Sample records for clone library method

  1. Physical mapping of complex genomes

    DOEpatents

    Evans, G.A.

    1993-06-15

    A method for the simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts in the pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert in the common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed.

  2. Mining the metagenome of activated biomass of an industrial wastewater treatment plant by a novel method.

    PubMed

    Sharma, Nandita; Tanksale, Himgouri; Kapley, Atya; Purohit, Hemant J

    2012-12-01

    Metagenomic libraries herald the era of magnifying the microbial world, tapping into the vast metabolic potential of uncultivated microbes, and enhancing the rate of discovery of novel genes and pathways. In this paper, we describe a method that facilitates the extraction of metagenomic DNA from activated sludge of an industrial wastewater treatment plant and its use in mining the metagenome via library construction. The efficiency of this method was demonstrated by the large representation of the bacterial genome in the constructed metagenomic libraries and by the functional clones obtained. The BAC library represented 95.6 times the bacterial genome, while, the pUC library represented 41.7 times the bacterial genome. Twelve clones in the BAC library demonstrated lipolytic activity, while four clones demonstrated dioxygenase activity. Four clones in pUC library tested positive for cellulase activity. This method, using FTA cards, not only can be used for library construction, but can also store the metagenome at room temperature.

  3. Efficient preparation of shuffled DNA libraries through recombination (Gateway) cloning.

    PubMed

    Lehtonen, Soili I; Taskinen, Barbara; Ojala, Elina; Kukkurainen, Sampo; Rahikainen, Rolle; Riihimäki, Tiina A; Laitinen, Olli H; Kulomaa, Markku S; Hytönen, Vesa P

    2015-01-01

    Efficient and robust subcloning is essential for the construction of high-diversity DNA libraries in the field of directed evolution. We have developed a more efficient method for the subcloning of DNA-shuffled libraries by employing recombination cloning (Gateway). The Gateway cloning procedure was performed directly after the gene reassembly reaction, without additional purification and amplification steps, thus simplifying the conventional DNA shuffling protocols. Recombination-based cloning, directly from the heterologous reassembly reaction, conserved the high quality of the library and reduced the time required for the library construction. The described method is generally compatible for the construction of DNA-shuffled gene libraries. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Physical mapping of complex genomes

    DOEpatents

    Evans, Glen A.

    1993-01-01

    Method for simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts int he pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert int he common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed. In other preferred embodiments, the cosmid clones are arranged in a three dimensional matrix, pooled and compared in threes according to intersecting planes of the three dimensional matrix. Arrangements corresponding to geometries of higher dimensions may also be prepared and used to simultaneously identify overlapping clones in highly complex libraries with relatively few hybridization reactions.

  5. Hybrid sequencing approach applied to human fecal metagenomic clone libraries revealed clones with potential biotechnological applications.

    PubMed

    Džunková, Mária; D'Auria, Giuseppe; Pérez-Villarroya, David; Moya, Andrés

    2012-01-01

    Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be "domesticated" for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7-15 kb) cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs) with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts.

  6. Evaluation of vector-primed cDNA library production from microgram quantities of total RNA.

    PubMed

    Kuo, Jonathan; Inman, Jason; Brownstein, Michael; Usdin, Ted B

    2004-12-15

    cDNA sequences are important for defining the coding region of genes, and full-length cDNA clones have proven to be useful for investigation of the function of gene products. We produced cDNA libraries containing 3.5-5 x 10(5) primary transformants, starting with 5 mug of total RNA prepared from mouse pituitary, adrenal, thymus, and pineal tissue, using a vector-primed cDNA synthesis method. Of approximately 1000 clones sequenced, approximately 20% contained the full open reading frames (ORFs) of known transcripts, based on the presence of the initiating methionine residue codon. The libraries were complex, with 94, 91, 83 and 55% of the clones from the thymus, adrenal, pineal and pituitary libraries, respectively, represented only once. Twenty-five full-length clones, not yet represented in the Mammalian Gene Collection, were identified. Thus, we have produced useful cDNA libraries for the isolation of full-length cDNA clones that are not yet available in the public domain, and demonstrated the utility of a simple method for making high-quality libraries from small amounts of starting material.

  7. Construction of a genomic DNA library with a TA vector and its application in cloning of the phytoene synthase gene from the cyanobacterium Spirulina platensis M-135

    NASA Astrophysics Data System (ADS)

    Yoshikazu, Kawata; Shin-Ichi, Yano; Hiroyuki, Kojima

    1998-03-01

    An efficient and simple method for constructing a genomic DNA library using a TA cloning vector is presented. It is based on the sonicative cleavage of genomic DNA and modification of fragment ends with Taq DNA polymerase, followed by ligation using a TA vector. This method was applied for cloning of the phytoene synthase gene crt B from Spirulina platensis. This method is useful when genomic DNA cannot be efficiently digested with restriction enzymes, a problem often encountered during the construction of a genomic DNA library of cyanobacteria.

  8. [Construction of fetal mesenchymal stem cell cDNA subtractive library].

    PubMed

    Yang, Li; Wang, Dong-Mei; Li, Liang; Bai, Ci-Xian; Cao, Hua; Li, Ting-Yu; Pei, Xue-Tao

    2002-04-01

    To identify differentially expressed genes between fetal mesenchymal stem cell (MSC) and adult MSC, especially specified genes expressed in fetal MSC, a cDNA subtractive library of fetal MSC was constructed using suppression subtractive hybridization (SSH) technique. At first, total RNA was isolated from fetal and adult MSC. Using SMART PCR synthesis method, single-strand and double-strand cDNAs were synthesized. After Rsa I digestion, fetal MSC cDNAs were divided into two groups and ligated to adaptor 1 and adaptor 2 respectively. Results showed that the amplified library contains 890 clones. Analysis of 890 clones with PCR demonstrated that 768 clones were positive. The positive rate is 86.3%. The size of inserted fragments in these positive clones was between 0.2 - 1 kb, with an average of 400 - 600 bp. SSH is a convenient and effective method for screening differentially expressed genes. The constructed cDNA subtractive library of fetal MSC cDNA lays solid foundation for screening and cloning new and specific function related genes of fetal MSC.

  9. Systematic cloning of human minisatellites from ordered array charomid libraries.

    PubMed

    Armour, J A; Povey, S; Jeremiah, S; Jeffreys, A J

    1990-11-01

    We present a rapid and efficient method for the isolation of minisatellite loci from human DNA. The method combines cloning a size-selected fraction of human MboI DNA fragments in a charomid vector with hybridization screening of the library in ordered array. Size-selection of large MboI fragments enriches for the longer, more variable minisatellites and reduces the size of the library required. The library was screened with a series of multi-locus probes known to detect a large number of hypervariable loci in human DNA. The gridded library allowed both the rapid processing of positive clones and the comparative evaluation of the different multi-locus probes used, in terms of both the relative success in detecting hypervariable loci and the degree of overlap between the sets of loci detected. We report 23 new human minisatellite loci isolated by this method, which map to 14 autosomes and the sex chromosomes.

  10. Rapid and efficient cDNA library screening by self-ligation of inverse PCR products (SLIP).

    PubMed

    Hoskins, Roger A; Stapleton, Mark; George, Reed A; Yu, Charles; Wan, Kenneth H; Carlson, Joseph W; Celniker, Susan E

    2005-12-02

    cDNA cloning is a central technology in molecular biology. cDNA sequences are used to determine mRNA transcript structures, including splice junctions, open reading frames (ORFs) and 5'- and 3'-untranslated regions (UTRs). cDNA clones are valuable reagents for functional studies of genes and proteins. Expressed Sequence Tag (EST) sequencing is the method of choice for recovering cDNAs representing many of the transcripts encoded in a eukaryotic genome. However, EST sequencing samples a cDNA library at random, and it recovers transcripts with low expression levels inefficiently. We describe a PCR-based method for directed screening of plasmid cDNA libraries. We demonstrate its utility in a screen of libraries used in our Drosophila EST projects for 153 transcription factor genes that were not represented by full-length cDNA clones in our Drosophila Gene Collection. We recovered high-quality, full-length cDNAs for 72 genes and variously compromised clones for an additional 32 genes. The method can be used at any scale, from the isolation of cDNA clones for a particular gene of interest, to the improvement of large gene collections in model organisms and the human. Finally, we discuss the relative merits of directed cDNA library screening and RT-PCR approaches.

  11. A strategy for rapid production and screening of yeast artificial chromosome libraries.

    PubMed

    Strauss, W M; Jaenisch, E; Jaenisch, R

    1992-01-01

    We describe methods for rapid production and screening of yeast artificial chromosome (YAC) libraries. Utilizing complete restriction digests of mouse genomic DNA for ligations in agarose, a 32,000-clone library was produced and screened in seven weeks. Screening was accomplished by subdividing primary transformation plates into pools of approximately 100 clones which were transferred into a master glycerol stock. These master stocks were used to inoculate liquid cultures to produce culture "pools," and ten pools of 100 clones were then combined to yield superpools of 1,000 clones. Both pool and superpool DNA was screened by polymerase chain reaction (PCR) and positive pools representing 100 clones were then plated on selective medium and screened by in situ hybridization. Screening by the two tiered PCR assay and by in situ hybridization was completed in 4-5 days. Utilizing this methodology we have isolated a 150 kb clone spanning the alpha 1(I) collagen (Col1a1) gene as well as 40 kb clones from the Hox-2 locus. To characterize the representation of the YAC library, the size distribution of genomic Sal I fragments was compared to that of clones picked at random from the library. The results demonstrate significant biasing of the cloned fragment distribution, resulting in a loss of representation for larger fragments.

  12. Single-step colony assay for screening antibody libraries.

    PubMed

    Kato, Mieko; Hanyu, Yoshiro

    2017-08-10

    We describe a method, single-step colony assay, for simple and rapid screening of single-chain Fv fragment (scFv) libraries. Colonies of Escherichia coli expressing the scFv library are formed on a hydrophilic filter that is positioned in contact with a membrane coated with an antigen. scFv expression is triggered upon treatment of colonies with an induction reagent, following which scFvs are secreted from the cells and diffused to the antigen-coated membrane. scFvs that exhibit binding affinity for the antigen are captured by the membrane-immobilized antigen. Lastly, detection of scFv binding of the antigen on the membrane allows identification of the clones on the filter that express antigen-specific scFvs. We tested this methodology by using an anti-rabbit IgG scFv, scFv(A10B), and a rat immune scFv library. Experiments conducted using scFv(A10B) revealed that this method improves scFv expression during the colony assay. By using our method to screen an immune library of 3×10 3 scFv clones, we established several clones exhibiting affinity for the antigen. Moreover, we tested 7 other antigens, including peptides, and successfully identified positive clones. We believe that this simple procedure and controlled scFv expression of the single-step colony assay could make the antibody screening both rapid and reliable and lead to successful isolation of positive clones from antibody libraries. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Improved serial analysis of V1 ribosomal sequence tags (SARST-V1) provides a rapid, comprehensive, sequence-based characterization of bacterial diversity and community composition.

    PubMed

    Yu, Zhongtang; Yu, Marie; Morrison, Mark

    2006-04-01

    Serial analysis of ribosomal sequence tags (SARST) is a recently developed technology that can generate large 16S rRNA gene (rrs) sequence data sets from microbiomes, but there are numerous enzymatic and purification steps required to construct the ribosomal sequence tag (RST) clone libraries. We report here an improved SARST method, which still targets the V1 hypervariable region of rrs genes, but reduces the number of enzymes, oligonucleotides, reagents, and technical steps needed to produce the RST clone libraries. The new method, hereafter referred to as SARST-V1, was used to examine the eubacterial diversity present in community DNA recovered from the microbiome resident in the ovine rumen. The 190 sequenced clones contained 1055 RSTs and no less than 236 unique phylotypes (based on > or = 95% sequence identity) that were assigned to eight different eubacterial phyla. Rarefaction and monomolecular curve analyses predicted that the complete RST clone library contains 99% of the 353 unique phylotypes predicted to exist in this microbiome. When compared with ribosomal intergenic spacer analysis (RISA) of the same community DNA sample, as well as a compilation of nine previously published conventional rrs clone libraries prepared from the same type of samples, the RST clone library provided a more comprehensive characterization of the eubacterial diversity present in rumen microbiomes. As such, SARST-V1 should be a useful tool applicable to comprehensive examination of diversity and composition in microbiomes and offers an affordable, sequence-based method for diversity analysis.

  14. Monitoring of microbial communities in anaerobic digestion sludge for biogas optimisation.

    PubMed

    Lim, Jun Wei; Ge, Tianshu; Tong, Yen Wah

    2018-01-01

    This study characterised and compared the microbial communities of anaerobic digestion (AD) sludge using three different methods - (1) Clone library; (2) Pyrosequencing; and (3) Terminal restriction fragment length polymorphism (T-RFLP). Although high-throughput sequencing techniques are becoming increasingly popular and affordable, the reliance of such techniques for frequent monitoring of microbial communities may be a financial burden for some. Furthermore, the depth of microbial analysis revealed by high-throughput sequencing may not be required for monitoring purposes. This study aims to develop a rapid, reliable and economical approach for the monitoring of microbial communities in AD sludge. A combined approach where genetic information of sequences from clone library was used to assign phylogeny to T-RFs determined experimentally was developed in this study. In order to assess the effectiveness of the combined approach, microbial communities determined by the combined approach was compared to that characterised by pyrosequencing. Results showed that both pyrosequencing and clone library methods determined the dominant bacteria phyla to be Proteobacteria, Firmicutes, Bacteroidetes, and Thermotogae. Both methods also found that sludge A and B were predominantly dominated by acetogenic methanogens followed by hydrogenotrophic methanogens. The number of OTUs detected by T-RFLP was significantly lesser than that detected by the clone library. In this study, T-RFLP analysis identified majority of the dominant species of the archaeal consortia. However, many of the more highly diverse bacteria consortia were missed. Nevertheless, the combined approach developed in this study where clone sequences from the clone library were used to assign phylogeny to T-RFs determined experimentally managed to accurately predict the same dominant microbial groups for both sludge A and sludge B, as compared to the pyrosequencing results. Results showed that the combined approach of clone library and T-RFLP accurately predicted the dominant microbial groups and thus is a reliable and more economical way to monitor the evolution of microbial systems in AD sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The development and characterisation of a bacterial artificial chromosome library for Fragaria vesca

    PubMed Central

    Bonet, Julio; Girona, Elena Lopez; Sargent, Daniel J; Muñoz-Torres, Monica C; Monfort, Amparo; Abbott, Albert G; Arús, Pere; Simpson, David W; Davik, Jahn

    2009-01-01

    Background The cultivated strawberry Fragaria ×ananassa is one of the most economically-important soft-fruit species. Few structural genomic resources have been reported for Fragaria and there exists an urgent need for the development of physical mapping resources for the genus. The first stage in the development of a physical map for Fragaria is the construction and characterisation of a high molecular weight bacterial artificial chromosome (BAC) library. Methods A BAC library, consisting of 18,432 clones was constructed from Fragaria vesca f. semperflorens accession 'Ali Baba'. BAC DNA from individual library clones was pooled to create a PCR-based screening assay for the library, whereby individual clones could be identified with just 34 PCR reactions. These pools were used to screen the BAC library and anchor individual clones to the diploid Fragaria reference map (FV×FN). Findings Clones from the BAC library developed contained an average insert size of 85 kb, representing over seven genome equivalents. The pools and superpools developed were used to identify a set of BAC clones containing 70 molecular markers previously mapped to the diploid Fragaria FV×FN reference map. The number of positive colonies identified for each marker suggests the library represents between 4× and 10× coverage of the diploid Fragaria genome, which is in accordance with the estimate of library coverage based on average insert size. Conclusion This BAC library will be used for the construction of a physical map for F. vesca and the superpools will permit physical anchoring of molecular markers using PCR. PMID:19772672

  16. Cloning and study of the pectate lyase gene of Erwinia carotovora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukanov, N.O.; Fonshtein, M.Yu.; Evtushenkov, A.N.

    1986-04-01

    The cloning of the gene of a secretable protein of Erwinia carotovora, pectate lyase, in Escherichia coli was described. Primary cloning was conducted using the phage vector lambda 47.1. In the gene library of E. carotovora obtained, eight phages carrying the gene sought were identified according to the appearance of enzymatic activity of the gene product, pectate lyase, in situ. The BamHI fragment of DNA, common to all these phages, was recloned on the plasmid pUC19. It was shown that the cloned pectate lyase gene is represented on the E. carotovora chromosome in one copy. Methods of production of representativemore » gene libraries on phage vectors from no less than 1 ..mu..g of cloned DNA even for the genomes of eukaryotes have now been developed. Vectors have been created, for example, lambda 47.1, permitting the selection only of hybrid molecules. A number of methods have been developed for the search for a required gene in the library, depending on whether the cloned gene can be expressed or not, and if it can, what properties it will impart to the hybrid clone containing it.« less

  17. Alignment-Independent Comparisons of Human Gastrointestinal Tract Microbial Communities in a Multidimensional 16S rRNA Gene Evolutionary Space▿

    PubMed Central

    Rudi, Knut; Zimonja, Monika; Kvenshagen, Bente; Rugtveit, Jarle; Midtvedt, Tore; Eggesbø, Merete

    2007-01-01

    We present a novel approach for comparing 16S rRNA gene clone libraries that is independent of both DNA sequence alignment and definition of bacterial phylogroups. These steps are the major bottlenecks in current microbial comparative analyses. We used direct comparisons of taxon density distributions in an absolute evolutionary coordinate space. The coordinate space was generated by using alignment-independent bilinear multivariate modeling. Statistical analyses for clone library comparisons were based on multivariate analysis of variance, partial least-squares regression, and permutations. Clone libraries from both adult and infant gastrointestinal tract microbial communities were used as biological models. We reanalyzed a library consisting of 11,831 clones covering complete colons from three healthy adults in addition to a smaller 390-clone library from infant feces. We show that it is possible to extract detailed information about microbial community structures using our alignment-independent method. Our density distribution analysis is also very efficient with respect to computer operation time, meeting the future requirements of large-scale screenings to understand the diversity and dynamics of microbial communities. PMID:17337554

  18. Application of clone library analysis and real-time PCR for comparison of microbial communities in a low-grade copper sulfide ore bioheap leachate.

    PubMed

    Bowei, Chen; Xingyu, Liu; Wenyan, Liu; Jiankang, Wen

    2009-11-01

    The microbial communities of leachate from a bioleaching heap located in China were analyzed using the 16S rRNA gene clone library and real-time quantitative PCR. Both methods showed that Leptospirillum spp. were the dominant bacteria, and Ferroplasma acidiphilum were the only archaea detected in the leachate. Clone library results indicated that nine operational taxonomic units (OTUs) were obtained, which fell into four divisions, the Nitrospirae (74%), the gamma-Proteobacteria (14%), the Actinobacteria (6%) and the Euryarchaeota (6%). The results obtained by real-time PCR in some ways were the same as clone library analysis. Furthermore, Sulfobacillus spp., detected only by real-time PCR, suggests that real-time PCR was a reliable technology to study the microbial communities in bioleaching environments. It is a useful tool to assist clone library analysis, to further understand microbial consortia and to have comprehensive and exact microbiological information about bioleaching environments. Finally, the interactions among the microorganisms detected in the leachate were summarized according to the characteristics of these species.

  19. Low-frequency chimeric yeast artificial chromosome libraries from flow-sorted human chromosomes 16 and 21.

    PubMed Central

    McCormick, M K; Campbell, E; Deaven, L; Moyzis, R

    1993-01-01

    Construction of chromosome-specific yeast artificial chromosome (YAC) libraries from sorted chromosomes was undertaken (i) to eliminate drawbacks associated with first-generation total genomic YAC libraries, such as the high frequency of chimeric YACs, and (ii) to provide an alternative method for generating chromosome-specific YAC libraries in addition to isolating such collections from a total genomic library. Chromosome-specific YAC libraries highly enriched for human chromosomes 16 and 21 were constructed. By maximizing the percentage of fragments with two ligatable ends and performing yeast transformations with less than saturating amounts of DNA in the presence of carrier DNA, YAC libraries with a low percentage of chimeric clones were obtained. The smaller number of YAC clones in these chromosome-specific libraries reduces the effort involved in PCR-based screening and allows hybridization methods to be a manageable screening approach. Images PMID:8430075

  20. Construction of the BAC Library of Small Abalone (Haliotis diversicolor) for Gene Screening and Genome Characterization.

    PubMed

    Jiang, Likun; You, Weiwei; Zhang, Xiaojun; Xu, Jian; Jiang, Yanliang; Wang, Kai; Zhao, Zixia; Chen, Baohua; Zhao, Yunfeng; Mahboob, Shahid; Al-Ghanim, Khalid A; Ke, Caihuan; Xu, Peng

    2016-02-01

    The small abalone (Haliotis diversicolor) is one of the most important aquaculture species in East Asia. To facilitate gene cloning and characterization, genome analysis, and genetic breeding of it, we constructed a large-insert bacterial artificial chromosome (BAC) library, which is an important genetic tool for advanced genetics and genomics research. The small abalone BAC library includes 92,610 clones with an average insert size of 120 Kb, equivalent to approximately 7.6× of the small abalone genome. We set up three-dimensional pools and super pools of 18,432 BAC clones for target gene screening using PCR method. To assess the approach, we screened 12 target genes in these 18,432 BAC clones and identified 16 positive BAC clones. Eight positive BAC clones were then sequenced and assembled with the next generation sequencing platform. The assembled contigs representing these 8 BAC clones spanned 928 Kb of the small abalone genome, providing the first batch of genome sequences for genome evaluation and characterization. The average GC content of small abalone genome was estimated as 40.33%. A total of 21 protein-coding genes, including 7 target genes, were annotated into the 8 BACs, which proved the feasibility of PCR screening approach with three-dimensional pools in small abalone BAC library. One hundred fifty microsatellite loci were also identified from the sequences for marker development in the future. The BAC library and clone pools provided valuable resources and tools for genetic breeding and conservation of H. diversicolor.

  1. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics

    PubMed Central

    Yehezkel, Tuval Ben; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud

    2016-01-01

    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development. PMID:26481354

  2. Analysis of a diverse assemblage of diazotrophic bacteria from Spartina alterniflora using DGGE and clone library screening.

    PubMed

    Lovell, Charles R; Decker, Peter V; Bagwell, Christopher E; Thompson, Shelly; Matsui, George Y

    2008-05-01

    Methods to assess the diversity of the diazotroph assemblage in the rhizosphere of the salt marsh cordgrass, Spartina alterniflora were examined. The effectiveness of nifH PCR-denaturing gradient gel electrophoresis (DGGE) was compared to that of nifH clone library analysis. Seventeen DGGE gel bands were sequenced and yielded 58 nonidentical nifH sequences from a total of 67 sequences determined. A clone library constructed using the GC-clamp nifH primers that were employed in the PCR-DGGE (designated the GC-Library) yielded 83 nonidentical sequences from a total of 257 nifH sequences. A second library constructed using an alternate set of nifH primers (N-Library) yielded 83 nonidentical sequences from a total of 138 nifH sequences. Rarefaction curves for the libraries did not reach saturation, although the GC-Library curve was substantially dampened and appeared to be closer to saturation than the N-Library curve. Phylogenetic analyses showed that DGGE gel band sequencing recovered nifH sequences that were frequently sampled in the GC-Library, as well as sequences that were infrequently sampled, and provided a species composition assessment that was robust, efficient, and relatively inexpensive to obtain. Further, the DGGE method permits a large number of samples to be examined for differences in banding patterns, after which bands of interest can be sampled for sequence determination.

  3. Methods for Selecting Phage Display Antibody Libraries.

    PubMed

    Jara-Acevedo, Ricardo; Diez, Paula; Gonzalez-Gonzalez, Maria; Degano, Rosa Maria; Ibarrola, Nieves; Gongora, Rafael; Orfao, Alberto; Fuentes, Manuel

    2016-01-01

    The selection process aims sequential enrichment of phage antibody display library in clones that recognize the target of interest or antigen as the library undergoes successive rounds of selection. In this review, selection methods most commonly used for phage display antibody libraries have been comprehensively described. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Capturing diversity of marine heterotrophic protists: one cell at a time

    PubMed Central

    Heywood, Jane L; Sieracki, Michael E; Bellows, Wendy; Poulton, Nicole J; Stepanauskas, Ramunas

    2011-01-01

    Recent applications of culture-independent, molecular methods have revealed unexpectedly high diversity in a variety of functional and phylogenetic groups of microorganisms in the ocean. However, none of the existing research tools are free from significant limitations, such as PCR and cloning biases, low phylogenetic resolution and others. Here, we employed novel, single-cell sequencing techniques to assess the composition of small (<10 μm diameter), heterotrophic protists from the Gulf of Maine. Single cells were isolated by flow cytometry, their genomes amplified, and 18S rRNA marker genes were amplified and sequenced. We compared the results to traditional environmental PCR cloning of sorted cells. The diversity of heterotrophic protists was significantly higher in the library of single amplified genomes (SAGs) than in environmental PCR clone libraries of the 18S rRNA gene, obtained from the same coastal sample. Libraries of SAGs, but not clones contained several recently discovered, uncultured groups, including picobiliphytes and novel marine stramenopiles. Clone, but not SAG, libraries contained several large clusters of identical and nearly identical sequences of Dinophyceae, Cercozoa and Stramenopiles. Similar results were obtained using two alternative primer sets, suggesting that PCR biases may not be the only explanation for the observed patterns. Instead, differences in the number of 18S rRNA gene copies among the various protist taxa probably had a significant role in determining the PCR clone composition. These results show that single-cell sequencing has the potential to more accurately assess protistan community composition than previously established methods. In addition, the creation of SAG libraries opens opportunities for the analysis of multiple genes or entire genomes of the uncultured protist groups. PMID:20962875

  5. Construction, Characterization, and Preliminary BAC-End Sequence Analysis of a Bacterial Artificial Chromosome Library of the Tea Plant (Camellia sinensis)

    PubMed Central

    Lin, Jinke; Kudrna, Dave; Wing, Rod A.

    2011-01-01

    We describe the construction and characterization of a publicly available BAC library for the tea plant, Camellia sinensis. Using modified methods, the library was constructed with the aim of developing public molecular resources to advance tea plant genomics research. The library consists of a total of 401,280 clones with an average insert size of 135 kb, providing an approximate coverage of 13.5 haploid genome equivalents. No empty vector clones were observed in a random sampling of 576 BAC clones. Further analysis of 182 BAC-end sequences from randomly selected clones revealed a GC content of 40.35% and low chloroplast and mitochondrial contamination. Repetitive sequence analyses indicated that LTR retrotransposons were the most predominant sequence class (86.93%–87.24%), followed by DNA retrotransposons (11.16%–11.69%). Additionally, we found 25 simple sequence repeats (SSRs) that could potentially be used as genetic markers. PMID:21234344

  6. Enhancement and Analysis of Human Antiaflatoxin B1 (AFB1) scFv Antibody-Ligand Interaction Using Chain Shuffling.

    PubMed

    Rangnoi, Kuntalee; Choowongkomon, Kiattawee; O'Kennedy, Richard; Rüker, Florian; Yamabhai, Montarop

    2018-06-06

    A human antiaflatoxin B1 (AFB1) scFv antibody (yAFB1-c3), selected from a naı̈ve human phage-displayed scFv library, was used as a template for improving and analysis of antibody-ligand interactions using the chain-shuffling technique. The variable-heavy and variable-light (VH/VL)-shuffled library was constructed from the VH of 25 preselected clones recombined with the VL of yAFB1-c3 and vice versa. Affinity selection from these libraries demonstrated that the VH domain played an important role in the binding of scFv to free AFB1. Therefore, in the next step, VH-shuffled scFv library was constructed from variable-heavy (VH) chain repertoires, amplified from the naı̈ve library, recombined with the variable-light (VL) chain of the clone yAFB1-c3. This library was then used to select a specific scFv antibody against soluble AFB1 by a standard biopanning method. Three clones that showed improved binding properties were isolated. Amino acid sequence analysis indicated that the improved clones have amino acid mutations in framework 1 (FR1) and the complementarity determining region (CDR1) of the VH chain. One clone, designated sAFH-3e3, showed 7.5-fold improvement in sensitivity over the original scFv clone and was selected for molecular binding studies with AFB1. Homology modeling and molecular docking were used to compare the binding of this and the original clones. The results confirmed that VH is more important than VL for AFB1 binding.

  7. An efficient and sensitive method for preparing cDNA libraries from scarce biological samples

    PubMed Central

    Sterling, Catherine H.; Veksler-Lublinsky, Isana; Ambros, Victor

    2015-01-01

    The preparation and high-throughput sequencing of cDNA libraries from samples of small RNA is a powerful tool to quantify known small RNAs (such as microRNAs) and to discover novel RNA species. Interest in identifying the small RNA repertoire present in tissues and in biofluids has grown substantially with the findings that small RNAs can serve as indicators of biological conditions and disease states. Here we describe a novel and straightforward method to clone cDNA libraries from small quantities of input RNA. This method permits the generation of cDNA libraries from sub-picogram quantities of RNA robustly, efficiently and reproducibly. We demonstrate that the method provides a significant improvement in sensitivity compared to previous cloning methods while maintaining reproducible identification of diverse small RNA species. This method should have widespread applications in a variety of contexts, including biomarker discovery from scarce samples of human tissue or body fluids. PMID:25056322

  8. [Archaeal community structure and diversity in Urumqi No. 10 cold sulfur spring analyzed by culture-independent approach].

    PubMed

    Li, Ping; Zeng, Jun; Zulipiya, Yunus; Gao, Xiaoqi; Dong, Xiuhuang; Xue, Juan; Lou, Kai

    2013-03-04

    We explored the composition and diversity of archaea in a cold sulfur spring water in Xinjiang earthquake fault zone. Environmental total DNA was extracted directly with enzymatic lysis method from a cold sulfur spring water. We constructed clone library of 16S rRNA gene amplified with archaeal-specific primers. A total of 115 positive clones were selected randomly from the library and identified by restriction length polymorphism (RFLP) with enzyme Alu I and Afa I. The unique RFLP patterns corresponded clones were selected for sequencing, BLAS alignment and constructing 16S rRNA gene phylogenetic tree. In total, 44 operational taxonomic units (OTUs) were determined from the library. BLAST and phylogenetic analysis indicated that these OTUs were affiliated with Euryarchaeota (94.78%) and Thaumarchaeota (4.35%). Only one Thaumarchaeotal clone was detected and most related to the genus Nitrosopumilus with 93% similarity. Euryarchaeotal clones were abundant and diverse. Of them, 42.61% of clones belonged to RC-V cluster; 13.91% of clones, 20.87% of clones were classified into LDS cluster and Methanomicrobiales respectively; 4.35% of clones had high similarity with ANME-1a-FW, which were involved in Anaerobic oxidation of methane (AOM). In addition, we also detected some (13.05%) unknown Euryarchaotal clones. Euryarchaeota in the environment were diverse, and possibly with a large fraction of potential novel species.

  9. Large-Scale Concatenation cDNA Sequencing

    PubMed Central

    Yu, Wei; Andersson, Björn; Worley, Kim C.; Muzny, Donna M.; Ding, Yan; Liu, Wen; Ricafrente, Jennifer Y.; Wentland, Meredith A.; Lennon, Greg; Gibbs, Richard A.

    1997-01-01

    A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7–2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (>20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (≥98% identity), and 16 clones generated nonexact matches (57%–97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching. [All 65 cDNA clone sequences described in this paper have been submitted to the GenBank data library under accession nos. U79240–U79304.] PMID:9110174

  10. Efficient and simpler method to construct normalized cDNA libraries with improved representations of full-length cDNAs

    DOEpatents

    Soares, Marcelo Bento; Bonaldo, Maria de Fatima

    1998-01-01

    This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods.

  11. Efficient and simpler method to construct normalized cDNA libraries with improved representations of full-length cDNAs

    DOEpatents

    Soares, M.B.; Fatima Bonaldo, M. de

    1998-12-08

    This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods. 25 figs.

  12. Construction of BAC Libraries from Flow-Sorted Chromosomes.

    PubMed

    Šafář, Jan; Šimková, Hana; Doležel, Jaroslav

    2016-01-01

    Cloned DNA libraries in bacterial artificial chromosome (BAC) are the most widely used form of large-insert DNA libraries. BAC libraries are typically represented by ordered clones derived from genomic DNA of a particular organism. In the case of large eukaryotic genomes, whole-genome libraries consist of a hundred thousand to a million clones, which make their handling and screening a daunting task. The labor and cost of working with whole-genome libraries can be greatly reduced by constructing a library derived from a smaller part of the genome. Here we describe construction of BAC libraries from mitotic chromosomes purified by flow cytometric sorting. Chromosome-specific BAC libraries facilitate positional gene cloning, physical mapping, and sequencing in complex plant genomes.

  13. Phylogenetic screening of a bacterial, metagenomic library using homing endonuclease restriction and marker insertion

    PubMed Central

    Yung, Pui Yi; Burke, Catherine; Lewis, Matt; Egan, Suhelen; Kjelleberg, Staffan; Thomas, Torsten

    2009-01-01

    Metagenomics provides access to the uncultured majority of the microbial world. The approaches employed in this field have, however, had limited success in linking functional genes to the taxonomic or phylogenetic origin of the organism they belong to. Here we present an efficient strategy to recover environmental DNA fragments that contain phylogenetic marker genes from metagenomic libraries. Our method involves the cleavage of 23S ribsosmal RNA (rRNA) genes within pooled library clones by the homing endonuclease I-CeuI followed by the insertion and selection of an antibiotic resistance cassette. This approach was applied to screen a library of 6500 fosmid clones derived from the microbial community associated with the sponge Cymbastela concentrica. Several fosmid clones were recovered after the screen and detailed phylogenetic and taxonomic assignment based on the rRNA gene showed that they belong to previously unknown organisms. In addition, compositional features of these fosmid clones were used to classify and taxonomically assign a dataset of environmental shotgun sequences. Our approach represents a valuable tool for the analysis of rapidly increasing, environmental DNA sequencing information. PMID:19767618

  14. BAC Libraries from Wheat Chromosome 7D – Efficient Tool for Positional Cloning of Aphid Resistance Genes

    USDA-ARS?s Scientific Manuscript database

    Positional cloning in bread wheat is a tedious task due to its huge genome size (~17 Gbp) and polyploid character. BAC libraries represent an essential tool for positional cloning. However, wheat BAC libraries comprise more than million clones, which make their screening very laborious. Here we pres...

  15. Construction of a BAC library and mapping BAC clones to the linkage map of Barramundi, Lates calcarifer.

    PubMed

    Wang, Chun Ming; Lo, Loong Chueng; Feng, Felicia; Gong, Ping; Li, Jian; Zhu, Ze Yuan; Lin, Grace; Yue, Gen Hua

    2008-03-25

    Barramundi (Lates calcarifer) is an important farmed marine food fish species. Its first generation linkage map has been applied to map QTL for growth traits. To identify genes located in QTL responsible for specific traits, genomic large insert libraries are of crucial importance. We reported herein a bacterial artificial chromosome (BAC) library and the mapping of BAC clones to the linkage map. This BAC library consisted of 49,152 clones with an average insert size of 98 kb, representing 6.9-fold haploid genome coverage. Screening the library with 24 microsatellites and 15 ESTs/genes demonstrated that the library had good genome coverage. In addition, 62 novel microsatellites each isolated from 62 BAC clones were mapped onto the first generation linkage map. A total of 86 BAC clones were anchored on the linkage map with at least one BAC clone on each linkage group. We have constructed the first BAC library for L. calcarifer and mapped 86 BAC clones to the first generation linkage map. This BAC library and the improved linkage map with 302 DNA markers not only supply an indispensable tool to the integration of physical and linkage maps, the fine mapping of QTL and map based cloning genes located in QTL of commercial importance, but also contribute to comparative genomic studies and eventually whole genome sequencing.

  16. A Polymerase Chain Reaction-Based Method for Isolating Clones from a Complimentary DNA Library in Sheep

    PubMed Central

    Friis, Thor Einar; Stephenson, Sally; Xiao, Yin; Whitehead, Jon

    2014-01-01

    The sheep (Ovis aries) is favored by many musculoskeletal tissue engineering groups as a large animal model because of its docile temperament and ease of husbandry. The size and weight of sheep are comparable to humans, which allows for the use of implants and fixation devices used in human clinical practice. The construction of a complimentary DNA (cDNA) library can capture the expression of genes in both a tissue- and time-specific manner. cDNA libraries have been a consistent source of gene discovery ever since the technology became commonplace more than three decades ago. Here, we describe the construction of a cDNA library using cells derived from sheep bones based on the pBluescript cDNA kit. Thirty clones were picked at random and sequenced. This led to the identification of a novel gene, C12orf29, which our initial experiments indicate is involved in skeletal biology. We also describe a polymerase chain reaction-based cDNA clone isolation method that allows the isolation of genes of interest from a cDNA library pool. The techniques outlined here can be applied in-house by smaller tissue engineering groups to generate tools for biomolecular research for large preclinical animal studies and highlights the power of standard cDNA library protocols to uncover novel genes. PMID:24447069

  17. SSHscreen and SSHdb, generic software for microarray based gene discovery: application to the stress response in cowpea

    PubMed Central

    2010-01-01

    Background Suppression subtractive hybridization is a popular technique for gene discovery from non-model organisms without an annotated genome sequence, such as cowpea (Vigna unguiculata (L.) Walp). We aimed to use this method to enrich for genes expressed during drought stress in a drought tolerant cowpea line. However, current methods were inefficient in screening libraries and management of the sequence data, and thus there was a need to develop software tools to facilitate the process. Results Forward and reverse cDNA libraries enriched for cowpea drought response genes were screened on microarrays, and the R software package SSHscreen 2.0.1 was developed (i) to normalize the data effectively using spike-in control spot normalization, and (ii) to select clones for sequencing based on the calculation of enrichment ratios with associated statistics. Enrichment ratio 3 values for each clone showed that 62% of the forward library and 34% of the reverse library clones were significantly differentially expressed by drought stress (adjusted p value < 0.05). Enrichment ratio 2 calculations showed that > 88% of the clones in both libraries were derived from rare transcripts in the original tester samples, thus supporting the notion that suppression subtractive hybridization enriches for rare transcripts. A set of 118 clones were chosen for sequencing, and drought-induced cowpea genes were identified, the most interesting encoding a late embryogenesis abundant Lea5 protein, a glutathione S-transferase, a thaumatin, a universal stress protein, and a wound induced protein. A lipid transfer protein and several components of photosynthesis were down-regulated by the drought stress. Reverse transcriptase quantitative PCR confirmed the enrichment ratio values for the selected cowpea genes. SSHdb, a web-accessible database, was developed to manage the clone sequences and combine the SSHscreen data with sequence annotations derived from BLAST and Blast2GO. The self-BLAST function within SSHdb grouped redundant clones together and illustrated that the SSHscreen plots are a useful tool for choosing anonymous clones for sequencing, since redundant clones cluster together on the enrichment ratio plots. Conclusions We developed the SSHscreen-SSHdb software pipeline, which greatly facilitates gene discovery using suppression subtractive hybridization by improving the selection of clones for sequencing after screening the library on a small number of microarrays. Annotation of the sequence information and collaboration was further enhanced through a web-based SSHdb database, and we illustrated this through identification of drought responsive genes from cowpea, which can now be investigated in gene function studies. SSH is a popular and powerful gene discovery tool, and therefore this pipeline will have application for gene discovery in any biological system, particularly non-model organisms. SSHscreen 2.0.1 and a link to SSHdb are available from http://microarray.up.ac.za/SSHscreen. PMID:20359330

  18. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRna Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  19. Changes in the Composition of Drinking Water Bacterial Clone Libraries Introduced by Using Two Different 16S rRNA Gene PCR Primers

    EPA Science Inventory

    Sequence analysis of 16S rRNA gene clone libraries is a popular tool used to describe the composition of natural microbial communities. Commonly, clone libraries are developed by direct cloning of 16S rRNA gene PCR products. Different primers are often employed in the initial amp...

  20. Bacterial diversity associated with the rotifer Brachionus plicatilis sp. complex determined by culture-dependent and -independent methods.

    PubMed

    Ishino, Ryota; Iehata, Shunpei; Nakano, Miyo; Tanaka, Reiji; Yoshimatsu, Takao; Maeda, Hiroto

    2012-03-01

    The bacterial communities associated with rotifers (Brachionus plicatilis sp. complex) and their culture water were determined using culture-dependent and -independent methods (16S rRNA gene clone library). The bacterial communities determined by the culture-independent method were more diverse than those determined by the culture-dependent method. Although the culture-dependent method indicated the bacterial community of rotifers was relatively similar to that of the culture water, 16S rRNA gene clone library analyses revealed a great difference between the two microbiotas. Our results suggest that most bacteria associated with rotifers are not easily cultured using conventional methods, and that the microbiota of rotifers do not correspond with that of the culture water completely.

  1. Libraries of Synthetic TALE-Activated Promoters: Methods and Applications.

    PubMed

    Schreiber, T; Tissier, A

    2016-01-01

    The discovery of proteins with programmable DNA-binding specificities triggered a whole array of applications in synthetic biology, including genome editing, regulation of transcription, and epigenetic modifications. Among those, transcription activator-like effectors (TALEs) due to their natural function as transcription regulators, are especially well-suited for the development of orthogonal systems for the control of gene expression. We describe here the construction and testing of libraries of synthetic TALE-activated promoters which are under the control of a single TALE with a given DNA-binding specificity. These libraries consist of a fixed DNA-binding element for the TALE, a TATA box, and variable sequences of 19 bases upstream and 43 bases downstream of the DNA-binding element. These libraries were cloned using a Golden Gate cloning strategy making them usable as standard parts in a modular cloning system. The broad range of promoter activities detected and the versatility of these promoter libraries make them valuable tools for applications in the fine-tuning of expression in metabolic engineering projects or in the design and implementation of regulatory circuits. © 2016 Elsevier Inc. All rights reserved.

  2. Differences in the methanogen population exist in sika deer (Cervus nippon) fed different diets in China.

    PubMed

    Li, Zhi Peng; Liu, Han Lu; Jin, Chun Ai; Cui, Xue Zhe; Jing, Yi; Yang, Fu He; Li, Guang Yu; Wright, André-Denis G

    2013-11-01

    Understanding the methanogen structure from sika deer (Cervus nippon) in China may be beneficial to methane mitigation. In the present preliminary study, we investigated the methanogen community in the rumen of domesticated sika deer fed either tannin-rich plants (oak leaf, OL group) or corn stalk (CS group) using 16S rRNA gene clone libraries. Overall, we obtained 197 clone sequences, revealing 146 unique phylotypes, which were assigned to 36 operational taxonomic units at the species level (98 % identity). Methanogens related to the genus Methanobrevibacter were the predominant phylotypes representing 83.9 % (OL library) and 85.9 % (CS library) of the clones. Methanobrevibacter millerae was the most abundant species in both libraries, but the proportion of M. millerae-related clones in the CS library was higher than in the OL library (69.5 and 51.4 %, respectively). Moreover, Methanobrevibacter wolinii-related clones (32.5 %) were predominant in the OL library. Methanobrevibacter smithii-related clones and Methanobrevibacter ruminantium-related clones accounted for 6.5 and 6.6 % in the CS library, respectively. However, these clones were absent from the OL library. The concentrations of butyrate and total short-chain fatty acids (SCFAs) were significantly higher in the OL group, but the concentrations of acetate, propionate, and valerate and the acetate to propionate ratio in the OL group were not significantly different between the two groups. Tannin-rich plants may have affected the distribution of genus Methanobrevibacter phylotypes at the species level and the concentration and composition of SCFAs.

  3. A Blumeria graminisf.sp. hordei BAC library--contig building and microsynteny studies.

    PubMed

    Pedersen, Carsten; Wu, Boqian; Giese, Henriette

    2002-11-01

    A bacterial artificial chromosome (BAC) library of Blumeria graminis f.sp. hordei, containing 12,000 clones with an average insert size of 41 kb, was constructed. The library represents about three genome equivalents and BAC-end sequencing showed a high content of repetitive sequences, making contig-building difficult. To identify overlapping clones, several strategies were used: colony hybridisation, PCR screening, fingerprinting techniques and the use of single-copy expressed sequence tags. The latter proved to be the most efficient method for identification of overlapping clones. Two contigs, at or close to avirulence loci, were constructed. Single nucleotide polymorphism (SNP) markers were developed from BAC-end sequences to link the contigs to the genetic maps. Two other BAC contigs were used to study microsynteny between B. graminis and two other ascomycetes, Neurospora crassa and Aspergillus fumigatus. The library provides an invaluable tool for the isolation of avirulence genes from B. graminis and for the study of gene synteny between this fungus and other fungi.

  4. Combined Use of 16S Ribosomal DNA and 16S rRNA To Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil

    PubMed Central

    Nogales, Balbina; Moore, Edward R. B.; Llobet-Brossa, Enrique; Rossello-Mora, Ramon; Amann, Rudolf; Timmis, Kenneth N.

    2001-01-01

    The bacterial diversity assessed from clone libraries prepared from rRNA (two libraries) and ribosomal DNA (rDNA) (one library) from polychlorinated biphenyl (PCB)-polluted soil has been analyzed. A good correspondence of the community composition found in the two types of library was observed. Nearly 29% of the cloned sequences in the rDNA library were identical to sequences in the rRNA libraries. More than 60% of the total cloned sequence types analyzed were grouped in phylogenetic groups (a clone group with sequence similarity higher than 97% [98% for Burkholderia and Pseudomonas-type clones]) represented in both types of libraries. Some of those phylogenetic groups, mostly represented by a single (or pair) of cloned sequence type(s), were observed in only one of the types of library. An important difference between the libraries was the lack of clones representative of the Actinobacteria in the rDNA library. The PCB-polluted soil exhibited a high bacterial diversity which included representatives of two novel lineages. The apparent abundance of bacteria affiliated to the beta-subclass of the Proteobacteria, and to the genus Burkholderia in particular, was confirmed by fluorescence in situ hybridization analysis. The possible influence on apparent diversity of low template concentrations was assessed by dilution of the RNA template prior to amplification by reverse transcription-PCR. Although differences in the composition of the two rRNA libraries obtained from high and low RNA concentrations were observed, the main components of the bacterial community were represented in both libraries, and therefore their detection was not compromised by the lower concentrations of template used in this study. PMID:11282645

  5. High-resolution mapping and sequence analysis of 597 cDNA clones transcribed from the 1 Mb region in human chromosome 4q16.3 containing Huntington disease gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadano, S.; Ishida, Y.; Tomiyasu, H.

    1994-09-01

    To complete a transcription map of the 1 Mb region in human chromosome 4p16.3 containing the Huntington disease (HD) gene, the isolation of cDNA clones are being performed throughout. Our method relies on a direct screening of the cDNA libraries probed with single copy microclones from 3 YAC clones spanning 1 Mbp of the HD gene region. AC-DNAs were isolated by a preparative pulsed-field gel electrophoresis, amplified by both a single unique primer (SUP)-PCR and a linker ligation PCR, and 6 microclone-DNA libraries were generated. Then, 8,640 microclones from these libraries were independently amplified by PCR, and arrayed onto themore » membranes. 800-900 microclones that were not cross-hybridized with total human and yeast genomic DNA, TAC vector DNA, and ribosomal cDNA on a dot hybridization (putatively carrying single copy sequences) were pooled to make 9 probe pools. A total of {approximately}1.8x10{sup 7} plaques from the human brain cDNA libraries was screened with 9 pool-probes, and then 672 positive cDNA clones were obtained. So far, 597 cDNA clones were defined and arrayed onto a map of the 1 Mbp of the HD gene region by hybridization with HD region-specific cosmid contigs and YAC clones. Further characterization including a DNA sequencing and Northern blot analysis is currently underway.« less

  6. Small RNA analysis in Petunia hybrida identifies unusual tissue-specific expression patterns of conserved miRNAs and of a 24mer RNA

    PubMed Central

    Tedder, Philip; Zubko, Elena; Westhead, David R.; Meyer, Peter

    2009-01-01

    Two pools of small RNAs were cloned from inflorescences of Petunia hybrida using a 5′-ligation dependent and a 5′-ligation independent approach. The two libraries were integrated into a public website that allows the screening of individual sequences against 359,769 unique clones. The library contains 15 clones with 100% identity and 53 clones with one mismatch to miRNAs described for other plant species. For two conserved miRNAs, miR159 and miR390, we find clear differences in tissue-specific distribution, compared with other species. This shows that evolutionary conservation of miRNA sequences does not necessarily include a conservation of the miRNA expression profile. Almost 60% of all clones in the database are 24-nucleotide clones. In accordance with the role of 24mers in marking repetitive regions, we find them distributed across retroviral and transposable element sequences but other 24mers map to promoter regions and to different transcript regions. For one target region we observe tissue-specific variation of matching 24mers, which demonstrates that, as for 21mers, 24mer concentrations are not necessarily identical in different tissues. Asymmetric distribution of a putative novel miRNA in the two libraries suggests that the cloning method can be selective for the representation of certain small RNAs in a collection. PMID:19369427

  7. Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta2 using a highly representative rice BAC library.

    PubMed

    Nakamura, S; Asakawa, S; Ohmido, N; Fukui, K; Shimizu, N; Kawasaki, S

    1997-05-01

    We constructed a rice Bacterial Artificial Chromosome (BAC) library from green leaf protoplasts of the cultivar Shimokita harboring the rice blast resistance gene Pi-ta. The average insert size of 155 kb and the library size of seven genome equivalents make it one of the most comprehensive BAC libraries available, and larger than many plant YAC libraries. The library clones were plated on seven high density membranes of microplate size, enabling efficient colony identification in colony hybridization experiments. Seven percent of clones carried chloroplast DNA. By probing with markers close to the blast resistance genes Pi-ta2(closely linked to Pi-ta) and Pi-b, respectively located in the centromeric region of chromosome 12 and near the telomeric end of chromosome 2, on average 2.2 +/- 1.3 and 8.0 +/- 2.6 BAC clones/marker were isolated. Differences in chromosomal structures may contribute to this wide variation in yield. A contig of about 800 kb, consisting of 19 clones, was constructed in the Pi-ta2 region. This region had a high frequency of repetitive sequences. To circumvent this difficulty, we devised a "two-step walking" method. The contig spanned a 300 kb region between markers located at 0 cM and 0.3 cM from Pi-ta. The ratio of physical to genetic distances (> 1,000 kb/cM) was more than three times larger than the average of rice (300 kb/cM). The low recombination rate and high frequency of repetitive sequences may also be related to the near centromeric character of this region. Fluorescent in situ hybridization (FISH) with a BAC clone from the Pi-b region yielded very clear signals on the long arm of chromosome 2, while a clone from the Pi-ta2 region showed various cross-hybridizing signals near the centromeric regions of all chromosomes.

  8. Molecular cloning of actin genes in Trichomonas vaginalis and phylogeny inferred from actin sequences.

    PubMed

    Bricheux, G; Brugerolle, G

    1997-08-01

    The parasitic protozoan Trichomonas vaginalis is known to contain the ubiquitous and highly conserved protein actin. A genomic library and a cDNA library have been screened to identify and clone the actin gene(s) of T. vaginalis. The nucleotide sequence of one gene and its flanking regions have been determined. The open reading frame encodes a protein of 376 amino acids. The sequence is not interrupted by any introns and the promoter could be represented by a 10 bp motif close to a consensus motif also found upstream of most sequenced T. vaginalis genes. The five different clones isolated from the cDNA library have similar sequences and encode three actin proteins differing only by one or two amino acids. A phylogenetic analysis of 31 actin sequences by distance matrix and parsimony methods, using centractin as outgroup, gives congruent trees with Parabasala branching above Diplomonadida.

  9. A highly functional synthetic phage display library containing over 40 billion human antibody clones.

    PubMed

    Weber, Marcel; Bujak, Emil; Putelli, Alessia; Villa, Alessandra; Matasci, Mattia; Gualandi, Laura; Hemmerle, Teresa; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics.

  10. A Highly Functional Synthetic Phage Display Library Containing over 40 Billion Human Antibody Clones

    PubMed Central

    Weber, Marcel; Bujak, Emil; Putelli, Alessia; Villa, Alessandra; Matasci, Mattia; Gualandi, Laura; Hemmerle, Teresa; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics. PMID:24950200

  11. Randomly picked cosmid clones overlap the pyrB and oriC gap in the physical map of the E. coli chromosome.

    PubMed Central

    Knott, V; Rees, D J; Cheng, Z; Brownlee, G G

    1988-01-01

    Sets of overlapping cosmid clones generated by random sampling and fingerprinting methods complement data at pyrB (96.5') and oriC (84') in the published physical map of E. coli. A new cloning strategy using sheared DNA, and a low copy, inducible cosmid vector were used in order to reduce bias in libraries, in conjunction with micro-methods for preparing cosmid DNA from a large number of clones. Our results are relevant to the design of the best approach to the physical mapping of large genomes. PMID:2834694

  12. Intravenous infusion of phage-displayed antibody library in human cancer patients: enrichment and cancer-specificity of tumor-homing phage-antibodies.

    PubMed

    Shukla, Girja S; Krag, David N; Peletskaya, Elena N; Pero, Stephanie C; Sun, Yu-Jing; Carman, Chelsea L; McCahill, Laurence E; Roland, Thomas A

    2013-08-01

    Phage display is a powerful method for target discovery and selection of ligands for cancer treatment and diagnosis. Our goal was to select tumor-binding antibodies in cancer patients. Eligibility criteria included absence of preexisting anti-phage-antibodies and a Stage IV cancer status. All patients were intravenously administered 1 × 10(11) TUs/kg of an scFv library 1 to 4 h before surgical resection of their tumors. No significant adverse events related to the phage library infusion were observed. Phage were successfully recovered from all tumors. Individual clones from each patient were assessed for binding to the tumor from which clones were recovered. Multiple tumor-binding phage-antibodies were identified. Soluble scFv antibodies were produced from the phage clones showing higher tumor binding. The tumor-homing phage-antibodies and derived soluble scFvs were found to bind varying numbers (0-5) of 8 tested normal human tissues (breast, cervix, colon, kidney, liver, spleen, skin, and uterus). The clones that showed high tumor-specificity were found to bind corresponding tumors from other patients also. Clone enrichment was observed based on tumor binding and DNA sequence data. Clone sequences of multiple variable regions showed significant matches to certain cancer-related antibodies. One of the clones (07-2,355) that was found to share a 12-amino-acid-long motif with a reported IL-17A antibody was further studied for competitive binding for possible antigen target identification. We conclude that these outcomes support the safety and utility of phage display library panning in cancer patients for ligand selection and target discovery for cancer treatment and diagnosis.

  13. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries.

    PubMed

    Polymenakou, Paraskevi N; Bertilsson, Stefan; Tselepides, Anastasios; Stephanou, Euripides G

    2005-10-01

    The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.

  14. Gene-targeted Random Mutagenesis to Select Heterochromatin-destabilizing Proteasome Mutants in Fission Yeast.

    PubMed

    Seo, Hogyu David; Lee, Daeyoup

    2018-05-15

    Random mutagenesis of a target gene is commonly used to identify mutations that yield the desired phenotype. Of the methods that may be used to achieve random mutagenesis, error-prone PCR is a convenient and efficient strategy for generating a diverse pool of mutants (i.e., a mutant library). Error-prone PCR is the method of choice when a researcher seeks to mutate a pre-defined region, such as the coding region of a gene while leaving other genomic regions unaffected. After the mutant library is amplified by error-prone PCR, it must be cloned into a suitable plasmid. The size of the library generated by error-prone PCR is constrained by the efficiency of the cloning step. However, in the fission yeast, Schizosaccharomyces pombe, the cloning step can be replaced by the use of a highly efficient one-step fusion PCR to generate constructs for transformation. Mutants of desired phenotypes may then be selected using appropriate reporters. Here, we describe this strategy in detail, taking as an example, a reporter inserted at centromeric heterochromatin.

  15. Complementary DNA libraries: an overview.

    PubMed

    Ying, Shao-Yao

    2004-07-01

    The generation of complete and full-length cDNA libraries for potential functional assays of specific gene sequences is essential for most molecules in biotechnology and biomedical research. The field of cDNA library generation has changed rapidly in the past 10 yr. This review presents an overview of the method available for the basic information of generating cDNA libraries, including the definition of the cDNA library, different kinds of cDNA libraries, difference between methods for cDNA library generation using conventional approaches and a novel strategy, and the quality of cDNA libraries. It is anticipated that the high-quality cDNA libraries so generated would facilitate studies involving genechips and the microarray, differential display, subtractive hybridization, gene cloning, and peptide library generation.

  16. Creating libraries for commercial yeast strains through miniaturization of cloning and transformations using the BioRAPTR FRD Microfluidic workstation

    USDA-ARS?s Scientific Manuscript database

    The ability to miniaturize molecular reactions can lead to significant cost savings when creating libraries of thousands of clones. For this application Beckman Coulter partnered with the USDA to provide a low-volume automated solution for library cloning for use in the development of yeast strains...

  17. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  18. Identification of gene fragments related to nitrogen deficiency in Eichhornia crassipes (Pontederiaceae).

    PubMed

    Fu, Minghui; Jiang, Lihua; Li, Yuanmei; Yan, Guohua; Zheng, Lijun; Jinping, Peng

    2014-12-01

    Eichhornia crassipes is an aquatic plant native to the Amazon River Basin. It has become a serious weed in freshwater habitats in rivers, lakes and reservoirs both in tropical and warm temperate areas worldwide. Some research has stated that it can be used for water phytoremediation, due to its strong assimilation of nitrogen and phosphorus, and the accumulation of heavy metals, and its growth and spread may play an important role in environmental ecology. In order to explore the molecular mechanism of E. crassipes to responses to nitrogen deficiency, we constructed forward and reversed subtracted cDNA libraries for E. crassipes roots under nitrogen deficient condition using a suppressive subtractive hybridization (SSH) method. The forward subtraction included 2,100 clones, and the reversed included 2,650 clones. One thousand clones were randomly selected from each library for sequencing. About 737 (527 unigenes) clones from the forward library and 757 (483 unigenes) clones from the reversed library were informative. Sequence BlastX analysis showed that there were more transporters and adenosylhomocysteinase-like proteins in E. crassipes cultured in nitrogen deficient medium; while, those cultured in nitrogen replete medium had more proteins such as UBR4-like e3 ubiquitin-protein ligase and fasciclin-like arabinogalactan protein 8-like, as well as more cytoskeletal proteins, including actin and tubulin. Cluster of Orthologous Group (COG) analysis also demonstrated that in the forward library, the most ESTs were involved in coenzyme transportation and metabolism. In the reversed library, cytoskeletal ESTs were the most abundant. Gene Ontology (GO) analysis categories demonstrated that unigenes involved in binding, cellular process and electron carrier were the most differentially expressed unigenes between the forward and reversed libraries. All these results suggest that E. crassipes can respond to different nitrogen status by efficiently regulating and controlling some transporter gene expressions, certain metabolism processes, specific signal transduction pathways and cytoskeletal construction.

  19. Recombination walking: genetic selection of clones from pooled libraries of yeast artificial chromosomes by homologous recombination.

    PubMed Central

    Miller, A M; Savinelli, E A; Couture, S M; Hannigan, G M; Han, Z; Selden, R F; Treco, D A

    1993-01-01

    Recombination walking is based on the genetic selection of specific human clones from a yeast artificial chromosome (YAC) library by homologous recombination. The desired clone is selected from a pooled (unordered) YAC library, eliminating labor-intensive steps typically used in organizing and maintaining ordered YAC libraries. Recombination walking represents an efficient approach to library screening and is well suited for chromosome-walking approaches to the isolation of genes associated with common diseases. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8367472

  20. Construction of random sheared fosmid library from Chinese cabbage and its use for Brassica rapa genome sequencing project.

    PubMed

    Park, Tae-Ho; Park, Beom-Seok; Kim, Jin-A; Hong, Joon Ki; Jin, Mina; Seol, Young-Joo; Mun, Jeong-Hwan

    2011-01-01

    As a part of the Multinational Genome Sequencing Project of Brassica rapa, linkage group R9 and R3 were sequenced using a bacterial artificial chromosome (BAC) by BAC strategy. The current physical contigs are expected to cover approximately 90% euchromatins of both chromosomes. As the project progresses, BAC selection for sequence extension becomes more limited because BAC libraries are restriction enzyme-specific. To support the project, a random sheared fosmid library was constructed. The library consists of 97536 clones with average insert size of approximately 40 kb corresponding to seven genome equivalents, assuming a Chinese cabbage genome size of 550 Mb. The library was screened with primers designed at the end of sequences of nine points of scaffold gaps where BAC clones cannot be selected to extend the physical contigs. The selected positive clones were end-sequenced to check the overlap between the fosmid clones and the adjacent BAC clones. Nine fosmid clones were selected and fully sequenced. The sequences revealed two completed gap filling and seven sequence extensions, which can be used for further selection of BAC clones confirming that the fosmid library will facilitate the sequence completion of B. rapa. Copyright © 2011. Published by Elsevier Ltd.

  1. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. Amore » minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.« less

  2. Species richness in soil bacterial communities: a proposed approach to overcome sample size bias.

    PubMed

    Youssef, Noha H; Elshahed, Mostafa S

    2008-09-01

    Estimates of species richness based on 16S rRNA gene clone libraries are increasingly utilized to gauge the level of bacterial diversity within various ecosystems. However, previous studies have indicated that regardless of the utilized approach, species richness estimates obtained are dependent on the size of the analyzed clone libraries. We here propose an approach to overcome sample size bias in species richness estimates in complex microbial communities. Parametric (Maximum likelihood-based and rarefaction curve-based) and non-parametric approaches were used to estimate species richness in a library of 13,001 near full-length 16S rRNA clones derived from soil, as well as in multiple subsets of the original library. Species richness estimates obtained increased with the increase in library size. To obtain a sample size-unbiased estimate of species richness, we calculated the theoretical clone library sizes required to encounter the estimated species richness at various clone library sizes, used curve fitting to determine the theoretical clone library size required to encounter the "true" species richness, and subsequently determined the corresponding sample size-unbiased species richness value. Using this approach, sample size-unbiased estimates of 17,230, 15,571, and 33,912 were obtained for the ML-based, rarefaction curve-based, and ACE-1 estimators, respectively, compared to bias-uncorrected values of 15,009, 11,913, and 20,909.

  3. Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries.

    PubMed

    Lam, Kathy N; Charles, Trevor C

    2015-01-01

    Clone libraries provide researchers with a powerful resource to study nucleic acid from diverse sources. Metagenomic clone libraries in particular have aided in studies of microbial biodiversity and function, and allowed the mining of novel enzymes. Libraries are often constructed by cloning large inserts into cosmid or fosmid vectors. Recently, there have been reports of GC bias in fosmid metagenomic libraries, and it was speculated to be a result of fragmentation and loss of AT-rich sequences during cloning. However, evidence in the literature suggests that transcriptional activity or gene product toxicity may play a role. To explore possible mechanisms responsible for sequence bias in clone libraries, we constructed a cosmid library from a human microbiome sample and sequenced DNA from different steps during library construction: crude extract DNA, size-selected DNA, and cosmid library DNA. We confirmed a GC bias in the final cosmid library, and we provide evidence that the bias is not due to fragmentation and loss of AT-rich sequences but is likely occurring after DNA is introduced into Escherichia coli. To investigate the influence of strong constitutive transcription, we searched the sequence data for promoters and found that rpoD/σ(70) promoter sequences were underrepresented in the cosmid library. Furthermore, when we examined the genomes of taxa that were differentially abundant in the cosmid library relative to the original sample, we found the bias to be more correlated with the number of rpoD/σ(70) consensus sequences in the genome than with simple GC content. The GC bias of metagenomic libraries does not appear to be due to DNA fragmentation. Rather, analysis of promoter sequences provides support for the hypothesis that strong constitutive transcription from sequences recognized as rpoD/σ(70) consensus-like in E. coli may lead to instability, causing loss of the plasmid or loss of the insert DNA that gives rise to the transcription. Despite widespread use of E. coli to propagate foreign DNA in metagenomic libraries, the effects of in vivo transcriptional activity on clone stability are not well understood. Further work is required to tease apart the effects of transcription from those of gene product toxicity.

  4. Effects of field-grown genetically modified Zoysia grass on bacterial community structure.

    PubMed

    Lee, Yong-Eok; Yang, Sang-Hwan; Bae, Tae-Woong; Kang, Hong-Gyu; Lim, Pyung-Ok; Lee, Hyo-Yeon

    2011-04-01

    Herbicide-tolerant Zoysia grass has been previously developed through Agrobacterium-mediated transformation. We investigated the effects of genetically modified (GM) Zoysia grass and the associated herbicide application on bacterial community structure by using culture-independent approaches. To assess the possible horizontal gene transfer (HGT) of transgenic DNA to soil microorganisms, total soil DNAs were amplified by PCR with two primer sets for the bar and hpt genes, which were introduced into the GM Zoysia grass by a callus-type transformation. The transgenic genes were not detected from the total genomic DNAs extracted from 1.5 g of each rhizosphere soils of GM and non-GM Zoysia grasses. The structures and diversities of the bacterial communities in rhizosphere soils of GM and non-GM Zoysia grasses were investigated by constructing 16S rDNA clone libraries. Classifier, provided in the RDP II, assigned 100 clones in the 16S rRNA gene sequences library into 11 bacterial phyla. The most abundant phyla in both clone libraries were Acidobacteria and Proteobacteria. The bacterial diversity of the GM clone library was lower than that of the non- GM library. The former contained four phyla, whereas the latter had seven phyla. Phylogenetic trees were constructed to confirm these results. Phylogenetic analyses of the two clone libraries revealed considerable difference from each other. The significance of difference between clone libraries was examined with LIBSHUFF statistics. LIBSHUFF analysis revealed that the two clone libraries differed significantly (P〈0.025), suggesting alterations in the composition of the microbial community associated with GM Zoysia grass.

  5. Combining yeast display and competitive FACS to select rare hapten-specific clones from recombinant antibody libraries

    DOE PAGES

    Sun, Yue; Ban, Bhupal; Bradbury, Andrew; ...

    2016-08-29

    The development of antibodies to low molecular weight haptens remains challenging due to both the low immunogenicity of many haptens and the cross-reactivity of the protein carriers used to generate the immune response. Recombinant antibodies and novel display technologies have greatly advanced antibody development; however, new techniques are still required to select rare hapten-specific antibodies from large recombinant libraries. In the present study, we used a combination of phage and yeast display to screen an immune antibody library (size, 4.4 × 10 6 ) against hapten markers for petroleum contamination (phenanthrene and methylphenanthrenes). Selection via phage display was used firstmore » to enrich the library between 20- and 100- fold for clones that bound to phenanthrene-protein conjugates. The enriched libraries were subsequently transferred to a yeast display system and a newly developed competitive FACS procedure was employed to select rare hapten-specific clones. Competitive FACS increased the frequency of hapten-specific scFvs in our yeast-displayed scFvs from 0.025 to 0.005% in the original library to between 13 and 35% in selected pools. The presence of hapten-specific scFvs was confirmed by competitive ELISA using periplasmic protein. Three distinct antibody clones that recognize phenanthrene and methylphenanthrenes were selected, and their distinctive binding properties were characterized. To our knowledge, these are first antibodies that can distinguish between methylated (petrogenic) versus unmethylated (pyrogenic) phenanthrenes; such antibodies will be useful in detecting the sources of environmental contamination. Furthermore, this selection method could be generally adopted in the selection of other hapten-specific recombinant antibodies.« less

  6. Combining yeast display and competitive FACS to select rare hapten-specific clones from recombinant antibody libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Ban, Bhupal; Bradbury, Andrew

    The development of antibodies to low molecular weight haptens remains challenging due to both the low immunogenicity of many haptens and the cross-reactivity of the protein carriers used to generate the immune response. Recombinant antibodies and novel display technologies have greatly advanced antibody development; however, new techniques are still required to select rare hapten-specific antibodies from large recombinant libraries. In the present study, we used a combination of phage and yeast display to screen an immune antibody library (size, 4.4 × 10 6 ) against hapten markers for petroleum contamination (phenanthrene and methylphenanthrenes). Selection via phage display was used firstmore » to enrich the library between 20- and 100- fold for clones that bound to phenanthrene-protein conjugates. The enriched libraries were subsequently transferred to a yeast display system and a newly developed competitive FACS procedure was employed to select rare hapten-specific clones. Competitive FACS increased the frequency of hapten-specific scFvs in our yeast-displayed scFvs from 0.025 to 0.005% in the original library to between 13 and 35% in selected pools. The presence of hapten-specific scFvs was confirmed by competitive ELISA using periplasmic protein. Three distinct antibody clones that recognize phenanthrene and methylphenanthrenes were selected, and their distinctive binding properties were characterized. To our knowledge, these are first antibodies that can distinguish between methylated (petrogenic) versus unmethylated (pyrogenic) phenanthrenes; such antibodies will be useful in detecting the sources of environmental contamination. Furthermore, this selection method could be generally adopted in the selection of other hapten-specific recombinant antibodies.« less

  7. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes.

    PubMed

    Maruthamuthu, Mukil; Jiménez, Diego Javier; Stevens, Patricia; van Elsas, Jan Dirk

    2016-01-28

    Functional metagenomics is a promising strategy for the exploration of the biocatalytic potential of microbiomes in order to uncover novel enzymes for industrial processes (e.g. biorefining or bleaching pulp). Most current methodologies used to screen for enzymes involved in plant biomass degradation are based on the use of single substrates. Moreover, highly diverse environments are used as metagenomic sources. However, such methods suffer from low hit rates of positive clones and hence the discovery of novel enzymatic activities from metagenomes has been hampered. Here, we constructed fosmid libraries from two wheat straw-degrading microbial consortia, denoted RWS (bred on untreated wheat straw) and TWS (bred on heat-treated wheat straw). Approximately 22,000 clones from each library were screened for (hemi)cellulose-degrading enzymes using a multi-chromogenic substrate approach. The screens yielded 71 positive clones for both libraries, giving hit rates of 1:440 and 1:1,047 for RWS and TWS, respectively. Seven clones (NT2-2, T5-5, NT18-17, T4-1, 10BT, NT18-21 and T17-2) were selected for sequence analyses. Their inserts revealed the presence of 18 genes encoding enzymes belonging to twelve different glycosyl hydrolase families (GH2, GH3, GH13, GH17, GH20, GH27, GH32, GH39, GH53, GH58, GH65 and GH109). These encompassed several carbohydrate-active gene clusters traceable mainly to Klebsiella related species. Detailed functional analyses showed that clone NT2-2 (containing a beta-galactosidase of ~116 kDa) had highest enzymatic activity at 55 °C and pH 9.0. Additionally, clone T5-5 (containing a beta-xylosidase of ~86 kDa) showed > 90% of enzymatic activity at 55 °C and pH 10.0. This study employed a high-throughput method for rapid screening of fosmid metagenomic libraries for (hemi)cellulose-degrading enzymes. The approach, consisting of screens on multi-substrates coupled to further analyses, revealed high hit rates, as compared with recent other studies. Two clones, 10BT and T4-1, required the presence of multiple substrates for detectable activity, indicating a new avenue in library activity screening. Finally, clones NT2-2, T5-5 and NT18-17 were found to encode putative novel thermo-alkaline enzymes, which could represent a starting point for further biotechnological applications.

  8. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China.

    PubMed

    Huang, Xiao Dan; Tan, Hui Yin; Long, Ruijun; Liang, Juan Boo; Wright, André-Denis G

    2012-10-19

    Methane emissions by methanogen from livestock ruminants have significantly contributed to the agricultural greenhouse gas effect. It is worthwhile to compare methanogen from "energy-saving" animal (yak) and normal animal (cattle) in order to investigate the link between methanogen structure and low methane production. Diversity of methanogens from the yak and cattle rumen was investigated by analysis of 16S rRNA gene sequences from rumen digesta samples from four yaks (209 clones) and four cattle (205 clones) from the Qinghai-Tibetan Plateau area (QTP). Overall, a total of 414 clones (i.e. sequences) were examined and assigned to 95 operational taxonomic units (OTUs) using MOTHUR, based upon a 98% species-level identity criterion. Forty-six OTUs were unique to the yak clone library and 34 OTUs were unique to the cattle clone library, while 15 OTUs were found in both libraries. Of the 95 OTUs, 93 putative new species were identified. Sequences belonging to the Thermoplasmatales-affiliated Linage C (TALC) were found to dominate in both libraries, accounting for 80.9% and 62.9% of the sequences from the yak and cattle clone libraries, respectively. Sequences belonging to the Methanobacteriales represented the second largest clade in both libraries. However, Methanobrevibacter wolinii (QTPC 110) was only found in the cattle library. The number of clones from the order Methanomicrobiales was greater in cattle than in the yak clone library. Although the Shannon index value indicated similar diversity between the two libraries, the Libshuff analysis indicated that the methanogen community structure of the yak was significantly different than those from cattle. This study revealed for the first time the molecular diversity of methanogen community in yaks and cattle in Qinghai-Tibetan Plateau area in China. From the analysis, we conclude that yaks have a unique rumen microbial ecosystem that is significantly different from that of cattle, this may also help to explain why yak produce less methane than cattle.

  9. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China

    PubMed Central

    2012-01-01

    Background Methane emissions by methanogen from livestock ruminants have significantly contributed to the agricultural greenhouse gas effect. It is worthwhile to compare methanogen from “energy-saving” animal (yak) and normal animal (cattle) in order to investigate the link between methanogen structure and low methane production. Results Diversity of methanogens from the yak and cattle rumen was investigated by analysis of 16S rRNA gene sequences from rumen digesta samples from four yaks (209 clones) and four cattle (205 clones) from the Qinghai-Tibetan Plateau area (QTP). Overall, a total of 414 clones (i.e. sequences) were examined and assigned to 95 operational taxonomic units (OTUs) using MOTHUR, based upon a 98% species-level identity criterion. Forty-six OTUs were unique to the yak clone library and 34 OTUs were unique to the cattle clone library, while 15 OTUs were found in both libraries. Of the 95 OTUs, 93 putative new species were identified. Sequences belonging to the Thermoplasmatales-affiliated Linage C (TALC) were found to dominate in both libraries, accounting for 80.9% and 62.9% of the sequences from the yak and cattle clone libraries, respectively. Sequences belonging to the Methanobacteriales represented the second largest clade in both libraries. However, Methanobrevibacter wolinii (QTPC 110) was only found in the cattle library. The number of clones from the order Methanomicrobiales was greater in cattle than in the yak clone library. Although the Shannon index value indicated similar diversity between the two libraries, the Libshuff analysis indicated that the methanogen community structure of the yak was significantly different than those from cattle. Conclusion This study revealed for the first time the molecular diversity of methanogen community in yaks and cattle in Qinghai-Tibetan Plateau area in China. From the analysis, we conclude that yaks have a unique rumen microbial ecosystem that is significantly different from that of cattle, this may also help to explain why yak produce less methane than cattle. PMID:23078429

  10. Preparation and screening of an arrayed human genomic library generated with the P1 cloning system.

    PubMed Central

    Shepherd, N S; Pfrogner, B D; Coulby, J N; Ackerman, S L; Vaidyanathan, G; Sauer, R H; Balkenhol, T C; Sternberg, N

    1994-01-01

    We describe here the construction and initial characterization of a 3-fold coverage genomic library of the human haploid genome that was prepared using the bacteriophage P1 cloning system. The cloned DNA inserts were produced by size fractionation of a Sau3AI partial digest of high molecular weight genomic DNA isolated from primary cells of human foreskin fibroblasts. The inserts were cloned into the pAd10sacBII vector and packaged in vitro into P1 phage. These were used to generate recombinant bacterial clones, each of which was picked robotically from an agar plate into a well of a 96-well microtiter dish, grown overnight, and stored at -70 degrees C. The resulting library, designated DMPC-HFF#1 series A, consists of approximately 130,000-140,000 recombinant clones that were stored in 1500 microtiter dishes. To screen the library, clones were combined in a pooling strategy and specific loci were identified by PCR analysis. On average, the library contains two or three different clones for each locus screened. To date we have identified a total of 17 clones containing the hypoxanthine-guanine phosphoribosyltransferase, human serum albumin-human alpha-fetoprotein, p53, cyclooxygenase I, human apurinic endonuclease, beta-polymerase, and DNA ligase I genes. The cloned inserts average 80 kb in size and range from 70 to 95 kb, with one 49-kb insert and one 62-kb insert. Images PMID:8146166

  11. Microvariation Artifacts Introduced by PCR and Cloning of Closely Related 16S rRNA Gene Sequences†

    PubMed Central

    Speksnijder, Arjen G. C. L.; Kowalchuk, George A.; De Jong, Sander; Kline, Elizabeth; Stephen, John R.; Laanbroek, Hendrikus J.

    2001-01-01

    A defined template mixture of seven closely related 16S-rDNA clones was used in a PCR-cloning experiment to assess and track sources of artifactual sequence variation in 16S rDNA clone libraries. At least 14% of the recovered clones contained aberrations. Artifact sources were polymerase errors, a mutational hot spot, and cloning of heteroduplexes and chimeras. These data may partially explain the high degree of microheterogeneity typical of sequence clusters detected in environmental clone libraries. PMID:11133483

  12. Subtraction of cap-trapped full-length cDNA libraries to select rare transcripts.

    PubMed

    Hirozane-Kishikawa, Tomoko; Shiraki, Toshiyuki; Waki, Kazunori; Nakamura, Mari; Arakawa, Takahiro; Kawai, Jun; Fagiolini, Michela; Hensch, Takao K; Hayashizaki, Yoshihide; Carninci, Piero

    2003-09-01

    The normalization and subtraction of highly expressed cDNAs from relatively large tissues before cloning dramatically enhanced the gene discovery by sequencing for the mouse full-length cDNA encyclopedia, but these methods have not been suitable for limited RNA materials. To normalize and subtract full-length cDNA libraries derived from limited quantities of total RNA, here we report a method to subtract plasmid libraries excised from size-unbiased amplified lambda phage cDNA libraries that avoids heavily biasing steps such as PCR and plasmid library amplification. The proportion of full-length cDNAs and the gene discovery rate are high, and library diversity can be validated by in silico randomization.

  13. Clone DB: an integrated NCBI resource for clone-associated data

    PubMed Central

    Schneider, Valerie A.; Chen, Hsiu-Chuan; Clausen, Cliff; Meric, Peter A.; Zhou, Zhigang; Bouk, Nathan; Husain, Nora; Maglott, Donna R.; Church, Deanna M.

    2013-01-01

    The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents. PMID:23193260

  14. Directional, seamless, and restriction enzyme-free construction of random-primed complementary DNA libraries using phosphorothioate-modified primers.

    PubMed

    Howland, Shanshan W; Poh, Chek-Meng; Rénia, Laurent

    2011-09-01

    Directional cloning of complementary DNA (cDNA) primed by oligo(dT) is commonly achieved by appending a restriction site to the primer, whereas the second strand is synthesized through the combined action of RNase H and Escherichia coli DNA polymerase I (PolI). Although random primers provide more uniform and complete coverage, directional cloning with the same strategy is highly inefficient. We report that phosphorothioate linkages protect the tail sequence appended to random primers from the 5'→3' exonuclease activity of PolI. We present a simple strategy for constructing a random-primed cDNA library using the efficient, size-independent, and seamless In-Fusion cloning method instead of restriction enzymes. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Taxonomic and functional assignment of cloned sequences from high Andean forest soil metagenome.

    PubMed

    Montaña, José Salvador; Jiménez, Diego Javier; Hernández, Mónica; Angel, Tatiana; Baena, Sandra

    2012-02-01

    Total metagenomic DNA was isolated from high Andean forest soil and subjected to taxonomical and functional composition analyses by means of clone library generation and sequencing. The obtained yield of 1.7 μg of DNA/g of soil was used to construct a metagenomic library of approximately 20,000 clones (in the plasmid p-Bluescript II SK+) with an average insert size of 4 Kb, covering 80 Mb of the total metagenomic DNA. Metagenomic sequences near the plasmid cloning site were sequenced and them trimmed and assembled, obtaining 299 reads and 31 contigs (0.3 Mb). Taxonomic assignment of total sequences was performed by BLASTX, resulting in 68.8, 44.8 and 24.5% classification into taxonomic groups using the metagenomic RAST server v2.0, WebCARMA v1.0 online system and MetaGenome Analyzer v3.8 software, respectively. Most clone sequences were classified as Bacteria belonging to phlya Actinobacteria, Proteobacteria and Acidobacteria. Among the most represented orders were Actinomycetales (34% average), Rhizobiales, Burkholderiales and Myxococcales and with a greater number of sequences in the genus Mycobacterium (7% average), Frankia, Streptomyces and Bradyrhizobium. The vast majority of sequences were associated with the metabolism of carbohydrates, proteins, lipids and catalytic functions, such as phosphatases, glycosyltransferases, dehydrogenases, methyltransferases, dehydratases and epoxide hydrolases. In this study we compared different methods of taxonomic and functional assignment of metagenomic clone sequences to evaluate microbial diversity in an unexplored soil ecosystem, searching for putative enzymes of biotechnological interest and generating important information for further functional screening of clone libraries.

  16. Screening and Identification of Peptides Specifically Targeted to Gastric Cancer Cells from a Phage Display Peptide Library

    PubMed

    Sahin, Deniz; Taflan, Sevket Onur; Yartas, Gizem; Ashktorab, Hassan; Smoot, Duane T

    2018-04-25

    Background: Gastric cancer is the second most common cancer among the malign cancer types. Inefficiency of traditional techniques both in diagnosis and therapy of the disease makes the development of alternative and novel techniques indispensable. As an alternative to traditional methods, tumor specific targeting small peptides can be used to increase the efficiency of the treatment and reduce the side effects related to traditional techniques. The aim of this study is screening and identification of individual peptides specifically targeted to human gastric cancer cells using a phage-displayed peptide library and designing specific peptide sequences by using experimentally-eluted peptide sequences. Methods: Here, MKN-45 human gastric cancer cells and HFE-145 human normal gastric epithelial cells were used as the target and control cells, respectively. 5 rounds of biopannning with a phage display 12-peptide library were applied following subtraction biopanning with HFE-145 control cells. The selected phage clones were established by enzyme-linked immunosorbent assay and immunofluorescence detection. We first obtain random phage clones after five biopanning rounds, determine the binding levels of each individual clone. Then, we analyze the frequencies of each amino acid in best binding clones to determine positively overexpressed amino acids for designing novel peptide sequences. Results: DE532 (VETSQYFRGTLS) phage clone was screened positive, showing specific binding on MKN-45 gastric cancer cells. DE-Obs (HNDLFPSWYHNY) peptide, which was designed by using amino acid frequencies of experimentally selected peptides in the 5th round of biopanning, showed specific binding in MKN-45 cells. Conclusion: Selection and characterization of individual clones may give us specifically binding peptides, but more importantly, data extracted from eluted phage clones may be used to design theoretical peptides with better binding properties than even experimentally selected ones. Both peptides, experimental and designed, may be potential candidates to be developed as useful diagnostic or therapeutic ligand molecules in gastric cancer research. Creative Commons Attribution License

  17. The selection performance of an antibody library displayed on filamentous phage coat proteins p9, p3 and truncated p3.

    PubMed

    Huovinen, Tuomas; Syrjänpää, Markku; Sanmark, Hanna; Seppä, Titta; Akter, Sultana; Khan, Liton Md Ferdhos; Lamminmäki, Urpo

    2014-09-19

    Filamentous phage display has become an ordinary tool to engineer antibody fragments. Several capsid proteins have been applied for displaying antibodies, of which gene III (p3) protein is used the most followed by experiments with gene IX (p9) protein. Despite the popularity, there are no library scale studies to objectively compare differences in the selection performance of the libraries, when displayed via different capsid proteins. In this study, an identical antibody repertoire was displayed as Fab fragments on p9, p3 and truncated p3 (p3Δ). In addition, the library clones were displayed as ScFv fragments on p3Δ and the Fab-p3 display valency was modulated by hyperphage and VCS-M13 superinfections. The selection performances of the libraries were followed in repeated parallel panning reactions against streptavidin (STR) and digoxigenin (DIG). Selection was successful with all display formats, but the enrichment of specific clones from Fab-p9 library was clearly less efficient than from the other libraries. The most diverse outputs were obtained from p3Δ display and the highest affinity anti-DIG antibodies from the ScFv repertoire. Unfortunately, the number of retrieved specific clones was too low for explicit analysis of the differences in the number of obtained unique clones from each library. However, severe reduction in sequence diversity was observed in p3-Fab libraries prior to panning, which in turn, materialized as a low number of unique specific clones. Oligovalent display by hyperphage resulted in a higher number of unique clones, but the same highest affinity anti-DIG Fab was recovered also by VCS-M13 superinfection. The compromised enrichment of the target-specific clones from the Fab repertoire as a fusion to p9 capsid protein in our experiments, the significant loss of functional diversity in Fab-p3 library after single phage packing cycle and the retrieval of higher affinity anti-digoxigenin clones as ScFv molecules than as Fab molecules from the same source repertoire indicate that the chosen display format may have a significant impact on the selection outcome. This study demonstrates that in addition to library content, also display related issues, should be taken into consideration when planning directed evolution experiments.

  18. DNA probe for lactobacillus delbrueckii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delley, M.; Mollet, B.; Hottinger, H.

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  19. DNA Probe for Lactobacillus delbrueckii

    PubMed Central

    Delley, Michèle; Mollet, Beat; Hottinger, Herbert

    1990-01-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognizes L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an α-32P-labeled DNA probe. Images PMID:16348233

  20. Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil

    PubMed Central

    Hubert, Casey R J; Oldenburg, Thomas B P; Fustic, Milovan; Gray, Neil D; Larter, Stephen R; Penn, Kevin; Rowan, Arlene K; Seshadri, Rekha; Sherry, Angela; Swainsbury, Richard; Voordouw, Gerrit; Voordouw, Johanna K; Head, Ian M

    2012-01-01

    Summary The subsurface microbiology of an Athabasca oil sands reservoir in western Canada containing severely biodegraded oil was investigated by combining 16S rRNA gene- and polar lipid-based analyses of reservoir formation water with geochemical analyses of the crude oil and formation water. Biomass was filtered from formation water, DNA was extracted using two different methods, and 16S rRNA gene fragments were amplified with several different primer pairs prior to cloning and sequencing or community fingerprinting by denaturing gradient gel electrophoresis (DGGE). Similar results were obtained irrespective of the DNA extraction method or primers used. Archaeal libraries were dominated by Methanomicrobiales (410 of 414 total sequences formed a dominant phylotype affiliated with a Methanoregula sp.), consistent with the proposed dominant role of CO2-reducing methanogens in crude oil biodegradation. In two bacterial 16S rRNA clone libraries generated with different primer pairs, > 99% and 100% of the sequences were affiliated with Epsilonproteobacteria (n = 382 and 72 total clones respectively). This massive dominance of Epsilonproteobacteria sequences was again obtained in a third library (99% of sequences; n = 96 clones) using a third universal bacterial primer pair (inosine-341f and 1492r). Sequencing of bands from DGGE profiles and intact polar lipid analyses were in accordance with the bacterial clone library results. Epsilonproteobacterial OTUs were affiliated with Sulfuricurvum, Arcobacter and Sulfurospirillum spp. detected in other oil field habitats. The dominant organism revealed by the bacterial libraries (87% of all sequences) is a close relative of Sulfuricurvum kujiense – an organism capable of oxidizing reduced sulfur compounds in crude oil. Geochemical analysis of organic extracts from bitumen at different reservoir depths down to the oil water transition zone of these oil sands indicated active biodegradation of dibenzothiophenes, and stable sulfur isotope ratios for elemental sulfur and sulfate in formation waters were indicative of anaerobic oxidation of sulfur compounds. Microbial desulfurization of crude oil may be an important metabolism for Epsilonproteobacteria indigenous to oil reservoirs with elevated sulfur content and may explain their prevalence in formation waters from highly biodegraded petroleum systems. PMID:21824242

  1. Bacterial Artificial Chromosome Libraries for Mouse Sequencing and Functional Analysis

    PubMed Central

    Osoegawa, Kazutoyo; Tateno, Minako; Woon, Peng Yeong; Frengen, Eirik; Mammoser, Aaron G.; Catanese, Joseph J.; Hayashizaki, Yoshihide; de Jong, Pieter J.

    2000-01-01

    Bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC) libraries providing a combined 33-fold representation of the murine genome have been constructed using two different restriction enzymes for genomic digestion. A large-insert PAC library was prepared from the 129S6/SvEvTac strain in a bacterial/mammalian shuttle vector to facilitate functional gene studies. For genome mapping and sequencing, we prepared BAC libraries from the 129S6/SvEvTac and the C57BL/6J strains. The average insert sizes for the three libraries range between 130 kb and 200 kb. Based on the numbers of clones and the observed average insert sizes, we estimate each library to have slightly in excess of 10-fold genome representation. The average number of clones found after hybridization screening with 28 probes was in the range of 9–14 clones per marker. To explore the fidelity of the genomic representation in the three libraries, we analyzed three contigs, each established after screening with a single unique marker. New markers were established from the end sequences and screened against all the contig members to determine if any of the BACs and PACs are chimeric or rearranged. Only one chimeric clone and six potential deletions have been observed after extensive analysis of 113 PAC and BAC clones. Seventy-one of the 113 clones were conclusively nonchimeric because both end markers or sequences were mapped to the other confirmed contig members. We could not exclude chimerism for the remaining 41 clones because one or both of the insert termini did not contain unique sequence to design markers. The low rate of chimerism, ∼1%, and the low level of detected rearrangements support the anticipated usefulness of the BAC libraries for genome research. [The sequence data described in this paper have been submitted to the GenBank data library under accession numbers AQ797173–AQ797398.] PMID:10645956

  2. Identification of causative pathogens in mouse eyes with bacterial keratitis by sequence analysis of 16S rDNA libraries

    PubMed Central

    Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang

    2014-01-01

    The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis. PMID:25312507

  3. Invert biopanning: A novel method for efficient and rapid isolation of scFvs by phage display technology.

    PubMed

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Veisi, Kamal; Tanomand, Asghar; Akbari, Bahman

    2016-11-01

    Phage display is a prominent screening technique for development of novel high affinity antibodies against almost any antigen. However, removing false positive clones in screening process remains a challenge. The aim of this study was to develop an efficient and rapid method for isolation of high affinity scFvs by removing NSBs without losing rare specific clones. Therefore, a novel two rounds strategy called invert biopanning was developed for isolating high affinity scFvs against EGFRvIII antigen from human scFv library. The efficiency of invert biopanning method (procedure III) was analyzed by comparing with results of conventional biopanning methods (procedures I and II). According to the results of polyclonal ELISA, the second round of procedure III displayed highest binding affinity against EGFRvIII peptide accompanied by lowest NSB comparing to other two procedures. Several positive clones were identified among output phages of procedure III by monoclonal phage ELISA which displayed high affinity to EGFRvIII antigen. In conclusion, results of our study indicate that invert biopanning is an efficient method for avoiding NSBs and conservation of rare specific clones during screening of a scFv phage library. Novel anti EGFRvIII scFv isolated could be a promising candidate for potential use in treatment of EGFRvIII expressing cancers. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  4. Orthogonal combinatorial mutagenesis: a codon-level combinatorial mutagenesis method useful for low multiplicity and amino acid-scanning protocols

    PubMed Central

    Gaytán, Paul; Yáñez, Jorge; Sánchez, Filiberto; Soberón, Xavier

    2001-01-01

    We describe here a method to generate combinatorial libraries of oligonucleotides mutated at the codon-level, with control of the mutagenesis rate so as to create predictable binomial distributions of mutants. The method allows enrichment of the libraries with single, double or larger multiplicity of amino acid replacements by appropriate choice of the mutagenesis rate, depending on the concentration of synthetic precursors. The method makes use of two sets of deoxynucleoside-phosphoramidites bearing orthogonal protecting groups [4,4′-dimethoxytrityl (DMT) and 9-fluorenylmethoxycarbonyl (Fmoc)] in the 5′ hydroxyl. These phosphoramidites are divergently combined during automated synthesis in such a way that wild-type codons are assembled with commercial DMT-deoxynucleoside-methyl-phosphoramidites while mutant codons are assembled with Fmoc-deoxynucleoside-methyl-phosphoramidites in an NNG/C fashion in a single synthesis column. This method is easily automated and suitable for low mutagenesis rates and large windows, such as those required for directed evolution and alanine scanning. Through the assembly of three oligonucleotide libraries at different mutagenesis rates, followed by cloning at the polylinker region of plasmid pUC18 and sequencing of 129 clones, we concluded that the method performs essentially as intended. PMID:11160911

  5. Isolation of phage-display library-derived scFv antibody specific to Listeria monocytogenes by a novel immobilized method.

    PubMed

    Nguyen, X-H; Trinh, T-L; Vu, T-B-H; Le, Q-H; To, K-A

    2018-02-01

    To select Listeria monocytogenes-specific single-chain fragment variable (scFv) antibodies from a phage-display library by a novel simple and cost-effective immobilization method. Light expanded clay aggregate (LECA) was used as biomass support matrix for biopanning of a phage-display library to select L. monocytogenes-specific scFv antibody. Four rounds of positive selection against LECA-immobilized L. monocytogenes and an additional subtractive panning against Listeria innocua were performed. The phage clones selected using this panning scheme and LECA-based immobilization method exhibited the ability to bind L. monocytogenes without cross-reactivity toward 10 other non-L. monocytogenes bacteria. One of the selected phage clones was able to specifically recognize three major pathogenic serotypes (1/2a, 1/2b and 4b) of L. monocytogenes and 11 tested L. monocytogenes strains isolated from foods. The LECA-based immobilization method is applicable for isolating species-specific anti-L. monocytogenes scFv antibodies by phage display. The isolated scFv antibody has potential use in development of immunoassay-based methods for rapid detection of L. monocytogenes in food and environmental samples. In addition, the LECA immobilization method described here could feasibly be employed to isolate specific monoclonal antibodies against any given species of pathogenic bacteria from phage-display libraries. © 2017 The Society for Applied Microbiology.

  6. Construction of cDNA expression library of watermelon for isolation of ClWRKY1 transcription factors gene involved in resistance to Fusarium wilt.

    PubMed

    Yang, Bing-Yan; Huo, Xiu-Ai; Li, Peng-Fei; Wang, Cui-Xia; Duan, Hui-Jun

    2014-08-01

    Full-length cDNAs are very important for genome annotation and functional analysis of genes. The number of full-length cDNAs from watermelon remains limited. Here we report first the construction of a full-length enriched cDNA library from Fusarium wilt stressed watermelon (Citrullus lanatus Thunb.) cultivar PI296341 root tissues using the SMART method. The titer of primary cDNA library and amplified library was 2.21 x 10(6) and 2.0 x 10(10) pfu/ml, respectively and the rate of recombinant was above 85%. The size of insert fragment ranged from 0.3 to 2.0 kb. In this study, we first cloned a gene named ClWRKY1, which was 1981 bp long and encoded a protein consisting of 394 amino acids. It contained two characteristic WRKY domains and two zinc finger motifs. Quantitative real-time PCR showed that ClWRKY1 expression levels reached maximum level at 12 h after inoculation with Fusarium oxysporum f. sp. niveum. The full-length cDNA library of watermelon root tissues is not only essential for the cloning of genes which are known, but also an initial key for the screening and cloning of new genes that might be involved in resistance to Fusarium wilt.

  7. Genomic clones for human cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kott, M.; Venta, P.J.; Larsen, J.

    1987-05-01

    A human genomic library was prepared from peripheral white blood cells from a single donor by inserting an MboI partial digest into BamHI poly-linker sites of EMBL3. This library was screened using an oligolabeled human cholinesterase cDNA probe over 700 bp long. The latter probe was obtained from a human basal ganglia cDNA library. Of approximately 2 million clones screened with high stringency conditions several positive clones were identified; two have been plaque purified. One of these clones has been partially mapped using restriction enzymes known to cut within the coded region of the cDNA for human serum cholinesterase. Hybridizationmore » of the fragments and their sizes are as expected if the genomic clone is cholinesterase. Sequencing of the DNA fragments in M13 is in progress to verify the identify of the clone and the location of introns.« less

  8. Endophytic bacteria in plant tissue culture: differences between easy- and difficult-to-propagate Prunus avium genotypes.

    PubMed

    Quambusch, Mona; Pirttilä, Anna Maria; Tejesvi, Mysore V; Winkelmann, Traud; Bartsch, Melanie

    2014-05-01

    The endophytic bacterial communities of six Prunus avium L. genotypes differing in their growth patterns during in vitro propagation were identified by culture-dependent and culture-independent methods. Five morphologically distinct isolates from tissue culture material were identified by 16S rDNA sequence analysis. To detect and analyze the uncultivable fraction of endophytic bacteria, a clone library was established from the amplified 16S rDNA of total plant extract. Bacterial diversity within the clone libraries was analyzed by amplified ribosomal rDNA restriction analysis and by sequencing a clone for each identified operational taxonomic unit. The most abundant bacterial group was Mycobacterium sp., which was identified in the clone libraries of all analyzed Prunus genotypes. Other dominant bacterial genera identified in the easy-to-propagate genotypes were Rhodopseudomonas sp. and Microbacterium sp. Thus, the community structures in the easy- and difficult-to-propagate cherry genotypes differed significantly. The bacterial genera, which were previously reported to have plant growth-promoting effects, were detected only in genotypes with high propagation success, indicating a possible positive impact of these bacteria on in vitro propagation of P. avium, which was proven in an inoculation experiment. © The Author 2014. Published by Oxford University Press. All rights reserved.

  9. Library Resources for Bac End Sequencing. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pieter J. de Jong

    2000-10-01

    Studies directed towards the specific aims outlined for this research award are summarized. The RPCI II Human Bac Library has been expanded by the addition of 6.9-fold genomic coverage. This segment has been generated from a MBOI partial digest of the same anonymous donor DNA used for the rest of the library. A new cloning vector, pTARBAC1, has been constructed and used in the construction of RPCI-II segment 5. This new cloning vector provides a new strategy in identifying targeted genomic regions and will greatly facilitate a large-scale analysis for positional cloning. A new maleCS7BC/6J mouse BAC library has beenmore » constructed. RPCI-23 contain 576 plates (approx 210,000 clones) and represents approximately 11-fold coverage of the mouse genome.« less

  10. Identifying the bacterial community on the surface of Intralox belting in a meat boning room by culture-dependent and culture-independent 16S rDNA sequence analysis.

    PubMed

    Brightwell, Gale; Boerema, Jackie; Mills, John; Mowat, Eilidh; Pulford, David

    2006-05-25

    We examined the bacterial community present on an Intralox conveyor belt system in an operating lamb boning room by sequencing the 16S ribosomal DNA (rDNA) of bacteria extracted in the presence or absence of cultivation. RFLP patterns for 16S rDNA clone library and cultures were generated using HaeIII and MspI restriction endonucleases. 16S rDNA amplicons produced 8 distinct RFLP pattern groups. RFLP groups I-IV were represented in the clone library and RFLP groups I and V-VIII were represented amongst the cultured isolates. Partial DNA sequences from each RFLP group revealed that all group I, II and VIII representatives were Pseudomonas spp., group III were Sphingomonas spp., group IV clones were most similar to an uncultured alpha proteobacterium, group V was similar to a Serratia spp., group VI with an Alcaligenes spp., and group VII with Microbacterium spp. Sphingomonads were numerically dominant in the culture-independent clone library and along with the group IV alpha proteobacterium were not represented amongst the cultured isolates. Serratia, Alcaligenes and Microbacterium spp. were only represented with cultured isolates. Pseudomonads were detected by both culture-dependent (84% of isolates) and culture-independent (12.5% of clones) methods and their presence at high frequency does pose the risk of product spoilage if transferred onto meat stored under aerobic conditions. The detection of sphingomonads in large numbers by the culture-independent method demands further analysis because sphingomonads may represent a new source of meat spoilage that has not been previously recognised in the meat processing environment. The 16S rDNA collections generated by both methods were important at representing the diversity of the bacterial population associated with an Intralox conveyor belt system.

  11. Functional Screening of Metagenome and Genome Libraries for Detection of Novel Flavonoid-Modifying Enzymes

    PubMed Central

    Rabausch, U.; Juergensen, J.; Ilmberger, N.; Böhnke, S.; Fischer, S.; Schubach, B.; Schulte, M.

    2013-01-01

    The functional detection of novel enzymes other than hydrolases from metagenomes is limited since only a very few reliable screening procedures are available that allow the rapid screening of large clone libraries. For the discovery of flavonoid-modifying enzymes in genome and metagenome clone libraries, we have developed a new screening system based on high-performance thin-layer chromatography (HPTLC). This metagenome extract thin-layer chromatography analysis (META) allows the rapid detection of glycosyltransferase (GT) and also other flavonoid-modifying activities. The developed screening method is highly sensitive, and an amount of 4 ng of modified flavonoid molecules can be detected. This novel technology was validated against a control library of 1,920 fosmid clones generated from a single Bacillus cereus isolate and then used to analyze more than 38,000 clones derived from two different metagenomic preparations. Thereby we identified two novel UDP glycosyltransferase (UGT) genes. The metagenome-derived gtfC gene encoded a 52-kDa protein, and the deduced amino acid sequence was weakly similar to sequences of putative UGTs from Fibrisoma and Dyadobacter. GtfC mediated the transfer of different hexose moieties and exhibited high activities on flavones, flavonols, flavanones, and stilbenes and also accepted isoflavones and chalcones. From the control library we identified a novel macroside glycosyltransferase (MGT) with a calculated molecular mass of 46 kDa. The deduced amino acid sequence was highly similar to sequences of MGTs from Bacillus thuringiensis. Recombinant MgtB transferred the sugar residue from UDP-glucose effectively to flavones, flavonols, isoflavones, and flavanones. Moreover, MgtB exhibited high activity on larger flavonoid molecules such as tiliroside. PMID:23686272

  12. Construction and Analysis of Siberian Tiger Bacterial Artificial Chromosome Library with Approximately 6.5-Fold Genome Equivalent Coverage

    PubMed Central

    Liu, Changqing; Bai, Chunyu; Guo, Yu; Liu, Dan; Lu, Taofeng; Li, Xiangchen; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2014-01-01

    Bacterial artificial chromosome (BAC) libraries are extremely valuable for the genome-wide genetic dissection of complex organisms. The Siberian tiger, one of the most well-known wild primitive carnivores in China, is an endangered animal. In order to promote research on its genome, a high-redundancy BAC library of the Siberian tiger was constructed and characterized. The library is divided into two sub-libraries prepared from blood cells and two sub-libraries prepared from fibroblasts. This BAC library contains 153,600 individually archived clones; for PCR-based screening of the library, BACs were placed into 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 116.5 kb, representing approximately 6.46 genome equivalents of the haploid genome and affording a 98.86% statistical probability of obtaining at least one clone containing a unique DNA sequence. Screening the library with 19 microsatellite markers and a SRY sequence revealed that each of these markers were present in the library; the average number of positive clones per marker was 6.74 (range 2 to 12), consistent with 6.46 coverage of the tiger genome. Additionally, we identified 72 microsatellite markers that could potentially be used as genetic markers. This BAC library will serve as a valuable resource for physical mapping, comparative genomic study and large-scale genome sequencing in the tiger. PMID:24608928

  13. [Primary culture of cat intestinal epithelial cell and construction of its cDNA library].

    PubMed

    Ye, L; Gui-Hua, Z; Kun, Y; Hong-Fa, W; Ting, X; Gong-Zhen, L; Wei-Xia, Z; Yong, C

    2017-04-12

    Objective To establish the primary cat intestinal epithelial cells (IECs) culture methods and construct the cDNA library for the following yeast two-hybrid experiment, so as to screen the virulence interaction factors among the final host. Methods The primary cat IECs were cultured by the tissue cultivation and combined digestion with collagenase XI and dispase I separately. Then the cat IECs cultured was identified with the morphological observation and cyto-keratin detection, by using goat anti-cyto-keratin monoclonal antibodies. The mRNA of cat IECs was isolated and used as the template to synthesize the first strand cDNA by SMART™ technology, and then the double-strand cDNAs were acquired by LD-PCR, which were subsequently cloned into the plasmid PGADT7-Rec to construct yeast two-hybrid cDNA library in the yeast strain Y187 by homologous recombination. Matchmaker™ Insert Check PCR was used to detect the size distribution of cDNA fragments after the capacity calculation of the cDNA library. Results The comparison of the two cultivation methods indicated that the combined digestion of collagenase XI and dispase I was more effective than the tissue cultivation. The cat IECs system of continuous culture was established and the cat IECs with high purity were harvested for constructing the yeast two-hybrid cDNA library. The library contained 1.1×10 6 independent clones. The titer was 2.8×10 9 cfu/ml. The size of inserted fragments was among 0.5-2.0 kb. Conclusion The yeast two-hybrid cDNA library of cat IECs meets the requirements of further screen research, and this study lays the foundation of screening the Toxoplasma gondii virulence interaction factors among the cDNA libraries of its final hosts.

  14. cDNA library construction of two human Demodexspecies.

    PubMed

    Niu, DongLing; Wang, RuiLing; Zhao, YaE; Yang, Rui; Hu, Li; Lei, YuYang; Dan, WeiChao

    2017-06-01

    The research of Demodex, a type of pathogen causing various dermatoses in animals and human beings, is lacking at RNA level. This study aims at extracting RNA and constructing cDNA library for Demodex. First, P. cuniculiand D. farinaewere mixed to establish homogenization method for RNA extraction. Second, D. folliculorumand D. breviswere collected and preserved in Trizol, which were mixed with D. farinaerespectively to extract RNA. Finally, cDNA library was constructed and its quality was assessed. The results indicated that for D. folliculorum& D. farinae, the recombination rate of cDNA library was 90.67% and the library titer was 7.50 × 104 pfu/ml. 17 of the 59 positive clones were predicted to be of D. folliculorum; For D. brevis& D. farinae, the recombination rate was 90.96% and the library titer was 7.85 x104 pfu/ml. 40 of the 59 positive clones were predicted to be of D. brevis. Further detection by specific primers demonstrated that mtDNA cox1, cox3and ATP6 detected from cDNA libraries had 96.52%-99.73% identities with the corresponding sequences in GenBank. In conclusion, the cDNA libraries constructed for Demodexmixed with D. farinaewere successful and could satisfy the requirements for functional genes detection.

  15. Improvements to the Kunkel mutagenesis protocol for constructing primary and secondary phage-display libraries.

    PubMed

    Huang, Renhua; Fang, Pete; Kay, Brian K

    2012-09-01

    Site-directed mutagenesis is routinely performed in protein engineering experiments. One method, termed Kunkel mutagenesis, is frequently used for constructing libraries of peptide or protein variants in M13 bacteriophage, followed by affinity selection of phage particles. To make this method more efficient, the following two modifications were introduced: culture was incubated at 25°C for phage replication, which yielded two- to sevenfold more single-stranded DNA template compared to growth at 37°C, and restriction endonuclease recognition sites were used to remove non-recombinants. With both of the improvements, we could construct primary libraries of high complexity and that were 99-100% recombinant. Finally, with a third modification to the standard protocol of Kunkel mutagenesis, two secondary (mutagenic) libraries of a fibronectin type III (FN3) monobody were constructed with DNA segments that were amplified by error-prone and asymmetric PCR. Two advantages of this modification are that it bypasses the lengthy steps of restriction enzyme digestion and ligation, and that the pool of phage clones, recovered after affinity selection, can be used directly to generate a secondary library. Screening one of the two mutagenic libraries yielded variants that bound two- to fourfold tighter to human Pak1 kinase than the starting clone. The protocols described in this study should accelerate the discovery of phage-displayed recombinant affinity reagents. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species

    PubMed Central

    2010-01-01

    Background The presence of closely related genomes in polyploid species makes the assembly of total genomic sequence from shotgun sequence reads produced by the current sequencing platforms exceedingly difficult, if not impossible. Genomes of polyploid species could be sequenced following the ordered-clone sequencing approach employing contigs of bacterial artificial chromosome (BAC) clones and BAC-based physical maps. Although BAC contigs can currently be constructed for virtually any diploid organism with the SNaPshot high-information-content-fingerprinting (HICF) technology, it is currently unknown if this is also true for polyploid species. It is possible that BAC clones from orthologous regions of homoeologous chromosomes would share numerous restriction fragments and be therefore included into common contigs. Because of this and other concerns, physical mapping utilizing the SNaPshot HICF of BAC libraries of polyploid species has not been pursued and the possibility of doing so has not been assessed. The sole exception has been in common wheat, an allohexaploid in which it is possible to construct single-chromosome or single-chromosome-arm BAC libraries from DNA of flow-sorted chromosomes and bypass the obstacles created by polyploidy. Results The potential of the SNaPshot HICF technology for physical mapping of polyploid plants utilizing global BAC libraries was evaluated by assembling contigs of fingerprinted clones in an in silico merged BAC library composed of single-chromosome libraries of two wheat homoeologous chromosome arms, 3AS and 3DS, and complete chromosome 3B. Because the chromosome arm origin of each clone was known, it was possible to estimate the fidelity of contig assembly. On average 97.78% or more clones, depending on the library, were from a single chromosome arm. A large portion of the remaining clones was shown to be library contamination from other chromosomes, a feature that is unavoidable during the construction of single-chromosome BAC libraries. Conclusions The negligibly low level of incorporation of clones from homoeologous chromosome arms into a contig during contig assembly suggested that it is feasible to construct contigs and physical maps using global BAC libraries of wheat and almost certainly also of other plant polyploid species with genome sizes comparable to that of wheat. Because of the high purity of the resulting assembled contigs, they can be directly used for genome sequencing. It is currently unknown but possible that equally good BAC contigs can be also constructed for polyploid species containing smaller, more gene-rich genomes. PMID:20170511

  17. Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.)

    PubMed Central

    2011-01-01

    Background Common bean is an important legume crop with only a moderate number of short expressed sequence tags (ESTs) made with traditional methods. The goal of this research was to use full-length cDNA technology to develop ESTs that would overlap with the beginning of open reading frames and therefore be useful for gene annotation of genomic sequences. The library was also constructed to represent genes expressed under drought, low soil phosphorus and high soil aluminum toxicity. We also undertook comparisons of the full-length cDNA library to two previous non-full clone EST sets for common bean. Results Two full-length cDNA libraries were constructed: one for the drought tolerant Mesoamerican genotype BAT477 and the other one for the acid-soil tolerant Andean genotype G19833 which has been selected for genome sequencing. Plants were grown in three soil types using deep rooting cylinders subjected to drought and non-drought stress and tissues were collected from both roots and above ground parts. A total of 20,000 clones were selected robotically, half from each library. Then, nearly 10,000 clones from the G19833 library were sequenced with an average read length of 850 nucleotides. A total of 4,219 unigenes were identified consisting of 2,981 contigs and 1,238 singletons. These were functionally annotated with gene ontology terms and placed into KEGG pathways. Compared to other EST sequencing efforts in common bean, about half of the sequences were novel or represented the 5' ends of known genes. Conclusions The present full-length cDNA libraries add to the technological toolbox available for common bean and our sequencing of these clones substantially increases the number of unique EST sequences available for the common bean genome. All of this should be useful for both functional gene annotation, analysis of splice site variants and intron/exon boundary determination by comparison to soybean genes or with common bean whole-genome sequences. In addition the library has a large number of transcription factors and will be interesting for discovery and validation of drought or abiotic stress related genes in common bean. PMID:22118559

  18. IDENTIFICATION OF ACTIVE BACTERIAL COMMUNITIES IN A MODEL DRINKING WATER BIOFILM SYSTEM USING 16S RRNA-BASED CLONE LIBRARIES

    EPA Science Inventory

    Recent phylogenetic studies have used DNA as the target molecule for the development of environmental 16S rDNA clone libraries. As DNA may persist in the environment, DNA-based libraries cannot be used to identify metabolically active bacteria in water systems. In this study, a...

  19. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    PubMed

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Effect of condensed tannins on bovine rumen protist diversity based on 18S rRNA gene sequences.

    PubMed

    Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Liang, Juan Boo; Huang, Xiao Dan; Ho, Yin Wan

    2013-01-01

    Molecular diversity of protists from bovine rumen fluid incubated with condensed tannins of Leucaena leucocephala hybrid-Rendang at 20 mg/500 mg dry matter (treatment) or without condensed tannins (control) was investigated using 18S rRNA gene library. Clones from the control library were distributed within nine genera, but clones from the condensed tannin treatment clone library were related to only six genera. Diversity estimators such as abundance-based coverage estimation and Chao1 showed significant differences between the two libraries, although no differences were found based on Shannon-Weaver index and Libshuff. © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists.

  1. High yield of functional metagenomic library from mangroves constructed in fosmid vector.

    PubMed

    Gonçalves, A C S; dos Santos, A C F; dos Santos, T F; Pessoa, T B A; Dias, J C T; Rezende, R P

    2015-10-02

    In the present study, metagenomic technique and fosmid vectors were used to construct a library of clones for exploring the biotechnological potential of mangrove soils by isolation of functional genes encoding hydrolytic enzymes. The library was built with genomic DNA from the soil samples of mangrove sediments and the functional screening of 1824 clones (~64 Mbp) was performed to detect the hydrolytic activity specific for cellulases, amylases (at acidic, neutral and basic pH), lipases/esterases, proteases, and nitrilases. Significant numbers of clones, positive for the tested enzyme activities were obtained. Our results indicate the importance and biotechnological potential of mangrove soils especially when compared to those obtained using other soil metagenomic libraries.

  2. Preparation of fosmid libraries and functional metagenomic analysis of microbial community DNA.

    PubMed

    Martínez, Asunción; Osburne, Marcia S

    2013-01-01

    One of the most important challenges in contemporary microbial ecology is to assign a functional role to the large number of novel genes discovered through large-scale sequencing of natural microbial communities that lack similarity to genes of known function. Functional screening of metagenomic libraries, that is, screening environmental DNA clones for the ability to confer an activity of interest to a heterologous bacterial host, is a promising approach for bridging the gap between metagenomic DNA sequencing and functional characterization. Here, we describe methods for isolating environmental DNA and constructing metagenomic fosmid libraries, as well as methods for designing and implementing successful functional screens of such libraries. © 2013 Elsevier Inc. All rights reserved.

  3. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    NASA Astrophysics Data System (ADS)

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  4. Creation of BAC genomic resources for cocoa ( Theobroma cacao L.) for physical mapping of RGA containing BAC clones.

    PubMed

    Clément, D; Lanaud, C; Sabau, X; Fouet, O; Le Cunff, L; Ruiz, E; Risterucci, A M; Glaszmann, J C; Piffanelli, P

    2004-05-01

    We have constructed and validated the first cocoa ( Theobroma cacao L.) BAC library, with the aim of developing molecular resources to study the structure and evolution of the genome of this perennial crop. This library contains 36,864 clones with an average insert size of 120 kb, representing approximately ten haploid genome equivalents. It was constructed from the genotype Scavina-6 (Sca-6), a Forastero clone highly resistant to cocoa pathogens and a parent of existing mapping populations. Validation of the BAC library was carried out with a set of 13 genetically-anchored single copy and one duplicated markers. An average of nine BAC clones per probe was identified, giving an initial experimental estimation of the genome coverage represented in the library. Screening of the library with a set of resistance gene analogues (RGAs), previously mapped in cocoa and co-localizing with QTL for resistance to Phytophthora traits, confirmed at the physical level the tight clustering of RGAs in the cocoa genome and provided the first insights into the relationships between genetic and physical distances in the cocoa genome. This library represents an available BAC resource for structural genomic studies or map-based cloning of genes corresponding to important QTLs for agronomic traits such as resistance genes to major cocoa pathogens like Phytophthora spp ( palmivora and megakarya), Crinipellis perniciosa and Moniliophthora roreri.

  5. The Drosophila gene collection: Identification of putative full-length cDNAs for 70 percent of D. melanogaster genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapleton, Mark; Liao, Guochun; Brokstein, Peter

    2002-08-12

    Collections of full-length nonredundant cDNA clones are critical reagents for functional genomics. The first step toward these resources is the generation and single-pass sequencing of cDNA libraries that contain a high proportion of full-length clones. The first release of the Drosophila Gene Collection Release 1 (DGCr1) was produced from six libraries representing various tissues, developmental stages, and the cultured S2 cell line. Nearly 80,000 random 5prime expressed sequence tags (EST) from these libraries were collapsed into a nonredundant set of 5849 cDNAs, corresponding to {approx}40 percent of the 13,474 predicted genes in Drosophila. To obtain cDNA clones representing the remainingmore » genes, we have generated an additional 157,835 5prime ESTs from two previously existing and three new libraries. One new library is derived from adult testis, a tissue we previously did not exploit for gene discovery; two new cap-trapped normalized libraries are derived from 0-22hr embryos and adult heads. Taking advantage of the annotated D. melanogaster genome sequence, we clustered the ESTs by aligning them to the genome. Clusters that overlap genes not already represented by cDNA clones in the DGCr1 were analyzed further, and putative full-length clones were selected for inclusion in the new DGC. This second release of the DGC (DGCr2) contains 5061 additional clones, extending the collection to 10,910 cDNAs representing >70 percent of the predicted genes in Drosophila.« less

  6. Isolation of mini- and microsatellite loci from chromosome 19 library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prosnyak, M.I.; Belajeva, O.V.; Polukarova, L.G.

    Mini- and microsatellite sequences are abundant in the human genome and are very useful as genetic markers. We report the isolation of a panel of clones containing marker sequences from chromosome 19. We screened 10,000 clones from the chromosome 19 cosmid library for the presence of di-(CA)n, tri-(TCC)n, (CAC)n microsatellites and M13-like minisatellite sequences. For this we have used synthetic oligonucleotides and polynucleotides, including micro- (CA, TCC, CAC) and minisatellite (M13 core) sequences. Preliminary results indicated that the chromosome 19 cosmid library contained both human and hamster clones. In order to identify human sequences from this library we have developedmore » the technique of colony and blot hybridization with Alu-PCR, L1-PCR and B1-PCR probes. Dozens of clones have been selected, some of which were analyzed by conventional Southern blot analysis and non-radioactive in situ hybridization of chromosomes. Highly informative markers derived from these clones will be used for physical and genetic mapping of chromosome 19.« less

  7. Activity-Based Screening of Metagenomic Libraries for Hydrogenase Enzymes.

    PubMed

    Adam, Nicole; Perner, Mirjam

    2017-01-01

    Here we outline how to identify hydrogenase enzymes from metagenomic libraries through an activity-based screening approach. A metagenomic fosmid library is constructed in E. coli and the fosmids are transferred into a hydrogenase deletion mutant of Shewanella oneidensis (ΔhyaB) via triparental mating. If a fosmid exhibits hydrogen uptake activity, S. oneidensis' phenotype is restored and hydrogenase activity is indicated by a color change of the medium from yellow to colorless. This new method enables screening of 48 metagenomic fosmid clones in parallel.

  8. Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth.

    PubMed

    Gloux, Karine; Leclerc, Marion; Iliozer, Harout; L'Haridon, René; Manichanh, Chaysavanh; Corthier, Gérard; Nalin, Renaud; Blottière, Hervé M; Doré, Joël

    2007-06-01

    Metagenomic libraries derived from human intestinal microbiota (20,725 clones) were screened for epithelial cell growth modulation. Modulatory clones belonging to the four phyla represented among the metagenomic libraries were identified (hit rate, 0.04 to 8.7% depending on the screening cutoff). Several candidate loci were identified by transposon mutagenesis and subcloning.

  9. Cloning of a newly identified heart-specific troponin I isoform, which lacks the troponin T binding portion, using the yeast hybrid system

    PubMed Central

    Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Yamada, Hisashi; Horiguchi-Yamada, Junko

    2006-01-01

    OBJECTIVE To elucidate the molecular pathogenesis behind increased levels of laminin in cardiac muscle cells in cardiomyopathy by using a yeast hybrid screen. The present study reports the cloning of a newly identified heart-specific troponin I isoform, which is putatively linked to laminin. Future studies will explore the functional significance of this connection. METHODS Yeast two-hybrid screen analysis was performed using MLF1-interacting protein (amino acids 1 to 318) as bait. The human heart complementary DNA library was screened by using the yeast-mating method for overnight culture. RESULTS Two final positive clones from the heart library were isolated. These two clones encoded the same protein, a short isoform of human cardiac troponin I (TnI) that lacked TnI exons 5 and 6. The TnI isoform has a heart-specific expression pattern and it shares several sequence features with human cardiac TnI; however, it lacks the troponin T binding portion. CONCLUSION The heart-specific segment of the human cardiac TnI isoform shares several sequence features with human cardiac TnI, but it lacks the troponin T binding portion. These results suggest that the heart-specific TnI isoform may be involved in cardiac development and disease. PMID:18651010

  10. Construction of Rabbit Immune Antibody Libraries.

    PubMed

    Nguyen, Thi Thu Ha; Lee, Jong Seo; Shim, Hyunbo

    2018-01-01

    Rabbits have distinct advantages over mice as a source of target-specific antibodies. They produce higher affinity antibodies than mice, and may elicit strong immune response against antigens or epitopes that are poorly immunogenic or tolerated in mice. However, a great majority of currently available monoclonal antibodies are of murine origin because of the wider availability of murine fusion partner cell lines and well-established tools and protocols for fusion and cloning of mouse hybridoma. Phage-display selection of antibody libraries is an alternative method to hybridoma technology for the generation of target-specific monoclonal antibodies. High-affinity monoclonal antibodies from nonmurine species can readily be obtained by constructing immune antibody libraries from B cells of the immunized animal and screening the library by phage display. In this article, we describe the construction of a rabbit immune Fab library for the facile isolation of rabbit monoclonal antibodies. After immunization, B-cell cDNA is obtained from the spleen of the animal, from which antibody variable domain repertoires are amplified and assembled into a Fab repertoire by PCR. The Fab genes are then cloned into a phagemid vector and transformed to E. coli, from which a phage-displayed immune Fab library is rescued. Such a library can be biopanned against the immunization antigen for rapid identification of high-affinity, target-specific rabbit monoclonal antibodies.

  11. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  12. Corruption of phage display libraries by target-unrelated clones: diagnosis and countermeasures.

    PubMed

    Thomas, William D; Golomb, Miriam; Smith, George P

    2010-12-15

    Phage display is used to discover peptides or proteins with a desired target property-most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phages or peptides (TUPs), that lack the target behavior. Many TUPs are propagation related; they have mutations conferring a growth advantage and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus-strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus-strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus-strand origin. The founder's infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Corruption of phage-display libraries by target-unrelated clones: Diagnosis and countermeasures

    PubMed Central

    Thomas, William D.; Golomb, Miriam; Smith, George P.

    2010-01-01

    Phage display is used to discover peptides or proteins with a desired target property—most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior, and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phage (TUPs), that lack the target behavior. Many TUPs are propagation-related; they have mutations conferring a growth advantage, and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus strand origin. The founder’s infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption. PMID:20692225

  14. Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after the Prestige oil spill.

    PubMed

    Mulet, Magdalena; David, Zoyla; Nogales, Balbina; Bosch, Rafael; Lalucat, Jorge; García-Valdés, Elena

    2011-02-01

    The Galicia seashore, in northwestern Spain, was one of the shorelines affected by the Prestige oil spill in November 2002. The diversity of autochthonous Pseudomonas populations present at two beaches (Carnota municipality) was analyzed using culture-independent and culture-dependent methods. The first analysis involved the screening of an rpoD gene library. The second involved the isolation of 94 Pseudomonas strains that were able to grow on selective media by direct plating or after serial enrichments on several carbon sources: biphenyl, gentisate, hexadecane, methylnaphthalene, naphthalene, phenanthrene, salicylate, xylene, and succinate. Eight denitrifying Pseudomonas strains were also isolated by their ability to grow anaerobically with nitrate. The calculated coverage index for Pseudomonas species was 89% when clones and isolates were considered together, and there were 29 phylospecies detected. The most abundant were members of the species P. stutzeri, P. putida, P. anguilliseptica, and P. oleovorans. Thirty-one isolates could not be identified at the species level and were considered representatives of 16 putative novel Pseudomonas species. One isolate was considered representative of a novel P. stutzeri genomovar. Concordant results were obtained when the diversities of the cloned DNA library and the cultured strains were compared. The clone library obtained by the rpoD PCR method was a useful tool for evaluating Pseudomonas communities and also for microdiversity studies of Pseudomonas populations.

  15. Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular- and culture-based approaches.

    PubMed

    Nishiyama, Minako; Yamamoto, Shuichi; Kurosawa, Norio

    2013-08-01

    Ibusuki hot spring is located on the coastline of Kagoshima Bay, Japan. The hot spring water is characterized by high salinity, high temperature, and neutral pH. The hot spring is covered by the sea during high tide, which leads to severe fluctuations in several environmental variables. A combination of molecular- and culture-based techniques was used to determine the bacterial and archaeal diversity of the hot spring. A total of 48 thermophilic bacterial strains were isolated from two sites (Site 1: 55.6°C; Site 2: 83.1°C) and they were categorized into six groups based on their 16S rRNA gene sequence similarity. Two groups (including 32 isolates) demonstrated low sequence similarity with published species, suggesting that they might represent novel taxa. The 148 clones from the Site 1 bacterial library included 76 operational taxonomy units (OTUs; 97% threshold), while 132 clones from the Site 2 bacterial library included 31 OTUs. Proteobacteria, Bacteroidetes, and Firmicutes were frequently detected in both clone libraries. The clones were related to thermophilic, mesophilic and psychrophilic bacteria. Approximately half of the sequences in bacterial clone libraries shared <92% sequence similarity with their closest sequences in a public database, suggesting that the Ibusuki hot spring may harbor a unique and novel bacterial community. By contrast, 77 clones from the Site 2 archaeal library contained only three OTUs, most of which were affiliated with Thaumarchaeota.

  16. Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity.

    PubMed

    Reyes, Ruth D Hernández; Cafaro, Matías J

    2015-01-01

    The diversity of Actinobacteria associated with Paratrechina longicornis, an ant species that prefers a high protein diet, in a subtropical dry forest (Guánica, Puerto Rico) was determined by culture methods and by 16S rDNA clone libraries. The results of both methodologies were integrated to obtain a broader view of the diversity. Streptomyces, Actinomadura, Nocardia, Ornithinimicrobium, Tsukamurella, Brevibacterium, Saccharopolyspora, Nocardioides, Microbacterium, Leifsonia, Pseudonocardia, Corynebacterium, Geodermatophilus, Amycolatopsis, and Nonomuraea were found associated with the ants. The genera Streptomyces and Actinomadura were the most abundant. Also, the diversity of Actinobacteria associated with the soil surrounding the nest was determined using 16S rDNA clone libraries. In total, 27 genera of Actinobacteria were associated with the nest soils. A dominant genus was not observed in any of the soil samples. We compared statistically the Actinobacteria communities among P. longicornis nests and each nest with its surrounding soil using the clone libraries data. We established that the communities associated with the ants were consistent and significantly different from those found in the soil in which the ants live. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [Construction of large fragment metagenome library of natural mangrove soil].

    PubMed

    Jiang, Yun-Xia; Zheng, Tian-Ling

    2007-11-01

    Applying our optimized direct extraction method, the percentage of large fragment DNA in the total extracted mangrove soil DNA was significant increased. The large fragment metagenome library derived from natural mangrove soil over four seasons was successfully constructed by the optimized DNA extraction and electro elution purification method. All of the clones had recombinant Cosmids and each differed in their fragment profiles when Cosmid DNA was extracted from 12 randomly picked colonies and digested with BamHI. The average insert size for this library was larger than 35 kbp. This culturing-independent library at least encompassed 335 Mbp valuable genetic information of mangrove soil microbes. It allowed mining of valuable intertidal microbial resource to become a reality. It is a recommended method for those researchers who have still not circumvented the large insert environmental libraries or for those beginning research in this field, so as to avoid them attempting repetitive, fussy work.

  18. Method for high-volume sequencing of nucleic acids: random and directed priming with libraries of oligonucleotides

    DOEpatents

    Studier, F. William

    1995-04-18

    Random and directed priming methods for determining nucleotide sequences by enzymatic sequencing techniques, using libraries of primers of lengths 8, 9 or 10 bases, are disclosed. These methods permit direct sequencing of nucleic acids as large as 45,000 base pairs or larger without the necessity for subcloning. Individual primers are used repeatedly to prime sequence reactions in many different nucleic acid molecules. Libraries containing as few as 10,000 octamers, 14,200 nonamers, or 44,000 decamers would have the capacity to determine the sequence of almost any cosmid DNA. Random priming with a fixed set of primers from a smaller library can also be used to initiate the sequencing of individual nucleic acid molecules, with the sequence being completed by directed priming with primers from the library. In contrast to random cloning techniques, a combined random and directed priming strategy is far more efficient.

  19. Method for high-volume sequencing of nucleic acids: random and directed priming with libraries of oligonucleotides

    DOEpatents

    Studier, F.W.

    1995-04-18

    Random and directed priming methods for determining nucleotide sequences by enzymatic sequencing techniques, using libraries of primers of lengths 8, 9 or 10 bases, are disclosed. These methods permit direct sequencing of nucleic acids as large as 45,000 base pairs or larger without the necessity for subcloning. Individual primers are used repeatedly to prime sequence reactions in many different nucleic acid molecules. Libraries containing as few as 10,000 octamers, 14,200 nonamers, or 44,000 decamers would have the capacity to determine the sequence of almost any cosmid DNA. Random priming with a fixed set of primers from a smaller library can also be used to initiate the sequencing of individual nucleic acid molecules, with the sequence being completed by directed priming with primers from the library. In contrast to random cloning techniques, a combined random and directed priming strategy is far more efficient. 2 figs.

  20. 3G vector-primer plasmid for constructing full-length-enriched cDNA libraries.

    PubMed

    Zheng, Dong; Zhou, Yanna; Zhang, Zidong; Li, Zaiyu; Liu, Xuedong

    2008-09-01

    We designed a 3G vector-primer plasmid for the generation of full-length-enriched complementary DNA (cDNA) libraries. By employing the terminal transferase activity of reverse transcriptase and the modified strand replacement method, this plasmid (assembled with a polydT end and a deoxyguanosine [dG] end) combines priming full-length cDNA strand synthesis and directional cDNA cloning. As a result, the number of steps involved in cDNA library preparation is decreased while simplifying downstream gene manipulation, sequencing, and subcloning. The 3G vector-primer plasmid method yields fully represented plasmid primed libraries that are equivalent to those made by the SMART (switching mechanism at 5' end of RNA transcript) approach.

  1. [Construction of human phage antibody library and screening for human monoclonal antibodies of amylin].

    PubMed

    Gong, Qian; Li, Chang-ying; Chang, Ji-wu; Zhu, Tie-hong

    2012-06-01

    To screen monoclonal antibodies to amylin from a constructed human phage antibody library and identify their antigenic specificity and combining activities. The heavy chain Fd fragment and light chain of human immunoglobulin genes were amplified from peripheral blood lymphocytes of healthy donors using RT-PCR, and then inserted into phagemid pComb3XSS to generate a human phage antibody library. The insertion of light chain or heavy chain Fd genes were identified by PCR after the digestion of Sac I, Xba I, Xho Iand Spe I. One of positive clones was analyzed by DNA sequencing. The specific anti-amylin clones were screened from antibody library against human amylin antigens and then the positive clones were determined by Phage-ELISA analysis. A Fab phage antibody library with 0.8×10(8); members was constructed with the efficacy of about 70%. DNA sequence analysis indicated V(H); gene belonged to V(H);3 gene family and V(λ); gene belonged to the V(λ); gene family. Using human amylin as panning antigen, specific anti-amylin Fab antibodies were enriched by screening the library for three times. Phage-ELISA assay showed the positive clones had very good specificity to amylin antigen. The successful construction of a phage antibody library and the identification of anti-amylin Fab antibodies provide a basis for further study and preparation of human anti-amylin antibodies.

  2. A universal phage display system for the seamless construction of Fab libraries.

    PubMed

    Nelson, Renae S; Valadon, Philippe

    2017-11-01

    The construction of Fab phage libraries requires the cloning of domains from both the light and the heavy chain of antibodies. Despite the advent of powerful strategies such as splicing-by-overlap extension PCR, obtaining high quality libraries with excellent coverage remains challenging. Here, we explored the use of type IIS restriction enzymes for the seamless cloning of Fab libraries. We analyzed human, murine and rabbit germline antibody repertoires and identified combinations of restriction enzymes that exhibit very few or no recognition sites in the antibody sequences. We describe three phagemid vectors, pUP-22Hb, pUP-22Mc and pUP-22Rc, which were employed for cloning the Fab repertoire of these hosts using BsmBI and SapI (human) or SapI alone (mouse and rabbit). Using human serum albumin as a model immunization, we built a mouse/human chimeric Fab library and a mouse Fab library in a single step ligation and successfully panned multiple cognate antibodies. The overall process is highly scalable and faster than PCR-based techniques, with a Fab insertion success rate of around 80%. By using carefully chosen overhangs on each end of the antibody domains, this approach paves the way to the universal, sequence- and vector-independent cloning and reformatting of antibody libraries. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Exploitation of rolling circle amplification for the construction of large phage-display antibody libraries.

    PubMed

    Shahsavarian, Melody A; Le Minoux, Damien; Matti, Kalyankumar M; Kaveri, Srini; Lacroix-Desmazes, Sébastien; Boquet, Didier; Friboulet, Alain; Avalle, Bérangère; Padiolleau-Lefèvre, Séverine

    2014-05-01

    Phage display antibody libraries have proven to have a significant role in the discovery of therapeutic antibodies and polypeptides with desired biological and physicochemical properties. Obtaining a large and diverse phage display antibody library, however, is always a challenging task. Various steps of this technique can still undergo optimization in order to obtain an efficient library. In the construction of a single chain fragment variable (scFv) phage display library, the cloning of the scFv fragments into a phagemid vector is of crucial importance. An efficient restriction enzyme digestion of the scFv DNA leads to its proper ligation with the phagemid followed by its successful cloning and expression. Here, we are reporting a different approach to enhance the efficiency of the restriction enzyme digestion step. We have exploited rolling circle amplification (RCA) to produce a long strand of DNA with tandem repeats of scFv sequences, which is found to be highly susceptible to restriction digestion. With this important modification, we are able to construct a large phage display antibody library of naive SJL/J mice. The size of the library is estimated as ~10(8) clones. The number of clones containing a scFv fragment is estimated at 90%. Hence, the present results could considerably aid the utilization of the phage-display technique in order to get an efficiently large antibody library. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Cloning and characterization of a novel α-amylase from a fecal microbial metagenome.

    PubMed

    Xu, Bo; Yang, Fuya; Xiong, Caiyun; Li, Junjun; Tang, Xianghua; Zhou, Junpei; Xie, Zhenrong; Ding, Junmei; Yang, Yunjuan; Huang, Zunxi

    2014-04-01

    To isolate novel and useful microbial enzymes from uncultured gastrointestinal microorganisms, a fecal microbial metagenomic library of the pygmy loris was constructed. The library was screened for amylolytic activity, and 8 of 50,000 recombinant clones showed amylolytic activity. Subcloning and sequence analysis of a positive clone led to the identification a novel gene (amyPL) coding for α-amylase. AmyPL was expressed in Escherichia coli BL21 (DE3) and the purified AmyPL was enzymatically characterized. This study is the first to report the molecular and biochemical characterization of a novel α-amylase from a gastrointestinal metagenomic library.

  5. Parallel selection of antibody libraries on phage and yeast surfaces via a cross-species display.

    PubMed

    Patel, Chirag A; Wang, Jinqing; Wang, Xinwei; Dong, Feng; Zhong, Pingyu; Luo, Peter P; Wang, Kevin C

    2011-09-01

    We created a cross-species display system that allows the display of the same antibody libraries on both prokaryotic phage and eukaryotic yeast without the need for molecular cloning. Using this cross-display system, a large, diverse library can be constructed once and subsequently used for display and selection in both phage and yeast systems. In this article, we performed the parallel phage and yeast selection of an antibody maturation library using this cross-display platform. This parallel selection allowed us to isolate more unique hits than single-species selection, with 162 unique clones from phage and 107 unique clones from yeast. In addition, we were able to shuttle yeast hits back to Escherichia coli cells for affinity characterization at a higher throughput.

  6. [cDNA library construction from panicle meristem of finger millet].

    PubMed

    Radchuk, V; Pirko, Ia V; Isaenkov, S V; Emets, A I; Blium, Ia B

    2014-01-01

    The protocol for production of full-size cDNA using SuperScript Full-Length cDNA Library Construction Kit II (Invitrogen) was tested and high quality cDNA library from meristematic tissue of finger millet panicle (Eleusine coracana (L.) Gaertn) was created. The titer of obtained cDNA library comprised 3.01 x 10(5) CFU/ml in avarage. In average the length of cDNA insertion consisted about 1070 base pairs, the effectivity of cDNA fragment insertions--99.5%. The selective sequencing of cDNA clones from created library was performed. The sequences of cDNA clones were identified with usage of BLAST-search. The results of cDNA library analysis and selective sequencing represents prove good functionality and full length character of inserted cDNA clones. Obtained cDNA library from meristematic tissue of finger millet panicle represents good and valuable source for isolation and identification of key genes regulating metabolism and meristematic development and for mining of new molecular markers to conduct out high quality genetic investigations and molecular breeding as well.

  7. Polishing the craft of genetic diversity creation in directed evolution.

    PubMed

    Tee, Kang Lan; Wong, Tuck Seng

    2013-12-01

    Genetic diversity creation is a core technology in directed evolution where a high quality mutant library is crucial to its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over the years and its application has diversified into other fields of scientific research. The advances in molecular cloning and mutagenesis since 2008 were reviewed. Specifically, new cloning techniques were classified based on their principles of complementary overhangs, homologous sequences, overlapping PCR and megaprimers and the advantages, drawbacks and performances of these methods were highlighted. New mutagenesis methods developed for random mutagenesis, focused mutagenesis and DNA recombination were surveyed. The technical requirements of these methods and the mutational spectra were compared and discussed with references to commonly used techniques. The trends of mutant library preparation were summarised. Challenges in genetic diversity creation were discussed with emphases on creating "smart" libraries, controlling the mutagenesis spectrum and specific challenges in each group of mutagenesis methods. An outline of the wider applications of genetic diversity creation includes genome engineering, viral evolution, metagenomics and a study of protein functions. The review ends with an outlook for genetic diversity creation and the prospective developments that can have future impact in this field. © 2013. Published by Elsevier Inc. All rights reserved.

  8. Rapid isolation of IgNAR variable single-domain antibody fragments from a shark synthetic library.

    PubMed

    Shao, Cui-Ying; Secombes, Chris J; Porter, Andrew J

    2007-01-01

    The immunoglobulin isotype IgNAR (Novel Antigen Receptor) was discovered in the serum of the nurse shark (Ginglymostoma cirratum) and wobbegong shark (Orectolobus maculates) as a homodimer of two protein chains, each composed of a single variable domain (V) domain and five constant domains. The IgNAR variable domain contains an intact antigen-binding site and functions as an independent domain able to react to antigen with both high specificity and affinity. Here we describe the successful construction of a synthetic phage-displayed library based upon a single anti-lysozyme clone HEL-5A7 scaffold, which was previously selected from an immune IgNAR variable domain library. The complementarity-determining region 3 (CDR3) loop of this clone was varied in both length and composition and the derived library was used to pan against two model proteins, lysozyme and leptin. A single anti-lysozyme clone (Ly-X20) and anti-leptin clone (Lep-12E1) were selected for further study. Both clones were shown to be functionally expressed in Escherichia coli, extremely thermostable and bind to corresponding antigens specifically. The results here demonstrate that a synthetic IgNAR variable domain library based on a single framework scaffold can be used as a route to generate antigen binders quickly, easily and without the need of immunization.

  9. Fusarium diversity in soil using a specific molecular approach and a cultural approach.

    PubMed

    Edel-Hermann, Véronique; Gautheron, Nadine; Mounier, Arnaud; Steinberg, Christian

    2015-04-01

    Fusarium species are ubiquitous in soil. They cause plant and human diseases and can produce mycotoxins. Surveys of Fusarium species diversity in environmental samples usually rely on laborious culture-based methods. In the present study, we have developed a molecular method to analyze Fusarium diversity directly from soil DNA. We designed primers targeting the translation elongation factor 1-alpha (EF-1α) gene and demonstrated their specificity toward Fusarium using a large collection of fungi. We used the specific primers to construct a clone library from three contrasting soils. Sequence analysis confirmed the specificity of the assay, with 750 clones identified as Fusarium and distributed among eight species or species complexes. The Fusarium oxysporum species complex (FOSC) was the most abundant one in the three soils, followed by the Fusarium solani species complex (FSSC). We then compared our molecular approach results with those obtained by isolating Fusarium colonies on two culture media and identifying species by sequencing part of the EF-1α gene. The 750 isolates were distributed into eight species or species complexes, with the same dominant species as with the cloning method. Sequence diversity was much higher in the clone library than in the isolate collection. The molecular approach proved to be a valuable tool to assess Fusarium diversity in environmental samples. Combined with high throughput sequencing, it will allow for in-depth analysis of large numbers of samples. Published by Elsevier B.V.

  10. High-Throughput Cloning and Expression Library Creation for Functional Proteomics

    PubMed Central

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-01-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047

  11. High-throughput cloning and expression library creation for functional proteomics.

    PubMed

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-05-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Use of RecA protein to enrich for homologous genes in a genomic library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taidi-Laskowski, B.; Grumet, F.C.; Tyan, D.

    1988-08-25

    RecA protein-coated probe has been utilized to enrich genomic digests for desired genes in order to facilitate cloning from genomic libraries. Using a previously cloned HLA-B27 gene as the recA-coated enrichment probe, the authors obtained a mean 108x increase in the ratio of specific to nonspecific plaques in lambda libraries screened for B27 variant alleles of estimated 99% homology to the probe. Class I genes of lesser homology were less enriched. Loss of genomic DNA during the enrichment procedure can, however, restrict application of this technique whenever starting genomic DNA is very limited. Nevertheless, the impressive reduction in cloning effortmore » and material makes recA enrichment a useful new tool for cloning homologous genes from genomic DNA.« less

  13. Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.

    PubMed

    Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo

    2015-11-01

    Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Bioproduction and characterization of extracellular melanin-like pigment from industrially polluted metagenomic library equipped Escherichia coli.

    PubMed

    Amin, Shivani; Rastogi, Rajesh P; Sonani, Ravi R; Ray, Arabinda; Sharma, Rakesh; Madamwar, Datta

    2018-04-15

    To explore the potential genes from the industrially polluted Amlakhadi canal, located in Ankleshwar, Gujarat, India, its community genome was extracted and cloned into E. coli EPI300™-T1 R using a fosmid vector (pCC2 FOS™) generating a library of 3,92,000 clones with average size of 40kb of DNA-insert. From this library, the clone DM1 producing brown colored melanin-like pigment was isolated and characterized. For over expression of the pigment, further sub-cloning of the clone DM1 was done. Sub-clone containing 10kb of the insert was sequenced for gene identification. The amino acids sequence of a protein 4-Hydroxyphenylpyruvate dioxygenase (HPPD), which is know to be involved in melanin biosynthesis was obtained from the gene sequence. The sequence-homology based 3D structure model of HPPD was constructed and analyzed. The physico-chemical nature of pigment was further analysed using 1 H and 13 C NMR, LC-MS, FTIR and UV-visible spectroscopy. The pigment was readily soluble in DMSO with an absorption maximum around 290nm. Based on the genetic and chemical characterization, the compound was confirmed as melanin-like pigment. The present results indicate that the metagenomic library from industrially polluted environment generated a microbial tool for the production of melanin-like pigment. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. EMMA: An Extensible Mammalian Modular Assembly Toolkit for the Rapid Design and Production of Diverse Expression Vectors.

    PubMed

    Martella, Andrea; Matjusaitis, Mantas; Auxillos, Jamie; Pollard, Steven M; Cai, Yizhi

    2017-07-21

    Mammalian plasmid expression vectors are critical reagents underpinning many facets of research across biology, biomedical research, and the biotechnology industry. Traditional cloning methods often require laborious manual design and assembly of plasmids using tailored sequential cloning steps. This process can be protracted, complicated, expensive, and error-prone. New tools and strategies that facilitate the efficient design and production of bespoke vectors would help relieve a current bottleneck for researchers. To address this, we have developed an extensible mammalian modular assembly kit (EMMA). This enables rapid and efficient modular assembly of mammalian expression vectors in a one-tube, one-step golden-gate cloning reaction, using a standardized library of compatible genetic parts. The high modularity, flexibility, and extensibility of EMMA provide a simple method for the production of functionally diverse mammalian expression vectors. We demonstrate the value of this toolkit by constructing and validating a range of representative vectors, such as transient and stable expression vectors (transposon based vectors), targeting vectors, inducible systems, polycistronic expression cassettes, fusion proteins, and fluorescent reporters. The method also supports simple assembly combinatorial libraries and hierarchical assembly for production of larger multigenetic cargos. In summary, EMMA is compatible with automated production, and novel genetic parts can be easily incorporated, providing new opportunities for mammalian synthetic biology.

  16. YAC cloning Mus musculus telomeric DNA: physical, genetic, in situ and STS markers for the distal telomere of chromosome 10.

    PubMed

    Kipling, D; Wilson, H E; Thomson, E J; Cooke, H J

    1995-06-01

    Three Mus musculus DBA/2 YAC libraries were constructed using a half-YAC telomere cloning vector. This functional complementation approach yields libraries which include terminal restriction fragments of the mouse genome. Screening all three libraries led to the isolation of 32 independent clones which carry linear YACs containing the mouse terminal repeat sequence, (TTAGGG)n. These YACs provide a resource to isolate regions of the mouse genome close to chromosome termini and excluded from existing conventional YAC libraries. To demonstrate their utility, a hybridization probe was isolated from Mtel-1, the first (TTAGGG)n-containing YAC isolated. This probe detects a approximately 70 kb Kpnl fragment in the mouse genome which is sensitive to pretreatment with BAL31 exonuclease. A PCR-based genetic marker generated from the sequence of this probe maps 4.4 cM from the most distal anchor locus on chromosome 10 in the EUCIB interspecific backcross. STS primers for this locus, D10Hgu1, were used to isolate YAC 110F4 from a commercially available mouse YAC library. Fluorescence in situ hybridization demonstrates that YAC 110F4 hybridizes to the distal telomere of chromosome 10. Clones in this collection of telomere YACs therefore partially overlap clones in conventional YAC libraries, and thus the previously unavailable terminal regions of the mouse genome can now be linked with the developing mouse STS YAC contig. Genetic markers such as D10Hgu1 allow the ends of the mouse genetic map to be defined, thus closing the map.

  17. Construction of High-Quality Camel Immune Antibody Libraries.

    PubMed

    Romão, Ema; Poignavent, Vianney; Vincke, Cécile; Ritzenthaler, Christophe; Muyldermans, Serge; Monsion, Baptiste

    2018-01-01

    Single-domain antibodies libraries of heavy-chain only immunoglobulins from camelids or shark are enriched for high-affinity antigen-specific binders by a short in vivo immunization. Thus, potent binders are readily retrieved from relatively small-sized libraries of 10 7 -10 8 individual transformants, mostly after phage display and panning on a purified target. However, the remaining drawback of this strategy arises from the need to generate a dedicated library, for nearly every envisaged target. Therefore, all the procedures that shorten and facilitate the construction of an immune library of best possible quality are definitely a step forward. In this chapter, we provide the protocol to generate a high-quality immune VHH library using the Golden Gate Cloning strategy employing an adapted phage display vector where a lethal ccdB gene has to be substituted by the VHH gene. With this procedure, the construction of the library can be shortened to less than a week starting from bleeding the animal. Our libraries exceed 10 8 individual transformants and close to 100% of the clones harbor a phage display vector having an insert with the length of a VHH gene. These libraries are also more economic to make than previous standard approaches using classical restriction enzymes and ligations. The quality of the Nanobodies that are retrieved from immune libraries obtained by Golden Gate Cloning is identical to those from immune libraries made according to the classical procedure.

  18. Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles.

    PubMed

    Wall, Kate; Cornell, Jennifer; Bizzoco, Richard W; Kelley, Scott T

    2015-01-06

    Fumaroles (steam vents) are the most common, yet least understood, microbial habitat in terrestrial geothermal settings. Long believed too extreme for life, recent advances in sample collection and DNA extraction methods have found that fumarole deposits and subsurface waters harbor a considerable diversity of viable microbes. In this study, we applied culture-independent molecular methods to explore fumarole deposit microbial assemblages in 15 different fumaroles in four geographic locations on the Big Island of Hawai'i. Just over half of the vents yielded sufficient high-quality DNA for the construction of 16S ribosomal RNA gene sequence clone libraries. The bacterial clone libraries contained sequences belonging to 11 recognized bacterial divisions and seven other division-level phylogenetic groups. Archaeal sequences were less numerous, but similarly diverse. The taxonomic composition among fumarole deposits was highly heterogeneous. Phylogenetic analysis found cloned fumarole sequences were related to microbes identified from a broad array of globally distributed ecotypes, including hot springs, terrestrial soils, and industrial waste sites. Our results suggest that fumarole deposits function as an "extremophile collector" and may be a hot spot of novel extremophile biodiversity. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles

    PubMed Central

    Wall, Kate; Cornell, Jennifer; Bizzoco, Richard W; Kelley, Scott T

    2015-01-01

    Fumaroles (steam vents) are the most common, yet least understood, microbial habitat in terrestrial geothermal settings. Long believed too extreme for life, recent advances in sample collection and DNA extraction methods have found that fumarole deposits and subsurface waters harbor a considerable diversity of viable microbes. In this study, we applied culture-independent molecular methods to explore fumarole deposit microbial assemblages in 15 different fumaroles in four geographic locations on the Big Island of Hawai'i. Just over half of the vents yielded sufficient high-quality DNA for the construction of 16S ribosomal RNA gene sequence clone libraries. The bacterial clone libraries contained sequences belonging to 11 recognized bacterial divisions and seven other division-level phylogenetic groups. Archaeal sequences were less numerous, but similarly diverse. The taxonomic composition among fumarole deposits was highly heterogeneous. Phylogenetic analysis found cloned fumarole sequences were related to microbes identified from a broad array of globally distributed ecotypes, including hot springs, terrestrial soils, and industrial waste sites. Our results suggest that fumarole deposits function as an “extremophile collector” and may be a hot spot of novel extremophile biodiversity. PMID:25565172

  20. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. I. Construction of single chromosomal DNA libraries.

    PubMed

    Huang, D; Wu, W; Zhou, Y; Hu, Z; Lu, L

    2004-05-01

    Construction of single chromosomal DNA libraries by means of chromosome microdissection and microcloning will be useful for genomic research, especially for those species that have not been extensively studied genetically. Application of the technology of microdissection and microcloning to woody fruit plants has not been reported hitherto, largely due to the generally small sizes of metaphase chromosomes and the difficulty of chromosome preparation. The present study was performed to establish a method for single chromosome microdissection and microcloning in woody fruit species using pomelo as a model. The standard karyotype of a pomelo cultivar ( Citrus grandis cv. Guanxi) was established based on 20 prometaphase photomicrographs. According to the standard karyotype, chromosome 1 was identified and isolated with fine glass microneedles controlled by a micromanipulator. DNA fragments ranging from 0.3 kb to 2 kb were acquired from the isolated single chromosome 1 via two rounds of PCR mediated by Sau3A linker adaptors and then cloned into T-easy vectors to generate a DNA library of chromosome 1. Approximately 30,000 recombinant clones were obtained. Evaluation based on 108 randomly selected clones showed that the sizes of the cloned inserts varied from 0.5 kb to 1.5 kb with an average of 860 bp. Our research suggests that microdissection and microcloning of single small chromosomes in woody plants is feasible.

  1. Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor.

    PubMed

    Williamson, Lynn L; Borlee, Bradley R; Schloss, Patrick D; Guan, Changhui; Allen, Heather K; Handelsman, Jo

    2005-10-01

    The goal of this study was to design and evaluate a rapid screen to identify metagenomic clones that produce biologically active small molecules. We built metagenomic libraries with DNA from soil on the floodplain of the Tanana River in Alaska. We extracted DNA directly from the soil and cloned it into fosmid and bacterial artificial chromosome vectors, constructing eight metagenomic libraries that contain 53,000 clones with inserts ranging from 1 to 190 kb. To identify clones of interest, we designed a high throughput "intracellular" screen, designated METREX, in which metagenomic DNA is in a host cell containing a biosensor for compounds that induce bacterial quorum sensing. If the metagenomic clone produces a quorum-sensing inducer, the cell produces green fluorescent protein (GFP) and can be identified by fluorescence microscopy or captured by fluorescence-activated cell sorting. Our initial screen identified 11 clones that induce and two that inhibit expression of GFP. The intracellular screen detected quorum-sensing inducers among metagenomic clones that a traditional overlay screen would not. One inducing clone carries a LuxI homologue that directs the synthesis of an N-acyl homoserine lactone quorum-sensing signal molecule. The LuxI homologue has 62% amino acid sequence identity to its closest match in GenBank, AmfI from Pseudomonas fluorescens, and is on a 78-kb insert that contains 67 open reading frames. Another inducing clone carries a gene with homology to homocitrate synthase. Our results demonstrate the power of an intracellular screen to identify functionally active clones and biologically active small molecules in metagenomic libraries.

  2. Combining Phage and Yeast Cell Surface Antibody Display to Identify Novel Cell Type-Selective Internalizing Human Monoclonal Antibodies.

    PubMed

    Bidlingmaier, Scott; Su, Yang; Liu, Bin

    2015-01-01

    Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.

  3. Constructing and detecting a cDNA library for mites.

    PubMed

    Hu, Li; Zhao, YaE; Cheng, Juan; Yang, YuanJun; Li, Chen; Lu, ZhaoHui

    2015-10-01

    RNA extraction and construction of complementary DNA (cDNA) library for mites have been quite challenging due to difficulties in acquiring tiny living mites and breaking their hard chitin. The present study is to explore a better method to construct cDNA library for mites that will lay the foundation on transcriptome and molecular pathogenesis research. We selected Psoroptes cuniculi as an experimental subject and took the following steps to construct and verify cDNA library. First, we combined liquid nitrogen grinding with TRIzol for total RNA extraction. Then, switching mechanism at 5' end of the RNA transcript (SMART) technique was used to construct full-length cDNA library. To evaluate the quality of cDNA library, the library titer and recombination rate were calculated. The reliability of cDNA library was detected by sequencing and analyzing positive clones and genes amplified by specific primers. The results showed that the RNA concentration was 836 ng/μl and the absorbance ratio at 260/280 nm was 1.82. The library titer was 5.31 × 10(5) plaque-forming unit (PFU)/ml and the recombination rate was 98.21%, indicating that the library was of good quality. In the 33 expressed sequence tags (ESTs) of P. cuniculi, two clones of 1656 and 1658 bp were almost identical with only three variable sites detected, which had an identity of 99.63% with that of Psoroptes ovis, indicating that the cDNA library was reliable. Further detection by specific primers demonstrated that the 553-bp Pso c II gene sequences of P. cuniculi had an identity of 98.56% with those of P. ovis, confirming that the cDNA library was not only reliable but also feasible.

  4. Recombinant scFv antibodies against infectious pancreatic necrosis virus isolated by flow cytometry.

    PubMed

    Xu, Li-Ming; Zhao, Jing-Zhuang; Liu, Miao; Cao, Yong-Sheng; Yin, Jia-Sheng; Liu, Hong-Bai; Lu, Tongyan

    2016-11-01

    Infectious pancreatic necrosis is a significant disease of farmed salmonids in China. In this study, a single chain variable fragment (scFv) antibody library derived from rainbow trout (Oncorhynchus mykiss) and viral protein VP2 of a Chinese infectious pancreatic necrosis virus (IPNV) isolate ChRtm213 were co-expressed by a bacterial display technology. The library was subjected to three rounds of screening by flow cytometry (FCM) to select IPNV specific antibodies. Six antibody clones with different mean fluorescence intensities (MFI) were obtained by picking colonies at random. The antibody clones were expressed and purified. The purified IPNV-specific scFv antibodies were used successfully in Western blotting, enzyme linked immunosorbent assay (ELISA) and an immunofluorescence antibody test (IFAT). This method provides a high throughput means to screen an antibody library by flow cytometry, and isolate a panel of antibody that can be used as potential reagents for the detection and study of IPNV that are prevalent in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. [Cosmid libraries containing DNA from human chromosome 13].

    PubMed

    Kapanadze, B I; Brodianskiĭ, V M; Baranova, A V; Sevat'ianov, S Iu; Fedorova, N D; Kurskov, M M; Kostina, M A; Mironov, A A; Sineokiĭ, S P; Zakhar'ev, V M; Grafodatskiĭ, A S; Modianov, N N; Iankovskiĭ, N K

    1996-03-01

    We characterized two cosmid libraries constructed from flow-sorted chromosome 13 at the Imperial Cancer Research Fund (ICRF), UK (13,000 clones) and Los Alamos National Laboratory (LANL), USA (17,000 clones). After storage for two years, clones showed high viability (95%) and structural stability. EcoR I and Hind III restriction patterns were studied in more than 500 ICRF and 200 LANL cosmids. The average size of inserts was shown to be 35-37 kb in both the libraries. Most cosmids (83% and 93% of ICRF and LANL libraries, respectively) exceed the lower size limit of DNA fragments that can be packaged and represent a good source for physical mapping of chromosome 13. Total length of inserts is four and five genome equivalents in the ICRF and LANL libraries, respectively. ICRF cosmids showed hybridization to 22 of 24 unique probes tested, which corresponds to a 90% probability of having any DNA fragment represented in the library. More than 1 Mb of chromosome 13 is overlapped by 90 cosmids of 22 groups revealed. A chromosomal region of more than 150 kb, containing the ATP1AL1 gene for alpha-1 peptide of Na+, K(+)-ATPase, is covered by 12 cosmids forming a contig. The results of restriction and hybridization analyses are stored in a CLONE database. These data and all the cosmids described are publicly available.

  6. Characterization of the methanogen community in a household anaerobic digester fed with swine manure in China.

    PubMed

    Qin, Huibin; Lang, Huihua; Yang, Hongjiang

    2013-09-01

    Household anaerobic digesters have been installed across rural China for biogas production, but information on methanogen community structure in these small biogas units is sparsely available. By creating clone libraries for 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes, we investigated the methanogenic consortia in a household biogas digester treating swine manure. Operational taxonomic units (OTUs) were defined by comparative sequence analysis, seven OTUs were identified in the 16S rRNA gene library, and ten OTUs were identified in the mcrA gene library. Both libraries were dominated by clones highly related to the type strain Methanocorpusculum labreanum Z, 64.0 % for 16S rRNA gene clones and 64.3 % for mcrA gene clones. Additionally, gas chromatography assays showed that formic acid was 84.54 % of the total volatile fatty acids and methane was 57.20 % of the biogas composition. Our results may help further isolation and characterization of methanogenic starter strains for industrial biogas production.

  7. PrecisePrimer: an easy-to-use web server for designing PCR primers for DNA library cloning and DNA shuffling.

    PubMed

    Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-07-01

    PrecisePrimer is a web-based primer design software made to assist experimentalists in any repetitive primer design task such as preparing, cloning and shuffling DNA libraries. Unlike other popular primer design tools, it is conceived to generate primer libraries with popular PCR polymerase buffers proposed as pre-set options. PrecisePrimer is also meant to design primers in batches, such as for DNA libraries creation of DNA shuffling experiments and to have the simplest interface possible. It integrates the most up-to-date melting temperature algorithms validated with experimental data, and cross validated with other computational tools. We generated a library of primers for the extraction and cloning of 61 genes from yeast DNA genomic extract using default parameters. All primer pairs efficiently amplified their target without any optimization of the PCR conditions. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Final progress report, Construction of a genome-wide highly characterized clone resource for genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nierman, William C.

    At TIGR, the human Bacterial Artificial Chromosome (BAC) end sequencing and trimming were with an overall sequencing success rate of 65%. CalTech human BAC libraries A, B, C and D as well as Roswell Park Cancer Institute's library RPCI-11 were used. To date, we have generated >300,000 end sequences from >186,000 human BAC clones with an average read length {approx}460 bp for a total of 141 Mb covering {approx}4.7% of the genome. Over sixty percent of the clones have BAC end sequences (BESs) from both ends representing over five-fold coverage of the genome by the paired-end clones. The average phredmore » Q20 length is {approx}400 bp. This high accuracy makes our BESs match the human finished sequences with an average identity of 99% and a match length of 450 bp, and a frequency of one match per 12.8 kb contig sequence. Our sample tracking has ensured a clone tracking accuracy of >90%, which gives researchers a high confidence in (1) retrieving the right clone from the BA C libraries based on the sequence matches; and (2) building a minimum tiling path of sequence-ready clones across the genome and genome assembly scaffolds.« less

  9. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs.

    PubMed

    Orphan, V J; Taylor, L T; Hafenbradl, D; Delong, E F

    2000-02-01

    Recent investigations of oil reservoirs in a variety of locales have indicated that these habitats may harbor active thermophilic prokaryotic assemblages. In this study, we used both molecular and culture-based methods to characterize prokaryotic consortia associated with high-temperature, sulfur-rich oil reservoirs in California. Enrichment cultures designed for anaerobic thermophiles, both autotrophic and heterotrophic, were successful at temperatures ranging from 60 to 90 degrees C. Heterotrophic enrichments from all sites yielded sheathed rods (Thermotogales), pleomorphic rods resembling Thermoanaerobacter, and Thermococcus-like isolates. The predominant autotrophic microorganisms recovered from inorganic enrichments using H(2), acetate, and CO(2) as energy and carbon sources were methanogens, including isolates closely related to Methanobacterium, Methanococcus, and Methanoculleus species. Two 16S rRNA gene (rDNA) libraries were generated from total community DNA collected from production wellheads, using either archaeal or universal oligonucleotide primer sets. Sequence analysis of the universal library indicated that a large percentage of clones were highly similar to known bacterial and archaeal isolates recovered from similar habitats. Represented genera in rDNA clone libraries included Thermoanaerobacter, Thermococcus, Desulfothiovibrio, Aminobacterium, Acidaminococcus, Pseudomonas, Halomonas, Acinetobacter, Sphingomonas, Methylobacterium, and Desulfomicrobium. The archaeal library was dominated by methanogen-like rDNAs, with a lower percentage of clones belonging to the Thermococcales. Our results strongly support the hypothesis that sulfur-utilizing and methane-producing thermophilic microorganisms have a widespread distribution in oil reservoirs and the potential to actively participate in the biogeochemical transformation of carbon, hydrogen, and sulfur in situ.

  10. Microbial Communities in the Surface Mucopolysaccharide Layer and the Black Band Microbial Mat of Black Band-Diseased Siderastrea siderea

    PubMed Central

    Sekar, Raju; Mills, DeEtta K.; Remily, Elizabeth R.; Voss, Joshua D.; Richardson, Laurie L.

    2006-01-01

    Microbial community profiles and species composition associated with two black band-diseased colonies of the coral Siderastrea siderea were studied by 16S rRNA-targeted gene cloning, sequencing, and amplicon-length heterogeneity PCR (LH-PCR). Bacterial communities associated with the surface mucopolysaccharide layer (SML) of apparently healthy tissues of the infected colonies, together with samples of the black band disease (BBD) infections, were analyzed using the same techniques for comparison. Gene sequences, ranging from 424 to 1,537 bp, were retrieved from all positive clones (n = 43 to 48) in each of the four clone libraries generated and used for comparative sequence analysis. In addition to LH-PCR community profiling, all of the clone sequences were aligned with LH-PCR primer sequences, and the theoretical lengths of the amplicons were determined. Results revealed that the community profiles were significantly different between BBD and SML samples. The SML samples were dominated by γ-proteobacteria (53 to 64%), followed by β-proteobacteria (18 to 21%) and α-proteobacteria (5 to 11%). In contrast, both BBD clone libraries were dominated by α-proteobacteria (58 to 87%), followed by verrucomicrobia (2 to 10%) and 0 to 6% each of δ-proteobacteria, bacteroidetes, firmicutes, and cyanobacteria. Alphaproteobacterial sequence types related to the bacteria associated with toxin-producing dinoflagellates were observed in BBD clone libraries but were not found in the SML libraries. Similarly, sequences affiliated with the family Desulfobacteraceae and toxin-producing cyanobacteria, both believed to be involved in BBD pathogenesis, were found only in BBD libraries. These data provide evidence for an association of numerous toxin-producing heterotrophic microorganisms with BBD of corals. PMID:16957217

  11. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    PubMed Central

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-01-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  12. Successful application of the dual-vector system II in creating a reliable phage-displayed combinatorial Fab library.

    PubMed

    Song, Suk-yoon; Hur, Byung-ung; Lee, Kyung-woo; Choi, Hyo-jung; Kim, Sung-soo; Kang, Goo; Cha, Sang-hoon

    2009-03-31

    The dual-vector system-II (DVS-II), which allows efficient display of Fab antibodies on phage, has been reported previously, but its practical applicability in a phage-displayed antibody library has not been verified. To resolve this issue, we created two small combinatorial human Fab antibody libraries using the DVS-II, and isolation of target-specific antibodies was attempted. Biopanning of one antibody library, termed DVFAB-1L library, which has a 1.3 x 10(7) combinatorial antibody complexity, against fluorescein-BSA resulted in successful isolation of human Fab clones specific for the antigen despite the presence of only a single light chain in the library. By using the unique feature of the DVS-II, an antibody library of a larger size, named DVFAB-131L, which has a 1.5 x 10(9) combinatorial antibody complexity, was also generated in a rapid manner by combining 1.3 x 10(7) heavy chains and 131 light chains and more diverse anti-fluorescein-BSA Fab antibody clones were successfully obtained. Our results demonstrate that the DVS-II can be applied readily in creating phage-displayed antibody libraries with much less effort, and target-specific antibody clones can be isolated reliably via light chain promiscuity of antibody molecule.

  13. Simple-MSSM: a simple and efficient method for simultaneous multi-site saturation mutagenesis.

    PubMed

    Cheng, Feng; Xu, Jian-Miao; Xiang, Chao; Liu, Zhi-Qiang; Zhao, Li-Qing; Zheng, Yu-Guo

    2017-04-01

    To develop a practically simple and robust multi-site saturation mutagenesis (MSSM) method that enables simultaneously recombination of amino acid positions for focused mutant library generation. A general restriction enzyme-free and ligase-free MSSM method (Simple-MSSM) based on prolonged overlap extension PCR (POE-PCR) and Simple Cloning techniques. As a proof of principle of Simple-MSSM, the gene of eGFP (enhanced green fluorescent protein) was used as a template gene for simultaneous mutagenesis of five codons. Forty-eight randomly selected clones were sequenced. Sequencing revealed that all the 48 clones showed at least one mutant codon (mutation efficiency = 100%), and 46 out of the 48 clones had mutations at all the five codons. The obtained diversities at these five codons are 27, 24, 26, 26 and 22, respectively, which correspond to 84, 75, 81, 81, 69% of the theoretical diversity offered by NNK-degeneration (32 codons; NNK, K = T or G). The enzyme-free Simple-MSSM method can simultaneously and efficiently saturate five codons within one day, and therefore avoid missing interactions between residues in interacting amino acid networks.

  14. Generation of human Fab antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences.

    PubMed

    Andris-Widhopf, Jennifer; Steinberger, Peter; Fuller, Roberta; Rader, Christoph; Barbas, Carlos F

    2011-09-01

    The development of therapeutic antibodies for use in the treatment of human diseases has long been a goal for many researchers in the antibody field. One way to obtain these antibodies is through phage-display libraries constructed from human lymphocytes. This protocol describes the construction of human Fab (fragment antigen binding) antibody libraries. In this method, the individual rearranged heavy- and light-chain variable regions are amplified separately and are linked through a series of overlap polymerase chain reaction (PCR) steps to give the final Fab products that are used for cloning.

  15. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  16. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development - Poster

    EPA Science Inventory

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  17. Shuffle Optimizer: A Program to Optimize DNA Shuffling for Protein Engineering.

    PubMed

    Milligan, John N; Garry, Daniel J

    2017-01-01

    DNA shuffling is a powerful tool to develop libraries of variants for protein engineering. Here, we present a protocol to use our freely available and easy-to-use computer program, Shuffle Optimizer. Shuffle Optimizer is written in the Python computer language and increases the nucleotide homology between two pieces of DNA desired to be shuffled together without changing the amino acid sequence. In addition we also include sections on optimal primer design for DNA shuffling and library construction, a small-volume ultrasonicator method to create sheared DNA, and finally a method to reassemble the sheared fragments and recover and clone the library. The Shuffle Optimizer program and these protocols will be useful to anyone desiring to perform any of the nucleotide homology-dependent shuffling methods.

  18. The gut bacterial communities associated with lab-raised and field-collected ants of Camponotus fragilis (Formicidae: Formicinae).

    PubMed

    He, Hong; Wei, Cong; Wheeler, Diana E

    2014-09-01

    Camponotus is the second largest ant genus and known to harbor the primary endosymbiotic bacteria of the genus Blochmannia. However, little is known about the effect of diet and environment changes on the gut bacterial communities of these ants. We investigated the intestinal bacterial communities in the lab-raised and field-collected ants of Camponotus fragilis which is found in the southwestern United States and northern reaches of Mexico. We determined the difference of gut bacterial composition and distribution among the crop, midgut, and hindgut of the two types of colonies. Number of bacterial species varied with the methods of detection and the source of the ants. Lab-raised ants yielded 12 and 11 species using classical microbial culture methods and small-subunit rRNA genes (16S rRNAs) polymerase chain reaction-restriction fragment-length polymorphism analysis, respectively. Field-collected ants yielded just 4 and 1-3 species using the same methods. Most gut bacterial species from the lab-raised ants were unevenly distributed among the crop, midgut, and hindgut, and each section had its own dominant bacterial species. Acetobacter was the prominent bacteria group in crop, accounting for about 55 % of the crop clone library. Blochmannia was the dominant species in midgut, nearly reaching 90 % of the midgut clone library. Pseudomonas aeruginosa dominated the hindgut, accounting for over 98 % of the hindgut clone library. P. aeruginosa was the only species common to all three sections. A comparison between lab-raised and field-collected ants, and comparison with other species, shows that gut bacterial communities vary with local environment and diet. The bacterial species identified here were most likely commensals with little effect on their hosts or mild pathogens deleterious to colony health.

  19. A method for high-throughput production of sequence-verified DNA libraries and strain collections.

    PubMed

    Smith, Justin D; Schlecht, Ulrich; Xu, Weihong; Suresh, Sundari; Horecka, Joe; Proctor, Michael J; Aiyar, Raeka S; Bennett, Richard A O; Chu, Angela; Li, Yong Fuga; Roy, Kevin; Davis, Ronald W; Steinmetz, Lars M; Hyman, Richard W; Levy, Sasha F; St Onge, Robert P

    2017-02-13

    The low costs of array-synthesized oligonucleotide libraries are empowering rapid advances in quantitative and synthetic biology. However, high synthesis error rates, uneven representation, and lack of access to individual oligonucleotides limit the true potential of these libraries. We have developed a cost-effective method called Recombinase Directed Indexing (REDI), which involves integration of a complex library into yeast, site-specific recombination to index library DNA, and next-generation sequencing to identify desired clones. We used REDI to generate a library of ~3,300 DNA probes that exhibited > 96% purity and remarkable uniformity (> 95% of probes within twofold of the median abundance). Additionally, we created a collection of ~9,000 individually accessible CRISPR interference yeast strains for > 99% of genes required for either fermentative or respiratory growth, demonstrating the utility of REDI for rapid and cost-effective creation of strain collections from oligonucleotide pools. Our approach is adaptable to any complex DNA library, and fundamentally changes how these libraries can be parsed, maintained, propagated, and characterized. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Genetic diversity of small eukaryotes in lakes differing by their trophic status.

    PubMed

    Lefranc, Marie; Thénot, Aurélie; Lepère, Cécile; Debroas, Didier

    2005-10-01

    Small eukaryotes, cells with a diameter of less than 5 mum, are fundamental components of lacustrine planktonic systems. In this study, small-eukaryote diversity was determined by sequencing cloned 18S rRNA genes in three libraries from lakes of differing trophic status in the Massif Central, France: the oligotrophic Lake Godivelle, the oligomesotrophic Lake Pavin, and the eutrophic Lake Aydat. This analysis shows that the least diversified library was in the eutrophic lake (12 operational taxonomic units [OTUs]) and the most diversified was in the oligomesotrophic lake (26 OTUs). Certain groups were present in at least two ecosystems, while the others were specific to one lake on the sampling date. Cryptophyta, Chrysophyceae, and the strictly heterotrophic eukaryotes, Ciliophora and fungi, were identified in the three libraries. Among the small eukaryotes found only in two lakes, Choanoflagellida and environmental sequences (LKM11) were not detected in the eutrophic system whereas Cercozoa were confined to the oligomesotrophic and eutrophic lakes. Three OTUs, linked to the Perkinsozoa, were detected only in the Aydat library, where they represented 60% of the clones of the library. Chlorophyta and Haptophyta lineages were represented by a single clone and were present only in Godivelle and Pavin, respectively. Of the 127 clones studied, classical pigmented organisms (autotrophs and mixotrophs) represented only a low proportion regardless of the library's origin. This study shows that the small-eukaryote community composition may differ as a function of trophic status; certain lineages could be detected only in a single ecosystem.

  1. Cloning of a Gene Whose Expression is Increased in Scrapie and in Senile Plaques in Human Brain

    NASA Astrophysics Data System (ADS)

    Wietgrefe, S.; Zupancic, M.; Haase, A.; Chesebro, B.; Race, R.; Frey, W.; Rustan, T.; Friedman, R. L.

    1985-12-01

    A complementary DNA library was constructed from messenger RNA's extracted from the brains of mice infected with the scrapie agent. The library was differentially screened with the objectives of finding clones that might be used as markers of infection and finding clones of genes whose increased expression might be correlated with the pathological changes common to scrapie and Alzheimer's disease. A gene was identified whose expression is increased in scrapie. The complementary DNA corresponding to this gene hybridized preferentially and focally to cells in the brains of scrapie-infected animals. The cloned DNA also hybridized to the neuritic plaques found with increased frequency in brains of patients with Alzheimer's disease.

  2. Uniform amplification of phage display libraries in monodisperse emulsions.

    PubMed

    Matochko, Wadim L; Ng, Simon; Jafari, Mohammad R; Romaniuk, Joseph; Tang, Sindy K Y; Derda, Ratmir

    2012-09-01

    In this paper, we describe a complete experimental setup for the uniform amplification of libraries of phage. Uniform amplification, which multiplies every phage clone by the same amount irrespective of the growth rate of the clone is essential for phage-display screening. Amplification of phage libraries in a common solution is often non-uniform: it favors fast-growing clones and eliminates those that grow slower. This competition leads to elimination of many useful binding clones, and it is a major barrier to identification of ligands for targets with multiple binding sites such as cells, tissues, or mixtures of proteins. Uniform amplification is achieved by encapsulating individual phage clones into isolated compartments (droplets) of identical volume. Each droplet contains culture medium and an excess of host (Escherichia coli). Here, we describe microfluidics devices that generate mono-disperse droplet-based compartments, and optimal conditions for amplification of libraries of different size. We also describe the detailed synthesis of a perfluoro surfactant, which gives droplets exceptional stability. Droplets stabilized by this compound do not coalesce after many hours in shaking culture. We identified a commercially available compound (Krytox), which destabilizes these droplets to recover the amplified libraries. Overall, uniform amplification is a sequence of three simple steps: (1) encapsulation of mixture of phage and bacteria in droplets using microfluidics; (2) incubation of droplets in a shaking culture; (3) destabilization of droplets to harvest the amplified phage. We anticipate that this procedure can be easily adapted in any academic or industrial laboratory that uses phage display. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Production of Recombinant Human scFv Against Tetanus Toxin Heavy Chain by Phage Display Technology.

    PubMed

    Khalili, Ehsan; Lakzaei, Mostafa; Rasaee, Mohhamad Javad; Aminian, Mahdi

    2015-10-01

    Tetanus, as a major cause of death in developing countries, is caused by tetanus neurotoxin. Recombinant antibodies against tetanus neurotoxin can be useful in tetanus management. Phage display of antibody fragments from immune human antibody libraries with single chain constructs combining the variable fragments (scFv) has been one of the most prominent technologies in antibody engineering. The aim of this study was the generation of a single chain fragment of variable region (scFv) library and selection of specific antibodies with high affinity against tetanus toxin. Immune human single chain fragment variable (HuscFv) antibody phagemid library was displayed on pIII of filamentous bacteriophage. Selection of scFv clones was performed against tetanus toxin antigens after three rounds of panning. The selected scFv clones were analyzed for inhibition of tetanus toxin binding to ganglioside GT1b. After the third round of panning, over 35 HuscFv phages specific for tetanus toxin were isolated from this library of which 15 clones were found to bind specifically to tetanus toxin. The selected HuscFv phages expressed as a soluble HuscFv peptide and some clones showed positive signals against tetanus toxin. We found that six HuscFv clones inhibit toxin binding to ganglioside GT1b. These selected antibodies can be used in the management of tetanus.

  4. [Microbial diversity and ammonia-oxidizing microorganism of a soil sample near an acid mine drainage lake].

    PubMed

    Liu, Ying; Wang, Li-Hua; Hao, Chun-Bo; Li, Lu; Li, Si-Yuan; Feng, Chuan-Ping

    2014-06-01

    The main physicochemical parameters of the soil sample which was collected near an acid mine drainage reservoir in Anhui province was analyzed. The microbial diversity and community structure was studied through the construction of bacteria and archaea 16S rRNA gene clone libraries and ammonia monooxygenase gene clone library of archaea. The functional groups which were responsible for the process of ammonia oxidation were also discussed. The results indicated that the soil sample had extreme low pH value (pH < 3) and high ions concentration, which was influenced by the acid mine drainage (AMD). All the 16S rRNA gene sequences of bacteria clone library fell into 11 phyla, and Acidobacteria played the most significant role in the ecosystem followed by Verrucomicrobia. A great number of acidophilic bacteria existed in the soil sample, such as Candidatus Koribacter versatilis and Holophaga sp.. The archaea clone library consisted of 2 phyla (Thaumarchaeota and Euryarchaeota). The abundance of Thaumarchaeota was remarkably higher than Euryarchaeota. The ammonia oxidation in the soil environment was probably driven by ammonia-oxidizing archaea, and new species of ammonia-oxidizing archaea existed in the soil sample.

  5. Differential cDNA cloning by enzymatic degrading subtraction (EDS).

    PubMed Central

    Zeng, J; Gorski, R A; Hamer, D

    1994-01-01

    We describe a new method, called enzymatic degrading subtraction (EDS), for the construction of subtractive libraries from PCR amplified cDNA. The novel features of this method are that i) the tester DNA is blocked by thionucleotide incorporation; ii) the rate of hybridization is accelerated by phenol-emulsion reassociation; and iii) the driver cDNA and hybrid molecules are enzymatically removed by digestion with exonucleases III and VII rather than by physical partitioning. We demonstrate the utility of EDS by constructing a subtractive library enriched for cDNAs expressed in adult but not in embryonic rat brains. Images PMID:7971268

  6. Informatic and genomic analysis of melanocyte cDNA libraries as a resource for the study of melanocyte development and function.

    PubMed

    Baxter, Laura L; Hsu, Benjamin J; Umayam, Lowell; Wolfsberg, Tyra G; Larson, Denise M; Frith, Martin C; Kawai, Jun; Hayashizaki, Yoshihide; Carninci, Piero; Pavan, William J

    2007-06-01

    As part of the RIKEN mouse encyclopedia project, two cDNA libraries were prepared from melanocyte-derived cell lines, using techniques of full-length clone selection and subtraction/normalization to enrich for rare transcripts. End sequencing showed that these libraries display over 83% complete coding sequence at the 5' end and 96-97% complete coding sequence at the 3' end. Evaluation of the libraries, derived from B16F10Y tumor cells and melan-c cells, revealed that they contain clones for a majority of the genes previously demonstrated to function in melanocyte biology. Analysis of genomic locations for transcripts revealed that the distribution of melanocyte genes is non-random throughout the genome. Three genomic regions identified that showed significant clustering of melanocyte-expressed genes contain one or more genes previously shown to regulate melanocyte development or function. A catalog of genes expressed in these libraries is presented, providing a valuable resource of cDNA clones and sequence information that can be used for identification of new genes important for melanocyte development, function, and disease.

  7. Sheep polyclonal antibody to map Haemonchus contortus mimotopes using phage display library.

    PubMed

    Buzatti, Andréia; Fernandez, Arnielis Diaz; Arenal, Amilcar; Pereira, Erlán; Monteiro, Alda Lucia Gomes; Molento, Marcelo Beltrão

    2018-05-24

    The aim of this study was to evaluate phage display technology for mapping Haemonchus contortus mimotopes. We screened the PhD-7 Phage Display Peptide Library Kit with a sheep polyclonal antibody against H. contortus. After four rounds of selection, 50 phage peptide clones were selected by biopanning and sequenced. Two clones displaying peptide mimotopes of H. contortus proteins were chosen for sheep immunization: clone 6 - mimotope of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and clone 17 - mimotope of a disorganized muscle family member (Dim 1). Twelve sheep were allocated into 3 groups of 4 animals as follow: G1: control group; G2/GAPDH: immunized with clone 6; and G3/Dim1: immunized with clone 17. Four immunizations were performed at intervals of seven days (0, 7, 14, and 21 days). On day 28 post initial vaccination, all groups were orally challenged with 2500 H. contortus infective larvae. The mimotope peptides selected by phage display were recognized by IgG from sheep naturaly infected with H. contortus. The immunization protocol showed an increasein IgG anti-M13 phage titers, but no effect was observed in IgG-specific for the anti-mimotope peptides. This is the first report of successful use of a phage display library for the identification of mimotopes of H. contortus proteins.

  8. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer.

    PubMed

    Coelho, Marcia Reed Rodrigues; de Vos, Marjon; Carneiro, Newton Portilho; Marriel, Ivanildo Evódio; Paiva, Edilson; Seldin, Lucy

    2008-02-01

    The diversity of nitrogen-fixing bacteria was assessed in the rhizospheres of two cultivars of sorghum (IS 5322-C and IPA 1011) sown in Cerrado soil amended with two levels of nitrogen fertilizer (12 and 120 kg ha(-1)). The nifH gene was amplified directly from DNA extracted from the rhizospheres, and the PCR products cloned and sequenced. Four clone libraries were generated from the nifH fragments and 245 sequences were obtained. Most of the clones (57%) were closely related to nifH genes of uncultured bacteria. NifH clones affiliated with Azohydromonas spp., Ideonella sp., Rhizobium etli and Bradyrhizobium sp. were found in all libraries. Sequences affiliated with Delftia tsuruhatensis were found in the rhizosphere of both cultivars sown with high levels of nitrogen, while clones affiliated with Methylocystis sp. were detected only in plants sown under low levels of nitrogen. Moreover, clones affiliated with Paenibacillus durus could be found in libraries from the cultivar IS 5322-C sown either in high or low amounts of fertilizer. This study showed that the amount of nitrogen used for fertilization is the overriding determinative factor that influenced the nitrogen-fixing community structures in sorghum rhizospheres cultivated in Cerrado soil.

  9. Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting.

    PubMed

    Wang, Tingting; Cheng, Lijun; Zhang, Wenhao; Xu, Xiuhong; Meng, Qingxin; Sun, Xuewei; Liu, Huajing; Li, Hongtao; Sun, Yu

    2017-07-28

    Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene ( hzo ) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between 2.13 × 10 5 and 1.15 × 10 6 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

  10. Cloning of a newly identified heart-specific troponin I isoform, which lacks the troponin T binding portion, using the yeast hybrid system.

    PubMed

    Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Yamada, Hisashi; Horiguchi-Yamada, Junko

    2006-01-01

    To elucidate the molecular pathogenesis behind increased levels of laminin in cardiac muscle cells in cardiomyopathy by using a yeast hybrid screen. The present study reports the cloning of a newly identified heart-specific troponin I isoform, which is putatively linked to laminin. Future studies will explore the functional significance of this connection. Yeast two-hybrid screen analysis was performed using MLF1-interacting protein (amino acids 1 to 318) as bait. The human heart complementary DNA library was screened by using the yeast-mating method for overnight culture. Two final positive clones from the heart library were isolated. These two clones encoded the same protein, a short isoform of human cardiac troponin I (TnI) that lacked TnI exons 5 and 6. The TnI isoform has a heart-specific expression pattern and it shares several sequence features with human cardiac TnI; however, it lacks the troponin T binding portion. The heart-specific segment of the human cardiac TnI isoform shares several sequence features with human cardiac TnI, but it lacks the troponin T binding portion. These results suggest that the heart-specific TnI isoform may be involved in cardiac development and disease.

  11. A high-throughput immobilized bead screen for stable proteins and multi-protein complexes

    PubMed Central

    Lockard, Meghan A.; Listwan, Pawel; Pedelacq, Jean-Denis; Cabantous, Stéphanie; Nguyen, Hau B.; Terwilliger, Thomas C.; Waldo, Geoffrey S.

    2011-01-01

    We describe an in vitro colony screen to identify Escherichia coli expressing soluble proteins and stable, assembled multiprotein complexes. Proteins with an N-terminal 6His tag and C-terminal green fluorescent protein (GFP) S11 tag are fluorescently labeled in cells by complementation with a coexpressed GFP 1–10 fragment. After partial colony lysis, the fluorescent soluble proteins or complexes diffuse through a supporting filtration membrane and are captured on Talon® resin metal affinity beads immobilized in agarose. Images of the fluorescent colonies convey total expression and the level of fluorescence bound to the beads indicates how much protein is soluble. Both pieces of information can be used together when selecting clones. After the assay, colonies can be picked and propagated, eliminating the need to make replica plates. We used the method to screen a DNA fragment library of the human protein p85 and preferentially obtained clones expressing the full-length ‘breakpoint cluster region-homology' and NSH2 domains. The assay also distinguished clones expressing stable multi-protein complexes from those that are unstable due to missing subunits. Clones expressing stable, intact heterotrimeric E.coli YheNML complexes were readily identified in libraries dominated by complexes of YheML missing the N subunit. PMID:21642284

  12. Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome

    PubMed Central

    2011-01-01

    Background One of the key goals of oak genomics research is to identify genes of adaptive significance. This information may help to improve the conservation of adaptive genetic variation and the management of forests to increase their health and productivity. Deep-coverage large-insert genomic libraries are a crucial tool for attaining this objective. We report herein the construction of a BAC library for Quercus robur, its characterization and an analysis of BAC end sequences. Results The EcoRI library generated consisted of 92,160 clones, 7% of which had no insert. Levels of chloroplast and mitochondrial contamination were below 3% and 1%, respectively. Mean clone insert size was estimated at 135 kb. The library represents 12 haploid genome equivalents and, the likelihood of finding a particular oak sequence of interest is greater than 99%. Genome coverage was confirmed by PCR screening of the library with 60 unique genetic loci sampled from the genetic linkage map. In total, about 20,000 high-quality BAC end sequences (BESs) were generated by sequencing 15,000 clones. Roughly 5.88% of the combined BAC end sequence length corresponded to known retroelements while ab initio repeat detection methods identified 41 additional repeats. Collectively, characterized and novel repeats account for roughly 8.94% of the genome. Further analysis of the BESs revealed 1,823 putative genes suggesting at least 29,340 genes in the oak genome. BESs were aligned with the genome sequences of Arabidopsis thaliana, Vitis vinifera and Populus trichocarpa. One putative collinear microsyntenic region encoding an alcohol acyl transferase protein was observed between oak and chromosome 2 of V. vinifera. Conclusions This BAC library provides a new resource for genomic studies, including SSR marker development, physical mapping, comparative genomics and genome sequencing. BES analysis provided insight into the structure of the oak genome. These sequences will be used in the assembly of a future genome sequence for oak. PMID:21645357

  13. Phage display biopanning and isolation of target-unrelated peptides: in search of nonspecific binders hidden in a combinatorial library.

    PubMed

    Bakhshinejad, Babak; Zade, Hesam Motaleb; Shekarabi, Hosna Sadat Zahed; Neman, Sara

    2016-12-01

    Phage display is known as a powerful methodology for the identification of targeting ligands that specifically bind to a variety of targets. The high-throughput screening of phage display combinatorial peptide libraries is performed through the affinity selection method of biopanning. Although phage display selection has proven very successful in the discovery of numerous high-affinity target-binding peptides with potential application in drug discovery and delivery, the enrichment of false-positive target-unrelated peptides (TUPs) without any actual affinity towards the target remains a major problem of library screening. Selection-related TUPs may emerge because of binding to the components of the screening system rather than the target. Propagation-related TUPs may arise as a result of faster growth rate of some phage clones enabling them to outcompete slow-propagating clones. Amplification of the library between rounds of biopanning makes a significant contribution to the selection of phage clones with propagation advantage. Distinguishing nonspecific TUPs from true target binders is of particular importance for the translation of biopanning findings from basic research to clinical applications. Different experimental and in silico approaches are applied to assess the specificity of phage display-derived peptides towards the target. Bioinformatic tools are playing a rapidly growing role in the analysis of biopanning data and identification of target-irrelevant TUPs. Recent progress in the introduction of efficient strategies for TUP detection holds enormous promise for the discovery of clinically relevant cell- and tissue-homing peptides and paves the way for the development of novel targeted diagnostic and therapeutic platforms in pharmaceutical areas.

  14. Upregulated Genes In Sporadic, Idiopathic Pulmonary Arterial Hypertension

    PubMed Central

    Edgar, Alasdair J; Chacón, Matilde R; Bishop, Anne E; Yacoub, Magdi H; Polak, Julia M

    2006-01-01

    Background To elucidate further the pathogenesis of sporadic, idiopathic pulmonary arterial hypertension (IPAH) and identify potential therapeutic avenues, differential gene expression in IPAH was examined by suppression subtractive hybridisation (SSH). Methods Peripheral lung samples were obtained immediately after removal from patients undergoing lung transplant for IPAH without familial disease, and control tissues consisted of similarly sampled pieces of donor lungs not utilised during transplantation. Pools of lung mRNA from IPAH cases containing plexiform lesions and normal donor lungs were used to generate the tester and driver cDNA libraries, respectively. A subtracted IPAH cDNA library was made by SSH. Clones isolated from this subtracted library were examined for up regulated expression in IPAH using dot blot arrays of positive colony PCR products using both pooled cDNA libraries as probes. Clones verified as being upregulated were sequenced. For two genes the increase in expression was verified by northern blotting and data analysed using Student's unpaired two-tailed t-test. Results We present preliminary findings concerning candidate genes upregulated in IPAH. Twenty-seven upregulated genes were identified out of 192 clones examined. Upregulation in individual cases of IPAH was shown by northern blot for tissue inhibitor of metalloproteinase-3 and decorin (P < 0.01) compared with the housekeeping gene glyceraldehydes-3-phosphate dehydrogenase. Conclusion Four of the up regulated genes, magic roundabout, hevin, thrombomodulin and sucrose non-fermenting protein-related kinase-1 are expressed specifically by endothelial cells and one, muscleblind-1, by muscle cells, suggesting that they may be associated with plexiform lesions and hypertrophic arterial wall remodelling, respectively. PMID:16390543

  15. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    PubMed Central

    Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A

    2009-01-01

    Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an important step towards the identification of all genes in the citrus genome. Furthermore, public availability of the cDNA clones generated in this study, and not only their sequence, enables testing of the biological function of the genes represented in the collection. Expression of the citrus SEP3 homologue, CitrSEP, in Arabidopsis results in early flowering, along with other phenotypes resembling the over-expression of the Arabidopsis SEPALLATA genes. Our findings suggest that the members of the SEP gene family play similar roles in these quite distant plant species. PMID:19747386

  16. Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing

    PubMed Central

    Matochko, Wadim L.; Derda, Ratmir

    2013-01-01

    Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N × 1 frequency vector n = ||ni||, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N × N matrix and a stochastic sampling operator (S a). The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of S a and use them to define the sequencing operator (S e q). Sequencing without any bias and errors is S e q = S a IN, where IN is a N × N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (C E N), which describes elimination or statistically significant downsampling, of specific reads during the sequencing process. PMID:24416071

  17. Phylogenetic diversity, host-specificity and community profiling of sponge-associated bacteria in the northern Gulf of Mexico.

    PubMed

    Erwin, Patrick M; Olson, Julie B; Thacker, Robert W

    2011-01-01

    Marine sponges can associate with abundant and diverse consortia of microbial symbionts. However, associated bacteria remain unexamined for the majority of host sponges and few studies use phylogenetic metrics to quantify symbiont community diversity. DNA fingerprinting techniques, such as terminal restriction fragment length polymorphisms (T-RFLP), might provide rapid profiling of these communities, but have not been explicitly compared to traditional methods. We investigated the bacterial communities associated with the marine sponges Hymeniacidon heliophila and Haliclona tubifera, a sympatric tunicate, Didemnum sp., and ambient seawater from the northern Gulf of Mexico by combining replicated clone libraries with T-RFLP analyses of 16S rRNA gene sequences. Clone libraries revealed that bacterial communities associated with the two sponges exhibited lower species richness and lower species diversity than seawater and tunicate assemblages, with differences in species composition among all four source groups. T-RFLP profiles clustered microbial communities by source; individual T-RFs were matched to the majority (80.6%) of clone library sequences, indicating that T-RFLP analysis can be used to rapidly profile these communities. Phylogenetic metrics of community diversity indicated that the two sponge-associated bacterial communities include dominant and host-specific bacterial lineages that are distinct from bacteria recovered from seawater, tunicates, and unrelated sponge hosts. In addition, a large proportion of the symbionts associated with H. heliophila were shared with distant, conspecific host populations in the southwestern Atlantic (Brazil). The low diversity and species-specific nature of bacterial communities associated with H. heliophila and H. tubifera represent a distinctly different pattern from other, reportedly universal, sponge-associated bacterial communities. Our replicated sampling strategy, which included samples that reflect the ambient environment, allowed us to differentiate resident symbionts from potentially transient or prey bacteria. Pairing replicated clone library construction with rapid community profiling via T-RFLP analyses will greatly facilitate future studies of sponge-microbe symbioses.

  18. Molecular comparison of bacterial communities within iron-containing flocculent mats associated with submarine volcanoes along the Kermadec Arc.

    PubMed

    Hodges, Tyler W; Olson, Julie B

    2009-03-01

    Iron oxide sheaths and filaments are commonly found in hydrothermal environments and have been shown to have a biogenic origin. These structures were seen in the flocculent material associated with two submarine volcanoes along the Kermadec Arc north of New Zealand. Molecular characterization of the bacterial communities associated with the flocculent samples indicated that no known Fe-oxidizing bacteria dominated the recovered clone libraries. However, clones related to the recently described Fe-oxidizing bacterium Mariprofundus ferrooxydans were obtained from both the iron-containing flocculent (Fe-floc) and sediment samples, and peaks corresponding to Mariprofundus ferrooxydans, as well as the related clones, were observed in several of our terminal restriction fragment length polymorphism profiles. A large group of epsilonproteobacterial sequences, for which there is no cultured representative, dominated clones from the Fe-floc libraries and were less prevalent in the sediment sample. Phylogenetic analyses indicated that several operational taxonomic units appeared to be site specific, and statistical analyses of the clone libraries found that all samples were significantly different from each other. Thus, the bacterial communities in the Fe-floc samples were not more closely related to each other than to the sediment communities.

  19. Protein and Antibody Engineering by Phage Display

    PubMed Central

    Frei, J.C.; Lai, J.R.

    2017-01-01

    Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. PMID:27586328

  20. An Engineered Virus Library as a Resource for the Spectrum-wide Exploration of Virus and Vector Diversity.

    PubMed

    Zhang, Wenli; Fu, Jun; Liu, Jing; Wang, Hailong; Schiwon, Maren; Janz, Sebastian; Schaffarczyk, Lukas; von der Goltz, Lukas; Ehrke-Schulz, Eric; Dörner, Johannes; Solanki, Manish; Boehme, Philip; Bergmann, Thorsten; Lieber, Andre; Lauber, Chris; Dahl, Andreas; Petzold, Andreas; Zhang, Youming; Stewart, A Francis; Ehrhardt, Anja

    2017-05-23

    Adenoviruses (Ads) are large human-pathogenic double-stranded DNA (dsDNA) viruses presenting an enormous natural diversity associated with a broad variety of diseases. However, only a small fraction of adenoviruses has been explored in basic virology and biomedical research, highlighting the need to develop robust and adaptable methodologies and resources. We developed a method for high-throughput direct cloning and engineering of adenoviral genomes from different sources utilizing advanced linear-linear homologous recombination (LLHR) and linear-circular homologous recombination (LCHR). We describe 34 cloned adenoviral genomes originating from clinical samples, which were characterized by next-generation sequencing (NGS). We anticipate that this recombineering strategy and the engineered adenovirus library will provide an approach to study basic and clinical virology. High-throughput screening (HTS) of the reporter-tagged Ad library in a panel of cell lines including osteosarcoma disease-specific cell lines revealed alternative virus types with enhanced transduction and oncolysis efficiencies. This highlights the usefulness of this resource. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Developing a Bacteroides System for Function-Based Screening of DNA from the Human Gut Microbiome.

    PubMed

    Lam, Kathy N; Martens, Eric C; Charles, Trevor C

    2018-01-01

    Functional metagenomics is a powerful method that allows the isolation of genes whose role may not have been predicted from DNA sequence. In this approach, first, environmental DNA is cloned to generate metagenomic libraries that are maintained in Escherichia coli, and second, the cloned DNA is screened for activities of interest. Typically, functional screens are carried out using E. coli as a surrogate host, although there likely exist barriers to gene expression, such as lack of recognition of native promoters. Here, we describe efforts to develop Bacteroides thetaiotaomicron as a surrogate host for screening metagenomic DNA from the human gut. We construct a B. thetaiotaomicron-compatible fosmid cloning vector, generate a fosmid clone library using DNA from the human gut, and show successful functional complementation of a B. thetaiotaomicron glycan utilization mutant. Though we were unable to retrieve the physical fosmid after complementation, we used genome sequencing to identify the complementing genes derived from the human gut microbiome. Our results demonstrate that the use of B. thetaiotaomicron to express metagenomic DNA is promising, but they also exemplify the challenges that can be encountered in the development of new surrogate hosts for functional screening. IMPORTANCE Human gut microbiome research has been supported by advances in DNA sequencing that make it possible to obtain gigabases of sequence data from metagenomes but is limited by a lack of knowledge of gene function that leads to incomplete annotation of these data sets. There is a need for the development of methods that can provide experimental data regarding microbial gene function. Functional metagenomics is one such method, but functional screens are often carried out using hosts that may not be able to express the bulk of the environmental DNA being screened. We expand the range of current screening hosts and demonstrate that human gut-derived metagenomic libraries can be introduced into the gut microbe Bacteroides thetaiotaomicron to identify genes based on activity screening. Our results support the continuing development of genetically tractable systems to obtain information about gene function.

  2. Genetic Diversity of Small Eukaryotes in Lakes Differing by Their Trophic Status

    PubMed Central

    Lefranc, Marie; Thénot, Aurélie; Lepère, Cécile; Debroas, Didier

    2005-01-01

    Small eukaryotes, cells with a diameter of less than 5 μm, are fundamental components of lacustrine planktonic systems. In this study, small-eukaryote diversity was determined by sequencing cloned 18S rRNA genes in three libraries from lakes of differing trophic status in the Massif Central, France: the oligotrophic Lake Godivelle, the oligomesotrophic Lake Pavin, and the eutrophic Lake Aydat. This analysis shows that the least diversified library was in the eutrophic lake (12 operational taxonomic units [OTUs]) and the most diversified was in the oligomesotrophic lake (26 OTUs). Certain groups were present in at least two ecosystems, while the others were specific to one lake on the sampling date. Cryptophyta, Chrysophyceae, and the strictly heterotrophic eukaryotes, Ciliophora and fungi, were identified in the three libraries. Among the small eukaryotes found only in two lakes, Choanoflagellida and environmental sequences (LKM11) were not detected in the eutrophic system whereas Cercozoa were confined to the oligomesotrophic and eutrophic lakes. Three OTUs, linked to the Perkinsozoa, were detected only in the Aydat library, where they represented 60% of the clones of the library. Chlorophyta and Haptophyta lineages were represented by a single clone and were present only in Godivelle and Pavin, respectively. Of the 127 clones studied, classical pigmented organisms (autotrophs and mixotrophs) represented only a low proportion regardless of the library's origin. This study shows that the small-eukaryote community composition may differ as a function of trophic status; certain lineages could be detected only in a single ecosystem. PMID:16204507

  3. Development of a Novel Human Single Chain Antibody Against EGFRVIII Antigen by Phage Display Technology.

    PubMed

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Akbari, Bahman; Ahdi Khosroshahi, Shiva

    2016-12-01

    Purpose: EGFRvIII as the most common mutant variant of the epidermal growth factor receptor is resulting from deletion of exons 2-7 in the coding sequence and junction of exons 1 and 8 through a novel glycine residue. EGFRvIII is highly expressed in glioblastoma, carcinoma of the breast, ovary, and lung but not in normal cells. The aim of the present study was identification of a novel single chain antibody against EGFRvIII as a promising target for cancer therapy. Methods: In this study, a synthetic peptide corresponding to EGFRvIII protein was used for screening a naive human scFv phage library. A novel five-round selection strategy was used for enrichment of rare specific clones. Results: After five rounds of screening, six positive scFv clones against EGFRvIII were selected using monoclonal phage ELISA, among them, only three clones had expected size in PCR reaction. The specific interaction of two of the scFv clones with EGFRvIII was confirmed by indirect ELISA. One phage clone with higher affinity in scFv ELISA was purified for further analysis. The purity of the produced scFv antibody was confirmed using SDS-PAGE and Western blotting analyses. Conclusion: In the present study, a human anti- EGFRvIII scFv with high affinity was first identified from a scFv phage library. This study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFRvIII expressing cancers.

  4. Identification of immunogenic polypeptides from a Mycoplasma hyopneumoniae genome library by phage display.

    PubMed

    Kügler, Jonas; Nieswandt, Simone; Gerlach, Gerald F; Meens, Jochen; Schirrmann, Thomas; Hust, Michael

    2008-09-01

    The identification of immunogenic polypeptides of pathogens is helpful for the development of diagnostic assays and therapeutic applications like vaccines. Routinely, these proteins are identified by two-dimensional polyacrylamide gel electrophoresis and Western blot using convalescent serum, followed by mass spectrometry. This technology, however, is limited, because low or differentially expressed proteins, e.g. dependent on pathogen-host interaction, cannot be identified. In this work, we developed and improved a M13 genomic phage display-based method for the selection of immunogenic polypeptides of Mycoplasma hyopneumoniae, a pathogen causing porcine enzootic pneumonia. The fragmented genome of M. hyopneumoniae was cloned into a phage display vector, and the genomic library was packaged using the helperphage Hyperphage to enrich open reading frames (ORFs). Afterwards, the phage display library was screened by panning using convalescent serum. The analysis of individual phage clones resulted in the identification of five genes encoding immunogenic proteins, only two of which had been previously identified and described as immunogenic. This M13 genomic phage display, directly combining ORF enrichment and the presentation of the corresponding polypeptide on the phage surface, complements proteome-based methods for the identification of immunogenic polypeptides and is particularly well suited for the use in mycoplasma species.

  5. Construction of a metagenomic DNA library of sponge symbionts and screening of antibacterial metabolites

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhu, Tianjiao; Li, Dehai; Cui, Chengbin; Fang, Yuchun; Liu, Hongbing; Liu, Peipei; Gu, Qianqun; Zhu, Weiming

    2006-04-01

    To study the bioactive metabolites produced by sponge-derived uncultured symbionts, a metagenomic DNA library of the symbionts of sponge Gelliodes gracilis was constructed. The average size of DNA inserts in the library was 20 kb. This library was screened for antibiotic activity using paper dise assaying. Two clones displayed the antibacterial activity against Micrococcus tetragenus. The metabolites of these two clones were analyzed through HPLC. The result showed that their metabolites were quite different from those of the host E. coli DH5α and the host containing vector pHZ132. This study may present a new approach to exploring bioactive metabolites of sponge symbionts.

  6. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.

    PubMed

    Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas

    2009-06-01

    The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.

  7. Characterization of Microbial Community Structure in Gulf of Mexico Gas Hydrates: Comparative Analysis of DNA- and RNA-Derived Clone Libraries

    PubMed Central

    Mills, Heath J.; Martinez, Robert J.; Story, Sandra; Sobecky, Patricia A.

    2005-01-01

    The characterization of microbial assemblages within solid gas hydrate, especially those that may be physiologically active under in situ hydrate conditions, is essential to gain a better understanding of the effects and contributions of microbial activities in Gulf of Mexico (GoM) hydrate ecosystems. In this study, the composition of the Bacteria and Archaea communities was determined by 16S rRNA phylogenetic analyses of clone libraries derived from RNA and DNA extracted from sediment-entrained hydrate (SEH) and interior hydrate (IH). The hydrate was recovered from an exposed mound located in the northern GoM continental slope with a hydrate chipper designed for use on the manned-submersible Johnson Sea Link (water depth, 550 m). Previous geochemical analyses indicated that there was increased metabolic activity in the SEH compared to the IH layer (B. N. Orcutt, A. Boetius, S. K. Lugo, I. R. Macdonald, V. A. Samarkin, and S. Joye, Chem. Geol. 205:239-251). Phylogenetic analysis of RNA- and DNA-derived clones indicated that there was greater diversity in the SEH libraries than in the IH libraries. A majority of the clones obtained from the metabolically active fraction of the microbial community were most closely related to putative sulfate-reducing bacteria and anaerobic methane-oxidizing archaea. Several novel bacterial and archaeal phylotypes for which there were no previously identified closely related cultured isolates were detected in the RNA- and DNA-derived clone libraries. This study was the first phylogenetic analysis of the metabolically active fraction of the microbial community extant in the distinct SEH and IH layers of GoM gas hydrate. PMID:15933026

  8. Characterization of the Prokaryotic Diversity in Cold Saline Perennial Springs of the Canadian High Arctic▿

    PubMed Central

    Perreault, Nancy N.; Andersen, Dale T.; Pollard, Wayne H.; Greer, Charles W.; Whyte, Lyle G.

    2007-01-01

    The springs at Gypsum Hill and Colour Peak on Axel Heiberg Island in the Canadian Arctic originate from deep salt aquifers and are among the few known examples of cold springs in thick permafrost on Earth. The springs discharge cold anoxic brines (7.5 to 15.8% salts), with a mean oxidoreduction potential of −325 mV, and contain high concentrations of sulfate and sulfide. We surveyed the microbial diversity in the sediments of seven springs by denaturing gradient gel electrophoresis (DGGE) and analyzing clone libraries of 16S rRNA genes amplified with Bacteria and Archaea-specific primers. Dendrogram analysis of the DGGE banding patterns divided the springs into two clusters based on their geographic origin. Bacterial 16S rRNA clone sequences from the Gypsum Hill library (spring GH-4) were classified into seven phyla (Actinobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, Proteobacteria, Spirochaetes, and Verrucomicrobia); Deltaproteobacteria and Gammaproteobacteria sequences represented half of the clone library. Sequences related to Proteobacteria (82%), Firmicutes (9%), and Bacteroidetes (6%) constituted 97% of the bacterial clone library from Colour Peak (spring CP-1). Most GH-4 archaeal clone sequences (79%) were related to the Crenarchaeota while half of the CP-1 sequences were related to orders Halobacteriales and Methanosarcinales of the Euryarchaeota. Sequences related to the sulfur-oxidizing bacterium Thiomicrospira psychrophila dominated both the GH-4 (19%) and CP-1 (45%) bacterial libraries, and 56 to 76% of the bacterial sequences were from potential sulfur-metabolizing bacteria. These results suggest that the utilization and cycling of sulfur compounds may play a major role in the energy production and maintenance of microbial communities in these unique, cold environments. PMID:17220254

  9. Selection and maturation of antibodies by phage display through fusion to pIX.

    PubMed

    Tornetta, Mark; Reddy, Ramachandra; Wheeler, John C

    2012-09-01

    Antibody discovery and optimization by M13 phage display have evolved significantly over the past twenty years. Multiple methods of antibody display and selection have been developed - direct display on pIII or indirect display through a Cysteine disulfide linkage or a coiled-coil adapter protein. Here we describe display of Fab libraries on the smaller pIX protein at the opposite end of the virion and its application to discovery of novel antibodies from naive libraries. Antibody selection based on pIX-mediated display produces results comparable to other in vitro methods and uses an efficient direct infection of antigen-bound phages, eliminating any chemical dissociation step(s). Additionally, some evidence suggests that pIX-mediated display can be more efficient than pIII-mediated display in affinity selections. Functional assessment of phage-derived antibodies can be hindered by insufficient affinities or lack of epitopic diversity. Here we describe an approach to managing primary hits from our Fab phage libraries into epitope bins and subsequent high-throughput maturation of clones to isolate epitope- and sequence-diverse panels of high affinity binders. Use of the Octet biosensor was done to examine Fab binding in a facile label-free method and determine epitope competition groups. A receptor extracellular domain and chemokine were subjected to this method of binning and affinity maturation. Parental clones demonstrated improvement in affinity from 1-100nM to 10-500pM. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Survey of archaeal diversity reveals an abundance of halophilic Archaea in a low-salt, sulfide- and sulfur-rich spring.

    PubMed

    Elshahed, Mostafa S; Najar, Fares Z; Roe, Bruce A; Oren, Aharon; Dewers, Thomas A; Krumholz, Lee R

    2004-04-01

    The archaeal community in a sulfide- and sulfur-rich spring with a stream water salinity of 0.7 to 1.0% in southwestern Oklahoma was studied by cloning and sequencing of 16S rRNA genes. Two clone libraries were constructed from sediments obtained at the hydrocarbon-exposed source of the spring and the microbial mats underlying the water flowing from the spring source. Analysis of 113 clones from the source library and 65 clones from the mat library revealed that the majority of clones belonged to the kingdom Euryarchaeota, while Crenarchaeota represented less than 10% of clones. Euryarchaeotal clones belonged to the orders Methanomicrobiales, Methanosarcinales, and Halobacteriales, as well as several previously described lineages with no pure-culture representatives. Those within the Halobacteriales represented 36% of the mat library and 4% of the source library. All cultivated members of this order are obligately aerobic halophiles. The majority of halobacterial clones encountered were not affiliated with any of the currently described genera of the family Halobacteriaceae. Measurement of the salinity at various locations at the spring, as well as along vertical gradients, revealed that soils adjacent to spring mats have a much higher salinity (NaCl concentrations as high as 32%) and a lower moisture content than the spring water, presumably due to evaporation. By use of a high-salt-plus-antibiotic medium, several halobacterial isolates were obtained from the microbial mats. Analysis of 16S rRNA genes indicated that all the isolates were members of the genus Haloferax. All isolates obtained grew at a wide range of salt concentrations, ranging from 6% to saturation, and all were able to reduce elemental sulfur to sulfide. We reason that the unexpected abundance of halophilic Archaea in such a low-salt, highly reduced environment could be explained by their relatively low salt requirement, which could be satisfied in specific locations of the shallow spring via evaporation, and their ability to grow under the prevalent anaerobic conditions in the spring, utilizing zero-valent sulfur compounds as electron acceptors. This study demonstrates that members of the Halobacteriales are not restricted to their typical high-salt habitats, and we propose a role for the Halobacteriales in sulfur reduction in natural ecosystems.

  11. Identification of antigens by monoclonal antibody PD4 and its expression in Escherichia coli

    PubMed Central

    Ning, Jin-Ying; Sun, Guo-Xun; Huang, Su; Ma, Hong; An, Ping; Meng, Lin; Song, Shu-Mei; Wu, Jian; Shou, Cheng-Chao

    2003-01-01

    AIM: To clone and express the antigen of monoclonal antibody (MAb) PD4 for further investigation of its function. METHODS: MGC803 cDNA expression library was constructed and screened with PD4 as probes to clone the antigen. After failed in the library screening, immunoprecipitation and SDS-polyacrylamide gel electrophoresis were applied to purify the antigen for sequence analysis. The antigen coming from Mycoplasma hyorhinis (M. hyorhinis) was further confirmed with Western blot analysis by infecting M. hyorhinis -free HeLa cells and eliminating the M. hyorhinis from MGC803 cells. The full p37 gene was cloned by PCR and expressed successfully in Escherichia coli after site-directed mutations. Immunofluorescence assay was used to demonstrate if p37 protein could directly bind to gastric tumor cell AGS. RESULTS: The cDNA library constructed with MGC803 cells was screened by MAb PD4 as probes. Unfortunately, the positive clones identified with MAb PD4 were also reacted with unrelated antibodies. Then, immunoprecipitation was performed and the purified antigen was identified to be a membrane protein of Mycoplasma hyorhinis (M. hyorhinis) by sequencing of N-terminal amino acid residues. The membrane protein was intensively verified with Western blot by eliminating M. hyorhinis from MGC803 cells and by infecting M. hyorhinis-free HeLa cells. The full p37 gene was cloned and expressed successfully in Escherichia coli after site-directed mutations. Immunofluorescence demonstrated that p37 protein could directly bind to gastric tumor cell AGS. CONCLUSION: The antigen recognized by MAb PD4 is from M. hyorhinis, which suggests the actions involved in MAb PD4 is possibly mediated by p37 protein or M. hyorhinis. As p37 protein can bind directly to tumor cells, the pathogenic role of p37 involved in tumorigenesis justifies further investigation. PMID:14562370

  12. BACCardI--a tool for the validation of genomic assemblies, assisting genome finishing and intergenome comparison.

    PubMed

    Bartels, Daniela; Kespohl, Sebastian; Albaum, Stefan; Drüke, Tanja; Goesmann, Alexander; Herold, Julia; Kaiser, Olaf; Pühler, Alfred; Pfeiffer, Friedhelm; Raddatz, Günter; Stoye, Jens; Meyer, Folker; Schuster, Stephan C

    2005-04-01

    We provide the graphical tool BACCardI for the construction of virtual clone maps from standard assembler output files or BLAST based sequence comparisons. This new tool has been applied to numerous genome projects to solve various problems including (a) validation of whole genome shotgun assemblies, (b) support for contig ordering in the finishing phase of a genome project, and (c) intergenome comparison between related strains when only one of the strains has been sequenced and a large insert library is available for the other. The BACCardI software can seamlessly interact with various sequence assembly packages. Genomic assemblies generated from sequence information need to be validated by independent methods such as physical maps. The time-consuming task of building physical maps can be circumvented by virtual clone maps derived from read pair information of large insert libraries.

  13. Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay.

    PubMed

    Goh, Falicia; Allen, Michelle A; Leuko, Stefan; Kawaguchi, Tomohiro; Decho, Alan W; Burns, Brendan P; Neilan, Brett A

    2009-04-01

    The stromatolites at Shark Bay, Western Australia, are analogues of some of the oldest evidence of life on Earth. The aim of this study was to identify and spatially characterize the specific microbial communities associated with Shark Bay intertidal columnar stromatolites. Conventional culturing methods and construction of 16S rDNA clone libraries from community genomic DNA with both universal and specific PCR primers were employed. The estimated coverage, richness and diversity of stromatolite microbial populations were compared with earlier studies on these ecosystems. The estimated coverage for all clone libraries indicated that population coverage was comprehensive. Phylogenetic analyses of stromatolite and surrounding seawater sequences were performed in ARB with the Greengenes database of full-length non-chimaeric 16S rRNA genes. The communities identified exhibited extensive diversity. The most abundant sequences from the stromatolites were alpha- and gamma-proteobacteria (58%), whereas the cyanobacterial community was characterized by sequences related to the genera Euhalothece, Gloeocapsa, Gloeothece, Chroococcidiopsis, Dermocarpella, Acaryochloris, Geitlerinema and Schizothrix. All clones from the archaeal-specific clone libraries were related to the halophilic archaea; however, no archaeal sequence was identified from the surrounding seawater. Fluorescence in situ hybridization also revealed stromatolite surfaces to be dominated by unicellular cyanobacteria, in contrast to the sub-surface archaea and sulphate-reducing bacteria. This study is the first to compare the microbial composition of morphologically similar stromatolites over time and examine the spatial distribution of specific microorganismic groups in these intertidal structures and the surrounding seawater at Shark Bay. The results provide a platform for identifying the key microbial physiology groups and their potential roles in modern stromatolite morphogenesis and ecology.

  14. High Bacterial Diversity in Permanently Cold Marine Sediments

    PubMed Central

    Ravenschlag, Katrin; Sahm, Kerstin; Pernthaler, Jakob; Amann, Rudolf

    1999-01-01

    A 16S ribosomal DNA (rDNA) clone library from permanently cold marine sediments was established. Screening 353 clones by dot blot hybridization with group-specific oligonucleotide probes suggested a predominance of sequences related to bacteria of the sulfur cycle (43.4% potential sulfate reducers). Within this fraction, the major cluster (19.0%) was affiliated with Desulfotalea sp. and other closely related psychrophilic sulfate reducers isolated from the same habitat. The cloned sequences showed between 93 and 100% similarity to these bacteria. Two additional groups were frequently encountered: 13% of the clones were related to Desulfuromonas palmitatis, and a second group was affiliated with Myxobacteria spp. and Bdellovibrio spp. Many clones (18.1%) belonged to the γ subclass of the class Proteobacteria and were closest to symbiotic or free-living sulfur oxidizers. Probe target groups were further characterized by amplified rDNA restriction analysis to determine diversity within the groups and within the clone library. Rarefaction analysis suggested that the total diversity assessed by 16S rDNA analysis was very high in these permanently cold sediments and was only partially revealed by screening of 353 clones. PMID:10473405

  15. Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils.

    PubMed

    Popp, Nicole; Schlömann, Michael; Mau, Margit

    2006-11-01

    Soils contaminated with mineral oil hydrocarbons are often cleaned in off-site bioremediation systems. In order to find out which bacteria are active during the degradation phase in such systems, the diversity of the active microflora in a degrading soil remediation system was investigated by small-subunit (SSU) rRNA analysis. Two sequential RNA extracts from one soil sample were generated by a procedure incorporating bead beating. Both extracts were analysed separately by generating individual SSU rDNA clone libraries from cDNA of the two extracts. The sequencing results showed moderate diversity. The two clone libraries were dominated by Gammaproteobacteria, especially Pseudomonas spp. Alphaproteobacteria and Betaproteobacteria were two other large groups in the clone libraries. Actinobacteria, Firmicutes, Bacteroidetes and Epsilonproteobacteria were detected in lower numbers. The obtained sequences were predominantly related to genera for which cultivated representatives have been described, but were often clustered together in the phylogenetic tree, and the sequences that were most similar were originally obtained from soils and not from pure cultures. Most of the dominant genera in the clone libraries, e.g. Pseudomonas, Acinetobacter, Sphingomonas, Acidovorax and Thiobacillus, had already been detected in (mineral oil hydrocarbon) contaminated environmental samples. The occurrence of the genera Zymomonas and Rhodoferax was novel in mineral oil hydrocarbon-contaminated soil.

  16. Identification and characterization of mutant clones with enhanced propagation rates from phage-displayed peptide libraries.

    PubMed

    Nguyen, Kieu T H; Adamkiewicz, Marta A; Hebert, Lauren E; Zygiel, Emily M; Boyle, Holly R; Martone, Christina M; Meléndez-Ríos, Carola B; Noren, Karen A; Noren, Christopher J; Hall, Marilena Fitzsimons

    2014-10-01

    A target-unrelated peptide (TUP) can arise in phage display selection experiments as a result of a propagation advantage exhibited by the phage clone displaying the peptide. We previously characterized HAIYPRH, from the M13-based Ph.D.-7 phage display library, as a propagation-related TUP resulting from a G→A mutation in the Shine-Dalgarno sequence of gene II. This mutant was shown to propagate in Escherichia coli at a dramatically faster rate than phage bearing the wild-type Shine-Dalgarno sequence. We now report 27 additional fast-propagating clones displaying 24 different peptides and carrying 14 unique mutations. Most of these mutations are found either in or upstream of the gene II Shine-Dalgarno sequence, but still within the mRNA transcript of gene II. All 27 clones propagate at significantly higher rates than normal library phage, most within experimental error of wild-type M13 propagation, suggesting that mutations arise to compensate for the reduced virulence caused by the insertion of a lacZα cassette proximal to the replication origin of the phage used to construct the library. We also describe an efficient and convenient assay to diagnose propagation-related TUPS among peptide sequences selected by phage display. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The Microbial Ferrous Wheel in a Neutral pH Groundwater Seep

    PubMed Central

    Roden, Eric E.; McBeth, Joyce M.; Blöthe, Marco; Percak-Dennett, Elizabeth M.; Fleming, Emily J.; Holyoke, Rebecca R.; Luther, George W.; Emerson, David; Schieber, Juergen

    2012-01-01

    Evidence for microbial Fe redox cycling was documented in a circumneutral pH groundwater seep near Bloomington, Indiana. Geochemical and microbiological analyses were conducted at two sites, a semi-consolidated microbial mat and a floating puffball structure. In situ voltammetric microelectrode measurements revealed steep opposing gradients of O2 and Fe(II) at both sites, similar to other groundwater seep and sedimentary environments known to support microbial Fe redox cycling. The puffball structure showed an abrupt increase in dissolved Fe(II) just at its surface (∼5 cm depth), suggesting an internal Fe(II) source coupled to active Fe(III) reduction. Most probable number enumerations detected microaerophilic Fe(II)-oxidizing bacteria (FeOB) and dissimilatory Fe(III)-reducing bacteria (FeRB) at densities of 102 to 105 cells mL−1 in samples from both sites. In vitro Fe(III) reduction experiments revealed the potential for immediate reduction (no lag period) of native Fe(III) oxides. Conventional full-length 16S rRNA gene clone libraries were compared with high throughput barcode sequencing of the V1, V4, or V6 variable regions of 16S rRNA genes in order to evaluate the extent to which new sequencing approaches could provide enhanced insight into the composition of Fe redox cycling microbial community structure. The composition of the clone libraries suggested a lithotroph-dominated microbial community centered around taxa related to known FeOB (e.g., Gallionella, Sideroxydans, Aquabacterium). Sequences related to recognized FeRB (e.g., Rhodoferax, Aeromonas, Geobacter, Desulfovibrio) were also well-represented. Overall, sequences related to known FeOB and FeRB accounted for 88 and 59% of total clone sequences in the mat and puffball libraries, respectively. Taxa identified in the barcode libraries showed partial overlap with the clone libraries, but were not always consistent across different variable regions and sequencing platforms. However, the barcode libraries provided confirmation of key clone library results (e.g., the predominance of Betaproteobacteria) and an expanded view of lithotrophic microbial community composition. PMID:22783228

  18. A method for multi-codon scanning mutagenesis of proteins based on asymmetric transposons.

    PubMed

    Liu, Jia; Cropp, T Ashton

    2012-02-01

    Random mutagenesis followed by selection or screening is a commonly used strategy to improve protein function. Despite many available methods for random mutagenesis, nearly all generate mutations at the nucleotide level. An ideal mutagenesis method would allow for the generation of 'codon mutations' to change protein sequence with defined or mixed amino acids of choice. Herein we report a method that allows for mutations of one, two or three consecutive codons. Key to this method is the development of a Mu transposon variant with asymmetric terminal sequences. As a demonstration of the method, we performed multi-codon scanning on the gene encoding superfolder GFP (sfGFP). Characterization of 50 randomly chosen clones from each library showed that more than 40% of the mutants in these three libraries contained seamless, in-frame mutations with low site preference. By screening only 500 colonies from each library, we successfully identified several spectra-shift mutations, including a S205D variant that was found to bear a single excitation peak in the UV region.

  19. Orpheus recombination : a comprehensive bacteriophage system for murine targeting vector construction by transplacement.

    PubMed

    Woltjen, Knut; Ito, Kenichi; Tsuzuki, Teruhisa; Rancourt, Derrick E

    2008-01-01

    In recent years, methods to address the simplification of targeting vector (TV) construction have been developed and validated. Based on in vivo recombination in Escherichia coli, these protocols have reduced dependence on restriction endonucleases, allowing the fabrication of complex TV constructs with relative ease. Using a methodology based on phage-plasmid recombination, we have developed a comprehensive TV construction protocol dubbed Orpheus recombination (ORE). The ORE system addresses all necessary requirements for TV construction; from the isolation of genespecific regions of homology to the deposition of selection/disruption cassettes. ORE makes use of a small recombination plasmid, which bears positive and negative selection markers and a cloned homologous "probe" region. This probe plasmid may be introduced into and excised from phage-borne murine genomic clones by two rounds of single crossover recombination. In this way, desired clones can be specifically isolated from a heterogeneous library of phage. Furthermore, if the probe region contains a designed mutation, it may be deposited seamlessly into the genomic clone. The complete removal of operational sequences allows unlimited repetition of the procedure to customize and finalize TVs within a few weeks. Successful gene-specific clone isolation, point mutations, large deletions, cassette insertions, and finally coincident clone isolation and mutagenesis have all been demonstrated with this method.

  20. Construction of a general human chromosome jumping library, with application to cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, F.S.; Drumm, M.L.; Cole, J.L.

    1987-02-27

    In many genetic disorders, the responsible gene and its protein product are unknown. The technique known as reverse genetics, in which chromosomal map positions and genetically linked DNA markers are used to identify and clone such genes, is complicated by the fact that the molecular distances from the closest DNA markers to the gene itself are often too large to traverse by standard cloning techniques. To address this situation, a general human chromosome jumping library was constructed that allows the cloning of DNA sequences approximately 100 kilobases away from any starting point in genomic DNA. As an illustration of itsmore » usefulness, this library was searched for a jumping clone, starting at the met oncogene, which is a marker tightly linked to the cystic fibrosis gene that is located on human chromosome 7. Mapping of the new genomic fragment by pulsed field gel electrophoresis confirmed that it resides on chromosome 7 within 240 kilobases downstream of the met gene. The use of chromosome jumping should be applicable to any genetic locus for which a closely linked DNA marker is available.« less

  1. Horse cDNA clones encoding two MHC class I genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbis, D.P.; Maher, J.K.; Stanek, J.

    1994-12-31

    Two full-length clones encoding MHC class I genes were isolated by screening a horse cDNA library, using a probe encoding in human HLA-A2.2Y allele. The library was made in the pcDNA1 vector (Invitrogen, San Diego, CA), using mRNA from peripheral blood lymphocytes obtained from a Thoroughbred stallion (No. 0834) homozygous for a common horse MHC haplotype (ELA-A2, -B2, -D2; Antczak et al. 1984; Donaldson et al. 1988). The clones were sequenced, using SP6 and T7 universal primers and horse-specific oligonucleotides designed to extend previously determined sequences.

  2. A novel helper phage enabling construction of genome-scale ORF-enriched phage display libraries.

    PubMed

    Gupta, Amita; Shrivastava, Nimisha; Grover, Payal; Singh, Ajay; Mathur, Kapil; Verma, Vaishali; Kaur, Charanpreet; Chaudhary, Vijay K

    2013-01-01

    Phagemid-based expression of cloned genes fused to the gIIIP coding sequence and rescue using helper phages, such as VCSM13, has been used extensively for constructing large antibody phage display libraries. However, for randomly primed cDNA and gene fragment libraries, this system encounters reading frame problems wherein only one of 18 phages display the translated foreign peptide/protein fused to phagemid-encoded gIIIP. The elimination of phages carrying out-of-frame inserts is vital in order to improve the quality of phage display libraries. In this study, we designed a novel helper phage, AGM13, which carries trypsin-sensitive sites within the linker regions of gIIIP. This renders the phage highly sensitive to trypsin digestion, which abolishes its infectivity. For open reading frame (ORF) selection, the phagemid-borne phages are rescued using AGM13, so that clones with in-frame inserts express fusion proteins with phagemid-encoded trypsin-resistant gIIIP, which becomes incorporated into the phages along with a few copies of AGM13-encoded trypsin-sensitive gIIIP. In contrast, clones with out-of-frame inserts produce phages carrying only AGM13-encoded trypsin-sensitive gIIIP. Trypsin treatment of the phage population renders the phages with out-of-frame inserts non-infectious, whereas phages carrying in-frame inserts remain fully infectious and can hence be enriched by infection. This strategy was applied efficiently at a genome scale to generate an ORF-enriched whole genome fragment library from Mycobacterium tuberculosis, in which nearly 100% of the clones carried in-frame inserts after selection. The ORF-enriched libraries were successfully used for identification of linear and conformational epitopes for monoclonal antibodies specific to mycobacterial proteins.

  3. Microsatellite DNA capture from enriched libraries.

    PubMed

    Gonzalez, Elena G; Zardoya, Rafael

    2013-01-01

    Microsatellites are DNA sequences of tandem repeats of one to six nucleotides, which are highly polymorphic, and thus the molecular markers of choice in many kinship, population genetic, and conservation studies. There have been significant technical improvements since the early methods for microsatellite isolation were developed, and today the most common procedures take advantage of the hybrid capture methods of enriched-targeted microsatellite DNA. Furthermore, recent advents in sequencing technologies (i.e., next-generation sequencing, NGS) have fostered the mining of microsatellite markers in non-model organisms, affording a cost-effective way of obtaining a large amount of sequence data potentially useful for loci characterization. The rapid improvements of NGS platforms together with the increase in available microsatellite information open new avenues to the understanding of the evolutionary forces that shape genetic structuring in wild populations. Here, we provide detailed methodological procedures for microsatellite isolation based on the screening of GT microsatellite-enriched libraries, either by cloning and Sanger sequencing of positive clones or by direct NGS. Guides for designing new species-specific primers and basic genotyping are also given.

  4. Identification and characterization of a cellulase-encoding gene from the buffalo rumen metagenomic library.

    PubMed

    Nguyen, Nhung Hong; Maruset, Lalita; Uengwetwanit, Tanaporn; Mhuantong, Wuttichai; Harnpicharnchai, Piyanun; Champreda, Verawat; Tanapongpipat, Sutipa; Jirajaroenrat, Kanya; Rakshit, Sudip K; Eurwilaichitr, Lily; Pongpattanakitshote, Somchai

    2012-01-01

    Microorganisms residing in the rumens of cattle represent a rich source of lignocellulose-degrading enzymes, since their diet consists of plant-based materials that are high in cellulose and hemicellulose. In this study, a metagenomic library was constructed from buffalo rumen contents using pCC1FOS fosmid vector. Ninety-three clones from the pooled library of approximately 10,000 clones showed degrading activity against AZCL-HE-Cellulose, whereas four other clones showed activity against AZCL-Xylan. Contig analysis of pyrosequencing data derived from the selected strongly positive clones revealed 15 ORFs that were closely related to lignocellulose-degrading enzymes belonging to several glycosyl hydrolase families. Glycosyl hydrolase family 5 (GHF5) was the most abundant glycosyl hydrolase found, and a majority of the GHF5s in our metagenomes were closely related to several ruminal bacteria, especially ones from other buffalo rumen metagenomes. Characterization of BT-01, a selected clone with highest cellulase activity from the primary plate screening assay, revealed a cellulase encoding gene with optimal working conditions at pH 5.5 at 50 °C. Along with its stability over acidic pH, the capability efficiently to hydrolyze cellulose in feed for broiler chickens, as exhibited in an in vitro digestibility test, suggests that BT-01 has potential application as a feed supplement.

  5. Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction.

    PubMed

    Lazinski, David W; Camilli, Andrew

    2013-01-01

    The amplification of DNA fragments, cloned between user-defined 5' and 3' end sequences, is a prerequisite step in the use of many current applications including massively parallel sequencing (MPS). Here we describe an improved method, called homopolymer tail-mediated ligation PCR (HTML-PCR), that requires very little starting template, minimal hands-on effort, is cost-effective, and is suited for use in high-throughput and robotic methodologies. HTML-PCR starts with the addition of homopolymer tails of controlled lengths to the 3' termini of a double-stranded genomic template. The homopolymer tails enable the annealing-assisted ligation of a hybrid oligonucleotide to the template's recessed 5' ends. The hybrid oligonucleotide has a user-defined sequence at its 5' end. This primer, together with a second primer composed of a longer region complementary to the homopolymer tail and fused to a second 5' user-defined sequence, are used in a PCR reaction to generate the final product. The user-defined sequences can be varied to enable compatibility with a wide variety of downstream applications. We demonstrate our new method by constructing MPS libraries starting from nanogram and sub-nanogram quantities of Vibrio cholerae and Streptococcus pneumoniae genomic DNA.

  6. [Diversity of uncultured actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor].

    PubMed

    Li, Hai-yun; Niu, Shi-quan; Kong, Wei-bao; Yan, Wei-ru; Geng, Hui; Han, Cai-hong; Da, Wen-yan; Zhang, Ai-mei; Zhu, Xue-tai

    2015-09-01

    In order to more accurately understand community structure and diversity of actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor, the community structure and diversity from three kinds of soil samples (primary, secondary saline alkali soil and farmland soil) were analyzed using uncultured methods. The results showed that the 16S rDNA clone library of actinomycetales from the primary saline-alkali soil belonged to 19 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S r DNA clone library of actinomycetales from the secondary saline-alkali soil belonged to 14 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S rDNA clone library of farmland soil belonged to 7 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; Micrococcineae was the common population in the three soils, and also was the dominant population in primary saline alkali soil and farmland soil. The diversity index and rarefaction curves analysis showed that actinomycetes species richness was in order of primary saline-alkali soil > secondary saline-alkali soil > farmland soil. The dilution curves of primary saline-alkali soil and secondary saline-alkali soil were not leveled off, which indicated the actinomycetes diversity in saline-alkali soil was more enriched than the actual. The rich and diverse actinomycetes resources in saline-alkali soil from Jiuquan area of Hexi Corridor provide important data on the actinomycetes ecology distribution research, exploitation and utilization in saline-alkali soil.

  7. Generation of human scFv antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences.

    PubMed

    Andris-Widhopf, Jennifer; Steinberger, Peter; Fuller, Roberta; Rader, Christoph; Barbas, Carlos F

    2011-09-01

    The development of therapeutic antibodies for use in the treatment of human diseases has long been a goal for many researchers in the antibody field. One way to obtain these antibodies is through phage-display libraries constructed from human lymphocytes. This protocol describes the construction of human scFv (single chain antibody fragment) libraries using a short linker (GGSSRSS) or a long linker (GGSSRSSSSGGGGSGGGG). In this method, the individual rearranged heavy- and light-chain variable regions are amplified separately and are linked through a series of overlap polymerase chain reaction (PCR) steps to give the final scFv products that are used for cloning.

  8. Identification of human antibody fragment clones specific for tetanus toxoid in a bacteriophage. lambda. immunoexpression library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullinax, R.L.; Gross, E.A.; Amberg, J.R.

    1990-10-01

    The authors have applied a molecular biology approach to the identification of human monoclonal antibodies. Human peripheral blood lymphocyte mRNA was converted to cDNA and a select subset was amplified by the polymerase chain reaction. These products, containing coding sequences for numerous immunoglobulin heavy- and {kappa} light-chain variable and constant region domains, were inserted into modified bacteriophase {lambda} expression vectors and introduced into Escherichia coli by infection to yield a combinatorial immunoexpression library. Clones with binding activity to tetanus toxoid were identified by filter hybridization with radiolabeled antigen and appeared at a frequency of 0.2{percent} in the library. These humanmore » antigen binding fragments, consisting of a heavy-chain fragment covalently linked to a light chain, displayed high affinity of binding to tetanus toxoid with equilibrium constants in the nanomolar range but did not cross-react with other proteins tested. They estimate that this human immunoexpression library contains 20,000 clones with high affinity and specificity to our chosen antigen.« less

  9. An Arrayed Genome-Scale Lentiviral-Enabled Short Hairpin RNA Screen Identifies Lethal and Rescuer Gene Candidates

    PubMed Central

    Bhinder, Bhavneet; Antczak, Christophe; Ramirez, Christina N.; Shum, David; Liu-Sullivan, Nancy; Radu, Constantin; Frattini, Mark G.

    2013-01-01

    Abstract RNA interference technology is becoming an integral tool for target discovery and validation.; With perhaps the exception of only few studies published using arrayed short hairpin RNA (shRNA) libraries, most of the reports have been either against pooled siRNA or shRNA, or arrayed siRNA libraries. For this purpose, we have developed a workflow and performed an arrayed genome-scale shRNA lethality screen against the TRC1 library in HeLa cells. The resulting targets would be a valuable resource of candidates toward a better understanding of cellular homeostasis. Using a high-stringency hit nomination method encompassing criteria of at least three active hairpins per gene and filtered for potential off-target effects (OTEs), referred to as the Bhinder–Djaballah analysis method, we identified 1,252 lethal and 6 rescuer gene candidates, knockdown of which resulted in severe cell death or enhanced growth, respectively. Cross referencing individual hairpins with the TRC1 validated clone database, 239 of the 1,252 candidates were deemed independently validated with at least three validated clones. Through our systematic OTE analysis, we have identified 31 microRNAs (miRNAs) in lethal and 2 in rescuer genes; all having a seed heptamer mimic in the corresponding shRNA hairpins and likely cause of the OTE observed in our screen, perhaps unraveling a previously unknown plausible essentiality of these miRNAs in cellular viability. Taken together, we report on a methodology for performing large-scale arrayed shRNA screens, a comprehensive analysis method to nominate high-confidence hits, and a performance assessment of the TRC1 library highlighting the intracellular inefficiencies of shRNA processing in general. PMID:23198867

  10. Isolation and characterization of 21 novel expressed DNA sequences from the distal region of human chromosome 4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, Yoshikazu; Hadano, Shinji; Nagayama, Tomiko

    1994-07-15

    The authors have established an approach to the isolation of expressed DNA sequences from a defined region of the human chromosome. The method relies on the direct screening of cDNA libraries using pooled single-copy microclones generated by a laser chromosome microdissection in conjunction with a single unique primer polymerase chain reaction (SUP-PCR) procedure. They applied this method to the distal region of human chromosome 4p (4p15-4pter), which contains the Huntington disease (HD) and the Wolf-Hirschhorn syndrome (WHS) loci. Twenty-one nonoverlapping and region-specific cDNA clones encoding novel genes were isolated in this manner. Ten of 21 clones were subregionally assigned tomore » 4p16.1-4pter, and the remainder mapped to the region proximal to 4p16.1. Northern blot and reverse transcription followed by the PCR (RT-PCR) analysis revealed that 16 of these 21 clones detected transcripts in total RNA from human tissues. The method is applicable to other chromosomal regions and is a powerful approach to the isolation of region-specific cDNA clones. 44 refs., 3 figs., 3 tabs.« less

  11. Definition of agonists and design of antagonists for alloreactive T cell clones using synthetic peptide libraries.

    PubMed

    de Koster, H S; Vermeulen, C J; Hiemstra, H S; Amons, R; Drijfhout, J W; Koning, F

    1999-04-01

    Alloreactive T cells form an important barrier for organ transplantation. To reduce the risk of rejection patients are given immunosuppressive drugs, which increase the chance of infection and the incidence of malignancies. It has been shown that a large proportion of alloreactive T cells specifically recognize peptides present in the groove of the allogeneic MHC molecule. This implies that it might be possible to modulate the alloresponse by peptides with antagonistic properties, thus preventing rejection without the side effects of general immunosuppression. Peptide antagonists can be designed on the basis of the original agonist, yet for alloreactive T cells these agonists are usually unknown. In this study we have used a dedicated synthetic peptide library to identify agonists for HLA-DR3-specific alloreactive T cell clones. Based on these agonists, altered peptide ligands (APL) were designed. Three APL could antagonize an alloreactive T cell clone in its response against the library-derived agonist as well as in its response against the original allodeterminant, HLA-DR3. This demonstrates that peptide libraries can be used to design antagonists for alloreactive T cells without knowledge about the nature of the actual allostimulatory peptide. Since the most potent agonists are selected, this strategy permits detection of potent antagonists. The results, however, also suggest that the degree of peptide dependency of alloreactive T cell clones may dictate whether a peptide antagonist can be found for such clones. Whether peptide antagonists will be valuable in the development of donor-patient-specific immunosuppression may therefore depend on the specificity of the in vivo-generated alloreactive T cells.

  12. Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia.

    PubMed

    Entcheva, P; Liebl, W; Johann, A; Hartsch, T; Streit, W R

    2001-01-01

    Enrichment cultures of microbial consortia enable the diverse metabolic and catabolic activities of these populations to be studied on a molecular level and to be explored as potential sources for biotechnology processes. We have used a combined approach of enrichment culture and direct cloning to construct cosmid libraries with large (>30-kb) inserts from microbial consortia. Enrichment cultures were inoculated with samples from five environments, and high amounts of avidin were added to the cultures to favor growth of biotin-producing microbes. DNA was extracted from three of these enrichment cultures and used to construct cosmid libraries; each library consisted of between 6,000 and 35,000 clones, with an average insert size of 30 to 40 kb. The inserts contained a diverse population of genomic DNA fragments isolated from the consortia organisms. These three libraries were used to complement the Escherichia coli biotin auxotrophic strain ATCC 33767 Delta(bio-uvrB). Initial screens resulted in the isolation of seven different complementing cosmid clones, carrying biotin biosynthesis operons. Biotin biosynthesis capabilities and growth under defined conditions of four of these clones were studied. Biotin measured in the different culture supernatants ranged from 42 to 3,800 pg/ml/optical density unit. Sequencing the identified biotin synthesis genes revealed high similarities to bio operons from gram-negative bacteria. In addition, random sequencing identified other interesting open reading frames, as well as two operons, the histidine utilization operon (hut), and the cluster of genes involved in biosynthesis of molybdopterin cofactors in bacteria (moaABCDE).

  13. Anchoring a Defined Sequence to the 55' Ends of mRNAs : The Bolt to Clone Rare Full Length mRNAs and Generate cDNA Libraries porn a Few Cells.

    PubMed

    Baptiste, J; Milne Edwards, D; Delort, J; Mallet, J

    1993-01-01

    Among numerous applications, the polymerase chain reaction (PCR) (1,2) provides a convenient means to clone 5' ends of rare mRNAs and to generate cDNA libraries from tissue available in amounts too low to be processed by conventional methods. Basically, the amplification of cDNAs by the PCR requires the availability of the sequences of two stretches of the molecule to be amplified. A sequence can easily be imposed at the 5' end of the first-strand cDNAs (corresponding to the 3' end of the mRNAs) by priming the reverse transcription with a specific primer (for cloning the 5' end of rare messenger) or with an oligonucleotide tailored with a poly (dT) stretch (for cDNA library construction), taking advantage of the poly (A) sequence that is located at the 3' end of mRNAs. Several strategies have been devised to tag the 3' end of the ss-cDNAs (corresponding to the 55' end of the mRNAs). We (3) and others have described strategies based on the addition of a homopolymeric dG (4,5) or dA (6,7) tail using terminal deoxyribonucleotide transferase (TdT) ("anchor-PCR" [4]). However, this strategy has important limitations. The TdT reaction is difficult to control and has a low efficiency (unpublished observations). But most importantly, the return primers containing a homopolymeric (dC or dT) tail generate nonspecific amplifications, a phenomenon that prevents the isolation of low abundance mRNA species and/or interferes with the relative abundance of primary clones in the library. To circumvent these drawbacks, we have used two approaches. First, we devised a strategy based on a cRNA enrichment procedure, which has been useful to eliminate nonspecific-PCR products and to allow detection and cloning of cDNAs of low abundance (3). More recently, to avoid the nonspecific amplification resulting from the annealing of the homopolymeric tail oligonucleotide, we have developed a novel anchoring strategy that is based on the ligation of an oligonucleotide to the 35' end of ss-cDNAs. This strategy is referred to as SLIC for single-strand ligation to ss-cDNA (8).

  14. Current and future resources for functional metagenomics.

    PubMed

    Lam, Kathy N; Cheng, Jiujun; Engel, Katja; Neufeld, Josh D; Charles, Trevor C

    2015-01-01

    Functional metagenomics is a powerful experimental approach for studying gene function, starting from the extracted DNA of mixed microbial populations. A functional approach relies on the construction and screening of metagenomic libraries-physical libraries that contain DNA cloned from environmental metagenomes. The information obtained from functional metagenomics can help in future annotations of gene function and serve as a complement to sequence-based metagenomics. In this Perspective, we begin by summarizing the technical challenges of constructing metagenomic libraries and emphasize their value as resources. We then discuss libraries constructed using the popular cloning vector, pCC1FOS, and highlight the strengths and shortcomings of this system, alongside possible strategies to maximize existing pCC1FOS-based libraries by screening in diverse hosts. Finally, we discuss the known bias of libraries constructed from human gut and marine water samples, present results that suggest bias may also occur for soil libraries, and consider factors that bias metagenomic libraries in general. We anticipate that discussion of current resources and limitations will advance tools and technologies for functional metagenomics research.

  15. Universal ligation-detection-reaction microarray applied for compost microbes

    PubMed Central

    Hultman, Jenni; Ritari, Jarmo; Romantschuk, Martin; Paulin, Lars; Auvinen, Petri

    2008-01-01

    Background Composting is one of the methods utilised in recycling organic communal waste. The composting process is dependent on aerobic microbial activity and proceeds through a succession of different phases each dominated by certain microorganisms. In this study, a ligation-detection-reaction (LDR) based microarray method was adapted for species-level detection of compost microbes characteristic of each stage of the composting process. LDR utilises the specificity of the ligase enzyme to covalently join two adjacently hybridised probes. A zip-oligo is attached to the 3'-end of one probe and fluorescent label to the 5'-end of the other probe. Upon ligation, the probes are combined in the same molecule and can be detected in a specific location on a universal microarray with complementary zip-oligos enabling equivalent hybridisation conditions for all probes. The method was applied to samples from Nordic composting facilities after testing and optimisation with fungal pure cultures and environmental clones. Results Probes targeted for fungi were able to detect 0.1 fmol of target ribosomal PCR product in an artificial reaction mixture containing 100 ng competing fungal ribosomal internal transcribed spacer (ITS) area or herring sperm DNA. The detection level was therefore approximately 0.04% of total DNA. Clone libraries were constructed from eight compost samples. The LDR microarray results were in concordance with the clone library sequencing results. In addition a control probe was used to monitor the per-spot hybridisation efficiency on the array. Conclusion This study demonstrates that the LDR microarray method is capable of sensitive and accurate species-level detection from a complex microbial community. The method can detect key species from compost samples, making it a basis for a tool for compost process monitoring in industrial facilities. PMID:19116002

  16. Versatile P(acman) BAC Libraries for Transgenesis Studies in Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venken, Koen J.T.; Carlson, Joseph W.; Schulze, Karen L.

    2009-04-21

    We constructed Drosophila melanogaster BAC libraries with 21-kb and 83-kb inserts in the P(acman) system. Clones representing 12-fold coverage and encompassing more than 95percent of annotated genes were mapped onto the reference genome. These clones can be integrated into predetermined attP sites in the genome using Phi C31 integrase to rescue mutations. They can be modified through recombineering, for example to incorporate protein tags and assess expression patterns.

  17. Isolation of a peptide from Ph.D.-C7C phage display library for detection of Cry1Ab.

    PubMed

    Wang, Yun; Wang, Qian; Wu, Ai-Hua; Hao, Zhen-Ping; Liu, Xian-Jin

    2017-12-15

    Traditional ELISA methods of using animal immunity yield antibodies for detection Cry toxin. Not only is this incredibly harmful to the animals, but is also time-intensive. Here we developed a simple method to yield the recognition element. Using a critical selection strategy and immunoassay we confirmed a clone from the Ph.D-C7C phage library, which has displayed the most interesting Cry1Ab-binding characteristics examined in this study (Fig. 1). The current study indicates that isolating peptide is an alternative method for the preparation of a recognition element, and that the developed assay is a potentially useful tool for detecting Cry1Ab. Copyright © 2017. Published by Elsevier Inc.

  18. [Cloning, expression and characterization of a novel esterase from marine sediment microbial metagenomic library].

    PubMed

    Xu, Shiqing; Hu, Yongfei; Yuan, Aihua; Zhu, Baoli

    2010-07-01

    To clone, express and characterize a novel esterase from marine sediment microbial metagenomic library. Using esterase segregation agar containing tributyrin, we obtained esterase positive fosmid clone FL10 from marine sediment microbial metagenomic library. This fosmid was partially digested with Sau3A I to construct the sublibrary, from which the esterase positive subclone pFLS10 was obtained. The full length of the esterase gene was amplified and cloned into the expressing vector pET28a, and the recombinant plasmid was transformed into E. coli BL21 cells. We analyse the enzyme activity and study the characterization of the esterase after its expression and purification. An ORF (Open Reading Frame) of 924 bp was identified from the subclone pFLS10. Sequence analysis indicated that it showed 71% amino acid identity to esterase (ADA70030) from a marine sediment metagenomic library. The esterase is a novel low-temperature-active esterase and had highest lipolytic activity to the substrate of 4-nitrophenyl butyrate (C4). The optimum temperature of the esterase was 20 degrees C, the optimum pH was 7.5. The esterase in this study had good thermostability at 20 degrees C and good pH stability at pH8 -10. Significant increase in lipolytic activity was observed with addition of K+ and Mg2+, while decrease with Mn2+ etc. We obtained the novel esterase gene fls10 from the marine sediment microbial metagenomic library. The esterase had good thermostability and high lipolytic activity at low temperature and under basic conditions, which laid a basis for industrial application.

  19. Primer sets for cloning the human repertoire of T cell Receptor Variable regions.

    PubMed

    Boria, Ilenia; Cotella, Diego; Dianzani, Irma; Santoro, Claudio; Sblattero, Daniele

    2008-08-29

    Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT, the ImMunoGeneTics information system. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.

  20. Protein and Antibody Engineering by Phage Display.

    PubMed

    Frei, J C; Lai, J R

    2016-01-01

    Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. © 2016 Elsevier Inc. All rights reserved.

  1. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions

    PubMed Central

    Camanocha, Anuj; Dewhirst, Floyd E.

    2014-01-01

    Background and objective In addition to the well-known phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Spirochaetes, Fusobacteria, Tenericutes, and Chylamydiae, the oral microbiomes of mammals contain species from the lesser-known phyla or candidate divisions, including Synergistetes, TM7, Chlorobi, Chloroflexi, GN02, SR1, and WPS-2. The objectives of this study were to create phyla-selective 16S rDNA PCR primer pairs, create selective 16S rDNA clone libraries, identify novel oral taxa, and update canine and human oral microbiome databases. Design 16S rRNA gene sequences for members of the lesser-known phyla were downloaded from GenBank and Greengenes databases and aligned with sequences in our RNA databases. Primers with potential phylum level selectivity were designed heuristically with the goal of producing nearly full-length 16S rDNA amplicons. The specificity of primer pairs was examined by making clone libraries from PCR amplicons and determining phyla identity by BLASTN analysis. Results Phylum-selective primer pairs were identified that allowed construction of clone libraries with 96–100% specificity for each of the lesser-known phyla. From these clone libraries, seven human and two canine novel oral taxa were identified and added to their respective taxonomic databases. For each phylum, genome sequences closest to human oral taxa were identified and added to the Human Oral Microbiome Database to facilitate metagenomic, transcriptomic, and proteomic studies that involve tiling sequences to the most closely related taxon. While examining ribosomal operons in lesser-known phyla from single-cell genomes and metagenomes, we identified a novel rRNA operon order (23S-5S-16S) in three SR1 genomes and the splitting of the 23S rRNA gene by an I-CeuI-like homing endonuclease in a WPS-2 genome. Conclusions This study developed useful primer pairs for making phylum-selective 16S rRNA clone libraries. Phylum-specific libraries were shown to be useful for identifying previously unrecognized taxa in lesser-known phyla and would be useful for future environmental and host-associated studies. PMID:25317252

  2. Methods for the isolation of genes encoding novel PHB cycle enzymes from complex microbial communities.

    PubMed

    Nordeste, Ricardo F; Trainer, Maria A; Charles, Trevor C

    2010-01-01

    Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bioplastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti allows for the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates finding functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.

  3. Methods for the Isolation of Genes Encoding Novel PHA Metabolism Enzymes from Complex Microbial Communities.

    PubMed

    Cheng, Jiujun; Nordeste, Ricardo; Trainer, Maria A; Charles, Trevor C

    2017-01-01

    Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bio-plastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti and Pseudomonas putida, allows the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates the functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.

  4. Utilization of a tobacco rattle virus vector to clone an Nicotiana benthamiana cDNA library for VIGS

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is an efficient and rapid method to identify plant gene functions. One of the most widely used VIGS vectors is Tobacco rattle virus (TRV) which has been used successfully for RNA interference (RNAi) in N. benthamiana and tomato. We previously modified a TRV VIGS v...

  5. Microbial survey of a full-scale, biologically active filter for treatment of drinking water.

    PubMed

    White, Colin P; Debry, Ronald W; Lytle, Darren A

    2012-09-01

    The microbial community of a full-scale, biologically active drinking water filter was surveyed using molecular techniques. Nitrosomonas, Nitrospira, Sphingomonadales, and Rhizobiales dominated the clone libraries. The results elucidate the microbial ecology of biological filters and demonstrate that biological treatment of drinking water should be considered a viable alternative to physicochemical methods.

  6. SeSaM-Tv-II generates a protein sequence space that is unobtainable by epPCR.

    PubMed

    Mundhada, Hemanshu; Marienhagen, Jan; Scacioc, Andreea; Schenk, Alexander; Roccatano, Danilo; Schwaneberg, Ulrich

    2011-07-04

    Generating high-quality mutant libraries in which each amino acid is equally targeted and substituted in a chemically diverse manner is crucial to obtain improved variants in small mutant libraries. The sequence saturation mutagenesis method (SeSaM-Tv(+) ) offers the opportunity to generate such high-quality mutant libraries by introducing consecutive mutations and by enriching transversions. In this study, automated gel electrophoresis, real-time quantitative PCR, and a phosphorimager quantification system were developed and employed to optimize each step of previously reported SeSaM-Tv(+) method. Advancements of the SeSaM-Tv(+) protocol and the use of a novel DNA polymerase quadrupled the number of transversions, by doubling the fraction of consecutive mutations (from 16.7 to 37.1 %). About 33 % of all amino acid substitutions observed in a model library are rarely introduced by epPCR methods, and around 10 % of all clones carried amino acid substitutions that are unobtainable by epPCR. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Construction and characterization of a bacterial artificial chromosome library for hexaploid wheat line 92R137

    USDA-ARS?s Scientific Manuscript database

    For map-based cloning of genes conferring important traits in the hexaploid wheat line 92R137, a bacterial artificial chromosome (BAC) library, including two sub libraries, was constructed using the genomic DNA of 92R137 digested with restriction enzymes HindIII and BamHI. The BAC library was compos...

  8. [Construction of dengue virus-specific full-length fully human antibody libraries by mammalian display technology].

    PubMed

    Wen, Yangming; Lan, Kaijian; Wang, Junjie; Yu, Jingyi; Qu, Yarong; Zhao, Wei; Zhang, Fuchun; Tan, Wanlong; Cao, Hong; Zhou, Chen

    2013-06-01

    To construct dengue virus-specific full-length fully human antibody libraries using mammalian cell surface display technique. Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) from convalescent patients with dengue fever. The reservoirs of the light chain and heavy chain variable regions (LCκ and VH) of the antibody genes were amplified by RT-PCR and inserted into the vector pDGB-HC-TM separately to construct the light chain and heavy chain libraries. The library DNAs were transfected into CHO cells and the expression of full-length fully human antibodies on the surface of CHO cells was analyzed by flow cytometry. Using 1.2 µg of the total RNA isolated from the PBMCs as the template, the LCκ and VH were amplified and the full-length fully human antibody mammalian display libraries were constructed. The kappa light chain gene library had a size of 1.45×10(4) and the heavy chain gene library had a size of 1.8×10(5). Sequence analysis showed that 8 out of the 10 light chain clones and 7 out of the 10 heavy chain clones randomly picked up from the constructed libraries contained correct open reading frames. FACS analysis demonstrated that all the 15 clones with correct open reading frames expressed full-length antibodies, which could be detected on CHO cell surfaces. After co-transfection of the heavy chain and light chain gene libraries into CHO cells, the expression of full-length antibodies on CHO cell surfaces could be detected by FACS analysis with an expressible diversity of the antibody library reaching 1.46×10(9) [(1.45×10(4)×80%)×(1.8×10(5)×70%)]. Using 1.2 µg of total RNA as template, the LCκ and VH full-length fully human antibody libraries against dengue virus have been successfully constructed with an expressible diversity of 10(9).

  9. [Community structure and phylogenetic analysis of cyanobacteria in cryoconite from surface of the Glacier No. 1 in the Tianshan Mountains].

    PubMed

    Ni, Xuejiao; Qi, Xing'e; Gu, Yanling; Zheng, Xiaoji; Dong, Juan; Ni, Yongqing; Cheng, Guodong

    2014-11-04

    The purpose of this study is to characterize the community composition and phylogenetic analysis of cyanobacteria from supraglacial cryoconite of the Glacier No. 1 in the Tianshan Mountains, China. We amplified 16S rRNA genes from the extracted cryoconite DNA by PCR with 2 pairs of cyanobacteria-specific primers. Amplificon was used to construct 16S rRNA genes clone library. The estimation of species richness, diversity indices, and rarefaction curve of the 16S rRNA genes library were determined based on representative phylotypes (OTUs). Analysis of 16S rRNA gene sequences allowed grouping of 101 clones into 12 phylotypes (OTUs) using a cut-off of 97% identity. The phylogenetic analysis revealed that most of sequences affiliated to the order Oscillatoriales and Chroococcales except that three were unclassified. The clone library was dominated by representatives of the order Oscillatoriales (81% of the total clones), and the most abundant organisms within this order were in the genus Phormidium (68 clones) including clones grouping into four phylotypes. The only clone of Chroococcales was closely related to the genus Chamaesiphon with 97% similarity. In addition, comparison of soil chemical properties between different habitats indicated that supraglacial cryoconite supported significantly higher the content of available phosphorus and potassium, nitrate nitrogen and organic matter compared with the forefield of the Glacier No. 1. The diversity index of cyanobacteria were relatively high in supraglacial cryoconite of the Glacier No. 1 in the Tianshan Mountains. The community structure was dominated by members of the genus Phormidium. This study may enrich our knowledge on biogeochemical processes and ecological distribution of cyanobacterial populations in glacial ecosystem.

  10. Detection of Cystic Fibrosis Serological Biomarkers Using a T7 Phage Display Library.

    PubMed

    Talwar, Harvinder; Hanoudi, Samer Najeeb; Geamanu, Andreea; Kissner, Dana; Draghici, Sorin; Samavati, Lobelia

    2017-12-18

    Cystic fibrosis (CF) is an autosomal recessive disorder affecting the cystic fibrosis transmembrane conductance regulator (CFTR). CF is characterized by repeated lung infections leading to respiratory failure. Using a high-throughput method, we developed a T7 phage display cDNA library derived from mRNA isolated from bronchoalveolar lavage (BAL) cells and leukocytes of sarcoidosis patients. This library was biopanned to obtain 1070 potential antigens. A microarray platform was constructed and immunoscreened with sera from healthy (n = 49), lung cancer (LC) (n = 31) and CF (n = 31) subjects. We built 1,000 naïve Bayes models on the training sets. We selected the top 20 frequently significant clones ranked with student t-test discriminating CF antigens from healthy controls and LC at a False Discovery Rate (FDR) < 0.01. The performances of the models were validated on an independent validation set. The mean of the area under the receiver operating characteristic (ROC) curve for the classifiers was 0.973 with a sensitivity of 0.999 and specificity of 0.959. Finally, we identified CF specific clones that correlate highly with sweat chloride test, BMI, and FEV1% predicted values. For the first time, we show that CF specific serological biomarkers can be identified through immunocreenings of a T7 phage display library with high accuracy, which may have utility in development of molecular therapy.

  11. Current and future resources for functional metagenomics

    PubMed Central

    Lam, Kathy N.; Cheng, Jiujun; Engel, Katja; Neufeld, Josh D.; Charles, Trevor C.

    2015-01-01

    Functional metagenomics is a powerful experimental approach for studying gene function, starting from the extracted DNA of mixed microbial populations. A functional approach relies on the construction and screening of metagenomic libraries—physical libraries that contain DNA cloned from environmental metagenomes. The information obtained from functional metagenomics can help in future annotations of gene function and serve as a complement to sequence-based metagenomics. In this Perspective, we begin by summarizing the technical challenges of constructing metagenomic libraries and emphasize their value as resources. We then discuss libraries constructed using the popular cloning vector, pCC1FOS, and highlight the strengths and shortcomings of this system, alongside possible strategies to maximize existing pCC1FOS-based libraries by screening in diverse hosts. Finally, we discuss the known bias of libraries constructed from human gut and marine water samples, present results that suggest bias may also occur for soil libraries, and consider factors that bias metagenomic libraries in general. We anticipate that discussion of current resources and limitations will advance tools and technologies for functional metagenomics research. PMID:26579102

  12. Characterization of bacterial diversity associated with deep sea ferromanganese nodules from the South China Sea.

    PubMed

    Zhang, De-Chao; Liu, Yan-Xia; Li, Xin-Zheng

    2015-09-01

    Deep sea ferromanganese (FeMn) nodules contain metallic mineral resources and have great economic potential. In this study, a combination of culture-dependent and culture-independent (16S rRNA genes clone library and pyrosequencing) methods was used to investigate the bacterial diversity in FeMn nodules from Jiaolong Seamount, the South China Sea. Eleven bacterial strains including some moderate thermophiles were isolated. The majority of strains belonged to the phylum Proteobacteria; one isolate belonged to the phylum Firmicutes. A total of 259 near full-length bacterial 16S rRNA gene sequences in a clone library and 67,079 valid reads obtained using pyrosequencing indicated that members of the Gammaproteobacteria dominated, with the most abundant bacterial genera being Pseudomonas and Alteromonas. Sequence analysis indicated the presence of many organisms whose closest relatives are known manganese oxidizers, iron reducers, hydrogen-oxidizing bacteria and methylotrophs. This is the first reported investigation of bacterial diversity associated with deep sea FeMn nodules from the South China Sea.

  13. Novel method for high-throughput colony PCR screening in nanoliter-reactors

    PubMed Central

    Walser, Marcel; Pellaux, Rene; Meyer, Andreas; Bechtold, Matthias; Vanderschuren, Herve; Reinhardt, Richard; Magyar, Joseph; Panke, Sven; Held, Martin

    2009-01-01

    We introduce a technology for the rapid identification and sequencing of conserved DNA elements employing a novel suspension array based on nanoliter (nl)-reactors made from alginate. The reactors have a volume of 35 nl and serve as reaction compartments during monoseptic growth of microbial library clones, colony lysis, thermocycling and screening for sequence motifs via semi-quantitative fluorescence analyses. nl-Reactors were kept in suspension during all high-throughput steps which allowed performing the protocol in a highly space-effective fashion and at negligible expenses of consumables and reagents. As a first application, 11 high-quality microsatellites for polymorphism studies in cassava were isolated and sequenced out of a library of 20 000 clones in 2 days. The technology is widely scalable and we envision that throughputs for nl-reactor based screenings can be increased up to 100 000 and more samples per day thereby efficiently complementing protocols based on established deep-sequencing technologies. PMID:19282448

  14. Identification of eukaryotic open reading frames in metagenomic cDNA libraries made from environmental samples.

    PubMed

    Grant, Susan; Grant, William D; Cowan, Don A; Jones, Brian E; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2006-01-01

    Here we describe the application of metagenomic technologies to construct cDNA libraries from RNA isolated from environmental samples. RNAlater (Ambion) was shown to stabilize RNA in environmental samples for periods of at least 3 months at -20 degrees C. Protocols for library construction were established on total RNA extracted from Acanthamoeba polyphaga trophozoites. The methodology was then used on algal mats from geothermal hot springs in Tengchong county, Yunnan Province, People's Republic of China, and activated sludge from a sewage treatment plant in Leicestershire, United Kingdom. The Tenchong libraries were dominated by RNA from prokaryotes, reflecting the mainly prokaryote microbial composition. The majority of these clones resulted from rRNA; only a few appeared to be derived from mRNA. In contrast, many clones from the activated sludge library had significant similarity to eukaryote mRNA-encoded protein sequences. A library was also made using polyadenylated RNA isolated from total RNA from activated sludge; many more clones in this library were related to eukaryotic mRNA sequences and proteins. Open reading frames (ORFs) up to 378 amino acids in size could be identified. Some resembled known proteins over their full length, e.g., 36% match to cystatin, 49% match to ribosomal protein L32, 63% match to ribosomal protein S16, 70% to CPC2 protein. The methodology described here permits the polyadenylated transcriptome to be isolated from environmental samples with no knowledge of the identity of the microorganisms in the sample or the necessity to culture them. It has many uses, including the identification of novel eukaryotic ORFs encoding proteins and enzymes.

  15. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge.

    PubMed

    Steinberg, Lisa M; Regan, John M

    2008-11-01

    Methanogens play a critical role in the decomposition of organics under anaerobic conditions. The methanogenic consortia in saturated wetland soils are often subjected to large temperature fluctuations and acidic conditions, imposing a selective pressure for psychro- and acidotolerant community members; however, methanogenic communities in engineered digesters are frequently maintained within a narrow range of mesophilic and circumneutral conditions to retain system stability. To investigate the hypothesis that these two disparate environments have distinct methanogenic communities, the methanogens in an oligotrophic acidic fen and a mesophilic anaerobic digester treating municipal wastewater sludge were characterized by creating clone libraries for the 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes. A quantitative framework was developed to assess the differences between these two communities by calculating the average sequence similarity for 16S rRNA genes and mcrA within a genus and family using sequences of isolated and characterized methanogens within the approved methanogen taxonomy. The average sequence similarities for 16S rRNA genes within a genus and family were 96.0 and 93.5%, respectively, and the average sequence similarities for mcrA within a genus and family were 88.9 and 79%, respectively. The clone libraries of the bog and digester environments showed no overlap at the species level and almost no overlap at the family level. Both libraries were dominated by clones related to uncultured methanogen groups within the Methanomicrobiales, although members of the Methanosarcinales and Methanobacteriales were also found in both libraries. Diversity indices for the 16S rRNA gene library of the bog and both mcrA libraries were similar, but these indices indicated much lower diversity in the 16S digester library than in the other three libraries.

  16. Activity and bacterial diversity of snow around Russian Antarctic stations.

    PubMed

    Lopatina, Anna; Krylenkov, Vjacheslav; Severinov, Konstantin

    2013-11-01

    The diversity and temporal dynamics of bacterial communities in pristine snow around two Russian Antarctic stations was investigated. Taxonomic analysis of rDNA libraries revealed that snow communities were dominated by bacteria from a small number of operational taxonomic units (OTUs) that underwent dramatic swings in abundance between the 54th (2008-2009) and 55th (2009-2010) Russian Antarctic expeditions. Moreover, analysis of the 55th expedition samples indicated that there was very little, if any, correspondence in abundance of clones belonging to the same OTU present in rDNA and rRNA libraries. The latter result suggests that most rDNA clones originate from bacteria that are not alive and/or active and may have been deposited on the snow surface from the atmosphere. In contrast, clones most abundant in rRNA libraries (mostly belonging to Variovorax, Janthinobacterium, Pseudomonas, and Sphingomonas genera) may be considered as endogenous Antarctic snow inhabitants. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Generation of a total of 6483 expressed sequence tags from 60 day-old bovine whole fetus and fetal placenta.

    PubMed

    Oishi, M; Gohma, H; Lejukole, H Y; Taniguchi, Y; Yamada, T; Suzuki, K; Shinkai, H; Uenishi, H; Yasue, H; Sasaki, Y

    2004-05-01

    Expressed sequence tags (ESTs) generated based on characterization of clones isolated randomly from cDNA libraries are used to study gene expression profiles in specific tissues and to provide useful information for characterizing tissue physiology. In this study, two directionally cloned cDNA libraries were constructed from 60 day-old bovine whole fetus and fetal placenta. We have characterized 5357 and 1126 clones, and then identified 3464 and 795 unique sequences for the fetus and placenta cDNA libraries: 1851 and 504 showed homology to already identified genes, and 1613 and 291 showed no significant matches to any of the sequences in DNA databases, respectively. Further, we found 94 unique sequences overlapping in both the fetus and the placenta, leading to a catalog of 4165 genes expressed in 60 day-old fetus and placenta. The catalog is used to examine expression profile of genes in 60 day-old bovine fetus and placenta.

  18. Microbial consortia of gorgonian corals from the Aleutian islands

    USGS Publications Warehouse

    Gray, Michael A.; Stone, R.P.; McLaughlin, M.R.; Kellogg, C.A.

    2011-01-01

    Gorgonians make up the majority of corals in the Aleutian archipelago and provide critical fish habitat in areas of economically important fisheries. The microbial ecology of the deep-sea gorgonian corals Paragorgea arborea, Plumarella superba, and Cryogorgia koolsae was examined with culture-based and 16S rRNA gene-based techniques. Six coral colonies (two per species) were collected. Samples from all corals were cultured, and clone libraries were constructed from P. superba and C. koolsae. Cultured bacteria were dominated by the Gammaproteobacteria, especially Vibrionaceae, with other phyla comprising <6% of the isolates. The clone libraries showed dramatically different bacterial communities between corals of the same species collected at different sites, with no clear pattern of conserved bacterial consortia. Two of the clone libraries (one from each coral species) were dominated by Tenericutes, with Alphaproteobacteria dominating the remaining sequences. The other libraries were more diverse and had a more even distribution of bacterial phyla, showing more similarity between genera than within coral species. Here we report the first microbiological characterization of P. arborea, P. superba, and C. koolsae. FEMS Microbiology Ecology ?? 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  19. Microbial consortia of gorgonian corals from the Aleutian islands.

    PubMed

    Gray, Michael A; Stone, Robert P; McLaughlin, Molly R; Kellogg, Christina A

    2011-04-01

    Gorgonians make up the majority of corals in the Aleutian archipelago and provide critical fish habitat in areas of economically important fisheries. The microbial ecology of the deep-sea gorgonian corals Paragorgea arborea, Plumarella superba, and Cryogorgia koolsae was examined with culture-based and 16S rRNA gene-based techniques. Six coral colonies (two per species) were collected. Samples from all corals were cultured, and clone libraries were constructed from P. superba and C. koolsae. Cultured bacteria were dominated by the Gammaproteobacteria, especially Vibrionaceae, with other phyla comprising <6% of the isolates. The clone libraries showed dramatically different bacterial communities between corals of the same species collected at different sites, with no clear pattern of conserved bacterial consortia. Two of the clone libraries (one from each coral species) were dominated by Tenericutes, with Alphaproteobacteria dominating the remaining sequences. The other libraries were more diverse and had a more even distribution of bacterial phyla, showing more similarity between genera than within coral species. Here we report the first microbiological characterization of P. arborea, P. superba, and C. koolsae. FEMS Microbiology Ecology © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  20. High-throughput gene mapping in Caenorhabditis elegans.

    PubMed

    Swan, Kathryn A; Curtis, Damian E; McKusick, Kathleen B; Voinov, Alexander V; Mapa, Felipa A; Cancilla, Michael R

    2002-07-01

    Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 +/- 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18.

  1. RuBisCO large-subunit gene primers for assessing the CO2-assimilating planktonic community structure in Jiaozhou Bay, China.

    PubMed

    Chi, Xiang-Qun; Wang, Long; Guo, Ruoyu; Zhao, Dexi; Li, Jia; Zhang, Yongyu; Jiao, Nianzhi

    2018-06-19

    The protein coding genes (rbcL/cbbL/cbbM) for RuBisCO large subunit, the most abundant protein on earth that drives biological CO2 fixation, were considered as useful marker genes in characterizing CO2-assimilating plankton. However, their community specificity has hindered comprehensive screening of genetic diversity. In this study, six different rbcL/cbbL/cbbM primers were employed to screen clone libraries to identify CO2-assimilating plankton in Jiaozhou Bay. The following community compositions were observed: the community components in Form I A/B rbcL/cbbL clone library mainly comprised Chlorophyta and Proteobacteria, Form ID2 and ID3 libraries consisted of Bacillariophyta, Form II cbbM library consisted of Proteobacteria and Alveolata, and both Form I green and red libraries included Proteobacteria, respectively. At the genus taxonomic level, no overlaps among these clone libraries were observed, except for ID2 and ID3. Overall, the phytoplankton in Jiaozhou Bay mainly consists of Bacillariophyta, Chlorophyta, Cryptophyta, Haptophyceae, and Alveolata. The CO2-assimilating prokaryotes mainly consist of Proteobacteria. Considering the high sequence specificities of these marker genes, we propose that the joint use of multiple primers may be utilized in unveiling the diversity of CO2-assimilating organisms. In addition, designing novel RuBisCO gene primers that generate longer amplicons and have broader phylogenetic coverage may be necessary in the future.

  2. Individual architecture of subgingival microflora in chronic periodontitis.

    PubMed

    Sasamoto, Minoru; Nagai, Atsushi; Sakagami, Ryuji; Kitamura, Kenji; Miki, Takeyoshi

    2009-01-01

    Nearly 400 species of bacteria have been found in human periodontal pockets, and half of them remain uncultured to date. The diagnosis of individual periodontal microflora using culture-independent detection of species is expected to serve as a tool for 'tailor-made' periodontal treatments. However, the richness and abundance of bacterial species within individual subgingival microflora have not been sufficiently studied to develop more specific diagnostic microbiological tests. The purpose of this study was to determine the ecological architecture of the subgingival microflora among chronic periodontitis patients and their individual differences based on phylotype analyses. Four 16S rRNA gene libraries were constructed from subgingival plaque samples taken from all diseased sites in four chronic periodontitis patients. The 480 clones generated from each of the four libraries were analyzed by phylotyping and subjected to ecological estimation of species richness. The indices of species richness of the four libraries were 73, 75, 98 or 100 phylotypes. A total of 195 phylotypes were identified in the combined libraries. The majority of phylotypes were assigned to the Bacteroidetes, Fusobacteria, Proteobacteria, Firmicutes and Actinobacteria phyla. The phylotypes assigned to the Bacteroidetes and Fusobacteria phyla were the most predominant in each library (chi2-test, p < 0.05). In this study, the molecular ecology of 1920 clones obtained from four patients' subgingival plaque samples was examined. More than half of the detected clones were categorized under either the Bacteroidetes or the Fusobacteria phyla. Each library showed unique richness and abundance of phylotypes.

  3. Characterization of Three Maize Bacterial Artificial Chromosome Libraries toward Anchoring of the Physical Map to the Genetic Map Using High-Density Bacterial Artificial Chromosome Filter Hybridization1

    PubMed Central

    Yim, Young-Sun; Davis, Georgia L.; Duru, Ngozi A.; Musket, Theresa A.; Linton, Eric W.; Messing, Joachim W.; McMullen, Michael D.; Soderlund, Carol A.; Polacco, Mary L.; Gardiner, Jack M.; Coe, Edward H.

    2002-01-01

    Three maize (Zea mays) bacterial artificial chromosome (BAC) libraries were constructed from inbred line B73. High-density filter sets from all three libraries, made using different restriction enzymes (HindIII, EcoRI, and MboI, respectively), were evaluated with a set of complex probes including the185-bp knob repeat, ribosomal DNA, two telomere-associated repeat sequences, four centromere repeats, the mitochondrial genome, a multifragment chloroplast DNA probe, and bacteriophage λ. The results indicate that the libraries are of high quality with low contamination by organellar and λ-sequences. The use of libraries from multiple enzymes increased the chance of recovering each region of the genome. Ninety maize restriction fragment-length polymorphism core markers were hybridized to filters of the HindIII library, representing 6× coverage of the genome, to initiate development of a framework for anchoring BAC contigs to the intermated B73 × Mo17 genetic map and to mark the bin boundaries on the physical map. All of the clones used as hybridization probes detected at least three BACs. Twenty-two single-copy number core markers identified an average of 7.4 ± 3.3 positive clones, consistent with the expectation of six clones. This information is integrated into fingerprinting data generated by the Arizona Genomics Institute to assemble the BAC contigs using fingerprint contig and contributed to the process of physical map construction. PMID:12481051

  4. High-Throughput Gene Mapping in Caenorhabditis elegans

    PubMed Central

    Swan, Kathryn A.; Curtis, Damian E.; McKusick, Kathleen B.; Voinov, Alexander V.; Mapa, Felipa A.; Cancilla, Michael R.

    2002-01-01

    Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 ± 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18. [The sequence data described in this paper have been submitted to the NCBI dbSNP data library under accession nos. 4388625–4389689 and GenBank dbSTS under accession nos. 973810–974874. The following individuals and institutions kindly provided reagents, samples, or unpublished information as indicated in the paper: The C. elegans Sequencing Consortium and The Caenorhabditis Genetics Center.] PMID:12097347

  5. Identification of Genes and Pathways Related to Phenol Degradation in Metagenomic Libraries from Petroleum Refinery Wastewater

    PubMed Central

    Silva, Cynthia C.; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; De Paula, Sérgio O.; Silva, Lívia C. F.; Vidigal, Pedro M. P.; Vicentini, Renato; Sousa, Maíra P.; Torres, Ana Paula R.; Santiago, Vânia M. J.; Oliveira, Valéria M.

    2013-01-01

    Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system. PMID:23637911

  6. Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacik, William P.; Scholten, Johannes C.; Culley, David E.

    2010-08-01

    The complexity and diversity of the microbial communities in biogranules from an upflow anaerobic sludge blanket (UASB) bioreactor were determined in response to short-term changes in substrate feeds. The reactor was fed simulated brewery wastewater (SBWW) (70% ethanol, 15% acetate, 15% propionate) for 1.5 months (phase 1), acetate / sulfate for 2 months (phase 2), acetate-alone for 3 months (phase 3), and then a return to SBWW for 2 months (phase 4). Performance of the reactor remained relatively stable throughout the experiment as shown by COD removal and gas production. 16S rDNA, methanogen-associated mcrA and sulfate reducer-associated dsrAB genes weremore » PCR amplified, then cloned and sequenced. Sequence analysis of 16S clone libraries showed a relatively simple community composed mainly of the methanogenic Archaea (Methanobacterium and Methanosaeta), members of the Green Non-Sulfur (Chloroflexi) group of Bacteria, followed by fewer numbers of Syntrophobacter, Spirochaeta, Acidobacteria and Cytophaga-related Bacterial sequences. Methanogen-related mcrA clone libraries were dominated throughout by Methanobacter and Methanospirillum related sequences. Although not numerous enough to be detected in our 16S rDNA libraries, sulfate reducers were detected in dsrAB clone libraries, with sequences related to Desulfovibrio and Desulfomonile. Community diversity levels (Shannon-Weiner index) generally decreased for all libraries in response to a change from SBWW to acetate-alone feed. But there was a large transitory increase noted in 16S diversity at the two-month sampling on acetate-alone, entirely related to an increase in Bacterial diversity. Upon return to SBWW conditions in phase 4, all diversity measures returned to near phase 1 levels.« less

  7. Selective Phylogenetic Analysis Targeted at 16S rRNA Genes of Thermophiles and Hyperthermophiles in Deep-Subsurface Geothermal Environments

    PubMed Central

    Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi

    2006-01-01

    Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained. PMID:16391020

  8. Bacterial Community Response to Petroleum Hydrocarbon Amendments in Freshwater, Marine, and Hypersaline Water-Containing Microcosms

    PubMed Central

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Marques, Joana Montezano; de Sousa Lima, Laryssa Ribeiro Fonseca; Dias, Felipe de Almeida

    2013-01-01

    Hydrocarbon-degrading bacterial communities from freshwater, marine, and hypersaline Brazilian aquatic ecosystems (with water salinities corresponding to 0.2%, 4%, and 5%, respectively) were enriched with different hydrocarbons (heptadecane, naphthalene, or crude oil). Changes within the different microcosms of bacterial communities were analyzed using cultivation approaches and molecular methods (DNA and RNA extraction, followed by genetic fingerprinting and analyses of clone libraries based on the 16S rRNA-coding gene). A redundancy analysis (RDA) of the genetic fingerprint data and a principal component analysis (PCA) of the clone libraries revealed hydrocarbon-enriched bacterial communities specific for each ecosystem studied. However, within the same ecosystem, different bacterial communities were selected according to the petroleum hydrocarbon used. In general, the results demonstrated that Acinetobacter and Cloacibacterium were the dominant genera in freshwater microcosms; the Oceanospirillales order and the Marinobacter, Pseudomonas, and Cycloclasticus genera predominated in marine microcosms; and the Oceanospirillales order and the Marinobacter genus were selected in the different hydrocarbon-containing microcosms in hypersaline water. Determination of total petroleum hydrocarbons (TPHs) in all microcosms after 32 days of incubation showed a decrease in the hydrocarbon concentration compared to that for the controls. A total of 50 (41.3%) isolates from the different hydrocarbon-contaminated microcosms were associated with the dominant operational taxonomic units (OTUs) obtained from the clone libraries, and their growth in the hydrocarbon contaminating the microcosm from which they were isolated as the sole carbon source was observed. These data provide insight into the general response of bacterial communities from freshwater, marine, and hypersaline aquatic ecosystems to petroleum hydrocarbon contamination. PMID:23872573

  9. Isolation and expression of a Bacillus cereus gene encoding benzil reductase.

    PubMed

    Maruyama, R; Nishizawa, M; Itoi, Y; Ito, S; Inoue, M

    2001-12-20

    Benzil was reduced stereospecifically to (S)-benzoin by Bacillus cereus strain Tim-r01. To isolate the gene responsible for asymmetric reduction, we constructed a library consisting of Escherichia coli clones that harbored plasmids expressing Bacillus cereus genes. The library was screened using the halo formation assay, and one clone showed benzil reduction to (S)-benzoin. Thus, this clone seemed to carry a plasmid encoding a Bacillus cereus benzil reductase. The deduced amino acid sequence had marked homologies to the Bacillus subtilis yueD protein (41% identity), the yeast open reading frame YIR036C protein (31%), and the mammalian sepiapterin reductases (28% to 30%), suggesting that benzil reductase is a novel short-chain de-hydrogenases/ reductase. Copyright 2001 John Wiley & Sons, Inc.

  10. Partial Characterization of Normal and Haemophilus influenzae–Infected Mucosal Complementary DNA Libraries in Chinchilla Middle Ear Mucosa

    PubMed Central

    Kerschner, Joseph E.; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J. Christopher; Ehrlich, Garth D.

    2010-01-01

    Objectives We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Methods Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription–polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Results Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Conclusions Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis. PMID:20433028

  11. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression.

    PubMed

    Xu, Y L; Li, L; Wu, K; Peeters, A J; Gage, D A; Zeevaart, J A

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.

  12. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: Molecular cloning and functional expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yun-Ling; Li, Li; Wu, Keqiang

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA{sub 12}-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidasemore » gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA{sub 53} to GA{sub 44} and GA{sub 19} to GA{sub 20}. The Arabidopsis GA 20-oxidase shares 55% identity and >80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA locus of Arabidopsis. The ga5 semidwarf mutant contains a G {yields} A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Arabidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA{sub 4} treatment, suggesting end-product repression in the GA biosynthetic pathway. 28 refs., 6 figs.« less

  13. Construction of high quality Gateway™ entry libraries and their application to yeast two-hybrid for the monocot model plant Brachypodium distachyon.

    PubMed

    Cao, Shuanghe; Siriwardana, Chamindika L; Kumimoto, Roderick W; Holt, Ben F

    2011-05-19

    Monocots, especially the temperate grasses, represent some of the most agriculturally important crops for both current food needs and future biofuel development. Because most of the agriculturally important grass species are difficult to study (e.g., they often have large, repetitive genomes and can be difficult to grow in laboratory settings), developing genetically tractable model systems is essential. Brachypodium distachyon (hereafter Brachypodium) is an emerging model system for the temperate grasses. To fully realize the potential of this model system, publicly accessible discovery tools are essential. High quality cDNA libraries that can be readily adapted for multiple downstream purposes are a needed resource. Additionally, yeast two-hybrid (Y2H) libraries are an important discovery tool for protein-protein interactions and are not currently available for Brachypodium. We describe the creation of two high quality, publicly available Gateway™ cDNA entry libraries and their derived Y2H libraries for Brachypodium. The first entry library represents cloned cDNA populations from both short day (SD, 8/16-h light/dark) and long day (LD, 20/4-h light/dark) grown plants, while the second library was generated from hormone treated tissues. Both libraries have extensive genome coverage (~5 × 107 primary clones each) and average clone lengths of ~1.5 Kb. These entry libraries were then used to create two recombination-derived Y2H libraries. Initial proof-of-concept screens demonstrated that a protein with known interaction partners could readily re-isolate those partners, as well as novel interactors. Accessible community resources are a hallmark of successful biological model systems. Brachypodium has the potential to be a broadly useful model system for the grasses, but still requires many of these resources. The Gateway™ compatible entry libraries created here will facilitate studies for multiple user-defined purposes and the derived Y2H libraries can be immediately applied to large scale screening and discovery of novel protein-protein interactions. All libraries are freely available for distribution to the research community.

  14. Human antibodies against spores of the genus Bacillus: a model study for detection of and protection against anthrax and the bioterrorist threat.

    PubMed

    Zhou, Bin; Wirsching, Peter; Janda, Kim D

    2002-04-16

    A naive, human single-chain Fv (scFv) phage-display library was used in bio-panning against live, native spores of Bacillus subtilis IFO 3336 suspended in solution. A direct in vitro panning and enzyme-linked immunosorbent assay-based selection afforded a panel of nine scFv-phage clones of which two, 5B and 7E, were chosen for further study. These two clones differed in their relative specificity and affinity for spores of B. subtilis IFO 3336 vs. a panel of spores from 11 other Bacillus species/strains. A variety of enzyme-linked immunosorbent assay protocols indicated these scFv-phage clones recognized different spore epitopes. Notably, some spore epitopes markedly changed between the free and microtiter-plate immobilized state as revealed by antibody-phage binding. An additional library selection procedure also was examined by constructing a Fab chain-shuffled sublibrary from the nine positive clones and by using a subtractive panning strategy to remove crossreactivity with B. licheniformis 5A24. The Fab-phage clone 52 was improved compared with 5B and was comparable to 7E in binding B. subtilis IFO 3336 vs. B. licheniformis 5A24, yet showed a distinctive crossreactivity pattern with other spores. We also developed a method to directly detect individual spores by using fluorescently labeled antibody-phage. Finally, a variety of "powders" that might be used in deploying spores of B. anthracis were examined for antibody-phage binding. The strategies described provide a foundation to discover human antibodies specific for native spores of B. anthracis that can be developed as diagnostic and therapeutic reagents.

  15. Persistence of bacterial and archaeal communities in sea ice through an Arctic winter

    PubMed Central

    Collins, R Eric; Rocap, Gabrielle; Deming, Jody W

    2010-01-01

    The structure of bacterial communities in first-year spring and summer sea ice differs from that in source seawaters, suggesting selection during ice formation in autumn or taxon-specific mortality in the ice during winter. We tested these hypotheses by weekly sampling (January–March 2004) of first-year winter sea ice (Franklin Bay, Western Arctic) that experienced temperatures from −9°C to −26°C, generating community fingerprints and clone libraries for Bacteria and Archaea. Despite severe conditions and significant decreases in microbial abundance, no significant changes in richness or community structure were detected in the ice. Communities of Bacteria and Archaea in the ice, as in under-ice seawater, were dominated by SAR11 clade Alphaproteobacteria and Marine Group I Crenarchaeota, neither of which is known from later season sea ice. The bacterial ice library contained clones of Gammaproteobacteria from oligotrophic seawater clades (e.g. OM60, OM182) but no clones from gammaproteobacterial genera commonly detected in later season sea ice by similar methods (e.g. Colwellia, Psychrobacter). The only common sea ice bacterial genus detected in winter ice was Polaribacter. Overall, selection during ice formation and mortality during winter appear to play minor roles in the process of microbial succession that leads to distinctive spring and summer sea ice communities. PMID:20192970

  16. Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Varner, J.E.

    1985-07-01

    Extensins are hydroxyproline-rich glycoproteins associated with most dicotyledonous plant cell walls. To isolate cDNA clones encoding extensin, the authors started by isolating poly(A) RNA from carrot root tissue, and then translating the RNA in vitro, in the presence of tritiated leucine or proline. A 33-kDa peptide was identified in the translation products as a putative extensin precursor. From a cDNA library constructed with poly(A) RNA from wounded carrots, one cDNA clone (pDC5) was identified that specifically hybridized to poly(A) RNA encoding this 33-kDa peptide. They isolated three cDNA clones (pDC11, pDC12, and pDC16) from another cDNA library using pCD5 asmore » a probe. DNA sequence data, RNA hybridization analysis, and hybrid released in vitro translation indicate that the cDNA clones pDC11 encodes extensin and that cDNA clones pDC12 and pDC16 encode the 33-kDa peptide, which as yet has an unknown identity and function. The assumption that the 33-kDa peptide was an extensin precursor was invalid. RNA hybridization analysis showed that RNA encoded by both clone types is accumulated upon wounding.« less

  17. Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae)

    PubMed Central

    2010-01-01

    Background The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae. Findings Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from HindIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers. Conclusions This indicated that both BAC libraries are valuable tools for molecular studies in chicory, one goal being the positional cloning of the S-locus in this Asteraceae species. PMID:20701751

  18. Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae).

    PubMed

    Gonthier, Lucy; Bellec, Arnaud; Blassiau, Christelle; Prat, Elisa; Helmstetter, Nicolas; Rambaud, Caroline; Huss, Brigitte; Hendriks, Theo; Bergès, Hélène; Quillet, Marie-Christine

    2010-08-11

    The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae. Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from HindIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers. This indicated that both BAC libraries are valuable tools for molecular studies in chicory, one goal being the positional cloning of the S-locus in this Asteraceae species.

  19. Construction of a High-Quality Yeast Two-Hybrid Library and Its Application in Identification of Interacting Proteins with Brn1 in Curvularia lunata.

    PubMed

    Gao, Jin-Xin; Jing, Jing; Yu, Chuan-Jin; Chen, Jie

    2015-06-01

    Curvularia lunata is an important maize foliar fungal pathogen that distributes widely in maize growing area in China, and several key pathogenic factors have been isolated. An yeast two-hybrid (Y2H) library is a very useful platform to further unravel novel pathogenic factors in C. lunata. To construct a high-quality full length-expression cDNA library from the C. lunata for application to pathogenesis-related protein-protein interaction screening, total RNA was extracted. The SMART (Switching Mechanism At 5' end of the RNA Transcript) technique was used for cDNA synthesis. Double-stranded cDNA was ligated into the pGADT7-Rec vector with Herring Testes Carrier DNA using homologous recombination method. The ligation mixture was transformed into competent yeast AH109 cells to construct the primary cDNA library. Eventually, a high qualitative library was successfully established according to an evaluation on quality. The transformation efficiency was about 6.39 ×10(5) transformants/3 μg pGADT7-Rec. The titer of the primary cDNA library was 2.5×10(8) cfu/mL. The numbers for the cDNA library was 2.46×10(5). Randomly picked clones show that the recombination rate was 88.24%. Gel electrophoresis results indicated that the fragments ranged from 0.4 kb to 3.0 kb. Melanin synthesis protein Brn1 (1,3,8-hydroxynaphthalene reductase) was used as a "bait" to test the sufficiency of the Y2H library. As a result, a cDNA clone encoding VelB protein that was known to be involved in the regulation of diverse cellular processes, including control of secondary metabolism containing melanin and toxin production in many filamentous fungi was identified. Further study on the exact role of the VelB gene is underway.

  20. Mammalian cDNA Library from the NIH Mammalian Gene Collection (MGC) | Office of Cancer Genomics

    Cancer.gov

    The MGC provides the research community full-length clones for most of the defined (as of 2006) human and mouse genes, along with selected clones of cow and rat genes. Clones were designed to allow easy transfer of the ORF sequences into nearly any type of expression vector. MGC provides protein ‘expression-ready’ clones for each of the included human genes. MGC is part of the ORFeome Collaboration (OC).

  1. Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction

    PubMed Central

    Lazinski, David W.; Camilli, Andrew

    2013-01-01

    The amplification of DNA fragments, cloned between user-defined 5′ and 3′ end sequences, is a prerequisite step in the use of many current applications including massively parallel sequencing (MPS). Here we describe an improved method, called homopolymer tail-mediated ligation PCR (HTML-PCR), that requires very little starting template, minimal hands-on effort, is cost-effective, and is suited for use in high-throughput and robotic methodologies. HTML-PCR starts with the addition of homopolymer tails of controlled lengths to the 3′ termini of a double-stranded genomic template. The homopolymer tails enable the annealing-assisted ligation of a hybrid oligonucleotide to the template's recessed 5′ ends. The hybrid oligonucleotide has a user-defined sequence at its 5′ end. This primer, together with a second primer composed of a longer region complementary to the homopolymer tail and fused to a second 5′ user-defined sequence, are used in a PCR reaction to generate the final product. The user-defined sequences can be varied to enable compatibility with a wide variety of downstream applications. We demonstrate our new method by constructing MPS libraries starting from nanogram and sub-nanogram quantities of Vibrio cholerae and Streptococcus pneumoniae genomic DNA. PMID:23311318

  2. Microbial diversity in an Armenian geothermal spring assessed by molecular and culture-based methods.

    PubMed

    Panosyan, Hovik; Birkeland, Nils-Kåre

    2014-11-01

    The phylogenetic diversity of the prokaryotic community thriving in the Arzakan hot spring in Armenia was studied using molecular and culture-based methods. A sequence analysis of 16S rRNA gene clone libraries demonstrated the presence of a diversity of microorganisms belonging to the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Epsilonproteobacteria, Firmicutes, Bacteroidetes phyla, and Cyanobacteria. Proteobacteria was the dominant group, representing 52% of the bacterial clones. Denaturing gradient gel electrophoresis profiles of the bacterial 16S rRNA gene fragments also indicated the abundance of Proteobacteria, Bacteroidetes, and Cyanobacteria populations. Most of the sequences were most closely related to uncultivated microorganisms and shared less than 96% similarity with their closest matches in GenBank, indicating that this spring harbors a unique community of novel microbial species or genera. The majority of the sequences of an archaeal 16S rRNA gene library, generated from a methanogenic enrichment, were close relatives of members of the genus Methanoculleus. Aerobic endospore-forming bacteria mainly belonging to Bacillus and Geobacillus were detected only by culture-dependent methods. Three isolates were successfully obtained having 99, 96, and 96% 16S rRNA gene sequence similarities to Arcobacter sp., Methylocaldum sp., and Methanoculleus sp., respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Microbial Survey of a Full-Scale, Biologically Active Filter for Treatment of Drinking Water

    PubMed Central

    DeBry, Ronald W.; Lytle, Darren A.

    2012-01-01

    The microbial community of a full-scale, biologically active drinking water filter was surveyed using molecular techniques. Nitrosomonas, Nitrospira, Sphingomonadales, and Rhizobiales dominated the clone libraries. The results elucidate the microbial ecology of biological filters and demonstrate that biological treatment of drinking water should be considered a viable alternative to physicochemical methods. PMID:22752177

  4. An integrated PCR colony hybridization approach to screen cDNA libraries for full-length coding sequences.

    PubMed

    Pollier, Jacob; González-Guzmán, Miguel; Ardiles-Diaz, Wilson; Geelen, Danny; Goossens, Alain

    2011-01-01

    cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) is a commonly used technique for genome-wide expression analysis that does not require prior sequence knowledge. Typically, quantitative expression data and sequence information are obtained for a large number of differentially expressed gene tags. However, most of the gene tags do not correspond to full-length (FL) coding sequences, which is a prerequisite for subsequent functional analysis. A medium-throughput screening strategy, based on integration of polymerase chain reaction (PCR) and colony hybridization, was developed that allows in parallel screening of a cDNA library for FL clones corresponding to incomplete cDNAs. The method was applied to screen for the FL open reading frames of a selection of 163 cDNA-AFLP tags from three different medicinal plants, leading to the identification of 109 (67%) FL clones. Furthermore, the protocol allows for the use of multiple probes in a single hybridization event, thus significantly increasing the throughput when screening for rare transcripts. The presented strategy offers an efficient method for the conversion of incomplete expressed sequence tags (ESTs), such as cDNA-AFLP tags, to FL-coding sequences.

  5. Microbial population index and community structure in saline-alkaline soil using gene targeted metagenomics.

    PubMed

    Keshri, Jitendra; Mishra, Avinash; Jha, Bhavanath

    2013-03-30

    Population indices of bacteria and archaea were investigated from saline-alkaline soil and a possible microbe-environment pattern was established using gene targeted metagenomics. Clone libraries were constructed using 16S rRNA and functional gene(s) involved in carbon fixation (cbbL), nitrogen fixation (nifH), ammonia oxidation (amoA) and sulfur metabolism (apsA). Molecular phylogeny revealed the dominance of Actinobacteria, Firmicutes and Proteobacteria along with archaeal members of Halobacteraceae. The library consisted of novel bacterial (20%) and archaeal (38%) genera showing ≤95% similarity to previously retrieved sequences. Phylogenetic analysis indicated ability of inhabitant to survive in stress condition. The 16S rRNA gene libraries contained novel gene sequences and were distantly homologous with cultured bacteria. Functional gene libraries were found unique and most of the clones were distantly related to Proteobacteria, while clones of nifH gene library also showed homology with Cyanobacteria and Firmicutes. Quantitative real-time PCR exhibited that bacterial abundance was two orders of magnitude higher than archaeal. The gene(s) quantification indicated the size of the functional guilds harboring relevant key genes. The study provides insights on microbial ecology and different metabolic interactions occurring in saline-alkaline soil, possessing phylogenetically diverse groups of bacteria and archaea, which may be explored further for gene cataloging and metabolic profiling. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. ORF phage display to identify cellular proteins with different functions.

    PubMed

    Li, Wei

    2012-09-01

    Open reading frame (ORF) phage display is a new branch of phage display aimed at improving its efficiency to identify cellular proteins with specific binding or functional activities. Despite the success of phage display with antibody libraries and random peptide libraries, phage display with cDNA libraries of cellular proteins identifies a high percentage of non-ORF clones encoding unnatural short peptides with minimal biological implications. This is mainly because of the uncontrollable reading frames of cellular proteins in conventional cDNA libraries. ORF phage display solves this problem by eliminating non-ORF clones to generate ORF cDNA libraries. Here I summarize the procedures of ORF phage display, discuss the factors influencing its efficiency, present examples of its versatile applications, and highlight evidence of its capability of identifying biologically relevant cellular proteins. ORF phage display coupled with different selection strategies is capable of delineating diverse functions of cellular proteins with unique advantages. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. In vivo Elimination of Parental Clones in General and Site-directed Mutagenesis

    PubMed Central

    Holland, Erika G.; Acca, Felicity E.; Belanger, Kristina M.; Bylo, Mary E.; Kay, Brian K.; Weiner, Michael P.; Kiss, Margaret M.

    2015-01-01

    The Eco29k I restriction endonuclease is a Sac II isoschizomer that recognizes the sequence 5’-CCGCGG-3’ and is encoded, along with the Eco29k I methylase, in the Escherichia coli strain 29k. We have expressed the Eco29k I restriction-methylation system (RM2) in E. coli strain TG1 to produce the strain AXE688. We have developed a directed molecular evolution (DME) mutagenesis method that uses Eco29k I to restrict incoming parental DNA in transformed cells. Using our DME method, we have demonstrated that our AXE688 strain results in mutated directed molecular evolution libraries with diversity greater than 107 from a single transformation and with greater than 90% recombinant clones. PMID:25523926

  8. In vivo elimination of parental clones in general and site-directed mutagenesis.

    PubMed

    Holland, Erika G; Acca, Felicity E; Belanger, Kristina M; Bylo, Mary E; Kay, Brian K; Weiner, Michael P; Kiss, Margaret M

    2015-02-01

    The Eco29k I restriction endonuclease is a Sac II isoschizomer that recognizes the sequence 5'-CCGCGG-3' and is encoded, along with the Eco29k I methylase, in the Escherichia coli strain 29k. We have expressed the Eco29k I restriction-methylation system (RM2) in E. coli strain TG1 to produce the strain AXE688. We have developed a directed molecular evolution (DME) mutagenesis method that uses Eco29k I to restrict incoming parental DNA in transformed cells. Using our DME method, we have demonstrated that our AXE688 strain results in mutated directed molecular evolution libraries with diversity greater than 10(7) from a single transformation and with greater than 90% recombinant clones. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs.

    PubMed Central

    Travis, G H; Sutcliffe, J G

    1988-01-01

    To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, we developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA. Images PMID:2894033

  10. Primer sets for cloning the human repertoire of T cell Receptor Variable regions

    PubMed Central

    Boria, Ilenia; Cotella, Diego; Dianzani, Irma; Santoro, Claudio; Sblattero, Daniele

    2008-01-01

    Background Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Results Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT®, the ImMunoGeneTics information system®. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. Conclusion This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets. PMID:18759974

  11. Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization.

    PubMed Central

    Geber, A; Williamson, P R; Rex, J H; Sweeney, E C; Bennett, J E

    1992-01-01

    In order to isolate the structural gene involved in sucrose utilization, we screened a sucrose-induced Candida albicans cDNA library for clones expressing alpha-glucosidase activity. The C. albicans maltase structural gene (CAMAL2) was isolated. No other clones expressing alpha-glucosidase activity. were detected. A genomic CAMAL2 clone was obtained by screening a size-selected genomic library with the cDNA clone. DNA sequence analysis reveals that CAMAL2 encodes a 570-amino-acid protein which shares 50% identity with the maltase structural gene (MAL62) of Saccharomyces carlsbergensis. The substrate specificity of the recombinant protein purified from Escherichia coli identifies the enzyme as a maltase. Northern (RNA) analysis reveals that transcription of CAMAL2 is induced by maltose and sucrose and repressed by glucose. These results suggest that assimilation of sucrose in C. albicans relies on an inducible maltase enzyme. The family of genes controlling sucrose utilization in C. albicans shares similarities with the MAL gene family of Saccharomyces cerevisiae and provides a model system for studying gene regulation in this pathogenic yeast. Images PMID:1400249

  12. [Construction of forward and reverse subtracted cDNA libraries between muscle tissue of Meishan and Landrace pigs].

    PubMed

    Xu, De-Quan; Zhang, Yi-Bing; Xiong, Yuan-Zhu; Gui, Jian-Fang; Jiang, Si-Wen; Su, Yu-Hong

    2003-07-01

    Using suppression subtractive hybridization (SSH) technique, forward and reverse subtracted cDNA libraries were constructed between Longissimus muscles from Meishan and Landrace pigs. A housekeeping gene, G3PDH, was used to estimate the efficiency of subtractive cDNA. In two cDNA libraries, G3PDH was subtracted very efficiently at appropriate 2(10) and 2(5) folds, respectively, indicating that some differentially expressed genes were also enriched at the same folds and the two subtractive cDNA libraries were very successful. A total of 709 and 673 positive clones were isolated from forward and reverse subtracted cDNA libraries, respectively. Analysis of PCR showed that most of all plasmids in the clones contained 150-750 bp inserts. The construction of subtractive cDNA libraries between muscle tissue from different pig breeds laid solid foundations for isolating and identifying the genes determining muscle growth and meat quality, which will be important to understand the mechanism of muscle growth, determination of meat quality and practice of molecular breeding.

  13. BAC library development, and clone characterization for dormancy-responsive DREB4A, DAM, and FT from leafy spurge (Euphorbia esula L.) identifies differential splicing and conserved promoter motifs

    USDA-ARS?s Scientific Manuscript database

    We developed two leafy spurge BAC libraries that together represent approximately 5X coverage of the leafy spurge genome. The BAC libraries have an average insert size of approximately 143 kb, and copies of the library and filters for hybridization-based screening are publicly available through the ...

  14. Utilization of Multi-Immunization and Multiple Selection Strategies for Isolation of Hapten-Specific Antibodies from Recombinant Antibody Phage Display Libraries.

    PubMed

    Tullila, Antti; Nevanen, Tarja K

    2017-05-31

    Phage display technology provides a powerful tool for the development of novel recombinant antibodies. In this work, we optimized and streamlined the recombinant antibody discovery process for haptens as an example. A multi-immunization approach was used in order to avoid the need for construction of multiple antibody libraries. Selection methods were developed to utilize the full potential of the recombinant antibody library by applying four different elution conditions simultaneously. High-throughput immunoassays were used to analyse the binding properties of the individual antibody clones. Different carrier proteins were used in the immunization, selection, and screening phases to avoid enrichment of the antibodies for the carrier protein epitopes. Novel recombinant antibodies against mycophenolic acid and ochratoxin A, with affinities up to 39 nM and 34 nM, respectively, were isolated from a multi-immunized fragment antigen-binding (Fab) library.

  15. Utilization of Multi-Immunization and Multiple Selection Strategies for Isolation of Hapten-Specific Antibodies from Recombinant Antibody Phage Display Libraries

    PubMed Central

    Tullila, Antti; Nevanen, Tarja K.

    2017-01-01

    Phage display technology provides a powerful tool for the development of novel recombinant antibodies. In this work, we optimized and streamlined the recombinant antibody discovery process for haptens as an example. A multi-immunization approach was used in order to avoid the need for construction of multiple antibody libraries. Selection methods were developed to utilize the full potential of the recombinant antibody library by applying four different elution conditions simultaneously. High-throughput immunoassays were used to analyse the binding properties of the individual antibody clones. Different carrier proteins were used in the immunization, selection, and screening phases to avoid enrichment of the antibodies for the carrier protein epitopes. Novel recombinant antibodies against mycophenolic acid and ochratoxin A, with affinities up to 39 nM and 34 nM, respectively, were isolated from a multi-immunized fragment antigen-binding (Fab) library. PMID:28561803

  16. Analysis of Differentially Expressed Genes Associated with Coronatine-Induced Laticifer Differentiation in the Rubber Tree by Subtractive Hybridization Suppression

    PubMed Central

    Zhang, Shi-Xin; Wu, Shao-Hua; Chen, Yue-Yi; Tian, Wei-Min

    2015-01-01

    The secondary laticifer in the secondary phloem is differentiated from the vascular cambia of the rubber tree (Hevea brasiliensis Muell. Arg.). The number of secondary laticifers is closely related to the rubber yield potential of Hevea. Pharmacological data show that jasmonic acid and its precursor linolenic acid are effective in inducing secondary laticifer differentiation in epicormic shoots of the rubber tree. In the present study, an experimental system of coronatine-induced laticifer differentiation was developed to perform SSH identification of genes with differential expression. A total of 528 positive clones were obtained by blue-white screening, of which 248 clones came from the forward SSH library while 280 clones came from the reverse SSH library. Approximately 215 of the 248 clones and 171 of the 280 clones contained cDNA inserts by colony PCR screening. A total of 286 of the 386 ESTs were detected to be differentially expressed by reverse northern blot and sequenced. Approximately 147 unigenes with an average length of 497 bp from the forward and 109 unigenes with an average length of 514 bp from the reverse SSH libraries were assembled and annotated. The unigenes were associated with the stress/defense response, plant hormone signal transduction and structure development. It is suggested that Ca2+ signal transduction and redox seem to be involved in differentiation, while PGA and EIF are associated with the division of cambium initials for COR-induced secondary laticifer differentiation in the rubber tree. PMID:26147807

  17. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    PubMed

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.

  18. Community structure and succession regulation of fungal consortia in the lignocellulose-degrading process on natural biomass.

    PubMed

    Tian, Baoyu; Wang, Chunxiang; Lv, Ruirui; Zhou, Junxiong; Li, Xin; Zheng, Yi; Jin, Xiangyu; Wang, Mengli; Ye, Yongxia; Huang, Xinyi; Liu, Ping

    2014-01-01

    The study aims to investigate fungal community structures and dynamic changes in forest soil lignocellulose-degrading process. rRNA gene clone libraries for the samples collected in different stages of lignocellulose degradation process were constructed and analyzed. A total of 26 representative RFLP types were obtained from original soil clone library, including Mucoromycotina (29.5%), unclassified Zygomycetes (33.5%), Ascomycota (32.4%), and Basidiomycota (4.6%). When soil accumulated with natural lignocellulose, 16 RFLP types were identified from 8-day clone library, including Basidiomycota (62.5%), Ascomycota (36.1%), and Fungi incertae sedis (1.4%). After enrichment for 15 days, identified 11 RFLP types were placed in 3 fungal groups: Basidiomycota (86.9%), Ascomycota (11.5%), and Fungi incertae sedis (1.6%). The results showed richer, more diversity and abundance fungal groups in original forest soil. With the degradation of lignocellulose, fungal groups Mucoromycotina and Ascomycota decreased gradually, and wood-rotting fungi Basidiomycota increased and replaced the opportunist fungi to become predominant group. Most of the fungal clones identified in sample were related to the reported lignocellulose-decomposing strains. Understanding of the microbial community structure and dynamic change during natural lignocellulose-degrading process will provide us with an idea and a basis to construct available commercial lignocellulosic enzymes or microbial complex.

  19. Chicken microsatellite markers isolated from libraries enriched for simple tandem repeats.

    PubMed

    Gibbs, M; Dawson, D A; McCamley, C; Wardle, A F; Armour, J A; Burke, T

    1997-12-01

    The total number of microsatellite loci is considered to be at least 10-fold lower in avian species than in mammalian species. Therefore, efficient large-scale cloning of chicken microsatellites, as required for the construction of a high-resolution linkage map, is facilitated by the construction of libraries using an enrichment strategy. In this study, a plasmid library enriched for tandem repeats was constructed from chicken genomic DNA by hybridization selection. Using this technique the proportion of recombinant clones that cross-hybridized to probes containing simple tandem repeats was raised to 16%, compared with < 0.1% in a non-enriched library. Primers were designed from 121 different sequences. Polymerase chain reaction (PCR) analysis of two chicken reference pedigrees enabled 72 loci to be localized within the collaborative chicken genetic map, and at least 30 of the remaining loci have been shown to be informative in these or other crosses.

  20. Identification of Eukaryotic Open Reading Frames in Metagenomic cDNA Libraries Made from Environmental Samples†

    PubMed Central

    Grant, Susan; Grant, William D.; Cowan, Don A.; Jones, Brian E.; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2006-01-01

    Here we describe the application of metagenomic technologies to construct cDNA libraries from RNA isolated from environmental samples. RNAlater (Ambion) was shown to stabilize RNA in environmental samples for periods of at least 3 months at −20°C. Protocols for library construction were established on total RNA extracted from Acanthamoeba polyphaga trophozoites. The methodology was then used on algal mats from geothermal hot springs in Tengchong county, Yunnan Province, People's Republic of China, and activated sludge from a sewage treatment plant in Leicestershire, United Kingdom. The Tenchong libraries were dominated by RNA from prokaryotes, reflecting the mainly prokaryote microbial composition. The majority of these clones resulted from rRNA; only a few appeared to be derived from mRNA. In contrast, many clones from the activated sludge library had significant similarity to eukaryote mRNA-encoded protein sequences. A library was also made using polyadenylated RNA isolated from total RNA from activated sludge; many more clones in this library were related to eukaryotic mRNA sequences and proteins. Open reading frames (ORFs) up to 378 amino acids in size could be identified. Some resembled known proteins over their full length, e.g., 36% match to cystatin, 49% match to ribosomal protein L32, 63% match to ribosomal protein S16, 70% to CPC2 protein. The methodology described here permits the polyadenylated transcriptome to be isolated from environmental samples with no knowledge of the identity of the microorganisms in the sample or the necessity to culture them. It has many uses, including the identification of novel eukaryotic ORFs encoding proteins and enzymes. PMID:16391035

  1. Molecular and conventional analyses of microbial diversity in mesophilic and thermophilic upflow anaerobic sludge blanket granular sludges.

    PubMed

    Sekiguchi, Y; Kamagata, Y; Ohashi, A; Harada, H

    2002-01-01

    The microbial community structure of mesophilic (35 degrees C) and thermophilic (55 degrees C) methanogenic granular sludges was surveyed by using both cultivation-independent molecular approach and conventional cultivation technique in order to address the fundamental questions on the microbial populations, i.e. who are present, where they are located, and what they are doing there. To elucidate the microbial constituents within both sludges, we first constructed 16S ribosomal DNA clone libraries, and partial sequencing of the clones was conducted for phylogenetic analysis. In this experiment, we found a number of unidentifiable clones within the domain Bacteria as well as clones that were closely related with 16S rDNAs of cultured microbes. The unidentifiable clones accounted for approximately 60-70% of the total clones in both mesophilic and thermophilic libraries. 16S rRNA-targeted in situ hybridization combined with confocal laser scanning microscopy was subsequently employed to examine where the uncultured populations were located within sludge granules. Spatial organization of uncultured microbes was visualized in thin-sections of both types of granules using fluorescent oligonucleotide probes, which were designed based on the clone sequences of certain novel clusters. This resulted in the detection of two types of uncultured cells in specific locations inside the granules. Finally, the goal-directed conventional cultivation technique was employed to recover such uncultured anaerobes and uncover their physiology and functions. In this approach, a total of five new species of thermophilic microorganisms were isolated, including several types of syntrophs and a novel sugar-fermenting bacterium. In the previous molecular approaches, all of these isolates were suggested to be significant populations within thermophilic granular sludge, hence obtaining these isolates in pure culture decreased the fraction of unknown clones in the previous thermophilic clone library from 70% to 40%. In conclusion, these approaches successfully revealed biodiversity and spatial organization of microbes of interest in sludge granules, and enlarged the fundamental knowledge of microbial constituents functioning as significant populations in the UASB processes.

  2. Evaluation of microbial community in hydrothermal field by direct DNA sequencing

    NASA Astrophysics Data System (ADS)

    Kawarabayasi, Y.; Maruyama, A.

    2002-12-01

    Many extremophiles have been discovered from terrestrial and marine hydrothermal fields. Some thermophiles can grow beyond 90°C in culture, while direct microscopic analysis occasionally indicates that microbes may survive in much hotter hydrothermal fluids. However, it is very difficult to isolate and cultivate such microbes from the environments, i.e., over 99% of total microbes remains undiscovered. Based on experiences of entire microbial genome analysis (Y.K.) and microbial community analysis (A.M.), we started to find out unique microbes/genes in hydrothermal fields through direct sequencing of environmental DNA fragments. At first, shotgun plasmid libraries were directly constructed with the DNA molecules prepared from mixed microbes collected by an in situ filtration system from low-temperature fluids at RM24 in the Southern East Pacific Rise (S-EPR). A gene amplification (PCR) technique was not used for preventing mutation in the process. The nucleotide sequences of 285 clones indicated that no sequence had identical data in public databases. Among 27 clones determined entire sequences, no ORF was identified on 14 clones like intron in Eukaryote. On four clones, tetra-nucleotide-long multiple tandem repetitive sequences were identified. This type of sequence was identified in some familiar disease in human. The result indicates that living/dead materials with eukaryotic features may exist in this low temperature field. Secondly, shotgun plasmid libraries were constructed from the environmental DNA prepared from Beppu hot springs. In randomly-selected 143 clones used for sequencing, no known sequence was identified. Unlike the clones in S-EPR library, clear ORFs were identified on all nine clones determined the entire sequence. It was found that one clone, H4052, contained the complete Aspartyl-tRNA synthetase. Phylogenetic analysis using amino acid sequences of this gene indicated that this gene was separated from other Euryarchaea before the differentiation of species. Thus, some novel archaeal species are expected to be in this field. The present direct cloning and sequencing technique is now opening a window to the new world in hydrothermal microbial community analysis.

  3. Whole-Genome Sequencing and Assembly with High-Throughput, Short-Read Technologies

    PubMed Central

    Sundquist, Andreas; Ronaghi, Mostafa; Tang, Haixu; Pevzner, Pavel; Batzoglou, Serafim

    2007-01-01

    While recently developed short-read sequencing technologies may dramatically reduce the sequencing cost and eventually achieve the $1000 goal for re-sequencing, their limitations prevent the de novo sequencing of eukaryotic genomes with the standard shotgun sequencing protocol. We present SHRAP (SHort Read Assembly Protocol), a sequencing protocol and assembly methodology that utilizes high-throughput short-read technologies. We describe a variation on hierarchical sequencing with two crucial differences: (1) we select a clone library from the genome randomly rather than as a tiling path and (2) we sample clones from the genome at high coverage and reads from the clones at low coverage. We assume that 200 bp read lengths with a 1% error rate and inexpensive random fragment cloning on whole mammalian genomes is feasible. Our assembly methodology is based on first ordering the clones and subsequently performing read assembly in three stages: (1) local assemblies of regions significantly smaller than a clone size, (2) clone-sized assemblies of the results of stage 1, and (3) chromosome-sized assemblies. By aggressively localizing the assembly problem during the first stage, our method succeeds in assembling short, unpaired reads sampled from repetitive genomes. We tested our assembler using simulated reads from D. melanogaster and human chromosomes 1, 11, and 21, and produced assemblies with large sets of contiguous sequence and a misassembly rate comparable to other draft assemblies. Tested on D. melanogaster and the entire human genome, our clone-ordering method produces accurate maps, thereby localizing fragment assembly and enabling the parallelization of the subsequent steps of our pipeline. Thus, we have demonstrated that truly inexpensive de novo sequencing of mammalian genomes will soon be possible with high-throughput, short-read technologies using our methodology. PMID:17534434

  4. Molecular analysis of microbial diversity in corrosion samples from energy transmission towers.

    PubMed

    Oliveira, Valéria M; Lopes-Oliveira, Patrícia F; Passarini, Michel R Z; Menezes, Claudia B A; Oliveira, Walter R C; Rocha, Adriano J; Sette, Lara D

    2011-04-01

    Microbial diversity in corrosion samples from energy transmission towers was investigated using molecular methods. Ribosomal DNA fragments were used to assemble gene libraries. Sequence analysis indicated 10 bacterial genera within the phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. In the two libraries generated from corroded screw-derived samples, the genus Acinetobacter was the most abundant. Acinetobacter and Clostridium spp. dominated, with similar percentages, in the libraries derived from corrosion scrapings. Fungal clones were affiliated with 14 genera belonging to the phyla Ascomycota and Basidiomycota; of these, Capnobotryella and Fellomyces were the most abundant fungi observed. Several of the microorganisms had not previously been associated with biofilms and corrosion, reinforcing the need to use molecular techniques to achieve a more comprehensive assessment of microbial diversity in environmental samples.

  5. Seasonal diversity of planktonic protists in Southwestern Alberta rivers over a 1-year period as revealed by terminal restriction fragment length polymorphism and 18S rRNA gene library analyses.

    PubMed

    Thomas, Matthew C; Selinger, L Brent; Inglis, G Douglas

    2012-08-01

    The temporal dynamics of planktonic protists in river water have received limited attention despite their ecological significance and recent studies linking phagotrophic protists to the persistence of human-pathogenic bacteria. Using molecular-based techniques targeting the 18S rRNA gene, we studied the seasonal diversity of planktonic protists in Southwestern Alberta rivers (Oldman River Basin) over a 1-year period. Nonmetric multidimensional scaling analysis of terminal restriction fragment length polymorphism (T-RFLP) data revealed distinct shifts in protistan community profiles that corresponded to season rather than geographical location. Community structures were examined by using clone library analysis; HaeIII restriction profiles of 18S rRNA gene amplicons were used to remove prevalent solanaceous plant clones prior to sequencing. Sanger sequencing of the V1-to-V3 region of the 18S rRNA gene libraries from spring, summer, fall, and winter supported the T-RFLP results and showed marked seasonal differences in the protistan community structure. The spring library was dominated by Chloroplastidae (29.8%), Centrohelida (28.1%), and Alveolata (25.5%), while the summer and fall libraries contained primarily fungal clones (83.0% and 88.0%, respectively). Alveolata (35.6%), Euglenozoa (24.4%), Chloroplastida (15.6%), and Fungi (15.6%) dominated the winter library. These data demonstrate that planktonic protists, including protozoa, are abundant in river water in Southwestern Alberta and that conspicuous seasonal shifts occur in the community structure.

  6. Seasonal Diversity of Planktonic Protists in Southwestern Alberta Rivers over a 1-Year Period as Revealed by Terminal Restriction Fragment Length Polymorphism and 18S rRNA Gene Library Analyses

    PubMed Central

    Thomas, Matthew C.; Selinger, L. Brent

    2012-01-01

    The temporal dynamics of planktonic protists in river water have received limited attention despite their ecological significance and recent studies linking phagotrophic protists to the persistence of human-pathogenic bacteria. Using molecular-based techniques targeting the 18S rRNA gene, we studied the seasonal diversity of planktonic protists in Southwestern Alberta rivers (Oldman River Basin) over a 1-year period. Nonmetric multidimensional scaling analysis of terminal restriction fragment length polymorphism (T-RFLP) data revealed distinct shifts in protistan community profiles that corresponded to season rather than geographical location. Community structures were examined by using clone library analysis; HaeIII restriction profiles of 18S rRNA gene amplicons were used to remove prevalent solanaceous plant clones prior to sequencing. Sanger sequencing of the V1-to-V3 region of the 18S rRNA gene libraries from spring, summer, fall, and winter supported the T-RFLP results and showed marked seasonal differences in the protistan community structure. The spring library was dominated by Chloroplastidae (29.8%), Centrohelida (28.1%), and Alveolata (25.5%), while the summer and fall libraries contained primarily fungal clones (83.0% and 88.0%, respectively). Alveolata (35.6%), Euglenozoa (24.4%), Chloroplastida (15.6%), and Fungi (15.6%) dominated the winter library. These data demonstrate that planktonic protists, including protozoa, are abundant in river water in Southwestern Alberta and that conspicuous seasonal shifts occur in the community structure. PMID:22685143

  7. Construction of high-quality Caco-2 three-frame cDNA library and its application to yeast two-hybrid for the human astrovirus protein-protein interaction.

    PubMed

    Zhao, Wei; Li, Xin; Liu, Wen-Hui; Zhao, Jian; Jin, Yi-Ming; Sui, Ting-Ting

    2014-09-01

    Human epithelial colorectal adenocarcinoma (Caco-2) cells are widely used as an in vitro model of the human small intestinal mucosa. Caco-2 cells are host cells of the human astrovirus (HAstV) and other enteroviruses. High quality cDNA libraries are pertinent resources and critical tools for protein-protein interaction research, but are currently unavailable for Caco-2 cells. To construct a three-open reading frame, full length-expression cDNA library from the Caco-2 cell line for application to HAstV protein-protein interaction screening, total RNA was extracted from Caco-2 cells. The switching mechanism at the 5' end of the RNA transcript technique was used for cDNA synthesis. Double-stranded cDNA was digested by Sfi I and ligated to reconstruct a pGADT7-Sfi I three-frame vector. The ligation mixture was transformed into Escherichia coli HST08 premium electro cells by electroporation to construct the primary cDNA library. The library capacity was 1.0×10(6)clones. Gel electrophoresis results indicated that the fragments ranged from 0.5kb to 4.2kb. Randomly picked clones show that the recombination rate was 100%. The three-frame primary cDNA library plasmid mixture (5×10(5)cfu) was also transformed into E. coli HST08 premium electro cells, and all clones were harvested to amplify the cDNA library. To detect the sufficiency of the cDNA library, HAstV capsid protein as bait was screened and tested against the Caco-2 cDNA library by a yeast two-hybrid (Y2H) system. A total of 20 proteins were found to interact with the capsid protein. These results showed that a high-quality three-frame cDNA library from Caco-2 cells was successfully constructed. This library was efficient for the application to the Y2H system, and could be used for future research. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Molecular and Microscopical Investigation of the Microflora Inhabiting a Deteriorated Italian Manuscript Dated from the Thirteenth Century

    PubMed Central

    Michaelsen, Astrid; Piñar, Guadalupe

    2010-01-01

    This case study shows the application of nontraditional diagnostic methods to investigate the microbial consortia inhabiting an ancient manuscript. The manuscript was suspected to be biologically deteriorated and SEM observations showed the presence of fungal spores attached to fibers, but classic culturing methods did not succeed in isolating microbial contaminants. Therefore, molecular methods, including PCR, denaturing gradient gel electrophoresis (DGGE), and clone libraries, were used as a sensitive alternative to conventional cultivation techniques. DGGE fingerprints revealed a high biodiversity of both bacteria and fungi inhabiting the manuscript. DNA sequence analysis confirmed the existence of fungi and bacteria in manuscript samples. A number of fungal clones identified on the manuscript showed similarity to fungal species inhabiting dry or saline environments, suggesting that the manuscript environment selects for osmophilic or xerophilic fungal species. Most of the bacterial sequences retrieved from the manuscript belong to phylotypes with cellulolytic activities. PMID:20449583

  9. Screening and identification of human ZnT8-specific single-chain variable fragment (scFv) from type 1 diabetes phage display library.

    PubMed

    Wu, Qian; Wang, Xiaodong; Gu, Yong; Zhang, Xiao; Qin, Yao; Chen, Heng; Xu, Xinyu; Yang, Tao; Zhang, Mei

    2016-07-01

    Zinc transporter 8 (ZnT8) is a major autoantigen and a predictive marker in type 1 diabetes (T1D). To investigate ZnT8-specific antibodies, a phage display library from T1D was constructed and single-chain antibodies against ZnT8 were screened and identified. Human T1D single-chain variable fragment (scFv) phage display library consists of approximately 1×10(8) clones. After four rounds of bio-panning, seven unique clones were positive by phage ELISA. Among them, C27 and C22, which demonstrated the highest affinity to ZnT8, were expressed in Escherichia coli Top10F' and then purified by affinity chromatography. C27 and C22 specifically bound ZnT8 N/C fusion protein and ZnT8 C terminal dimer with one Arg325Trp mutation. The specificity to human islet cells of these scFvs were further confirmed by immunohistochemistry. In conclusion, we have successfully constructed a T1D phage display antibody library and identified two ZnT8-specific scFv clones, C27 and C22. These ZnT8-specific scFvs are potential agents in immunodiagnostic and immunotherapy of T1D.

  10. Cloning of Sucrose:Sucrose 1-Fructosyltransferase from Onion and Synthesis of Structurally Defined Fructan Molecules from Sucrose1

    PubMed Central

    Vijn, Irma; van Dijken, Anja; Lüscher, Marcel; Bos, Antoine; Smeets, Edward; Weisbeek, Peter; Wiemken, Andres; Smeekens, Sjef

    1998-01-01

    Sucrose (Suc):Suc 1-fructosyltransferase (1-SST) is the key enzyme in plant fructan biosynthesis, since it catalyzes de novo fructan synthesis from Suc. We have cloned 1-SST from onion (Allium cepa) by screening a cDNA library using acid invertase from tulip (Tulipa gesneriana) as a probe. Expression assays in tobacco (Nicotiana plumbaginifolia) protoplasts showed the formation of 1-kestose from Suc. In addition, an onion acid invertase clone was isolated from the same cDNA library. Protein extracts of tobacco protoplasts transformed with this clone showed extensive Suc-hydrolyzing activity. Conditions that induced fructan accumulation in onion leaves also induced 1-SST mRNA accumulation, whereas the acid invertase mRNA level decreased. Structurally different fructan molecules could be produced from Suc by a combined incubation of protein extract of protoplasts transformed with 1-SST and protein extract of protoplasts transformed with either the onion fructan:fructan 6G-fructosyltransferase or the barley Suc:fructan 6-fructosyltransferase. PMID:9701606

  11. Process of labeling specific chromosomes using recombinant repetitive DNA

    DOEpatents

    Moyzis, R.K.; Meyne, J.

    1988-02-12

    Chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family members and consensus sequences of the repetitive DNA families for the chromosome preferential sequences. The selected low homology regions are then hybridized with chromosomes to determine those low homology regions hybridized with a specific chromosome under normal stringency conditions.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in {approx}300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressedmore » for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.« less

  13. Isolation of human simple repeat loci by hybridization selection.

    PubMed

    Armour, J A; Neumann, R; Gobert, S; Jeffreys, A J

    1994-04-01

    We have isolated short tandem repeat arrays from the human genome, using a rapid method involving filter hybridization to enrich for tri- or tetranucleotide tandem repeats. About 30% of clones from the enriched library cross-hybridize with probes containing trimeric or tetrameric tandem arrays, facilitating the rapid isolation of large numbers of clones. In an initial analysis of 54 clones, 46 different tandem arrays were identified. Analysis of these tandem repeat loci by PCR showed that 24 were polymorphic in length; substantially higher levels of polymorphism were displayed by the tetrameric repeat loci isolated than by the trimeric repeats. Primary mapping of these loci by linkage analysis showed that they derive from 17 chromosomes, including the X chromosome. We anticipate the use of this strategy for the efficient isolation of tandem repeats from other sources of genomic DNA, including DNA from flow-sorted chromosomes, and from other species.

  14. DNA modification and functional delivery into human cells using Escherichia coli DH10B

    PubMed Central

    Narayanan, Kumaran; Warburton, Peter E.

    2003-01-01

    The availability of almost the complete human genome as cloned BAC libraries represents a valuable resource for functional genomic analysis, which, however, has been somewhat limited by the ability to modify and transfer this DNA into mammalian cells intact. Here we report a novel comprehensive Escherichia coli-based vector system for the modification, propagation and delivery of large human genomic BAC clones into mammalian cells. The GET recombination inducible homologous recombination system was used in the BAC host strain E.coli DH10B to precisely insert an EGFPneo cassette into the vector portion of a ∼200 kb human BAC clone, providing a relatively simple method to directly convert available BAC clones into suitable vectors for mammalian cells. GET recombination was also used for the targeted deletion of the asd gene from the E.coli chromosome, resulting in defective cell wall synthesis and diaminopimelic acid auxotrophy. Transfer of the Yersinia pseudotuberculosis invasin gene into E.coli DH10B asd– rendered it competent to invade HeLa cells and deliver DNA, as judged by transient expression of green fluorescent protein and stable neomycin-resistant colonies. The efficiency of DNA transfer and survival of HeLa cells has been optimized for incubation time and multiplicity of infection of invasive E.coli with HeLa cells. This combination of E.coli-based homologous recombination and invasion technologies using BAC host strain E.coli DH10B will greatly improve the utility of the available BAC libraries from the human and other genomes for gene expression and functional genomic studies. PMID:12711696

  15. A phage display vector optimized for the generation of human antibody combinatorial libraries and the molecular cloning of monoclonal antibody fragments.

    PubMed

    Solforosi, Laura; Mancini, Nicasio; Canducci, Filippo; Clementi, Nicola; Sautto, Giuseppe Andrea; Diotti, Roberta Antonia; Clementi, Massimo; Burioni, Roberto

    2012-07-01

    A novel phagemid vector, named pCM, was optimized for the cloning and display of antibody fragment (Fab) libraries on the surface of filamentous phage. This vector contains two long DNA "stuffer" fragments for easier differentiation of the correctly cut forms of the vector. Moreover, in pCM the fragment at the heavy-chain cloning site contains an acid phosphatase-encoding gene allowing an easy distinction of the Escherichia coli cells containing the unmodified form of the phagemid versus the heavy-chain fragment coding cDNA. In pCM transcription of heavy-chain Fd/gene III and light chain is driven by a single lacZ promoter. The light chain is directed to the periplasm by the ompA signal peptide, whereas the heavy-chain Fd/coat protein III is trafficked by the pelB signal peptide. The phagemid pCM was used to generate a human combinatorial phage display antibody library that allowed the selection of a monoclonal Fab fragment antibody directed against the nucleoprotein (NP) of Influenza A virus.

  16. Use of superparamagnetic beads for the isolation of a peptide with specificity to cymbidium mosaic virus.

    PubMed

    Ooi, Diana Jia Miin; Dzulkurnain, Adriya; Othman, Rofina Yasmin; Lim, Saw Hoon; Harikrishna, Jennifer Ann

    2006-09-01

    A modified method for the rapid isolation of specific ligands to whole virus particles is described. Biopanning against cymbidium mosaic virus was carried out with a commercial 12-mer random peptide display library. A solution phase panning method was devised using streptavidin-coated superparamagnetic beads. The solution based panning method was more efficient than conventional immobilized target panning when using whole viral particles of cymbidium mosaic virus as a target. Enzyme-linked immunosorbent assay of cymbidium mosaic virus-binding peptides isolated from the library identified seven peptides with affinity for cymbidium mosaic virus and one peptide which was specific to cymbidium mosaic virus and had no significant binding to odontoglossum ringspot virus. This method should have broad application for the screening of whole viral particles towards the rapid development of diagnostic reagents without the requirement for cloning and expression of single antigens.

  17. Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives.

    PubMed

    Wang, Chao; Shi, Xue; Liu, Lin; Li, Haiyan; Ammiraju, Jetty S S; Kudrna, David A; Xiong, Wentao; Wang, Hao; Dai, Zhaozhao; Zheng, Yonglian; Lai, Jinsheng; Jin, Weiwei; Messing, Joachim; Bennetzen, Jeffrey L; Wing, Rod A; Luo, Meizhong

    2013-11-01

    Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.

  18. Nitrous Oxide Reductase (nosZ) Gene Fragments Differ between Native and Cultivated Michigan Soils

    PubMed Central

    Stres, Blaž; Mahne, Ivan; Avguštin, Gorazd; Tiedje, James M.

    2004-01-01

    The effect of standard agricultural management on the genetic heterogeneity of nitrous oxide reductase (nosZ) fragments from denitrifying prokaryotes in native and cultivated soil was explored. Thirty-six soil cores were composited from each of the two soil management conditions. nosZ gene fragments were amplified from triplicate samples, and PCR products were cloned and screened by restriction fragment length polymorphism (RFLP). The total nosZ RFLP profiles increased in similarity with soil sample size until triplicate 3-g samples produced visually identical RFLP profiles for each treatment. Large differences in total nosZ profiles were observed between the native and cultivated soils. The fragments representing major groups of clones encountered at least twice and four randomly selected clones with unique RFLP patterns were sequenced to verify nosZ identity. The sequence diversity of nosZ clones from the cultivated field was higher, and only eight patterns were found in clone libraries from both soils among the 182 distinct nosZ RFLP patterns identified from the two soils. A group of clones that comprised 32% of all clones dominated the gene library of native soil, whereas many minor groups were observed in the gene library of cultivated soil. The 95% confidence intervals of the Chao1 nonparametric richness estimator for nosZ RFLP data did not overlap, indicating that the levels of species richness are significantly different in the two soils, the cultivated soil having higher diversity. Phylogenetic analysis of deduced amino acid sequences grouped the majority of nosZ clones into an interleaved Michigan soil cluster whose cultured members are α-Proteobacteria. Only four nosZ sequences from cultivated soil and one from the native soil were related to sequences found in γ-Proteobacteria. Sequences from the native field formed a distinct, closely related cluster (Dmean = 0.16) containing 91.6% of the native clones. Clones from the cultivated field were more distantly related to each other (Dmean = 0.26), and 65% were found outside of the cluster from the native soil, further indicating a difference in the two communities. Overall, there appears to be a relationship between use and richness, diversity, and the phylogenetic position of nosZ sequences, indicating that agricultural use of soil caused a shift to a more diverse denitrifying community. PMID:14711656

  19. A novel lentiviral scFv display library for rapid optimization and selection of high affinity antibodies.

    PubMed

    Qudsia, Sehar; Merugu, Siva B; Mangukiya, Hitesh B; Hema, Negi; Wu, Zhenghua; Li, Dawei

    2018-04-30

    Antibody display libraries have become a popular technique to screen monoclonal antibodies for therapeutic purposes. An important aspect of display technology is to generate an optimization library by changing antibody affinity to antigen through mutagenesis and screening the high affinity antibody. In this study, we report a novel lentivirus display based optimization library antibody in which Agtuzumab scFv is displayed on cell membrane of HEK-293T cells. To generate an optimization library, hotspot mutagenesis was performed to achieve diverse antibody library. Based on sequence analysis of randomly selected clones, library size was estimated approximately to be 1.6 × 10 6 . Lentivirus display vector was used to display scFv antibody on cell surface and flow cytometery was performed to check the antibody affinity to antigen. Membrane bound scFv antibodies were then converted to secreted antibody through cre/loxP recombination. One of the mutant clones, M8 showed higher affinity to antigen in flow cytometery analysis. Further characterization of cellular and secreted scFv through western blot showed that antibody affinity was increased by three fold after mutagenesis. This study shows successful construction of a novel antibody library and suggests that hotspot mutagenesis could prove a useful and rapid optimization tool to generate similar libraries with various degree of antigen affinity. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Relationships between bacterial diversity and environmental variables in a tropical marine environment, Rio de Janeiro.

    PubMed

    Vieira, Ricardo P; Gonzalez, Alessandra M; Cardoso, Alexander M; Oliveira, Denise N; Albano, Rodolpho M; Clementino, Maysa M; Martins, Orlando B; Paranhos, Rodolfo

    2008-01-01

    This study is the first to apply a comparative analysis of environmental chemistry, microbiological parameters and bacterioplankton 16S rRNA clone libraries from different areas of a 50 km transect along a trophic gradient in the tropical Guanabara Bay ecosystem. Higher bacterial diversity was found in the coastal area, whereas lower richness was observed in the more polluted inner bay water. The significance of differences between clone libraries was examined with LIBSHUFF statistics. Paired reciprocal comparisons indicated that each of the libraries differs significantly from the others, and this is in agreement with direct interpretation of the phylogenetic tree. Furthermore, correspondence analyses showed that some taxa are related to specific abiotic, trophic and microbiological parameters in Guanabara Bay estuarine system.

  1. Genomics approach to the environmental community of microorganisms

    NASA Astrophysics Data System (ADS)

    Kawarabayasi, Y.; Maruyama, A.

    2004-12-01

    It was indicated by microscopic observation or comparison of 16S rDNA sequence that many extremophiles were surviving in many hydrothermal environments. But it is generally said that over 99% of total microbes are now uncultivable. Thus, we planned to identify uncultivable microbes through direct sequencing of environmental DNA. At first, shotgun plasmid libraries were directly constructed with the DNA molecules prepared from mixed microbes collected from low-temperature hydrothermal water at RM24 in the Southern East Pacific Rise (S-EPR). It was shown that the sequences of some number of clones indicated the similar feature to the intron in eukaryote or tandem repetitive sequence identified in some human familiar diseases. The results indicated that many microorganisms with eukaryotic feature were dominant in low temperature water of S-EPR. Secondly, shotgun plasmid libraries were constructed from the environmental DNA prepared from Beppu hot springs. The ORFs were easily identified all clones determined entire sequence. Thus it can be said that hot springs is good resources for searching novel genes. At last, the mixed microbes isolated from Suiyo seamount were used for construction of shotgun library. The clones in this library contained the ORFs. From some clones in hot spring and Suiyo sample, aminoacyl-tRNA synthatase, which is generally present in all organisms, was isolated by similarity. The phylogenetic analysis of aminoacyl-tRNA synthetase identified indicated that novel and unidentified microorganisms should be present in hot spring or Suiyo seamount. The novel genes identified from Suiyo seamount were also utilized for expression in E. coli. Some gene products were successfully obtained from the E. coli cells as soluble proteins. Some protein indicated the thermostability up to 70_E#8249;C, meaning that the original host cell of this gene should be stable up to the same temperature. Our work indicates that environmental genomics, including the direct cloning, sequencing of environmental DNA and expression of gene identified, is powerful approach to collect novel uncultivable microbes or novel active genes.

  2. [Analysis of Microbial Community in the Membrane Bio-Reactor (MBR) Rural Sewage Treatment System].

    PubMed

    Kong, Xiao; Cui, Bing-jian; Jin, De-cai; Wu, Shang-hua; Yang, Bo; Deng, Ye; Zhuang, Guo-qiang; Zhuang, Xu-liang

    2015-09-01

    Uncontrolled release and arbitrary irrigation reuse of rural wastewater may lead to water pollution, and the microbial pathogens could threaten the safety of freshwater resources and public health. To understand the microbial community structure of rural wastewater and provide the theory for microbial risk assessment of wastewater irrigation, microbial community diversities in the Membrane Bio-Reactor (MBR) process for rural wastewater treatment was studied by terminal restriction fragment length polymorphism (T-RFLP) and 16S rDNA gene clone library. Meanwhile, changes of Arcobacter spp. and total bacteria before and after treatment were detected through real-time quantitative PCR. The clone library results showed that there were 73 positive clones included Proteobacteria (91. 80%), Firmicutes (2. 70%), Bacteroidetes (1. 40%), and uncultured bacteria (4. 10%) in the untreated wastewater. The typical pathogenic genus Arcobacter belonging to e-Proteobacteria was the dominant component of the library, accounting for 68. 5% of all clones. The main groups and their abundance in different treatments were significantly distinct. The highest values of species abundance (S), Shannon-Wiener (H) and Evenness (E) were observed in the adjusting tank, which were 43. 0, 3. 56 and 0. 95, respectively. The real-time quantitative PCR results showed that the copy number of Arcobacter spp. was (1. 09 ± 0. 064 0) x 10(11) copies.L-1 in the untreated sewage, which was consistent with the result of 16S rDNA gene clone library. Compared to untreated wastewater, bacterial copy number in the treated effluent decreased 100 to 1 000 times, respectively, suggesting that MBR treatment system could remove the microbial quantity in such scale. In the recycled water, the physicochemical parameters and indicator bacteria met the water quality standard of farmland irrigation. However, further research is needed to estimate the potential health risks caused by residual pathogenic microorganisms in future.

  3. Cross-species bacterial artificial chromosome (BAC) library screening via overgo-based hybridization and BAC-contig mapping of a yield enhancement quantitative trait locus (QTL) yld1.1 in the Malaysian wild rice Oryza rufipogon.

    PubMed

    Song, Beng-Kah; Nadarajah, Kalaivani; Romanov, Michael N; Ratnam, Wickneswari

    2005-01-01

    The construction of BAC-contig physical maps is an important step towards a partial or ultimate genome sequence analysis. Here, we describe our initial efforts to apply an overgo approach to screen a BAC library of the Malaysian wild rice species, Oryza rufipogon. Overgo design is based on repetitive element masking and sequence uniqueness, and uses short probes (approximately 40 bp), making this method highly efficient and specific. Pairs of 24-bp oligos that contain an 8-bp overlap were developed from the publicly available genomic sequences of the cultivated rice, O. sativa, to generate 20 overgo probes for a 1-Mb region that encompasses a yield enhancement QTL yld1.1 in O. rufipogon. The advantages of a high similarity in melting temperature, hybridization kinetics and specific activities of overgos further enabled a pooling strategy for library screening by filter hybridization. Two pools of ten overgos each were hybridized to high-density filters representing the O. rufipogon genomic BAC library. These screening tests succeeded in providing 69 PCR-verified positive hits from a total of 23,040 BAC clones of the entire O. rufipogon library. A minimal tilling path of clones was generated to contribute to a fully covered BAC-contig map of the targeted 1-Mb region. The developed protocol for overgo design based on O. sativa sequences as a comparative genomic framework, and the pooled overgo hybridization screening technique are suitable means for high-resolution physical mapping and the identification of BAC candidates for sequencing.

  4. Estimating P-coverage of biosynthetic pathways in DNA libraries and screening by genetic selection: biotin biosynthesis in the marine microorganism Chromohalobacter.

    PubMed

    Kim, Eun Jin; Angell, Scott; Janes, Jeff; Watanabe, Coran M H

    2008-06-01

    Traditional approaches to natural product discovery involve cell-based screening of natural product extracts followed by compound isolation and characterization. Their importance notwithstanding, continued mining leads to depletion of natural resources and the reisolation of previously identified metabolites. Metagenomic strategies aimed at localizing the biosynthetic cluster genes and expressing them in surrogate hosts offers one possible alternative. A fundamental question that naturally arises when pursuing such a strategy is, how large must the genomic library be to effectively represent the genome of an organism(s) and the biosynthetic gene clusters they harbor? Such an issue is certainly augmented in the absence of expensive robotics to expedite colony picking and/or screening of clones. We have developed an algorism, named BPC (biosynthetic pathway coverage), supported by molecular simulations to deduce the number of BAC clones required to achieve proper coverage of the genome and their respective biosynthetic pathways. The strategy has been applied to the construction of a large-insert BAC library from a marine microorganism, Hon6 (isolated from Honokohau, Maui) thought to represent a new species. The genomic library is constructed with a BAC yeast shuttle vector pClasper lacZ paving the way for the culturing of libraries in both prokaryotic and eukaryotic hosts. Flow cytometric methods are utilized to estimate the genome size of the organism and BPC implemented to assess P-coverage or percent coverage. A genetic selection strategy is illustrated, applications of which could expedite screening efforts in the identification and localization of biosynthetic pathways from marine microbial consortia, offering a powerful complement to genome sequencing and degenerate probe strategies. Implementing this approach, we report on the biotin biosynthetic pathway from the marine microorganism Hon6.

  5. Endophyte Microbiome Diversity in Micropropagated Atriplex canescens and Atriplex torreyi var griffithsii

    PubMed Central

    Lucero, Mary E.; Unc, Adrian; Cooke, Peter; Dowd, Scot; Sun, Shulei

    2011-01-01

    Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP) analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities. PMID:21437280

  6. Identification and characterization of dinucleotide repeat (CA)[sub n] markers for genetic mapping in dog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrander, E.A.; Sprague, G.F. Jr.; Rine, J.

    1993-04-01

    A large block of simple sequence repeat (SSR) polymorphisms for the dog genome has been isolated and characterized. Screening of primary libraries by conventional hybridization methods as well as by screening of enriched marker-selected libraries led to the isolation of a large number of genomic clones that contained (CA)[sub n] repeats. The sequences of 101 clones showed that the size and complexity of (CA)[sub n] repeats in the dog genome were similar to those reported for these markers in the human genome. Detailed analysis of a representative subset of these markers revealed that most markers were moderately to highly polymorphic,more » with PIC values exceeding 0.70 for 33% of the markers tested. An association between higher PIC values and markers containing longer (CA)[sub n] repeats was observed in these studies, as previously noted for similar markers in the human genome. A list of primer sequences that tag each characterized marker is provided, and a comprehensive system of nomenclature for the dog genome is suggested. 28 refs., 4 figs., 2 tabs.« less

  7. Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates.

    PubMed

    Yokoyama, Hiroshi; Moriya, Naoko; Ohmori, Hideyuki; Waki, Miyoko; Ogino, Akifumi; Tanaka, Yasuo

    2007-11-01

    The present study analyzed the community structures of anaerobic microflora producing hydrogen under extreme thermophilic conditions by two culture-independent methods: denaturing gradient gel electrophoresis (DGGE) and clone library analyses. Extreme thermophilic microflora (ETM) was enriched from cow manure by repeated batch cultures at 75 degrees C, using a substrate of xylose, glucose, lactose, cellobiose, or soluble starch, and produced hydrogen at yields of 0.56, 2.65, 2.17, 2.68, and 1.73 mol/mol-monosaccharide degraded, respectively. The results from the DGGE and clone library analyses were consistent and demonstrated that the community structures of ETM enriched with the four hexose-based substrates (glucose, lactose, cellobiose, and soluble starch) consisted of a single species, closely related to a hydrogen-producing extreme thermophile, Caldoanaerobacter subterraneus, with diversity at subspecies levels. The ETM enriched with xylose was more diverse than those enriched with the other substrates, and contained the bacterium related to C. subterraneus and an unclassified bacterium, distantly related to a xylan-degrading and hydrogen-producing extreme thermophile, Caloramator fervidus.

  8. Stress-Driven Selection of Novel Phenotypes

    NASA Technical Reports Server (NTRS)

    Fox, George E.; Stepaov, Victor G.; Liu, Yamei

    2011-01-01

    A process has been developed that can confer novel properties, such as metal resistance, to a host bacterium. This same process can also be used to produce RNAs and peptides that have novel properties, such as the ability to bind particular compounds. It is inherent in the method that the peptide or RNA will behave as expected in the target organism. Plasmid-born mini-gene libraries coding for either a population of combinatorial peptides or stable, artificial RNAs carrying random inserts are produced. These libraries, which have no bias towards any biological function, are used to transform the organism of interest and to serve as an initial source of genetic variation for stress-driven evolution. The transformed bacteria are propagated under selective pressure in order to obtain variants with the desired properties. The process is highly distinct from in vitro methods because the variants are selected in the context of the cell while it is experiencing stress. Hence, the selected peptide or RNA will, by definition, work as expected in the target cell as the cell adapts to its presence during the selection process. Once the novel gene, which produces the sought phenotype, is obtained, it can be transferred to the main genome to increase the genetic stability in the organism. Alternatively, the cell line can be used to produce novel RNAs or peptides with selectable properties in large quantity for separate purposes. The system allows for easy, large-scale purification of the RNAs or peptide products. The process has been reduced to practice by imposing sub-inhibitory concentrations of NiCl2 on cells of the bacterium Escherichia coli that were transformed separately with the peptide library and RNA library. The evolved resistant clones were isolated, and sequences of the selected mini-gene variants were established. Clones resistant to NiCl2 were found to carry identical plasmid variants with a functional mini-gene that specifically conferred significant nickel tolerance on the host cells. Sequencing of the selected mini-gene revealed a propensity of the encoded peptide to bind transient metal ions. Expression of the mini-gene markedly improved growth parameters of the evolved clones at sub-inhibitory concentrations of NiCl2 while being slightly detrimental in the absence of stress. Similar results have been obtained with the RNA libraries. Overall, the results demonstrate a very natural outcome of the selection experiments in which the mini-genes were expected to be either successfully integrated into bacterial genetic networks, or rejected depending upon their effect on host fitness. This described approach can be useful as a laboratory model to study the dynamics of bacterial adaptive evolution on the molecular level. It can also provide a strategy for screening expressed DNA libraries in search of novel genes with desirable properties.

  9. Modification and identification of a vector for making a large phage antibody library.

    PubMed

    Zhang, Guo-min; Chen, Yü-ping; Guan, Yuan-zhi; Wang, Yan; An, Yun-qing

    2007-11-20

    The large phage antibody library is used to obtain high-affinity human antibody, and the Loxp/cre site-specific recombination system is a potential method for constructing a large phage antibody library. In the present study, a phage antibody library vector pDF was reconstructed to construct diabody more quickly and conveniently without injury to homologous recombination and the expression function of the vector and thus to integrate construction of the large phage antibody library with the preparation of diabodies. scFv was obtained by overlap polymerase chain reaction (PCR) amplification with the newly designed VL and VH extension primers. loxp511 was flanked by VL and VH and the endonuclease ACC III encoding sequences were introduced on both sides of loxp511. scFv was cloned into the vector pDF to obtain the vector pDscFv. The vector expression function was identified and the feasibility of diabody preparation was evaluated. A large phage antibody library was constructed in pDscFv. Several antigens were used to screen the antibody library and the quality of the antibody library was evaluated. The phage antibody library expression vector pDscFv was successfully constructed and confirmed to express functional scFv. The large phage antibody library constructed using this vector was of high diversity. Screening of the library on 6 antigens confirmed the generation of specific antibodies to these antigens. Two antibodies were subjected to enzymatic digestion and were prepared into diabody with functional expression. The reconstructed vector pDscFv retains its recombination capability and expression function and can be used to construct large phage antibody libraries. It can be used as a convenient and quick method for preparing diabodies after simple enzymatic digestion, which facilitates clinical trials and application of antibody therapy.

  10. Construction of a nurse shark (Ginglymostoma cirratum) bacterial artificial chromosome (BAC) library and a preliminary genome survey.

    PubMed

    Luo, Meizhong; Kim, Hyeran; Kudrna, Dave; Sisneros, Nicholas B; Lee, So-Jeong; Mueller, Christopher; Collura, Kristi; Zuccolo, Andrea; Buckingham, E Bryan; Grim, Suzanne M; Yanagiya, Kazuyo; Inoko, Hidetoshi; Shiina, Takashi; Flajnik, Martin F; Wing, Rod A; Ohta, Yuko

    2006-05-03

    Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC) library for the nurse shark, Ginglymostoma cirratum. The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 x 1010 bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6-28 primary positive clones per probe of which 50-90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome.

  11. [Microbial community in the Anammox process of thermal denitration tail liquid].

    PubMed

    Li, Jin; Yu, Deshuang; Zhao, Dan; Wang, Xiaochen

    2014-12-01

    An anaerobic sequencing batch reactor (ASBR) was used to treat thermal denitration tail liquid and microbial community was studied. Activated sludge was taken from the reactor for scanning electron microscope analysis. The images showed that the dominant cells in the flora were oval cocci. Its diameter was about 0.7 μm. Through a series of molecular biology methods such as extracting total DNA from the sludge, PCR amplification, positive clone authentication and sequencing, we obtained the 16S rDNA sequences of the flora. Phylogenetic tree and clone library were established. The universal bacteria primers of 27F-1492R PCR amplification system obtained 85 clones and could be divided into 21 OTUS. The proportions were as follows: Proteobacteria 61.18%; Acidobacteria 17.65%; Chlorobi 8.24%; Chlorofexi 5.88%; Gemmatimonadetes 3.53%; Nitrospirae 2.35% and Planctomycetes 1.18%. The specific anammox bacterial primers of pla46rc-630r and AMX368-AMX820 PCR amplification system obtained 45 clones. They were divided into 3 OTUS. Candidatus brocadia sp. occupied 95.6% and unknown strains occupied 4.4%.

  12. Drought-tolerant rice germplasm developed from an Oryza officinalis transformation-competent artificial chromosome clone.

    PubMed

    Liu, R; Zhang, H H; Chen, Z X; Shahid, M Q; Fu, X L; Liu, X D

    2015-10-29

    Oryza officinalis has proven to be a natural gene reservoir for the improvement of domesticated rice as it carries many desirable traits; however, the transfer of elite genes to cultivated rice by conventional hybridization has been a challenge for rice breeders. In this study, the conserved sequence of plant stress-related NAC transcription factors was selected as a probe to screen the O. officinalis genomic transformation-competent artificial chromosome library by Southern blot; 11 positive transformation-competent artificial chromosome clones were subsequently detected. By Agrobacterium-mediated transformation, an indica rice variety, Huajingxian 74 (HJX74), was transformed with a TAC clone harboring a NAC gene-positive genomic fragment from O. officinalis. Molecular analysis revealed that the O. officinalis genomic fragment was integrated into the genome of HJX74. The transgenic lines exhibited high tolerance to drought stress. Our results demonstrate that the introduction of stress-related transformation-competent artificial chromosome clones, coupled with a transgenic validation approach, is an effective method of transferring agronomically important genes from O. officinalis to cultivated rice.

  13. Comprehensive Analysis of Secondary Dental Root Canal Infections: A Combination of Culture and Culture-Independent Approaches Reveals New Insights

    PubMed Central

    Anderson, Annette Carola; Hellwig, Elmar; Vespermann, Robin; Wittmer, Annette; Schmid, Michael; Karygianni, Lamprini; Al-Ahmad, Ali

    2012-01-01

    Persistence of microorganisms or reinfections are the main reasons for failure of root canal therapy. Very few studies to date have included culture-independent methods to assess the microbiota, including non-cultivable microorganisms. The aim of this study was to combine culture methods with culture-independent cloning methods to analyze the microbial flora of root-filled teeth with periradicular lesions. Twenty-one samples from previously root-filled teeth were collected from patients with periradicular lesions. Microorganisms were cultivated, isolated and biochemically identified. In addition, ribosomal DNA of bacteria, fungi and archaea derived from the same samples was amplified and the PCR products were used to construct clone libraries. DNA of selected clones was sequenced and microbial species were identified, comparing the sequences with public databases. Microorganisms were found in 12 samples with culture-dependent and -independent methods combined. The number of bacterial species ranged from 1 to 12 in one sample. The majority of the 26 taxa belonged to the phylum Firmicutes (14 taxa), followed by Actinobacteria, Proteobacteria and Bacteroidetes. One sample was positive for fungi, and archaea could not be detected. The results obtained with both methods differed. The cloning technique detected several as-yet-uncultivated taxa. Using a combination of both methods 13 taxa were detected that had not been found in root-filled teeth so far. Enterococcus faecalis was only detected in two samples using culture methods. Combining the culture-dependent and –independent approaches revealed new candidate endodontic pathogens and a high diversity of the microbial flora in root-filled teeth with periradicular lesions. Both methods yielded differing results, emphasizing the benefit of combined methods for the detection of the actual microbial diversity in apical periodontitis. PMID:23152922

  14. Methanotroph Diversity in Landfill Soil: Isolation of Novel Type I and Type II Methanotrophs Whose Presence Was Suggested by Culture-Independent 16S Ribosomal DNA Analysis

    PubMed Central

    Wise, Mark G.; McArthur, J Vaun; Shimkets, Lawrence J.

    1999-01-01

    The diversity of the methanotrophic community in mildly acidic landfill cover soil was assessed by three methods: two culture-independent molecular approaches and a traditional culture-based approach. For the first of the molecular studies, two primer pairs specific for the 16S rRNA gene of validly published type I (including the former type X) and type II methanotrophs were identified and tested. These primers were used to amplify directly extracted soil DNA, and the products were used to construct type I and type II clone libraries. The second molecular approach, based on denaturing gradient gel electrophoresis (DGGE), provided profiles of the methanotrophic community members as distinguished by sequence differences in variable region 3 of the 16S ribosomal DNA. For the culturing studies, an extinction-dilution technique was employed to isolate slow-growing but numerically dominant strains. The key variables of the series of enrichment conditions were initial pH (4.8 versus 6.8), air/CH4/CO2 headspace ratio (50:45:5 versus 90:9:1), and concentration of the medium (1× nitrate minimal salts [NMS] versus 0.2× NMS). Screening of the isolates showed that the nutrient-rich 1× NMS selected for type I methanotrophs, while the nutrient-poor 0.2× NMS tended to enrich for type II methanotrophs. Partial sequencing of the 16S rRNA gene from selected clones and isolates revealed some of the same novel sequence types. Phylogenetic analysis of the type I clone library suggested the presence of a new phylotype related to the Methylobacter-Methylomicrobium group, and this was confirmed by isolating two members of this cluster. The type II clone library also suggested the existence of a novel group of related species distinct from the validly published Methylosinus and Methylocystis genera, and two members of this cluster were also successfully cultured. Partial sequencing of the pmoA gene, which codes for the 27-kDa polypeptide of the particulate methane monooxygenase, reaffirmed the phylogenetic placement of the four isolates. Finally, not all of the bands separated by DGGE could be accounted for by the clones and isolates. This polyphasic assessment of community structure demonstrates that much diversity among the obligate methane oxidizers has yet to be formally described. PMID:10543800

  15. Leaf-associated fungal diversity in acidified streams: insights from combining traditional and molecular approaches.

    PubMed

    Clivot, Hugues; Cornut, Julien; Chauvet, Eric; Elger, Arnaud; Poupin, Pascal; Guérold, François; Pagnout, Christophe

    2014-07-01

    We combined microscopic and molecular methods to investigate fungal assemblages on alder leaf litter exposed in the benthic and hyporheic zones of five streams across a gradient of increasing acidification for 4 weeks. The results showed that acidification and elevated Al concentrations strongly depressed sporulating aquatic hyphomycetes diversity in both zones of streams, while fungal diversity assessed by denaturing gradient gel electrophoresis (DGGE) appeared unaffected. Clone library analyses revealed that fungal communities on leaves were dominated by members of Ascomycetes and to a lesser extent by Basidiomycetes and Chytridiomycetes. An important contribution of terrestrial fungi was observed in both zones of the most acidified stream and in the hyporheic zone of the reference circumneutral stream. The highest leaf breakdown rate was observed in the circumneutral stream and occurred in the presence of both the highest diversity of sporulating aquatic hyphomycetes and the highest contribution to clone libraries of sequences affiliated with aquatic hyphomycetes. Both methods underline the major role played by aquatic hyphomycetes in leaf decomposition process. Our findings also bring out new highlights on the identity of leaf-associated fungal communities and their responses to anthropogenic alteration of running water ecosystems. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Influence of menstruation on the microbiota of healthy women's labia minora as analyzed using a 16S rRNA gene-based clone library method.

    PubMed

    Shiraishi, Tsukasa; Fukuda, Kazumasa; Morotomi, Nobuo; Imamura, Yuri; Mishima, Junko; Imai, Shigeo; Miyazawa, Kiyoshi; Taniguchi, Hatsumi

    2011-01-01

    The aim of this study was to determine the influence of menstruation on the bacterial population of healthy Japanese women's vulvas, especially the labia minora. Labia minora swabs were obtained from 10 premenopausal, nonpregnant Japanese women at premenstruation and on day 2 of menstruation. Vaginal swabs were also obtained from 3 out of the 10 women. No significant difference was found in the average bacterial cell count between the menstruation and premenstruation samples. Molecular analysis using a 16S rRNA gene-based clone library method detected 22 genera from the labia minora swabs (total 20), with the genus Lactobacillus being predominant at both premenstruation and during menstruation in 7 out of the 10 women. Of the other 3 women, 2 showed various kinds of bacterial species, including oral and fecal bacteria, with Atopobium vaginae and Gardnerella vaginalis predominating in the remaining woman's vulva in both conditions. In total, 6 out of 10 cases (60%) showed significantly different microbiota of the labia minora between the two conditions. These results imply that menstruation may promote a distortion of the bacterial flora around the vulva, although it causes no significant increase of the bacterial count.

  17. Screening a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes.

    PubMed

    Li, Youguo; Wexler, Margaret; Richardson, David J; Bond, Philip L; Johnston, Andrew W B

    2005-12-01

    A metagenomic cosmid library was constructed, in which the insert DNA was derived from bacteria in a waste-water treatment plant and the vector was the wide host-range cosmid pLAFR3. The library was screened for clones that could correct defined tryptophan auxotrophs of the alpha-proteobacterium Rhizobium leguminosarum and of Escherichia coli. A total of 26 different cosmids that corrected at least one trp mutant in one or both of these species were obtained. Several cosmids corrected the auxotrophy of one or more R. leguminosarum trp mutants, but not the corresponding mutants in E. coli. Conversely, one cosmid corrected trpA, B, C, D and E mutants of E. coli but none of the trp mutants of R. leguminosarum. Two of the Trp+ cosmids were examined in more detail. One contained a trp operon that resembled that of the pathogen Chlamydophila caviae, containing the unusual kynU gene, which specifies kynureninase. The other, whose trp genes functioned in R. leguminosarum but not in E. coli, contained trpDCFBA in an operon that is likely co-transcribed with five other genes, most of which had no known link with tryptophan synthesis. The sequences of these TRP proteins, and the products of nine other genes encoded by this cosmid, failed to affiliate them with any known bacterial lineage. For one metagenomic cosmid, lac reporter fusions confirmed that its cloned trp genes were transcribed in R. leguminosarum, but not in E. coli. Thus, rhizobia, with their many sigma-factors, may be well-suited hosts for metagenomic libraries, cloned in wide host-range vectors.

  18. Enrichment and identification of cellulolytic bacteria from the gastrointestinal tract of Giant African snail, Achatina fulica.

    PubMed

    Pawar, Kiran D; Dar, Mudasir A; Rajput, Bharati P; Kulkarni, Girish J

    2015-02-01

    The cellulolytic bacterial community structure in gastrointestinal (GI) tract of Achatina fulica was studied using culture-independent and -dependent methods by enrichment in carboxymethyl cellulose (CMC). Culture-dependent method indicated that GI tract of snail was dominated by Enterobacteriaceae members. When tested for cellulase activities, all isolates obtained by culture-dependent method showed both or either of CMCase or avicelase activity. Isolate identified as Citrobacter freundii showed highest CMCase and medium avicelase activity. Sequencing of clones from the 16S rRNA gene clone library identified ten operational taxonomic units (OTUs), which were affiliated to Enterobacteriaceae of phylum Gammaproteobacteria. Of these ten OTUs, eight OTUs closely matched with Enterobacter and Klebsiella genera. The most abundant OTU allied to Klebsiella oxytoca accounted for 70 % of the total sequences. The members of Klebsiella and Enterobacter were observed by both methods indicating their dominance among the cellulolytic bacterial community in the GI tract of the snail.

  19. Identification of Isopentenol Biosynthetic Genes from Bacillus subtilis by a Screening Method Based on Isoprenoid Precursor Toxicity▿

    PubMed Central

    Withers, Sydnor T.; Gottlieb, Shayin S.; Lieu, Bonny; Newman, Jack D.; Keasling, Jay D.

    2007-01-01

    We have developed a novel method to clone terpene synthase genes. This method relies on the inherent toxicity of the prenyl diphosphate precursors to terpenes, which resulted in a reduced-growth phenotype. When these precursors were consumed by a terpene synthase, normal growth was restored. We have demonstrated that this method is capable of enriching a population of engineered Escherichia coli for those clones that express the sesquiterpene-producing amorphadiene synthase. In addition, we enriched a library of genomic DNA from the isoprene-producing bacterium Bacillus subtilis strain 6051 in E. coli engineered to produce elevated levels of isopentenyl diphosphate and dimethylallyl diphosphate. The selection resulted in the discovery of two genes (yhfR and nudF) whose protein products acted directly on the prenyl diphosphate precursors and produced isopentenol. Expression of nudF in E. coli engineered with the mevalonate-based isopentenyl pyrophosphate biosynthetic pathway resulted in the production of isopentenol. PMID:17693564

  20. Studies of the effects of Vilon and Epithalon on gene expression in mouse heart using DNA-microarray technology.

    PubMed

    Anisimov, S V; Bokheler, K R; Khavinson, V Kh; Anisimov, V N

    2002-03-01

    Expression of 15,247 clones from a cDNA library in the heart of mice receiving Vilon and Epithalon was studied by DNA-microarray technology. We revealed 300 clones (1.94% of the total count), whose expression changed more than by 2 times. Vilon changed expression of 36 clones, while Epithalon modulated expression of 98 clones. Combined treatment with Vilon and Epithalon changed expression of 144 clones. Vilon alone or in combination with Epithalon activated expression of 157 clones (maximally by 6.13 times) and inhibited expression of 23 clones (maximally by 2.79 times). Epithalon alone or in combination with Vilon activated expression of 194 clones (maximally by 6.61 times) and inhibited expression of 48 clones (maximally by 2.71 times). Our results demonstrate the specific effects of Epithalon and Vilon on gene expression.

  1. Assessment of Equine Fecal Contamination: The Search for Alternative Bacterial Source-tracking Targets

    EPA Science Inventory

    16S rDNA clone libraries were evaluated for detection of fecal source-identifying bacteria from a collapsed equine manure pile. Libraries were constructed using universal eubacterial primers and Bacteroides-Prevotella group-specific primers. Eubacterial sequences indicat...

  2. High-Throughput Method for Ranking the Affinity of Peptide Ligands Selected from Phage Display Libraries

    PubMed Central

    González-Techera, A.; Umpiérrez-Failache, M.; Cardozo, S.; Obal, G.; Pritsch, O.; Last, J. A.; Gee, S. J.; Hammock, B. D.; González-Sapienza, G.

    2010-01-01

    The use of phage display peptide libraries allows rapid isolation of peptide ligands for any target selector molecule. However, due to differences in peptide expression and the heterogeneity of the phage preparations, there is no easy way to compare the binding properties of the selected clones, which operates as a major “bottleneck” of the technology. Here, we present the development of a new type of library that allows rapid comparison of the relative affinity of the selected peptides in a high-throughput screening format. As a model system, a phage display peptide library constructed on a phagemid vector that contains the bacterial alkaline phosphatase gene (BAP) was selected with an antiherbicide antibody. Due to the intrinsic switching capacity of the library, the selected peptides were transferred “en masse” from the phage coat protein to BAP. This was coupled to an optimized affinity ELISA where normalized amounts of the peptide–BAP fusion allow direct comparison of the binding properties of hundreds of peptide ligands. The system was validated by plasmon surface resonance experiments using synthetic peptides, showing that the method discriminates among the affinities of the peptides within 3 orders of magnitude. In addition, the peptide–BAP protein can find direct application as a tracer reagent. PMID:18393454

  3. Diversity of spirochetes in endodontic infections.

    PubMed

    Sakamoto, Mitsuo; Siqueira, José F; Rôças, Isabela N; Benno, Yoshimi

    2009-05-01

    The diversity of spirochetes in primary endodontic infections of teeth with chronic apical periodontitis or acute apical abscesses was investigated using 16S rRNA gene clone library analysis. The prevalences of three common cultivable oral Treponema species were also determined using species-specific nested PCR. All detected spirochetes belonged to the genus Treponema. Overall, 28 different taxa were identified from the 431 clones sequenced: 9 cultivable and validly named species, 1 cultivable as-yet-uncharacterized strain, and 18 as-yet-uncultivated phylotypes, 17 of which were novel. The large majority of clones (94%) were from cultivable named species. The numbers of Treponema species/phylotypes per selected positive sample ranged from 2 to 12. Species-specific nested PCR detected T. denticola, T. socranskii, and T. maltophilum in 59 (66%), 33 (37%), and 26 (29%) of the 90 cases of primary endodontic infections, respectively. Clone library analysis revealed diverse Treponema species/phylotypes as part of the microbiota associated with asymptomatic and symptomatic (abscess) endodontic infections. Although several as-yet-uncultivated Treponema phylotypes were disclosed, including novel taxa, cultivable named species were more abundant and frequently detected.

  4. Tissue Gene Expression Analysis Using Arrayed Normalized cDNA Libraries

    PubMed Central

    Eickhoff, Holger; Schuchhardt, Johannes; Ivanov, Igor; Meier-Ewert, Sebastian; O'Brien, John; Malik, Arif; Tandon, Neeraj; Wolski, Eryk-Witold; Rohlfs, Elke; Nyarsik, Lajos; Reinhardt, Richard; Nietfeld, Wilfried; Lehrach, Hans

    2000-01-01

    We have used oligonucleotide-fingerprinting data on 60,000 cDNA clones from two different mouse embryonic stages to establish a normalized cDNA clone set. The normalized set of 5,376 clones represents different clusters and therefore, in almost all cases, different genes. The inserts of the cDNA clones were amplified by PCR and spotted on glass slides. The resulting arrays were hybridized with mRNA probes prepared from six different adult mouse tissues. Expression profiles were analyzed by hierarchical clustering techniques. We have chosen radioactive detection because it combines robustness with sensitivity and allows the comparison of multiple normalized experiments. Sensitive detection combined with highly effective clustering algorithms allowed the identification of tissue-specific expression profiles and the detection of genes specifically expressed in the tissues investigated. The obtained results are publicly available (http://www.rzpd.de) and can be used by other researchers as a digital expression reference. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AL360374–AL36537.] PMID:10958641

  5. Combinatorial Pooling Enables Selective Sequencing of the Barley Gene Space

    PubMed Central

    Lonardi, Stefano; Duma, Denisa; Alpert, Matthew; Cordero, Francesca; Beccuti, Marco; Bhat, Prasanna R.; Wu, Yonghui; Ciardo, Gianfranco; Alsaihati, Burair; Ma, Yaqin; Wanamaker, Steve; Resnik, Josh; Bozdag, Serdar; Luo, Ming-Cheng; Close, Timothy J.

    2013-01-01

    For the vast majority of species – including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding. PMID:23592960

  6. Combinatorial pooling enables selective sequencing of the barley gene space.

    PubMed

    Lonardi, Stefano; Duma, Denisa; Alpert, Matthew; Cordero, Francesca; Beccuti, Marco; Bhat, Prasanna R; Wu, Yonghui; Ciardo, Gianfranco; Alsaihati, Burair; Ma, Yaqin; Wanamaker, Steve; Resnik, Josh; Bozdag, Serdar; Luo, Ming-Cheng; Close, Timothy J

    2013-04-01

    For the vast majority of species - including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding.

  7. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaung, Stephanie J.; Deng, Luxue; Li, Ning

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Populationmore » dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Here, our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.« less

  8. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    DOE PAGES

    Yaung, Stephanie J.; Deng, Luxue; Li, Ning; ...

    2015-03-11

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Populationmore » dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Here, our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.« less

  9. Phylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques.

    PubMed

    Richardson, Ruth E; Bhupathiraju, Vishvesh K; Song, Donald L; Goulet, Tanuja A; Alvarez-Cohen, Lisa

    2002-06-15

    An anaerobic microbial consortium (referred to as ANAS) that reductively dechlorinates trichloroethene (TCE) completely to ethene with the transient production of cisdichloroethene (cDCE) and vinyl chloride was enriched from contaminated soil obtained from Alameda Naval Air Station. ANAS uses lactate as its electron donor and has been functionally stable for over 2 years. Following a brief exposure to oxygen, a subculture (designated VCC) derived from ANAS could dechlorinate TCE only to vinyl chloride with lactate as its electron donor. Three molecular methods were used concurrently to characterize the community structure of ANAS and VCC: clone library construction/clone sequencing, terminal restriction fragment length polymorphism (T-RFLP) analysis, and fluorescent in situ hybridization (FISH) with rRNA probes. The community structure of ANAS did not change significantly over the course of a single feeding/dechlorination cycle, and only minor fluctuations occurred over many feeding cycles spanning the course of 1 year. Clone libraries and T-RFLP analyses suggested that ANAS was dominated by populations belonging to three phylogenetic groups: Dehalococcoides species, Desulfovibrio species, and members of the Clostridiaceae (within the low G + C Gram-positives). FISH results suggest that members of the Cytophaga/Flavobacterium/Bacteroides (CFB) cluster and high G + C Gram-positives (HGCs) were numerically important in ANAS despite their under-representation in the clone libraries. Parallel analyses of VCC samples suggested that Dehalococcoides species and Clostridiaceae were only minor populations in this community. Instead, VCC had increased populations of organisms in the beta and gamma subclasses of the Proteobacteria as well as significant populations of organisms in the CFB cluster. It is possible that symbiotic interactions are occurring between some of ANAS's phylogenetic groups under the enrichment conditions, including interspecies hydrogen transfer from Desulfovibrio species to Dehalococcoides species. However, the nucleic acid-based analyses performed here would need to be supplemented with chemical species data in order to test any hypotheses about functional roles of various community members. Additionally, these results suggest that an organism outside the Dehalococcoides genus may be capable of dechlorinating cDCE to vinyl chloride.

  10. Identification of floral genes for sex determination in Calamus palustris Griff. by using suppression subtractive hybridization.

    PubMed

    Ng, C Y; Wickneswari, R; Choong, C Y

    2014-08-07

    Calamus palustris Griff. is an economically important dioecious rattan species in Southeast Asia. However, dioecy and onset of flowering at 3-4 years old render uncertainties in desired female:male seedling ratios to establish a productive seed orchard for this rattan species. We constructed a subtractive library for male floral tissue to understand the genetic mechanism for gender determination in C. palustris. The subtractive library produced 1536 clones with 1419 clones of high quality. Reverse Northern screening showed 313 clones with differential expression, and sequence analyses clustered them into 205 unigenes, including 32 contigs and 173 singletons. The subtractive library was further validated with reverse transcription-quantitative polymerase chain reaction analysis. Homology identification classified the unigenes into 12 putative functional proteins with 83% unigenes showing significant match to proteins in databases. Functional annotations of these unigenes revealed genes involved in male flower development, including MADS-box genes, pollen-related genes, phytohormones for flower development, and male flower organ development. Our results showed that the male floral genes may play a vital role in sex determination in C. palustris. The identified genes can be exploited to understand the molecular basis of sex determination in C. palustris.

  11. Functional genomics to discover antibiotic resistance genes: The paradigm of resistance to colistin mediated by ethanolamine phosphotransferase in Shewanella algae MARS 14.

    PubMed

    Telke, Amar A; Rolain, Jean-Marc

    2015-12-01

    Shewanella algae MARS 14 is a colistin-resistant clinical isolate retrieved from bronchoalveolar lavage of a hospitalised patient. A functional genomics strategy was employed to discover the molecular support for colistin resistance in S. algae MARS 14. A pZE21 MCS-1 plasmid-based genomic expression library was constructed in Escherichia coli TOP10. The estimated library size was 1.30×10(8) bp. Functional screening of colistin-resistant clones was carried out on Luria-Bertani agar containing 8 mg/L colistin. Five colistin-resistant clones were obtained after complete screening of the genomic expression library. Analysis of DNA sequencing results found a unique gene in all selected clones. Amino acid sequence analysis of this unique gene using the Integrated Microbial Genomes (IMG) and KEGG databases revealed that this gene encodes ethanolamine phosphotransferase (EptA, or so-called PmrC). Reverse transcription PCR analysis indicated that resistance to colistin in S. algae MARS 14 was associated with overexpression of EptA (27-fold increase), which plays a crucial role in the arrangement of outer membrane lipopolysaccharide. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  12. A Novel mRNA Level Subtraction Method for Quick Identification of Target-Orientated Uniquely Expressed Genes Between Peanut Immature Pod and Leaf

    PubMed Central

    2010-01-01

    Subtraction technique has been broadly applied for target gene discovery. However, most current protocols apply relative differential subtraction and result in great amount clone mixtures of unique and differentially expressed genes. This makes it more difficult to identify unique or target-orientated expressed genes. In this study, we developed a novel method for subtraction at mRNA level by integrating magnetic particle technology into driver preparation and tester–driver hybridization to facilitate uniquely expressed gene discovery between peanut immature pod and leaf through a single round subtraction. The resulting target clones were further validated through polymerase chain reaction screening using peanut immature pod and leaf cDNA libraries as templates. This study has resulted in identifying several genes expressed uniquely in immature peanut pod. These target genes can be used for future peanut functional genome and genetic engineering research. PMID:21406066

  13. LabVIEW Task Manager v. 1.10.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargo, Timothy D.

    LabVIEW Task Manager is a debugging tool for use during code development in the National Instruments (NI) LabVIEW® IDE. While providing a dynamic & big-picture view of running code, an expandable/collapsible tree diagram displays detailed information (both static and dynamic) on all VIs in memory, belonging to a selected project/target. It allows for interacting with single or multiple selected VIs at a time, providing significant benefits while troubleshooting, and has the following features: Look & Feel similar to Windows® Task Manager; Selection of project/target; Lists all VIs in memory, grouped by class/library; Searches for and enumerates clones in memory; DropInmore » VI for including dynamically referenced clones (Clone Beacon); 'Refresh Now' (F5) re-reads all VIs in memory and adds new ones to the tree; Displays VI name, owning class/library, state, path, data size & code size; Displays VI FP Behavior, Reentrant?, Reentrancy Type, Paused? & Highlight?; Sort by any column, including by library name; Filter by item types vi, ctl, and vit/ctt; Filter out vi.lib and global VIs; Tracking of, and ability to toggle, execution highlighting on multiple selected VIs; Tracking of paused VIs with ability to Pause/Resume/TogglePause multiple selected VIs; DropIn VI for pausing on a condition; If a clone initiates a pause, a different pause symbol is used for all clones of that same reentrant original VI; Select multiple VIs and open or close their FPs or BDs; Double Click a VI from the tree to bring the BD (first choice) or FP to front, if already open; and Select multiple top-level VIs and Abort them.« less

  14. Chapter 7. Cloning and analysis of natural product pathways.

    PubMed

    Gust, Bertolt

    2009-01-01

    The identification of gene clusters of natural products has lead to an enormous wealth of information about their biosynthesis and its regulation, and about self-resistance mechanisms. Well-established routine techniques are now available for the cloning and sequencing of gene clusters. The subsequent functional analysis of the complex biosynthetic machinery requires efficient genetic tools for manipulation. Until recently, techniques for the introduction of defined changes into Streptomyces chromosomes were very time-consuming. In particular, manipulation of large DNA fragments has been challenging due to the absence of suitable restriction sites for restriction- and ligation-based techniques. The homologous recombination approach called recombineering (referred to as Red/ET-mediated recombination in this chapter) has greatly facilitated targeted genetic modifications of complex biosynthetic pathways from actinomycetes by eliminating many of the time-consuming and labor-intensive steps. This chapter describes techniques for the cloning and identification of biosynthetic gene clusters, for the generation of gene replacements within such clusters, for the construction of integrative library clones and their expression in heterologous hosts, and for the assembly of entire biosynthetic gene clusters from the inserts of individual library clones. A systematic approach toward insertional mutation of a complete Streptomyces genome is shown by the use of an in vitro transposon mutagenesis procedure.

  15. Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil.

    PubMed

    von der Weid, Irene; Korenblum, Elisa; Jurelevicius, Diogo; Rosado, Alexandre Soares; Dino, Rodolfo; Sebastian, Gina Vasquez; Seldin, Lucy

    2008-01-01

    The deep subseafloor rock in oil reservoirs represents a unique environment in which a high oilcontamination and very low biomass can be observed. Sampling this environment has been a challenge owing to the techniques used for drilling and coring. In this study, the facilities developed by the Brazilian oil company PETROBRAS for accessing deep subsurface oil reservoirs were used to obtain rock samples at 2,822-2,828 m below the ocean floor surface from a virgin field located in the Atlantic Ocean, Rio de Janeiro. To address the bacterial diversity of these rock samples, PCR amplicons were obtained using the DNA from four core sections and universal primers for 16S rRNA and for APS reductase (aps) genes. Clone libraries were generated from these PCR fragments and 87 clones were sequenced. The phylogenetic analyses of the 16S rDNA clone libraries showed a wide distribution of types in the domain bacteria in the four core samples, and the majority of the clones were identified as belonging to Betaproteobacteria. The sulfate-reducing bacteria community could only be amplified by PCR in one sample, and all clones were identified as belonging to Gammaproteobacteria. For the first time, the bacterial community was assessed in such deep subsurface environment.

  16. Prospective identification of parasitic sequences in phage display screens

    PubMed Central

    Matochko, Wadim L.; Cory Li, S.; Tang, Sindy K.Y.; Derda, Ratmir

    2014-01-01

    Phage display empowered the development of proteins with new function and ligands for clinically relevant targets. In this report, we use next-generation sequencing to analyze phage-displayed libraries and uncover a strong bias induced by amplification preferences of phage in bacteria. This bias favors fast-growing sequences that collectively constitute <0.01% of the available diversity. Specifically, a library of 109 random 7-mer peptides (Ph.D.-7) includes a few thousand sequences that grow quickly (the ‘parasites’), which are the sequences that are typically identified in phage display screens published to date. A similar collapse was observed in other libraries. Using Illumina and Ion Torrent sequencing and multiple biological replicates of amplification of Ph.D.-7 library, we identified a focused population of 770 ‘parasites’. In all, 197 sequences from this population have been identified in literature reports that used Ph.D.-7 library. Many of these enriched sequences have confirmed function (e.g. target binding capacity). The bias in the literature, thus, can be viewed as a selection with two different selection pressures: (i) target-binding selection, and (ii) amplification-induced selection. Enrichment of parasitic sequences could be minimized if amplification bias is removed. Here, we demonstrate that emulsion amplification in libraries of ∼106 diverse clones prevents the biased selection of parasitic clones. PMID:24217917

  17. Toward functional genomics in bacteria: Analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus

    PubMed Central

    Rondon, Michelle R.; Raffel, Sandra J.; Goodman, Robert M.; Handelsman, Jo

    1999-01-01

    As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes. PMID:10339608

  18. A novel process of viral vector barcoding and library preparation enables high-diversity library generation and recombination-free paired-end sequencing

    PubMed Central

    Davidsson, Marcus; Diaz-Fernandez, Paula; Schwich, Oliver D.; Torroba, Marcos; Wang, Gang; Björklund, Tomas

    2016-01-01

    Detailed characterization and mapping of oligonucleotide function in vivo is generally a very time consuming effort that only allows for hypothesis driven subsampling of the full sequence to be analysed. Recent advances in deep sequencing together with highly efficient parallel oligonucleotide synthesis and cloning techniques have, however, opened up for entirely new ways to map genetic function in vivo. Here we present a novel, optimized protocol for the generation of universally applicable, barcode labelled, plasmid libraries. The libraries are designed to enable the production of viral vector preparations assessing coding or non-coding RNA function in vivo. When generating high diversity libraries, it is a challenge to achieve efficient cloning, unambiguous barcoding and detailed characterization using low-cost sequencing technologies. With the presented protocol, diversity of above 3 million uniquely barcoded adeno-associated viral (AAV) plasmids can be achieved in a single reaction through a process achievable in any molecular biology laboratory. This approach opens up for a multitude of in vivo assessments from the evaluation of enhancer and promoter regions to the optimization of genome editing. The generated plasmid libraries are also useful for validation of sequencing clustering algorithms and we here validate the newly presented message passing clustering process named Starcode. PMID:27874090

  19. Human retinoblastoma susceptibility gene: genomic organization and analysis of heterozygous intragenic deletion mutants.

    PubMed Central

    Bookstein, R; Lee, E Y; To, H; Young, L J; Sery, T W; Hayes, R C; Friedmann, T; Lee, W H

    1988-01-01

    A gene in chromosome region 13q14 has been identified as the human retinoblastoma susceptibility (RB) gene on the basis of altered gene expression found in virtually all retinoblastomas. In order to further characterize the RB gene and its structural alterations, we examined genomic clones of the RB gene isolated from both a normal human genomic library and a library made from DNA of the retinoblastoma cell line Y79. First, a restriction and exon map of the RB gene was constructed by aligning overlapping genomic clones, yielding three contiguous regions ("contigs") of 150 kilobases total length separated by two gaps. At least 20 exons were identified in genomic clones, and these were provisionally numbered. Second, two overlapping genomic clones that demonstrated a DNA deletion of exons 2 through 6 from one RB allele were isolated from the Y79 library. To confirm and extend this result, a unique sequence probe from intron 1 was used to detect similar and possibly identical heterozygous deletions in genomic DNA from three retinoblastoma cell lines, thereby explaining the origins of their shortened RB mRNA transcripts. The same probe detected genomic rearrangements in fibroblasts from two hereditary retinoblastoma patients, indicating that intron 1 includes a frequent site for mutations conferring predisposition to retinoblastoma. Third, this probe also detected a polymorphic site for BamHI with allele frequencies near 0.5/0.5. Identification of commonly mutated regions will contribute significantly to genetic diagnosis in retinoblastoma patients and families. Images PMID:2895471

  20. Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems.

    PubMed

    Rappé; Vergin; Giovannoni

    2000-09-01

    In order to extend previous comparisons between coastal marine bacterioplankton communities and their open ocean and freshwater counterparts, here we summarize and provide new data on a clone library of 105 SSU rRNA genes recovered from seawater collected over the western continental shelf of the USA in the Pacific Ocean. Comparisons to previously published data revealed that this coastal bacterioplankton clone library was dominated by SSU rRNA gene phylotypes originally described from surface waters of the open ocean, but also revealed unique SSU rRNA gene lineages of beta Proteobacteria related to those found in clone libraries from freshwater habitats. beta Proteobacteria lineages common to coastal and freshwater samples included members of a clade of obligately methylotrophic bacteria, SSU rRNA genes affiliated with Xylophilus ampelinus, and a clade related to the genus Duganella. In addition, SSU rRNA genes were recovered from such previously recognized marine bacterioplankton SSU rRNA gene clone clusters as the SAR86, SAR11, and SAR116 clusters within the class Proteobacteria, the Roseobacter clade of the alpha subclass of the Proteobacteria, the marine group A/SAR406 cluster, and the marine Actinobacteria clade. Overall, these results support and extend previous observations concerning the global distribution of several marine planktonic prokaryote SSU rRNA gene phylotypes, but also show that coastal bacterioplankton communities contain SSU rRNA gene lineages (and presumably bacterioplankton) shown previously to be prevalent in freshwater habitats.

  1. Characterization of cDNA for human tripeptidyl peptidase II: The N-terminal part of the enzyme is similar to subtilisin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomkinson, B.; Jonsson, A-K

    1991-01-01

    Tripeptidyl peptidase II is a high molecular weight serine exopeptidase, which has been purified from rat liver and human erythrocytes. Four clones, representing 4453 bp, or 90{percent} of the mRNA of the human enzyme, have been isolated from two different cDNA libraries. One clone, designated A2, was obtained after screening a human B-lymphocyte cDNA library with a degenerated oligonucleotide mixture. The B-lymphocyte cDNA library, obtained from human fibroblasts, were rescreened with a 147 bp fragment from the 5{prime} part of the A2 clone, whereby three different overlapping cDNA clones could be isolated. The deduced amino acid sequence, 1196 amino acidmore » residues, corresponding to the longest open rading frame of the assembled nucleotide sequence, was compared to sequences of current databases. This revealed a 56{percent} similarity between the bacterial enzyme subtilisin and the N-terminal part of tripeptidyl peptidase II. The enzyme was found to be represented by two different mRNAs of 4.2 and 5.0 kilobases, respectively, which probably result from the utilziation of two different polyadenylation sites. Futhermore, cDNA corresponding to both the N-terminal and C-terminal part of tripeptidyl peptidase II hybridized with genomic DNA from mouse, horse, calf, and hen, even under fairly high stringency conditions, indicating that tripeptidyl peptidase II is highly conserved.« less

  2. Persistence and evolution of allergen-specific IgE repertoires during subcutaneous specific immunotherapy

    PubMed Central

    Levin, Mattias; King, Jasmine J.; Glanville, Jacob; Jackson, Katherine J. L.; Looney, Timothy J.; Hoh, Ramona A.; Mari, Adriano; Andersson, Morgan; Greiff, Lennart; Fire, Andrew Z.; Boyd, Scott D.; Ohlin, Mats

    2016-01-01

    Background Specific immunotherapy (SIT) is the only treatment with proven long-term curative potential in allergic disease. Allergen-specific IgE is the causative agent of allergic disease, and antibodies contribute to SIT, but the effects of SIT on aeroallergen-specific B cell repertoires are not well understood. Objective To characterize the IgE sequences expressed by allergen-specific B cells, and track the fate of these B cell clones during SIT. Methods We have used high-throughput antibody gene sequencing and identification of allergen-specific IgE using combinatorial antibody fragment library technology to analyze immunoglobulin repertoires of blood and nasal mucosa of aeroallergen-sensitized individuals before and during the first year of subcutaneous SIT. Results Of 52 distinct allergen-specific IgE heavy chains from eight allergic donors, 37 were also detected by high-throughput antibody gene sequencing of blood, nasal mucosa, or both sample types. The allergen-specific clones had increased persistence, higher likelihood of belonging to clones expressing other switched isotypes, and possibly larger clone size than the rest of the IgE repertoire. Clone members in nasal tissue showed close mutational relationships. Conclusion Combining functional binding studies, deep antibody repertoire sequencing, and information on clinical outcomes in larger studies may in the future aid assessment of SIT mechanisms and efficacy. PMID:26559321

  3. Phage display: concept, innovations, applications and future.

    PubMed

    Pande, Jyoti; Szewczyk, Magdalena M; Grover, Ashok K

    2010-01-01

    Phage display is the technology that allows expression of exogenous (poly)peptides on the surface of phage particles. The concept is simple in principle: a library of phage particles expressing a wide diversity of peptides is used to select those that bind the desired target. The filamentous phage M13 is the most commonly used vector to create random peptide display libraries. Several methods including recombinant techniques have been developed to increase the diversity of the library. On the other extreme, libraries with various biases can be created for specific purposes. For instance, when the sequence of the peptide that binds the target is known, its affinity and selectivity can be increased by screening libraries created with limited mutagenesis of the peptide. Phage libraries are screened for binding to synthetic or native targets. The initial screening of library by basic biopanning has been extended to column chromatography including negative screening and competition between selected phage clones to identify high affinity ligands with greater target specificity. The rapid isolation of specific ligands by phage display is advantageous in many applications including selection of inhibitors for the active and allosteric sites of the enzymes, receptor agonists and antagonists, and G-protein binding modulatory peptides. Phage display has been used in epitope mapping and analysis of protein-protein interactions. The specific ligands isolated from phage libraries can be used in therapeutic target validation, drug design and vaccine development. Phage display can also be used in conjunction with other methods. The past innovations and those to come promise a bright future for this field. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Metagenomic approaches to identify and isolate bioactive natural products from microbiota of marine sponges.

    PubMed

    Gurgui, Cristian; Piel, Jörn

    2010-01-01

    Many marine sponges harbor massive consortia of symbiotic bacteria belonging to diverse phyla. Sponges are also an unusually rich source of biologically active natural products, and evidence is accumulating that these compounds might often be synthesized by the symbionts. Since the study of sponge-associated bacteria is generally hampered by very low cultivation rates, cultivation-independent, metagenomic methods have recently been applied to sponges. These methods allow for the isolation of biosynthetic gene clusters that can ultimately be exploited to develop sustainable natural product sources by heterologous expression. However, general challenges encountered in sponge metagenomic research are the poor quality of the isolated DNA with respect to size and yield, the difficulty to identify genes of interest among numerous homologs, insufficient clone numbers in metagenomic libraries, and time-consuming screening procedures to identify and isolate rare positive clones. Here, we give an overview of methods that address these problems and can be used to streamline isolation of biosynthetic and other genes of interest.

  5. Characterization of embryo-specific genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that is not expressed in mature tissues -- the embryonic genes. In the last two years, using cDNA clones, we have isolated 22 cDNA clones, and characterized the expression pattern of their corresponding RNA. At least 4 cDNA clones detect RNAs of embryonic genes. These cDNA clones detect RNAs expressed in somatic as well as zygotic embryos of carrot. Using the cDNA clones, we screened the genomic library of carrot embryo DNA, and isolatedmore » genomic clones for three genes. The structure and function of two genes DC 8 and DC 59 have been characterized and are reported in this paper.« less

  6. Generation of an arrayed CRISPR-Cas9 library targeting epigenetic regulators: from high-content screens to in vivo assays

    PubMed Central

    2017-01-01

    ABSTRACT The CRISPR-Cas9 system has revolutionized genome engineering, allowing precise modification of DNA in various organisms. The most popular method for conducting CRISPR-based functional screens involves the use of pooled lentiviral libraries in selection screens coupled with next-generation sequencing. Screens employing genome-scale pooled small guide RNA (sgRNA) libraries are demanding, particularly when complex assays are used. Furthermore, pooled libraries are not suitable for microscopy-based high-content screens or for systematic interrogation of protein function. To overcome these limitations and exploit CRISPR-based technologies to comprehensively investigate epigenetic mechanisms, we have generated a focused sgRNA library targeting 450 epigenetic regulators with multiple sgRNAs in human cells. The lentiviral library is available both in an arrayed and pooled format and allows temporally-controlled induction of gene knock-out. Characterization of the library showed high editing activity of most sgRNAs and efficient knock-out at the protein level in polyclonal populations. The sgRNA library can be used for both selection and high-content screens, as well as for targeted investigation of selected proteins without requiring isolation of knock-out clones. Using a variety of functional assays we show that the library is suitable for both in vitro and in vivo applications, representing a unique resource to study epigenetic mechanisms in physiological and pathological conditions. PMID:29327641

  7. Specific ligands for classical swine fever virus screened from landscape phage display library.

    PubMed

    Yin, Long; Luo, Yuzi; Liang, Bo; Wang, Fei; Du, Min; Petrenko, Valery A; Qiu, Hua-Ji; Liu, Aihua

    2014-09-01

    Classical swine fever (CSF) is a devastating infectious disease caused by classical swine fever virus (CSFV). The screening of CSFV-specific ligands is of great significance for diagnosis and treatment of CSF. Affinity selection from random peptide libraries is an efficient approach to discover ligands with high stability and specificity. Here, we screened phage ligands for the CSFV E2 protein from f8/8 landscape phage display library by biopanning and obtained four phage clones specific for the E2 protein of CSFV. Viral blocking assays indicated that the phage clone displaying the octapeptide sequence DRATSSNA remarkably inhibited the CSFV replication in PK-15 cells at a titer of 10(10) transduction units, as evidenced by significantly decreased viral RNA copies and viral titers. The phage-displayed E2-binding peptides have the potential to be developed as antivirals for CSF. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Debating Whether Dinosaurs Should Be "Cloned" from Ancient DNA To Promote Cooperative Learning in an Introductory Evolution Course.

    ERIC Educational Resources Information Center

    Soja, Constance M.; Huerta, Deborah

    2001-01-01

    Describes an interactive internet exercise that enables students to engage in cooperative library and web research on a controversial topic in science, specifically the cloning of extinct lifeforms. Creates a dynamic learning environment in a large introductory geology course and demonstrates the importance of scientific literacy. (Author/SAH)

  9. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications

    USDA-ARS?s Scientific Manuscript database

    The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. These techniques involve the production of full-length cDNA libraries as a source of plasmid-based clones to expres...

  10. Analysis of differentially expressed genes in two immunologically distinct strains of Eimeria maxima using suppression subtractive hybridization and dot-blot hybridization

    PubMed Central

    2014-01-01

    Background It is well known that different Eimeria maxima strains exhibit significant antigenic variation. However, the genetic basis of these phenotypes remains unclear. Methods Total RNA and mRNA were isolated from unsporulated oocysts of E. maxima strains SH and NT, which were found to have significant differences in immunogenicity in our previous research. Two subtractive cDNA libraries were constructed using suppression subtractive hybridization (SSH) and specific genes were further analyzed by dot-blot hybridization and qRT-PCR analysis. Results A total of 561 clones were selected from both cDNA libraries and the length of the inserted fragments was 0.25–1.0 kb. Dot-blot hybridization revealed a total of 86 differentially expressed clones (63 from strain SH and 23 from strain NT). Nucleotide sequencing analysis of these clones revealed ten specific contigs (six from strain SH and four from strain NT). Further analysis found that six contigs from strain SH and three from strain NT shared significant identities with previously reported proteins, and one contig was presumed to be novel. The specific differentially expressed genes were finally verified by RT-PCR and qRT-PCR analyses. Conclusions The data presented here suggest that specific genes identified between the two strains may be important molecules in the immunogenicity of E. maxima that may present potential new drug targets or vaccine candidates for coccidiosis. PMID:24894832

  11. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    NASA Astrophysics Data System (ADS)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  12. In vitro high throughput phage display selection of ovarian cancer avid phage clones for near-infrared optical imaging.

    PubMed

    Soendergaard, Mette; Newton-Northup, Jessica R; Deutscher, Susan L

    2014-01-01

    Ovarian cancer is among the leading causes of cancer deaths in women, and is the most fatal gynecological malignancy. Poor outcomes of the disease are a direct result of inadequate detection and diagnostic methods, which may be overcome by the development of novel efficacious screening modalities. However, the advancement of such technologies is often time-consuming and costly. To overcome this hurdle, our laboratory has established a time and cost effective method of selecting and identifying ovarian carcinoma avid bacteriophage (phage) clones using high throughput phage display technology. These phage clones were selected from a filamentous phage fusion vector (fUSE5) 15-amino acid peptide library against human ovarian carcinoma (SKOV-3) cells, and identified by DNA sequencing. Two phage clones, pM6 and pM9, were shown to exhibit high binding affinity and specificity for SKOV-3 cells using micropanning, cell binding and fluorescent microscopy studies. To validate that the binding was mediated by the phage-displayed peptides, biotinylated peptides (M6 and M9) were synthesized and the specificity for ovarian carcinoma cells was analyzed. These results showed that M6 and M9 bound to SKOV-3 cells in a dose-response manner and exhibited EC50 values of 22.9 ± 2.0 μM and 12.2 ± 2.1μM (mean ± STD), respectively. Based on this, phage clones pM6 and pM9 were labeled with the near-infrared fluorophore AF680, and examined for their pharmacokinetic properties and tumor imaging abilities in vivo. Both phage successfully targeted and imaged SKOV-3 tumors in xenografted nude mice, demonstrating the ability of this method to quickly and cost effectively develop novel ovarian carcinoma avid phage.

  13. Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing

    PubMed Central

    2011-01-01

    Background Lupinus angustifolius L, also known as narrow-leafed lupin (NLL), is becoming an important grain legume crop that is valuable for sustainable farming and is becoming recognised as a potential human health food. Recent interest is being directed at NLL to improve grain production, disease and pest management and health benefits of the grain. However, studies have been hindered by a lack of extensive genomic resources for the species. Results A NLL BAC library was constructed consisting of 111,360 clones with an average insert size of 99.7 Kbp from cv Tanjil. The library has approximately 12 × genome coverage. Both ends of 9600 randomly selected BAC clones were sequenced to generate 13985 BAC end-sequences (BESs), covering approximately 1% of the NLL genome. These BESs permitted a preliminary characterisation of the NLL genome such as organisation and composition, with the BESs having approximately 39% G:C content, 16.6% repetitive DNA and 5.4% putative gene-encoding regions. From the BESs 9966 simple sequence repeat (SSR) motifs were identified and some of these are shown to be potential markers. Conclusions The NLL BAC library and BAC-end sequences are powerful resources for genetic and genomic research on lupin. These resources will provide a robust platform for future high-resolution mapping, map-based cloning, comparative genomics and assembly of whole-genome sequencing data for the species. PMID:22014081

  14. PhD7Faster: predicting clones propagating faster from the Ph.D.-7 phage display peptide library.

    PubMed

    Ru, Beibei; 't Hoen, Peter A C; Nie, Fulei; Lin, Hao; Guo, Feng-Biao; Huang, Jian

    2014-02-01

    Phage display can rapidly discover peptides binding to any given target; thus, it has been widely used in basic and applied research. Each round of panning consists of two basic processes: Selection and amplification. However, recent studies have showed that the amplification step would decrease the diversity of phage display libraries due to different propagation capacity of phage clones. This may induce phages with growth advantage rather than specific affinity to appear in the final experimental results. The peptides displayed by such phages are termed as propagation-related target-unrelated peptides (PrTUPs). They would mislead further analysis and research if not removed. In this paper, we describe PhD7Faster, an ensemble predictor based on support vector machine (SVM) for predicting clones with growth advantage from the Ph.D.-7 phage display peptide library. By using reduced dipeptide composition (ReDPC) as features, an accuracy (Acc) of 79.67% and a Matthews correlation coefficient (MCC) of 0.595 were achieved in 5-fold cross-validation. In addition, the SVM-based model was demonstrated to perform better than several representative machine learning algorithms. We anticipate that PhD7Faster can assist biologists to exclude potential PrTUPs and accelerate the finding of specific binders from the popular Ph.D.-7 library. The web server of PhD7Faster can be freely accessed at http://immunet.cn/sarotup/cgi-bin/PhD7Faster.pl.

  15. An 'instant gene bank' method for gene cloning by mutant complementation.

    PubMed

    Gems, D; Aleksenko, A; Belenky, L; Robertson, S; Ramsden, M; Vinetski, Y; Clutterbuck, A J

    1994-02-01

    We describe a new method of gene cloning by complementation of mutant alleles which obviates the need for construction of a gene library in a plasmid vector in vitro and its amplification in Escherichia coli. The method involves simultaneous transformation of mutant strains of the fungus Aspergillus nidulans with (i) fragmented chromosomal DNA from a donor species and (ii) DNA of a plasmid without a selectable marker gene, but with a fungal origin of DNA replication ('helper plasmid'). Transformant colonies appear as the result of the joining of chromosomal DNA fragments carrying the wild-type copies of the mutant allele with the helper plasmid. Joining may occur either by ligation (if the helper plasmid is in linear form) or recombination (if it is cccDNA). This event occurs with high efficiency in vivo, and generates an autonomously replicating plasmid cointegrate. Transformants containing Penicillium chrysogenum genomic DNA complementing A. nidulans niaD, nirA and argB mutations have been obtained. While some of these cointegrates were evidently rearranged or consisted only of unaltered replicating plasmid, in other cases plasmids could be recovered into E. coli and were subsequently shown to contain the selected gene. The utility of this "instant gene bank" technique is demonstrated here by the molecular cloning of the P. canescens trpC gene.

  16. Polybacterial community analysis in human conjunctiva through 16S rRNA gene libraries.

    PubMed

    Deepthi, KrishnanNair Geetha; Jayasudha, Rajagopalaboopathi; Girish, Rameshan Nair; Manikandan, Palanisamy; Ram, Rammohan; Narendran, Venkatapathy; Prabagaran, Solai Ramatchandirane

    2018-05-14

    The conjunctival sac of healthy human harbours a variety of microorganisms. When the eye is compromised, an occasional inadvertent spread happens to the adjacent tissue, resulting in bacterial ocular infections. Microbiological investigation of the conjunctival swab is one of the broadly used modality to study the aetiological agent of conjunctiva. However, most of the time such methods yield unsatisfactory results. Hence, the present study intends to identify the bacterial community in human conjunctiva of pre-operative subjects through 16S rRNA gene libraries. Out of 45 samples collected from preoperative patients undergoing cataract surgery, 36 libraries were constructed with bacterial nested-PCR-positive samples. The representative clones with unique restriction pattern were generated through Amplified Ribosomal DNA Restriction Analysis (ARDRA) which were sequenced for phylogenetic affiliation. A total of 211 representative clones were obtained which were distributed in phyla Actinobacteria, Firmicutes, α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Bacteroidetes, and Deinococcus-Thermus. Findings revealed the presence of polybacterial community, especially in some cases even though no bacterium or a single bacterium alone was identified through cultivable method. Remarkably, we identified 17 species which have never been reported in any ocular infections. The sequencing data reported 6 unidentified bacteria suggesting the possibility of novel organisms in the sample. Since, polybacterial community has been identified consisting of both gram positive and gram negative bacteria, a broad spectrum antibiotic therapy is advisable to the patients who are undergoing cataract surgery. Consolidated effort would significantly improve a clear understanding of the nature of microbial community in the human conjunctiva which will promote administration of appropriate antibiotic regimen and also help in the development of oligonucleotide probes to screen the predominant pathogens for early predisposition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Rapid phylogenetic dissection of prokaryotic community structure in tidal flat using pyrosequencing.

    PubMed

    Kim, Bong-Soo; Kim, Byung Kwon; Lee, Jae-Hak; Kim, Myungjin; Lim, Young Woon; Chun, Jongsik

    2008-08-01

    Dissection of prokaryotic community structure is prerequisite to understand their ecological roles. Various methods are available for such a purpose which amplification and sequencing of 16S rRNA genes gained its popularity. However, conventional methods based on Sanger sequencing technique require cloning process prior to sequencing, and are expensive and labor-intensive. We investigated prokaryotic community structure in tidal flat sediments, Korea, using pyrosequencing and a subsequent automated bioinformatic pipeline for the rapid and accurate taxonomic assignment of each amplicon. The combination of pyrosequencing and bioinformatic analysis showed that bacterial and archaeal communities were more diverse than previously reported in clone library studies. Pyrosequencing analysis revealed 21 bacterial divisions and 37 candidate divisions. Proteobacteria was the most abundant division in the bacterial community, of which Gamma-and Delta-Proteobacteria were the most abundant. Similarly, 4 archaeal divisions were found in tidal flat sediments. Euryarchaeota was the most abundant division in the archaeal sequences, which were further divided into 8 classes and 11 unclassified euryarchaeota groups. The system developed here provides a simple, in-depth and automated way of dissecting a prokaryotic community structure without extensive pretreatment such as cloning.

  18. Phylum- and Class-Specific PCR Primers for General Microbial Community Analysis

    PubMed Central

    Blackwood, Christopher B.; Oaks, Adam; Buyer, Jeffrey S.

    2005-01-01

    Amplification of a particular DNA fragment from a mixture of organisms by PCR is a common first step in methods of examining microbial community structure. The use of group-specific primers in community DNA profiling applications can provide enhanced sensitivity and phylogenetic detail compared to domain-specific primers. Other uses for group-specific primers include quantitative PCR and library screening. The purpose of the present study was to develop several primer sets targeting commonly occurring and important groups. Primers specific for the 16S ribosomal sequences of Alphaproteobacteria, Betaproteobacteria, Bacilli, Actinobacteria, and Planctomycetes and for parts of both the 18S ribosomal sequence and the internal transcribed spacer region of Basidiomycota were examined. Primers were tested by comparison to sequences in the ARB 2003 database, and chosen primers were further tested by cloning and sequencing from soil community DNA. Eighty-five to 100% of the sequences obtained from clone libraries were found to be placed with the groups intended as targets, demonstrating the specificity of the primers under field conditions. It will be important to reevaluate primers over time because of the continual growth of sequence databases and revision of microbial taxonomy. PMID:16204538

  19. Expression cloning and characterization of a novel gene that encodes the RNA-binding protein FAU-1 from Pyrococcus furiosus.

    PubMed Central

    Kanai, Akio; Oida, Hanako; Matsuura, Nana; Doi, Hirofumi

    2003-01-01

    We systematically screened a genomic DNA library to identify proteins of the hyperthermophilic archaeon Pyrococcus furiosus using an expression cloning method. One gene product, which we named FAU-1 (P. furiosus AU-binding), demonstrated the strongest binding activity of all the genomic library-derived proteins tested against an AU-rich RNA sequence. The protein was purified to near homogeneity as a 54 kDa single polypeptide, and the gene locus corresponding to this FAU-1 activity was also sequenced. The FAU-1 gene encoded a 472-amino-acid protein that was characterized by highly charged domains consisting of both acidic and basic amino acids. The N-terminal half of the gene had a degree of similarity (25%) with RNase E from Escherichia coli. Five rounds of RNA-binding-site selection and footprinting analysis showed that the FAU-1 protein binds specifically to the AU-rich sequence in a loop region of a possible RNA ligand. Moreover, we demonstrated that the FAU-1 protein acts as an oligomer, and mainly as a trimer. These results showed that the FAU-1 protein is a novel heat-stable protein with an RNA loop-binding characteristic. PMID:12614195

  20. Seasonal and regional diversity of maple sap microbiota revealed using community PCR fingerprinting and 16S rRNA gene clone libraries.

    PubMed

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2010-04-01

    An arbitrary primed community PCR fingerprinting technique based on capillary electrophoresis was developed to study maple sap microbial community characteristics among 19 production sites in Québec over the tapping season. Presumptive fragment identification was made with corresponding fingerprint profiles of bacterial isolate cultures. Maple sap microbial communities were subsequently compared using a representative subset of 13 16S rRNA gene clone libraries followed by gene sequence analysis. Results from both methods indicated that all maple sap production sites and flow periods shared common microbiota members, but distinctive features also existed. Changes over the season in relative abundance of predominant populations showed evidence of a common pattern. Pseudomonas (64%) and Rahnella (8%) were the most abundantly and frequently represented genera of the 2239 sequences analyzed. Janthinobacterium, Leuconostoc, Lactococcus, Weissella, Epilithonimonas and Sphingomonas were revealed as occasional contaminants in maple sap. Maple sap microbiota showed a low level of deep diversity along with a high variation of similar 16S rRNA gene sequences within the Pseudomonas genus. Predominance of Pseudomonas is suggested as a typical feature of maple sap microbiota across geographical regions, production sites, and sap flow periods.

  1. A genome-wide BAC-end sequence survey provides first insights into sweetpotato (Ipomoea batatas (L.) Lam.) genome composition.

    PubMed

    Si, Zengzhi; Du, Bing; Huo, Jinxi; He, Shaozhen; Liu, Qingchang; Zhai, Hong

    2016-11-21

    Sweetpotato, Ipomoea batatas (L.) Lam., is an important food crop widely grown in the world. However, little is known about the genome of this species because it is a highly heterozygous hexaploid. Gaining a more in-depth knowledge of sweetpotato genome is therefore necessary and imperative. In this study, the first bacterial artificial chromosome (BAC) library of sweetpotato was constructed. Clones from the BAC library were end-sequenced and analyzed to provide genome-wide information about this species. The BAC library contained 240,384 clones with an average insert size of 101 kb and had a 7.93-10.82 × coverage of the genome, and the probability of isolating any single-copy DNA sequence from the library was more than 99%. Both ends of 8310 BAC clones randomly selected from the library were sequenced to generate 11,542 high-quality BAC-end sequences (BESs), with an accumulative length of 7,595,261 bp and an average length of 658 bp. Analysis of the BESs revealed that 12.17% of the sweetpotato genome were known repetitive DNA, including 7.37% long terminal repeat (LTR) retrotransposons, 1.15% Non-LTR retrotransposons and 1.42% Class II DNA transposons etc., 18.31% of the genome were identified as sweetpotato-unique repetitive DNA and 10.00% of the genome were predicted to be coding regions. In total, 3,846 simple sequences repeats (SSRs) were identified, with a density of one SSR per 1.93 kb, from which 288 SSRs primers were designed and tested for length polymorphism using 20 sweetpotato accessions, 173 (60.07%) of them produced polymorphic bands. Sweetpotato BESs had significant hits to the genome sequences of I. trifida and more matches to the whole-genome sequences of Solanum lycopersicum than those of Vitis vinifera, Theobroma cacao and Arabidopsis thaliana. The first BAC library for sweetpotato has been successfully constructed. The high quality BESs provide first insights into sweetpotato genome composition, and have significant hits to the genome sequences of I. trifida and more matches to the whole-genome sequences of Solanum lycopersicum. These resources as a robust platform will be used in high-resolution mapping, gene cloning, assembly of genome sequences, comparative genomics and evolution for sweetpotato.

  2. Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa x Populus deltoides) phenylalanine ammonia-lyase genes.

    PubMed Central

    Subramaniam, R; Reinold, S; Molitor, E K; Douglas, C J

    1993-01-01

    A heterologous probe encoding phenylalanine ammonia-lyase (PAL) was used to identify PAL clones in cDNA libraries made with RNA from young leaf tissue of two Populus deltoides x P. trichocarpa F1 hybrid clones. Sequence analysis of a 2.4-kb cDNA confirmed its identity as a full-length PAl clone. The predicted amino acid sequence is conserved in comparison with that of PAL genes from several other plants. Southern blot analysis of popular genomic DNA from parental and hybrid individuals, restriction site polymorphism in PAL cDNA clones, and sequence heterogeneity in the 3' ends of several cDNA clones suggested that PAL is encoded by at least two genes that can be distinguished by HindIII restriction site polymorphisms. Clones containing each type of PAL gene were isolated from a poplar genomic library. Analysis of the segregation of PAL-specific HindIII restriction fragment-length polymorphisms demonstrated the existence of two independently segregating PAL loci, one of which was mapped to a linkage group of the poplar genetic map. Developmentally regulated PAL expression in poplar was analyzed using RNA blots. Highest expression was observed in young stems, apical buds, and young leaves. Expression was lower in older stems and undetectable in mature leaves. Cellular localization of PAL expression by in situ hybridization showed very high levels of expression in subepidermal cells of leaves early during leaf development. In stems and petioles, expression was associated with subepidermal cells and vascular tissues. PMID:8108506

  3. BASIC: A Simple and Accurate Modular DNA Assembly Method.

    PubMed

    Storch, Marko; Casini, Arturo; Mackrow, Ben; Ellis, Tom; Baldwin, Geoff S

    2017-01-01

    Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, accurate, and robust DNA assembly method. The method is based on linker-mediated DNA assembly and provides highly accurate DNA assembly with 99 % correct assemblies for four parts and 90 % correct assemblies for seven parts [1]. The BASIC standard defines a single entry vector for all parts flanked by the same prefix and suffix sequences and its idempotent nature means that the assembled construct is returned in the same format. Once a part has been adapted into the BASIC format it can be placed at any position within a BASIC assembly without the need for reformatting. This allows laboratories to grow comprehensive and universal part libraries and to share them efficiently. The modularity within the BASIC framework is further extended by the possibility of encoding ribosomal binding sites (RBS) and peptide linker sequences directly on the linkers used for assembly. This makes BASIC a highly versatile library construction method for combinatorial part assembly including the construction of promoter, RBS, gene variant, and protein-tag libraries. In comparison with other DNA assembly standards and methods, BASIC offers a simple robust protocol; it relies on a single entry vector, provides for easy hierarchical assembly, and is highly accurate for up to seven parts per assembly round [2].

  4. Rapid construction of a Bacterial Artificial Chromosomal (BAC) expression vector using designer DNA fragments.

    PubMed

    Chen, Chao; Zhao, Xinqing; Jin, Yingyu; Zhao, Zongbao Kent; Suh, Joo-Won

    2014-11-01

    Bacterial artificial chromosomal (BAC) vectors are increasingly being used in cloning large DNA fragments containing complex biosynthetic pathways to facilitate heterologous production of microbial metabolites for drug development. To express inserted genes using Streptomyces species as the production hosts, an integration expression cassette is required to be inserted into the BAC vector, which includes genetic elements encoding a phage-specific attachment site, an integrase, an origin of transfer, a selection marker and a promoter. Due to the large sizes of DNA inserted into the BAC vectors, it is normally inefficient and time-consuming to assemble these fragments by routine PCR amplifications and restriction-ligations. Here we present a rapid method to insert fragments to construct BAC-based expression vectors. A DNA fragment of about 130 bp was designed, which contains upstream and downstream homologous sequences of both BAC vector and pIB139 plasmid carrying the whole integration expression cassette. In-Fusion cloning was performed using the designer DNA fragment to modify pIB139, followed by λ-RED-mediated recombination to obtain the BAC-based expression vector. We demonstrated the effectiveness of this method by rapid construction of a BAC-based expression vector with an insert of about 120 kb that contains the entire gene cluster for biosynthesis of immunosuppressant FK506. The empty BAC-based expression vector constructed in this study can be conveniently used for construction of BAC libraries using either microbial pure culture or environmental DNA, and the selected BAC clones can be directly used for heterologous expression. Alternatively, if a BAC library has already been constructed using a commercial BAC vector, the selected BAC vectors can be manipulated using the method described here to get the BAC-based expression vectors with desired gene clusters for heterologous expression. The rapid construction of a BAC-based expression vector facilitates heterologous expression of large gene clusters for drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Microaspiration of esophageal gland cells and cDNA library construction for identifying parasitism genes of plant-parasitic nematodes.

    PubMed

    Hussey, Richard S; Huang, Guozhong; Allen, Rex

    2011-01-01

    Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.

  6. Evaluation of anonymous and expressed sequence tag derived polymorphic microsatellite markers in the tobacco budworm Heliothis virescens (Lepidoptera: noctuidae)

    USDA-ARS?s Scientific Manuscript database

    Polymorphic genetic markers were identified and characterized using a partial genomic library of Heliothis virescens enriched for simple sequence repeats (SSR) and nucleotide sequences of expressed sequence tags (EST). Nucleotide sequences of 192 clones from the partial genomic library yielded 147 u...

  7. Sequence verification as quality-control step for production of cDNA microarrays.

    PubMed

    Taylor, E; Cogdell, D; Coombes, K; Hu, L; Ramdas, L; Tabor, A; Hamilton, S; Zhang, W

    2001-07-01

    To generate cDNA arrays in our core laboratory, we amplified about 2300 PCR products from a human, sequence-verified cDNA clone library. As a quality-control step, we sequenced the PCR products immediately before printing. The sequence information was used to search the GenBank database to confirm the identities. Although these clones were previously sequence verified by the company, we found that only 79% of the clones matched the original database after handling. Our experience strongly indicates the necessity to sequence verify the clones at the final stage before printing on microarray slides and to modify the gene list accordingly.

  8. The rhizospheres of traditional medicinal plants in Panxi, China, host a diverse selection of actinobacteria with antimicrobial properties.

    PubMed

    Zhao, Ke; Penttinen, Petri; Chen, Qiang; Guan, Tongwei; Lindström, Kristina; Ao, Xiaoling; Zhang, Lili; Zhang, Xiaoping

    2012-06-01

    Actinobacteria are a prolific source of antibiotics. Since the rate of discovery of novel antibiotics is decreasing, actinobacteria from unique environments need to be explored. In particular, actinobacterial biocontrol strains from medicinal plants need to be studied as they can be a source of potent antibiotics. We combined culture-dependent and culture-independent methods in analyzing the actinobacterial diversity in the rhizosphere of seven traditional medicinal plant species from Panxi, China, and assessed the antimicrobial activity of the isolates. Each of the plant species hosted a unique set of actinobacterial strains. Out of the 64 morphologically distinct isolates, half were Streptomyces sp., eight were Micromonospora sp., and the rest were members of 18 actinobacterial genera. In particular, Ainsliaea henryi Diels. hosted a diverse selection of actinobacteria, although the 16S ribosomal RNA (rRNA) sequence identity ranges of the isolates and of the 16S rRNA gene clone library were not congruent. In the clone library, 40% of the sequences were related to uncultured actinobacteria, emphasizing the need to develop isolation methods to assess the full potential of the actinobacteria. All Streptomyces isolates showed antimicrobial activity. While the antimicrobial activities of the rare actinobacteria were limited, the growth of Escherichia coli, Verticillium dahliae, and Fusarium oxysporum were inhibited only by rare actinobacteria, and strains related to Saccharopolyspora shandongensis and Streptosporangium roseum showed broad antimicrobial activity.

  9. Cloning and Identification of Recombinant Argonaute-Bound Small RNAs Using Next-Generation Sequencing.

    PubMed

    Gangras, Pooja; Dayeh, Daniel M; Mabin, Justin W; Nakanishi, Kotaro; Singh, Guramrit

    2018-01-01

    Argonaute proteins (AGOs) are loaded with small RNAs as guides to recognize target mRNAs. Since the target specificity heavily depends on the base complementarity between two strands, it is important to identify small guide and long target RNAs bound to AGOs. For this purpose, next-generation sequencing (NGS) technologies have extended our appreciation truly to the nucleotide level. However, the identification of RNAs via NGS from scarce RNA samples remains a challenge. Further, most commercial and published methods are compatible with either small RNAs or long RNAs, but are not equally applicable to both. Therefore, a single method that yields quantitative, bias-free NGS libraries to identify small and long RNAs from low levels of input will be of wide interest. Here, we introduce such a procedure that is based on several modifications of two published protocols and allows robust, sensitive, and reproducible cloning and sequencing of small amounts of RNAs of variable lengths. The method was applied to the identification of small RNAs bound to a purified eukaryotic AGO. Following ligation of a DNA adapter to RNA 3'-end, the key feature of this method is to use the adapter for priming reverse transcription (RT) wherein biotinylated deoxyribonucleotides specifically incorporated into the extended complementary DNA. Such RT products are enriched on streptavidin beads, circularized while immobilized on beads and directly used for PCR amplification. We provide a stepwise guide to generate RNA-Seq libraries, their purification, quantification, validation, and preparation for next-generation sequencing. We also provide basic steps in post-NGS data analyses using Galaxy, an open-source, web-based platform.

  10. A pair of new BAC and BIBAC vectors that facilitate BAC/BIBAC library construction and intact large genomic DNA insert exchange.

    PubMed

    Shi, Xue; Zeng, Haiyang; Xue, Yadong; Luo, Meizhong

    2011-10-11

    Large-insert BAC and BIBAC libraries are important tools for structural and functional genomics studies of eukaryotic genomes. To facilitate the construction of BAC and BIBAC libraries and the transfer of complete large BAC inserts into BIBAC vectors, which is desired in positional cloning, we developed a pair of new BAC and BIBAC vectors. The new BAC vector pIndigoBAC536-S and the new BIBAC vector BIBAC-S have the following features: 1) both contain two 18-bp non-palindromic I-SceI sites in an inverted orientation at positions that flank an identical DNA fragment containing the lacZ selection marker and the cloning site. Large DNA inserts can be excised from the vectors as single fragments by cutting with I-SceI, allowing the inserts to be easily sized. More importantly, because the two vectors contain different antibiotic resistance genes for transformant selection and produce the same non-complementary 3' protruding ATAA ends by I-SceI that suppress self- and inter-ligations, the exchange of intact large genomic DNA inserts between the BAC and BIBAC vectors is straightforward; 2) both were constructed as high-copy composite vectors. Reliable linearized and dephosphorylated original low-copy pIndigoBAC536-S and BIBAC-S vectors that are ready for library construction can be prepared from the high-copy composite vectors pHZAUBAC1 and pHZAUBIBAC1, respectively, without the need for additional preparation steps or special reagents, thus simplifying the construction of BAC and BIBAC libraries. BIBAC clones constructed with the new BIBAC-S vector are stable in both E. coli and Agrobacterium. The vectors can be accessed through our website http://GResource.hzau.edu.cn. The two new vectors and their respective high-copy composite vectors can largely facilitate the construction and characterization of BAC and BIBAC libraries. The transfer of complete large genomic DNA inserts from one vector to the other is made straightforward.

  11. A MEQ Deleted Marek's Disease Virus Cloned as a Bacterial Artificial Chromosome is a Highly Efficacious Vaccine

    USDA-ARS?s Scientific Manuscript database

    The Marek’s disease virus (MDV) MEQ gene is essential for the T-cell lymphocytic infiltration of nerves and other organs seen in chickens with Marek’s disease (MD). In an earlier study, researchers used an overlapping cosmid clone library of MDV and demonstrated that deleting MEQ resulted in an exce...

  12. Genetic engineering of Pichia stipitis for fermentation of xylose

    Treesearch

    Thomas W. Jeffries; N. Q. Shi; J. Y. Cho; P. Lu; K. Dahn; J. Hendrick; H. K. Sreenath

    1998-01-01

    A useful genetic system has been developed for the transformation of Pichia stipitis. This includes two selectable markers (URA3 and LEU2), integrating and autonomous replication vectors, a pop-out cassette that enables multiple targeted disruptions, and a genomic X-library for rapid cloning. Using this system we have cloned two genes for alcohol dehydrogenase (PsADH1...

  13. cDNA cloning and analysis of betaine aldehyde dehydrogenase, a salt inducible enzyme in sugar beet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCue, K.F.; Hanson, A.D.

    1990-05-01

    Betaine accumulates and serves as a compatible osmolyte in some plants subjected to drought or salinity stress. The last enzyme in the betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). The activity of BADH increases in response to increasing salinity levels. This increase in activity corresponds to an increase in protein detectable by immunoblotting, and to an increase in the translatable BADH mRNA. BADH was cloned from a cDNA library constructed in {lambda}gt10 using poly(A){sup +} RNA from sugar beets salinized to 500 mM NaCl. cDNAs were size selected (>1kb) before ligation into the vector, and the library was screenedmore » with a spinach BADH cDNA probe. Three nearly full length clones obtained were confirmed as BADH by their nucleotide and deduced amino acid homology to spinach BADH. Clones averaged 1.8 kb and contained open reading frames of 500 amino acids at 80% identity with spinach BADH. RNA gel blot analysis of poly(A){sup +} RNA indicated that salinization to 500 mM NaCl resulted in a 5-fold increase of BADH mRNA level.« less

  14. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data.

    PubMed

    Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart

    2010-07-01

    High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users.

  15. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data

    PubMed Central

    Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart

    2010-01-01

    High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users. PMID:20501601

  16. Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean.

    PubMed

    Allers, Elke; Wright, Jody J; Konwar, Kishori M; Howes, Charles G; Beneze, Erica; Hallam, Steven J; Sullivan, Matthew B

    2013-02-01

    Marine Group A (MGA) is a candidate phylum of Bacteria that is ubiquitous and abundant in the ocean. Despite being prevalent, the structural and functional properties of MGA populations remain poorly constrained. Here, we quantified MGA diversity and population structure in relation to nutrients and O(2) concentrations in the oxygen minimum zone (OMZ) of the Northeast subarctic Pacific Ocean using a combination of catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) and 16S small subunit ribosomal RNA (16S rRNA) gene sequencing (clone libraries and 454-pyrotags). Estimates of MGA abundance as a proportion of total bacteria were similar across all three methods although estimates based on CARD-FISH were consistently lower in the OMZ (5.6%±1.9%) than estimates based on 16S rRNA gene clone libraries (11.0%±3.9%) or pyrotags (9.9%±1.8%). Five previously defined MGA subgroups were recovered in 16S rRNA gene clone libraries and five novel subgroups were defined (HF770D10, P262000D03, P41300E03, P262000N21 and A714018). Rarefaction analysis of pyrotag data indicated that the ultimate richness of MGA was very nearly sampled. Spearman's rank analysis of MGA abundances by CARD-FISH and O(2) concentrations resulted in significant correlation. Analyzed in more detail by 16S rRNA pyrotag sequencing, MGA operational taxonomic units affiliated with subgroups Arctic95A-2 and A714018 comprised 0.3-2.4% of total bacterial sequences and displayed strong correlations with decreasing O(2) concentration. This study is the first comprehensive description of MGA diversity using complementary techniques. These results provide a phylogenetic framework for interpreting future studies on ecotype selection among MGA subgroups, and suggest a potentially important role for MGA in the ecology and biogeochemistry of OMZs.

  17. Phylogenetic and gene expression analysis of cyanobacteria and diatoms in the twilight waters of the temperate northeast Pacific Ocean.

    PubMed

    Gao, Weimin; Shi, Xu; Wu, Jieying; Jin, Yuguang; Zhang, Weiwen; Meldrum, Deirdre R

    2011-11-01

    In this study, to explore the microbial community structure and its functionality in the deep-sea environments, we initially performed a 16S ribosomal RNA (rRNA)-based community structure analyses for microbial communities in the sea water collected from sites of 765-790 m in depth in the Pacific Ocean. Interestingly, in the clone library we detected the presence of both photoautotrophic bacteria such as cyanobacteria and photoheterotrophic bacteria, such as Chloroflexus sp. To further explore the existence and diversity of possible light-utilizing microorganisms, we then constructed and analyzed a 23S rRNA plastid gene cloning library. The results showed that the majority of this cloning library was occupied by oxygenic photoautotrophic organisms, such as diatoms Thalassiosira spp. and cyanobacterium Synechococcus sp. In addition, the diversity of these oxygenic photoautotrophic organisms was very limited. Moreover, both reverse-transcription PCR and quantitative reverse-transcription PCR approaches had been employed to detect expression of the genes involved in protein synthesis and photosynthesis of photoautotrophic organisms, and the positive results were obtained. The possible mechanisms underlying the existence of very limited diversity of photosynthetic organisms at this depth of ocean, as well as the positive detection of rRNA and mRNA of diatom and cyanobacteria, were discussed.

  18. Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a gene-targeted clone library approach.

    PubMed

    Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath

    2014-11-01

    Diazotrophs are key players of the globally important biogeochemical nitrogen cycle, having a significant role in maintaining ecosystem sustainability. Saline soils are pristine and unexplored habitats representing intriguing ecosystems expected to harbour potential diazotrophs capable of adapting in extreme conditions, and these implicated organisms are largely obscure. Differential occurrence of diazotrophs was studied by the nifH gene-targeted clone library approach. Four nifH gene clone libraries were constructed from different soil niches, that is saline soils (low and high salinity; EC 3.8 and 7.1 ds m(-1) ), and agricultural and rhizosphere soil. Additionally, the abundance of diazotrophic community members was assessed using quantitative PCR. Results showed environment-dependent metabolic versatility and the presence of nitrogen-fixing bacteria affiliated with a range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Cyanobacteria and Firmicutes. The analyses unveiled the dominance of Alphaproteobacteria and Gammaproteobacteria (Pseudomonas, Halorhodospira, Ectothiorhodospira, Bradyrhizobium, Agrobacterium, Amorphomonas) as nitrogen fixers in coastal-saline soil ecosystems, and Alphaproteobacteria and Betaproteobacteria (Bradyrhizobium, Azohydromonas, Azospirillum, Ideonella) in agricultural/rhizosphere ecosystems. The results revealed a repertoire of novel nitrogen-fixing bacterial guilds particularly in saline soil ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Clone and genomic repositories at the American Type Culture Collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maglott, D.R.; Nierman, W.C.

    1990-01-01

    The American Type Culture Collection (ATCC) has a long history of characterizing, preserving, and distributing biological resource materials for the scientific community. Starting in 1925 as a repository for standard bacterial and fungal strains, its collections have diversified with technologic advances and in response to the requirements of its users. To serve the needs of the human genetics community, the National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), established an international Repository of Human DNA Probes and Libraries at the ATCC in 1985. This repository expanded the existing collections of recombinant clones and librariesmore » at the ATCC, with the specific purposes of (1) obtaining, amplifying, and distribution probes detecting restriction fragment length polymorphisms (RFLPs); (2) obtaining, amplifying, and distributing genomic and cDNA clones from known genes independent of RFLP detection; (3) distributing the chromosome-specific libraries generated by the National Laboratory Gene Library Project at the Lawrence Livermore and Los Alamos National Laboratories and (4) maintaining a public, online database describing the repository materials. Because it was recognized that animal models and comparative mapping can be crucial to genomic characterization, the scope of the repository was broadened in February 1989 to include probes from the mouse genome.« less

  20. Undermethylated DNA as a source of microsatellites from a conifer genome.

    PubMed

    Zhou, Y; Bui, T; Auckland, L D; Williams, C G

    2002-02-01

    Developing microsatellites from the large, highly duplicated conifer genome requires special tools. To improve the efficiency of developing Pinus taeda L. microsatellites, undermethylated (UM) DNA fragments were used to construct a microsatellite-enriched copy library. A methylation-sensitive restriction enzyme, McrBC, was used to enrich for UM DNA before library construction. Digested DNA fragments larger than 9 kb were then excised and digested with RsaI and used to construct nine dinucleotide and trinucleotide libraries. A total of 1016 microsatellite-positive clones were detected among 11 904 clones and 620 of these were unique. Of 245 primer sets that produced a PCR product, 113 could be developed as UM microsatellite markers and 70 were polymorphic. Inheritance and marker informativeness were tested for a random sample of 36 polymorphic markers using a three-generation outbred pedigree. Thirty-one microsatellites (86%) had single-locus inheritance despite the highly duplicated nature of the P. taeda genome. Nineteen UM microsatellites had highly informative intercross mating type configurations. Allele number and frequency were estimated for eleven UM microsatellites using a population survey. Allele numbers for these UM microsatellites ranged from 3 to 12 with an average of 5.7 alleles/locus. Frequencies for the 63 alleles were mostly in the low-common range; only 14 of the 63 were in the rare allele (q < 0.05) class. Enriching for UM DNA was an efficient method for developing polymorphic microsatellites from a large plant genome.

  1. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, Frances H.; Moore, Jeffrey C.

    1998-01-01

    A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.

  2. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, Frances H.; Moore, Jeffrey C.

    1999-01-01

    A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.

  3. Molecular cloning and characterization of Hymenolepis diminuta alpha-tubulin gene.

    PubMed

    Mohajer-Maghari, Behrokh; Amini-Bavil-Olyaee, Samad; Webb, Rodney A; Coe, Imogen R

    2007-02-01

    To isolate a full-length alpha-tubulin cDNA from an eucestode, Hymenolepis diminuta, a lambda phage cDNA library was constructed. The alpha-tubulin gene was cloned, sequenced and characterized. The H. diminuta alpha-tubulin consisted of 450 amino acids. This protein contained putative sites for all posttranslational modifications as detyrosination/tyrosination at the carboxyl-terminal of protien, phosphorylation at residues R79 and K336, glycylation/glutamylation at residue G445 and acetylation at residue K40. Comparisons of H. diminuta alpha-tubulin with all full-length alpha-tubulin proteins revealed that H. diminuta alpha-tubulin possesses 10 distinctive residues, which are not found in any other alpha-tubulins. Phylogenetic analysis showed that H. diminuta alpha-tubulin has grouped in a separated branch adjacent eucestode and trematodes branch with 92% bootstrap value (1000 replicates). In conclusion, this is the first report of H. diminuta cDNA library construction, cloning and characterization of H. diminuta alpha-tubulin gene.

  4. Screening and identification of RhD antigen mimic epitopes from a phage display random peptide library for the serodiagnosis of haemolytic disease of the foetus and newborn.

    PubMed

    Wang, Jiao; Song, Jingjing; Zhou, Shuimei; Fu, Yourong; Bailey, Jeffrey A; Shen, Changxin

    2018-01-16

    Identification of RhD antigen epitopes is a key component in understanding the pathogenesis of haemolytic disease of the foetus and newborn. Research has indicated that phage display libraries are useful tools for identifying novel mimic epitopes (mimotopes) which may help to determine antigen specificity. We selected the mimotopes of blood group RhD antigen by affinity panning a phage display library using monoclonal anti-D. After three rounds of biopanning, positive phage clones were identified by enzyme-linked immunosorbent assay (ELISA) and then sent for sequencing and peptides synthesis. Next, competitive ELISA and erythrocyte haemagglutination inhibition tests were carried out to confirm the inhibitory activity of the synthetic peptide. To evaluate the diagnostic performance of the synthetic peptide, a diagnostic ELISA was examined. Fourteen of 35 phage clones that were chosen randomly from the titering plate were considered to be positive. Following DNA sequencing and translation, 11 phage clones were found to represent the same peptide - RMKMLMMLMRRK (P4) - whereas each of the other three clones represented a unique peptide. Through the competitive ELISA and erythrocyte haemagglutination inhibition tests, the peptide (P4) was verified to have the ability to mimic the RhD antigen. The diagnostic ELISA for P4 proved to be sensitive (82.61%) and specific (88.57%). This study reveals that the P4 peptide can mimic RhD antigen and paves the way for the development of promising targeted diagnostic and therapeutic platforms for haemolytic disease of the foetus and newborn.

  5. Efficient Identification of Murine M2 Macrophage Peptide Targeting Ligands by Phage Display and Next-Generation Sequencing.

    PubMed

    Liu, Gary W; Livesay, Brynn R; Kacherovsky, Nataly A; Cieslewicz, Maryelise; Lutz, Emi; Waalkes, Adam; Jensen, Michael C; Salipante, Stephen J; Pun, Suzie H

    2015-08-19

    Peptide ligands are used to increase the specificity of drug carriers to their target cells and to facilitate intracellular delivery. One method to identify such peptide ligands, phage display, enables high-throughput screening of peptide libraries for ligands binding to therapeutic targets of interest. However, conventional methods for identifying target binders in a library by Sanger sequencing are low-throughput, labor-intensive, and provide a limited perspective (<0.01%) of the complete sequence space. Moreover, the small sample space can be dominated by nonspecific, preferentially amplifying "parasitic sequences" and plastic-binding sequences, which may lead to the identification of false positives or exclude the identification of target-binding sequences. To overcome these challenges, we employed next-generation Illumina sequencing to couple high-throughput screening and high-throughput sequencing, enabling more comprehensive access to the phage display library sequence space. In this work, we define the hallmarks of binding sequences in next-generation sequencing data, and develop a method that identifies several target-binding phage clones for murine, alternatively activated M2 macrophages with a high (100%) success rate: sequences and binding motifs were reproducibly present across biological replicates; binding motifs were identified across multiple unique sequences; and an unselected, amplified library accurately filtered out parasitic sequences. In addition, we validate the Multiple Em for Motif Elicitation tool as an efficient and principled means of discovering binding sequences.

  6. Cell-free immunology: construction and in vitro expression of a PCR-based library encoding a single-chain antibody repertoire.

    PubMed

    Makeyev, E V; Kolb, V A; Spirin, A S

    1999-02-12

    A novel cloning-independent strategy has been developed to generate a combinatorial library of PCR fragments encoding a murine single-chain antibody repertoire and express it directly in a cell-free system. The new approach provides an effective alternative to the techniques involving in vivo procedures of preparation and handling large libraries of antibodies. The possible use of the described strategy in the ribosome display is discussed.

  7. Genomic Approaches for Detection and Treatment of Breast Cancer

    DTIC Science & Technology

    2010-07-01

    cloning them in phage display vectors. We are characterizing the libraries and trying to figure out how best to screen them. We ran into the problem...auto-antibody screening project onto glass slides for screening purposes. We have abandoned this aim in that we switched our approach to a phage ...display library which does not require glass slide. We made our first comprehensive library in a T7 display vector. Task 9 (Months 24-36) We will

  8. Identification and immunogenicity of immunodominant mimotopes of outer membrane protein U (OmpU) of Vibrio mimicus from phage display peptide library.

    PubMed

    Cen, Junyu; Liu, Xueqin; Li, Jinnian; Zhang, Ming; Wang, Wei

    2013-01-01

    Vibrio mimicus (V. mimicus) is the causative agent of ascites disease in aquatic animals. Outer membrane protein U (OmpU) is an important antigen of V. mimicus, but its protective epitopes are still unclear. A random 12-mer phage-displayed peptide library was used to screen and identify immunodominant mimotopes of the OmpU protein in V. mimicus by panning against purified OmpU-specific polyclonal antibody. Then the immunogenicity and immunoprotection in fish of these mimotopes was evaluated. Nine positive phage clones presented seven different 12- peptide sequences and more than 50% of them carried a consensus core motif of DSSK-P. These positive clones reacted with the target antibody and this interaction could be blocked, in a dose-dependent manner, by OmpU protein. Intraperitoneal injection of seven positive phage clones into fish induced a specific antibody response to OmpU protein. The fish immunized respectively with the positive phage clones C17, C24, C60 and C66 obtained 100% immunoprotective effect against experimental V. mimicus challenge. Taken together, these mimotopes presented by clone C17, C24, C60 and C66 were immunodominant mimotopes of the OmpU protein and exhibited a more appropriate candidate as epitope-based vaccine against V. mimicus infection in aquatic animals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Ruminal metagenomic libraries as a source of relevant hemicellulolytic enzymes for biofuel production.

    PubMed

    Duque, Estrella; Daddaoua, Abdelali; Cordero, Baldo F; Udaondo, Zulema; Molina-Santiago, Carlos; Roca, Amalia; Solano, Jennifer; Molina-Alcaide, Eduarda; Segura, Ana; Ramos, Juan-Luis

    2018-04-17

    The success of second-generation (2G) ethanol technology relies on the efficient transformation of hemicellulose into monosaccharides and, particularly, on the full conversion of xylans into xylose for over 18% of fermentable sugars. We sought new hemicellulases using ruminal liquid, after enrichment of microbes with industrial lignocellulosic substrates and preparation of metagenomic libraries. Among 150 000 fosmid clones tested, we identified 22 clones with endoxylanase activity and 125 with β-xylosidase activity. These positive clones were sequenced en masse, and the analysis revealed open reading frames with a low degree of similarity with known glycosyl hydrolases families. Among them, we searched for enzymes that were thermostable (activity at > 50°C) and that operate at high rate at pH around 5. Upon a wide series of assays, the clones exhibiting the highest endoxylanase and β-xylosidase activities were identified. The fosmids were sequenced, and the corresponding genes cloned, expressed and proteins purified. We found that the activity of the most active β-xylosidase was at least 10-fold higher than that in commercial enzymatic fungal cocktails. Endoxylanase activity was in the range of fungal enzymes. Fungal enzymatic cocktails supplemented with the bacterial hemicellulases exhibited enhanced release of sugars from pretreated sugar cane straw, a relevant agricultural residue. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Exploring Microbial Iron Oxidation in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Wang, J.; Muyzer, G.; Bodelier, P. L. E.; den Oudsten, F.; Laanbroek, H. J.

    2009-04-01

    Iron is one of the most abundant elements on earth and is essential for life. Because of its importance, iron cycling and its interaction with other chemical and microbial processes has been the focus of many studies. Iron-oxidizing bacteria (FeOB) have been detected in a wide variety of environments. Among those is the rhizosphere of wetland plants roots which release oxygen into the soil creating suboxic conditions required by these organisms. It has been reported that in these rhizosphere microbial iron oxidation proceeds up to four orders of magnitude faster than strictly abiotic oxidation. On the roots of these wetland plants iron plaques are formed by microbial iron oxidation which are involved in the sequestering of heavy metals as well organic pollutants, which of great environmental significance.Despite their important role being catalysts of iron-cycling in wetland environments, little is known about the diversity and distribution of iron-oxidizing bacteria in various environments. This study aimed at developing a PCR-DGGE assay enabling the detection of iron oxidizers in wetland habitats. Gradient tubes were used to enrich iron-oxidizing bacteria. From these enrichments, a clone library was established based on the almost complete 16s rRNA gene using the universal bacterial primers 27f and 1492r. This clone library consisted of mainly α- and β-Proteobacteria, among which two major clusters were closely related to Gallionella spp. Specific probes and primers were developed on the basis of this 16S rRNA gene clone library. The newly designed Gallionella-specific 16S rRNA gene primer set 122f/998r was applied to community DNA obtained from three contrasting wetland environments, and the PCR products were used in denaturing gradient gel electrophoresis (DGGE) analysis. A second 16S rRNA gene clone library was constructed using the PCR products from one of our sampling sites amplified with the newly developed primer set 122f/998r. The cloned 16S rRNA gene sequences all represented novel culturable iron oxidizers most closely related to Gallionella spp. Based on their nucleotide sequences four groups could be identified, which were comparable to the DGGE banding pattern obtained before with the gradient tubes enrichments. The above mentioned nested PCR-DGGE method was used to study the distribution and community composition of Gallionella-like iron-oxidizing bacteria under the influence of plants species, soil depth, as well as season. Soil samples from Appels, Belgium, an intertidal, freshwater marsh known to hold intensive iron cycling, were taken from 5 different vegetation types in April, July and October 2007. Soil cores were sliced at 1-cm intervals and subjected to chemical and molecular analyses. The DGGE patterns showed that the community of iron-oxidizing bacteria differed with vegetation type, and sediment depth. Samples taken in autumn held lower diversity in Gallionella-related iron oxidizers than those sampled in spring and summer.

  11. T-vector and in vivo recombination as tools to construct a large antibody library of breast cancer.

    PubMed

    Lv, Yong-Gang; Wang, Ting; Yuan, Shi-Fang; Li, Nan-Lin; Chen, Jiang-Hao; Zhao, Ai-Zhi; Ling, Rui; Wang, Ling

    2010-06-01

    The emergence of phage antibody libraries is an important advance in the field of antibody engineering. It provides a useful methodology to produce human antibodies and has the potential to replace traditional hybridoma technology. In our research, we used T-vector and in vivo recombination to construct a large antibody library from breast cancer patients. The use of T-vector considerably increased the cloning efficiency, and the diversity of the library could be increased easily using in vivo recombination. Taken together, a combination of these two techniques might be valuable in constructing a large antibody library.

  12. Cloning and characterization of a novel oocyte-specific gene encoding an F-Box protein in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Oocyte-specific genes play critical roles in oogenesis, folliculogenesis and early embryonic development. Through analysis of expressed sequence tags (ESTs) from a rainbow trout oocyte cDNA library, we identified a novel transcript which is represented by ESTs only from the oocyte library. The novel...

  13. A Mini-Library of Sequenced Human DNA Fragments: Linking Bench Experiments with Informatics

    ERIC Educational Resources Information Center

    Dalgleish, Raymond; Shanks, Morag E.; Monger, Karen; Butler, Nicola J.

    2012-01-01

    We describe the development of a mini-library of human DNA fragments for use in an enquiry-based learning (EBL) undergraduate practical incorporating "wet-lab" and bioinformatics tasks. In spite of the widespread emergence of the polymerase chain reaction (PCR), the cloning and analysis of DNA fragments in "Escherichia coli"…

  14. Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes.

    PubMed

    Uchiyama, Taku; Miyazaki, Kentaro

    2010-11-01

    A reporter assay-based screening method for enzymes, which we named product-induced gene expression (PIGEX), was developed and used to screen a metagenomic library for amidases. A benzoate-responsive transcriptional activator, BenR, was placed upstream of the gene encoding green fluorescent protein and used as a sensor. Escherichia coli sensor cells carrying the benR-gfp gene cassette fluoresced in response to benzoate concentrations as low as 10 μM but were completely unresponsive to the substrate benzamide. An E. coli metagenomic library consisting of 96,000 clones was grown in 96-well format in LB medium containing benzamide. The library cells were then cocultivated with sensor cells. Eleven amidase genes were recovered from 143 fluorescent wells; eight of these genes were homologous to known bacterial amidase genes while three were novel genes. In addition to their activity toward benzamide, the enzymes were active toward various substrates, including d- and l-amino acid amides, and displayed enantioselectivity. Thus, we demonstrated that PIGEX is an effective approach for screening novel enzymes based on product detection.

  15. AXM mutagenesis: an efficient means for the production of libraries for directed evolution of proteins.

    PubMed

    Holland, Erika G; Buhr, Diane L; Acca, Felicity E; Alderman, Dawn; Bovat, Kristin; Busygina, Valeria; Kay, Brian K; Weiner, Michael P; Kiss, Margaret M

    2013-08-30

    Affinity maturation is an important part of the recombinant antibody development process. There are several well-established approaches for generating libraries of mutated antibody genes for affinity maturation, but these approaches are generally too laborious or expensive to allow high-throughput, parallel processing of multiple antibodies. Here, we describe a scalable approach that enables the generation of libraries with greater than 10(8) clones from a single Escherichia coli transformation. In our method, a mutated DNA fragment is produced using PCR conditions that promote nucleotide misincorporation into newly synthesized DNA. In the PCR reaction, one of the primers contains at least three phosphorothioate linkages at its 5' end, and treatment of the PCR product with a 5' to 3' exonuclease is used to preferentially remove the strand synthesized with the non-modified primer, resulting in a single-stranded DNA fragment. This fragment then serves as a megaprimer to prime DNA synthesis on a uracilated, circular, single-stranded template in a Kunkel-like mutagenesis reaction that biases nucleotide base-changes between the megaprimer and uracilated DNA sequence in favor of the in vitro synthesized megaprimer. This method eliminates the inefficient subcloning steps that are normally required for the construction of affinity maturation libraries from randomly mutagenized antibody genes. Copyright © 2013. Published by Elsevier B.V.

  16. Codon Optimizing for Increased Membrane Protein Production: A Minimalist Approach.

    PubMed

    Mirzadeh, Kiavash; Toddo, Stephen; Nørholm, Morten H H; Daley, Daniel O

    2016-01-01

    Reengineering a gene with synonymous codons is a popular approach for increasing production levels of recombinant proteins. Here we present a minimalist alternative to this method, which samples synonymous codons only at the second and third positions rather than the entire coding sequence. As demonstrated with two membrane-embedded transporters in Escherichia coli, the method was more effective than optimizing the entire coding sequence. The method we present is PCR based and requires three simple steps: (1) the design of two PCR primers, one of which is degenerate; (2) the amplification of a mini-library by PCR; and (3) screening for high-expressing clones.

  17. Clinical impact of methicillin-resistant staphylococcus aureus on bacterial pneumonia: cultivation and 16S ribosomal RNA gene analysis of bronchoalveolar lavage fluid.

    PubMed

    Kawanami, Toshinori; Yatera, Kazuhiro; Yamasaki, Kei; Noguchi, Shingo; Fukuda, Kazumasa; Akata, Kentarou; Naito, Keisuke; Kido, Takashi; Ishimoto, Hiroshi; Taniguchi, Hatsumi; Mukae, Hiroshi

    2016-04-16

    Determining whether methicillin-resistant Staphylococcus aureus (MRSA) is a true causative pathogen or reflective of colonization when MRSA is cultured from the respiratory tract remains important in treating patients with pneumonia. We evaluated the bacterial microbiota in bronchoalveolar lavage fluid (BALF) using the clone library method with a 16S ribosomal RNA (rRNA) gene analysis in 42 patients from a pneumonia registry who had MRSA cultured from their sputum or BALF samples. Patients were divided into two groups: those treated with (Group A) or without (Group B) anti-MRSA agents, and their clinical features were compared. Among 248 patients with pneumonia, 42 patients who had MRSA cultured from the respiratory tract were analyzed (Group A: 13 patients, Group B: 29 patients). No clones of S. aureus were detected in the BALF of 20 out of 42 patients. Twenty-eight of 29 patients in Group B showed favorable clinical outcomes, indicating that these patients had non-MRSA pneumonia. Using a microflora analysis of the BALF, the S. aureus phylotype was predominant in 5 of 28 (17.9%) patients among the detected bacterial phylotypes, but a minor population (the percentage of clones ≤ 10%) in 19 (67.9%) of 28 patients. A statistical analysis revealed no positive relationship between the percentage of clones of the S. aureus phylotype and risk factors of MRSA pneumonia. The molecular method using BALF specimens suggests that conventional cultivation method results may mislead true causative pathogens, especially in patients with MRSA pneumonia. Further studies are necessary to elucidate these clinically important issues.

  18. Construction of a transfer vector for a clonal isolate of LdNPV

    Treesearch

    Shivanand T. Hiremath; Martha Fikes; Audrey Ichida

    1991-01-01

    Deoxyribonucleic acid from a clonal isolate of LdNPV (CI A2-1), obtained by in vivo cloning procedures, was used to construct genomic libraries in phage (lamda Gem 11) and cosmid (pHC79) vectors. Overlapping clones were selected to generate a restriction enzyme map. The restriction enzyme map, covering about 85% of the CI A2-1 genome, was determined...

  19. Cloning and expression of clt genes encoding milk-clotting proteases from Myxococcus xanthus 422.

    PubMed

    Poza, M; Prieto-Alcedo, M; Sieiro, C; Villa, T G

    2004-10-01

    The screening of a gene library of the milk-clotting strain Myxococcus xanthus 422 constructed in Escherichia coli allowed the description of eight positive clones containing 26 open reading frames. Only three of them (cltA, cltB, and cltC) encoded proteins that exhibited intracellular milk-clotting ability in E. coli, Saccharomyces cerevisiae, and Pichia pastoris expression systems.

  20. Towards a transcription map spanning a 250 kb area within the DiGeorge syndrome chromosome region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, W.; Emanuel, B.S.; Siegert, J.

    1994-09-01

    DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS) are congenital anomalies affecting predominantly the thymus, parathyroid glands, heart and craniofacial development. Detection of 22q11.2 deletions in the majority of DGS and VCFS patients implicate 22q11 haploinsufficiency in the etiology of these disorders. The VCFS/DGS critical region lies within the proximal portion of a commonly deleted 1.2 Mb region in 22q11. A 250 kb cosmid contig covering this critical region and containing D22S74 (N25) has been established. From this contig, eleven cosmids with minimal overlap were biotinylated by nick translation, and hybridized to PCR-amplified cDNAs prepared from different tissues. The use ofmore » cDNAs from a variety of tissues increases the likelihood of identifying low abundance transcripts and tissue-specific expressed sequences. A DGCR-specific cDNA sublibrary consisting of 670 cDNA clones has been constructed. To date, 49 cDNA clones from this sub-library have been identified with single copy probes and cosmids containing putative CpG islands. Based on sequence analysis, 25 of the clones contain regions of homology to several cDNAs which map within the proximal contig. LAN is a novel partial cDNA isolated from a fetal brain library probed with one of the cosmids in the proximal contig. Using LAN as a probe, we have found 19 positive clones in the DGCR-specific cDNA sub-library (4 clones from fetal brain, 14 from adult skeletal muscle and one from fetal liver). Some of the LAN-positive clones extend the partial cDNA in the 5{prime} direction and will be useful in assembling a full length transcript. This resource will be used to develop a complete transcriptional map of the critical region in order to identify candidate gene(s) involved in the etiology of DGS/VCFS and to determine the relationship between the transcriptional and physical maps of 22q11.« less

  1. Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response

    PubMed Central

    Sakurai, Tetsuya; Plata, Germán; Rodríguez-Zapata, Fausto; Seki, Motoaki; Salcedo, Andrés; Toyoda, Atsushi; Ishiwata, Atsushi; Tohme, Joe; Sakaki, Yoshiyuki; Shinozaki, Kazuo; Ishitani, Manabu

    2007-01-01

    Background Cassava, an allotetraploid known for its remarkable tolerance to abiotic stresses is an important source of energy for humans and animals and a raw material for many industrial processes. A full-length cDNA library of cassava plants under normal, heat, drought, aluminum and post harvest physiological deterioration conditions was built; 19968 clones were sequence-characterized using expressed sequence tags (ESTs). Results The ESTs were assembled into 6355 contigs and 9026 singletons that were further grouped into 10577 scaffolds; we found 4621 new cassava sequences and 1521 sequences with no significant similarity to plant protein databases. Transcripts of 7796 distinct genes were captured and we were able to assign a functional classification to 78% of them while finding more than half of the enzymes annotated in metabolic pathways in Arabidopsis. The annotation of sequences that were not paired to transcripts of other species included many stress-related functional categories showing that our library is enriched with stress-induced genes. Finally, we detected 230 putative gene duplications that include key enzymes in reactive oxygen species signaling pathways and could play a role in cassava stress response features. Conclusion The cassava full-length cDNA library here presented contains transcripts of genes involved in stress response as well as genes important for different areas of cassava research. This library will be an important resource for gene discovery, characterization and cloning; in the near future it will aid the annotation of the cassava genome. PMID:18096061

  2. Screening of a Brassica napus bacterial artificial chromosome library using highly parallel single nucleotide polymorphism assays

    PubMed Central

    2013-01-01

    Background Efficient screening of bacterial artificial chromosome (BAC) libraries with polymerase chain reaction (PCR)-based markers is feasible provided that a multidimensional pooling strategy is implemented. Single nucleotide polymorphisms (SNPs) can be screened in multiplexed format, therefore this marker type lends itself particularly well for medium- to high-throughput applications. Combining the power of multiplex-PCR assays with a multidimensional pooling system may prove to be especially challenging in a polyploid genome. In polyploid genomes two classes of SNPs need to be distinguished, polymorphisms between accessions (intragenomic SNPs) and those differentiating between homoeologous genomes (intergenomic SNPs). We have assessed whether the highly parallel Illumina GoldenGate® Genotyping Assay is suitable for the screening of a BAC library of the polyploid Brassica napus genome. Results A multidimensional screening platform was developed for a Brassica napus BAC library which is composed of almost 83,000 clones. Intragenomic and intergenomic SNPs were included in Illumina’s GoldenGate® Genotyping Assay and both SNP classes were used successfully for screening of the multidimensional BAC pools of the Brassica napus library. An optimized scoring method is proposed which is especially valuable for SNP calling of intergenomic SNPs. Validation of the genotyping results by independent methods revealed a success of approximately 80% for the multiplex PCR-based screening regardless of whether intra- or intergenomic SNPs were evaluated. Conclusions Illumina’s GoldenGate® Genotyping Assay can be efficiently used for screening of multidimensional Brassica napus BAC pools. SNP calling was specifically tailored for the evaluation of BAC pool screening data. The developed scoring method can be implemented independently of plant reference samples. It is demonstrated that intergenomic SNPs represent a powerful tool for BAC library screening of a polyploid genome. PMID:24010766

  3. Molecular Detection of Eukaryotes in a Single Human Stool Sample from Senegal

    PubMed Central

    Hamad, Ibrahim; Sokhna, Cheikh; Raoult, Didier; Bittar, Fadi

    2012-01-01

    Background Microbial eukaryotes represent an important component of the human gut microbiome, with different beneficial or harmful roles; some species are commensal or mutualistic, whereas others are opportunistic or parasitic. The diversity of eukaryotes inhabiting humans remains relatively unexplored because of either the low abundance of these organisms in human gut or because they have received limited attention from a whole-community perspective. Methodology/Principal Finding In this study, a single fecal sample from a healthy African male was studied using both culture-dependent methods and extended molecular methods targeting the 18S rRNA and ITS sequences. Our results revealed that very few fungi, including Candida spp., Galactomyces spp., and Trichosporon asahii, could be isolated using culture-based methods. In contrast, a relatively a high number of eukaryotic species could be identified in this fecal sample when culture-independent methods based on various primer sets were used. A total of 27 species from one sample were found among the 977 analyzed clones. The clone libraries were dominated by fungi (716 clones/977, 73.3%), corresponding to 16 different species. In addition, 187 sequences out of 977 (19.2%) corresponded to 9 different species of plants; 59 sequences (6%) belonged to other micro-eukaryotes in the gut, including Entamoeba hartmanni and Blastocystis sp; and only 15 clones/977 (1.5%) were related to human 18S rRNA sequences. Conclusion Our results revealed a complex eukaryotic community in the volunteer’s gut, with fungi being the most abundant species in the stool sample. Larger investigations are needed to assess the generality of these results and to understand their roles in human health and disease. PMID:22808282

  4. Molecular cloning and characterization of ADP-glucose pyrophosphorylase cDNA clones isolated from pea cotyledons.

    PubMed

    Burgess, D; Penton, A; Dunsmuir, P; Dooner, H

    1997-02-01

    Three ADP-glucose pyrophosphorylase (ADPG-PPase) cDNA clones have been isolated and characterized from a pea cotyledon cDNA library. Two of these clones (Psagps1 and Psagps2) encode the small subunit of ADPG-PPase. The deduced amino acid sequences for these two clones are 95% identical. Expression of these two genes differs in that the Psagps2 gene shows comparatively higher expression in seeds relative to its expression in other tissues. Psagps2 expression also peaks midway through seed development at a time in which Psagps1 transcripts are still accumulating. The third cDNA isolated (Psagp11) encodes the large subunit of ADPG-PPase. It shows greater selectivity in expression than either of the small subunit clones. It is highly expressed in sink organs (seed, pod, and seed coat) and undetectable in leaves.

  5. Toward a Molecular Cytogenetic Map for Cultivated Sunflower (Helianthus annuus L.) by Landed BAC/BIBAC Clones

    PubMed Central

    Feng, Jiuhuan; Liu, Zhao; Cai, Xiwen; Jan, Chao-Chien

    2013-01-01

    Conventional karyotypes and various genetic linkage maps have been established in sunflower (Helianthus annuus L., 2n = 34). However, the relationship between linkage groups and individual chromosomes of sunflower remains unknown and has considerable relevance for the sunflower research community. Recently, a set of linkage group-specific bacterial /binary bacterial artificial chromosome (BAC/BIBAC) clones was identified from two complementary BAC and BIBAC libraries constructed for cultivated sunflower cv. HA89. In the present study, we used these linkage group-specific clones (∼100 kb in size) as probes to in situ hybridize to HA89 mitotic chromosomes at metaphase using the BAC- fluorescence in situ hybridization (FISH) technique. Because a characteristic of the sunflower genome is the abundance of repetitive DNA sequences, a high ratio of blocking DNA to probe DNA was applied to hybridization reactions to minimize the background noise. As a result, all sunflower chromosomes were anchored by one or two BAC/BIBAC clones with specific FISH signals. FISH analysis based on tandem repetitive sequences, such as rRNA genes, has been previously reported; however, the BAC-FISH technique developed here using restriction fragment length polymorphism (RFLP)−derived BAC/BIBAC clones as probes to apply genome-wide analysis is new for sunflower. As chromosome-specific cytogenetic markers, the selected BAC/BIBAC clones that encompass the 17 linkage groups provide a valuable tool for identifying sunflower cytogenetic stocks (such as trisomics) and tracking alien chromosomes in interspecific crosses. This work also demonstrates the potential of using a large-insert DNA library for the development of molecular cytogenetic resources. PMID:23316437

  6. Microeukaryote Community Patterns along an O2/H2S Gradient in a Supersulfidic Anoxic Fjord (Framvaren, Norway)†

    PubMed Central

    Behnke, Anke; Bunge, John; Barger, Kathryn; Breiner, Hans-Werner; Alla, Victoria; Stoeck, Thorsten

    2006-01-01

    To resolve the fine-scale architecture of anoxic protistan communities, we conducted a cultivation-independent 18S rRNA survey in the superanoxic Framvaren Fjord in Norway. We generated three clone libraries along the steep O2/H2S gradient, using the multiple-primer approach. Of 1,100 clones analyzed, 753 proved to be high-quality protistan target sequences. These sequences were grouped into 92 phylotypes, which displayed high protistan diversity in the fjord (17 major eukaryotic phyla). Only a few were closely related to known taxa. Several sequences were dissimilar to all previously described sequences and occupied a basal position in the inferred phylogenies, suggesting that the sequences recovered were derived from novel, deeply divergent eukaryotes. We detected sequence clades with evolutionary importance (for example, clades in the euglenozoa) and clades that seem to be specifically adapted to anoxic environments, challenging the hypothesis that the global dispersal of protists is uniform. Moreover, with the detection of clones affiliated with jakobid flagellates, we present evidence that primitive descendants of early eukaryotes are present in this anoxic environment. To estimate sample coverage and phylotype richness, we used parametric and nonparametric statistical methods. The results show that although our data set is one of the largest published inventories, our sample missed a substantial proportion of the protistan diversity. Nevertheless, statistical and phylogenetic analyses of the three libraries revealed the fine-scale architecture of anoxic protistan communities, which may exhibit adaptation to different environmental conditions along the O2/H2S gradient. PMID:16672511

  7. Identification of peptide sequences that target to the brain using in vivo phage display.

    PubMed

    Li, Jingwei; Zhang, Qizhi; Pang, Zhiqing; Wang, Yuchen; Liu, Qingfeng; Guo, Liangran; Jiang, Xinguo

    2012-06-01

    Phage display technology could provide a rapid means for the discovery of novel peptides. To find peptide ligands specific for the brain vascular receptors, we performed a modified phage display method. Phages were recovered from mice brain parenchyma after administrated with a random 7-mer peptide library intravenously. A longer circulation time was arranged according to the biodistributive brain/blood ratios of phage particles. Following sequential rounds of isolation, a number of phages were sequenced and a peptide sequence (CTSTSAPYC, denoted as PepC7) was identified. Clone 7-1, which encodes PepC7, exhibited translocation efficiency about 41-fold higher than the random library phage. Immunofluorescence analysis revealed that Clone 7-1 had a significant superiority on transport efficiency into the brain compared with native M13 phage. Clone 7-1 was inhibited from homing to the brain in a dose-dependent fashion when cyclic peptides of the same sequence were present in a competition assay. Interestingly, the linear peptide (ATSTSAPYA, Pep7) and a scrambled control peptide PepSC7 (CSPATSYTC) did not compete with the phage at the same tested concentration (0.2-200 pg). Labeled by Cy5.5, PepC7 exhibited significant brain-targeting capability in in vivo optical imaging analysis. The cyclic conformation of PepC7 formed by disulfide bond, and the correct structure itself play a critical role in maintaining the selectivity and affinity for the brain. In conclusion, PepC7 is a promising brain-target motif never been reported before and it could be applied to targeted drug delivery into the brain.

  8. Microeukaryotic diversity in marine environments, an analysis of surface layer sediments from the East Sea.

    PubMed

    Park, Soo-Je; Park, Byoung-Joon; Pham, Vinh Hoa; Yoon, Dae-No; Kim, Si-Kwan; Rhee, Sung-Keun

    2008-06-01

    Molecular techniques, based on clone library of 18S rRNA gene, were employed to ascertain the diversity of microeukaryotic organisms in sediments from the East Sea. A total of 261 clones were recovered from surface sediments. Most of the clone sequences (90%) were affiliated with protists, dominated by Ciliates (18%) and Dinoflagellates (19%) of Alveolates, phototrophic Stramenopiles (11%), and Cercozoa (20%). Many of the clones were related to uncultivated eukaryotes clones retrieved from anoxic environments with several highly divergent 18S rRNA gene sequences. However, no clones were related to cultivated obligate anaerobic protists. Protistan communities between subsurface layers of 1 and 9 cm shared 23% of total phylotypes which comprised 64% of total clones retrieved. Analysis of diversity indices and rarefaction curve showed that the protistan community within the 1 cm layer exhibited higher diversity than the 9 cm layer. Our results imply that diverse protists remain to be uncovered within marine benthic environments.

  9. Searching for microbial protein over-expression in a complex matrix using automated high throughput MS-based proteomics tools.

    PubMed

    Akeroyd, Michiel; Olsthoorn, Maurien; Gerritsma, Jort; Gutker-Vermaas, Diana; Ekkelkamp, Laurens; van Rij, Tjeerd; Klaassen, Paul; Plugge, Wim; Smit, Ed; Strupat, Kerstin; Wenzel, Thibaut; van Tilborg, Marcel; van der Hoeven, Rob

    2013-03-10

    In the discovery of new enzymes genomic and cDNA expression libraries containing thousands of differential clones are generated to obtain biodiversity. These libraries need to be screened for the activity of interest. Removing so-called empty and redundant clones significantly reduces the size of these expression libraries and therefore speeds up new enzyme discovery. Here, we present a sensitive, generic workflow for high throughput screening of successful microbial protein over-expression in microtiter plates containing a complex matrix based on mass spectrometry techniques. MALDI-LTQ-Orbitrap screening followed by principal component analysis and peptide mass fingerprinting was developed to obtain a throughput of ∼12,000 samples per week. Alternatively, a UHPLC-MS(2) approach including MS(2) protein identification was developed for microorganisms with a complex protein secretome with a throughput of ∼2000 samples per week. TCA-induced protein precipitation enhanced by addition of bovine serum albumin is used for protein purification prior to MS detection. We show that this generic workflow can effectively reduce large expression libraries from fungi and bacteria to their minimal size by detection of successful protein over-expression using MS. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Mercury in water and biomass of microbial communities in hot springs of Yellowstone National Park, USA

    USGS Publications Warehouse

    King, S.A.; Behnke, S.; Slack, K.; Krabbenhoft, D.P.; Nordstrom, D. Kirk; Burr, M.D.; Striegl, Robert G.

    2006-01-01

    Ultra-clean sampling methods and approaches typically used in pristine environments were applied to quantify concentrations of Hg species in water and microbial biomass from hot springs of Yellowstone National Park, features that are geologically enriched with Hg. Microbial populations of chemically-diverse hot springs were also characterized using modern methods in molecular biology as the initial step toward ongoing work linking Hg speciation with microbial processes. Molecular methods (amplification of environmental DNA using 16S rDNA primers, cloning, denatured gradient gel electrophoresis (DGGE) screening of clone libraries, and sequencing of representative clones) were used to examine the dominant members of microbial communities in hot springs. Total Hg (THg), monomethylated Hg (MeHg), pH, temperature, and other parameters influential to Hg speciation and microbial ecology are reported for hot springs water and associated microbial mats. Several hot springs indicate the presence of MeHg in microbial mats with concentrations ranging from 1 to 10 ng g-1 (dry weight). Concentrations of THg in mats ranged from 4.9 to 120,000 ng g-1 (dry weight). Combined data from surveys of geothermal water, lakes, and streams show that aqueous THg concentrations range from l to 600 ng L-1. Species and concentrations of THg in mats and water vary significantly between hot springs, as do the microorganisms found at each site. ?? 2006.

  11. Quantifying and resolving multiple vector transformants in S. cerevisiae plasmid libraries.

    PubMed

    Scanlon, Thomas C; Gray, Elizabeth C; Griswold, Karl E

    2009-11-20

    In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the most widely used eukaryotic platform for cell surface display, combinatorial protein engineering, and other recombinant library screens. In order to characterize the extent and nature of multiple vector transformants in this important host, plasmid-born gene libraries constructed by yeast homologous recombination were analyzed by DNA sequencing. It was found that up to 90% of clones in yeast homologous recombination libraries may be multiple vector transformants, that on average these clones bear four or more unique mutant genes, and that these multiple vector cells persist as a significant proportion of library populations for greater than 24 hours during liquid outgrowth. Both vector concentration and vector to insert ratio influenced the library proportion of multiple vector transformants, but their population frequency was independent of transformation efficiency. Interestingly, the average number of plasmids born by multiple vector transformants did not vary with their library population proportion. These results highlight the potential for multiple vector transformants to dominate yeast libraries constructed by homologous recombination. The previously unrecognized prevalence and persistence of multiply transformed yeast cells have important implications for yeast library screens. The quantitative information described herein should increase awareness of this issue, and the rapid sequencing approach developed for these studies should be widely useful for identifying multiple vector transformants and avoiding complications associated with cells that have acquired more than one unique plasmid.

  12. Open resource metagenomics: a model for sharing metagenomic libraries.

    PubMed

    Neufeld, J D; Engel, K; Cheng, J; Moreno-Hagelsieb, G; Rose, D R; Charles, T C

    2011-11-30

    Both sequence-based and activity-based exploitation of environmental DNA have provided unprecedented access to the genomic content of cultivated and uncultivated microorganisms. Although researchers deposit microbial strains in culture collections and DNA sequences in databases, activity-based metagenomic studies typically only publish sequences from the hits retrieved from specific screens. Physical metagenomic libraries, conceptually similar to entire sequence datasets, are usually not straightforward to obtain by interested parties subsequent to publication. In order to facilitate unrestricted distribution of metagenomic libraries, we propose the adoption of open resource metagenomics, in line with the trend towards open access publishing, and similar to culture- and mutant-strain collections that have been the backbone of traditional microbiology and microbial genetics. The concept of open resource metagenomics includes preparation of physical DNA libraries, preferably in versatile vectors that facilitate screening in a diversity of host organisms, and pooling of clones so that single aliquots containing complete libraries can be easily distributed upon request. Database deposition of associated metadata and sequence data for each library provides researchers with information to select the most appropriate libraries for further research projects. As a starting point, we have established the Canadian MetaMicroBiome Library (CM(2)BL [1]). The CM(2)BL is a publicly accessible collection of cosmid libraries containing environmental DNA from soils collected from across Canada, spanning multiple biomes. The libraries were constructed such that the cloned DNA can be easily transferred to Gateway® compliant vectors, facilitating functional screening in virtually any surrogate microbial host for which there are available plasmid vectors. The libraries, which we are placing in the public domain, will be distributed upon request without restriction to members of both the academic research community and industry. This article invites the scientific community to adopt this philosophy of open resource metagenomics to extend the utility of functional metagenomics beyond initial publication, circumventing the need to start from scratch with each new research project.

  13. Open resource metagenomics: a model for sharing metagenomic libraries

    PubMed Central

    Neufeld, J.D.; Engel, K.; Cheng, J.; Moreno-Hagelsieb, G.; Rose, D.R.; Charles, T.C.

    2011-01-01

    Both sequence-based and activity-based exploitation of environmental DNA have provided unprecedented access to the genomic content of cultivated and uncultivated microorganisms. Although researchers deposit microbial strains in culture collections and DNA sequences in databases, activity-based metagenomic studies typically only publish sequences from the hits retrieved from specific screens. Physical metagenomic libraries, conceptually similar to entire sequence datasets, are usually not straightforward to obtain by interested parties subsequent to publication. In order to facilitate unrestricted distribution of metagenomic libraries, we propose the adoption of open resource metagenomics, in line with the trend towards open access publishing, and similar to culture- and mutant-strain collections that have been the backbone of traditional microbiology and microbial genetics. The concept of open resource metagenomics includes preparation of physical DNA libraries, preferably in versatile vectors that facilitate screening in a diversity of host organisms, and pooling of clones so that single aliquots containing complete libraries can be easily distributed upon request. Database deposition of associated metadata and sequence data for each library provides researchers with information to select the most appropriate libraries for further research projects. As a starting point, we have established the Canadian MetaMicroBiome Library (CM2BL [1]). The CM2BL is a publicly accessible collection of cosmid libraries containing environmental DNA from soils collected from across Canada, spanning multiple biomes. The libraries were constructed such that the cloned DNA can be easily transferred to Gateway® compliant vectors, facilitating functional screening in virtually any surrogate microbial host for which there are available plasmid vectors. The libraries, which we are placing in the public domain, will be distributed upon request without restriction to members of both the academic research community and industry. This article invites the scientific community to adopt this philosophy of open resource metagenomics to extend the utility of functional metagenomics beyond initial publication, circumventing the need to start from scratch with each new research project. PMID:22180823

  14. Detection and quantification of microcystins (cyanobacterial hepatotoxins) with recombinant antibody fragments isolated from a naïve human phage display library.

    PubMed

    McElhiney, J; Lawton, L A; Porter, A J

    2000-12-01

    Single-chain antibody fragments against the cyanobacterial hepatotoxin microcystin-LR were isolated from a naive human phage display library and expressed in Escherichia coli. In competition enzyme-linked immunosorbent assay (ELISA), the most sensitive antibody clone selected from the library detected free microcystin-LR with an IC(50) value of 4 microM. It was found to cross react with three other microcystin variants - microcystin-RR, microcystin-LW and microcystin-LF - and detected microcystins in extracts of the cyanobacterium Microcystis aeruginosa, found to contain the toxins by high-performance liquid chromatography (HPLC). The quantification of microcystins in these extracts by ELISA and HPLC showed good correlation. Although the antibody isolated in this study was considerably less sensitive than the polyclonal and monoclonal antibodies already available for microcystin detection, phage display technology represents a cheaper, more rapid alternative for the production of anti-microcystin antibodies than the methods currently in use.

  15. [Peptide phage display in biotechnology and biomedicine].

    PubMed

    Kuzmicheva, G A; Belyavskaya, V A

    2016-07-01

    To date peptide phage display is one of the most common combinatorial methods used for identifying specific peptide ligands. Phage display peptide libraries containing billions different clones successfully used for selection of ligands with high affinity and selectivity toward wide range of targets including individual proteins, bacteria, viruses, spores, different kind of cancer cells and variety of nonorganic targets (metals, alloys, semiconductors etc.) Success of using filamentous phage in phage display technologies relays on the robustness of phage particles and a possibility to genetically modify its DNA to construct new phage variants with novel properties. In this review we are discussing characteristics of the most known non-commercial peptide phage display libraries of different formats (landscape libraries in particular) and their successful applications in several fields of biotechnology and biomedicine: discovery of peptides with diagnostic values against different pathogens, discovery and using of peptides recognizing cancer cells, trends in using of phage display technologies in human interactome studies, application of phage display technologies in construction of novel nano materials.

  16. Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38).

    PubMed Central

    Luzio, J P; Brake, B; Banting, G; Howell, K E; Braghetta, P; Stanley, K K

    1990-01-01

    Organelle-specific integral membrane proteins were identified by a novel strategy which gives rise to monospecific antibodies to these proteins as well as to the cDNA clones encoding them. A cDNA expression library was screened with a polyclonal antiserum raised against Triton X-114-extracted organelle proteins and clones were then grouped using antibodies affinity-purified on individual fusion proteins. The identification, molecular cloning and sequencing are described of a type 1 membrane protein (TGN38) which is located specifically in the trans-Golgi network. Images Fig. 1. Fig. 3. PMID:2204342

  17. Construction and Evaluation of Normalized cDNA Libraries Enriched with Full-Length Sequences for Rapid Discovery of New Genes from Sisal (Agave sisalana Perr.) Different Developmental Stages

    PubMed Central

    Zhou, Wen-Zhao; Zhang, Yan-Mei; Lu, Jun-Ying; Li, Jun-Feng

    2012-01-01

    To provide a resource of sisal-specific expressed sequence data and facilitate this powerful approach in new gene research, the preparation of normalized cDNA libraries enriched with full-length sequences is necessary. Four libraries were produced with RNA pooled from Agave sisalana multiple tissues to increase efficiency of normalization and maximize the number of independent genes by SMART™ method and the duplex-specific nuclease (DSN). This procedure kept the proportion of full-length cDNAs in the subtracted/normalized libraries and dramatically enhanced the discovery of new genes. Sequencing of 3875 cDNA clones of libraries revealed 3320 unigenes with an average insert length about 1.2 kb, indicating that the non-redundancy of libraries was about 85.7%. These unigene functions were predicted by comparing their sequences to functional domain databases and extensively annotated with Gene Ontology (GO) terms. Comparative analysis of sisal unigenes and other plant genomes revealed that four putative MADS-box genes and knotted-like homeobox (knox) gene were obtained from a total of 1162 full-length transcripts. Furthermore, real-time PCR showed that the characteristics of their transcripts mainly depended on the tight expression regulation of a number of genes during the leaf and flower development. Analysis of individual library sequence data indicated that the pooled-tissue approach was highly effective in discovering new genes and preparing libraries for efficient deep sequencing. PMID:23202944

  18. Cloning and sequence determination of the gene coding for the pyruvate phosphate dikinase of Entamoeba histolytica.

    PubMed

    Saavedra-Lira, E; Pérez-Montfort, R

    1994-05-16

    We isolated three overlapping clones from a DNA genomic library of Entamoeba histolytica strain HM1:IMSS, whose translated nucleotide (nt) sequence shows similarities of 51, 48 and 47% with the amino acid (aa) sequences reported for the pyruvate phosphate dikinases from Bacteroides symbiosus, maize and Flaveria trinervia, respectively. The reading frame determined codes for a protein of 886 aa.

  19. Fungal diversity in major oil-shale mines in China.

    PubMed

    Jiang, Shaoyan; Wang, Wenxing; Xue, Xiangxin; Cao, Chengyou; Zhang, Ying

    2016-03-01

    As an insufficiently utilized energy resource, oil shale is conducive to the formation of characteristic microbial communities due to its special geological origins. However, little is known about fungal diversity in oil shale. Polymerase chain reaction cloning was used to construct the fungal ribosomal deoxyribonucleic acid internal transcribed spacer (rDNA ITS) clone libraries of Huadian Mine in Jilin Province, Maoming Mine in Guangdong Province, and Fushun Mine in Liaoning Province. Pure culture and molecular identification were applied for the isolation of cultivable fungi in fresh oil shale of each mine. Results of clone libraries indicated that each mine had over 50% Ascomycota (58.4%-98.9%) and 1.1%-13.5% unidentified fungi. Fushun Mine and Huadian Mine had 5.9% and 28.1% Basidiomycota, respectively. Huadian Mine showed the highest fungal diversity, followed by Fushun Mine and Maoming Mine. Jaccard indexes showed that the similarities between any two of three fungal communities at the genus level were very low, indicating that fungi in each mine developed independently during the long geological adaptation and formed a community composition fitting the environment. In the fresh oil-shale samples of the three mines, cultivable fungal phyla were consistent with the results of clone libraries. Fifteen genera and several unidentified fungi were identified as Ascomycota and Basidiomycota using pure culture. Penicillium was the only genus found in all three mines. These findings contributed to gaining a clear understanding of current fungal resources in major oil-shale mines in China and provided useful information for relevant studies on isolation of indigenous fungi carrying functional genes from oil shale. Copyright © 2015. Published by Elsevier B.V.

  20. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater.

    PubMed

    Key, Katherine C; Sublette, Kerry L; Duncan, Kathleen; Mackay, Douglas M; Scow, Kate M; Ogles, Dora

    2013-01-01

    Although the anaerobic biodegradation of methyl tert -butyl ether (MTBE) and tert -butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13 C 5 -MTBE, 13 C 1 -MTBE (only methoxy carbon labeled), or 13 C 4 -TBA. 13 C-DNA and 12 C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert -butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13 C-labeled MTBE and TBA in situ and the 13 C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three 13 C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix , were only detected in the clone libraries where MTBE and TBA were fully labeled with 13 C, suggesting that they were involved in processing carbon from the tert -butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13 C. It is likely that members of this genus were secondary degraders cross-feeding on 13 C-labeled metabolites such as acetate.

  1. Stable-Isotope Probing of Bacteria Capable of Degrading Salicylate, Naphthalene, or Phenanthrene in a Bioreactor Treating Contaminated Soil

    PubMed Central

    Singleton, David R.; Powell, Sabrina N.; Sangaiah, Ramiah; Gold, Avram; Ball, Louise M.; Aitken, Michael D.

    2005-01-01

    [13C6]salicylate, [U-13C]naphthalene, and [U-13C]phenanthrene were synthesized and separately added to slurry from a bench-scale, aerobic bioreactor used to treat soil contaminated with polycyclic aromatic hydrocarbons. Incubations were performed for either 2 days (salicylate, naphthalene) or 7 days (naphthalene, phenanthrene). Total DNA was extracted from the incubations, the “heavy” and “light” DNA were separated, and the bacterial populations associated with the heavy fractions were examined by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Unlabeled DNA from Escherichia coli K-12 was added to each sample as an internal indicator of separation efficiency. While E. coli was not detected in most analyses of heavy DNA, a low number of E. coli sequences was recovered in the clone libraries associated with the heavy DNA fraction of [13C]phenanthrene incubations. The number of E. coli clones recovered proved useful in determining the relative amount of light DNA contamination of the heavy fraction in that sample. Salicylate- and naphthalene-degrading communities displayed similar DGGE profiles and their clone libraries were composed primarily of sequences belonging to the Pseudomonas and Ralstonia genera. In contrast, heavy DNA from the phenanthrene incubations displayed a markedly different DGGE profile and was composed primarily of sequences related to the Acidovorax genus. There was little difference in the DGGE profiles and types of sequences recovered from 2- and 7-day incubations with naphthalene, so secondary utilization of the 13C during the incubation did not appear to be an issue in this experiment. PMID:15746319

  2. Biopanning of polypeptides binding to bovine ephemeral fever virus G1 protein from phage display peptide library.

    PubMed

    Hou, Peili; Zhao, Guimin; He, Chengqiang; Wang, Hongmei; He, Hongbin

    2018-01-04

    The bovine ephemeral fever virus (BEFV) glycoprotein neutralization site 1 (also referred as G 1 protein), is a critical protein responsible for virus infectivity and eliciting immune-protection, however, binding peptides of BEFV G 1 protein are still unclear. Thus, the aim of the present study was to screen specific polypeptides, which bind BEFV G 1 protein with high-affinity and inhibit BEFV replication. The purified BEFV G 1 was coated and then reacted with the M13-based Ph.D.-7 phage random display library. The peptides for target binding were automated sequenced after four rounds of enrichment biopanning. The amino acid sequences of polypeptide displayed on positive clones were deduced and the affinity of positive polypeptides with BEFV G 1 was assayed by ELISA. Then the roles of specific G 1 -binding peptides in the context of BEFV infection were analyzed. The results showed that 27 specific peptide ligands displaying 11 different amino acid sequences were obtained, and the T18 and T25 clone had a higher affinity to G 1 protein than the other clones. Then their antiviral roles of two phage clones (T25 and T18) showed that both phage polypeptide T25 and T18 exerted inhibition on BEFV replication compared to control group. Moreover, synthetic peptide based on T18 (HSIRYDF) and T25 (YSLRSDY) alone or combined use on BEFV replication showed that the synthetic peptides could effectively inhibit the formation of cytopathic plaque and significantly inhibit BEFV RNA replication in a dose-dependent manner. Two antiviral peptide ligands binding to bovine ephemeral fever virus G 1 protein from phage display peptide library were identified, which may provide a potential research tool for diagnostic reagents and novel antiviral agents.

  3. [Construction and screening of phage antibody libraries against epidermal growth factor receptor and soluble expression of single chain Fv].

    PubMed

    Sheng, Wei-Jin; Miao, Qing-Fang; Zhen, Yong-Su

    2009-06-01

    Recent studies have shown that epidermal growth factor receptor (EGFR) is an important target for cancer therapy. The present study prepared single chain Fv (scFv) directed against EGFR. Balb/c mice were immunized by human carcinoma A431 cells, and total RNA of the splenic cells was extracted. VH and VL gene fragments were amplified by RT-PCR and further joined into scFv gene with a linker, then scFv gene fragments were ligated into the phagemid vector pCANTAB 5E. The phagemid containing scFv were transformed into electro-competent E. coli TG1 cells. The recombinant phage antibody library was constructed through rescuing the transformed cells with help phage M13K07. The specified recombinant phages were enriched through 5 rounds of affinity panning and the anti-EGFR phage scFv clones were screened and identified with ELISA. A total of 48 clones from the library were selected randomly and 45 clones were identified positive. After infecting E. coli HB2151 cells with one positive clone, soluble recombinant antibodies about 27 kD were produced and located in the periplasm and the supernatant. The result of sequencing showed that the scFv gene was 768 bp, which encoded 256 amino acid residues. VH and VL including 3 CDRs and 4 FRs, respectively, were all homologous to mouse Ig. The soluble scFv showed the specific binding activity to purified EGFR and EGFR located in carcinoma cell membrane. The successful preparation of anti-EGFR scFv will provide an EGFR targeted molecule for the development of antibody-based drugs and biological therapy of cancer.

  4. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater

    PubMed Central

    Key, Katherine C.; Sublette, Kerry L.; Duncan, Kathleen; Mackay, Douglas M.; Scow, Kate M.; Ogles, Dora

    2014-01-01

    Although the anaerobic biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13C5-MTBE, 13C1-MTBE (only methoxy carbon labeled), or13C4-TBA. 13C-DNA and 12C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert-butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C-labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert-butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross-feeding on 13C-labeled metabolites such as acetate. PMID:25525320

  5. Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume.

    PubMed

    Dick, Gregory J; Tebo, Bradley M

    2010-05-01

    Hydrothermal plumes are hot spots of microbial biogeochemistry in the deep ocean, yet little is known about the diversity or ecology of microorganisms inhabiting plumes. Recent biogeochemical evidence shows that Mn(II) oxidation in the Guaymas Basin (GB) hydrothermal plume is microbially mediated and suggests that the plume microbial community is distinct from deep-sea communities. Here we use a molecular approach to compare microbial diversity in the GB plume and in background deep seawater communities, and cultivation to identify Mn(II)-oxidizing bacteria from plumes and sediments. Despite dramatic differences in Mn(II) oxidation rates between plumes and background seawater, microbial diversity and membership were remarkably similar. All bacterial clone libraries were dominated by Gammaproteobacteria and archaeal clone libraries were dominated by Crenarchaeota. Two lineages, both phylogenetically related to methanotrophs and/or methylotrophs, were consistently over-represented in the plume. Eight Mn(II)-oxidizing bacteria were isolated, but none of these or previously identified Mn(II) oxidizers were abundant in clone libraries. Taken together with Mn(II) oxidation rates measured in laboratory cultures and in the field, these results suggest that Mn(II) oxidation in the GB hydrothermal plume is mediated by genome-level dynamics (gene content and/or expression) of microorganisms that are indigenous and abundant in the deep sea but have yet to be unidentified as Mn(II) oxidizers.

  6. Using genome-wide CRISPR library screening with library resistant DCK to find new sources of Ara-C drug resistance in AML.

    PubMed

    Kurata, Morito; Rathe, Susan K; Bailey, Natashay J; Aumann, Natalie K; Jones, Justine M; Veldhuijzen, G Willemijn; Moriarity, Branden S; Largaespada, David A

    2016-11-03

    Acute myeloid leukemia (AML) can display de novo or acquired resistance to cytosine arabinoside (Ara-C), a primary component of induction chemotherapy. To identify genes capable of independently imposing Ara-C resistance, we applied a genome-wide CRISPR library to human U937 cells and exposed to them to Ara-C. Interestingly, all drug resistant clones contained guide RNAs for DCK. To avoid DCK gene modification, gRNA resistant DCK cDNA was created by the introduction of silent mutations. The CRISPR screening was repeated using the gRNA resistant DCK, and loss of SLC29A was identified as also being capable of conveying Ara-C drug resistance. To determine if loss of Dck results in increased sensitivity to other drugs, we conducted a screen of 446 FDA approved drugs using two Dck-defective BXH-2 derived murine AML cell lines and their Ara-C sensitive parental lines. Both cell lines showed an increase in sensitivity to prednisolone. Guide RNA resistant cDNA rescue was a legitimate strategy and multiple DCK or SLC29A deficient human cell clones were established with one clone becoming prednisolone sensitive. Dck-defective leukemic cells may become prednisolone sensitive indicating prednisolone may be an effective adjuvant therapy in some cases of DCK-negative AML.

  7. Vertical distribution of major sulfate-reducing bacteria in a shallow eutrophic meromictic lake.

    PubMed

    Kubo, Kyoko; Kojima, Hisaya; Fukui, Manabu

    2014-10-01

    The vertical distribution of sulfate-reducing bacteria was investigated in a shallow, eutrophic, meromictic lake, Lake Harutori, located in a residential area of Kushiro, Japan. A steep chemocline, characterized by gradients of oxygen, sulfide and salinity, was found at a depth of 3.5-4.0 m. The sulfide concentration at the bottom of the lake was high (up to a concentration of 10.7 mM). Clone libraries were constructed using the aprA gene, which encodes adenosine-5'-phosphosulfate reductase subunit A, in order to monitor sulfate-reducing bacteria. In the aprA clone libraries, the most abundant sequences were those from the Desulfosarcina-Desulfococcus (DSS) group. A primer set for a DSS group-specific 16S rRNA gene was used to construct another clone library, analysis of which revealed that the uncultured group of sulfate-reducing bacteria, SEEP SRB-1, accounted for nearly half of the obtained sequences. Quantification of the major bacterial groups by catalyzed reporter deposition-fluorescence in situ hybridization demonstrated that the DSS group accounted for 3.2-4.8% of the total bacterial community below the chemocline. The results suggested that the DSS group was one of the major groups of sulfate-reducing bacteria and that these presumably metabolically versatile bacteria might play an important role in sulfur cycling in Lake Harutori. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications.

    PubMed

    Hughes, Stephen R; Butt, Tauseef R; Bartolett, Scott; Riedmuller, Steven B; Farrelly, Philip

    2011-08-01

    The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries. Published by Elsevier Inc.

  9. Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: Functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Xiaokuang; Davis, F.C.; Ingram, L.O.

    1997-02-01

    Genomic libraries from nine cellobiose-metabolizing bacteria were screened for cellobiose utilization. Positive clones were recovered from six libraries, all of which encode phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) proteins. Clones from Bacillus subtilis, Butyrivibrio fibrisolvens, and Klebsiella oxytoca allowed the growth of recombinant Escherichia coli in cellobiose-M9 minimal medium. The K. oxytoca clone, pLOI1906, exhibited an unusually broad substrate range (cellobiose, arbutin, salicin, and methylumbelliferyl derivatives of glucose, cellobiose, mannose, and xylose) and was sequenced. The insert in this plasmid encoded the carboxy-terminal region of a putative regulatory protein, cellobiose permease (single polypeptide), and phospho-{beta}-glucosidase, which appear to form an operon (casRAB).more » Subclones allowed both casA and casB to be expressed independently, as evidenced by in vitro complementation. An analysis of the translated sequences from the EIIC domains of cellobiose, aryl-{beta}-glucoside, and other disaccharide permeases allowed the identification of a 50-amino-acid conserved region. A disaccharide consensus sequence is proposed for the most conserved segment (13 amino acids), which may represent part of the EIIC active site for binding and phosphorylation. 63 refs., 4 figs., 4 tabs.« less

  10. Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems.

    PubMed

    Liu, Jingjing; Wu, Weixiang; Chen, Chongjun; Sun, Faqian; Chen, Yingxu

    2011-09-01

    In order to obtain insight into the prokaryotic diversity and community in leachate sediment, a culture-independent DNA-based molecular phylogenetic approach was performed with archaeal and bacterial 16S rRNA gene clone libraries derived from leachate sediment of an aged landfill. A total of 59 archaeal and 283 bacterial rDNA phylotypes were identified in 425 archaeal and 375 bacterial analyzed clones. All archaeal clones distributed within two archaeal phyla of the Euryarchaeota and Crenarchaeota, and well-defined methanogen lineages, especially Methanosaeta spp., are the most numerically dominant species of the archaeal community. Phylogenetic analysis of the bacterial library revealed a variety of pollutant-degrading and biotransforming microorganisms, including 18 distinct phyla. A substantial fraction of bacterial clones showed low levels of similarity with any previously documented sequences and thus might be taxonomically new. Chemical characteristics and phylogenetic inferences indicated that (1) ammonium-utilizing bacteria might form consortia to alleviate or avoid the negative influence of high ammonium concentration on other microorganisms, and (2) members of the Crenarchaeota found in the sediment might be involved in ammonium oxidation. This study is the first to report the composition of the microbial assemblages and phylogenetic characteristics of prokaryotic populations extant in leachate sediment. Additional work on microbial activity and contaminant biodegradation remains to be explored.

  11. Fab MAbs specific to HA of influenza virus with H5N1 neutralizing activity selected from immunized chicken phage library.

    PubMed

    Pitaksajjakul, Pannamthip; Lekcharoensuk, Porntippa; Upragarin, Narin; Barbas, Carlos F; Ibrahim, Madiha Salah; Ikuta, Kazuyoshi; Ramasoota, Pongrama

    2010-05-14

    Hemagglutinin protein (HA) was considered to be the primary target for monoclonal antibody production. This protein not only plays an important role in viral infections, but can also be used to differentiate H5N1 virus from other influenza A viruses. Hence, for diagnostic and therapeutic applications, it is important to develop anti-HA monoclonal antibody (MAb) with high sensitivity, specificity, stability, and productivity. Nine unique Fab MAbs were generated from chimeric chicken/human Fab phage display library constructed from cDNA derived from chickens immunized with recombinant hemagglutinin protein constructed from H5N1 avian influenza virus (A/Vietnam/1203/04). The obtained Fab MAbs showed several characteristics for further optimization and development-three clones were highly specific to only H5N1 virus. This finding can be applied to the development of H5N1 diagnostic testing. Another clone showed neutralization activity that inhibited H5N1 influenza virus infection in Madin-Darby canine kidney (MDCK) cells. In addition, one clone showed strong reactivity with several of the influenza A virus subtypes tested. The conversion of this clone to whole IgG is a promising study for a cross-neutralization activity test. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. The assessment of epiphytic yeast diversity in sugarcane phyllosphere in Thailand by culture-independent method.

    PubMed

    Nasanit, Rujikan; Tangwong-O-Thai, Apirat; Tantirungkij, Manee; Limtong, Savitree

    2015-12-01

    The diversity of epiphytic yeasts from sugarcane (Saccharum officinarum Linn.) phyllospheres in Thailand was investigated by culture-independent method based on the analysis of the D1/D2 domains of the large subunit rRNA gene sequences. Forty-five samples of sugarcane leaf were collected randomly from ten provinces in Thailand. A total of 1342 clones were obtained from 45 clone libraries. 426 clones (31.7 %) were closely related to yeast strains in the GenBank database, and they were clustered into 31 operational taxonomic units (OTUs) with a similarity threshold of 99 %. All OTU sequences were classified in phylum Basidiomycota which were closely related to 11 yeast species in seven genera including Cryptococcus flavus, Hannaella coprosmaensis, Rhodotorula taiwanensis, Jaminaea angkoreiensis, Malassezia restricta, Pseudozyma antarctica, Pseudozyma aphidis, Pseudozyma hubeiensis, Pseudozyma prolifica, Pseudozyma shanxiensis, and Sporobolomyces vermiculatus. The most predominant yeasts detected belonged to Ustilaginales with 89.4 % relative frequency and the prevalent yeast genus was Pseudozyma. However, the majority were unable to be identified as known yeast species and these sequences may represent the sequences of new yeast taxa. In addition, The OTU that closely related to P. prolifica was commonly detected in sugarcane phyllosphere. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  13. Biomining active cellulases from a mining bioremediation system.

    PubMed

    Mewis, Keith; Armstrong, Zachary; Song, Young C; Baldwin, Susan A; Withers, Stephen G; Hallam, Steven J

    2013-09-20

    Functional metagenomics has emerged as a powerful method for gene model validation and enzyme discovery from natural and human engineered ecosystems. Here we report development of a high-throughput functional metagenomic screen incorporating bioinformatic and biochemical analyses features. A fosmid library containing 6144 clones sourced from a mining bioremediation system was screened for cellulase activity using 2,4-dinitrophenyl β-cellobioside, a previously proven cellulose model substrate. Fifteen active clones were recovered and fully sequenced revealing 9 unique clones with the ability to hydrolyse 1,4-β-D-glucosidic linkages. Transposon mutagenesis identified genes belonging to glycoside hydrolase (GH) 1, 3, or 5 as necessary for mediating this activity. Reference trees for GH 1, 3, and 5 families were generated from sequences in the CAZy database for automated phylogenetic analysis of fosmid end and active clone sequences revealing known and novel cellulase encoding genes. Active cellulase genes recovered in functional screens were subcloned into inducible high copy plasmids, expressed and purified to determine enzymatic properties including thermostability, pH optima, and substrate specificity. The workflow described here provides a general paradigm for recovery and characterization of microbially derived genes and gene products based on genetic logic and contemporary screening technologies developed for model organismal systems. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Identification and Characterization of the Insecticidal Toxin “Makes Caterpillars Floppy” in Photorhabdus temperata M1021 Using a Cosmid Library

    PubMed Central

    Ullah, Ihsan; Jang, Eun-Kyung; Kim, Min-Sung; Shin, Jin-Ho; Park, Gun-Seok; Khan, Abdur Rahim; Hong, Sung-Jun; Jung, Byung-Kwon; Choi, JungBae; Park, YeongJun; Kwak, Yunyoung; Shin, Jae-Ho

    2014-01-01

    Photorhabdus temperata is an entomopathogenic enterobacterium; it is a nematode symbiont that possesses pathogenicity islands involved in insect virulence. Herein, we constructed a P. temperata M1021 cosmid library in Escherichia coli XL1-Blue MRF` and obtained 7.14 × 105 clones. However, only 1020 physiologically active clones were screened for insect virulence factors by injection of each E. coli cosmid clone into Galleria mellonella and Tenebrio molitor larvae. A single cosmid clone, PtC1015, was consequently selected due to its characteristic virulent properties, e.g., loss of body turgor followed by death of larvae when the clone was injected into the hemocoel. The sequence alignment against the available sequences in Swiss-Prot and NCBI databases, confirmed the presence of the mcf gene homolog in the genome of P. temperata M1021 showing 85% homology and 98% query coverage with the P. luminescens counterpart. Furthermore, a 2932 amino acid long Mcf protein revealed limited similarity with three protein domains. The N-terminus of the Mcf encompassed consensus sequence for a BH3 domain, the central region revealed similarity to toxin B, and the C-terminus of Mcf revealed similarity to the bacterial export domain of ApxIVA, an RTX-like toxin. In short, the Mcf toxin is likely to play a role in the elimination of insect pests, making it a promising model for use in the agricultural field. PMID:25014195

  15. Bacterial communities associated with healthy and Acropora white syndrome-affected corals from American Samoa

    USGS Publications Warehouse

    Wilson, Bryan; Aeby, Greta S.; Work, Thierry M.; Bourne, David G.

    2012-01-01

    Acropora white syndrome (AWS) is characterized by rapid tissue loss revealing the white underlying skeleton and affects corals worldwide; however, reports of causal agents are conflicting. Samples were collected from healthy and diseased corals and seawater around American Samoa and bacteria associated with AWS characterized using both culture-dependent and culture-independent methods, from coral mucus and tissue slurries, respectively. Bacterial 16S rRNA gene clone libraries derived from coral tissue were dominated by the Gammaproteobacteria, and Jaccard's distances calculated between the clone libraries showed that those from diseased corals were more similar to each other than to those from healthy corals. 16S rRNA genes from 78 culturable coral mucus isolates also revealed a distinct partitioning of bacterial genera into healthy and diseased corals. Isolates identified as Vibrionaceae were further characterized by multilocus sequence typing, revealing that whilst several Vibrio spp. were found to be associated with AWS lesions, a recently described species, Vibrio owensii, was prevalent amongst cultured Vibrio isolates. Unaffected tissues from corals with AWS had a different microbiota than normal Acropora as found by others. Determining whether a microbial shift occurs prior to disease outbreaks will be a useful avenue of pursuit and could be helpful in detecting prodromal signs of coral disease prior to manifestation of lesions.

  16. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector

    PubMed Central

    2013-01-01

    Background Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. Results We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit’s component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. Conclusions We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins. PMID:23957834

  17. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector.

    PubMed

    Buj, Raquel; Iglesias, Noa; Planas, Anna M; Santalucía, Tomàs

    2013-08-20

    Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit's component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins.

  18. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    PubMed

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples.

  19. A plasmid library of full-length zebrafish rab proteins for in vivo cell biology.

    PubMed

    Hall, Thomas E; Martel, Nick; Lo, Harriet P; Xiong, Zherui; Parton, Robert G

    2017-01-01

    The zebrafish is an emerging model for highly sophisticated medium-throughput experiments such as genetic and chemical screens. However, studies of entire protein families within this context are often hampered by poor genetic resources such as clone libraries. Here we describe a complete collection of 76 full-length open reading frame clones for the zebrafish rab protein family. While the mouse genome contains 60 rab genes and the human genome 63, we find that 18 zebrafish rab genes have 2, and in the case of rab38, 3 paralogues. In contrast, we were unable to identify zebrafish orthologues of the mammalian Rab2b, Rab17 or Rab29. We make this resource available through the Addgene repository to facilitate cell biologic approaches using this model.

  20. [Identification of proteins interacting with the circadian clock protein PER1 in tumors using bacterial two-hybrid system technique].

    PubMed

    Zhang, Yu; Yao, Youlin; Jiang, Siyuan; Lu, Yilu; Liu, Yunqiang; Tao, Dachang; Zhang, Sizhong; Ma, Yongxin

    2015-04-01

    To identify protein-protein interaction partners of PER1 (period circadian protein homolog 1), key component of the molecular oscillation system of the circadian rhythm in tumors using bacterial two-hybrid system technique. Human cervical carcinoma cell Hela library was adopted. Recombinant bait plasmid pBT-PER1 and pTRG cDNA plasmid library were cotransformed into the two-hybrid system reporter strain cultured in a special selective medium. Target clones were screened. After isolating the positive clones, the target clones were sequenced and analyzed. Fourteen protein coding genes were identified, 4 of which were found to contain whole coding regions of genes, which included optic atrophy 3 protein (OPA3) associated with mitochondrial dynamics and homo sapiens cutA divalent cation tolerance homolog of E. coli (CUTA) associated with copper metabolism. There were also cellular events related proteins and proteins which are involved in biochemical reaction and signal transduction-related proteins. Identification of potential interacting proteins with PER1 in tumors may provide us new insights into the functions of the circadian clock protein PER1 during tumorigenesis.

  1. Impact of protists on a hydrocarbon-degrading bacterial community from deep-sea Gulf of Mexico sediments: A microcosm study

    NASA Astrophysics Data System (ADS)

    Beaudoin, David J.; Carmichael, Catherine A.; Nelson, Robert K.; Reddy, Christopher M.; Teske, Andreas P.; Edgcomb, Virginia P.

    2016-07-01

    In spite of significant advancements towards understanding the dynamics of petroleum hydrocarbon degrading microbial consortia, the impacts (direct or indirect via grazing activities) of bacterivorous protists remain largely unknown. Microcosm experiments were used to examine whether protistan grazing affects the petroleum hydrocarbon degradation capacity of a deep-sea sediment microbial community from an active Gulf of Mexico cold seep. Differences in n-alkane content between native sediment microcosms and those treated with inhibitors of eukaryotes were assessed by comprehensive two-dimensional gas chromatography following 30-90 day incubations and analysis of shifts in microbial community composition using small subunit ribosomal RNA gene clone libraries. More biodegradation was observed in microcosms supplemented with eukaryotic inhibitors. SSU rRNA gene clone libraries from oil-amended treatments revealed an increase in the number of proteobacterial clones (particularly γ-proteobacteria) after spiking sediments with diesel oil. Bacterial community composition shifted, and degradation rates increased, in treatments where protists were inhibited, suggesting protists affect the hydrocarbon degrading capacity of microbial communities in sediments collected at this Gulf of Mexico site.

  2. Characterization of a microdissection library from human chromosome region 3p14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardenheuer, W.; Szymanski, S.; Lux, A.

    1994-01-15

    Structural alterations in human chromosome region 3p14-p23 resulting in the inactivation of one or more tumor suppressor genes are thought to play a pathogenic role in small cell lung cancer, renal cell carcinoma, and other human neoplasms. To identify putative tumor suppressor genes, 428 recombinant clones from a microdissection library specific for human chromosome region 3p14 were isolated and characterized. Ninety-six of these (22.5%) were human single-copy DNA sequences, 57 of which were unique sequence clones. Forty-four of these were mapped to the microdissected region using a cell hybrid mapping panel. Within this mapping panel, four probes detected two newmore » chromosome breakpoints that were previously indistinguishable from the translocation breakpoint t(3;8) in 3p14.2 in hereditary renal cell carcinoma. One probe maps to the homozygously deleted region of the small cell lung cancer cell line U2020. In addition, microdissection clones have been shown to be suitable for isolation of yeast artificial chromosomes. 52 refs., 3 figs., 2 tabs.« less

  3. Pathogen-regulated genes in wheat isogenic lines differing in resistance to brown rust Puccinia triticina.

    PubMed

    Dmochowska-Boguta, Marta; Alaba, Sylwia; Yanushevska, Yuliya; Piechota, Urszula; Lasota, Elzbieta; Nadolska-Orczyk, Anna; Karlowski, Wojciech M; Orczyk, Waclaw

    2015-10-05

    Inoculation of wheat plants with Puccinia triticina (Pt) spores activates a wide range of host responses. Compatible Pt interaction with susceptible Thatcher plants supports all stages of the pathogen life cycle. Incompatible interaction with TcLr9 activates defense responses including oxidative burst and micronecrotic reactions associated with the pathogen's infection structures and leads to complete termination of pathogen development. These two contrasting host-pathogen interactions were a foundation for transcriptome analysis of incompatible wheat-Pt interaction. A suppression subtractive hybridization (SSH) library was constructed using cDNA from pathogen-inoculated susceptible Thatcher and resistant TcLr9 isogenic lines. cDNA represented steps of wheat-brown rust interactions: spore germination, haustorium mother cell (HMC) formation and micronecrotic reactions. All ESTs were clustered and validated by similarity search to wheat genome using BLASTn and sim4db tools. qRT-PCR was used to determine transcript levels of selected ESTs after inoculation in both lines. Out of 793 isolated cDNA clones, 183 were classified into 152 contigs. 89 cDNA clones and encoded proteins were functionally annotated and assigned to 5 Gene Ontology categories: catalytic activity 48 clones (54 %), binding 32 clones (36 %), transporter activity 6 clones (7 %), structural molecule activity 2 clones (2 %) and molecular transducer activity 1 clone (1 %). Detailed expression profiles of 8 selected clones were analyzed using the same plant-pathogen system. The strongest induction after pathogen infection and the biggest differences between resistant and susceptible interactions were detected for clones encoding wall-associated kinase (GenBank accession number JG969003), receptor with leucine-rich repeat domain (JG968955), putative serine/threonine protein kinase (JG968944), calcium-mediated signaling protein (JG968925) and 14-3-3 protein (JG968969). The SSH library represents transcripts regulated by pathogen infection during compatible and incompatible interactions of wheat with P. triticina. Annotation of selected clones confirms their putative roles in successive steps of plant-pathogen interactions. The transcripts can be categorized as defense-related due to their involvement in either basal defense or resistance through an R-gene mediated reaction. The possible involvement of selected clones in pathogen recognition and pathogen-induced signaling as well as resistance mechanisms such as cell wall enforcement, oxidative burst and micronecrotic reactions is discussed.

  4. [Construction and characterization of a cDNA library from human liver tissue of cirrhosis].

    PubMed

    Chen, Xiao-hong; Chen, Zhi; Chen, Feng; Zhu, Hai-hong; Zhou, Hong-juan; Yao, Hang-ping

    2005-03-01

    To construct a cDNA library from human liver tissue of cirrhosis. The total RNA from human liver tissue of cirrhosis was extracted using Trizol method, and the mRNA was purified using mRNA purification kit. SMART technique and CDSIII/3' primer were used for first-strand cDNA synthesis. Long distance PCR was then used to synthesize the double-strand cDNA that was then digested by proteinase K and Sfi I, and was fractionated by CHOMA SPIN-400 column. The cDNA fragments longer than 0.4 kb were collected and ligated to lambdaTripl Ex2 vector. Then lambda-phage packaging reaction and library amplification were performed. The qualities of both unamplified and amplified cDNA libraries was strictly checked by conventional titer determination. Eleven plaques were randomly picked and tested using PCR with universal primers derived from the sequence flanking the vector. The titers of unamplifed and amplified libraries were 1.03 x 10(6) pfu/ml and 1.36 x 10(9) pfu/ml respectively. The percentages of recombinants from both libraries were 97.24 % in unamplified library and 99.02 % in amplified library. The lengths of the inserts were 1.02 kb in average (36.36 % 1 approximately equals 2 kb and 63.64 % 0.5 approximately equals 1.0 kb). A high quality cDNA library from human liver tissue of cirrhosis was constructed successfully, which can be used for screening and cloning new special genes associated with the occurrence of cirrhosis.

  5. Genetic Selection for Improved Abzymes in E. Coli

    DTIC Science & Technology

    1994-08-03

    immunoassay to scemen antibody phage libraries directly for catalysis of a bimolecular Diels - Alder reaction and have identified several active clones...sensitive growth selection assay in F coli for catalysts with chorismate mutase activity; and (3) we identified new abzymes for a Diels - Alder ...generated combinatorial antibody libraries from mRNA isolated from the spleens of mice hyperimmunized with transition state analogs for Diels - Alder and

  6. Structure and dynamics of the bacterial communities in fermentation of the traditional Chinese post-fermented pu-erh tea revealed by 16S rRNA gene clone library.

    PubMed

    Zhao, Ming; Xiao, Wei; Ma, Yan; Sun, Tingting; Yuan, Wenxia; Tang, Na; Zhang, Donglian; Wang, Yongxia; Li, Yali; Zhou, Hongjie; Cui, Xiaolong

    2013-10-01

    Microbes are thought to have key roles in the development of the special properties of post-fermented pu-erh tea (pu-erh shucha), a well-known traditional Chinese tea; however, little is known about the bacteria during the fermentation. In this work, the structure and dynamics of the bacterial community involved in the production of pu-erh shucha were investigated using 16S rRNA gene clone libraries constructed from samples collected on days zero (LD-0), 5 (LD-5), 10 (LD-10), 15 (LD-15) and 20 (LD-20) of the fermentation. A total of 747 sequences with individual clone library containing 115-174 sequences and 4-20 unique operational taxonomic units (OTUs) were obtained. These OTUs were grouped into four phyla (Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria) and further identified as members of 10 families, such as Alcaligenaceae, Bacillaceae, Enterobacteriaceae, etc. The dominant bacteria were Enterobacteriaceae in the raw material (LD-0) and in the initial stages of fermentation (LD-5 and LD-10), which changed to Bacillaceae at the last stages of fermentation (LD-15 and LD-20) at a temperature of 40-60 °C. It is interesting that the dominant OTUs in libraries LD-15 and LD-20 were very closely related to Bacillus coagulans, which is a safe thermoduric probiotic. Together the bacterial diversity and dynamics during a fermentation of pu-erh shucha were demonstrated, and a worthy clue for artificial inoculation of B. coagulans to improve the health benefits of pu-erh shucha or produce probiotic pu-erh tea were provided.

  7. Human scFv antibody fragments specific for hepatocellular carcinoma selected from a phage display library.

    PubMed

    Yu, Bing; Ni, Ming; Li, Wen-Han; Lei, Ping; Xing, Wei; Xiao, Dai-Wen; Huang, Yu; Tang, Zhen-Jie; Zhu, Hui-Fen; Shen, Guan-Xin

    2005-07-14

    To identify the scFv antibody fragments specific for hepatocellular carcinoma by biopanning from a large human naive scFv phage display library. A large human naive scFv phage library was used to search for the specific targets by biopanning with the hepatocellular carcinoma cell line HepG2 for the positive-selecting and the normal liver cell line L02 for the counter-selecting. After three rounds of biopanning, individual scFv phages binding selectively to HepG2 cells were picked out. PCR was carried out for identification of the clones containing scFv gene sequence. The specific scFv phages were selected by ELISA and flow cytometry. DNA sequences of positive clones were analyzed by using Applied Biosystem Automated DNA sequencers 3 730. The expression proteins of the specific scFv antibody fragments in E.coli HB2151 were purified by the affinity chromatography and detected by SDS-PAGE, Western blot and ELISA. The biological effect of the soluble antibody fragments on the HepG2 cells was investigated by observing the cell proliferation. Two different positive clones were obtained and the functional variable sequences were identified. Their DNA sequences of the scFv antibody fragments were submitted to GenBank (accession nos: AY686498 and AY686499). The soluble scFv antibody fragments were successfully expressed in E.coli HB2151. The relative molecular mass of the expression products was about 36 ku, according to its predicted M(r) value. The two soluble scFv antibody fragments also had specific binding activity and obvious growth inhibition properties to HepG2 cells. The phage library biopanning permits identification of specific antibody fragments for hepatocellular carcinoma and affords experiment evidence for its immunotherapy study.

  8. Identification of polypeptides with selective affinity to intact mouse cerebellar granule neurons from a random peptide-presenting phage library.

    PubMed

    Hou, Sheng T; Dove, Mike; Anderson, Erica; Zhang, Jiangbing; MacKenzie, C Roger

    2004-09-30

    Targeting of postmitotic neurons selectively for gene delivery poses a challenge. One way to achieve such a selective targeting is to link the gene delivery vector with small ligand-binding polypeptides which have selective affinity to intact neurons. In order to identify such novel neuron selective polypeptides, we screened a phage-display library displaying random 12-mer polypeptides and subtractively bio-panned for clones having selectivity towards cultured mouse cerebellar granule neurons. The selected phage clones were amplified and sequenced. Affinities of these clones to neurons were determined by the visible presence or absence of fluorescence of phage particles as detected by immunocytochemistry using an antibody to M-13 phage. This affinity was further qualified by how much phage was bound, and where in or on the cell it tended to accumulate. The selectivity of binding to neurons was determined by the negative binding of these clones to several cultured non-neuronal cells, including, primary glial cells, NT2 cells, human embryonic kidney 293 cells, neuroblastoma cells, and mouse 3T3 cells. Among the 46 clones that we have sequenced and characterized, four clones appeared to have excellent selectivity in binding to neurons. Homology comparison of these polypeptides revealed that three of them contained a consensus D(E)-W(F)-I(N)-D-W motif. This motif was also present in the Bdm1 gene product which was predominantly expressed in postnatal brains. Further characterizations of these polypeptides are required to reveal the utilities of these peptides to function as an effective linker to facilitate gene transfer selectively to neurons.

  9. The construction of an EST database for Bombyx mori and its application

    PubMed Central

    Mita, Kazuei; Morimyo, Mitsuoki; Okano, Kazuhiro; Koike, Yoshiko; Nohata, Junko; Kawasaki, Hideki; Kadono-Okuda, Keiko; Yamamoto, Kimiko; Suzuki, Masataka G.; Shimada, Toru; Goldsmith, Marian R.; Maeda, Susumu

    2003-01-01

    To build a foundation for the complete genome analysis of Bombyx mori, we have constructed an EST database. Because gene expression patterns deeply depend on tissues as well as developmental stages, we analyzed many cDNA libraries prepared from various tissues and different developmental stages to cover the entire set of Bombyx genes. So far, the Bombyx EST database contains 35,000 ESTs from 36 cDNA libraries, which are grouped into ≈11,000 nonredundant ESTs with the average length of 1.25 kb. The comparison with FlyBase suggests that the present EST database, SilkBase, covers >55% of all genes of Bombyx. The fraction of library-specific ESTs in each cDNA library indicates that we have not yet reached saturation, showing the validity of our strategy for constructing an EST database to cover all genes. To tackle the coming saturation problem, we have checked two methods, subtraction and normalization, to increase coverage and decrease the number of housekeeping genes, resulting in a 5–11% increase of library-specific ESTs. The identification of a number of genes and comprehensive cloning of gene families have already emerged from the SilkBase search. Direct links of SilkBase with FlyBase and WormBase provide ready identification of candidate Lepidoptera-specific genes. PMID:14614147

  10. Somatostatin displayed on filamentous phage as a receptor-specific agonist

    PubMed Central

    Rousch, Mat; Lutgerink, Jan T; Coote, James; de Bruïne, Adriaan; Arends, Jan-Willem; Hoogenboom, Hennie R

    1998-01-01

    In search of methods to identify bio-active ligands specific for G protein-coupled receptors with seven transmembrane spanning regions, we have developed a filamentous phage-based selection and functional screening method. First, methods for panning peptide phage on cells were established, using the hormone somatostatin as a model. Somatostatin was displayed on the surface of filamentous phage by cloning into phage(mid) vectors and fusion to either pIII or pVIII viral coat proteins. Peptide displaying phage bound to a polyclonal anti-somatostatin serum, and, more importantly, to several somatostatin receptor subtypes (Sst) expressed on transfected CHO-K1 cells, in a pattern which was dependent on the used display method. Binding was competed with somatostatin, with an IC50 in the nanomolar range. The phage were specifically enriched by panning on cells, establishing conditions for cell selections of phage libraries. Binding of somatostatin displaying phage to sst2 on a reporter cell line, in which binding of natural ligand reduces secretion of alkaline phosphatase (via a cyclic AMP responsive element sensitive promoter), proved that the phage particles act as receptor-specific agonists. Less than 100 phage particles per cell were required for this activity, which is approximately 1000 fold less than soluble somatostatin, suggesting that phage binding interferes with normal receptor desensitization and/or recycling. The combination of biopanning of phage libraries on cells with functional screening of phage particles for receptor triggering activity, may be used to select novel, bio-active ligands from phage libraries of random peptides, antibody fragments, or libraries based on the natural receptor ligand. PMID:9776337

  11. Investigation of bacterial and archaeal communities: novel protocols using modern sequencing by Illumina MiSeq and traditional DGGE-cloning.

    PubMed

    Kraková, Lucia; Šoltys, Katarína; Budiš, Jaroslav; Grivalský, Tomáš; Ďuriš, František; Pangallo, Domenico; Szemes, Tomáš

    2016-09-01

    Different protocols based on Illumina high-throughput DNA sequencing and denaturing gradient gel electrophoresis (DGGE)-cloning were developed and applied for investigating hot spring related samples. The study was focused on three target genes: archaeal and bacterial 16S rRNA and mcrA of methanogenic microflora. Shorter read lengths of the currently most popular technology of sequencing by Illumina do not allow analysis of the complete 16S rRNA region, or of longer gene fragments, as was the case of Sanger sequencing. Here, we demonstrate that there is no need for special indexed or tailed primer sets dedicated to short variable regions of 16S rRNA since the presented approach allows the analysis of complete bacterial 16S rRNA amplicons (V1-V9) and longer archaeal 16S rRNA and mcrA sequences. Sample augmented with transposon is represented by a set of approximately 300 bp long fragments that can be easily sequenced by Illumina MiSeq. Furthermore, a low proportion of chimeric sequences was observed. DGGE-cloning based strategies were performed combining semi-nested PCR, DGGE and clone library construction. Comparing both investigation methods, a certain degree of complementarity was observed confirming that the DGGE-cloning approach is not obsolete. Novel protocols were created for several types of laboratories, utilizing the traditional DGGE technique or using the most modern Illumina sequencing.

  12. Rapid Amplification of Plasmid and Phage DNA Using Phi29 DNA Polymerase and Multiply-Primed Rolling Circle Amplification

    PubMed Central

    Dean, Frank B.; Nelson, John R.; Giesler, Theresa L.; Lasken, Roger S.

    2001-01-01

    We describe a simple method of using rolling circle amplification to amplify vector DNA such as M13 or plasmid DNA from single colonies or plaques. Using random primers and φ29 DNA polymerase, circular DNA templates can be amplified 10,000-fold in a few hours. This procedure removes the need for lengthy growth periods and traditional DNA isolation methods. Reaction products can be used directly for DNA sequencing after phosphatase treatment to inactivate unincorporated nucleotides. Amplified products can also be used for in vitro cloning, library construction, and other molecular biology applications. PMID:11381035

  13. The thiostrepton-resistance-encoding gene in Streptomyces laurentii is located within a cluster of ribosomal protein operons.

    PubMed

    Smith, T M; Jiang, Y F; Shipley, P; Floss, H G

    1995-10-16

    A common approach to identify and clone biosynthetic gene from an antibiotic-producing streptomycete is to clone the resistance gene for the antibiotic of interest and then use that gene to clone DNA that is linked to it. As a first step toward cloning the genes responsible for the biosynthesis of thiostrepton (Th) in Streptomyces laurentii (Sl), the Th resistance-encoding gene (tsnR) was cloned as a 1.5-kb BamHI-PvuII fragment in Escherichia coli (Ec), and shown to confer Th resistance when introduced into S. lividans TK24. The tsnR-containing DNA fragment was used as a probe to isolate clones from cosmid libraries of DNA in the Ec cosmid vector SuperCos, and pOJ446 (an Ec/streptomycete) cosmid vector. Sequence and genetic analysis of the DNA flanking the tsnR indicates that the Sl tsnR is not closely linked to biosynthetic genes. Instead it is located within a cluster of ribosomal protein operons.

  14. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, F.H.; Moore, J.C.

    1999-05-25

    A method is disclosed for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase. 43 figs.

  15. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, F.H.; Moore, J.C.

    1998-04-21

    A method is disclosed for isolating and identifying modified para-nitrobenzyl esterases. These enzymes exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase. 43 figs.

  16. Characterization of bacterial community structure in a drinking water distribution system during an occurrence of red water.

    PubMed

    Li, Dong; Li, Zheng; Yu, Jianwei; Cao, Nan; Liu, Ruyin; Yang, Min

    2010-11-01

    The role of bacteria in the occasional emergence of red water, which has been documented worldwide, has yet to be determined. To better understand the mechanisms that drive occurrences of red water, the bacterial community composition and the relative abundance of several functional bacterial groups in a water distribution system of Beijing during a large-scale red water event were determined using several molecular methods. Individual clone libraries of the 16S rRNA gene were constructed for three red water samples and one sample of normal water. Beta-, Alpha-, and Gammaproteobacteria comprised the major bacterial communities in both red water and normal water samples, in agreement with previous reports. A high percentage of red water clones (25.2 to 57.1%) were affiliated with or closely related to a diverse array of iron-oxidizing bacteria, including the neutrophilic microaerobic genera Gallionella and Sideroxydans, the acidophilic species Acidothiobacillus ferrooxidans, and the anaerobic denitrifying Thermomonas bacteria. The genus Gallionella comprised 18.7 to 28.6% of all clones in the three red water libraries. Quantitative real-time PCR analysis showed that the 16S rRNA gene copy concentration of Gallionella spp. was between (4.1 ± 0.9) × 10⁷ (mean ± standard deviation) and (1.6 ± 0.3) × 10⁸ per liter in red water, accounting for 13.1% ± 2.9% to 17.2% ± 3.6% of the total Bacteria spp. in these samples. By comparison, the percentages of Gallionella spp. in the normal water samples were 0.1% or lower (below the limit of detection), suggesting an important role of Gallionella spp. in the formation of red water.

  17. Development and characterization of human monoclonal antibodies that neutralize multiple TGFβ isoforms.

    PubMed

    Bedinger, Daniel; Lao, Llewelyn; Khan, Shireen; Lee, Steve; Takeuchi, Toshihiko; Mirza, Amer M

    2016-01-01

    Transforming growth factor (TGF)β levels are elevated in, and drive the progression of, numerous disease states such as advanced metastatic cancer and systemic and ocular fibrosis. There are 3 main isoforms, TGFβ1, 2, and 3. As multiple TGFβ isoforms are involved in disease processes, maximal therapeutic efficacy may require neutralization of 2 or more of the TGFβ isoforms. Fully human antibody phage display libraries were used to discover a number of antibodies that bind and neutralize various combinations of TGFβ1, 2 or 3. The primary panning did not yield any uniformly potent pan-isoform neutralizing antibodies; therefore, an antibody that displayed potent TGFβ 1, 2 inhibition, but more modest affinity versus TGFβ3, was affinity matured by shuffling with a light chain sub-library and further screening. This process yielded a high affinity pan-isoform neutralizing clone. Antibodies were analyzed and compared by binding affinity, as well as receptor and epitope competition by surface plasmon resonance methods. The antibodies were also shown to neutralize TGFβ effects in vitro in 3 assays: 1) interleukin (IL)-4 induced HT-2 cell proliferation; 2) TGFβ-mediated IL-11 release by A549 cells; and 3) decreasing SMAD2 phosphorylation in Detroit 562 cells. The antibodies' potency in these in vitro assays correlated well with their isoform-specific affinities. Furthermore, the ability of the affinity-matured clone to decrease tumor burden in a Detroit 562 xenograft study was superior to that of the parent clone. This affinity-matured antibody acts as a very potent inhibitor of all 3 main isoforms of TGFβ and may have utility for therapeutic intervention in human disease.

  18. Isolation of tumor antigen-specific single-chain variable fragments using a chimeric antigen receptor bicistronic retroviral vector in a Mammalian screening protocol.

    PubMed

    Lipowska-Bhalla, Grazyna; Gilham, David E; Hawkins, Robert E; Rothwell, Dominic G

    2013-12-01

    The clinical potential of chimeric antigen receptors in adoptive cellular therapy is beginning to be realized with several recent clinical trials targeting CD19 showing promising results in advanced B cell malignancies. This increased efficacy corresponds with improved engineering of the chimeric receptors with the latest-generation receptors eliciting greater signaling and proliferation potential. However, the antigen-binding single-chain variable fragment (scFv) domain of the receptors is critical in determining the activity of the chimeric receptor-expressing T cells, as this determines specificity and affinity to the tumor antigen. In this study, we describe a mammalian T cell line screening protocol employing a 2A-based bicistronic retroviral vector to isolate functional scFvs. This approach involves expression of the scFv library in a chimeric antigen receptor, and is based on selection of clones capable of stimulating CD69 upregulation in a T cell line and has a number of advantages over previously described methods in that the use of a 2A cassette ensures the exclusion of nonexpressing scFvs and the screening using a chimeric receptor in a mammalian T cell line ensures selection in the optimum context for therapeutic use. Proof-of-principle experiments show that the protocol was capable of a 10(5)-fold enrichment of positive clones after three rounds of selection. Furthermore, an antigen-specific clone was successfully isolated from a partially enriched scFv library, confirming the strength of the protocol. This approach has the potential to identify novel scFvs of use in adoptive T cell therapy and, potentially, wider antibody-based applications.

  19. Construction of naïve camelids VHH repertoire in phage display-based library.

    PubMed

    Sabir, Jamal S M; Atef, Ahmed; El-Domyati, Fotouh M; Edris, Sherif; Hajrah, Nahid; Alzohairy, Ahmed M; Bahieldin, Ahmed

    2014-04-01

    Camelids have unique antibodies, namely HCAbs (VHH) or commercially named Nanobodies(®) (Nb) that are composed only of a heavy-chain homodimer. As libraries based on immunized camelids are time-consuming, costly and likely redundant for certain antigens, we describe the construction of a naïve camelid VHHs library from blood serum of non-immunized camelids with affinity in the subnanomolar range and suitable for standard immune applications. This approach is rapid and recovers VHH repertoire with the advantages of being more diverse, non-specific and devoid of subpopulations of specific antibodies, which allows the identification of binders for any potential antigen (or pathogen). RNAs from a number of camelids from Saudi Arabia were isolated and cDNAs of the diverse vhh gene were amplified; the resulting amplicons were cloned in the phage display pSEX81 vector. The size of the library was found to be within the required range (10(7)) suitable for subsequent applications in disease diagnosis and treatment. Two hundred clones were randomly selected and the inserted gene library was either estimated for redundancy or sequenced and aligned to the reference camelid vhh gene (acc. No. ADE99145). Results indicated complete non-specificity of this small library in which no single event of redundancy was detected. These results indicate the efficacy of following this approach in order to yield a large and diverse enough gene library to secure the presence of the required version encoding the required antibodies for any target antigen. This work is a first step towards the construction of phage display-based biosensors useful in disease (e.g., TB or tuberculosis) diagnosis and treatment. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. Generation of a mouse scFv library specific for porcine aminopeptidase N using the T7 phage display system.

    PubMed

    Sun, Dongbo; Shi, Hongyan; Chen, Jianfei; Shi, Da; Zhu, Qinghe; Zhang, Hong; Liu, Shengwang; Wang, Yunfeng; Qiu, Huaji; Feng, Li

    2012-06-01

    Porcine aminopeptidase N (pAPN) is a common cellular receptor for swine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV). To investigate single-chain fragment variable (scFv) repertoire against pAPN, the genes encoding the immunoglobulin light chain variable region (VL) and heavy chain variable region (VH) were amplified by reverse transcript polymerase chain reaction (RT-PCR) using a series of degenerate primers from the spleen of BABL/c mice immunized with native pAPN. The VL and VH amplicons were combined randomly by a 12 amino acid flexible linker by splicing by overlap extension PCR (SOE-PCR), which produced the scFv gene repertoire. After ligation of the scFv gene repertoire into the T7Select10-3b vector, a mouse scFv phage library specific for pAPN was produced through in vitro packaging. The primary scFv library against pAPN contained 2.0×10(7) recombinant phage clones, and the titer of the amplified library was 3.6×10(9)pfu/mL. BstNI restriction analysis and DNA sequencing revealed that 28 phage clones from the primary pAPN scFv library showed excellent diversity. The effectiveness of the scFv library against pAPN was verified further by phage ELISA using the recombinant protein of the pAPN C subunit as coating antigen. The construction and evaluation of a murine scFv library against the common receptor pAPN of porcine coronaviruses TGEV and PEDV using the T7 phage display system are described. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Library analysis of SCHEMA-guided protein recombination.

    PubMed

    Meyer, Michelle M; Silberg, Jonathan J; Voigt, Christopher A; Endelman, Jeffrey B; Mayo, Stephen L; Wang, Zhen-Gang; Arnold, Frances H

    2003-08-01

    The computational algorithm SCHEMA was developed to estimate the disruption caused when amino acid residues that interact in the three-dimensional structure of a protein are inherited from different parents upon recombination. To evaluate how well SCHEMA predicts disruption, we have shuffled the distantly-related beta-lactamases PSE-4 and TEM-1 at 13 sites to create a library of 2(14) (16,384) chimeras and examined which ones retain lactamase function. Sequencing the genes from ampicillin-selected clones revealed that the percentage of functional clones decreased exponentially with increasing calculated disruption (E = the number of residue-residue contacts that are broken upon recombination). We also found that chimeras with low E have a higher probability of maintaining lactamase function than chimeras with the same effective level of mutation but chosen at random from the library. Thus, the simple distance metric used by SCHEMA to identify interactions and compute E allows one to predict which chimera sequences are most likely to retain their function. This approach can be used to evaluate crossover sites for recombination and to create highly mosaic, folded chimeras.

  2. Library analysis of SCHEMA-guided protein recombination

    PubMed Central

    Meyer, Michelle M.; Silberg, Jonathan J.; Voigt, Christopher A.; Endelman, Jeffrey B.; Mayo, Stephen L.; Wang, Zhen-Gang; Arnold, Frances H.

    2003-01-01

    The computational algorithm SCHEMA was developed to estimate the disruption caused when amino acid residues that interact in the three-dimensional structure of a protein are inherited from different parents upon recombination. To evaluate how well SCHEMA predicts disruption, we have shuffled the distantly-related β-lactamases PSE-4 and TEM-1 at 13 sites to create a library of 214 (16,384) chimeras and examined which ones retain lactamase function. Sequencing the genes from ampicillin-selected clones revealed that the percentage of functional clones decreased exponentially with increasing calculated disruption (E = the number of residue–residue contacts that are broken upon recombination). We also found that chimeras with low E have a higher probability of maintaining lactamase function than chimeras with the same effective level of mutation but chosen at random from the library. Thus, the simple distance metric used by SCHEMA to identify interactions and compute E allows one to predict which chimera sequences are most likely to retain their function. This approach can be used to evaluate crossover sites for recombination and to create highly mosaic, folded chimeras. PMID:12876318

  3. Combinatorial peptide libraries and biometric score matrices permit the quantitative analysis of specific and degenerate interactions between clonotypic TCR and MHC peptide ligands.

    PubMed

    Zhao, Y; Gran, B; Pinilla, C; Markovic-Plese, S; Hemmer, B; Tzou, A; Whitney, L W; Biddison, W E; Martin, R; Simon, R

    2001-08-15

    The interaction of TCRs with MHC peptide ligands can be highly flexible, so that many different peptides are recognized by the same TCR in the context of a single restriction element. We provide a quantitative description of such interactions, which allows the identification of T cell epitopes and molecular mimics. The response of T cell clones to positional scanning synthetic combinatorial libraries is analyzed with a mathematical approach that is based on a model of independent contribution of individual amino acids to peptide Ag recognition. This biometric analysis compares the information derived from these libraries composed of trillions of decapeptides with all the millions of decapeptides contained in a protein database to rank and predict the most stimulatory peptides for a given T cell clone. We demonstrate the predictive power of the novel strategy and show that, together with gene expression profiling by cDNA microarrays, it leads to the identification of novel candidate autoantigens in the inflammatory autoimmune disease, multiple sclerosis.

  4. Cloning the Antibody Response in Humans with Chronic Inflammatory Disease: Immunopanning of Subacute Sclerosing Panencephalitis (SSPE) Brain Sections with Antibody Phage Libraries Prepared from SSPE Brain Enriches for Antibody Recognizing Measles Virus Antigens In Situ

    PubMed Central

    Owens, Gregory P.; Williamson, R. Anthony; Burgoon, Mark P.; Ghausi, Omar; Burton, Dennis R.; Gilden, Donald H.

    2000-01-01

    In central nervous system (CNS) infectious and inflammatory diseases of known cause, oligoclonal bands represent antibody directed against the causative agent. To determine whether disease-relevant antibodies can be cloned from diseased brain, we prepared an antibody phage display library from the brain of a human with subacute sclerosing panencephalitis (SSPE), a chronic encephalitis caused by measles virus, and selected the library against SSPE brain sections. Antibodies that were retrieved reacted strongly with measles virus cell extracts by enzyme-linked immunosorbent assay and were specific for the measles virus nucleocapsid protein. These antibodies immunostained cells in different SSPE brains but not in control brain. Our data provide the first demonstration that diseased brain can be used to select in situ for antibodies directed against the causative agent of disease and point to the potential usefulness of this approach in identifying relevant antibodies in chronic CNS or systemic inflammatory diseases of unknown cause. PMID:10627565

  5. Characterization and Selection of 3-(1-Naphthoyl)-Indole Derivative-Specific Alpaca VHH Antibodies Using a Phage Display Library.

    PubMed

    Nakayama, Hiroshi; Murakami, Akikazu; Yoshida, Maiko; Muraoka, Jin; Wakai, Junko; Kenjyou, Noriko; Ito, Yuji

    2016-08-01

    A new alpaca VHH antibody library against 3-(1-naphthoyl)-indole derivatives was developed from alpaca immunized with 7-(3-(1-naphthoyl)-1H-indol-1-yl)-heptanoic acid-keyhole limpet hemocyanin (Hep-KLH) protein conjugates as the immunogen. From this library, two 3-(1-naphthoyl)-indole derivative-specific clones, named NN01 and NN02, were isolated using biopanning technology. The binding specificity of these clones was confirmed using a competitive enzyme-linked immunosorbent assay (c-ELISA). Based on the results of c-ELISA, a median inhibitory concentration (IC50) of these two VHH antibodies, NN01 and NN02, in the case of 7-(3-(1-naphthoyl)-1H-indol-1-yl)-heptanoic acid (Hep; one of 3-(1-naphthoyl)-indole derivatives) as an inhibitor exhibited an approximate 3 × 10(-7) M and 6 × 10(-7) M, respectively. Thus, VHH antibodies produced in this study could be considered a useful tool for the detection of 3-(1-naphthoyl)-indole derivatives.

  6. Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system.

    PubMed

    Katano, Yuta; Li, Tongyang; Baba, Misato; Nakamura, Miyo; Ito, Masaaki; Kojima, Kenji; Takita, Teisuke; Yasukawa, Kiyoshi

    2017-12-01

    We attempted to increase the thermostability of Moloney murine leukemia virus (MMLV) reverse transcriptase (RT). The eight-site saturation mutagenesis libraries corresponding to Ala70-Arg469 in the whole MMLV RT (Thr24-Leu671), in each of which 1 out of 50 amino acid residues was replaced with other amino acid residue, were constructed. Seven-hundred and sixty eight MMLV RT clones were expressed using a cell-free protein expression system, and their thermostabilities were assessed by the temperature of thermal treatment at which they retained cDNA synthesis activity. One clone D200C was selected as the most thermostable variant. The highest temperature of thermal treatment at which D200C exhibited cDNA synthesis activity was 57ºC, which was higher than for WT (53ºC). Our results suggest that a combination of site saturation mutagenesis library and cell-free protein expression system might be useful for generation of thermostable MMLV RT in a short period of time for expression and selection.

  7. A triallelic genetic male sterility locus in Brassica napus: an integrative strategy for its physical mapping and possible local chromosome evolution around it

    PubMed Central

    Lu, Wei; Liu, Jun; Xin, Qiang; Wan, Lili; Hong, Dengfeng; Yang, Guangsheng

    2013-01-01

    Background and Aims Spontaneous male sterility is an advantageous trait for both constructing efficient pollination control systems and for understanding the developmental process of the male reproductive unit in many crops. A triallelic genetic male-sterile locus (BnMs5) has been identified in Brassica napus; however, its complicated genome structure has greatly hampered the isolation of this locus. The aim of this study was to physically map BnMs5 through an integrated map-based cloning strategy and analyse the local chromosomal evolution around BnMs5. Methods A large F2 population was used to integrate the existing genetic maps around BnMs5. A map-based cloning strategy in combination with comparative mapping among B. napus, Arabidopsis, Brassica rapa and Brassica oleracea was employed to facilitate the identification of a target bacterial artificial chromosome (BAC) clone covering the BnMs5 locus. The genomic sequences from the Brassica species were analysed to reveal the regional chromosomal evolution around BnMs5. Key Results BnMs5 was finally delimited to a 0·3-cM genetic fragment from an integrated local genetic map, and was anchored on the B. napus A8 chromosome. Screening of a B. napus BAC clone library and identification of the positive clones validated that JBnB034L06 was the target BAC clone. The closest flanking markers restrict BnMs5 to a 21-kb region on JBnB034L06 containing six predicted functional genes. Good collinearity relationship around BnMs5 between several Brassica species was observed, while violent chromosomal evolutionary events including insertions/deletions, duplications and single nucleotide mutations were also found to have extensively occurred during their divergence. Conclusions This work represents major progress towards the molecular cloning of BnMs5, as well as presenting a powerful, integrative method to mapping loci in plants with complex genomic architecture, such as the amphidiploid B. napus. PMID:23243189

  8. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trembath-Reichert, Elizabeth; Case, David H.; Orphan, Victoria J.

    Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range ofDeltaproteobacteriadiversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seepmore » sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. In addition, many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co-occurrences containing putatively heterotrophic, candidate phyla such as OD1, Atribacteria, MBG-B, and Hyd24-12 and the potential for complex sulfur cycling involving Epsilon-, Delta-, and Gammaproteobacteria in methane seep ecosystems.« less

  9. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments

    DOE PAGES

    Trembath-Reichert, Elizabeth; Case, David H.; Orphan, Victoria J.

    2016-04-18

    Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range ofDeltaproteobacteriadiversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seepmore » sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. In addition, many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co-occurrences containing putatively heterotrophic, candidate phyla such as OD1, Atribacteria, MBG-B, and Hyd24-12 and the potential for complex sulfur cycling involving Epsilon-, Delta-, and Gammaproteobacteria in methane seep ecosystems.« less

  10. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments.

    PubMed

    Trembath-Reichert, Elizabeth; Case, David H; Orphan, Victoria J

    2016-01-01

    Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co-occurrences containing putatively heterotrophic, candidate phyla such as OD1, Atribacteria, MBG-B, and Hyd24-12 and the potential for complex sulfur cycling involving Epsilon-, Delta-, and Gammaproteobacteria in methane seep ecosystems.

  11. Functional Screening of Antibiotic Resistance Genes from a Representative Metagenomic Library of Food Fermenting Microbiota

    PubMed Central

    Devirgiliis, Chiara; Barile, Simona; Perozzi, Giuditta

    2014-01-01

    Lactic acid bacteria (LAB) represent the predominant microbiota in fermented foods. Foodborne LAB have received increasing attention as potential reservoir of antibiotic resistance (AR) determinants, which may be horizontally transferred to opportunistic pathogens. We have previously reported isolation of AR LAB from the raw ingredients of a fermented cheese, while AR genes could be detected in the final, marketed product only by PCR amplification, thus pointing at the need for more sensitive microbial isolation techniques. We turned therefore to construction of a metagenomic library containing microbial DNA extracted directly from the food matrix. To maximize yield and purity and to ensure that genomic complexity of the library was representative of the original bacterial population, we defined a suitable protocol for total DNA extraction from cheese which can also be applied to other lipid-rich foods. Functional library screening on different antibiotics allowed recovery of ampicillin and kanamycin resistant clones originating from Streptococcus salivarius subsp. thermophilus and Lactobacillus helveticus genomes. We report molecular characterization of the cloned inserts, which were fully sequenced and shown to confer AR phenotype to recipient bacteria. We also show that metagenomics can be applied to food microbiota to identify underrepresented species carrying specific genes of interest. PMID:25243126

  12. Expressed sequence tag analysis of adult human lens for the NEIBank Project: over 2000 non-redundant transcripts, novel genes and splice variants.

    PubMed

    Wistow, Graeme; Bernstein, Steven L; Wyatt, M Keith; Behal, Amita; Touchman, Jeffrey W; Bouffard, Gerald; Smith, Don; Peterson, Katherine

    2002-06-15

    To explore the expression profile of the human lens and to provide a resource for microarray studies, expressed sequence tag (EST) analysis has been performed on cDNA libraries from adult lenses. A cDNA library was constructed from two adult (40 year old) human lenses. Over two thousand clones were sequenced from the unamplified, un-normalized library. The library was then normalized and a further 2200 sequences were obtained. All the data were analyzed using GRIST (GRouping and Identification of Sequence Tags), a procedure for gene identification and clustering. The lens library (by) contains a low percentage of non-mRNA contaminants and a high fraction (over 75%) of apparently full length cDNA clones. Approximately 2000 reads from the unamplified library yields 810 clusters, potentially representing individual genes expressed in the lens. After normalization, the content of crystallins and other abundant cDNAs is markedly reduced and a similar number of reads from this library (fs) yields 1455 unique groups of which only two thirds correspond to named genes in GenBank. Among the most abundant cDNAs is one for a novel gene related to glutamine synthetase, which was designated "lengsin" (LGS). Analyses of ESTs also reveal examples of alternative transcripts, including a major alternative splice form for the lens specific membrane protein MP19. Variant forms for other transcripts, including those encoding the apoptosis inhibitor Livin and the armadillo repeat protein ARVCF, are also described. The lens cDNA libraries are a resource for gene discovery, full length cDNAs for functional studies and microarrays. The discovery of an abundant, novel transcript, lengsin, and a major novel splice form of MP19 reflect the utility of unamplified libraries constructed from dissected tissue. Many novel transcripts and splice forms are represented, some of which may be candidates for genetic diseases.

  13. Construction of the physical map of the gpa7 locus reveals that a large segment was deleted during rice domestication.

    PubMed

    Li, Xianran; Tian, Feng; Huang, Haiyan; Tan, Lubin; Zhu, Zuofeng; Hu, Songnian; Sun, Chuanqing

    2008-06-01

    To facilitate cloning gene(s) underlying gpa7, a deep-coverage BAC library was constructed for an isolate of common wild rice (Oryza rufipogon Griff.) collected from Dongxiang, Jiangxi Province, China (DXCWR). gpa7, a quantitative trait locus corresponding to grain number per panicle, is positioned in the short arm of chromosome 7. The BAC library containing 96,768 clones represents approximate 18 haploid genome equivalents. The contig spanning DXCWR gpa7 was constructed with a series of ordered markers. The putative physical map near the gpa7 locus of another accession of O. rufipogon (Accession: IRGC 105491) was also isolated in silico. Analysis of the physical maps of gpa7 indicated that a segment of about 150 kb was deleted during domestication of common wild rice.

  14. Bacterial taxa abundance pattern in an industrial wastewater treatment system determined by the full rRNA cycle approach.

    PubMed

    Figuerola, Eva L M; Erijman, Leonardo

    2007-07-01

    The description of the diversity and structure of microbial communities through quantification of the constituent populations is one of the major objectives in environmental microbiology. The implications of models for community assembly are practical as well as theoretical, because the extent of biodiversity is thought to influence the function of ecosystems. Current attempts to predict species diversity in different environments derive the numbers of individuals for each operational taxonomic unit (OTU) from the frequency of clones in 16S rDNA gene libraries, which are subjected to a number of inherent biases and artefacts. We show that diversity of the bacterial community present in a complex microbial ensemble can be estimated by fitting the data of the full-cycle rRNA approach to a model of species abundance distribution. Sequences from a 16S rDNA gene library from activated sludge were reliably assigned to OTUs at a genetic distance of 0.04. A group of 17 newly designed rRNA-targeted oligonucleotide probes were used to quantify by fluorescence in situ hybridization, OTUs represented with more than three clones in the 16S rDNA clone library. Cell abundance distribution was best described by a geometric series, after the goodness of fit was evaluated by the Kolmogorov-Smirnov test. Although a complete mechanistic understanding of all the ecological processes involved is still not feasible, describing the distribution pattern of a complex bacterial assemblage model can shed light on the way bacterial communities operate.

  15. Nematicidal protease genes screened from a soil metagenomic library to control Radopholus similis mediated by Pseudomonas fluorescens pf36.

    PubMed

    Chen, Deqiang; Wang, Dongwei; Xu, Chunling; Chen, Chun; Li, Junyi; Wu, Wenjia; Huang, Xin; Xie, Hui

    2018-04-01

    Controlling Radopholus similis, an important phytopathogenic nematode, is a challenge worldwide. Herein, we constructed a metagenomic fosmid library from the rhizosphere soil of banana plants, and six clones with protease activity were obtained by functionally screening the library. Furthermore, subclones were constructed using the six clones, and three protease genes with nematicidal activity were identified: pase1, pase4, and pase6. The pase4 gene was successfully cloned and expressed, demonstrating that the protease PASE4 could effectively degrade R. similis tissues and result in nematode death. Additionally, we isolated a predominant R. similis-associated bacterium, Pseudomonas fluorescens (pf36), from 10 R. similis populations with different hosts. The pase4 gene was successfully introduced into the pf36 strain by vector transformation and conjugative transposition, and two genetically modified strains were obtained: p4MCS-pf36 and p4Tn5-pf36. p4MCS-pf36 had significantly higher protease expression and nematicidal activity (p < 0.05) than p4Tn5-pf36 in a microtiter plate assay, whereas p4Tn5-pf36 was superior to p4MCS-pf36 in terms of genetic stability and controlling R. similis in growth pot tests. This study confirmed that R. similis is inhibited by the associated bacterium pf36-mediated expression of nematicidal proteases. Herein, a novel approach is provided for the study and development of efficient, environmentally friendly, and sustainable biocontrol techniques against phytonematodes.

  16. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones

    PubMed Central

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones. PMID:27555864

  17. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones.

    PubMed

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones.

  18. Phylogenetic diversity and in situ detection of eukaryotes in anaerobic sludge digesters.

    PubMed

    Matsubayashi, Miri; Shimada, Yusuke; Li, Yu-You; Harada, Hideki; Kubota, Kengo

    2017-01-01

    Eukaryotic communities in aerobic wastewater treatment processes are well characterized, but little is known about them in anaerobic processes. In this study, abundance, diversity and morphology of eukaryotes in anaerobic sludge digesters were investigated by quantitative real-time PCR (qPCR), 18S rRNA gene clone library construction and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Samples were taken from four different anaerobic sludge digesters in Japan. Results of qPCR of rRNA genes revealed that Eukarya accounted from 0.1% to 1.4% of the total number of microbial rRNA gene copy numbers. The phylogenetic affiliations of a total of 251 clones were Fungi, Alveolata, Viridiplantae, Amoebozoa, Rhizaria, Stramenopiles and Metazoa. Eighty-five percent of the clones showed less than 97.0% sequence identity to described eukaryotes, indicating most of the eukaryotes in anaerobic sludge digesters are largely unknown. Clones belonging to the uncultured lineage LKM11 in Cryptomycota of Fungi were most abundant in anaerobic sludge, which accounted for 50% of the total clones. The most dominant OTU in each library belonged to either the LKM11 lineage or the uncultured lineage A31 in Alveolata. Principal coordinate analysis indicated that the eukaryotic and prokaryotic community structures were related. The detection of anaerobic eukaryotes, including the members of the LKM11 and A31 lineages in anaerobic sludge digesters, by CARD-FISH revealed their sizes in the range of 2-8 μm. The diverse and uncultured eukaryotes in the LKM11 and the A31 lineages are common and ecologically relevant members in anaerobic sludge digester.

  19. A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity.

    PubMed

    Böhnke, Stefanie; Perner, Mirjam

    2015-03-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a key enzyme of the Calvin cycle, which is responsible for most of Earth's primary production. Although research on RubisCO genes and enzymes in plants, cyanobacteria and bacteria has been ongoing for years, still little is understood about its regulation and activation in bacteria. Even more so, hardly any information exists about the function of metagenomic RubisCOs and the role of the enzymes encoded on the flanking DNA owing to the lack of available function-based screens for seeking active RubisCOs from the environment. Here we present the first solely activity-based approach for identifying RubisCO active fosmid clones from a metagenomic library. We constructed a metagenomic library from hydrothermal vent fluids and screened 1056 fosmid clones. Twelve clones exhibited RubisCO activity and the metagenomic fragments resembled genes from Thiomicrospira crunogena. One of these clones was further analyzed. It contained a 35.2 kb metagenomic insert carrying the RubisCO gene cluster and flanking DNA regions. Knockouts of twelve genes and two intergenic regions on this metagenomic fragment demonstrated that the RubisCO activity was significantly impaired and was attributed to deletions in genes encoding putative transcriptional regulators and those believed to be vital for RubisCO activation. Our new technique revealed a novel link between a poorly characterized gene and RubisCO activity. This screen opens the door to directly investigating RubisCO genes and respective enzymes from environmental samples.

  20. Analysis of Facultative Lithotroph Distribution and Diversity on Volcanic Deposits by Use of the Large Subunit of Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase†

    PubMed Central

    Nanba, K.; King, G. M.; Dunfield, K.

    2004-01-01

    A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass. PMID:15066819

  1. Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase.

    PubMed

    Nanba, K; King, G M; Dunfield, K

    2004-04-01

    A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass.

  2. Microbial community and treatment ability investigation in AOAO process for the optoelectronic wastewater treatment using PCR-DGGE biotechnology.

    PubMed

    Chen, Hsi-Jien; Lin, Yi-Zi; Fanjiang, Jen-Mao; Fan, Chihhao

    2013-04-01

    This study aimed to explore the microbial community variation and treatment ability of a full-scale anoxic-aerobic-anoxic-aerobic (AOAO) process used for optoelectronic wastewater treatment. The sludge samples in the biological treatment units were collected and subsequently subjected to polymerase chain reaction (PCR) amplification and denaturing gradient gel electrophoresis identification and the wastewater components such as BOD5 and NH3-N were evaluated during the processes. The group specific primers selected were targeting at the kingdom Bacteria, the Acidobacterium, the α-proteobacteria, the β-proteobacteria ammonia oxidizers, Actinobacteria and methyllotrophs, and the 16S rDNA clone libraries were established. Ten different clones were obtained using the Bacteria primers and eight different clones were obtained using the β-proteobacteria ammonia oxidizer primers. Over 95 % of BOD5 and 90 % of NH3-N were removed from the system. The microbial community analysis showed that the Janthinobacterium sp. An8 and Nitrosospira sp. were the dominant species throughout the AOAO process. Across the whole clone library, six clones showed closely related to Janthinobacterium sp. and these species seemed to be the dominant species with more than 50 % occupancy of the total population. Nitrosospira sp. was the predominant species within the β-proteobacteria and occupied more than 30 % of the total population in the system. These two strains were the novel species specific to the AOAO process for optoelectronic treatment, and they were found strongly related to the system capability of removing aquatic contaminants by inspecting the wastewater concentration variation across the system.

  3. Characterization of the bacterial community in a biotrickling filter treating high loads of H(2)S by molecular biology tools.

    PubMed

    Maestre, Juan P; Rovira, Roger; Gamisans, Xavier; Kinney, Kerry A; Kirisits, Mary Jo; Lafuente, Javier; Gabriel, David

    2009-01-01

    The diversity and spatial distribution of bacteria in a lab-scale biotrickling filter treating high loads of hydrogen sulfide (H(2)S) were investigated. Diversity and community structure were studied by terminal-restriction fragment length polymorphism (T-RFLP). A 16S rRNA gene clone library was established. Near Full-length 16S rRNA gene sequences were obtained, and clones were clustered into 24 operational taxonomic units (OTUs). Nearly 74% and 26% of the clones were affiliated with the phyla Proteobacteria and Bacteroidetes, respectively. Beta-, epsilon- and gamma-proteobacteria accounted for 15, 9 and 48%, respectively. Around 45% of the sequences retrieved were affiliated to bacteria of the sulfur cycle including Thiothrix spp., Thiobacillus spp. and Sulfurimonas denitrificans. Sequences related to Thiothrix lacustris accounted for a 38%. Rarefaction curve demonstrated that clone library constructed can be sufficient to describe the vast majority of the bacterial diversity of this reactor operating under strict conditions (2,000 ppm(v) of H(2)S). A spatial distribution of bacteria was found along the length of the reactor by means of the T-RFLP technique. Although aerobic species were predominant along the reactor, facultative anaerobes had a major relative abundance in the inlet part of the reactor, where the sulfide to oxygen ratio is higher.

  4. Screening of Pro-Asp Sequences Exposed on Bacteriophage M13 as an Ideal Anchor for Gold Nanocubes.

    PubMed

    Lee, Hwa Kyoung; Lee, Yujean; Kim, Hyori; Lee, Hye-Eun; Chang, Hyejin; Nam, Ki Tae; Jeong, Dae Hong; Chung, Junho

    2017-09-15

    Bacteriophages are thought to be ideal vehicles for linking antibodies to nanoparticles. Here, we define the sequence of peptides exposed as a fusion protein on M13 bacteriophages to yield optimal binding of gold nanocubes and efficient bacteriophage amplification. We generated five helper bacteriophage libraries using AE(X) 2 DP, AE(X) 3 DP, AE(X) 4 DP, AE(X) 5 DP, and AE(X) 6 DP as the exposed portion of pVIII, in which X was a randomized amino acid residue encoded by the nucleotide sequence NNK. Efficient phage amplification was achievable only in the AE(X) 2 DP, AE(X) 3 DP, and AE(X) 4 DP libraries. Through biopanning with gold nanocubes, we enriched the phage clones and selected the clone with the highest fold change after enrichment. This clone displayed Pro-Asp on the surface of the bacteriophage and had amplification yields similar to those of the wild-type helper bacteriophage (VCSM13). The clone displayed even binding of gold nanocubes along its length and minimal aggregation after binding. We conclude that, for efficient amplification, the exposed pVIII amino acid length should be limited to six residues and Ala-Glu-Pro-Asp-Asp-Pro (AEPDDP) is the ideal fusion protein sequence for guaranteeing the optimal formation of a complex with gold nanocubes.

  5. Depletion of Unwanted Nucleic Acid Templates by Selective Cleavage: LNAzymes, Catalytically Active Oligonucleotides Containing Locked Nucleic Acids, Open a New Window for Detecting Rare Microbial Community Members

    PubMed Central

    Dolinšek, Jan; Dorninger, Christiane; Lagkouvardos, Ilias; Wagner, Michael

    2013-01-01

    Many studies of molecular microbial ecology rely on the characterization of microbial communities by PCR amplification, cloning, sequencing, and phylogenetic analysis of genes encoding rRNAs or functional marker enzymes. However, if the established clone libraries are dominated by one or a few sequence types, the cloned diversity is difficult to analyze by random clone sequencing. Here we present a novel approach to deplete unwanted sequence types from complex nucleic acid mixtures prior to cloning and downstream analyses. It employs catalytically active oligonucleotides containing locked nucleic acids (LNAzymes) for the specific cleavage of selected RNA targets. When combined with in vitro transcription and reverse transcriptase PCR, this LNAzyme-based technique can be used with DNA or RNA extracts from microbial communities. The simultaneous application of more than one specific LNAzyme allows the concurrent depletion of different sequence types from the same nucleic acid preparation. This new method was evaluated with defined mixtures of cloned 16S rRNA genes and then used to identify accompanying bacteria in an enrichment culture dominated by the nitrite oxidizer “Candidatus Nitrospira defluvii.” In silico analysis revealed that the majority of publicly deposited rRNA-targeted oligonucleotide probes may be used as specific LNAzymes with no or only minor sequence modifications. This efficient and cost-effective approach will greatly facilitate tasks such as the identification of microbial symbionts in nucleic acid preparations dominated by plastid or mitochondrial rRNA genes from eukaryotic hosts, the detection of contaminants in microbial cultures, and the analysis of rare organisms in microbial communities of highly uneven composition. PMID:23263968

  6. Endolithic diversity of microorganisms on sandstone and implications for biogenic weathering

    NASA Astrophysics Data System (ADS)

    Hallmann, C.; Friedenberger, H.; Hoppert, M.

    2012-04-01

    Molecular methods allow a comprehensive view on uncultured microbial communities in dimension stone. In the presented study, we focus on depth profiles of microbial colonization in sandstones with different porosity and overall durability. All sandstones were taken from quarries where they were exposed to the environment for several years. Approximately 0.1 g of material from the stone surface, from 5 mm and from 30 mm depths was taken under sterile conditions and subjected to analysis of microbial DNA and culturing experiments. In particular, DNA was extracted from the material, the phylogenetic marker gene of eukaryotic organisms (18S rDNA) was amplified and used for generation of clone libraries, which were then analysed by sequencing. "Roter Wesersandstein" was just colonized at the material surface, predominantly with algal and fungal microorganisms. No environmental DNA could be isolated from depth profiles. From "Nebraer Sandstein" with high pore size (shown by thin sections), environmental DNA from depths down to 3 cm could be retrieved. Though the uppermost layer is dominated by microalgae (as concluded from the retrieved clones), the percentage of algal clones from 5 mm and 30 mm depths drop to 10 % of all clones. There, apart from filamentous fungi, moss clones clearly dominate the microbial community. At a depth of 30 mm, 70-80 % of the retrieved clones match to various mosses (Bryophyta). Though mosses do not form layers on the stone surfaces, moss rhizoids or protonemata must be abundant as endoliths inside the stone material. It is reasonable to assume that the rhizoids may contribute to an increase in pore size by active penetration of the clastic material, even though colonization of the surface by mosses is not obvious. This feature may imply stronger impact of stone decay induced by endolithic growth of bryophytes than hitherto observed.

  7. Bacterial diversity of Taxus rhizosphere: culture-independent and culture-dependent approaches.

    PubMed

    Hao, Da Cheng; Ge, Guang Bo; Yang, Ling

    2008-07-01

    The regional variability of Taxus rhizosphere bacterial community composition and diversity was studied by comparative analysis of three large 16S rRNA gene clone libraries from the Taxus rhizosphere in different regions of China (subtropical and temperate regions). One hundred and forty-six clones were screened for three libraries. Phylogenetic analysis of 16S rRNA gene sequences demonstrated that the abundance of sequences affiliated with Gammaproteobacteria, Betaproteobacteria, and Actinobacteria was higher in the library from the T. xmedia rhizosphere of the temperate region compared with the subtropical Taxus mairei rhizosphere. On the other hand, Acidobacteria was more abundant in libraries from the subtropical Taxus mairei rhizosphere. Richness estimates and diversity indices of three libraries revealed major differences, indicating a higher richness in the Taxus rhizosphere bacterial communities of the subtropical region and considerable variability in the bacterial community composition within this region. By enrichment culture, a novel Actinobacteria strain DICP16 was isolated from the T. xmedia rhizosphere of the temperate region and was identified as Leifsonia shinshuensis sp. via 16S rRNA gene and gyrase B sequence analyses. DICP16 was able to remove the xylosyl group from 7-xylosyl-10-deacetylbaccatin III and 7-xylosyl-10-deacetylpaclitaxel, thereby making the xylosyltaxanes available as sources of 10-deacetylbaccatin III and the anticancer drug paclitaxel. Taken together, the present studies provide, for the first time, the knowledge of the biodiversity of microorganisms populating Taxus rhizospheres.

  8. Targeting vector construction through recombineering.

    PubMed

    Malureanu, Liviu A

    2011-01-01

    Gene targeting in mouse embryonic stem cells is an essential, yet still very expensive and highly time-consuming, tool and method to study gene function at the organismal level or to create mouse models of human diseases. Conventional cloning-based methods have been largely used for generating targeting vectors, but are hampered by a number of limiting factors, including the variety and location of restriction enzymes in the gene locus of interest, the specific PCR amplification of repetitive DNA sequences, and cloning of large DNA fragments. Recombineering is a technique that exploits the highly efficient homologous recombination function encoded by λ phage in Escherichia coli. Bacteriophage-based recombination can recombine homologous sequences as short as 30-50 bases, allowing manipulations such as insertion, deletion, or mutation of virtually any genomic region. The large availability of mouse genomic bacterial artificial chromosome (BAC) libraries covering most of the genome facilitates the retrieval of genomic DNA sequences from the bacterial chromosomes through recombineering. This chapter describes a successfully applied protocol and aims to be a detailed guide through the steps of generation of targeting vectors through recombineering.

  9. Sequencing and analysis of 10967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, R D; Chang, E; Petrescu, A

    2005-10-31

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection initiative. Here we present an analysis of 10967 clones (8049 from X. laevis and 2918 from X. tropicalis). The clone set contains 2013 orthologs between X. laevis and X. tropicalis as well as 1795 paralog pairs within X. laevis. 1199 are in-paralogs, believed to have resulted from an allotetraploidization event approximately 30 million years ago, and the remaining 546 are likely out-paralogs that have resulted from more ancient gene duplications, prior to the divergence betweenmore » the two species. We do not detect any evidence for positive selection by the Yang and Nielsen maximum likelihood method of approximating d{sub N}/d{sub S}. However, d{sub N}/d{sub S} for X. laevis in-paralogs is elevated relative to X. tropicalis orthologs. This difference is highly significant, and indicates an overall relaxation of selective pressures on duplicated gene pairs. Within both groups of paralogs, we found evidence of subfunctionalization, manifested as differential expression of paralogous genes among tissues, as measured by EST information from public resources. We have observed, as expected, a higher instance of subfunctionalization in out-paralogs relative to in-paralogs.« less

  10. DC-Analyzer-facilitated combinatorial strategy for rapid directed evolution of functional enzymes with multiple mutagenesis sites.

    PubMed

    Wang, Xiong; Zheng, Kai; Zheng, Huayu; Nie, Hongli; Yang, Zujun; Tang, Lixia

    2014-12-20

    Iterative saturation mutagenesis (ISM) has been shown to be a powerful method for directed evolution. In this study, the approach was modified (termed M-ISM) by combining the single-site saturation mutagenesis method with a DC-Analyzer-facilitated combinatorial strategy, aiming to evolve novel biocatalysts efficiently in the case where multiple sites are targeted simultaneously. Initially, all target sites were explored individually by constructing single-site saturation mutagenesis libraries. Next, the top two to four variants in each library were selected and combined using the DC-Analyzer-facilitated combinatorial strategy. In addition to site-saturation mutagenesis, iterative saturation mutagenesis also needed to be performed. The advantages of M-ISM over ISM were that the screening effort is greatly reduced, and the entire M-ISM procedure was less time-consuming. The M-ISM strategy was successfully applied to the randomization of halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) when five interesting sites were targeted simultaneously. After screening 900 clones in total, six positive mutants were obtained. These mutants exhibited 4.0- to 9.3-fold higher k(cat) values than did the wild-type HheC toward 1,3-dichloro-2-propanol. However, with the ISM strategy, the best hit showed a 5.9-fold higher k(cat) value toward 1,3-DCP than the wild-type HheC, which was obtained after screening 4000 clones from four rounds of mutagenesis. Therefore, M-ISM could serve as a simple and efficient version of ISM for the randomization of target genes with multiple positions of interest.

  11. Identification and Characterization of Strychnine-Binding Peptides Using Phage-Display Screening.

    PubMed

    Zhang, Fang; Wang, Min; Qiu, Zheng; Wang, Xiao-Meng; Xu, Chun-Lei; Zhang, Xia

    2017-01-01

    In drug development, phage display is a high-throughput method for identifying the specific cellular targets of drugs. However, insoluble small chemicals remain intractable to this technique because of the difficulty of presenting molecules to phages without occupying or destroying the limited functional groups. In the present study, we selected Strychnine (Stry) as a model compounda and sought to develope an alternative in vitro biopanning strategy against insoluble suspension. A phage library displaying random sequences of fifteen peptides was employed to screen for interactions between Stry and its cellular selective binding peptides, which are of great value to have a complete understanding of the mechanism of Stry for its antitumor activity. After four rounds of biopanning, a selection of 100 binding clones was randomly picked and subjected to modified proliferation and diffusion assays to evaluate the binding affinity of the clones. Finally, eleven clones were identified as positive binders. The corresponding peptides were synthesized and detected for their binding activities using surface plasmon resonance imaging (SPRi). Our study provides a feasible scheme for confirming the interaction of chemical compounds and cellular binding peptides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. HUNT: launch of a full-length cDNA database from the Helix Research Institute.

    PubMed

    Yudate, H T; Suwa, M; Irie, R; Matsui, H; Nishikawa, T; Nakamura, Y; Yamaguchi, D; Peng, Z Z; Yamamoto, T; Nagai, K; Hayashi, K; Otsuki, T; Sugiyama, T; Ota, T; Suzuki, Y; Sugano, S; Isogai, T; Masuho, Y

    2001-01-01

    The Helix Research Institute (HRI) in Japan is releasing 4356 HUman Novel Transcripts and related information in the newly established HUNT database. The institute is a joint research project principally funded by the Japanese Ministry of International Trade and Industry, and the clones were sequenced in the governmental New Energy and Industrial Technology Development Organization (NEDO) Human cDNA Sequencing Project. The HUNT database contains an extensive amount of annotation from advanced analysis and represents an essential bioinformatics contribution towards understanding of the gene function. The HRI human cDNA clones were obtained from full-length enriched cDNA libraries constructed with the oligo-capping method and have resulted in novel full-length cDNA sequences. A large fraction has little similarity to any proteins of known function and to obtain clues about possible function we have developed original analysis procedures. Any putative function deduced here can be validated or refuted by complementary analysis results. The user can also extract information from specific categories like PROSITE patterns, PFAM domains, PSORT localization, transmembrane helices and clones with GENIUS structure assignments. The HUNT database can be accessed at http://www.hri.co.jp/HUNT.

  13. Characterization of herbaspirillum- and limnobacter-related strains isolated from young volcanic deposits in miyake-jima island, Japan.

    PubMed

    Lu, Hongsheng; Fujimura, Reiko; Sato, Yoshinori; Nanba, Kenji; Kamijo, Takashi; Ohta, Hiroyuki

    2008-01-01

    The role of microbes in the early development of ecosystems on new volcanic materials seems to be crucial to primary plant succession but is not well characterized. Here we analyzed the bacterial community colonizing 22-year-old volcanic deposits of the Miyake-jima Island (Japan) using culture-based and 16S rRNA gene clone library methods. The majority of 91 bacterial isolates were placed phylogenetically in two clusters (A and B) of the Betaproteobacteria. Cluster A (82% of isolates) was related to the genus Limnobacter and Cluster B (9%) was affiliated with the Herbaspirillum clade. The clone library analysis supported the predominance of Cluster B rather than Cluster A. Strain KP1-50 of Cluster B was able to grow on a mineral medium under an atmosphere of H(2), O(2), and CO(2) (85:5:10), and characterized by its large-subunit gene of ribulose 1,5-bisphosphate carboxylase/oxygenase (rbcL) and nitrogenase reductase gene (nifH). In contrast, strains of Cluster A did not grow chemolithoautotrophically with H(2), O(2), and CO(2) but increased their cell biomass with the addition of thiosulfate to the succinate medium, suggesting the use of thiosulfate as an energy source. From phenotypic characterization, it was suggested that the Cluster A and B strains were novel species in the genus Limnobacter and Herbaspirillum, respectively.

  14. Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library

    NASA Astrophysics Data System (ADS)

    Maron, Pierre-Alain; Lejon, David P. H.; Carvalho, Esmeralda; Bizet, Karine; Lemanceau, Philippe; Ranjard, Lionel; Mougel, Christophe

    The density, genetic structure and diversity of airborne bacterial communities were assessed in the outdoor atmosphere. Two air samples were collected on the same location (north of France) at two dates (March 2003 (sample1) and May 2003 (sample 2)). Molecular culture -independent methods were used to characterise airborne bacterial communities regardless of the cell culturability. The automated-ribosomal intergenic spacer analysis (A-RISA) was performed to characterise the community structure in each sample. For both sampling dates, complex A-RISA patterns were observed suggesting a highly diverse community structure, comparable to those found in soil, water or sediment environments. Furthermore, differences in the genetic structure of airborne bacterial communities were observed between samples 1 and 2 suggesting an important variability in time. A clone library of 16S rDNA directly amplified from air DNA of sample 1 was constructed and sequenced to analyse the community composition and diversity. The Proteobacteria group had the greatest representation (60%), with bacteria belonging to the different subdivisions α- (19%), β-(21%), γ-(12%) and δ-(8%). Firmicute and Actinobacteria were also well represented with 14% and 12%, respectively. Most of the identified bacteria are known to be commonly associated with soil or plant environments suggesting that the atmosphere is mainly colonised transiently by microorganisms from local sources, depending on air fluxes.

  15. Cloning of Trametes versicolar genes induced by nitrogen starvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trudel, P.; Courchesne, D.; Roy, C.

    1988-06-01

    We have screened a genomic library of Trametes versicolar for genes whose expression is associated with nitrogen starvation, which has been shown to induce ligninolytic activity. Using two different approaches based on differential expression, we isolated 29 clones. These were shown by restriction mapping and cross-hybridization to code for 11 distinct differentially expressed genes. Northern analysis of the kinetics of expression of these genes revealed that at least four of them have kinetics of induction that parallel kinetics of induction of ligninolytic activity.

  16. MagnaportheDB: a federated solution for integrating physical and genetic map data with BAC end derived sequences for the rice blast fungus Magnaporthe grisea.

    PubMed

    Martin, Stanton L; Blackmon, Barbara P; Rajagopalan, Ravi; Houfek, Thomas D; Sceeles, Robert G; Denn, Sheila O; Mitchell, Thomas K; Brown, Douglas E; Wing, Rod A; Dean, Ralph A

    2002-01-01

    We have created a federated database for genome studies of Magnaporthe grisea, the causal agent of rice blast disease, by integrating end sequence data from BAC clones, genetic marker data and BAC contig assembly data. A library of 9216 BAC clones providing >25-fold coverage of the entire genome was end sequenced and fingerprinted by HindIII digestion. The Image/FPC software package was then used to generate an assembly of 188 contigs covering >95% of the genome. The database contains the results of this assembly integrated with hybridization data of genetic markers to the BAC library. AceDB was used for the core database engine and a MySQL relational database, populated with numerical representations of BAC clones within FPC contigs, was used to create appropriately scaled images. The database is being used to facilitate sequencing efforts. The database also allows researchers mapping known genes or other sequences of interest, rapid and easy access to the fundamental organization of the M.grisea genome. This database, MagnaportheDB, can be accessed on the web at http://www.cals.ncsu.edu/fungal_genomics/mgdatabase/int.htm.

  17. Cloning of precursors for two MIH/VIH-related peptides in the prawn, Macrobrachium rosenbergii.

    PubMed

    Yang, W J; Rao, K R

    2001-11-30

    Two cDNA clones (634 and 1366 bp) encoding MIH/VIH (molt-inhibiting hormone/vitellogenesis-inhibiting hormone)-related peptides were isolated and sequenced from a Macrobrachium rosenbergii eyestalk ganglia cDNA library. The clones contain a 360 and 339 bp open-reading frame, and their conceptually translated peptides consist of a 41 and 34 amino acid signal peptide, respectively, and a 78 amino acid residue mature peptide hormone. The amino acid sequences of the peptides exhibit higher identities with other known MIHs and VIH (44-69%) than with CHHs (28-33%). This is the first report describing the cloning and sequencing of two MIH/VIH-related peptides in a single crustacean species. Transcription of these mRNAs was detected in the eyestalk ganglia, but not in the thoracic ganglia, hepatopancreas, gut, gill, heart, or muscle.

  18. Cloning and sequence analysis of the human brain beta-adrenergic receptor. Evolutionary relationship to rodent and avian beta-receptors and porcine muscarinic receptors.

    PubMed

    Chung, F Z; Lentes, K U; Gocayne, J; Fitzgerald, M; Robinson, D; Kerlavage, A R; Fraser, C M; Venter, J C

    1987-01-26

    Two cDNA clones, lambda-CLFV-108 and lambda-CLFV-119, encoding for the beta-adrenergic receptor, have been isolated from a human brain stem cDNA library. One human genomic clone, LCV-517 (20 kb), was characterized by restriction mapping and partial sequencing. The human brain beta-receptor consists of 413 amino acids with a calculated Mr of 46480. The gene contains three potential glucocorticoid receptor-binding sites. The beta-receptor expressed in human brain was homology with rodent (88%) and avian (52%) beta-receptors and with porcine muscarinic cholinergic receptors (31%), supporting our proposal [(1984) Proc. Natl. Acad. Sci. USA 81, 272 276] that adrenergic and muscarinic cholinergic receptors are structurally related. This represents the first cloning of a neurotransmitter receptor gene from human brain.

  19. Map-based cloning of a gene controlling Omega-3 fatty acid desaturation in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arondel, V.; Lemieux, B.; Hwang, I.

    1992-11-20

    A gene from the flowering plant Arabidopsis thaliana that encodes an omega-3 desaturase was cloned on the basis of the genetic map position of a mutation affecting membrane and storage lipid fatty acid composition. Yeast artificial chromosomes covering the genetic locus were identified and used to probe a seed complementary DNA library. A complementary DNA clone for the desaturase was identified and introduced into roots of both wild-type and mutant plants by Ti plasmid-mediated transformation. Transgenic tissues of both mutant and wild-type plants had significantly increased amounts of the fatty acid produced by this desaturase. 24 refs., 2 figs., 1more » tabs.« less

  20. Rapid Isolation of Antibody from a Synthetic Human Antibody Library by Repeated Fluorescence-Activated Cell Sorting (FACS)

    PubMed Central

    Yim, Sung Sun; Bang, Hyun Bae; Kim, Young Hwan; Lee, Yong Jae; Jeong, Gu Min; Jeong, Ki Jun

    2014-01-01

    Antibodies and their derivatives are the most important agents in therapeutics and diagnostics. Even after the significant progress in the technology for antibody screening from huge libraries, it takes a long time to isolate an antibody, which prevents a prompt action against the spread of a disease. Here, we report a new strategy for isolating desired antibodies from a combinatorial library in one day by repeated fluorescence-activated cell sorting (FACS). First, we constructed a library of synthetic human antibody in which single-chain variable fragment (scFv) was expressed in the periplasm of Escherichia coli. After labeling the cells with fluorescent antigen probes, the highly fluorescent cells were sorted by using a high-speed cell sorter, and these cells were reused without regeneration in the next round of sorting. After repeating this sorting, the positive clones were completely enriched in several hours. Thus, we screened the library against three viral antigens, including the H1N1 influenza virus, Hepatitis B virus, and Foot-and-mouth disease virus. Finally, the potential antibody candidates, which show KD values between 10 and 100 nM against the target antigens, could be successfully isolated even though the library was relatively small (∼106). These results show that repeated FACS screening without regeneration of the sorted cells can be a powerful method when a rapid response to a spreading disease is required. PMID:25303314

Top