repeats/Cas9 endonucleases. Two clonal cell lines were generated by using a single-guide RNA (sgRNA) targeting exon 1 of the WNK1 gene, which produced indels that abolished WNK1 protein expression. Both cell lines exhibited reduced endogenous WNK4 protein abundance, indicating that WNK1 is required for WNK4 stability. Consistent with an on-target effect, the reduced WNK4 abundance was associated with increased expression of the KLHL3/cullin-3 E3 ubiquitin ligase complex and was rescued by exogenous WNK1 overexpression. Although the morphology of the knockout cells was indistinguishable from control, they exhibited low baseline SPAK/OSR1 activity and failed to trigger regulatory volume increase after hypertonic stress, confirming an essential role for WNK1 in cell volume regulation. Collectively, our data show how this new, powerful, and accessible gene-editing technology can be used to dissect and analyze WNK signaling networks.

  19. Clonal evolution of chemotherapy-resistant urothelial carcinoma.

    PubMed

    Faltas, Bishoy M; Prandi, Davide; Tagawa, Scott T; Molina, Ana M; Nanus, David M; Sternberg, Cora; Rosenberg, Jonathan; Mosquera, Juan Miguel; Robinson, Brian; Elemento, Olivier; Sboner, Andrea; Beltran, Himisha; Demichelis, Francesca; Rubin, Mark A

    2016-12-01

    Chemotherapy-resistant urothelial carcinoma has no uniformly curative therapy. Understanding how selective pressure from chemotherapy directs the evolution of urothelial carcinoma and shapes its clonal architecture is a central biological question with clinical implications. To address this question, we performed whole-exome sequencing and clonality analysis of 72 urothelial carcinoma samples, including 16 matched sets of primary and advanced tumors prospectively collected before and after chemotherapy. Our analysis provided several insights: (i) chemotherapy-treated urothelial carcinoma is characterized by intra-patient mutational heterogeneity, and the majority of mutations are not shared; (ii) both branching evolution and metastatic spread are very early events in the natural history of urothelial carcinoma; (iii) chemotherapy-treated urothelial carcinoma is enriched with clonal mutations involving L1 cell adhesion molecule (L1CAM) and integrin signaling pathways; and (iv) APOBEC-induced mutagenesis is clonally enriched in chemotherapy-treated urothelial carcinoma and continues to shape the evolution of urothelial carcinoma throughout its lifetime.

  20. Clonal Evolution of Chemotherapy-resistant Urothelial Carcinoma

    PubMed Central

    Faltas, Bishoy M.; Prandi, Davide; Tagawa, Scott T.; Molina, Ana M.; Nanus, David M.; Sternberg, Cora; Rosenberg, Jonathan; Mosquera, Juan Miguel; Robinson, Brian; Elemento, Olivier; Sboner, Andrea; Beltran, Himisha; Demichelis, Francesca; Rubin, Mark A.

    2017-01-01

    Chemotherapy-resistant urothelial carcinoma (UC) has no uniformly curative therapy. Understanding how selective pressure from chemotherapy directs UC’s evolution and shapes its clonal architecture is a central biological question with clinical implications. To address this question, we performed whole-exome sequencing and clonality analysis of 72 UCs including 16 matched sets of primary and advanced tumors prospectively collected before and after chemotherapy. Our analysis provided several insights: (i) chemotherapy-treated UC is characterized by intra-patient mutational heterogeneity and the majority of mutations are not shared, (ii) both branching evolution and metastatic spread are very early events in the natural history of UC; (iii) chemotherapy-treated UC is enriched with clonal mutations involving L1-cell adhesion molecule (L1CAM) and integrin signaling pathways; (iv) APOBEC induced-mutagenesis is clonally-enriched in chemotherapy-treated UC and continues to shape UC’s evolution throughout its lifetime. PMID:27749842

  1. Epigenetic Guardian: A Review of the DNA Methyltransferase DNMT3A in Acute Myeloid Leukaemia and Clonal Haematopoiesis.

    PubMed

    Chaudry, Sabah F; Chevassut, Timothy J T

    2017-01-01

    Acute myeloid leukaemia (AML) is a haematological malignancy characterized by clonal stem cell proliferation and aberrant block in differentiation. Dysfunction of epigenetic modifiers contributes significantly to the pathogenesis of AML. One frequently mutated gene involved in epigenetic modification is DNMT3A (DNA methyltransferase-3-alpha), a DNA methyltransferase that alters gene expression by de novo methylation of cytosine bases at CpG dinucleotides. Approximately 22% of AML and 36% of cytogenetically normal AML cases carry DNMT3A mutations and around 60% of these mutations affect the R882 codon. These mutations have been associated with poor prognosis and adverse survival outcomes for AML patients. Advances in whole-exome sequencing techniques have recently identified a large number of DNMT3A mutations present in clonal cells in normal elderly individuals with no features of haematological malignancy. Categorically distinct from other preleukaemic conditions, this disorder has been termed clonal haematopoiesis of indeterminate potential (CHIP). Further insight into the mutational landscape of CHIP may illustrate the consequence of particular mutations found in DNMT3A and identify specific "founder" mutations responsible for clonal expansion that may contribute to leukaemogenesis. This review will focus on current research and understanding of DNMT3A mutations in both AML and CHIP.

  2. Natural and Chemotherapy-Induced Clonal Evolution of Tumors.

    PubMed

    Ibragimova, M K; Tsyganov, M M; Litviakov, N V

    2017-04-01

    Evolution and natural selection of tumoral clones in the process of transformation and the following carcinogenesis can be called natural clonal evolution. Its main driving factors are internal: genetic instability initiated by driver mutations and microenvironment, which enables selective pressure while forming the environment for cell transformation and their survival. We present our overview of contemporary research dealing with mechanisms of carcinogenesis in different localizations from precancerous pathologies to metastasis and relapse. It shows that natural clonal evolution establishes intratumoral heterogeneity and enables tumor progression. Tumors of monoclonal origin are of low-level intratumoral heterogeneity in the initial stages, and this increases with the size of the tumor. Tumors of polyclonal origin are of extremely high-level intratumoral heterogeneity in the initial stages and become more homogeneous when larger due to clonal expansion. In cases of chemotherapy-induced clonal evolution of a tumor, chemotherapy becomes the leading factor in treatment. The latest research shows that the impact of chemotherapy can radically increase the speed of clonal evolution and lead to new malignant and resistant clones that cause tumor metastasis. Another option of chemotherapy-induced clonal evolution is formation of a new dominant clone from a clone that was minor in the initial tumor and obtained free space due to elimination of sensitive clones by chemotherapy. As a result, in ~20% of cases, chemotherapy can stimulate metastasis and relapse of tumors due to clonal evolution. The conclusion of the overview formulates approaches to tumor treatment based on clonal evolution: in particular, precision therapy, prediction of metastasis stimulation in patients treated with chemotherapy, methods of genetic evaluation of chemotherapy efficiency and clonal-oriented treatment, and approaches to manipulating the clonal evolution of tumors are presented.

  3. Neurotensin may function as a regulatory peptide in small cell lung cancer.

    PubMed

    Davis, T P; Crowell, S; McInturff, B; Louis, R; Gillespie, T

    1991-01-01

    Neurotensin (NT) has been postulated to act as a modulatory agent in the central nervous system. Besides its presence in mammalian brain, NT is produced by small cell carcinoma of the lung (SCLC) and cell lines derived from these tumors. Receptors have also been characterized in some SCLC cell lines leading to the suggestion that NT could regulate the growth of SCLC in an autocrine fashion similar to bombesin/GRP. Previously, we had reported that a 10 nM dose of NT and NT(8-13), but not NT(1-8), elevated cytosolic Ca2+, indicating that SCLC NT receptors may use Ca2+ as a second messenger. Using intact SCLC cells we report that time-course incubations with NT lead to the formation of the amino-terminal fragment NT(1-8) and small amounts of the C-terminal fragment NT(9-13). These fragments are formed by metalloendopeptidase 3.4.24.15 cleaving enzyme at the Arg8-Arg9 bond of NT. Significant levels of soluble 3.4.24.15 (10-17 nmoles/mg Pr-/min) are present in SCLC cell lines. Using the in vitro clonogenic assay we tested the effect of 0.5, 5.0 and 10.0 nM doses of NT, NT(1-8) and NT(8-13) on SCLC clonal growth. NT and the C-terminal fragment NT(8-13) stimulated colony formation whereas the N-terminal fragment did not. In summary, NT may function as a regulatory peptide in SCLC through the formation of peptide fragments.

  4. Donor B cells in Transplants Augment Clonal Expansion and Survival of Pathogenic CD4+ T cells That Mediate Autoimmune-like Chronic GVHD

    PubMed Central

    Young, James S; Wu, Tao; Chen, Yuhong; Zhao, Dongchang; Liu, Hongjun; Yi, Tangsheng; Johnston, Heather; Racine, Jeremy; Li, Xiaofan; Wang, Audrey; Todorov, Ivan; Zeng, Defu

    2013-01-01

    We reported that both donor CD4+ T and B cells in transplants were required for induction of an autoimmune-like chronic graft versus host disease (cGVHD) in a murine model of DBA/2 donor to BALB/c recipient, but mechanisms whereby donor B cells augment cGVHD pathogenesis remain unknown. Here, we report that, although donor B cells have little impact on acute GVHD (aGVHD) severity, they play an important role in augmenting the persistence of tissue damage in the acute and chronic GVHD overlapping target organs (i.e. skin and lung); they also markedly augment damage in a prototypical cGVHD target organ- the salivary gland. During cGVHD pathogenesis, donor B cells are activated by donor CD4+ T cells to upregulate MHC II and co-stimulatory molecules. Acting as efficient APCs, donor B cells augment donor CD4+ T clonal expansion, autoreactivity, IL-7Rα expression, and survival. These qualitative changes markedly augment donor CD4+ T cells' capacity in mediating autoimmune-like cGVHD, so that they mediate disease in the absence of donor B cells in secondary recipients. Therefore, a major mechanism whereby donor B cells augment cGVHD is through augmenting the clonal expansion, differentiation and survival of pathogenic CD4+ T cells. PMID:22649197

  5. Clonal hematopoiesis as determined by the HUMARA assay is a marker for acquired mutations in epigenetic regulators in older women.

    PubMed

    Wiedmeier, Julia Erin; Kato, Catherine; Zhang, Zhenzhen; Lee, Hyunjung; Dunlap, Jennifer; Nutt, Eric; Rattray, Rogan; McKay, Sarah; Eide, Christopher; Press, Richard; Mori, Motomi; Druker, Brian; Dao, Kim-Hien

    2016-09-01

    Recent large cohort studies revealed that healthy older individuals harbor somatic mutations that increase their risk for hematologic malignancy and all-cause cardiovascular deaths. The majority of these mutations are in chromatin and epigenetic regulatory genes (CERGs). CERGs play a key role in regulation of DNA methylation (DNMT3A and TET2) and histone function (ASXL1) and in clonal proliferation of hematopoietic stem cells. We hypothesize that older women manifesting clonal hematopoiesis, defined here as a functional phenomenon in which a hematopoietic stem cell has acquired a survival and proliferative advantage, harbor a higher frequency of somatic mutations in CERGs. The human androgen receptor gene (HUMARA) assay was used in our study to detect the presence of nonrandom X inactivation in women, a marker for clonal hematopoiesis. In our pilot study, we tested 127 blood samples from women ≥65 years old without a history of invasive cancer or hematologic malignancies. Applying stringent qualitative criteria, we found that 26% displayed clonal hematopoiesis; 52.8% displayed polyclonal hematopoiesis; and 21.3% had indeterminate patterns (too close to call by qualitative assessment). Using Illumina MiSeq next-generation sequencing, we identified somatic mutations in CERGs in 15.2% of subjects displaying clonal hematopoiesis (three ASXL1 and two DNMT3A mutations with an average variant allele frequency of 15.7%, range: 6.3%-23.3%). In a more limited sequencing analysis, we evaluated the frequency of ASXL1 mutations by Sanger sequencing and found mutations in 9.7% of the clonal samples and 0% of the polyclonal samples. By comparing several recent studies (with some caveats as described), we determined the fold enrichment of detecting CERG mutations by using the HUMARA assay as a functional screen for clonal hematopoiesis. We conclude that a functional assay of clonal hematopoiesis is enriching for older women with somatic mutations in CERGs, particularly for ASXL1 and TET2 mutations and less so for DNMT3A mutations. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  6. Eye on the B-ALL: B-cell receptor repertoires reveal persistence of numerous B-lymphoblastic leukemia subclones from diagnosis to relapse

    PubMed Central

    Bashford-Rogers, R J M; Nicolaou, K A; Bartram, J; Goulden, N J; Loizou, L; Koumas, L; Chi, J; Hubank, M; Kellam, P; Costeas, P A; Vassiliou, G S

    2016-01-01

    The strongest predictor of relapse in B-cell acute lymphoblastic leukemia (B-ALL) is the level of persistence of tumor cells after initial therapy. The high mutation rate of the B-cell receptor (BCR) locus allows high-resolution tracking of the architecture, evolution and clonal dynamics of B-ALL. Using longitudinal BCR repertoire sequencing, we find that the BCR undergoes an unexpectedly high level of clonal diversification in B-ALL cells through both somatic hypermutation and secondary rearrangements, which can be used for tracking the subclonal composition of the disease and detect minimal residual disease with unprecedented sensitivity. We go on to investigate clonal dynamics of B-ALL using BCR phylogenetic analyses of paired diagnosis-relapse samples and find that large numbers of small leukemic subclones present at diagnosis re-emerge at relapse alongside a dominant clone. Our findings suggest that in all informative relapsed patients, the survival of large numbers of clonogenic cells beyond initial chemotherapy is a surrogate for inherent partial chemoresistance or inadequate therapy, providing an increased opportunity for subsequent emergence of fully resistant clones. These results frame early cytoreduction as an important determinant of long-term outcome. PMID:27211266

  7. Clonal cooperativity in heterogenous cancers

    PubMed Central

    Zhou, Hengbo; Neelakantan, Deepika; Ford, Heide L.

    2016-01-01

    Tumor heterogeneity is a major obstacle to the development of effective therapies and is thus an important focus of cancer research. Genetic and epigenetic alterations, as well as altered tumor microenvironments, result in tumors made up of diverse subclones with different genetic and phenotypic characteristics. Intratumor heterogeneity enables competition, but also supports clonal cooperation via cell-cell contact or secretion of factors, resulting in enhanced tumor progression. Here, we summarize recent findings related to interclonal interactions within a tumor and the therapeutic implications of such interactions, with an emphasis on how different subclones collaborate with each other to promote proliferation, metastasis and therapy-resistance. Furthermore, we propose that disruption of clonal cooperation by targeting key factors (such as Wnt and Hedgehog, amongst others) can be an alternative approach to improving clinical outcomes. PMID:27582427

  8. Transcriptional profiling of Epstein–Barr virus (EBV) genes and host cellular genes in nasal NK/T-cell lymphoma and chronic active EBV infection

    PubMed Central

    Zhang, Y; Ohyashiki, J H; Takaku, T; Shimizu, N; Ohyashiki, K

    2006-01-01

    Nasal NK/T-cell lymphoma is an aggressive subtype of non-Hodgkin lymphoma (NHL) that is closely associated with Epstein–Barr virus (EBV). The clonal expansion of EBV-infected NK or T cells is also seen in patients with chronic active EBV (CAEBV) infection, suggesting that two diseases might share a partially similar mechanism by which EBV affects host cellular gene expression. To understand the pathogenesis of EBV-associated NK/T-cell lymphoproliferative disorders (LPD) and design new therapies, we employed a novel EBV DNA microarray to compare patterns of EBV expression in six cell lines established from EBV-associated NK/T-cell LPD. We found that expression of BZLF1, which encodes the immediate-early gene product Zta, was expressed in SNK/T cells and the expression levels were preferentially high in cell lines from CAEBV infection. We also analyzsd the gene expression patterns of host cellular genes using a human oligonucleotide DNA microarray. We identified a subset of pathogenically and clinically relevant host cellular genes, including TNFRSF10D, CDK2, HSPCA, IL12A as a common molecular biological properties of EBV-associated NK/T-cell LPD and a subset of genes, such as PDCD4 as a putative contributor for disease progression. This study describes a novel approach from the aspects of viral and host gene expression, which could identify novel therapeutic targets in EBV-associated NK/T-cell LPD. PMID:16449999

  9. Self-digitization chip for single-cell genotyping of cancer-related mutations

    PubMed Central

    Monroe, Luke D.; Kreutz, Jason E.; Schneider, Thomas; Fujimoto, Bryant S.; Chiu, Daniel T.; Radich, Jerald P.; Paguirigan, Amy L.

    2018-01-01

    Cancer is a heterogeneous disease, and patient-level genetic assessments can guide therapy choice and impact prognosis. However, little is known about the impact of genetic variability within a tumor, intratumoral heterogeneity (ITH), on disease progression or outcome. Current approaches using bulk tumor specimens can suggest the presence of ITH, but only single-cell genetic methods have the resolution to describe the underlying clonal structures themselves. Current techniques tend to be labor and resource intensive and challenging to characterize with respect to sources of biological and technical variability. We have developed a platform using a microfluidic self-digitization chip to partition cells in stationary volumes for cell imaging and allele-specific PCR. Genotyping data from only confirmed single-cell volumes is obtained and subject to a variety of relevant quality control assessments such as allele dropout, false positive, and false negative rates. We demonstrate single-cell genotyping of the NPM1 type A mutation, an important prognostic indicator in acute myeloid leukemia, on single cells of the cell line OCI-AML3, describing a more complex zygosity distribution than would be predicted via bulk analysis. PMID:29718986

  10. Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture

    PubMed Central

    Pijuan-Galitó, Sara; Tamm, Christoffer; Schuster, Jens; Sobol, Maria; Forsberg, Lars; Merry, Catherine L. R.; Annerén, Cecilia

    2016-01-01

    Reliable, scalable and time-efficient culture methods are required to fully realize the clinical and industrial applications of human pluripotent stem (hPS) cells. Here we present a completely defined, xeno-free medium that supports long-term propagation of hPS cells on uncoated tissue culture plastic. The medium consists of the Essential 8 (E8) formulation supplemented with inter-α-inhibitor (IαI), a human serum-derived protein, recently demonstrated to activate key pluripotency pathways in mouse PS cells. IαI efficiently induces attachment and long-term growth of both embryonic and induced hPS cell lines when added as a soluble protein to the medium at seeding. IαI supplementation efficiently supports adaptation of feeder-dependent hPS cells to xeno-free conditions, clonal growth as well as single-cell survival in the absence of Rho-associated kinase inhibitor (ROCKi). This time-efficient and simplified culture method paves the way for large-scale, high-throughput hPS cell culture, and will be valuable for both basic research and commercial applications. PMID:27405751

  11. Application of HSVtk suicide gene to X-SCID gene therapy: Ganciclovir treatment offsets gene corrected X-SCID B cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchiyama, Toru; Kumaki, Satoru; Ishikawa, Yoshinori

    Recently, a serious adverse effect of uncontrolled clonal T cell proliferation due to insertional mutagenesis of retroviral vector was reported in X-SCID gene therapy clinical trial. To offset the side effect, we have incorporated a suicide gene into therapeutic retroviral vector for selective elimination of transduced cells. In this study, B-cell lines from two X-SCID patients were transduced with bicistronic retroviral vector carrying human {gamma}c chain cDNA and Herpes simplex virus thymidine kinase gene. After confirmation of functional reconstitution of the {gamma}c chain, the cells were treated with ganciclovir (GCV). The {gamma}c chain positive cells were eliminated under low concentrationmore » without cytotoxicity on untransduced cells and have not reappeared at least for 5 months. Furthermore, the {gamma}c chain transduced cells were still sensitive to GCV after five months. These results demonstrated the efficacy of the suicide gene therapy although further in vivo studies are required to assess feasibility of this approach in clinical trial.« less

  12. Self-digitization chip for single-cell genotyping of cancer-related mutations.

    PubMed

    Thompson, Alison M; Smith, Jordan L; Monroe, Luke D; Kreutz, Jason E; Schneider, Thomas; Fujimoto, Bryant S; Chiu, Daniel T; Radich, Jerald P; Paguirigan, Amy L

    2018-01-01

    Cancer is a heterogeneous disease, and patient-level genetic assessments can guide therapy choice and impact prognosis. However, little is known about the impact of genetic variability within a tumor, intratumoral heterogeneity (ITH), on disease progression or outcome. Current approaches using bulk tumor specimens can suggest the presence of ITH, but only single-cell genetic methods have the resolution to describe the underlying clonal structures themselves. Current techniques tend to be labor and resource intensive and challenging to characterize with respect to sources of biological and technical variability. We have developed a platform using a microfluidic self-digitization chip to partition cells in stationary volumes for cell imaging and allele-specific PCR. Genotyping data from only confirmed single-cell volumes is obtained and subject to a variety of relevant quality control assessments such as allele dropout, false positive, and false negative rates. We demonstrate single-cell genotyping of the NPM1 type A mutation, an important prognostic indicator in acute myeloid leukemia, on single cells of the cell line OCI-AML3, describing a more complex zygosity distribution than would be predicted via bulk analysis.

  13. Viral Impacts on Total Abundance and Clonal Composition of the Harmful Bloom-Forming Phytoplankton Heterosigma akashiwo

    PubMed Central

    Tarutani, Kenji; Nagasaki, Keizo; Yamaguchi, Mineo

    2000-01-01

    Recent observations that viruses are very abundant and biologically active components in marine ecosystems suggest that they probably influence various biogeochemical and ecological processes. In this study, the population dynamics of the harmful bloom-forming phytoplankton Heterosigma akashiwo (Raphidophyceae) and the infectious H. akashiwo viruses (HaV) were monitored in Hiroshima Bay, Japan, from May to July 1998. Concurrently, a number of H. akashiwo and HaV clones were isolated, and their virus susceptibilities and host ranges were determined through laboratory cross-reactivity tests. A sudden decrease in cell density of H. akashiwo was accompanied by a drastic increase in the abundance of HaV, suggesting that viruses contributed greatly to the disintegration of the H. akashiwo bloom as mortality agents. Despite the large quantity of infectious HaV, however, a significant proportion of H. akashiwo cells survived after the bloom disintegration. The viral susceptibility of H. akashiwo isolates demonstrated that the majority of these surviving cells were resistant to most of the HaV clones, whereas resistant cells were a minor component during the bloom period. Moreover, these resistant cells were displaced by susceptible cells, presumably due to viral infection. These results demonstrated that the properties of dominant cells within the H. akashiwo population change during the period when a bloom is terminated by viral infection, suggesting that viruses also play an important role in determining the clonal composition and maintaining the clonal diversity of H. akashiwo populations. Therefore, our data indicate that viral infection influences the total abundance and the clonal composition of one host algal species, suggesting that viruses are an important component in quantitatively and qualitatively controlling phytoplankton populations in natural marine environments. PMID:11055943

  14. Tissue-specific and time-dependent clonal expansion of ENU-induced mutant cells in gpt delta mice.

    PubMed

    Nakayama, Takafumi; Sawai, Tomoko; Masuda, Ikuko; Kaneko, Shinya; Yamauchi, Kazumi; Blyth, Benjamin J; Shimada, Yoshiya; Tachibana, Akira; Kakinuma, Shizuko

    2017-10-01

    DNA mutations play a crucial role in the origins of cancer, and the clonal expansion of mutant cells is one of the fundamental steps in multistage carcinogenesis. In this study, we correlated tumor incidence in B6C3F1 mice during the period after exposure to N-ethyl-N-nitrosourea (ENU) with the persistence of ENU-induced mutant clones in transgenic gpt delta B6C3F1 mice. The induced gpt mutations afforded no selective advantage in the mouse cells and could be distinguished by a mutational spectrum that is characteristic of ENU treatment. The gpt mutations were passengers of the mutant cell of origin and its daughter cells and thus could be used as neutral markers of clones that arose and persisted in the tissues. Female B6C3F1 mice exposed for 1 month to 200 ppm ENU in the drinking water developed early thymic lymphomas and late liver and lung tumors. To assay gpt mutations, we sampled the thymus, liver, lung, and small intestine of female gpt delta mice at 3 days, 4 weeks, and 8 weeks after the end of ENU exposure. Our results reveal that, in all four tissues, the ENU-induced gpt mutations persisted for weeks after the end of mutagen exposure. Clonal expansion of mutant cells was observed in the thymus and small intestine, with the thymus showing larger clone sizes. These results indicate that the clearance of mutant cells and the potential for clonal expansion during normal tissue growth depends on tissue type and that these factors may affect the sensitivity of different tissues to carcinogenesis. Environ. Mol. Mutagen. 58:592-606, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Proposed categorization of pathological states of EBV-associated T/natural killer-cell lymphoproliferative disorder (LPD) in children and young adults: overlap with chronic active EBV infection and infantile fulminant EBV T-LPD.

    PubMed

    Ohshima, Koichi; Kimura, Hiroshi; Yoshino, Tadashi; Kim, Chul Woo; Ko, Young H; Lee, Seung-Suk; Peh, Suat-Cheng; Chan, John K C

    2008-04-01

    EBV-associated T/natural killer (NK)-cell lymphoproliferative disorder (EBV-T/NK LPD) of children and young adults is generally referred to with the blanket nosological term of severe chronic active EBV infection (CAEBV). This disease is rare, associated with high morbidity and mortality, and appears to be more prevalent in East Asian countries. But because there is no grading or categorization system for CAEBV, pathologists and clinicians often disagree regarding diagnosis and therapy. EBV-T/NK LPD includes polyclonal, oligoclonal, and monoclonal proliferation of cytotoxic T and/or NK cells. Moreover, a unique disease previously described as infantile fulminant EBV-associated T-LPD has been identified and overlaps with EBV-T/NK LPD. In the present review a clinicopathological categorization of EBV-T/NK LPD is proposed, based on pathological evaluation and molecular data, as follows: (i) category A1, polymorphic LPD without clonal proliferation of EBV-infected cells; (ii) category A2, polymorphic LPD with clonality; (iii) category A3, monomorphic LPD (T-cell or NK cell lymphoma/leukemia) with clonality; and (iv) category B, monomorphic LPD (T-cell lymphoma) with clonality and fulminant course. Categories A1, A2, and A3 possibly constitute a continuous spectrum and together are equivalent to CAEBV. Category B is the exact equivalent of infantile fulminant EBV-associated T-LPD. It is expected that this categorization system will provide a guide for the better understanding of this disorder. This proposal was approved at the third meeting of the Asian Hematopathology Association (Nagoya, 2006).

  16. Clonal analysis of lineage fate in native haematopoiesis.

    PubMed

    Rodriguez-Fraticelli, Alejo E; Wolock, Samuel L; Weinreb, Caleb S; Panero, Riccardo; Patel, Sachin H; Jankovic, Maja; Sun, Jianlong; Calogero, Raffaele A; Klein, Allon M; Camargo, Fernando D

    2018-01-11

    Haematopoiesis, the process of mature blood and immune cell production, is functionally organized as a hierarchy, with self-renewing haematopoietic stem cells and multipotent progenitor cells sitting at the very top. Multiple models have been proposed as to what the earliest lineage choices are in these primitive haematopoietic compartments, the cellular intermediates, and the resulting lineage trees that emerge from them. Given that the bulk of studies addressing lineage outcomes have been performed in the context of haematopoietic transplantation, current models of lineage branching are more likely to represent roadmaps of lineage potential than native fate. Here we use transposon tagging to clonally trace the fates of progenitors and stem cells in unperturbed haematopoiesis. Our results describe a distinct clonal roadmap in which the megakaryocyte lineage arises largely independently of other haematopoietic fates. Our data, combined with single-cell RNA sequencing, identify a functional hierarchy of unilineage- and oligolineage-producing clones within the multipotent progenitor population. Finally, our results demonstrate that traditionally defined long-term haematopoietic stem cells are a significant source of megakaryocyte-restricted progenitors, suggesting that the megakaryocyte lineage is the predominant native fate of long-term haematopoietic stem cells. Our study provides evidence for a substantially revised roadmap for unperturbed haematopoiesis, and highlights unique properties of multipotent progenitors and haematopoietic stem cells in situ.

  17. Molecular evidence that invasive adenocarcinoma can mimic prostatic intraepithelial neoplasia (PIN) and intraductal carcinoma through retrograde glandular colonization.

    PubMed

    Haffner, Michael C; Weier, Christopher; Xu, Meng Meng; Vaghasia, Ajay; Gürel, Bora; Gümüşkaya, Berrak; Esopi, David M; Fedor, Helen; Tan, Hsueh-Li; Kulac, Ibrahim; Hicks, Jessica; Isaacs, William B; Lotan, Tamara L; Nelson, William G; Yegnasubramanian, Srinivasan; De Marzo, Angelo M

    2016-01-01

    Prostate cancer often manifests as morphologically distinct tumour foci and is frequently found adjacent to presumed precursor lesions such as high-grade prostatic intraepithelial neoplasia (HGPIN). While there is some evidence to suggest that these lesions can be related and exist on a pathological and morphological continuum, the precise clonal and temporal relationships between precursor lesions and invasive cancers within individual tumours remain undefined. Here, we used molecular genetic, cytogenetic, and histological analyses to delineate clonal, temporal, and spatial relationships between HGPIN and cancer lesions with distinct morphological and molecular features. First, while confirming the previous finding that a substantial fraction of HGPIN lesions associated with ERG-positive cancers share rearrangements and overexpression of ERG, we found that a significant subset of such HGPIN glands exhibit only partial positivity for ERG. This suggests that such ERG-positive HGPIN cells either rapidly invade to form adenocarcinoma or represent cancer cells that have partially invaded the ductal and acinar space in a retrograde manner. To clarify these possibilities, we used ERG expression status and TMPRSS2-ERG genomic breakpoints as markers of clonality, and PTEN deletion status to track temporal evolution of clonally related lesions. We confirmed that morphologically distinct HGPIN and nearby invasive cancer lesions are clonally related. Further, we found that a significant fraction of ERG-positive, PTEN-negative HGPIN and intraductal carcinoma (IDC-P) lesions are most likely clonally derived from adjacent PTEN-negative adenocarcinomas, indicating that such PTEN-negative HGPIN and IDC-P lesions arise from, rather than give rise to, the nearby invasive adenocarcinoma. These data suggest that invasive adenocarcinoma can morphologically mimic HGPIN through retrograde colonization of benign glands with cancer cells. Similar clonal relationships were also seen for intraductal carcinoma adjacent to invasive adenocarcinoma. These findings represent a potentially undervalued indicator of pre-existing invasive prostate cancer and have significant implications for prostate cancer diagnosis and risk stratification. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. Immortalization and characterization of osteoblast cell lines generated from wild-type and Nmp4-null mouse bone marrow stromal cells using murine telomerase reverse transcriptase (mTERT).

    PubMed

    Alvarez, Marta B; Childress, Paul; Philip, Binu K; Gerard-O'Riley, Rita; Hanlon, Michael; Herbert, Brittney-Shea; Robling, Alexander G; Pavalko, Fredrick M; Bidwell, Joseph P

    2012-05-01

    Intermittent parathyroid hormone (PTH) adds new bone to the osteoporotic skeleton; the transcription factor Nmp4/CIZ represses PTH-induced bone formation in mice and as a consequence is a potential drug target for improving hormone clinical efficacy. To explore the impact of Nmp4/CIZ on osteoblast phenotype, we immortalized bone marrow stromal cells from wildtype (WT) and Nmp4-knockout (KO) mice using murine telomerase reverse transcriptase. Clonal lines were initially chosen based on their positive staining for alkaline phosphatase and capacity for mineralization. Disabling Nmp4/CIZ had no gross impact on osteoblast phenotype development. WT and KO clones exhibited identical sustained growth, reduced population doubling times, extended maintenance of the mature osteoblast phenotype, and competency for differentiating toward the osteoblast and adipocyte lineages. Additional screening of the immortalized cells for PTH-responsiveness permitted further studies with single WT and KO clones. We recently demonstrated that PTH-induced c-fos femoral mRNA expression is enhanced in Nmp4-KO mice and in the present study we observed that hormone stimulated either an equivalent or modestly enhanced increase in c-fos mRNA expression in both primary null and KO clone cells depending on PTH concentration. The null primary osteoblasts and KO clone cells exhibited a transiently enhanced response to bone morphogenetic protein 2 (BMP2). The clones exhibited lower and higher expressions of the PTH receptor (Pthr1) and the BMP2 receptor (Bmpr1a, Alk3), respectively, as compared to primary cells. These immortalized cell lines will provide a valuable tool for disentangling the complex functional roles underlying Nmp4/CIZ regulation of bone anabolism. Copyright © 2011 Wiley Periodicals, Inc.

  19. Enhanced growth medium and method for culturing human mammary epithelial cells

    DOEpatents

    Stampfer, Martha R.; Smith, Helene S.; Hackett, Adeline J.

    1983-01-01

    Methods are disclosed for isolating and culturing human mammary epithelial cells of both normal and malignant origin. Tissue samples are digested with a mixture including the enzymes collagenase and hyaluronidase to produce clumps of cells substantially free from stroma and other undesired cellular material. Growing the clumps of cells in mass culture in an enriched medium containing particular growth factors allows for active cell proliferation and subculture. Clonal culture having plating efficiencies of up to 40% or greater may be obtained using individual cells derived from the mass culture by plating the cells on appropriate substrates in the enriched media. The clonal growth of cells so obtained is suitable for a quantitative assessment of the cytotoxicity of particular treatment. An exemplary assay for assessing the cytotoxicity of the drug adriamycin is presented.

  20. Antigen-mediated regulation in monoclonal gammopathies and myeloma

    PubMed Central

    Nair, Shiny; Sng, Joel; Boddupalli, Chandra Sekhar; Seckinger, Anja; Fulciniti, Mariateresa; Zhang, Lin; Rauniyar, Navin; Lopez, Michael; Neparidze, Natalia; Parker, Terri; Munshi, Nikhil C.; Sexton, Rachael; Barlogie, Bart; Orlowski, Robert; Bergsagel, Leif; Hose, Dirk; Mistry, Pramod K.; Meffre, Eric; Dhodapkar, Madhav V.

    2018-01-01

    A role for antigen-driven stimulation has been proposed in the pathogenesis of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) based largely on the binding properties of monoclonal Ig. However, insights into antigen binding to clonal B cell receptors and in vivo responsiveness of the malignant clone to antigen-mediated stimulation are needed to understand the role of antigenic stimulation in tumor growth. Lysolipid-reactive clonal Ig were detected in Gaucher disease (GD) and some sporadic gammopathies. Here, we show that recombinant Ig (rIg) cloned from sort-purified single tumor cells from lipid-reactive sporadic and GD-associated gammopathy specifically bound lysolipids. Liposome sedimentation and binding assays confirmed specific interaction of lipid-reactive monoclonal Ig with lysolipids. The clonal nature of lysolipid-binding Ig was validated by protein sequencing. Gene expression profiling and cytogenetic analyses from 2 patient cohorts showed enrichment of nonhyperdiploid tumors in lipid-reactive patients. In vivo antigen-mediated stimulation led to an increase in clonal Ig and plasma cells (PCs) in GD gammopathy and also reactivated previously suppressed antigenically related nonclonal PCs. These data support a model wherein antigenic stimulation mediates an initial polyclonal phase, followed by evolution of monoclonal tumors enriched in nonhyperdiploid genomes, responsive to underlying antigen. Targeting underlying antigens may therefore prevent clinical MM. PMID:29669929

  1. Antigen-mediated regulation in monoclonal gammopathies and myeloma.

    PubMed

    Nair, Shiny; Sng, Joel; Boddupalli, Chandra Sekhar; Seckinger, Anja; Chesi, Marta; Fulciniti, Mariateresa; Zhang, Lin; Rauniyar, Navin; Lopez, Michael; Neparidze, Natalia; Parker, Terri; Munshi, Nikhil C; Sexton, Rachael; Barlogie, Bart; Orlowski, Robert; Bergsagel, Leif; Hose, Dirk; Flavell, Richard A; Mistry, Pramod K; Meffre, Eric; Dhodapkar, Madhav V

    2018-04-19

    A role for antigen-driven stimulation has been proposed in the pathogenesis of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) based largely on the binding properties of monoclonal Ig. However, insights into antigen binding to clonal B cell receptors and in vivo responsiveness of the malignant clone to antigen-mediated stimulation are needed to understand the role of antigenic stimulation in tumor growth. Lysolipid-reactive clonal Ig were detected in Gaucher disease (GD) and some sporadic gammopathies. Here, we show that recombinant Ig (rIg) cloned from sort-purified single tumor cells from lipid-reactive sporadic and GD-associated gammopathy specifically bound lysolipids. Liposome sedimentation and binding assays confirmed specific interaction of lipid-reactive monoclonal Ig with lysolipids. The clonal nature of lysolipid-binding Ig was validated by protein sequencing. Gene expression profiling and cytogenetic analyses from 2 patient cohorts showed enrichment of nonhyperdiploid tumors in lipid-reactive patients. In vivo antigen-mediated stimulation led to an increase in clonal Ig and plasma cells (PCs) in GD gammopathy and also reactivated previously suppressed antigenically related nonclonal PCs. These data support a model wherein antigenic stimulation mediates an initial polyclonal phase, followed by evolution of monoclonal tumors enriched in nonhyperdiploid genomes, responsive to underlying antigen. Targeting underlying antigens may therefore prevent clinical MM.

  2. Biallelic insertion of a transcriptional terminator via the CRISPR/Cas9 system efficiently silences expression of protein-coding and non-coding RNA genes.

    PubMed

    Liu, Yangyang; Han, Xiao; Yuan, Junting; Geng, Tuoyu; Chen, Shihao; Hu, Xuming; Cui, Isabelle H; Cui, Hengmi

    2017-04-07

    The type II bacterial CRISPR/Cas9 system is a simple, convenient, and powerful tool for targeted gene editing. Here, we describe a CRISPR/Cas9-based approach for inserting a poly(A) transcriptional terminator into both alleles of a targeted gene to silence protein-coding and non-protein-coding genes, which often play key roles in gene regulation but are difficult to silence via insertion or deletion of short DNA fragments. The integration of 225 bp of bovine growth hormone poly(A) signals into either the first intron or the first exon or behind the promoter of target genes caused efficient termination of expression of PPP1R12C , NSUN2 (protein-coding genes), and MALAT1 (non-protein-coding gene). Both NeoR and PuroR were used as markers in the selection of clonal cell lines with biallelic integration of a poly(A) signal. Genotyping analysis indicated that the cell lines displayed the desired biallelic silencing after a brief selection period. These combined results indicate that this CRISPR/Cas9-based approach offers an easy, convenient, and efficient novel technique for gene silencing in cell lines, especially for those in which gene integration is difficult because of a low efficiency of homology-directed repair. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5

    PubMed Central

    Liu, Fulu; Kunter, Ghada; Krem, Maxwell M.; Eades, William C.; Cain, Jennifer A.; Tomasson, Michael H.; Hennighausen, Lothar; Link, Daniel C.

    2008-01-01

    A fundamental property of leukemic stem cells is clonal dominance of the bone marrow microenvironment. Truncation mutations of CSF3R, which encodes the G-CSF receptor (G-CSFR), are implicated in leukemic progression in patients with severe congenital neutropenia. Here we show that expression of a truncated mutant Csf3r in mice confers a strong clonal advantage at the HSC level that is dependent upon exogenous G-CSF. G-CSF–induced proliferation, phosphorylation of Stat5, and transcription of Stat5 target genes were increased in HSCs isolated from mice expressing the mutant Csf3r. Conversely, the proliferative advantage conferred by the mutant Csf3r was abrogated in myeloid progenitors lacking both Stat5A and Stat5B, and HSC function was reduced in mice expressing a truncated mutant Csf3r engineered to have impaired Stat5 activation. These data indicate that in mice, inappropriate Stat5 activation plays a key role in establishing clonal dominance by stem cells expressing mutant Csf3r. PMID:18292815

  4. Genetic heterogeneity in primary and relapsed mantle cell lymphomas: Impact of recurrent CARD11 mutations.

    PubMed

    Wu, Chenglin; de Miranda, Noel Fcc; Chen, Longyun; Wasik, Agata M; Mansouri, Larry; Jurczak, Wojciech; Galazka, Krystyna; Dlugosz-Danecka, Monika; Machaczka, Maciej; Zhang, Huilai; Peng, Roujun; Morin, Ryan D; Rosenquist, Richard; Sander, Birgitta; Pan-Hammarström, Qiang

    2016-06-21

    The genetic mechanisms underlying disease progression, relapse and therapy resistance in mantle cell lymphoma (MCL) remain largely unknown. Whole-exome sequencing was performed in 27 MCL samples from 13 patients, representing the largest analyzed series of consecutive biopsies obtained at diagnosis and/or relapse for this type of lymphoma. Eighteen genes were found to be recurrently mutated in these samples, including known (ATM, MEF2B and MLL2) and novel mutation targets (S1PR1 and CARD11). CARD11, a scaffold protein required for B-cell receptor (BCR)-induced NF-κB activation, was subsequently screened in an additional 173 MCL samples and mutations were observed in 5.5% of cases. Based on in vitro cell line-based experiments, overexpression of CARD11 mutants were demonstrated to confer resistance to the BCR-inhibitor ibrutinib and NF-κB-inhibitor lenalidomide. Genetic alterations acquired in the relapse samples were found to be largely non-recurrent, in line with the branched evolutionary pattern of clonal evolution observed in most cases. In summary, this study highlights the genetic heterogeneity in MCL, in particular at relapse, and provides for the first time genetic evidence of BCR/NF-κB activation in a subset of MCL.

  5. Amelioration of radiation-induced pulmonary fibrosis by a water-soluble bifunctional sulfoxide radiation mitigator (MMS350).

    PubMed

    Kalash, Ronny; Epperly, Michael W; Goff, Julie; Dixon, Tracy; Sprachman, Melissa M; Zhang, Xichen; Shields, Donna; Cao, Shaonan; Franicola, Darcy; Wipf, Peter; Berhane, Hebist; Wang, Hong; Au, Jeremiah; Greenberger, Joel S

    2013-11-01

    A water-soluble ionizing radiation mitigator would have considerable advantages for the management of acute and chronic effects of ionizing radiation. We report that a novel oxetanyl sulfoxide (MMS350) is effective both as a protector and a mitigator of clonal mouse bone marrow stromal cell lines in vitro, and is an effective in vivo mitigator when administered 24 h after 9.5 Gy (LD100/30) total-body irradiation of C57BL/6NHsd mice, significantly improving survival (P = 0.0097). Furthermore, MMS350 (400 μM) added weekly to drinking water after 20 Gy thoracic irradiation significantly decreased: expression of pulmonary inflammatory and profibrotic gene transcripts and proteins; migration into the lungs of bone marrow origin luciferase+/GFP+ (luc+/GFP+) fibroblast progenitors (in both luc+ marrow chimeric and luc+ stromal cell line injected mouse models) and decreased radiation-induced pulmonary fibrosis (P < 0.0001). This nontoxic and orally administered small molecule may be an effective therapeutic in clinical radiotherapy and as a counter measure against the acute and chronic effects of ionizing radiation.

  6. Amelioration of Radiation-Induced Pulmonary Fibrosis by a Water-Soluble Bifunctional Sulfoxide Radiation Mitigator (MMS350)

    PubMed Central

    Kalash, Ronny; Epperly, Michael W.; Goff, Julie; Dixon, Tracy; Sprachman, Melissa M.; Zhang, Xichen; Shields, Donna; Cao, Shaonan; Franicola, Darcy; Wipf, Peter; Berhane, Hebist; Wang, Hong; Au, Jeremiah; Greenberger, Joel S.

    2014-01-01

    A water-soluble ionizing radiation mitigator would have considerable advantages for the management of acute and chronic effects of ionizing radiation. We report that a novel oxetanyl sulfoxide (MMS350) is effective both as a protector and a mitigator of clonal mouse bone marrow stromal cell lines in vitro, and is an effective in vivo mitigator when administered 24 h after 9.5 Gy (LD100/30) total-body irradiation of C57BL/6NHsd mice, significantly improving survival (P =0.0097). Furthermore, MMS350 (400 μM) added weekly to drinking water after 20 Gy thoracic irradiation significantly decreased: expression of pulmonary inflammatory and profibrotic gene transcripts and proteins; migration into the lungs of bone marrow origin luciferase+/GFP+ (luc+/GFP+) fibroblast progenitors (in both luc+ marrow chimeric and luc+ stromal cell line injected mouse models) and decreased radiation-induced pulmonary fibrosis (P < 0.0001). This nontoxic and orally administered small molecule may be an effective therapeutic in clinical radiotherapy and as a counter measure against the acute and chronic effects of ionizing radiation. PMID:24125487

  7. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozaki, K.; Kuriu, A.; Hirota, S.

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3)more » and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.« less

  8. The clonal origin and clonal evolution of epithelial tumours

    PubMed Central

    Garcia, Sergio Britto; Novelli, Marco; Wright, Nicholas A

    2000-01-01

    While the origin of tumours, whether from one cell or many, has been a source of fascination for experimental oncologists for some time, in recent years there has been a veritable explosion of information about the clonal architecture of tumours and their antecedents, stimulated, in the main, by the ready accessibility of new molecular techniques. While most of these new results have apparently confirmed the monoclonal origin of human epithelial (and other) tumours, there are a significant number of studies in which this conclusion just cannot be made. Moreover, analysis of many articles show that the potential impact of such considerations as patch size and clonal evolution on determinations of clonality have largely been ignored, with the result that a number of these studies are confounded. However, the clonal architecture of preneoplastic lesions provide some interesting insights — many lesions which might have been hitherto regarded as hyperplasias are apparently clonal in derivation. If this is indeed true, it calls into some question our hopeful corollary that a monoclonal origin presages a neoplastic habitus. Finally, it is clear, for many reasons, that methods of analysis which involve the disaggregation of tissues, albeit microdissected, are far from ideal and we should be putting more effort into techniques where the clonal architecture of normal tissues, preneoplastic and preinvasive lesions and their derivative tumours can be directly visualized in situ. PMID:10762440

  9. Rabbit model for human EBV-associated hemophagocytic syndrome (HPS): sequential autopsy analysis and characterization of IL-2-dependent cell lines established from herpesvirus papio-induced fatal rabbit lymphoproliferative diseases with HPS.

    PubMed

    Hayashi, Kazuhiko; Jin, Zaishun; Onoda, Sachiyo; Joko, Hiromasa; Teramoto, Norihiro; Ohara, Nobuya; Oda, Wakako; Tanaka, Takehiro; Liu, Yi-Xuan; Koirala, Tirtha Raj; Oka, Takashi; Kondo, Eisaku; Yoshino, Tadashi; Takahashi, Kiyoshi; Akagi, Tadaatsu

    2003-05-01

    Epstein-Barr virus-associated hemophagocytic syndrome (EBV-AHS) is often associated with fatal infectious mononucleosis or T-cell lymphoproliferative diseases (LPD). To elucidate the true nature of fatal LPD observed in Herpesvirus papio (HVP)-induced rabbit hemophagocytosis, reactive or neoplastic, we analyzed sequential development of HVP-induced rabbit LPD and their cell lines. All of the seven Japanese White rabbits inoculated intravenously with HVP died of fatal LPD 18 to 27 days after inoculation. LPD was also accompanied by hemophagocytic syndrome (HPS) in five of these seven rabbits. Sequential autopsy revealed splenomegaly and swollen lymph nodes, often accompanied by bleeding, which developed in the last week. Atypical lymphoid cells infiltrated many organs with a "starry sky" pattern, frequently involving the spleen, lymph nodes, and liver. HVP-small RNA-1 expression in these lymphoid cells was clearly demonstrated by a newly developed in situ hybridization (ISH) system. HVP-ISH of immunomagnetically purified lymphoid cells from spleen or lymph nodes revealed HVP-EBER1+ cells in each CD4+, CD8+, or CD79a+ fraction. Hemophagocytic histiocytosis was observed in the lymph nodes, spleen, bone marrow, and thymus. HVP-DNA was detected in the tissues and peripheral blood from the infected rabbits by PCR or Southern blot analysis. Clonality analysis of HVP-induced LPD by Southern blotting with TCR gene probe revealed polyclonal bands, suggesting polyclonal proliferation. Six IL-2-dependent rabbit T-cell lines were established from transplanted scid mouse tumors from LPD. These showed latency type I/II HVP infection and had normal karyotypes except for one line, and three of them showed tumorigenicity in nude mice. These data suggest that HVP-induced fatal LPD in rabbits is reactive polyclonally in nature.

  10. Stem Cell Modeling of Core Binding Factor Acute Myeloid Leukemia

    PubMed Central

    Mosna, Federico

    2016-01-01

    Even though clonally originated from a single cell, acute leukemia loses its homogeneity soon and presents at clinical diagnosis as a hierarchy of cells endowed with different functions, of which only a minority possesses the ability to recapitulate the disease. Due to their analogy to hematopoietic stem cells, these cells have been named “leukemia stem cells,” and are thought to be chiefly responsible for disease relapse and ultimate survival after chemotherapy. Core Binding Factor (CBF) Acute Myeloid Leukemia (AML) is cytogenetically characterized by either the t(8;21) or the inv(16)/t(16;16) chromosomal abnormalities, which, although being pathognomonic, are not sufficient per se to induce overt leukemia but rather determine a preclinical phase of disease when preleukemic subclones compete until the acquisition of clonal dominance by one of them. In this review we summarize the concepts regarding the application of the “leukemia stem cell” theory to the development of CBF AML; we will analyze the studies investigating the leukemogenetic role of t(8;21) and inv(16)/t(16;16), the proposed theories of its clonal evolution, and the role played by the hematopoietic niches in preserving the disease. Finally, we will discuss the clinical implications of stem cell modeling of CBF AML for the therapy of the disease. PMID:26880987

  11. The role of HIV integration in viral persistence: no more whistling past the proviral graveyard

    PubMed Central

    Maldarelli, Frank

    2016-01-01

    A substantial research effort has been directed to identifying strategies to eradicate or control HIV infection without a requirement for combination antiretroviral therapy (cART). A number of obstacles prevent HIV eradication, including low-level viral persistence during cART, long-term persistence of HIV-infected cells, and latent infection of resting CD4+ T cells. Mechanisms of persistence remain uncertain, but integration of the provirus into the host genome represents a central event in replication and pathogenesis of all retroviruses, including HIV. Analysis of HIV proviruses in CD4+ lymphocytes from individuals after prolonged cART revealed that a substantial proportion of the infected cells that persist have undergone clonal expansion and frequently have proviruses integrated in genes associated with regulation of cell growth. These data suggest that integration may influence persistence and clonal expansion of HIV-infected cells after cART is introduced, and these processes may represent key mechanisms for HIV persistence. Determining the diversity of host genes with integrants in HIV-infected cells that persist for prolonged periods may yield useful information regarding pathways by which infected cells persist for prolonged periods. Moreover, many integrants are defective, and new studies are required to characterize the role of clonal expansion in the persistence of replication-competent HIV. PMID:26829624

  12. High resolution melting analysis (HRM) for the assessment of clonality in feline B-cell lymphomas.

    PubMed

    Henrich, Manfred; Scheffold, Svenja; Hecht, Werner; Reinacher, Manfred

    2018-06-01

    Analysis of clonality is gaining importance in diagnosing lymphomas in veterinary medicine. Usually, PCR for the analysis of antigen receptor rearrangement (PARR) is followed by electrophoretic separation of the PCR products. Aim of this study was to test the feasibility of HRM for the assessment of clonality in B-cell lymphomas of cats. High resolution melting analysis differentiates PCR products by their different melting point using the decrease in fluorescence of an intercalating dye during melting of the PCR product. Additionally, the method is easy to use with no post-PCR manipulation of the samples. Forty-seven feline B-cell lymphomas and 31 reactive lymphatic proliferations of cats were investigated by PARR followed either by capillary electrophoresis or an HRM assay. To objectify the interpretation of the HRM results a recently published mathematical approach was applied to the melting curve. To overcome discrepancies between the visual interpretation and the mathematical approach, the latter was modified to include testing of reproducibility and recognition of pseudoclonality. In 11 of 47 lymphoma cases clonal populations were detectable by HRM assay compared to 14 of 47 lymphomas in which clonal populations were detected by capillary electrophoresis assay. Neither of the methods showed a clonal pattern in any of the reactive samples. However, the HRM assay showed a unique pattern in cases of follicular lymphatic hyperplasia that had no corresponding pattern in capillary electrophoresis. The capillary electrophoresis assay could identify 3 lymphomas that were not detected by the HRM assay and is therefore regarded superior to the HRM assay. The comparison however, was hampered by the overall bad performance of the PARR, that might be the consequence of insufficient primer binding due to somatic hypermutation of the binding sites during antigen stimulated proliferation of the B lymphocytes. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Na+-independent transporters, LAT-2 and b0,+, exchange L-DOPA with neutral and basic amino acids in two clonal renal cell lines.

    PubMed

    Gomes, P; Soares-da-Silva, P

    2002-03-15

    The present study examined the functional characteristics of L-DOPA transporters in two functionally different clonal subpopulations of opossum kidney (OKLC and OKHC) cells. The uptake of L-DOPA was largely Na+-independent, though in OKHC cells a minor component (approximately 15%) required extracellular Na+. At least two Na+-independent transporters appear to be involved in L-DOPA uptake. One of these transporters has a broad specificity for small and large neutral amino acids, is stimulated by acid pH and inhibited by 2-aminobicyclo(2,2,l)-heptane-2-carboxylic acid (BCH; OKLC, Ki = 291 mM; OKHC, Ki = 380 mM). The other Na+-independent transporter binds neutral and basic amino acids and also recognizes the di-amino acid cystine. [14C]-L-DOPA efflux from OKLC and OKHC cells over 12 min corresponded to a small amount of intracellular [14C]-L-DOPA. L-Leucine, nonlabelled L-DOPA, BCH and L-arginine, stimulated the efflux of [14C]-L-DOPA in a Na+-independent manner. It is suggested that L-DOPA uses at least two major transporters, systems LAT-2 and b0,+. The transport of L-DOPA by LAT-2 corresponds to a Na+-independent transporter with a broad specificity for small and large neutral amino acids, stimulated by acid pH and inhibited by BCH. The transport of L-DOPA by system b0,+ is a Na+-independent transporter for neutral and basic amino acids that also recognizes cystine. LAT-2 was found equally important at the apical and basolateral membranes, whereas system b0,+ had a predominant distribution in apical membranes.

  14. Significance of clonal rearrangements of lymphocyte antigen receptor genes on the prognosis of chronic enteropathy in 22 Shiba dogs.

    PubMed

    Ohmi, Aki; Ohno, Koichi; Uchida, Kazuyuki; Goto-Koshino, Yuko; Tomiyasu, Hirotaka; Kanemoto, Hideyuki; Fukushima, Kenjiro; Tsujimoto, Hajime

    2017-09-29

    Shiba dogs are predisposed to chronic enteropathy (CE) and have poorer prognosis than other dog breeds. The objective of this study was to investigate the significance of polymerase chain reaction for antigen receptor rearrangement (PARR) results on clinical findings and prognosis of Shiba dogs with CE. We retrospectively collected data on 22 Shiba dogs diagnosed as having CE. Fifty-nine percent of the dogs had clonality-positive results on PARR analysis. Furthermore, on histopathology, epitheliotropic behavior of small lymphocytes of the intestinal mucosa was observed significantly more frequently in dogs with clonal rearrangement of antigen receptor genes (P=0.027). The median overall survival time of clonality-positive dogs was 48 days (range, 4-239 days), compared to 271 days (range, 45-1,316+ days) in clonality-negative dogs. The median overall survival time of epitheliotropism-positive dogs was 76 days (range, 30-349 days) compared to 239 days (range, 4-1,316+ days) for epitheliotropism-negative dogs. Statistical analysis revealed that the clonality-positive result was associated with significantly shorter survival time (P=0.036). In contrast, presence or absence of epitheliotropism had no statistically significant effect on survival time (P=0.223). These cases might appropriately be diagnosed as small T-cell intestinal lymphoma; there are some common clinical and pathogenic features with human enteropathy-associated T-cell lymphoma type 2. The pathogenesis and poor prognosis for Shiba dogs with CE seem to be associated with this type of lymphoma, although further investigation is warranted.

  15. Age-related cancer mutations associated with clonal hematopoietic expansion

    PubMed Central

    Xie, Mingchao; Lu, Charles; Wang, Jiayin; McLellan, Michael D.; Johnson, Kimberly J.; Wendl, Michael C.; McMichael, Joshua F.; Schmidt, Heather K.; Yellapantula, Venkata; Miller, Christopher A.; Ozenberger, Bradley A.; Welch, John S.; Link, Daniel C.; Walter, Matthew J.; Mardis, Elaine R.; Dipersio, John F.; Chen, Feng; Wilson, Richard K.; Ley, Timothy J.; Ding, Li

    2015-01-01

    Several genetic alterations characteristic of leukemia and lymphoma have been detected in the blood of individuals without apparent hematological malignancies. We analyzed blood-derived sequence data from 2,728 individuals within The Cancer Genome Atlas, and discovered 77 blood-specific mutations in cancer-associated genes, the majority being associated with advanced age. Remarkably, 83% of these mutations were from 19 leukemia/lymphoma-associated genes, and nine were recurrently mutated (DNMT3A, TET2, JAK2, ASXL1, TP53, GNAS, PPM1D, BCORL1 and SF3B1). We identified 14 additional mutations in a very small fraction of blood cells, possibly representing the earliest stages of clonal expansion in hematopoietic stem cells. Comparison of these findings to mutations in hematological malignancies identified several recurrently mutated genes that may be disease initiators. Our analyses show that the blood cells of more than 2% of individuals (5–6% of people older than 70 years) contain mutations that may represent premalignant, initiating events that cause clonal hematopoietic expansion. PMID:25326804

  16. Interfaces of Malignant and Immunologic Clonal Dynamics in Ovarian Cancer.

    PubMed

    Zhang, Allen W; McPherson, Andrew; Milne, Katy; Kroeger, David R; Hamilton, Phineas T; Miranda, Alex; Funnell, Tyler; Little, Nicole; de Souza, Camila P E; Laan, Sonya; LeDoux, Stacey; Cochrane, Dawn R; Lim, Jamie L P; Yang, Winnie; Roth, Andrew; Smith, Maia A; Ho, Julie; Tse, Kane; Zeng, Thomas; Shlafman, Inna; Mayo, Michael R; Moore, Richard; Failmezger, Henrik; Heindl, Andreas; Wang, Yi Kan; Bashashati, Ali; Grewal, Diljot S; Brown, Scott D; Lai, Daniel; Wan, Adrian N C; Nielsen, Cydney B; Huebner, Curtis; Tessier-Cloutier, Basile; Anglesio, Michael S; Bouchard-Côté, Alexandre; Yuan, Yinyin; Wasserman, Wyeth W; Gilks, C Blake; Karnezis, Anthony N; Aparicio, Samuel; McAlpine, Jessica N; Huntsman, David G; Holt, Robert A; Nelson, Brad H; Shah, Sohrab P

    2018-05-07

    High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Food-borne pathogens, health and role of dietary phytochemicals.

    PubMed

    Shetty, K; Labbe, R G

    1998-12-01

    Infectious diseases transmitted by food have become a major public health concern in recent years. In the USA alone, there are an estimated 6-33 million cases each year. The list of responsible agents continues to grow. In the past 20 years some dozen new pathogens that are primarily food-borne have been identified. Fruits and vegetables, often from the global food market, have been added to the traditional vehicles of food-borne illness; that is, undercooked meat, poultry, seafood, or unpasteurized milk. Such products are minimally processed and have fewer barriers to microbial growth such as salt, sugar or preservatives. The evolution of the epidemiology of food-borne illness requires a rethinking of traditional, though still valid, solutions for their prevention. Among various strategies to prevent food-borne pathogens, use of dietary phytochemicals is promising. The major obstacle in the use of dietary phytochemical is the consistency of phytochemicals in different foods due to their natural genetic variation. We have developed a novel tissue-culture-based selection strategy to isolate elite phenolic phytochemical-producing clonal lines of species belonging to the family Lamiaceae. Among several species we have targeted elite clonal lines of thyme (Thymus vulgaris) and oregano (Origanum vulgare) against Escherichia coli and Clostridium perfrigens in fresh and processed meats. We are also evaluating high phenolic profile-containing clonal lines of basil (Ocimum basilicum) to inhibit gastric ulcer-causing Helicobacter pylori. Other elite lines of the members of the family Lamiaceae, rosemary (Rosmarinus officinalis) and salvia (Salvia officinalis) also hold promise against a wide range of food pathogens such as Salmonella species in poultry products and Vibrio species in seafood.

  18. Rabbit Model for Human EBV-Associated Hemophagocytic Syndrome (HPS)

    PubMed Central

    Hayashi, Kazuhiko; Jin, Zaishun; Onoda, Sachiyo; Joko, Hiromasa; Teramoto, Norihiro; Ohara, Nobuya; Oda, Wakako; Tanaka, Takehiro; Liu, Yi-Xuan; Koirala, Tirtha Raj; Oka, Takashi; Kondo, Eisaku; Yoshino, Tadashi; Takahashi, Kiyoshi; Akagi, Tadaatsu

    2003-01-01

    Epstein-Barr virus-associated hemophagocytic syndrome (EBV-AHS) is often associated with fatal infectious mononucleosis or T-cell lymphoproliferative diseases (LPD). To elucidate the true nature of fatal LPD observed in Herpesvirus papio (HVP)-induced rabbit hemophagocytosis, reactive or neoplastic, we analyzed sequential development of HVP-induced rabbit LPD and their cell lines. All of the seven Japanese White rabbits inoculated intravenously with HVP died of fatal LPD 18 to 27 days after inoculation. LPD was also accompanied by hemophagocytic syndrome (HPS) in five of these seven rabbits. Sequential autopsy revealed splenomegaly and swollen lymph nodes, often accompanied by bleeding, which developed in the last week. Atypical lymphoid cells infiltrated many organs with a “starry sky” pattern, frequently involving the spleen, lymph nodes, and liver. HVP-small RNA-1 expression in these lymphoid cells was clearly demonstrated by a newly developed in situ hybridization (ISH) system. HVP-ISH of immunomagnetically purified lymphoid cells from spleen or lymph nodes revealed HVP-EBER1+ cells in each CD4+, CD8+, or CD79a+ fraction. Hemophagocytic histiocytosis was observed in the lymph nodes, spleen, bone marrow, and thymus. HVP-DNA was detected in the tissues and peripheral blood from the infected rabbits by PCR or Southern blot analysis. Clonality analysis of HVP-induced LPD by Southern blotting with TCR gene probe revealed polyclonal bands, suggesting polyclonal proliferation. Six IL-2-dependent rabbit T-cell lines were established from transplanted scid mouse tumors from LPD. These showed latency type I/II HVP infection and had normal karyotypes except for one line, and three of them showed tumorigenicity in nude mice. These data suggest that HVP-induced fatal LPD in rabbits is reactive polyclonally in nature. PMID:12707056

  19. The ciliary marginal zone of the zebrafish retina: clonal and time-lapse analysis of a continuously growing tissue.

    PubMed

    Wan, Yinan; Almeida, Alexandra D; Rulands, Steffen; Chalour, Naima; Muresan, Leila; Wu, Yunmin; Simons, Benjamin D; He, Jie; Harris, William A

    2016-04-01

    Clonal analysis is helping us understand the dynamics of cell replacement in homeostatic adult tissues (Simons and Clevers, 2011). Such an analysis, however, has not yet been achieved for continuously growing adult tissues, but is essential if we wish to understand the architecture of adult organs. The retinas of lower vertebrates grow throughout life from retinal stem cells (RSCs) and retinal progenitor cells (RPCs) at the rim of the retina, called the ciliary marginal zone (CMZ). Here, we show that RSCs reside in a niche at the extreme periphery of the CMZ and divide asymmetrically along a radial (peripheral to central) axis, leaving one daughter in the peripheral RSC niche and the other more central where it becomes an RPC. We also show that RPCs of the CMZ have clonal sizes and compositions that are statistically similar to progenitor cells of the embryonic retina and fit the same stochastic model of proliferation. These results link embryonic and postembryonic cell behaviour, and help to explain the constancy of tissue architecture that has been generated over a lifetime. © 2016. Published by The Company of Biologists Ltd.

  20. Multiple bidirectional alterations of phenotype and changes in proliferative potential during the in vitro and in vivo passage of clonal mast cell populations derived from mouse peritoneal mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanakura, Y.; Thompson, H.; Nakano, T.

    1988-09-01

    Mouse peritoneal mast cells (PMC) express a connective tissue-type mast cell (CTMC) phenotype, including reactivity with the heparin-binding fluorescent dye berberine sulfate and incorporation of (35S) sulfate predominantly into heparin proteoglycans. When PMC purified to greater than 99% purity were cultured in methylcellulose with IL-3 and IL-4, approximately 25% of the PMC formed colonies, all of which contained both berberine sulfate-positive and berberine sulfate-negative mast cells. When these mast cells were transferred to suspension culture, they generated populations that were 100% berberine sulfate-negative, a characteristic similar to that of mucosal mast cells (MMC), and that synthesized predominantly chondroitin sulfate (35S)more » proteoglycans. When ''MMC-like'' cultured mast cells derived from WBB6F1-+/+ PMC were injected into the peritoneal cavities of mast cell-deficient WBB6F1-W/Wv mice, the adoptively transferred mast cell population became 100% berberine sulfate-positive. In methylcellulose culture, these ''second generation PMC'' formed clonal colonies containing both berberine sulfate-positive and berberine sulfate-negative cells, but exhibited significantly less proliferative ability than did normal +/+ PMC. Thus, clonal mast cell populations initially derived from single PMC exhibited multiple and bidirectional alterations between CTMC-like and MMC-like phenotypes. However, this process was associated with a progressive diminution of the mast cells' proliferative ability.« less

  1. Clonal B cells in Waldenström's macroglobulinemia exhibit functional features of chronic active B-cell receptor signaling

    PubMed Central

    Argyropoulos, K V; Vogel, R; Ziegler, C; Altan-Bonnet, G; Velardi, E; Calafiore, M; Dogan, A; Arcila, M; Patel, M; Knapp, K; Mallek, C; Hunter, Z R; Treon, S P; van den Brink, M R M; Palomba, M L

    2016-01-01

    Waldenström's macroglobulinemia (WM) is a B-cell non-Hodgkin's lymphoma (B-NHL) characterized by immunoglobulin M (IgM) monoclonal gammopathy and the medullary expansion of clonal lymphoplasmacytic cells. Neoplastic transformation has been partially attributed to hyperactive MYD88 signaling, secondary to the MYD88 L265P mutation, occurring in the majority of WM patients. Nevertheless, the presence of chronic active B-cell receptor (BCR) signaling, a feature of multiple IgM+ B-NHL, remains a subject of speculation in WM. Here, we interrogated the BCR signaling capacity of primary WM cells by utilizing multiparametric phosphoflow cytometry and found heightened basal phosphorylation of BCR-related signaling proteins, and augmented phosphoresponses on surface IgM (sIgM) crosslinking, compared with normal B cells. In support of those findings we observed high sIgM expression and loss of phosphatase activity in WM cells, which could both lead to signaling potentiation in clonal cells. Finally, led by the high-signaling heterogeneity among WM samples, we generated patient-specific phosphosignatures, which subclassified patients into a ‘high' and a ‘healthy-like' signaling group, with the second corresponding to patients with a more indolent clinical phenotype. These findings support the presence of chronic active BCR signaling in WM while providing a link between differential BCR signaling utilization and distinct clinical WM subgroups. PMID:26867669

  2. Clonal evolution following chemotherapy-induced stem cell depletion in cats heterozygous for glucose-6-phosphate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abkowitz, J.L.; Ott, R.M.; Holly, R.D.

    The number of hematopoietic stem cells necessary to support normal hematopoiesis is not known but may be small. If so, the depletion or damage of such cells could result in apparent clonal dominance. To test this hypothesis, dimethylbusulfan (2 to 4 mg/kg intravenously (IV) x 3) was given to cats heterozygous for the X-linked enzyme glucose-6-phosphate dehydrogenase (G-6-PD). These cats were the daughters of domestic X Geoffroy parents. After the initial drug-induced cytopenias (2 to 4 weeks), peripheral blood counts and the numbers of marrow progenitors detected in culture remained normal, although the percentages of erythroid burst-forming cells (BFU-E) andmore » granulocyte/macrophage colony-forming cells (CFU-GM) in DNA synthesis increased, as determined by the tritiated thymidine suicide technique. In three of six cats treated, a dominance of Geoffroy-type G-6-PD emerged among the progenitor cells, granulocytes, and RBCs. These skewed ratios of domestic to Geoffroy-type G-6-PD have persisted greater than 3 years. No changes in cell cycle kinetics or G-6-PD phenotypes were noted in similar studies in six control cats. These data suggest that clonal evolution may reflect the depletion or damage of normal stem cells and not only the preferential growth and dominance of neoplastic cells.« less

  3. Molecular Mechanisms of Toxicity and Cell Damage by Chemicals in a Human Pancreatic Beta Cell Line, 1.1B4.

    PubMed

    Vasu, Srividya; McClenaghan, Neville H; Flatt, Peter R

    2016-10-01

    Mechanisms of toxicity and cell damage were investigated in novel clonal human pancreatic beta cell line, 1.1B4, after exposure to streptozotocin, alloxan, ninhydrin, and hydrogen peroxide. Viability, DNA damage, insulin secretion/content, [Ca]i, and glucokinase/hexokinase, mRNA expression were measured by MTT assay, comet assay, radioimmunoassay, fluorometric imaging plate reader, enzyme-coupled photometry, and real-time polymerase chain reaction, respectively. Chemicals significantly reduced 1.1B4 cell viability in a time/concentration-dependent manner. Chronic 18-hour exposure decreased cellular insulin, glucokinase, and hexokinase activities. Chemicals decreased transcription of INS, GCK, PCSK1, PCSK2, and GJA1 (involved in secretory function). Insulin release and [Ca]i responses to nutrients and membrane-depolarizing agents were impaired. Streptozotocin and alloxan up-regulated transcription of genes, SOD1 and SOD2 (antioxidant enzymes). Ninhydrin and hydrogen peroxide up-regulated SOD2 transcription, whereas alloxan and hydrogen peroxide increased CAT transcription. Chemicals induced DNA damage, apoptosis, and increased caspase 3/7 activity. Streptozotocin and alloxan decreased transcription of BCL2 while increasing transcription of BAX. Chemicals did not affect transcription of HSPA4 and HSPA5 and nitrite production. 1.1B4 cells represent a useful model of human beta cells. Chemicals impaired 1.1B4 cell secretory function and activated antioxidant defense and apoptotic pathways without activating endoplasmic reticulum stress response/nitrosative stress.

  4. Monoclonal B-cell lymphocytosis in healthy blood donors: an unexpectedly common finding

    PubMed Central

    Rachel, Jane M.; Ghia, Paolo; Boren, Jeff; Abbasi, Fatima; Dagklis, Antonis; Venable, Geri; Kang, Jiyeon; Degheidy, Heba; Plapp, Fred V.; Vogt, Robert F.; Menitove, Jay E.; Marti, Gerald E.

    2014-01-01

    Circulating monoclonal B cells may be detected in healthy adults, a condition called monoclonal B-cell lymphocytosis (MBL). MBL has also been identified in donated blood, but no systematic study of blood donors has been reported. Using sensitive and specific laboratory methods, we detected MBL in 149 (7.1%; 95% confidence interval, 6.0% to 8.3%) of 2098 unique donors ages 45 years or older in a Midwestern US regional blood center between 2010 and 2011. Most of the 149 donors had low-count MBL, including 99 chronic lymphocytic leukemia–like (66.4%), 22 atypical (14.8%), and 19 CD5– (12.8%) immunophenotypes. However, 5 donors (3.4%) had B-cell clonal counts above 500 cells per µL, including 3 with 1693 to 2887 cells per µL; the clone accounted for nearly all their circulating B cells. Four donors (2.7%) had 2 distinct MBL clones. Of 51 MBL samples in which immunoglobulin heavy chain (IGH)V-D-J genotypes could be determined, 71% and 29% used IGHV3- and IGHV4-family genes, respectively. Sequencing revealed 82% with somatic hypermutation, whereas 18% had >98% germ-line identity, including 5 with entirely germ-line sequences. In conclusion, MBL prevalence is much higher in blood donors than previously reported, and although uncommon, the presence of high-count MBL warrants further investigations to define the biological fate of the transfused cells in recipients. PMID:24345750

  5. Neurogenic radial glia in the outer subventricular zone of human neocortex.

    PubMed

    Hansen, David V; Lui, Jan H; Parker, Philip R L; Kriegstein, Arnold R

    2010-03-25

    Neurons in the developing rodent cortex are generated from radial glial cells that function as neural stem cells. These epithelial cells line the cerebral ventricles and generate intermediate progenitor cells that migrate into the subventricular zone (SVZ) and proliferate to increase neuronal number. The developing human SVZ has a massively expanded outer region (OSVZ) thought to contribute to cortical size and complexity. However, OSVZ progenitor cell types and their contribution to neurogenesis are not well understood. Here we show that large numbers of radial glia-like cells and intermediate progenitor cells populate the human OSVZ. We find that OSVZ radial glia-like cells have a long basal process but, surprisingly, are non-epithelial as they lack contact with the ventricular surface. Using real-time imaging and clonal analysis, we demonstrate that these cells can undergo proliferative divisions and self-renewing asymmetric divisions to generate neuronal progenitor cells that can proliferate further. We also show that inhibition of Notch signalling in OSVZ progenitor cells induces their neuronal differentiation. The establishment of non-ventricular radial glia-like cells may have been a critical evolutionary advance underlying increased cortical size and complexity in the human brain.

  6. Cell fate in the Arabidopsis root meristem determined by directional signalling.

    PubMed

    van den Berg, C; Willemsen, V; Hage, W; Weisbeek, P; Scheres, B

    1995-11-02

    Postembryonic development in plants is achieved by apical meristems. Surgical studies and clonal analysis have revealed indirectly that cells in shoot meristems have no predictable destiny and that position is likely to play a role in the acquisition of cell identity. In contrast to animal systems, there has been no direct evidence for inductive signalling in plants until now. Here we present evidence for such signalling using laser ablation of cells in the root meristem of Arabidopsis thaliana. Although these cells show rigid clonal relationships, we now demonstrate that it is positional control that is most important in the determination of cell fate. Positional signals can be perpetuated from more mature to initial cells to guide the pattern of meristem cell differentiation. This offers an alternative to the general opinion that meristems are the source of patterning information.

  7. Langerhans cell sarcoma following marginal zone lymphoma: expanding the knowledge on mature B cell plasticity.

    PubMed

    Ambrosio, Maria Raffaella; De Falco, Giulia; Rocca, Bruno Jim; Barone, Aurora; Amato, Teresa; Bellan, Cristiana; Lazzi, Stefano; Leoncini, Lorenzo

    2015-10-01

    The concept of unidirectional differentiation of the haematopoietic stem cell has been challenged after recent findings that human B cell progenitors and even mature B cells can be reprogrammed into histiocytic/dendritic cells by altering expression of lineage-associated transcription factors. The conversion of mature B cell lymphomas to Langerhans cell neoplasms is not well documented. Three previous reports have described clonally related follicular lymphoma and Langerhans cell tumours, whereas no case has been published of clonally related marginal zone lymphoma and Langerhans cell sarcoma. We describe the case of a 77-year-old patient who developed a Langerhans cell sarcoma and 6 years later a nodal marginal zone lymphoma. Mutation status examination showed 100 % gene identity to the germline sequence, suggesting direct trans-differentiation or dedifferentiation of the nodal marginal zone lymphoma to the Langerhans cell sarcoma rather than a common progenitor. We found inactivation of paired box 5 (PAX-5) in the lymphoma cells by methylation, along with duplication of part of the long arm of chromosomes 16 and 17 in the sarcoma cells. The absence of PAX-5 could have triggered B cells to differentiate into macrophages and dendritic cells. On the other hand, chromosomal imbalances might have activated genes involved in myeloid lineage maturation, transcription activation and oncogenesis. We hypothesize that this occurred because of previous therapies for nodal marginal zone lymphoma. Better understanding of this phenomenon may help in unravelling the molecular interplay between transcription factors during haematopoietic lineage commitment and may expand the spectrum of clonally related mature B cell neoplasms and Langerhans cell tumours.

  8. Somatic Point Mutation Calling in Low Cellularity Tumors

    PubMed Central

    Kassahn, Karin S.; Holmes, Oliver; Nones, Katia; Patch, Ann-Marie; Miller, David K.; Christ, Angelika N.; Harliwong, Ivon; Bruxner, Timothy J.; Xu, Qinying; Anderson, Matthew; Wood, Scott; Leonard, Conrad; Taylor, Darrin; Newell, Felicity; Song, Sarah; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Steptoe, Anita; Pajic, Marina; Cowley, Mark J.; Pinese, Mark; Chang, David K.; Gill, Anthony J.; Johns, Amber L.; Wu, Jianmin; Wilson, Peter J.; Fink, Lynn; Biankin, Andrew V.; Waddell, Nicola; Grimmond, Sean M.; Pearson, John V.

    2013-01-01

    Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/) for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform. PMID:24250782

  9. An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein

    PubMed Central

    Dewari, Pooran Singh; Southgate, Benjamin; Mccarten, Katrina; Monogarov, German; O'Duibhir, Eoghan; Quinn, Niall; Tyrer, Ashley; Leitner, Marie-Christin; Plumb, Colin; Kalantzaki, Maria; Blin, Carla; Finch, Rebecca; Bressan, Raul Bardini; Morrison, Gillian; Jacobi, Ashley M; Behlke, Mark A; von Kriegsheim, Alex; Tomlinson, Simon; Krijgsveld, Jeroen

    2018-01-01

    CRISPR/Cas9 can be used for precise genetic knock-in of epitope tags into endogenous genes, simplifying experimental analysis of protein function. However, Cas9-assisted epitope tagging in primary mammalian cell cultures is often inefficient and reliant on plasmid-based selection strategies. Here, we demonstrate improved knock-in efficiencies of diverse tags (V5, 3XFLAG, Myc, HA) using co-delivery of Cas9 protein pre-complexed with two-part synthetic modified RNAs (annealed crRNA:tracrRNA) and single-stranded oligodeoxynucleotide (ssODN) repair templates. Knock-in efficiencies of ~5–30%, were achieved without selection in embryonic stem (ES) cells, neural stem (NS) cells, and brain-tumor-derived stem cells. Biallelic-tagged clonal lines were readily derived and used to define Olig2 chromatin-bound interacting partners. Using our novel web-based design tool, we established a 96-well format pipeline that enabled V5-tagging of 60 different transcription factors. This efficient, selection-free and scalable epitope tagging pipeline enables systematic surveys of protein expression levels, subcellular localization, and interactors across diverse mammalian stem cells. PMID:29638216

  10. Isolation and Characterization of Exosome from Human Embryonic Stem Cell-Derived C-Myc-Immortalized Mesenchymal Stem Cells.

    PubMed

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Padmanabhan, Jayanthi; Choo, Andre; de Kleijn, Dominique P V; Lim, Sai Kiang

    2016-01-01

    Mesenchymal stem cells (MSC) are currently the cell type of choice in many cell therapy trials. The number of therapeutic applications for MSCs registered as product IND submissions with the FDA and initiation of registered clinical trials has increased substantially in recent years, in particular between 2006 and 2012. However, defined mechanisms of action underpinning the therapeutic efficacy of MSCs are lacking, but they are increasingly attributed to MSC trophic secretion rather than their differentiation potential. A promising secreted therapeutic candidate is an extracellular vesicle (EV) known as the exosome. The use of exosomes instead of cells as a therapeutic agent provides several advantages. A critical advantage is the prospect of a conventional pharmaceutical manufacturing process that is highly scalable and amenable to the stringent manufacturing process. For example, MSCs used as producers of therapeutics, and not as therapeutics per se, could be immortalized to generate infinitely expansible clonal lines to enhance the reproducible production of therapeutic exosomes. In this chapter, we will describe the immortalization of MSCs, and the production, isolation, and characterization of exosomes from immortalized MSC.

  11. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness

    PubMed Central

    Wiley, Luke A.; Burnight, Erin R.; DeLuca, Adam P.; Anfinson, Kristin R.; Cranston, Cathryn M.; Kaalberg, Emily E.; Penticoff, Jessica A.; Affatigato, Louisa M.; Mullins, Robert F.; Stone, Edwin M.; Tucker, Budd A.

    2016-01-01

    Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans. PMID:27471043

  12. Use of CRISPR/Cas9-engineered INS-1 pancreatic β cells to define the pharmacology of dual GIPR/GLP-1R agonists.

    PubMed

    Naylor, Jacqueline; Suckow, Arthur T; Seth, Asha; Baker, David J; Sermadiras, Isabelle; Ravn, Peter; Howes, Rob; Li, Jianliang; Snaith, Mike R; Coghlan, Matthew P; Hornigold, David C

    2016-09-15

    Dual-agonist molecules combining glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) activity represent an exciting therapeutic strategy for diabetes treatment. Although challenging due to shared downstream signalling pathways, determining the relative activity of dual agonists at each receptor is essential when developing potential novel therapeutics. The challenge is exacerbated in physiologically relevant cell systems expressing both receptors. To this end, either GIP receptors (GIPR) or GLP-1 receptors (GLP-1R) were ablated via RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 endonucleases in the INS-1 pancreatic β-cell line. Multiple clonal cell lines harbouring gene disruptions for each receptor were isolated and assayed for receptor activity to identify functional knockouts (KOs). cAMP production in response to GIPR or GLP-1R activation was abolished and GIP- or GLP-1-induced potentiation of glucose-stimulated insulin secretion (GSIS) was attenuated in the cognate KO cell lines. The contributions of individual receptors derived from cAMP and GSIS assays were confirmed in vivo using GLP-1R KO mice in combination with a monoclonal antibody antagonist of GIPR. We have successfully applied CRISPR/Cas9-engineered cell lines to determining selectivity and relative potency contributions of dual-agonist molecules targeting receptors with overlapping native expression profiles and downstream signalling pathways. Specifically, we have characterised molecules as biased towards GIPR or GLP-1R, or with relatively balanced potency in a physiologically relevant β-cell system. This demonstrates the broad utility of CRISPR/Cas9 when applied to native expression systems for the development of drugs that target multiple receptors, particularly where the balance of receptor activity is critical. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  13. Oligoclonal CD8+ T-cell expansion in patients with chronic hepatitis C is associated with liver pathology and poor response to interferon-alpha therapy.

    PubMed

    Manfras, Burkhard J; Weidenbach, Hans; Beckh, Karl-Heinz; Kern, Peter; Möller, Peter; Adler, Guido; Mertens, Thomas; Boehm, Bernhard O

    2004-05-01

    The role of CD8(+) T lymphocytes in chronic hepatitis C virus (HCV) infection and in liver injury with subsequent development of fibrosis and cirrhosis is poorly understood. To address this question, we performed a follow-up study including 27 chronically HCV-infected individuals. We determined clonality and phenotypes of circulating CD8(+) T cells employing TCRBV spectratyping. Antigen specificity was tested by rMHC-peptide tetramer staining and stimulation with recombinant HCV antigens. In addition, T-cell clonality and phenotypes were followed during the variable clinical response of interferon- (IFN) alpha treatment. We could demonstrate that CD8(+) T-cell expansions were significantly associated with liver fibrosis and cirrhosis. Likewise, increased oligoclonality of circulating CD8(+) T cells in chronic HCV infection was identified as an indicator for poor clinical response to IFN-alpha therapy. Moreover, we also found that IFN-alpha therapy enhanced the differentiation of CD8(+) T cells towards a late differentiation phenotype (CD28(-) CD57(+)). In cases of virus elimination the disappearance of expanded terminally differentiated CD8(+) cells was observed. Thus, this study identifies an association of clonal expansions of circulating CD8(+) T cells with liver pathology and provides a possible explanation for the fact that response to IFN-alpha therapy diminishes with the duration of infection.

  14. Differential effects of c-fms and c-kit ligands on the lineage development of the lymphohematopoietic cell line EML C1.

    PubMed

    Tsai, S

    1996-01-01

    The lymphohematopoietic progenitors represent < 0.01% of nucleated marrow cells. We have shown that murine lymphohematopoietic progenitors can be immortalized by a recombinant retroviral vector harboring a dominant-negative retinoic acid (RA) receptor. The immortalized progenitors proliferate as a stem-cell factor-dependent clonal line designated EML C1. The EML C1 cell line spontaneously generates prepro-B-lymphocytes and erythroid and myeloid progenitors. Upon stimulation with interleukin 7 and marrow stromal cells, the prepro-B-lymphocytes express recombination-activating gene 1 (RAG-1) and undergo D-J rearrangements of the immunoglobulin heavy-chain genes. With erythropoietin, the erythroid progenitors proliferate and differentiate into red cells. Generation of the common progenitors for neutrophils and macrophages [colony-forming units-granulocyte-macrophage (CFU-GM)] is suppressed in EML C1 cells but is inducible by high concentrations of RA. An additional block in neutrophil differentiation occurs at the promyelocyte stage, but this can also be overcome by high concentrations of RA. Although c-fms is homologous to c-kit, which encodes the receptor for stem-cell factor (SCF), EML C1 cells neither express c-fms nor respond to macrophage colony-stimulating factor (M-CSF), the ligand for c-fms. Transduction and expression of c-fms cDNA in EML C1 cells confers responsiveness to M-CSF. This finding indicates that c-kit and c-fms share substantially overlapping signal-transduction pathways. However, c-fms-transduced EML C1 cells (EML C1/c-fms cells) exhibit different development patterns when stimulated by SCF alone or by M-CSF alone. When stimulated by SCF alone, EML C1/c-fms cells show mostly erythroid and B-lymphoid development. When stimulated by M-CSF alone, development switches to mostly myeloid (neutrophil and macrophage) development. This observation suggests that c-kit and c-fms must have unique signal-transduction pathways in addition to the common ones.

  15. Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation.

    PubMed

    Hegazy, Ahmed N; West, Nathaniel R; Stubbington, Michael J T; Wendt, Emily; Suijker, Kim I M; Datsi, Angeliki; This, Sebastien; Danne, Camille; Campion, Suzanne; Duncan, Sylvia H; Owens, Benjamin M J; Uhlig, Holm H; McMichael, Andrew; Bergthaler, Andreas; Teichmann, Sarah A; Keshav, Satish; Powrie, Fiona

    2017-11-01

    Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4 + T cells to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation. We collected samples of peripheral blood mononuclear cells and intestinal tissues from healthy individuals (controls, n = 13-30) and patients with inflammatory bowel diseases (n = 119; 59 with ulcerative colitis and 60 with Crohn's disease). We used 2 independent assays (CD154 detection and carboxy-fluorescein succinimidyl ester dilution assays) and 9 intestinal bacterial species (Escherichia coli, Lactobacillus acidophilus, Bifidobacterium animalis subsp lactis, Faecalibacterium prausnitzii, Bacteroides vulgatus, Roseburia intestinalis, Ruminococcus obeum, Salmonella typhimurium, and Clostridium difficile) to quantify, expand, and characterize microbe-reactive CD4 + T cells. We sequenced T-cell receptor Vβ genes in expanded microbe-reactive T-cell lines to determine their clonal diversity. We examined the effects of microbe-reactive CD4 + T cells on intestinal stromal and epithelial cell lines. Cytokines, chemokines, and gene expression patterns were measured by flow cytometry and quantitative polymerase chain reaction. Circulating and gut-resident CD4 + T cells from controls responded to bacteria at frequencies of 40-4000 per million for each bacterial species tested. Microbiota-reactive CD4 + T cells were mainly of a memory phenotype, present in peripheral blood mononuclear cells and intestinal tissue, and had a diverse T-cell receptor Vβ repertoire. These cells were functionally heterogeneous, produced barrier-protective cytokines, and stimulated intestinal stromal and epithelial cells via interleukin 17A, interferon gamma, and tumor necrosis factor. In patients with inflammatory bowel diseases, microbiota-reactive CD4 + T cells were reduced in the blood compared with intestine; T-cell responses that we detected had an increased frequency of interleukin 17A production compared with responses of T cells from blood or intestinal tissues of controls. In an analysis of peripheral blood mononuclear cells and intestinal tissues from patients with inflammatory bowel diseases vs controls, we found that reactivity to intestinal bacteria is a normal property of the human CD4 + T-cell repertoire, and does not necessarily indicate disrupted interactions between immune cells and the commensal microbiota. T-cell responses to commensals might support intestinal homeostasis, by producing barrier-protective cytokines and providing a large pool of T cells that react to pathogens. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus.

    PubMed

    Kang, HyunJun; Minder, Petra; Park, Mi Ae; Mesquitta, Walatta-Tseyon; Torbett, Bruce E; Slukvin, Igor I

    2015-12-15

    The chemokine (C-C motif) receptor 5 (CCR5) serves as an HIV-1 co-receptor and is essential for cell infection with CCR5-tropic viruses. Loss of functional receptor protects against HIV infection. Here, we report the successful targeting of CCR5 in GFP-marked human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 with single and dual guide RNAs (gRNAs). Following CRISPER/Cas9-mediated gene editing using a single gRNA, 12.5% of cell colonies demonstrated CCR5 editing, of which 22.2% showed biallelic editing as determined by a Surveyor nuclease assay and direct sequencing. The use of dual gRNAs significantly increased the efficacy of CCR5 editing to 27% with a biallelic gene alteration frequency of 41%. To ensure the homogeneity of gene editing within cells, we used single cell sorting to establish clonal iPSC lines. Single cell-derived iPSC lines with homozygous CCR5 mutations displayed the typical characteristics of pluripotent stem cells and differentiated efficiently into hematopoietic cells, including macrophages. Although macrophages from both wild-type and CCR5-edited iPSCs supported CXCR4-tropic virus replication, macrophages from CCR5-edited iPSCs were uniquely resistant to CCR5-tropic virus challenge. This study demonstrates the feasibility of applying iPSC technology for the study of the role of CCR5 in HIV infection in vitro, and generation of HIV-resistant cells for potential therapeutic applications.

  17. Ultrasensitive automated RNA in situ hybridization for kappa and lambda light chain mRNA detects B-cell clonality in tissue biopsies with performance comparable or superior to flow cytometry.

    PubMed

    Guo, Ling; Wang, Zhen; Anderson, Courtney M; Doolittle, Emerald; Kernag, Siobhan; Cotta, Claudiu V; Ondrejka, Sarah L; Ma, Xiao-Jun; Cook, James R

    2018-03-01

    The assessment of B-cell clonality is a critical component of the evaluation of suspected lymphoproliferative disorders, but analysis from formalin-fixed, paraffin-embedded tissues can be challenging if fresh tissue is not available for flow cytometry. Immunohistochemical and conventional bright field in situ hybridization stains for kappa and lambda are effective for evaluation of plasma cells but are often insufficiently sensitive to detect the much lower abundance of light chains present in B-cells. We describe an ultrasensitive RNA in situ hybridization assay that has been adapted for use on an automated immunohistochemistry platform and compare results with flow cytometry in 203 consecutive tissues and 104 consecutive bone marrows. Overall, in 203 tissue biopsies, RNA in situ hybridization identified light chain-restricted B-cells in 85 (42%) vs 58 (29%) by flow cytometry. Within 83 B-cell non-Hodgkin lymphomas, RNA in situ hybridization identified restricted B-cells in 74 (89%) vs 56 (67%) by flow cytometry. B-cell clonality could be evaluated in only 23/104 (22%) bone marrow cases owing to poor RNA preservation, but evaluable cases showed 91% concordance with flow cytometry. RNA in situ hybridization allowed for recognition of biclonal/composite lymphomas not identified by flow cytometry and highlighted unexpected findings, such as coexpression of kappa and lambda RNA in 2 cases and the presence of lambda light chain RNA in a T lymphoblastic lymphoma. Automated RNA in situ hybridization showed excellent interobserver reproducibility for manual evaluation (average K=0.92), and an automated image analysis system showed high concordance (97%) with manual evaluation. Automated RNA in situ hybridization staining, which can be adopted on commonly utilized immunohistochemistry instruments, allows for the interpretation of clonality in the context of the morphological features in formalin-fixed, paraffin-embedded tissues with a clinical sensitivity similar or superior to flow cytometry.

  18. Ultrasensitive Automated RNA in situ Hybridization for Kappa and Lambda Light Chain mRNA Detects B-cell Clonality in Tissue Biopsies with Performance Comparable or Superior to Flow Cytometry

    PubMed Central

    Guo, Ling; Wang, Zhen; Anderson, Courtney M.; Doolittle, Emerald; Kernag, Siobhan; Cotta, Claudiu V.; Ondrejka, Sarah L.; Ma, Xiao-Jun; Cook, James R.

    2017-01-01

    The assessment of B-cell clonality is a critical component of the evaluation of suspected lymphoproliferative disorders, but analysis from formalin fixed paraffin embedded tissues can be challenging if fresh tissue is not available for flow cytometry. Immunohistochemical and conventional bright field in situ hybridization stains for kappa and lambda are effective for evaluation of plasma cells, but are often insufficiently sensitive to detect the much lower abundance of light chains present in B cells. We describe an ultrasensitive RNA in situ hybridization assay which has been adapted for use on an automated immunohistochemistry platform and compare results with flow cytometry in 203 consecutive tissues and 104 consecutive bone marrows. Overall, in 203 tissue biopsies, RNA in situ hybridization identified light chain restricted B-cells in 85 (42%) vs. 58 (29%) by flow cytometry. Within 83 B-cell non-Hodgkin lymphomas, RNA in situ hybridization identified a restricted B-cells in 74 (89%) vs. 56 (67%) by flow cytometry. B-cell clonality could be evaluated in only 23/104 (22%) bone marrow cases due to poor RNA preservation, but evaluable cases showed 91% concordance with flow cytometry. RNA in situ hybridization allowed for recognition of biclonal/composite lymphomas not identified by flow cytometry, and highlighted unexpected findings, such as coexpression of kappa and lambda RNA in 2 cases and the presence of lambda light chain RNA in a T lymphoblastic lymphoma. Automated RNA in situ hybridization showed excellent interobserver reproducibility for manual evaluation (average K=0.92), and an automated image analysis system showed high concordance (97%) with manual evaluation. Automated RNA in situ hybridization staining, which can be adopted on commonly utilized immunohistochemistry instruments, allows for the interpretation of clonality in the context of the morphologic features in formalin fixed, paraffin embedded tissues with a clinical sensitivity similar or superior to flow cytometry. PMID:29052600

  19. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine

    PubMed Central

    Oldiges, Daiane P.; Laughery, Jacob M.; Tagliari, Nelson Junior; Leite Filho, Ronaldo Viana; Davis, William C.; da Silva Vaz, Itabajara; Termignoni, Carlos; Knowles, Donald P.; Suarez, Carlos E.

    2016-01-01

    The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST). The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha) promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein–blasticidin deaminase), and HlGST fused to the MSA-1 (merozoite surface antigen 1) signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST) in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on HlGST-Cln-immunized calves. Collectively, these data show the efficacy of a transfected HlGST-Cln B. bovis parasite to induce detectable anti-glutathione-S-transferase antibodies and a reduction in tick size and fecundity of R. microplus feeding in experimentally inoculated animals. PMID:27911903

  20. CLImAT-HET: detecting subclonal copy number alterations and loss of heterozygosity in heterogeneous tumor samples from whole-genome sequencing data.

    PubMed

    Yu, Zhenhua; Li, Ao; Wang, Minghui

    2017-03-15

    Copy number alterations (CNA) and loss of heterozygosity (LOH) represent a large proportion of genetic structural variations of cancer genomes. These aberrations are continuously accumulated during the procedure of clonal evolution and patterned by phylogenetic branching. This invariably results in the emergence of multiple cell populations with distinct complement of mutational landscapes in tumor sample. With the advent of next-generation sequencing technology, inference of subclonal populations has become one of the focused interests in cancer-associated studies, and is usually based on the assessment of combinations of somatic single-nucleotide variations (SNV), CNA and LOH. However, cancer samples often have several inherent issues, such as contamination of normal stroma, tumor aneuploidy and intra-tumor heterogeneity. Addressing these critical issues is imperative for accurate profiling of clonal architecture. We present CLImAT-HET, a computational method designed for capturing clonal diversity in the CNA/LOH dimensions by taking into account the intra-tumor heterogeneity issue, in the case where a reference or matched normal sample is absent. The algorithm quantitatively represents the clonal identification problem using a factorial hidden Markov model, and takes an integrated analysis of read counts and allele frequency data. It is able to infer subclonal CNA and LOH events as well as the fraction of cells harboring each event. The results on simulated datasets indicate that CLImAT-HET has high power to identify CNA/LOH segments, it achieves an average accuracy of 0.87. It can also accurately infer proportion of each clonal population with an overall Pearson correlation coefficient of 0.99 and a mean absolute error of 0.02. CLImAT-HET shows significant advantages when compared with other existing methods. Application of CLImAT-HET to 5 primary triple negative breast cancer samples demonstrates its ability to capture clonal diversity in the CAN/LOH dimensions. It detects two clonal populations in one sample, and three clonal populations in one other sample. CLImAT-HET, a novel algorithm is introduced to infer CNA/LOH segments from heterogeneous tumor samples. We demonstrate CLImAT-HET's ability to accurately recover clonal compositions using tumor WGS data without a match normal sample.

  1. Advances in the understanding and clinical management of mastocytosis and clonal mast cell activation syndromes

    PubMed Central

    2016-01-01

    Clonal mast cell activation syndromes and indolent systemic mastocytosis without skin involvement are two emerging entities that sometimes might be clinically difficult to distinguish, and they involve a great challenge for the physician from both a diagnostic and a therapeutic point of view. Furthermore, final diagnosis of both entities requires a bone marrow study; it is recommended that this be done in reference centers. In this article, we address the current consensus and guidelines for the suspicion, diagnosis, classification, treatment, and management of these two entities. PMID:27909577

  2. Advances in the understanding and clinical management of mastocytosis and clonal mast cell activation syndromes.

    PubMed

    González-de-Olano, David; Matito, Almudena; Orfao, Alberto; Escribano, Luis

    2016-01-01

    Clonal mast cell activation syndromes and indolent systemic mastocytosis without skin involvement are two emerging entities that sometimes might be clinically difficult to distinguish, and they involve a great challenge for the physician from both a diagnostic and a therapeutic point of view. Furthermore, final diagnosis of both entities requires a bone marrow study; it is recommended that this be done in reference centers. In this article, we address the current consensus and guidelines for the suspicion, diagnosis, classification, treatment, and management of these two entities.

  3. Clonal Analysis of Newborn Hippocampal Dentate Granule Cell Proliferation and Development in Temporal Lobe Epilepsy1,2,3

    PubMed Central

    LaSarge, Candi L.; McAuliffe, John J.

    2015-01-01

    Abstract Hippocampal dentate granule cells are among the few neuronal cell types generated throughout adult life in mammals. In the normal brain, new granule cells are generated from progenitors in the subgranular zone and integrate in a typical fashion. During the development of epilepsy, granule cell integration is profoundly altered. The new cells migrate to ectopic locations and develop misoriented “basal” dendrites. Although it has been established that these abnormal cells are newly generated, it is not known whether they arise ubiquitously throughout the progenitor cell pool or are derived from a smaller number of “bad actor” progenitors. To explore this question, we conducted a clonal analysis study in mice expressing the Brainbow fluorescent protein reporter construct in dentate granule cell progenitors. Mice were examined 2 months after pilocarpine-induced status epilepticus, a treatment that leads to the development of epilepsy. Brain sections were rendered translucent so that entire hippocampi could be reconstructed and all fluorescently labeled cells identified. Our findings reveal that a small number of progenitors produce the majority of ectopic cells following status epilepticus, indicating that either the affected progenitors or their local microenvironments have become pathological. By contrast, granule cells with “basal” dendrites were equally distributed among clonal groups. This indicates that these progenitors can produce normal cells and suggests that global factors sporadically disrupt the dendritic development of some new cells. Together, these findings strongly predict that distinct mechanisms regulate different aspects of granule cell pathology in epilepsy. PMID:26756038

  4. Analyzing Clonal Variation of Monoclonal Antibody-Producing CHO Cell Lines Using an In Silico Metabolomic Platform

    PubMed Central

    Ghorbaniaghdam, Atefeh; Chen, Jingkui; Henry, Olivier; Jolicoeur, Mario

    2014-01-01

    Monoclonal antibody producing Chinese hamster ovary (CHO) cells have been shown to undergo metabolic changes when engineered to produce high titers of recombinant proteins. In this work, we have studied the distinct metabolism of CHO cell clones harboring an efficient inducible expression system, based on the cumate gene switch, and displaying different expression levels, high and low productivities, compared to that of the parental cells from which they were derived. A kinetic model for CHO cell metabolism was further developed to include metabolic regulation. Model calibration was performed using intracellular and extracellular metabolite profiles obtained from shake flask batch cultures. Model simulations of intracellular fluxes and ratios known as biomarkers revealed significant changes correlated with clonal variation but not to the recombinant protein expression level. Metabolic flux distribution mostly differs in the reactions involving pyruvate metabolism, with an increased net flux of pyruvate into the tricarboxylic acid (TCA) cycle in the high-producer clone, either being induced or non-induced with cumate. More specifically, CHO cell metabolism in this clone was characterized by an efficient utilization of glucose and a high pyruvate dehydrogenase flux. Moreover, the high-producer clone shows a high rate of anaplerosis from pyruvate to oxaloacetate, through pyruvate carboxylase and from glutamate to α-ketoglutarate, through glutamate dehydrogenase, and a reduced rate of cataplerosis from malate to pyruvate, through malic enzyme. Indeed, the increase of flux through pyruvate carboxylase was not driven by an increased anabolic demand. It is in fact linked to an increase of the TCA cycle global flux, which allows better regulation of higher redox and more efficient metabolic states. To the best of our knowledge, this is the first time a dynamic in silico platform is proposed to analyze and compare the metabolomic behavior of different CHO clones. PMID:24632968

  5. Stem cells are dispensable for lung homeostasis but restore airways after injury.

    PubMed

    Giangreco, Adam; Arwert, Esther N; Rosewell, Ian R; Snyder, Joshua; Watt, Fiona M; Stripp, Barry R

    2009-06-09

    Local tissue stem cells have been described in airways of the lung but their contribution to normal epithelial maintenance is currently unknown. We therefore developed aggregation chimera mice and a whole-lung imaging method to determine the relative contributions of progenitor (Clara) and bronchiolar stem cells to epithelial maintenance and repair. In normal and moderately injured airways chimeric patches were small in size and not associated with previously described stem cell niches. This finding suggested that single, randomly distributed progenitor cells maintain normal epithelial homeostasis. In contrast we found that repair following severe lung injury resulted in the generation of rare, large clonal cell patches that were associated with stem cell niches. This study provides evidence that epithelial stem cells are dispensable for normal airway homeostasis. We also demonstrate that stem cell activation and robust clonal cellular expansion occur only during repair from severe lung injury.

  6. Genome-wide allelotyping of a new in vitro model system reveals early events in breast cancer progression.

    PubMed

    Li, Zheng; Meng, Zhen Hang; Sayeed, Aejaz; Shalaby, Refaat; Ljung, Britt-Marie; Dairkee, Shanaz H

    2002-10-15

    Toward the goal of identifying early genetic losses, which mediate the release of human breast epithelium from replicative suppression leading to cellular immortalization, we have used a newly developed in vitro model system. This system consists of epithelial cultures derived from noncancerous breast tissue, treated with the chemical carcinogen N-ethyl-N-nitrosourea, and continuously passaged to yield cell populations culminating in the immortal phenotype. Genome-wide allelotyping of early passage N-ethyl-N-nitrosourea-exposed cell populations revealed aberrations at >10% (18 of 169) loci examined. Allelic losses encompassing chromosomes 6q24-6q27, implicating immortalization-associated candidate genes, hZAC and SEN6, occurred in two independently derived cell lines before the Hayflick limit. Additional LOH sites were present in one cell line at 3p11-3p26, 11p15, and 20p12-13. Allelic losses reported in this cell line preceded detectable levels of telomerase activity and the occurrence of p53-related aberrations. Information gained from the search for early immortalization-associated genetic deletions in cultured cells was applied in a novel approach toward the analysis of morphologically normal terminal ductal lobular units microdissected from 20 cases of ductal carcinoma in situ. Notably, clonal allelic losses at chromosome 3p24 and 6q24 were an early occurrence in adjoining terminal ductal lobular units of a proportion of primary tumors, which displayed loss of heterozygosity (3 of 11 and 3 of 6, respectively). The biological insights provided by the new model system reported here strongly suggest that early allelic losses delineated in immortalized cultures and validated in vivo could serve as surrogate endpoints to assist in the identification and intervention of high-risk benign breast tissue, which sustains the potential for continuous proliferation.

  7. Dynamical System Modeling to Simulate Donor T Cell Response to Whole Exome Sequencing-Derived Recipient Peptides Demonstrates Different Alloreactivity Potential in HLA-Matched and -Mismatched Donor-Recipient Pairs.

    PubMed

    Abdul Razzaq, Badar; Scalora, Allison; Koparde, Vishal N; Meier, Jeremy; Mahmood, Musa; Salman, Salman; Jameson-Lee, Max; Serrano, Myrna G; Sheth, Nihar; Voelkner, Mark; Kobulnicky, David J; Roberts, Catherine H; Ferreira-Gonzalez, Andrea; Manjili, Masoud H; Buck, Gregory A; Neale, Michael C; Toor, Amir A

    2016-05-01

    Immune reconstitution kinetics and subsequent clinical outcomes in HLA-matched recipients of allogeneic stem cell transplantation (SCT) are variable and difficult to predict. Considering SCT as a dynamical system may allow sequence differences across the exomes of the transplant donors and recipients to be used to simulate an alloreactive T cell response, which may allow better clinical outcome prediction. To accomplish this, whole exome sequencing was performed on 34 HLA-matched SCT donor-recipient pairs (DRPs) and the nucleotide sequence differences translated to peptides. The binding affinity of the peptides to the relevant HLA in each DRP was determined. The resulting array of peptide-HLA binding affinity values in each patient was considered as an operator modifying a hypothetical T cell repertoire vector, in which each T cell clone proliferates in accordance with the logistic equation of growth. Using an iterating system of matrices, each simulated T cell clone's growth was calculated with the steady-state population being proportional to the magnitude of the binding affinity of the driving HLA-peptide complex. Incorporating competition between T cell clones responding to different HLA-peptide complexes reproduces a number of features of clinically observed T cell clonal repertoire in the simulated repertoire, including sigmoidal growth kinetics of individual T cell clones and overall repertoire, Power Law clonal frequency distribution, increase in repertoire complexity over time with increasing clonal diversity, and alteration of clonal dominance when a different antigen array is encountered, such as in SCT. The simulated, alloreactive T cell repertoire was markedly different in HLA-matched DRPs. The patterns were differentiated by rate of growth and steady-state magnitude of the simulated T cell repertoire and demonstrate a possible correlation with survival. In conclusion, exome wide sequence differences in DRPs may allow simulation of donor alloreactive T cell response to recipient antigens and may provide a quantitative basis for refining donor selection and titration of immunosuppression after SCT. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  8. Substance P inhibits natural killer cell cytotoxicity through the neurokinin-1 receptor.

    PubMed

    Monaco-Shawver, Linda; Schwartz, Lynnae; Tuluc, Florin; Guo, Chang-Jiang; Lai, Jian Ping; Gunnam, Satya M; Kilpatrick, Laurie E; Banerjee, Pinaki P; Douglas, Steven D; Orange, Jordan S

    2011-01-01

    SP is a potent neuroimmunomodulator that functions through ligating members of the neurokinin receptor family, one of which, NK1R, is widely expressed in immune cells. As in humans, circulating SP levels are increased in pathologic states associated with impairment of NK cell functions, such as depression and HIV infection, we hypothesized that SP has a direct, inhibitory effect upon NK cells. We have studied a clonal human NK cell line (YTS) as well as ex vivo human NK cells and have determined that truncated and full-length NK1R isoforms are expressed in and SP bound by ex vivo NK cells and the YTS NK cell line. Incubation of YTS cells with 10⁻⁶ M SP and ex vivo NK cells with 10⁻⁵ M SP inhibited cytotoxic ability by ∼20% and reduced degranulation. This inhibitory effect upon cytotoxicity was partially prevented by the NK1R antagonist CP96,345. The treatment of YTS or ex vivo NK cells with SP neither down-modulated NCR expression nor affected triggering receptor-induced NF-κB activation. Preincubation of YTS cells with SP, however, did abbreviate the typically prolonged intracellular calcium increase induced by target cell engagement and reduced triggering receptor-induced pERK. Thus, SP has the potential to regulate NK cell functions and acts downstream from neurokinin receptors to modulate NK cell activation signaling. This mechanism may contribute to impairment of NK cell function in certain disease states associated with increased circulating SP. Antagonism of this system may present an opportunity to augment NK cell function therapeutically in selected human diseases.

  9. Comparison against 186 canid whole-genome sequences reveals survival strategies of an ancient clonally transmissible canine tumor

    PubMed Central

    Decker, Brennan; Davis, Brian W.; Rimbault, Maud; Long, Adrienne H.; Karlins, Eric; Jagannathan, Vidhya; Reiman, Rebecca; Parker, Heidi G.; Drögemüller, Cord; Corneveaux, Jason J.; Chapman, Erica S.; Trent, Jeffery M.; Leeb, Tosso; Huentelman, Matthew J.; Wayne, Robert K.; Karyadi, Danielle M.; Ostrander, Elaine A.

    2015-01-01

    Canine transmissible venereal tumor (CTVT) is a parasitic cancer clone that has propagated for thousands of years via sexual transfer of malignant cells. Little is understood about the mechanisms that converted an ancient tumor into the world's oldest known continuously propagating somatic cell lineage. We created the largest existing catalog of canine genome-wide variation and compared it against two CTVT genome sequences, thereby separating alleles derived from the founder's genome from somatic mutations that must drive clonal transmissibility. We show that CTVT has undergone continuous adaptation to its transmissible allograft niche, with overlapping mutations at every step of immunosurveillance, particularly self-antigen presentation and apoptosis. We also identified chronologically early somatic mutations in oncogenesis- and immune-related genes that may represent key initiators of clonal transmissibility. Thus, we provide the first insights into the specific genomic aberrations that underlie CTVT's dogged perseverance in canids around the world. PMID:26232412

  10. Random Mutagenesis, Clonal Events, and Embryonic or Somatic Origin Determine the mtDNA Variant Type and Load in Human Pluripotent Stem Cells.

    PubMed

    Zambelli, Filippo; Mertens, Joke; Dziedzicka, Dominika; Sterckx, Johan; Markouli, Christina; Keller, Alexander; Tropel, Philippe; Jung, Laura; Viville, Stephane; Van de Velde, Hilde; Geens, Mieke; Seneca, Sara; Sermon, Karen; Spits, Claudia

    2018-06-07

    In this study, we deep-sequenced the mtDNA of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) and their source cells and found that the majority of variants pre-existed in the cells used to establish the lines. Early-passage hESCs carried few and low-load heteroplasmic variants, similar to those identified in oocytes and inner cell masses. The number and heteroplasmic loads of these variants increased with prolonged cell culture. The study of 120 individual cells of early- and late-passage hESCs revealed a significant diversity in mtDNA heteroplasmic variants at the single-cell level and that the variants that increase during time in culture are always passenger to the appearance of chromosomal abnormalities. We found that early-passage hiPSCs carry much higher loads of mtDNA variants than hESCs, which single-fibroblast sequencing proved pre-existed in the source cells. Finally, we show that these variants are stably transmitted during short-term differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Spatial structure increases the waiting time for cancer

    PubMed Central

    Martens, Erik A.; Kostadinov, Rumen; Maley, Carlo C.; Hallatschek, Oskar

    2012-01-01

    Cancer results from a sequence of genetic and epigenetic changes which lead to a variety of abnormal phenotypes including increased proliferation and survival of somatic cells, and thus, to a selective advantage of pre-cancerous cells. The notion of cancer progression as an evolutionary process has been experiencing increasing interest in recent years. Many efforts have been made to better understand and predict the progression to cancer using mathematical models; these mostly consider the evolution of a well-mixed cell population, even though pre-cancerous cells often evolve in highly structured epithelial tissues. In this study, we propose a novel model of cancer progression that considers a spatially structured cell population where clones expand via adaptive waves. This model is used to assess two different paradigms of asexual evolution that have been suggested to delineate the process of cancer progression. The standard scenario of periodic selection assumes that driver mutations are accumulated strictly sequentially over time. However, when the mutation supply is sufficiently high, clones may arise simultaneously on distinct genetic backgrounds, and clonal adaptation waves interfere with each other. We find that in the presence of clonal interference, spatial structure increases the waiting time for cancer, leads to a patchwork structure of non-uniformly sized clones, decreases the survival probability of virtually neutral (passenger) mutations, and that genetic distance begins to increase over a characteristic length scale Lc. These characteristic features of clonal interference may help to predict the onset of cancers with pronounced spatial structure and to interpret spatially-sampled genetic data obtained from biopsies. Our estimates suggest that clonal interference likely occurs in the progression of colon cancer, and possibly other cancers where spatial structure matters. PMID:22707911

  12. Clonal selection versus clonal cooperation: the integrated perception of immune objects

    PubMed Central

    Nataf, Serge

    2016-01-01

    Analogies between the immune and nervous systems were first envisioned by the immunologist Niels Jerne who introduced the concepts of antigen "recognition" and immune "memory". However, since then, it appears that only the cognitive immunology paradigm proposed by Irun Cohen, attempted to further theorize the immune system functions through the prism of neurosciences. The present paper is aimed at revisiting this analogy-based reasoning. In particular, a parallel is drawn between the brain pathways of visual perception and the processes allowing the global perception of an "immune object". Thus, in the visual system, distinct features of a visual object (shape, color, motion) are perceived separately by distinct neuronal populations during a primary perception task. The output signals generated during this first step instruct then an integrated perception task performed by other neuronal networks. Such a higher order perception step is by essence a cooperative task that is mandatory for the global perception of visual objects. Based on a re-interpretation of recent experimental data, it is suggested that similar general principles drive the integrated perception of immune objects in secondary lymphoid organs (SLOs). In this scheme, the four main categories of signals characterizing an immune object (antigenic, contextual, temporal and localization signals) are first perceived separately by distinct networks of immunocompetent cells.  Then, in a multitude of SLO niches, the output signals generated during this primary perception step are integrated by TH-cells at the single cell level. This process eventually generates a multitude of T-cell and B-cell clones that perform, at the scale of SLOs, an integrated perception of immune objects. Overall, this new framework proposes that integrated immune perception and, consequently, integrated immune responses, rely essentially on clonal cooperation rather than clonal selection. PMID:27830060

  13. Spatial structure increases the waiting time for cancer

    NASA Astrophysics Data System (ADS)

    Martens, Erik A.; Kostadinov, Rumen; Maley, Carlo C.; Hallatschek, Oskar

    2011-11-01

    Cancer results from a sequence of genetic and epigenetic changes that lead to a variety of abnormal phenotypes including increased proliferation and survival of somatic cells and thus to a selective advantage of pre-cancerous cells. The notion of cancer progression as an evolutionary process has been attracting increasing interest in recent years. A great deal of effort has been made to better understand and predict the progression to cancer using mathematical models; these mostly consider the evolution of a well-mixed cell population, even though pre-cancerous cells often evolve in highly structured epithelial tissues. In this study, we propose a novel model of cancer progression that considers a spatially structured cell population where clones expand via adaptive waves. This model is used to assess two different paradigms of asexual evolution that have been suggested to delineate the process of cancer progression. The standard scenario of periodic selection assumes that driver mutations are accumulated strictly sequentially over time. However, when the mutation supply is sufficiently high, clones may arise simultaneously on distinct genetic backgrounds, and clonal adaptation waves interfere with each other. We find that in the presence of clonal interference, spatial structure increases the waiting time for cancer, leads to a patchwork structure of non-uniformly sized clones and decreases the survival probability of virtually neutral (passenger) mutations, and that genetic distance begins to increase over a characteristic length scale Lc. These characteristic features of clonal interference may help us to predict the onset of cancers with pronounced spatial structure and to interpret spatially sampled genetic data obtained from biopsies. Our estimates suggest that clonal interference likely occurs in the progression of colon cancer and possibly other cancers where spatial structure matters.

  14. Noise and Epigenetic Inheritance of Single-Cell Division Times Influence Population Fitness.

    PubMed

    Cerulus, Bram; New, Aaron M; Pougach, Ksenia; Verstrepen, Kevin J

    2016-05-09

    The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds. Although it is known that the individuals' mean growth speed can affect population-level fitness, it is unclear how or whether growth speed heterogeneity itself is subject to natural selection. Here, we show that noisy single-cell division times can significantly affect population-level growth rate. Using time-lapse microscopy to measure the division times of thousands of individual S. cerevisiae cells across different genetic and environmental backgrounds, we find that the length of individual cells' division times can vary substantially between clonal individuals and that sublineages often show epigenetic inheritance of division times. By combining these experimental measurements with mathematical modeling, we find that, for a given mean division time, increasing heterogeneity and epigenetic inheritance of division times increases the population growth rate. Furthermore, we demonstrate that the heterogeneity and epigenetic inheritance of single-cell division times can be linked with variation in the expression of catabolic genes. Taken together, our results reveal how a change in noisy single-cell behaviors can directly influence fitness through dynamics that operate independently of effects caused by changes to the mean. These results not only allow a better understanding of microbial fitness but also help to more accurately predict fitness in other clonal populations, such as tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia.

    PubMed

    Sperling, Adam S; Gibson, Christopher J; Ebert, Benjamin L

    2017-01-01

    Myelodysplastic syndrome (MDS) is a clonal disease that arises from the expansion of mutated haematopoietic stem cells. In a spectrum of myeloid disorders ranging from clonal haematopoiesis of indeterminate potential (CHIP) to secondary acute myeloid leukaemia (sAML), MDS is distinguished by the presence of peripheral blood cytopenias, dysplastic haematopoietic differentiation and the absence of features that define acute leukaemia. More than 50 recurrently mutated genes are involved in the pathogenesis of MDS, including genes that encode proteins involved in pre-mRNA splicing, epigenetic regulation and transcription. In this Review we discuss the molecular processes that lead to CHIP and further clonal evolution to MDS and sAML. We also highlight the ways in which these insights are shaping the clinical management of MDS, including classification schemata, prognostic scoring systems and therapeutic approaches.

  16. Calcium Signaling throughout the Toxoplasma gondii Lytic Cycle

    PubMed Central

    Borges-Pereira, Lucas; Budu, Alexandre; McKnight, Ciara A.; Moore, Christina A.; Vella, Stephen A.; Hortua Triana, Miryam A.; Liu, Jing; Garcia, Celia R. S.; Pace, Douglas A.; Moreno, Silvia N. J.

    2015-01-01

    Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca2+ oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca2+ enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca2+ changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca2+ oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca2+ influx. This is the first study showing, in real time, Ca2+ signals preceding egress and their direct link with motility, an essential virulence trait. PMID:26374900

  17. Polymerase chain reaction-based clonality testing in tissue samples with reactive lymphoproliferations: usefulness and pitfalls. A report of the BIOMED-2 Concerted Action BMH4-CT98-3936.

    PubMed

    Langerak, A W; Molina, T J; Lavender, F L; Pearson, D; Flohr, T; Sambade, C; Schuuring, E; Al Saati, T; van Dongen, J J M; van Krieken, J H J M

    2007-02-01

    Lymphoproliferations are generally diagnosed via histomorphology and immunohistochemistry. Although mostly conclusive, occasionally the differential diagnosis between reactive lesions and malignant lymphomas is difficult. In such cases molecular clonality studies of immunoglobulin (Ig)/T-cell receptor (TCR) rearrangements can be useful. Here we address the issue of clonality assessment in 106 histologically defined reactive lesions, using the standardized BIOMED-2 Ig/TCR multiplex polymerase chain reaction (PCR) heteroduplex and GeneScan assays. Samples were reviewed nationally, except 10% random cases and cases with clonal results selected for additional international panel review. In total 75% (79/106) only showed polyclonal Ig/TCR targets (type I), whereas another 15% (16/106) represent probably polyclonal cases, with weak Ig/TCR (oligo)clonality in an otherwise polyclonal background (type II). Interestingly, in 10% (11/106) clear monoclonal Ig/TCR products were observed (types III/IV), which prompted further pathological review. Clonal cases included two missed lymphomas in national review and nine cases that could be explained as diagnostically difficult cases or probable lymphomas upon additional review. Our data show that the BIOMED-2 Ig/TCR multiplex PCR assays are very helpful in confirming the polyclonal character in the vast majority of reactive lesions. However, clonality detection in a minority should lead to detailed pathological review, including close interaction between pathologist and molecular biologist.

  18. Termination of T cell priming relies on a phase of unresponsiveness promoting disengagement from APCs and T cell division.

    PubMed

    Bohineust, Armelle; Garcia, Zacarias; Beuneu, Hélène; Lemaître, Fabrice; Bousso, Philippe

    2018-05-07

    T cells are primed in secondary lymphoid organs by establishing stable interactions with antigen-presenting cells (APCs). However, the cellular mechanisms underlying the termination of T cell priming and the initiation of clonal expansion remain largely unknown. Using intravital imaging, we observed that T cells typically divide without being associated to APCs. Supporting these findings, we demonstrate that recently activated T cells have an intrinsic defect in establishing stable contacts with APCs, a feature that was reflected by a blunted capacity to stop upon T cell receptor (TCR) engagement. T cell unresponsiveness was caused, in part, by a general block in extracellular calcium entry. Forcing TCR signals in activated T cells antagonized cell division, suggesting that T cell hyporesponsiveness acts as a safeguard mechanism against signals detrimental to mitosis. We propose that transient unresponsiveness represents an essential phase of T cell priming that promotes T cell disengagement from APCs and favors effective clonal expansion. © 2018 Bohineust et al.

  19. Cancer evolution, mutations, and clonal selection in relapse neuroblastoma.

    PubMed

    Schulte, Marc; Köster, Johannes; Rahmann, Sven; Schramm, Alexander

    2018-05-01

    The notion of cancer as a complex evolutionary system has been validated by in-depth molecular analyses of tumor progression over the last years. While a complex interplay of cell-autonomous programs and cell-cell interactions determines proliferation and differentiation during normal development, intrinsic and acquired plasticity of cancer cells allow for evasion of growth factor limitations, apoptotic signals, or attacks from the immune system. Treatment-induced molecular selection processes have been described by a number of studies already, but understanding of those events facilitating metastatic spread, organ-specific homing, and resistance to anoikis is still in its early days. In principle, somatic events giving rise to cancer progression should be easier to follow in childhood tumors bearing fewer mutations and genomic aberrations than their counterparts in adulthood. We have previously reported on the genetic events accompanying relapsing neuroblastoma, a solid tumor of early childhood. Our results indicated significantly higher single nucleotide variants in relapse tumors, gave hints for branched tumor evolution upon treatment and clonal selection as deduced from shifts in allelic frequencies between primary and relapsing neuroblastoma. Here, we will review these findings and give an outlook on dealing with intratumoral heterogeneity and sub-clonal diversity in neuroblastoma for future targeted treatments.

  20. Clonal T-Cell Receptor γ-Chain Gene Rearrangements in Differential Diagnosis of Lymphomatoid Papulosis From Skin Metastasis of Nodal Anaplastic Large-Cell Lymphoma

    PubMed Central

    Akilov, Oleg E.; Pillai, Raju K.; Grandinetti, Lisa M.; Kant, Jeffrey A.; Geskin, Larisa

    2012-01-01

    Background In patients with a history of nodal anaplastic large-cell lymphoma (ALCL), differentiation of type C lymphomatoid papulosis from cutaneous involvement of systemic ALCL may be challenging because the 2 entities may exhibit identical histologic features. Although metastatic ALCL generally carries the same clone as the primary lymphoma, expression of a distinct clone likely represents a distinct process. Observations A 54-year-old white man had a history of anaplastic lymphoma kinase 1–negative ALCL in the right inguinal lymph node 6 years ago. A complete response was achieved after 6 cycles of CHOP (cyclophosphamide, doxorubicin, vincristine [Oncovin], and prednisone administered in 21-day cycles) and radiation therapy. After 3½ years, the patient observed waxing and waning papules and nodules. Examination of the biopsy specimen revealed a dense CD30+ lymphocytic infiltrate; no evidence of systemic malignancy was evident on positron emission tomography. Although clinically the presentation was consistent with lymphomatoid papulosis, metastatic ALCL had to be excluded. Polymerase chain reaction analysis with T-cell receptor γ-chain gene rearrangement (TCR-γR) was performed on the original lymph node and new skin lesions. Results of the TCR-γR analysis were positive for clonality in both lesions. However, separate clonal processes were identified. The identification of distinct clones supported the clinical impression of lymphomatoid papulosis. Conclusion Polymerase chain reaction analysis of TCR-γR is a useful method for distinguishing different clonal processes and is recommended when differentiation of primary and secondary lymphoproliferative disorders is required. PMID:21844453

  1. Telomere length and somatic mutations in correlation with response to immunosuppressive treatment in aplastic anaemia.

    PubMed

    Park, Hee S; Park, Si N; Im, Kyongok; Kim, Sung-Min; Kim, Jung-Ah; Hwang, Sang M; Lee, Dong S

    2017-08-01

    We investigated the frequencies of cytogenetic aberrations and somatic mutations of prognostic relevance in 393 patients with aplastic anaemia (AA). Clonality was determined by G-banding/fluorescence in situ hybridization (FISH) (n = 245), and targeted capture sequencing was performed for 88 haematopoiesis-related genes (n = 70). The telomere length (TL) of bone marrow nucleated cells was measured at the single cell level by FISH (n = 135). Eighteen (4·6%) patients showed disease progression, and monosomy 7 (50·0%) was the most predominant cytogenetic evolution at disease transformation. One third of patients (32·9%) presented at least 1 mutation; the most frequently mutated genes were NOTCH1, NF1, SCRIB, BCOR and DNMT3A. The patient group with clonal changes (30·7%) showed an adverse response to immunosuppressive treatment (IST), compared to the non-clonal group, but this finding did not show statistical significance. The TL of AA patients was significantly shorter than normal control and patients with clonal changes showed significantly shorter TLs. Patients with TL>5·9 showed a higher response rate to IST (P = 0·048). In conclusion, the patients with clonal changes or TL attrition showed a poor response to IST. Shorter TL can be used not only as a biomarker, but also as a predictive marker for treatment response to IST. © 2017 John Wiley & Sons Ltd.

  2. Distinct genetic evolution patterns of relapsing diffuse large B-cell lymphoma revealed by genome-wide copy number aberration and targeted sequencing analysis.

    PubMed

    Juskevicius, D; Lorber, T; Gsponer, J; Perrina, V; Ruiz, C; Stenner-Liewen, F; Dirnhofer, S; Tzankov, A

    2016-12-01

    Recurrences of diffuse large B-cell lymphomas (DLBCL) result in significant morbidity and mortality, but their underlying genetic and biological mechanisms are unclear. Clonal relationship in DLBCL relapses so far is mostly addressed by the investigation of immunoglobulin (IG) rearrangements, therefore, lacking deeper insights into genome-wide lymphoma evolution. We studied mutations and copy number aberrations in 20 paired relapsing and 20 non-relapsing DLBCL cases aiming to test the clonal relationship between primaries and relapses to track tumors' genetic evolution and to investigate the genetic background of DLBCL recurrence. Three clonally unrelated DLBCL relapses were identified (15%). Also, two distinct patterns of genetic evolution in clonally related relapses were detected as follows: (1) early-divergent/branching evolution from a common progenitor in 6 patients (30%), and (2) late-divergent/linear progression of relapses in 11 patients (65%). Analysis of recurrent genetic events identified potential early drivers of lymphomagenesis (KMT2D, MYD88, CD79B and PIM1). The most frequent relapse-specific events were additional mutations in KMT2D and alterations of MEF2B. SOCS1 mutations were exclusive to non-relapsing DLBCL, whereas primaries of relapsing DLBCL more commonly displayed gains of 10p15.3-p12.1 containing the potential oncogenes PRKCQ, GATA3, MLLT10 and ABI1. Altogether, our study expands the knowledge on clonal relationship, genetic evolution and mutational basis of DLBCL relapses.

  3. Clonal evolution in breast cancer revealed by single nucleus genome sequencing.

    PubMed

    Wang, Yong; Waters, Jill; Leung, Marco L; Unruh, Anna; Roh, Whijae; Shi, Xiuqing; Chen, Ken; Scheet, Paul; Vattathil, Selina; Liang, Han; Multani, Asha; Zhang, Hong; Zhao, Rui; Michor, Franziska; Meric-Bernstam, Funda; Navin, Nicholas E

    2014-08-14

    Sequencing studies of breast tumour cohorts have identified many prevalent mutations, but provide limited insight into the genomic diversity within tumours. Here we developed a whole-genome and exome single cell sequencing approach called nuc-seq that uses G2/M nuclei to achieve 91% mean coverage breadth. We applied this method to sequence single normal and tumour nuclei from an oestrogen-receptor-positive (ER(+)) breast cancer and a triple-negative ductal carcinoma. In parallel, we performed single nuclei copy number profiling. Our data show that aneuploid rearrangements occurred early in tumour evolution and remained highly stable as the tumour masses clonally expanded. In contrast, point mutations evolved gradually, generating extensive clonal diversity. Using targeted single-molecule sequencing, many of the diverse mutations were shown to occur at low frequencies (<10%) in the tumour mass. Using mathematical modelling we found that the triple-negative tumour cells had an increased mutation rate (13.3×), whereas the ER(+) tumour cells did not. These findings have important implications for the diagnosis, therapeutic treatment and evolution of chemoresistance in breast cancer.

  4. PPARγ ligand production is tightly linked to clonal expansion during initiation of adipocyte differentiation[S

    PubMed Central

    Hallenborg, Philip; Petersen, Rasmus Koefoed; Feddersen, Søren; Sundekilde, Ulrik; Hansen, Jacob B.; Blagoev, Blagoy; Madsen, Lise; Kristiansen, Karsten

    2014-01-01

    Adipocyte differentiation is orchestrated by the ligand-activated nuclear receptor PPARγ. Endogenous ligands comprise oxidized derivatives of arachidonic acid and structurally similar PUFAs. Although expression of PPARγ peaks in mature adipocytes, ligands are produced primarily at the onset of differentiation. Concomitant with agonist production, murine fibroblasts undergo two rounds of mitosis referred to as mitotic clonal expansion. Here we show that mouse embryonic fibroblasts deficient in either of two cell cycle inhibitors, the transcription factor p53 or its target gene encoding the cyclin-dependent kinase inhibitor p21, exhibit increased adipogenic potential. The antiadipogenic effect of p53 relied on its transcriptional activity and p21 expression but was circumvented by administration of an exogenous PPARγ agonist suggesting a linkage between cell cycling and PPARγ ligand production. Indeed, cell cycle inhibitory compounds decreased PPARγ ligand production in differentiating 3T3-L1 preadipocytes. Furthermore, these inhibitors abolished the release of arachidonic acid induced by the hormonal cocktail initiating adipogenesis. Collectively, our results suggest that murine fibroblasts require clonal expansion for PPARγ ligand production at the onset of adipocyte differentiation. PMID:25312885

  5. On the dynamics of neutral mutations in a mathematical model for a homogeneous stem cell population.

    PubMed

    Traulsen, Arne; Lenaerts, Tom; Pacheco, Jorge M; Dingli, David

    2013-02-01

    The theory of the clonal origin of cancer states that a tumour arises from one cell that acquires mutation(s) leading to the malignant phenotype. It is the current belief that many of these mutations give a fitness advantage to the mutant population allowing it to expand, eventually leading to disease. However, mutations that lead to such a clonal expansion need not give a fitness advantage and may in fact be neutral--or almost neutral--with respect to fitness. Such mutant clones can be eliminated or expand stochastically, leading to a malignant phenotype (disease). Mutations in haematopoietic stem cells give rise to diseases such as chronic myeloid leukaemia (CML) and paroxysmal nocturnal haemoglobinuria (PNH). Although neutral drift often leads to clonal extinction, disease is still possible, and in this case, it has important implications both for the incidence of disease and for therapy, as it may be more difficult to eliminate neutral mutations with therapy. We illustrate the consequences of such dynamics, using CML and PNH as examples. These considerations have implications for many other tumours as well.

  6. Novel murine clonal cell lines either express slow or mixed (fast and slow) muscle markers following differentiation in vitro.

    PubMed

    Peltzer, J; Colman, L; Cebrian, J; Musa, H; Peckham, M; Keller, A

    2008-05-01

    We have investigated whether the phenotype of myogenic clones derived from satellite cells of different muscles from the transgenic immortomouse depended on muscle type origin. Clones derived from neonatal, or 6- to 12-week-old fast and slow muscles, were analyzed for myosin and enolase isoforms as phenotypic markers. All clones derived from slow-oxidative muscles differentiated into myotubes with a preferentially slow contractile phenotype, whereas some clones derived from rapid-glycolytic or neonatal muscles expressed both fast and slow myosin isoforms. Thus, muscle origin appears to bias myosin isoform expression in myotubes. The neonatal clone (WTt) was cultivated in various medium and substrate conditions, allowing us to determine optimized conditions for their differentiation. Matrigel allowed expressions of adult myosin isoforms, and an isozymic switch from embryonic alpha- toward muscle-specific beta-enolase, never previously observed in vitro. These cells will be a useful model for in vitro studies of muscle fiber maturation and plasticity.

  7. Clonal Growth of Dermal Papilla Cells in Hydrogels Reveals Intrinsic Differences between Sox2-Positive and -Negative Cells In Vitro and In Vivo

    PubMed Central

    Driskell, Ryan R; Juneja, Vikram R; Connelly, John T; Kretzschmar, Kai; Tan, David W -M; Watt, Fiona M

    2012-01-01

    In neonatal mouse skin, two types of dermal papilla (DP) are distinguished by Sox2 expression: CD133+Sox2+ DP are associated with guard/awl/auchene hairs, whereas CD133+Sox2− DP are associated with zigzag (ZZ) hairs. We describe a three-dimensional hydrogel culture system that supports clonal growth of CD133+Sox2+, CD133+Sox2−, and CD133−Sox2− (non-DP) neonatal dermal cells. All three cell populations formed spheres that expressed the DP markers alkaline phosphatase, α8 integrin, and CD133. Nevertheless, spheres formed by CD133− cells did not efficiently support hair follicle formation in skin reconstitution assays. In the presence of freshly isolated P2 dermal cells, CD133+Sox2+ and CD133+Sox2− spheres contributed to the DP of both AA and ZZ hairs. Hair type did not correlate with sphere size. Sox2 expression was maintained in culture, but not induced significantly in Sox2− cells in vitro or in vivo, suggesting that Sox2+ cells are a distinct cellular lineage. Although Sox2+ cells were least efficient at forming spheres, they had the greatest ability to contribute to DP and non-DP dermis in reconstituted skin. As the culture system supports clonal growth of DP cells and maintenance of distinct DP cell types, it will be useful for further analysis of intrinsic and extrinsic signals controlling DP function. PMID:22189784

  8. HIV integration sites and implications for maintenance of the reservoir.

    PubMed

    Symons, Jori; Cameron, Paul U; Lewin, Sharon R

    2018-03-01

    To provide an overview of recent research of how HIV integration relates to productive and latent infection and implications for cure strategies. How and where HIV integrates provides new insights into how HIV persists on antiretroviral therapy (ART). Clonal expansion of infected cells with the same integration site demonstrates that T-cell proliferation is an important factor in HIV persistence, however, the driver of proliferation remains unclear. Clones with identical integration sites harbouring defective provirus can accumulate in HIV-infected individuals on ART and defective proviruses can express RNA and produce protein. HIV integration sites differ in clonally expanded and nonexpanded cells and in latently and productively infected cells and this influences basal and inducible transcription. There is a growing number of cellular proteins that can alter the pattern of integration to favour latency. Understanding these pathways may identify new interventions to eliminate latently infected cells. Using advances in analysing HIV integration sites, T-cell proliferation of latently infected cells is thought to play a major role in HIV persistence. Clonal expansion has been demonstrated with both defective and intact viruses. Production of viral RNA and protein from defective viruses may play a role in driving chronic immune activation. The site of integration may determine the likelihood of proliferation and the degree of basal and induced transcription. Finally, host factors and gene expression at the time of infection may determine the integration site. Together these new insights may lead to novel approaches to elimination of latently infected cells.

  9. Dissecting social cell biology and tumors using Drosophila genetics.

    PubMed

    Pastor-Pareja, José Carlos; Xu, Tian

    2013-01-01

    Cancer was seen for a long time as a strictly cell-autonomous process in which oncogenes and tumor-suppressor mutations drive clonal cell expansions. Research in the past decade, however, paints a more integrative picture of communication and interplay between neighboring cells in tissues. It is increasingly clear as well that tumors, far from being homogenous lumps of cells, consist of different cell types that function together as complex tissue-level communities. The repertoire of interactive cell behaviors and the quantity of cellular players involved call for a social cell biology that investigates these interactions. Research into this social cell biology is critical for understanding development of normal and tumoral tissues. Such complex social cell biology interactions can be parsed in Drosophila. Techniques in Drosophila for analysis of gene function and clonal behavior allow us to generate tumors and dissect their complex interactive biology with cellular resolution. Here, we review recent Drosophila research aimed at understanding tissue-level biology and social cell interactions in tumors, highlighting the principles these studies reveal.

  10. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage.

    PubMed

    Li, Yuwei; Li, Ang; Junge, Jason; Bronner, Marianne

    2017-10-10

    Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton.

  11. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage

    PubMed Central

    Li, Yuwei; Li, Ang; Junge, Jason

    2017-01-01

    Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton. PMID:28994649

  12. Clonal type I interferon-producing and dendritic cell precursors are contained in both human lymphoid and myeloid progenitor populations.

    PubMed

    Chicha, Laurie; Jarrossay, David; Manz, Markus G

    2004-12-06

    Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c(-) natural type I interferon-producing cells (IPCs) and CD11c(+) dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I-producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system.

  13. DW-MRI as a Predictive Biomarker of Radiosensitization of GBM through Targeted Inhibition of Checkpoint Kinases.

    PubMed

    Williams, Terence M; Galbán, Stefanie; Li, Fei; Heist, Kevin A; Galbán, Craig J; Lawrence, Theodore S; Holland, Eric C; Thomae, Tami L; Chenevert, Thomas L; Rehemtulla, Alnawaz; Ross, Brian D

    2013-04-01

    The inherent treatment resistance of glioblastoma (GBM) can involve multiple mechanisms including checkpoint kinase (Chk1/2)-mediated increased DNA repair capability, which can attenuate the effects of genotoxic chemotherapies and radiation. The goal of this study was to evaluate diffusion-weighted magnetic resonance imaging (DW-MRI) as a biomarker for Chk1/2 inhibitors in combination with radiation for enhancement of treatment efficacy in GBM. We evaluated a specific small molecule inhibitor of Chk1/2, AZD7762, in combination with radiation using in vitro human cell lines and in vivo using a genetically engineered GBM mouse model. DW-MRI and T1-contrast MRI were used to follow treatment effects on intracranial tumor cellularity and growth rates, respectively. AZD7762 inhibited clonal proliferation in a panel of GBM cell lines and increased radiosensitivity in p53-mutated GBM cell lines to a greater extent compared to p53 wild-type cells. In vivo efficacy of AZD7762 demonstrated a dose-dependent inhibitory effect on GBM tumor growth rate and a reduction in tumor cellularity based on DW-MRI scans along with enhancement of radiation efficacy. DW-MRI was found to be a useful imaging biomarker for the detection of radiosensitization through inhibition of checkpoint kinases. Chk1/2 inhibition resulted in antiproliferative activity, prevention of DNA damage-induced repair, and radiosensitization in preclinical GBM tumor models, both in vitro and in vivo. The effects were found to be maximal in p53-mutated GBM cells. These results provide the rationale for integration of DW-MRI in clinical translation of Chk1/2 inhibition with radiation for the treatment of GBM.

  14. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene

    PubMed Central

    Hsu, Cary; Jones, Stephanie A.; Cohen, Cyrille J.; Zheng, Zhili; Kerstann, Keith; Zhou, Juhua; Robbins, Paul F.; Peng, Peter D.; Shen, Xinglei; Gomes, Theotonius J.; Dunbar, Cynthia E.; Munroe, David J.; Stewart, Claudia; Cornetta, Kenneth; Wangsa, Danny; Ried, Thomas; Rosenberg, Steven A.

    2007-01-01

    Malignancies arising from retrovirally transduced hematopoietic stem cells have been reported in animal models and human gene therapy trials. Whether mature lymphocytes are susceptible to insertional mutagenesis is unknown. We have characterized a primary human CD8+ T-cell clone, which exhibited logarithmic ex vivo growth in the absence of exogenous cytokine support for more than 1 year after transduction with a murine leukemia virus–based vector encoding the T-cell growth factor IL-15. Phenotypically, the clone was CD28−, CD45RA−, CD45RO+, and CD62L−, a profile consistent with effector memory T lymphocytes. After gene transfer with tumor-antigen–specific T-cell receptors, the clone secreted IFN-γ upon encountering tumor targets, providing further evidence that they derived from mature lymphocytes. Gene-expression analyses revealed no evidence of insertional activation of genes flanking the retroviral insertion sites. The clone exhibited constitutive telomerase activity, and the presence of autocrine loop was suggested by impaired cell proliferation following knockdown of IL-15Rα expression. The generation of this cell line suggests that nonphysiologic expression of IL-15 can result in the long-term in vitro growth of mature human T lymphocytes. The cytokine-independent growth of this line was a rare event that has not been observed in other IL-15 vector transduction experiments or with any other integrating vector system. It does not appear that the retroviral vector integration sites played a role in the continuous growth of this cell clone, but this remains under investigation. PMID:17353346

  15. Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+o)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Butters, R. R. Jr; Sugimoto, T.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Osteoblasts appear at sites of osteoclastic bone resorption during bone remodeling in the "reversal" phase following osteoclastic resorption and preceding bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for osteoblasts in the vicinity, leading us to determine whether such osteoblasts express the CaR. In this study, we used the mouse osteoblastic, clonal cell line MC3T3-E1. Both immunocytochemistry and Western blot analysis, using an antiserum specific for the CaR, detected CaR protein in MC3T3-E1 cells. We also identified CaR transcripts in MC3T3-E1 cells by Northern analysis using a CaR-specific riboprobe and by reverse transcription-polymerase chain reaction with CaR-specific primers, followed by nucleotide sequencing of the amplified products. Exposure of MC3T3-E1 cells to high Ca2+o (up to 4.8 mM) or the polycationic CaR agonists, neomycin and gadolinium (Gd3+), stimulated both chemotaxis and DNA synthesis in MC3T3-E1 cells. Therefore, taken together, our data strongly suggest that the osteoblastic cell line MC3T3-E1 possesses both CaR protein and mRNA very similar, if not identical, to those in parathyroid and kidney. Furthermore, the CaR in these osteoblasts could play a key role in regulating bone turnover by stimulating the proliferation and migration of such cells to sites of bone resorption as a result of local release of Ca2+o.

  16. Skeletal Collagen Turnover by the Osteoblast

    NASA Technical Reports Server (NTRS)

    Partridge, Nicola C.

    1997-01-01

    Among the most overt negative changes experienced by man and experimental animals under conditions of weightlessness are the loss of skeletal mass and attendant hypercalciuria. These clearly result from some disruption in the balance between bone formation and bone resorption (i.e. remodelling) which appears to be due to a decrease in the functions of the osteoblast. In the studies funded by this project, the clonal osteoblastic cell line, UMR 106-01, has been used to investigate the regulation of collagenase and Tissue Inhibitors of MetalloProteases (TIMPs). This project has shed light on the comprehensive role of the osteoblast in the remodelling process, and, in so doing, provided some insight into how the process might be disrupted under conditions of microgravity.

  17. TGF-β Signaling Regulates Pancreatic β-Cell Proliferation through Control of Cell Cycle Regulator p27 Expression

    PubMed Central

    Suzuki, Tomoyuki; Dai, Ping; Hatakeyama, Tomoya; Harada, Yoshinori; Tanaka, Hideo; Yoshimura, Norio; Takamatsu, Tetsuro

    2013-01-01

    Proliferation of pancreatic β-cells is an important mechanism underlying β-cell mass adaptation to metabolic demands. Increasing β-cell mass by regeneration may ameliorate or correct both type 1 and type 2 diabetes, which both result from inadequate production of insulin by β-cells of the pancreatic islet. Transforming growth factor β (TGF-β) signaling is essential for fetal development and growth of pancreatic islets. In this study, we exposed HIT-T15, a clonal pancreatic β-cell line, to TGF-β signaling. We found that inhibition of TGF-β signaling promotes proliferation of the cells significantly, while TGF-β signaling stimulation inhibits proliferation of the cells remarkably. We confirmed that this proliferative regulation by TGF-β signaling is due to the changed expression of the cell cycle regulator p27. Furthermore, we demonstrated that there is no observed effect on transcriptional activity of p27 by TGF-β signaling. Our data show that TGF-β signaling mediates the cell-cycle progression of pancreatic β-cells by regulating the nuclear localization of CDK inhibitor, p27. Inhibition of TGF-β signaling reduces the nuclear accumulation of p27, and as a result this inhibition promotes proliferation of β-cells. PMID:23720603

  18. Cytoreductive conditioning intensity predicts clonal diversity in ADA-SCID retroviral gene therapy patients

    PubMed Central

    Lill, Georgia R.; Shaw, Kit; Carbonaro-Sarracino, Denise A.; Davila, Alejandra; Sokolic, Robert; Candotti, Fabio; Pellegrini, Matteo

    2017-01-01

    Retroviral gene therapy has proved efficacious for multiple genetic diseases of the hematopoietic system, but roughly half of clinical gene therapy trial protocols using gammaretroviral vectors have reported leukemias in some of the patients treated. In dramatic contrast, 39 adenosine deaminase–deficient severe combined immunodeficiency (ADA-SCID) patients have been treated with 4 distinct gammaretroviral vectors without oncogenic consequence. We investigated clonal dynamics and diversity in a cohort of 15 ADA-SCID children treated with gammaretroviral vectors and found clear evidence of genotoxicity, indicated by numerous common integration sites near proto-oncogenes and by increased abundance of clones with integrations near MECOM and LMO2. These clones showed stable behavior over multiple years and never expanded to the point of dominance or dysplasia. One patient developed a benign clonal dominance that could not be attributed to insertional mutagenesis and instead likely resulted from expansion of a transduced natural killer clone in response to chronic Epstein-Barr virus viremia. Clonal diversity and T-cell repertoire, measured by vector integration site sequencing and T-cell receptor β-chain rearrangement sequencing, correlated significantly with the amount of busulfan preconditioning delivered to patients and to CD34+ cell dose. These data, in combination with results of other ADA-SCID gene therapy trials, suggest that disease background may be a crucial factor in leukemogenic potential of retroviral gene therapy and underscore the importance of cytoreductive conditioning in this type of gene therapy approach. PMID:28351939

  19. A Computational Clonal Analysis of the Developing Mouse Limb Bud

    PubMed Central

    Marcon, Luciano; Arqués, Carlos G.; Torres, Miguel S.; Sharpe, James

    2011-01-01

    A comprehensive spatio-temporal description of the tissue movements underlying organogenesis would be an extremely useful resource to developmental biology. Clonal analysis and fate mappings are popular experiments to study tissue movement during morphogenesis. Such experiments allow cell populations to be labeled at an early stage of development and to follow their spatial evolution over time. However, disentangling the cumulative effects of the multiple events responsible for the expansion of the labeled cell population is not always straightforward. To overcome this problem, we develop a novel computational method that combines accurate quantification of 2D limb bud morphologies and growth modeling to analyze mouse clonal data of early limb development. Firstly, we explore various tissue movements that match experimental limb bud shape changes. Secondly, by comparing computational clones with newly generated mouse clonal data we are able to choose and characterize the tissue movement map that better matches experimental data. Our computational analysis produces for the first time a two dimensional model of limb growth based on experimental data that can be used to better characterize limb tissue movement in space and time. The model shows that the distribution and shapes of clones can be described as a combination of anisotropic growth with isotropic cell mixing, without the need for lineage compartmentalization along the AP and PD axis. Lastly, we show that this comprehensive description can be used to reassess spatio-temporal gene regulations taking tissue movement into account and to investigate PD patterning hypothesis. PMID:21347315

  20. Assay Design Affects the Interpretation of T-Cell Receptor Gamma Gene Rearrangements

    PubMed Central

    Cushman-Vokoun, Allison M.; Connealy, Solomon; Greiner, Timothy C.

    2010-01-01

    Interpretation of capillary electrophoresis results derived from multiplexed fluorochrome-labeled primer sets can be complicated by small peaks, which may be incorrectly interpreted as clonal T-cell receptor-γ gene rearrangements. In this report, different assay designs were used to illustrate how design may adversely affect specificity. Ten clinical cases, with subclonal peaks containing one of the two infrequently used joining genes, were identified with a tri-color, one-tube assay. The DNA was amplified with the same NED fluorochrome on all three joining primers, first combined (one-color assay) and then amplified separately using a single NED-labeled joining primer. The single primer assay design shows how insignificant peaks could easily be wrongly interpreted as clonal T-cell receptor-γ gene rearrangements. Next, the performance of the one-tube assay was compared with the two-tube BIOMED-2-based TCRG Gene Clonality Assay in a series of 44 cases. Whereas sensitivity was similar between the two methods (92.9% vs. 96.4%; P = 0.55), specificity was significantly less in the BIOMED-2 assay (87.5% vs. 56.3%; P = 0.049) when a 2× ratio was used to define clonality. Specificity was improved to 81.3% by the use of a 5× peak height ratio (P = 0.626). These findings illustrate how extra caution is needed in interpreting a design with multiple, separate distributions, which is more difficult to interpret than a single distribution assay. PMID:20959612

  1. Cytoreductive conditioning intensity predicts clonal diversity in ADA-SCID retroviral gene therapy patients.

    PubMed

    Cooper, Aaron R; Lill, Georgia R; Shaw, Kit; Carbonaro-Sarracino, Denise A; Davila, Alejandra; Sokolic, Robert; Candotti, Fabio; Pellegrini, Matteo; Kohn, Donald B

    2017-05-11

    Retroviral gene therapy has proved efficacious for multiple genetic diseases of the hematopoietic system, but roughly half of clinical gene therapy trial protocols using gammaretroviral vectors have reported leukemias in some of the patients treated. In dramatic contrast, 39 adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) patients have been treated with 4 distinct gammaretroviral vectors without oncogenic consequence. We investigated clonal dynamics and diversity in a cohort of 15 ADA-SCID children treated with gammaretroviral vectors and found clear evidence of genotoxicity, indicated by numerous common integration sites near proto-oncogenes and by increased abundance of clones with integrations near MECOM and LMO2 These clones showed stable behavior over multiple years and never expanded to the point of dominance or dysplasia. One patient developed a benign clonal dominance that could not be attributed to insertional mutagenesis and instead likely resulted from expansion of a transduced natural killer clone in response to chronic Epstein-Barr virus viremia. Clonal diversity and T-cell repertoire, measured by vector integration site sequencing and T-cell receptor β-chain rearrangement sequencing, correlated significantly with the amount of busulfan preconditioning delivered to patients and to CD34 + cell dose. These data, in combination with results of other ADA-SCID gene therapy trials, suggest that disease background may be a crucial factor in leukemogenic potential of retroviral gene therapy and underscore the importance of cytoreductive conditioning in this type of gene therapy approach.

  2. Clonal evolution and clinical significance of copy number neutral loss of heterozygosity of chromosome arm 6p in acquired aplastic anemia.

    PubMed

    Betensky, Marisol; Babushok, Daria; Roth, Jacquelyn J; Mason, Philip J; Biegel, Jaclyn A; Busse, Tracy M; Li, Yimei; Lind, Curt; Papazoglou, Anna; Monos, Dimitri; Podsakoff, Gregory; Bessler, Monica; Olson, Timothy S

    2016-01-01

    Acquired aplastic anemia (aAA) results from the T cell-mediated autoimmune destruction of hematopoietic stem cells. Factors predicting response to immune suppression therapy (IST) or development of myelodysplastic syndrome (MDS) are beginning to be elucidated. Our recent data suggest most patients with aAA treated with IST develop clonal somatic genetic alterations in hematopoietic cells. One frequent acquired abnormality is copy-number neutral loss of heterozygosity on chromosome 6p (6p CN-LOH) involving the human leukocyte antigen (HLA) locus. We hypothesized that because 6p CN-LOH clones may arise from selective pressure to escape immune surveillance through deletion of HLA alleles, the development of 6p CN-LOH may affect response to IST. We used single nucleotide polymorphism array genotyping and targeted next-generation sequencing of HLA alleles to assess frequency of 6p CN-LOH, identity of HLA alleles lost through 6p CN-LOH, and impact of 6p CN-LOH on response to IST. 6p CN-LOH clones were present in 11.3% of patients, remained stable over time, and were not associated with development of MDS-defining cytogenetic abnormalities. Notably, no patient with 6p CN-LOH treated with IST achieved a complete response. In summary, clonal 6p CN-LOH in aAA defines a unique subgroup of patients that may provide insights into hematopoietic clonal evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Clonal Evolution and Clinical Significance of Copy Number Neutral Loss of Heterozygosity of Chromosome Arm 6p in Acquired Aplastic Anemia

    PubMed Central

    Betensky, Marisol; Babushok, Daria; Roth, Jacquelyn J.; Mason, Philip J; Biegel, Jaclyn A.; Busse, Tracy M; Li, Yimei; Lind, Curt; Papazoglou, Anna; Monos, Dimitri; Podsakoff, Gregory; Bessler, Monica; Olson, Timothy S.

    2015-01-01

    Acquired aplastic anemia (aAA) results from the T cell-mediated autoimmune destruction of hematopoietic stem cells. Factors predicting response to immune suppression therapy (IST) or development of myelodysplastic syndrome (MDS) are beginning to be elucidated. Our recent data suggest most patients with aAA treated with IST develop clonal somatic genetic alterations in hematopoietic cells. One frequent acquired abnormality is copy-number neutral loss of heterozygosity on chromosome 6p (6p CN-LOH) involving the human leukocyte antigen (HLA) locus. We hypothesized that because 6p CN-LOH clones may arise from selective pressure to escape immune surveillance through deletion of HLA alleles, the development of 6p CN-LOH may affect response to IST. We used single nucleotide polymorphism array genotyping and targeted next-generation sequencing of HLA alleles to assess frequency of 6p CN-LOH, identity of HLA alleles lost through 6p CN-LOH, and impact of 6p CN-LOH on response to IST. 6p CN-LOH clones were present in 11.3% of patients, remained stable over time, and were not associated with development of MDS-defining cytogenetic abnormalities. Notably, no patient with 6p CN-LOH treated with IST achieved a complete response. In summary, clonal 6p CN-LOH in aAA defines a unique subgroup of patients that may provide insights into hematopoietic clonal evolution. PMID:26702937

  4. Aging, Clonality and Rejuvenation of Hematopoietic Stem Cells

    PubMed Central

    Akunuru, Shailaja; Geiger, Hartmut

    2016-01-01

    Aging is associated with reduced organ function and increased disease incidence. Hematopoietic stem cell (HSC) aging driven by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration, aging-associated immune remodeling, and increased leukemia incidence. Compromised DNA damage responses and increased production of reactive oxygen species have been previously causatively attributed to HSC aging. However, recent paradigm-shifting concepts such as global epigenetic and cytoskeletal polarity shifts, cellular senescence, as well as clonal selection of HSCs upon aging provide new insights into HSC aging mechanisms. Rejuvenating agents that can reprogram the epigenetic status of aged HSCs or senolytic drugs that selectively deplete senescent cells provide promising translational avenues for attenuating hematopoietic aging and potentially, alleviating aging-associated immune remodeling and myeloid malignancies. PMID:27380967

  5. Update on Mastocytosis (Part 2): Categories, Prognosis, and Treatment.

    PubMed

    Azaña, J M; Torrelo, A; Matito, A

    2016-01-01

    Mastocytosis is a term used to describe a heterogeneous group of disorders characterized by clonal proliferation of mast cells in different organs. The organ most often affected is the skin. The World Health Organization classifies cutaneous mastocytosis into mastocytoma, maculopapular cutaneous mastocytosis, and diffuse mastocytosis. The systemic variants in this classification are as follows: indolent systemic mastocytosis (SM), aggressive SM, SM with an associated clonal hematological non-mast cell lineage disease, mast cell leukemia, mast cell sarcoma, and extracutaneous mastocytoma. The two latest systemic variants are rare. Although the course of disease is unpredictable in children, lesions generally resolve by early adulthood. In adults, however, the disease tends to persist. The goal of treatment should be to control clinical manifestations caused by the release of mast cell mediators and, in more aggressive forms of the disease, to reduce mast cell burden. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.

  6. Different culture conditions affect the growth of human tendon stem/progenitor cells (TSPCs) within a mixed tendon cells (TCs) population.

    PubMed

    Viganò, M; Perucca Orfei, C; Colombini, A; Stanco, D; Randelli, P; Sansone, V; de Girolamo, L

    2017-12-01

    Tendon resident cells (TCs) are a mixed population made of terminally differentiated tenocytes and tendon stem/progenitor cells (TSPCs). Since the enrichment of progenitors proportion could enhance the effectiveness of treatments based on these cell populations, the interest on the effect of culture conditions on the TSPCs is growing. In this study the clonal selection and the culture in presence or absence of basic fibroblast growth factor (bFGF) were used to assess their influences on the stemness properties and phenotype specific features of tendon cells. Cells cultured with the different methods were analyzed in terms of clonogenic and differentiation abilities, stem and tendon specific genes expression and immunophenotype at passage 2 and passage 4. The clonal selection allowed to isolate cells with a higher multi-differentiation potential, but at the same time a lower proliferation rate in comparison to the whole population. Moreover, the clones express a higher amounts of stemness marker OCT4 and tendon specific transcription factor Scleraxis (SCX) mRNA, but a lower level of decorin (DCN). On the other hand, the number of cells obtained by clonal selection was extremely low and most of the clones were unable to reach a high number of passages in cultures. The presence of bFGF influences TCs morphology, enhance their proliferation rate and reduce their clonogenic ability. Interestingly, the expression of CD54, a known mesenchymal stem cell marker, is reduced in presence of bFGF at early passages. Nevertheless, bFGF does not affect the chondrogenic and osteogenic potential of TCs and the expression of tendon specific markers, while it was able to downregulate the OCT4 expression. This study showed that clonal selection enhance progenitors content in TCs populations, but the extremely low number of cells produced with this method could represent an insurmountable obstacle to its application in clinical approaches. We observed that the addition of bFGF to the culture medium promotes the maintenance of a higher number of differentiated cells, reducing the proportion of progenitors within the whole population. Overall our findings demonstrated the importance of the use of specific culture protocols to obtain tendon cells for possible clinical applications.

  7. The clonal and mutational evolution spectrum of primary triple-negative breast cancers.

    PubMed

    Shah, Sohrab P; Roth, Andrew; Goya, Rodrigo; Oloumi, Arusha; Ha, Gavin; Zhao, Yongjun; Turashvili, Gulisa; Ding, Jiarui; Tse, Kane; Haffari, Gholamreza; Bashashati, Ali; Prentice, Leah M; Khattra, Jaswinder; Burleigh, Angela; Yap, Damian; Bernard, Virginie; McPherson, Andrew; Shumansky, Karey; Crisan, Anamaria; Giuliany, Ryan; Heravi-Moussavi, Alireza; Rosner, Jamie; Lai, Daniel; Birol, Inanc; Varhol, Richard; Tam, Angela; Dhalla, Noreen; Zeng, Thomas; Ma, Kevin; Chan, Simon K; Griffith, Malachi; Moradian, Annie; Cheng, S-W Grace; Morin, Gregg B; Watson, Peter; Gelmon, Karen; Chia, Stephen; Chin, Suet-Feung; Curtis, Christina; Rueda, Oscar M; Pharoah, Paul D; Damaraju, Sambasivarao; Mackey, John; Hoon, Kelly; Harkins, Timothy; Tadigotla, Vasisht; Sigaroudinia, Mahvash; Gascard, Philippe; Tlsty, Thea; Costello, Joseph F; Meyer, Irmtraud M; Eaves, Connie J; Wasserman, Wyeth W; Jones, Steven; Huntsman, David; Hirst, Martin; Caldas, Carlos; Marra, Marco A; Aparicio, Samuel

    2012-04-04

    Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.

  8. A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development.

    PubMed

    Yao, Zizhen; Mich, John K; Ku, Sherman; Menon, Vilas; Krostag, Anne-Rachel; Martinez, Refugio A; Furchtgott, Leon; Mulholland, Heather; Bort, Susan; Fuqua, Margaret A; Gregor, Ben W; Hodge, Rebecca D; Jayabalu, Anu; May, Ryan C; Melton, Samuel; Nelson, Angelique M; Ngo, N Kiet; Shapovalova, Nadiya V; Shehata, Soraya I; Smith, Michael W; Tait, Leah J; Thompson, Carol L; Thomsen, Elliot R; Ye, Chaoyang; Glass, Ian A; Kaykas, Ajamete; Yao, Shuyuan; Phillips, John W; Grimley, Joshua S; Levi, Boaz P; Wang, Yanling; Ramanathan, Sharad

    2017-01-05

    During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/β-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Increased H+ efflux is sufficient to induce dysplasia and necessary for viability with oncogene expression

    PubMed Central

    Grillo-Hill, Bree K; Choi, Changhoon; Jimenez-Vidal, Maite; Barber, Diane L

    2015-01-01

    Intracellular pH (pHi) dynamics is increasingly recognized as an important regulator of a range of normal and pathological cell behaviors. Notably, increased pHi is now acknowledged as a conserved characteristic of cancers and in cell models is confirmed to increase proliferation and migration as well as limit apoptosis. However, the significance of increased pHi for cancer in vivo remains unresolved. Using Drosophila melanogaster, we show that increased pHi is sufficient to induce dysplasia in the absence of other transforming cues and potentiates growth and invasion with oncogenic Ras. Using a genetically encoded biosensor we also confirm increased pHi in situ. Moreover, in Drosophila models and clonal human mammary cells we show that limiting H+ efflux with oncogenic Raf or Ras induces acidosis and synthetic lethality. Further, we show lethality in invasive primary tumor cell lines with inhibiting H+ efflux. Synthetic lethality with reduced H+ efflux and activated oncogene expression could be exploited therapeutically to restrain cancer progression while limiting off-target effects. DOI: http://dx.doi.org/10.7554/eLife.03270.001 PMID:25793441

  10. Isthmin 1 (ism1) is required for normal hematopoiesis in developing zebrafish.

    PubMed

    Berrun, Arturo; Harris, Elena; Stachura, David L

    2018-01-01

    Hematopoiesis is an essential and highly regulated biological process that begins with hematopoietic stem cells (HSCs). In healthy organisms, HSCs are responsible for generating a multitude of mature blood cells every day, yet the molecular pathways that instruct HSCs to self-renew and differentiate into post-mitotic blood cells are not fully known. To understand these molecular pathways, we investigated novel genes expressed in hematopoietic-supportive cell lines from the zebrafish (Danio rerio), a model system increasingly utilized to uncover molecular pathways important in the development of other vertebrate species. We performed RNA sequencing of the transcriptome of three stromal cell lines derived from different stages of embryonic and adult zebrafish and identified hundreds of highly expressed transcripts. For our studies, we focused on isthmin 1 (ism1) due to its shared synteny with its human gene ortholog and because it is a secreted protein. To characterize ism1, we performed loss-of-function experiments to identify if mature blood cell production was disrupted. Myeloid and erythroid lineages were visualized and scored with transgenic zebrafish expressing lineage-specific markers. ism1 knockdown led to reduced numbers of neutrophils, macrophages, and erythrocytes. Analysis of clonal methylcellulose assays from ism1 morphants also showed a reduction in total hematopoietic stem and progenitor cells (HSPCs). Overall, we demonstrate that ism1 is required for normal generation of HSPCs and their downstream progeny during zebrafish hematopoiesis. Further investigation into ism1 and its importance in hematopoiesis may elucidate evolutionarily conserved processes in blood formation that can be further investigated for potential clinical utility.

  11. Isthmin 1 (ism1) is required for normal hematopoiesis in developing zebrafish

    PubMed Central

    Berrun, Arturo; Harris, Elena

    2018-01-01

    Hematopoiesis is an essential and highly regulated biological process that begins with hematopoietic stem cells (HSCs). In healthy organisms, HSCs are responsible for generating a multitude of mature blood cells every day, yet the molecular pathways that instruct HSCs to self-renew and differentiate into post-mitotic blood cells are not fully known. To understand these molecular pathways, we investigated novel genes expressed in hematopoietic-supportive cell lines from the zebrafish (Danio rerio), a model system increasingly utilized to uncover molecular pathways important in the development of other vertebrate species. We performed RNA sequencing of the transcriptome of three stromal cell lines derived from different stages of embryonic and adult zebrafish and identified hundreds of highly expressed transcripts. For our studies, we focused on isthmin 1 (ism1) due to its shared synteny with its human gene ortholog and because it is a secreted protein. To characterize ism1, we performed loss-of-function experiments to identify if mature blood cell production was disrupted. Myeloid and erythroid lineages were visualized and scored with transgenic zebrafish expressing lineage-specific markers. ism1 knockdown led to reduced numbers of neutrophils, macrophages, and erythrocytes. Analysis of clonal methylcellulose assays from ism1 morphants also showed a reduction in total hematopoietic stem and progenitor cells (HSPCs). Overall, we demonstrate that ism1 is required for normal generation of HSPCs and their downstream progeny during zebrafish hematopoiesis. Further investigation into ism1 and its importance in hematopoiesis may elucidate evolutionarily conserved processes in blood formation that can be further investigated for potential clinical utility. PMID:29758043

  12. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells.

    PubMed

    Watanabe, Toshiki

    2017-03-02

    Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) that develops through a multistep carcinogenesis process involving 5 or more genetic events. We provide a comprehensive overview of recently uncovered information on the molecular basis of leukemogenesis in ATL. Broadly, the landscape of genetic abnormalities in ATL that include alterations highly enriched in genes for T-cell receptor-NF-κB signaling such as PLCG1 , PRKCB , and CARD11 and gain-of function mutations in CCR4 and CCR7 Conversely, the epigenetic landscape of ATL can be summarized as polycomb repressive complex 2 hyperactivation with genome-wide H3K27 me3 accumulation as the basis of the unique transcriptome of ATL cells. Expression of H3K27 methyltransferase enhancer of zeste 2 was shown to be induced by HTLV-1 Tax and NF-κB. Furthermore, provirus integration site analysis with high-throughput sequencing enabled the analysis of clonal composition and cell number of each clone in vivo, whereas multicolor flow cytometric analysis with CD7 and cell adhesion molecule 1 enabled the identification of HTLV-1-infected CD4 + T cells in vivo. Sorted immortalized but untransformed cells displayed epigenetic changes closely overlapping those observed in terminally transformed ATL cells, suggesting that epigenetic abnormalities are likely earlier events in leukemogenesis. These new findings broaden the scope of conceptualization of the molecular mechanisms of leukemogenesis, dissecting them into immortalization and clonal progression. These recent findings also open a new direction of drug development for ATL prevention and treatment because epigenetic marks can be reprogrammed. Mechanisms underlying initial immortalization and progressive accumulation of these abnormalities remain to be elucidated. © 2017 by The American Society of Hematology.

  13. Proliferating cell nuclear antigen promotes cell proliferation and tumorigenesis by up-regulating STAT3 in non-small cell lung cancer.

    PubMed

    Wang, Liuxin; Kong, Weixiang; Liu, Bing; Zhang, Xueqing

    2018-08-01

    Proliferating cell nuclear antigen (PCNA) functions as a bridging molecule, which targets proteins that have distinct roles in cell growth. The expression of PCNA is dysregulated in some tumors and takes part in the progression of oncogenesis. However, the roles of PCNA in the progression of non-small cell lung cancer (NSCLC) remain unknown. The present study aimed to investigate the function of PCNA in the occurrence and development of NSCLC and its underlying molecular mechanisms. Western blotting, RT-PCR, and immunohistochemistry assays were used to detect the expression pattern of PCNA in NSCLC tissues and cells. A log rank test was performed to compare the overall survival (OS) of patients with high/low expression of PCNA. Besides, the relationship between PCNA and signal transducer and activator of transcription-3 (STAT3) proteins were evaluated. Then, MTT, flow cytometry, clonal formation, and in vivo xenograft assays were conducted to investigate the effects of PCNA/STAT3 on cell growth, clonal formation, apoptosis, and tumorigenesis. Results showed that PCNA expression was elevated in NSCLC tissues and cells and it could combine with STAT3 and increased its expression and phosphorylation. Moreover, the expression of PCNA showed a positive correlation with the TNM grade and occurrence rate of the lymphatic metastasis and poor prognosis of NSCLC patients. Overexpression of PCNA promoted cell proliferation, clonal formation, and tumorigenesis in lung cancer cells and inhibited cell apoptosis. In contrast, these effects were inhibited when knockdown of STAT3. In conclusion, this study demonstrates that PCNA functions as an oncogene in the progression of NSCLC through up-regulation of STAT3. These findings point to a potentially new therapeutic strategy for NSCLC. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study.

    PubMed

    Takahashi, Koichi; Wang, Feng; Kantarjian, Hagop; Doss, Denaha; Khanna, Kanhav; Thompson, Erika; Zhao, Li; Patel, Keyur; Neelapu, Sattva; Gumbs, Curtis; Bueso-Ramos, Carlos; DiNardo, Courtney D; Colla, Simona; Ravandi, Farhad; Zhang, Jianhua; Huang, Xuelin; Wu, Xifeng; Samaniego, Felipe; Garcia-Manero, Guillermo; Futreal, P Andrew

    2017-01-01

    Therapy-related myeloid neoplasms are secondary malignancies that are often fatal, but their risk factors are not well understood. Evidence suggests that individuals with clonal haemopoiesis have increased risk of developing haematological malignancies. We aimed to identify whether patients with cancer who have clonal haemopoiesis are at an increased risk of developing therapy-related myeloid neoplasms. We did this retrospective case-control study to compare the prevalence of clonal haemopoiesis between patients treated for cancer who later developed therapy-related myeloid neoplasms (cases) and patients who did not develop these neoplasms (controls). All patients in both case and control groups were treated at MD Anderson Cancer Center (Houston, TX, USA) from 1997 to 2015. We used the institutional medical database to locate these patients. Patients were included as cases if they were treated for a primary cancer, subsequently developed therapy-related myeloid neoplasms, and had available paired samples of bone marrow from the time of therapy-related myeloid neoplasm diagnosis and peripheral blood from the time of primary cancer diagnosis. Patients were eligible for inclusion as age-matched controls if they were treated for lymphoma, received combination chemotherapy, and did not develop therapy-related myeloid neoplasms after at least 5 years of follow-up. We used molecular barcode sequencing of 32 genes on the pretreatment peripheral blood samples to detect clonal haemopoiesis. For cases, we also used targeted gene sequencing on bone marrow samples and investigated clonal evolution from clonal haemopoiesis to the development of therapy-related myeloid neoplasms. To further clarify the association between clonal haemopoiesis and therapy-related myeloid neoplasm development, we also analysed the prevalence of clonal haemopoiesis in an external cohort of patients with lymphoma who were treated in a randomised trial of front-line chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone, with or without melatonin. This trial was done at MD Anderson Cancer Center between 1999 and 2001 (protocol number 98-009). We identified 14 cases and 54 controls. Of the 14 cases, we detected clonal haemopoiesis in the peripheral blood samples of ten (71%) patients. We detected clonal haemopoiesis in 17 (31%) of the 54 controls. The cumulative incidence of therapy-related myeloid neoplasms in both cases and controls at 5 years was significantly higher in patients with clonal haemopoiesis (30%, 95% CI 16-51) than in those without (7%, 2-21; p=0·016). In the external cohort, five (7%) of 74 patients developed therapy-related myeloid neoplasms, of whom four (80%) had clonal haemopoiesis; 11 (16%) of 69 patients who did not develop therapy-related myeloid neoplasms had clonal haemopoiesis. In the external cohort, the cumulative incidence of therapy-related myeloid neoplasms at 10 years was significantly higher in patients with clonal haemopoiesis (29%, 95% CI 8-53) than in those without (0%, 0-0; p=0·0009). In a multivariate Fine and Gray model based on the external cohort, the presence of clonal haemopoiesis significantly increased the risk of therapy-related myeloid neoplasm development (hazard ratio 13·7, 95% CI 1·7-108·7; p=0·013). Preleukaemic clonal haemopoiesis is common in patients with therapy-related myeloid neoplasms at the time of their primary cancer diagnosis and before they have been exposed to treatment. Our results suggest that clonal haemopoiesis could be used as a predictive marker to identify patients with cancer who are at risk of developing therapy-related myeloid neoplasms. A prospective trial to validate this concept is warranted. Cancer Prevention Research Institute of Texas, Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, NIH through MD Anderson Cancer Center Support Grant, and the MD Anderson MDS & AML Moon Shots Program. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. O(6)-methylguanine DNA-methyltransferase (MGMT) overexpression in melanoma cells induces resistance to nitrosoureas and temozolomide but sensitizes to mitomycin C.

    PubMed

    Passagne, Isabelle; Evrard, Alexandre; Depeille, Philippe; Cuq, Pierre; Cupissol, Didier; Vian, Laurence

    2006-03-01

    Alkylating agents play an important role in the chemotherapy of malignant melanomas. The activity of alkylating agents depends on their capacity to form alkyl adducts with DNA, in some cases causing cross-linking of DNA strands. However, the use of these agents is limited by cellular resistance induced by the DNA repair enzyme O(6)-methylguanine DNA-methyltransferase (MGMT) which removes alkyl groups from alkylated DNA strands. To determine to what extent the expression of MGMT in melanoma cells induces resistance to alkylating agents, the human cell line CAL77 Mer- (i.e., MGMT deficient) were transfected with pcMGMT vector containing human MGMT cDNA. Several clones expressing MGMT at a high level were selected to determine their sensitivity to chemotherapeutic drugs. Melanoma-transfected cells were found to be significantly less sensitive to nitrosoureas (carmustine, fotemustine, streptozotocin) and temozolomide with an increase of IC(50) values between 3 and 14 when compared to parent cells. No difference in cell survival rates between MGMT-proficient and -deficient cells was observed for melphalan, chlorambucil, busulphan, thiotepa and cisplatin which preferentially induce N(7) guanine lesions. Surprisingly, MGMT overexpression increased the sensitivity of CAL77 cells to mitomycin C by approximately 10-fold. Treatment of clonal cell lines with buthionine-[S,R]-sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase which depletes cellular glutathione, completely reversed this unexpected increase in sensitivity to mitomycin C. This observation suggests that glutathione is involved in the sensitivity of MGMT-transfected cells to mitomycin C and may act synergistically with MGMT via an unknown mechanism.

  16. CRISPR/Cas9-Mediated Mutagenesis of Human Pluripotent Stem Cells in Defined Xeno-Free E8 Medium.

    PubMed

    Soh, Chew-Li; Huangfu, Danwei

    2017-01-01

    The recent advent of engineered nucleases including the CRISPR/Cas9 system has greatly facilitated genome manipulation in human pluripotent stem cells (hPSCs). In addition to facilitating hPSC-based disease studies, the application of genome engineering in hPSCs has also opened up new avenues for cell replacement therapy. To improve consistency and reproducibility of hPSC-based studies, and to meet the safety and regulatory requirements for clinical translation, it is necessary to use a defined, xeno-free cell culture system. This chapter describes protocols for CRISPR/Cas9 genome editing in an inducible Cas9 hPSC-based system, using cells cultured in chemically defined, xeno-free E8 Medium on a recombinant human vitronectin substrate. We detail procedures for the design and transfection of CRISPR guide RNAs, colony selection, and the expansion and validation of clonal mutant lines, all within this fully defined culture condition. These methods may be applied to a wide range of genome-engineering applications in hPSCs, including those that utilize different types of site-specific nucleases such as zinc finger nucleases (ZFNs) and TALENs, and form a closer step towards clinical utility of these cells.

  17. HIV-1 integration landscape during latent and active infection

    PubMed Central

    Cohn, Lillian; Silva, Israel T.; Oliveira, Thiago Y.; Rosales, Rafael A.; Parrish, Erica H.; Learn, Gerald H.; Hahn, Beatrice H.; Czartoski, Julie L.; McElrath, M. Juliana; Lehmann, Clara; Klein, Florian; Caskey, Marina; Walker, Bruce D.; Siliciano, Janet D.; Siliciano, Robert F.; Jankovic, Mila; Nussenzweig, Michel C.

    2015-01-01

    SUMMARY The barrier to curing HIV-1 is thought to reside primarily in CD4+ T cells containing silent proviruses. To characterize these latently infected cells, we studied the integration profile of HIV-1 in viremic progressors, individuals receiving antiretroviral therapy, and viremic controllers. Clonally expanded T cells represented the majority of all integrations and increased during therapy. However, none of the 75 expanded T cell clones assayed contained intact virus. In contrast, the cells bearing single integration events decreased in frequency over time on therapy, and the surviving cells were enriched for HIV-1 integration in silent regions of the genome. Finally, there was a strong preference for integration into, or in close proximity to Alu repeats, which were also enriched in local hotspots for integration. The data indicate that dividing clonally expanded T cells contain defective proviruses, and that the replication competent reservoir is primarily found in CD4+ T cells that remain relatively quiescent. PMID:25635456

  18. Neutral competition of stem cells is skewed by proliferative changes downstream of Hh and Hpo.

    PubMed

    Amoyel, Marc; Simons, Benjamin D; Bach, Erika A

    2014-10-16

    Neutral competition, an emerging feature of stem cell homeostasis, posits that individual stem cells can be lost and replaced by their neighbors stochastically, resulting in chance dominance of a clone at the niche. A single stem cell with an oncogenic mutation could bias this process and clonally spread the mutation throughout the stem cell pool. The Drosophila testis provides an ideal system for testing this model. The niche supports two stem cell populations that compete for niche occupancy. Here, we show that cyst stem cells (CySCs) conform to the paradigm of neutral competition and that clonal deregulation of either the Hedgehog (Hh) or Hippo (Hpo) pathway allows a single CySC to colonize the niche. We find that the driving force behind such behavior is accelerated proliferation. Our results demonstrate that a single stem cell colonizes its niche through oncogenic mutation by co-opting an underlying homeostatic process. © 2014 The Authors.

  19. T cell-intrinsic requirement for NF-kappa B induction in postdifferentiation IFN-gamma production and clonal expansion in a Th1 response.

    PubMed

    Corn, Radiah A; Aronica, Mark A; Zhang, Fuping; Tong, Yingkai; Stanley, Sarah A; Kim, Se Ryoung Agnes; Stephenson, Linda; Enerson, Ben; McCarthy, Susan; Mora, Ana; Boothby, Mark

    2003-08-15

    NF-kappaB/Rel transcription factors are linked to innate immune responses and APC activation. Whether and how the induction of NF-kappaB signaling in normal CD4(+) T cells regulates effector function are not well-understood. The liberation of NF-kappaB dimers from inhibitors of kappaB (IkappaBs) constitutes a central checkpoint for physiologic regulation of most forms of NF-kappaB. To investigate the role of NF-kappaB induction in effector T cell responses, we targeted inhibition of the NF-kappaB/Rel pathway specifically to T cells. The Th1 response in vivo is dramatically weakened when T cells defective in their NF-kappaB induction (referred to as IkappaBalpha(DeltaN) transgenic cells) are activated by a normal APC population. Analyses in vivo, and IL-12-supplemented T cell cultures in vitro, reveal that the mechanism underlying this T cell-intrinsic requirement for NF-kappaB involves activation of the IFN-gamma gene in addition to clonal expansion efficiency. The role of NF-kappaB in IFN-gamma gene expression includes a modest decrease in Stat4 activation, T box expressed in T cell levels, and differentiation efficiency along with a more prominent postdifferentiation step. Further, induced expression of Bcl-3, a trans-activating IkappaB-like protein, is decreased in T cells as a consequence of NF-kappaB inhibition. Together, these findings indicate that NF-kappaB induction in T cells regulates efficient clonal expansion, Th1 differentiation, and IFN-gamma production by Th1 lymphocytes at a control point downstream from differentiation.

  20. Patient-Reported Outcome Questionnaire for Systemic Mastocytosis

    ClinicalTrials.gov

    2017-01-06

    Aggressive Systemic Mastocytosis (ASM); SM w Assoc Clonal Hema Non-mast Cell Lineage Disease (SM-AHNMD); Mast Cell Leukemia (MCL); Smoldering Systemic Mastocytosis (SSM); Indolent Systemic Mastocytosis (ISM) ISM Subgroup Fully Recruited

Top