Ali, Shahin S; Melnick, Rachel L; Crozier, Jayne; Phillips-Mora, Wilberth; Strem, Mary D; Shao, Jonathan; Zhang, Dapeng; Sicher, Richard; Meinhardt, Lyndel; Bailey, Bryan A
2014-09-01
An understanding of the tolerance mechanisms of Theobroma cacao used against Moniliophthora roreri, the causal agent of frosty pod rot, is important for the generation of stable disease-tolerant clones. A comparative view was obtained of transcript populations of infected pods from two susceptible and two tolerant clones using RNA sequence (RNA-Seq) analysis. A total of 3009 transcripts showed differential expression among clones. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differentially expressed genes indicated shifts in 152 different metabolic pathways between the tolerant and susceptible clones. Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) analyses of 36 genes verified the differential expression. Regression analysis validated a uniform progression in gene expression in association with infection levels and fungal loads in the susceptible clones. Expression patterns observed in the susceptible clones diverged in tolerant clones, with many genes showing higher expression at a low level of infection and fungal load. Principal coordinate analyses of real-time qRT-PCR data separated the gene expression patterns between susceptible and tolerant clones for pods showing malformation. Although some genes were constitutively differentially expressed between clones, most results suggested that defence responses were induced at low fungal load in the tolerant clones. Several elicitor-responsive genes were highly expressed in tolerant clones, suggesting rapid recognition of the pathogen and induction of defence genes. Expression patterns suggested that the jasmonic acid-ethylene- and/or salicylic acid-mediated defence pathways were activated in the tolerant clones, being enhanced by reduced brassinosteroid (BR) biosynthesis and catabolic inactivation of both BR and abscisic acids. Finally, several genes associated with hypersensitive response-like cell death were also induced in tolerant clones. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes
Throop, Andrea L.; LaBaer, Joshua
2015-01-01
The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088
Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field.
Bailey, Bryan A; Melnick, Rachel L; Strem, Mary D; Crozier, Jayne; Shao, Jonathan; Sicher, Richard; Phillips-Mora, Wilberth; Ali, Shahin S; Zhang, Dapeng; Meinhardt, Lyndel
2014-09-01
Frosty pod rot (FPR) of Theobroma cacao (cacao) is caused by the hemibiotrophic fungus Moniliophthora roreri. Cacao clones tolerant to FPR are being planted throughout Central America. To determine whether M. roreri shows a differential molecular response during successful infections of tolerant clones, we collected field-infected pods at all stages of symptomatology for two highly susceptible clones (Pound-7 and CATIE-1000) and three tolerant clones (UF-273, CATIE-R7 and CATIE-R4). Metabolite analysis was carried out on clones Pound-7, CATIE-1000, CATIE-R7 and CATIE-R4. As FPR progressed, the concentrations of sugars in pods dropped, whereas the levels of trehalose and mannitol increased. Associations between symptoms and fungal loads and some organic and amino acid concentrations varied depending on the clone. RNA-Seq analysis identified 873 M. roreri genes that were differentially expressed between clones, with the primary difference being whether the clone was susceptible or tolerant. Genes encoding transcription factors, heat shock proteins, transporters, enzymes modifying membranes or cell walls and metabolic enzymes, such as malate synthase and alternative oxidase, were differentially expressed. The differential expression between clones of 43 M. roreri genes was validated by real-time quantitative reverse transcription polymerase chain reaction. The expression profiles of some genes were similar in susceptible and tolerant clones (other than CATIE-R4) and varied with the biotrophic/necrotropic shift. Moniliophthora roreri genes associated with stress metabolism and responses to heat shock and anoxia were induced early in tolerant clones, their expression profiles resembling that of the necrotrophic phase. Moniliophthora roreri stress response genes, induced during the infection of tolerant clones, may benefit the fungus in overcoming cacao defense mechanisms. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Subramaniam, R; Reinold, S; Molitor, E K; Douglas, C J
1993-01-01
A heterologous probe encoding phenylalanine ammonia-lyase (PAL) was used to identify PAL clones in cDNA libraries made with RNA from young leaf tissue of two Populus deltoides x P. trichocarpa F1 hybrid clones. Sequence analysis of a 2.4-kb cDNA confirmed its identity as a full-length PAl clone. The predicted amino acid sequence is conserved in comparison with that of PAL genes from several other plants. Southern blot analysis of popular genomic DNA from parental and hybrid individuals, restriction site polymorphism in PAL cDNA clones, and sequence heterogeneity in the 3' ends of several cDNA clones suggested that PAL is encoded by at least two genes that can be distinguished by HindIII restriction site polymorphisms. Clones containing each type of PAL gene were isolated from a poplar genomic library. Analysis of the segregation of PAL-specific HindIII restriction fragment-length polymorphisms demonstrated the existence of two independently segregating PAL loci, one of which was mapped to a linkage group of the poplar genetic map. Developmentally regulated PAL expression in poplar was analyzed using RNA blots. Highest expression was observed in young stems, apical buds, and young leaves. Expression was lower in older stems and undetectable in mature leaves. Cellular localization of PAL expression by in situ hybridization showed very high levels of expression in subepidermal cells of leaves early during leaf development. In stems and petioles, expression was associated with subepidermal cells and vascular tissues. PMID:8108506
Vectors for co-expression of an unrestricted number of proteins
Scheich, Christoph; Kümmel, Daniel; Soumailakakis, Dimitri; Heinemann, Udo; Büssow, Konrad
2007-01-01
A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells. PMID:17311810
Characterization of transformation related genes in oral cancer cells.
Chang, D D; Park, N H; Denny, C T; Nelson, S F; Pe, M
1998-04-16
A cDNA representational difference analysis (cDNA-RDA) and an arrayed filter technique were used to characterize transformation-related genes in oral cancer. From an initial comparison of normal oral epithelial cells and a human papilloma virus (HPV)-immortalized oral epithelial cell line, we obtained 384 differentially expressed gene fragments and arrayed them on a filter. Two hundred and twelve redundant clones were identified by three rounds of back hybridization. Sequence analysis of the remaining clones revealed 99 unique clones corresponding to 69 genes. The expression of these transformation related gene fragments in three nontumorigenic HPV-immortalized oral epithelial cell lines and three oral cancer cell lines were simultaneously monitored using a cDNA array hybridization. Although there was a considerable cell line-to-cell line variability in the expression of these clones, a reliable prediction of their expression could be made from the cDNA array hybridization. Our study demonstrates the utility of combining cDNA-RDA and arrayed filters in high-throughput gene expression difference analysis. The differentially expressed genes identified in this study should be informative in studying oral epithelial cell carcinogenesis.
CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT
S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE
Stephen B. Waters, Ph.D., Miroslav Styblo, Ph.D., Melinda A. Beck, Ph.D., University of North Carolina at Chapel Hill; David J. Thomas, Ph.D., U.S. Environmental...
Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang
2007-02-01
To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.
Yousefi, S; Cooper, P R; Potter, S L; Mueck, B; Jarai, G
2001-06-01
The migration of neutrophils into sites of acute and chronic inflammation is mediated by chemokines. We used degenerate-primer reverse transcriptase-polymerase chain reaction (RT-PCR) to analyze chemokine receptor expression in neutrophils and identify novel receptors. RNA was isolated from human peripheral blood neutrophils and from neutrophils that had been stimulated for 5 h with granulocyte-macrophage colony-stimulating factor or by coculturing with primary human bronchial epithelial cells. Amplification products were cloned, and clone redundancy was determined. Seven known G-protein-coupled receptors were identified among 38 clones-CCR1, CCR4, CXCR1, CXCR2, CXCR4, HM63, and FPR1-as well as a novel gene, EX33. The full-length EX33 clone was obtained, and an in silico approach was used to identify the putative murine homologue. The EX33 gene encodes a 396-amino-acid protein with limited sequence identity to known receptors. Expression studies of several known chemokine receptors and EX33 revealed that resting neutrophils expressed higher levels of CXCRs and EX33 compared with activated neutrophils. Northern blot experiments revealed that EX33 is expressed mainly in bone marrow, lung, and peripheral blood leukocytes. Using RT-PCR analysis, we showed more abundant expression of EX33 in neutrophils and eosinophils, in comparison with that in T- or B-lymphocytes, indicating cell-specific expression among leukocytes.
Correlation of EGFR expression, gene copy number and clinicopathological status in NSCLC.
Gaber, Rania; Watermann, Iris; Kugler, Christian; Reinmuth, Nils; Huber, Rudolf M; Schnabel, Philipp A; Vollmer, Ekkehard; Reck, Martin; Goldmann, Torsten
2014-09-17
Epidermal Growth Factor Receptor (EGFR) targeting therapies are currently of great relevance for the treatment of lung cancer. For this reason, in addition to mutational analysis immunohistochemistry (IHC) of EGFR in lung cancer has been discussed for the decision making of according therapeutic strategies. The aim of this study was to obtain standardization of EGFR-expression methods for the selection of patients who might benefit of EGFR targeting therapies. As a starting point of a broad investigation, aimed at elucidating the expression of EGFR on different biological levels, four EGFR specific antibodies were analyzed concerning potential differences in expression levels by Immunohistochemistry (IHC) and correlated with fluorescence in situ hybridization (FISH) analysis and clinicopathological data. 206 tumor tissues were analyzed in a tissue microarray format employing immunohistochemistry with four different antibodies including Dako PharmDx kit (clone 2-18C9), clone 31G7, clone 2.1E1 and clone SP84 using three different scoring methods. Protein expression was compared to FISH utilizing two different probes. EGFR protein expression determined by IHC with Dako PharmDx kit, clone 31G7 and clone 2.1E1 (p ≤ 0.05) correlated significantly with both FISH probes independently of the three scoring methods; best correlation is shown for 31G7 using the scoring method that defined EGFR positivity when ≥ 10% of the tumor cells show membranous staining of moderate and severe intensity (p=0.001). Overall, our data show differences in EGFR expression determined by IHC, due to the applied antibody. Highest concordance with FISH is shown for antibody clone 31G7, evaluated with score B (p=0.001). On this account, this antibody clone might by utilized for standard evaluation of EGFR expression by IHC. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_165.
Simple cloning strategy using GFPuv gene as positive/negative indicator.
Miura, Hiromi; Inoko, Hidetoshi; Inoue, Ituro; Tanaka, Masafumi; Sato, Masahiro; Ohtsuka, Masato
2011-09-15
Because construction of expression vectors is the first requisite in the functional analysis of genes, development of simple cloning systems is a major requirement during the postgenomic era. In the current study, we developed cloning vectors for gain- or loss-of-function studies by using the GFPuv gene as a positive/negative indicator of cloning. These vectors allow us to easily detect correct clones and obtain expression vectors from a simple procedure by means of the combined use of the GFPuv gene and a type IIS restriction enzyme. Copyright © 2011 Elsevier Inc. All rights reserved.
Zhou, Wenli; Sadeghieh, Sanaz; Abruzzese, Ronald; Uppada, Subhadra; Meredith, Justin; Ohlrichs, Charletta; Broek, Diane; Polejaeva, Irina
2009-09-01
Among many factors that potentially affect somatic cell nuclear transfer (SCNT) embryo development is the donor cell itself. Cloning potentials of somatic donor cells vary greatly, possibly because the cells have different capacities to be reprogrammed by ooplasma. It is therefore intriguing to identify factors that regulate the reprogrammability of somatic donor cells. Gene expression analysis is a widely used tool to investigate underlying mechanisms of various phenotypes. In this study, we conducted a retrospective analysis investigating whether donor cell lines with distinct cloning efficiencies express different levels of genes involved in epigenetic reprogramming including histone deacetylase-1 (HDAC1), -2 (HDAC2); DNA methyltransferase-1 (DNMT1), -3a (DNMT3a),-3b (DNMT3b), and the bovine homolog of yeast sucrose nonfermenting-2 (SNF2L), a SWI/SNF family of ATPases. Cell samples from 12 bovine donor cell lines were collected at the time of nuclear transfer experiments and expression levels of the genes were measured using quantitative polymerase chain reaction (PCR). Our results show that there are no significant differences in expression levels of these genes between donor cell lines of high and low cloning efficiency defined as live calving rates, although inverse correlations are observed between in vitro embryo developmental rates and expression levels of HDAC2 and SNF2L. We also show that selection of stable reference genes is important for relative quantification, and different batches of cells can have different gene expression patterns. In summary, we demonstrate that expression levels of these epigenome regulatory genes in bovine donor cells are not correlated with cloning potential. The experimental design and data analysis method reported here can be applied to study any genes expressed in donor cells.
Jackson, S; Gascón, J; Carrera, E; Monte, E; Prat, S
1997-01-01
Differential screening of a potato leaf cDNA library with cDNA probes made from tuberizing and non-tuberizing Solanum demissum plants led to the identification of a clone that is upregulated in leaves and other tissues upon tuberization. This clone was also shown to have a high level of expression in green tomato fruit, its expression falling off as the fruit turns red. No sucrose or hormonal regulation of the expression of this clone was observed and it did not respond to wounding or heat stress. Clone 32B is 532 bp long and contains an open reading frame encoding a small protein of 98 amino acids. The deduced protein sequence has a putative signal peptide for ER transport and a 10 amino acid domain in the C-terminal region of the protein, both of which are also found in the cotton LEA5, Arabidopsis Di21 and the mungbean Arg2 proteins.
Cloning of rat MLH1 and expression analysis of MSH2, MSH3, MSH6, and MLH1 during spermatogenesis.
Geeta Vani, R; Varghese, C M; Rao, M R
1999-12-15
The mismatch repair system has been highly conserved in various species. In eukaryotic cells, the Mut S and Mut L homologues play crucial roles in both DNA mismatch repair and meiotic recombination. A full-length rat cDNA clone for rat MLH1 has been constructed using the RT-PCR method. The cDNA has an open reading frame of 2274 nucleotides for a protein of 757 amino acids. We have also obtained partial cDNA clones for MSH3 and MSH6. Northern blot analysis of rat MLH1, MSH2, MSH3, and MSH6 in the testes of rats of different ages showed differential expression of these genes as a function of developmental maturation of the testes. The expression analysis suggests that MSH3 may have a more predominant role in the meiotic recombination process. Copyright 1999 Academic Press.
Mesquita, Fernando S; Machado, Sergio A; Drnevich, Jenny; Borowicz, Pawel; Wang, Zhongde; Nowak, Romana A
2013-01-30
Poor success rates in somatic cell cloning are often attributed to abnormal early embryonic development as well as late abnormal fetal growth and placental development. Although promising results have been reported following chromatin transfer (CT), a novel cloning method that includes the remodeling of the donor nuclei in vitro prior to their transfer into enucleated oocytes, animals cloned by CT show placental abnormalities similar to those observed following conventional nuclear transfer. We hypothesized that the placental gene expression pattern from cloned fetuses was ontologically related to the frequently observed placental phenotype. The aim of the present study was to compare global gene expression by microarray analysis of Day 44-47 cattle placentas derived from CT cloned fetuses with those derived from in vitro fertilization (i.e. control), and confirm the altered mRNA and protein expression of selected molecules by qRT-PCR and immunohistochemistry, respectively. The differentially expressed genes identified in the present study are known to be involved in a range of activities associated with cell adhesion, cell cycle control, intracellular transport and proteolysis. Specifically, an imprinted gene, involved with cell proliferation and placentomegaly in humans (CDKN1C) and a peptidase that serves as a marker for non-invasive trophoblast cells in human placentas (DPP4), had mRNA and protein altered in CT placentas. It was concluded that the altered pattern of gene expression observed in CT samples may contribute to the abnormal placental development phenotypes commonly identified in cloned offspring, and that expression of imprinted as well as trophoblast invasiveness-related genes is altered in cattle cloned by CT. Copyright © 2012 Elsevier B.V. All rights reserved.
Differences in expression of retinal pigment epithelium mRNA between normal canines
2004-01-01
Abstract A reference database of differences in mRNA expression in normal healthy canine retinal pigment epithelium (RPE) has been established. This database identifies non-informative differences in mRNA expression that can be used in screening canine RPE for mutations associated with clinical effects on vision. Complementary DNA (cDNA) pools were prepared from mRNA harvested from RPE, amplified by PCR, and used in a subtractive hybridization protocol (representational differential analysis) to identify differences in RPE mRNA expression between canines. The effect of relatedness of the test canines on the frequency of occurrence of differences was evaluated by using 2 unrelated canines for comparison with 2 female sibling canines of blue heeler/bull terrier lineage. Differentially expressed cDNA species were cloned, sequenced, and identified by comparison to public database entries. The most frequently observed differentially expressed sequence from the unrelated canine comparison was cDNA with 21 base pairs (bp) identical to the human epithelial membrane protein 1 gene (present in 8 of 20 clones). Different clones from the same-sex sibling RPE contained repetitions of several short sequence motifs including the human epithelial membrane protein 1 (4 of 25 clones). Other prevalent differences between sibling RPE included sequences similar to a chicken genetic marker sequence motif (5 of 25), and 6 clones with homology to porcine major histocompatibility loci. In addition to identifying several repetitively occurring, noninformative, differentially expressed RPE mRNA species, the findings confirm that fewer differences occurred between siblings, highlighting the importance of using closely related subjects in representational difference analysis studies. PMID:15352545
Anisimov, S V; Bokheler, K R; Khavinson, V Kh; Anisimov, V N
2002-03-01
Expression of 15,247 clones from a cDNA library in the heart of mice receiving Vilon and Epithalon was studied by DNA-microarray technology. We revealed 300 clones (1.94% of the total count), whose expression changed more than by 2 times. Vilon changed expression of 36 clones, while Epithalon modulated expression of 98 clones. Combined treatment with Vilon and Epithalon changed expression of 144 clones. Vilon alone or in combination with Epithalon activated expression of 157 clones (maximally by 6.13 times) and inhibited expression of 23 clones (maximally by 2.79 times). Epithalon alone or in combination with Vilon activated expression of 194 clones (maximally by 6.61 times) and inhibited expression of 48 clones (maximally by 2.71 times). Our results demonstrate the specific effects of Epithalon and Vilon on gene expression.
Regulation of c- and N-myc expression during induced differentiation of murine neuroblastoma cells.
Larcher, J C; Vayssière, J L; Lossouarn, L; Gros, F; Croizat, B
1991-04-01
Using clones N1E-115 and N1A-103 from mouse neuroblastoma C1300, a comparative analysis of c- and N-myc gene expression was undertaken both in proliferating cells and in cultures exposed to conditions which induce differentiation. Under the latter conditions, while N1E-115 cells extend abundant neurites and express many biochemical features of mature neurons, clone N1A-103 stops dividing and expresses certain neurospecific markers but is unable to differentiate morphologically. In both clones, chemical agents, i.e. 1-methyl cyclohexane carboxylic acid (CCA) or dimethyl sulfoxide (DMSO), induce a decrease in c-myc expression. Similar results were found for N-myc gene in N1E-115 cells, but in contrast, in clone N1A-103, N-myc expression is increased with CCA and not modified with DMSO. Globally, this study favours the hypothesis that changes in c-myc expression would correspond to cell division blockade and differentiation, while modulations in N-myc are more closely related to an early phase of terminal differentiation.
Cloning of Trametes versicolar genes induced by nitrogen starvation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trudel, P.; Courchesne, D.; Roy, C.
1988-06-01
We have screened a genomic library of Trametes versicolar for genes whose expression is associated with nitrogen starvation, which has been shown to induce ligninolytic activity. Using two different approaches based on differential expression, we isolated 29 clones. These were shown by restriction mapping and cross-hybridization to code for 11 distinct differentially expressed genes. Northern analysis of the kinetics of expression of these genes revealed that at least four of them have kinetics of induction that parallel kinetics of induction of ligninolytic activity.
Ran, Tao; Li, Hengzhi; Liu, Yong; Zhou, Chuanshe; Tang, Shaoxun; Han, Xuefeng; Wang, Min; He, Zhixiong; Kang, Jinghe; Yan, Qiongxian; Tan, Zhiliang; Beauchemin, Karen A
2016-03-23
G-protein-coupled receptor 120 (GPR120) is reported as a long-chain fatty acid (LCFA) receptor that elicits free fatty acid (FFA) regulation on metabolism homeostasis. The study aimed to clone the gpr120 gene of goats (g-GPR120) and subsequently investigate phylogenetic analysis and tissue distribution throughout the digestive tracts of kid goats, as well as the effect of housing versus grazing (H vs G) feeding systems on GPR120 expression. Partial coding sequence (CDS) of g-GPR120 was cloned and submitted to NCBI (accession no. KU161270 ). Phylogenetic analysis revealed that g-GPR120 shared higher homology in both mRNA and amino acid sequences for ruminants than nonruminants. Immunochemistry, real-time PCR, and Western blot analysis showed that g-GPR120 was expressed throughout the digestive tracts of goats. The expression of g-GPR120 was affected by feeding system and age, with greater expression of g-GPR120 in the G group. It was concluded that the g-GPR120-mediated LCFA chemosensing mechanism is widely present in the tongue and gastrointestinal tract of goats and that its expression can be affected by feeding system and age.
Peng, Jing; Peng, Futian; Zhu, Chunfu; Wei, Shaochong
2008-06-01
A putative isopentenyltransferase (IPT) encoding gene was identified from a pingyitiancha (Malus hupehensis Rehd.) expressed sequence tag database, and the full-length gene was cloned by RACE. Based on expression profile and sequence alignment, the nucleotide sequence of the clone, named MhIPT3, was most similar to AtIPT3, an IPT gene in Arabidopsis. The full-length cDNA contained a 963-bp open reading frame encoding a protein of 321 amino acids with a molecular mass of 37.3 kDa. Sequence analysis of genomic DNA revealed the absence of introns in the frame. Quantitative real-time PCR analysis demonstrated that the gene was expressed in roots, stems and leaves. Application of nitrate to roots of nitrogen-deprived seedlings strongly induced expression of MhIPT3 and was accompanied by the accumulation of cytokinins, whereas MhIPT3 expression was little affected by ammonium application to roots of nitrogen-deprived seedlings. Application of nitrate to leaves also up-regulated the expression of MhIPT3 and corresponded closely with the accumulation of isopentyladenine and isopentyladenosine in leaves.
Bressan, Fabiana Fernandes; Dos Santos Miranda, Moyses; Perecin, Felipe; De Bem, Tiago Henrique; Pereira, Flavia Thomaz Verechia; Russo-Carbolante, Elisa Maria; Alves, Daiani; Strauss, Bryan; Bajgelman, Marcio; Krieger, José Eduardo; Binelli, Mario; Meirelles, Flavio Vieira
2011-02-01
Animal cloning by nuclear transfer (NT) has made the production of transgenic animals using genetically modified donor cells possible and ensures the presence of the gene construct in the offspring. The identification of transgene insertion sites in donor cells before cloning may avoid the production of animals that carry undesirable characteristics due to positional effects. This article compares blastocyst development and competence to establish pregnancies of bovine cloned embryos reconstructed with lentivirus-mediated transgenic fibroblasts containing either random integration of a transgene (random integration group) or nuclear transfer derived transgenic fibroblasts with known transgene insertion sites submitted to recloning (recloned group). In the random integration group, eGFP-expressing bovine fetal fibroblasts were selected by fluorescence activated cell sorting (FACS) and used as nuclei donor cells for NT. In the recloned group, a fibroblast cell line derived from a transgenic cloned fetus was characterized regarding transgene insertion and submitted to recloning. The recloned group had higher blastocyst production (25.38 vs. 14.42%) and higher percentage of 30-day pregnancies (14.29 vs. 2.56%) when compared to the random integration group. Relative eGFP expression analysis in fibroblasts derived from each cloned embryo revealed more homogeneous expression in the recloned group. In conclusion, the use of cell lines recovered from transgenic fetuses after identification of the transgene integration site allowed for the production of cells and fetuses with stable transgene expression, and recloning may improve transgenic animal yields.
USDA-ARS?s Scientific Manuscript database
This study was conducted to clone and analyze the expression pattern of a C4H gene encoding cinnamate 4-hydroxylase from kenaf (Hibiscus cannabinus L.). A full-length C4H ortholog was cloned using degenerate primers and the RACE (rapid amplification of cDNA ends) method. The full-length C4H ortholog...
Male specific genes from dioecious white campion identified by fluorescent differential display.
Scutt, Charles P; Jenkins, Tom; Furuya, Masaki; Gilmartin, Philip M
2002-05-01
Fluorescent differential display (FDD) has been used to screen for cDNAs that are differentially up-regulated in male flowers of the dioecious plant Silene latifolia in which an X/Y chromosome system of sex determination operates. To adapt FDD to the cloning of large numbers of differential cDNAs, a novel method of confirming the differential expression of these has been devised. FDD gels were Southern electro-blotted and probed with mixtures of individual cDNA clones derived from different FDD product ligation reactions. These Southern blots were then stripped and re-probed with further mixtures of individual cloned FDD products to identify the maximum number of recombinant clones carrying the true differential amplification products. Of 135 differential bands identified by FDD, 56 differential amplification products were confirmed; these represent 23 unique differentially expressed genes as determined by virtual Northern analysis and two genes expressed at or below the level of detection by virtual Northern analysis. These two low expressed genes show bands of hybridization on genomic Southern blots that are specific to male plants, indicating that they are derived from, or closely related to, Y chromosome genes.
[Construction of fetal mesenchymal stem cell cDNA subtractive library].
Yang, Li; Wang, Dong-Mei; Li, Liang; Bai, Ci-Xian; Cao, Hua; Li, Ting-Yu; Pei, Xue-Tao
2002-04-01
To identify differentially expressed genes between fetal mesenchymal stem cell (MSC) and adult MSC, especially specified genes expressed in fetal MSC, a cDNA subtractive library of fetal MSC was constructed using suppression subtractive hybridization (SSH) technique. At first, total RNA was isolated from fetal and adult MSC. Using SMART PCR synthesis method, single-strand and double-strand cDNAs were synthesized. After Rsa I digestion, fetal MSC cDNAs were divided into two groups and ligated to adaptor 1 and adaptor 2 respectively. Results showed that the amplified library contains 890 clones. Analysis of 890 clones with PCR demonstrated that 768 clones were positive. The positive rate is 86.3%. The size of inserted fragments in these positive clones was between 0.2 - 1 kb, with an average of 400 - 600 bp. SSH is a convenient and effective method for screening differentially expressed genes. The constructed cDNA subtractive library of fetal MSC cDNA lays solid foundation for screening and cloning new and specific function related genes of fetal MSC.
Brown, W C; Davis, W C; Dobbelaere, D A; Rice-Ficht, A C
1994-01-01
The well-established importance of helper T (Th)-cell subsets in immunity and immunoregulation of many experimental helminth infections prompted a detailed study of the cellular immune response against Fasciola hepatica in the natural bovine host. T-cell lines established from two cattle infected with F. hepatica were characterized for the expression of T-cell surface markers and proliferative responses against F. hepatica adult worm antigen. Parasite-specific T-cell lines contained a mixture of CD4+, CD8+, and gamma/delta T-cell-receptor-bearing T cells. However, cell lines containing either fewer than 10% CD8+ T cells or depleted of gamma/delta T cells proliferated vigorously against F. hepatica antigen, indicating that these T-cell subsets are not required for proliferative responses in vitro. Seventeen F. hepatica-specific CD4+ Th-cell clones were examined for cytokine expression following concanavalin A stimulation. Biological assays to measure interleukin-2 (IL-2) or IL-4, gamma interferon (IFN-gamma), and tumor necrosis factor and Northern (RNA) blot analysis to verify the expression of IL-2, IL-4, and IFN-gamma revealed that the Th-cell clones expressed a spectrum of cytokine profiles. Several Th-cell clones were identified as Th2 cells by the strong expression of IL-4 but little or no IL-2 or IFN-gamma mRNA. The majority of Th-cell clones were classified as Th0 cells by the expression of either all three cytokines or combinations of IL-2 and IL-4 or IL-4 and IFN-gamma. No Th1-cell clones were obtained. All of the Th-cell clones expressed a typical memory cell surface phenotype, characterized as CD45Rlow, and all expressed the lymph node homing receptor (L selectin). These results are the first to describe cytokine responses of F. hepatica-specific T cells obtained from infected cattle and extend our previous analysis of Th0 and Th1 cells from cattle immune to Babesia bovis (W. C. Brown, V. M. Woods, D. A. E. Dobbelaere, and K. S. Logan, Infect. Immun. 61:3273-3281, 1993) to include F. hepatica-specific Th2 cells. Images PMID:7509319
Kabeya, Hidenori; Maruyama, Soichi; Hirano, Kouji; Mikami, Takeshi
2003-01-01
Immunoscreening of a ZAP genomic library of Bartonella henselae strain Houston-1 expressed in Escherichia coli resulted in the isolation of a clone containing 3.5 kb BamHI genomic DNA fragment. This 3.5 kb DNA fragment was found to contain a sequence of a gene encoding a protein with significant homology to the dihydrolipoamide succinyltransferase of Brucella melitensis (sucB). Subsequent cloning and DNA sequence analysis revealed that the deduced amino acid sequence from the cloned gene showed 66.5% identity to SucB protein of B. melitensis, and 43.4 and 47.2% identities to those of Coxiella burnetii and E. coli, respectively. The gene was expressed as a His-Nus A-tagged fusion protein. The recombinant SucB protein (rSucB) was shown to be an immunoreactive protein of about 115 kDa by Western blot analysis with sera from B. henselae-immunized mice. Therefore the rSucB may be a candidate antigen for a specific serological diagnosis of B. henselae infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlagnhaufer, C.D.; Arteca, R.N.; Pell, E.J.
When potato plants (Solanum tuberosum L. cv Norland) are subjected to oxone stress ethylene is emitted. Increases in ethylene production are often the result of increased expression of the enzyme ACC synthase. We used the polymerase chain reaction (PCR) to clone a cDNA encoding an ozone-induced ACC synthase. After treating potato plants with 300 ppb ozone for 4 h, RNA was extracted using a guanidinium isothiocyanate method. Using degenerate oligonucleotides corresponding to several conserved regions of ACC synthase sequences reported from different plant tissues as primers, we were able to reverse transcribe the RNA and amplify a cDNA for ACCmore » synthase. The clone is 1098 bp in length encoding for 386 amino acids comprising [approximately]80% of the protein. Computer analysis of the deduced amino acid sequence showed that our clone is 50-70% homologous with ACC synthase genes cloned from other plant tissues. Using the cDNA as a probe in northern analysis we found that there is little or no expression in control tissue: however there is a large increase in the expression of the ACC synthase message in response to ozone treatment.« less
Pasion, S G; Hines, J C; Aebersold, R; Ray, D S
1992-01-01
A type II DNA topoisomerase, topoIImt, was shown previously to be associated with the kinetoplast DNA of the trypanosomatid Crithidia fasciculata. The gene encoding this kinetoplast-associated topoisomerase has been cloned by immunological screening of a Crithidia genomic expression library with monoclonal antibodies raised against the purified enzyme. The gene CfaTOP2 is a single copy gene and is expressed as a 4.8-kb polyadenylated transcript. The nucleotide sequence of CfaTOP2 has been determined and encodes a predicted polypeptide of 1239 amino acids with a molecular mass of 138,445. The identification of the cloned gene is supported by immunoblot analysis of the beta-galactosidase-CfaTOP2 fusion protein expressed in Escherichia coli and by analysis of tryptic peptide sequences derived from purified topoIImt. CfaTOP2 shares significant homology with nuclear type II DNA topoisomerases of other eukaryotes suggesting that in Crithidia both nuclear and mitochondrial forms of topoisomerase II are encoded by the same gene.
Chai, Chunyue; Lin, Yanling; Shen, Danyu; Wu, Yuren; Li, Hongjuan; Dou, Daolong
2013-01-01
Identification of pathogen-inducible promoters largely lags behind cloning of the genes for disease resistance. Here, we cloned the soybean GmaPPO12 gene and found that it was rapidly and strongly induced by Phytophthorasojae infection. Computational analysis revealed that its promoter contained many known cis-elements, including several defense related transcriptional factor-binding boxes. We showed that the promoter could mediate induction of GUS expression upon infection in both transient expression assays in Nicotianabenthamiana and stable transgenic soybean hairy roots. Importantly, we demonstrated that pathogen-induced expression of the GmaPPO12 promoter was higher than that of the soybean GmaPR1a promoter. A progressive 5' and 3' deletion analysis revealed two fragments that were essential for promoter activity. Thus, the cloned promoter could be used in transgenic plants to enhance resistance to phytophthora pathogens, and the identified fragment could serve as a candidate to produce synthetic pathogen-induced promoters.
Luis F. Larrondo; Marcela Avila; Loreto Salas; Dan Cullen; Rafael Vicuna
2003-01-01
Analysis of genomic clones encoding a putative laccase in homokaryon strains of Ceriporiopsis subvermispora led to the identification of an allelic variant of the previously described lcs-1 gene. A cDNA clone corresponding to this gene was expressed in Aspergillus nidulans and in Aspergillus niger. Enzyme assays and Western blots showed that both hosts secreted active...
Luciferase assay to study the activity of a cloned promoter DNA fragment.
Solberg, Nina; Krauss, Stefan
2013-01-01
Luciferase based assays have become an invaluable tool for the analysis of cloned promoter DNA fragments, both for verifying the ability of a potential promoter fragment to drive the expression of a luciferase reporter gene in various cellular contexts, and for dissecting binding elements in the promoter. Here, we describe the use of the Dual-Luciferase(®) Reporter Assay System created by Promega (Promega Corporation, Wisconsin, USA) to study the cloned 6.7 kilobases (kb) mouse (m) Tcf3 promoter DNA fragment in mouse embryonic derived neural stem cells (NSC). In this system, the expression of the firefly luciferase driven by the cloned mTcf3 promoter DNA fragment (including transcription initiation sites) is correlated with a co-transfected control reporter expressing Renilla luciferase from the herpes simplex virus (HSV) thymidine kinase promoter. Using an internal control reporter allows to normalize the activity of the experimental reporter to the internal control, which minimizes experimental variability.
Tissue Gene Expression Analysis Using Arrayed Normalized cDNA Libraries
Eickhoff, Holger; Schuchhardt, Johannes; Ivanov, Igor; Meier-Ewert, Sebastian; O'Brien, John; Malik, Arif; Tandon, Neeraj; Wolski, Eryk-Witold; Rohlfs, Elke; Nyarsik, Lajos; Reinhardt, Richard; Nietfeld, Wilfried; Lehrach, Hans
2000-01-01
We have used oligonucleotide-fingerprinting data on 60,000 cDNA clones from two different mouse embryonic stages to establish a normalized cDNA clone set. The normalized set of 5,376 clones represents different clusters and therefore, in almost all cases, different genes. The inserts of the cDNA clones were amplified by PCR and spotted on glass slides. The resulting arrays were hybridized with mRNA probes prepared from six different adult mouse tissues. Expression profiles were analyzed by hierarchical clustering techniques. We have chosen radioactive detection because it combines robustness with sensitivity and allows the comparison of multiple normalized experiments. Sensitive detection combined with highly effective clustering algorithms allowed the identification of tissue-specific expression profiles and the detection of genes specifically expressed in the tissues investigated. The obtained results are publicly available (http://www.rzpd.de) and can be used by other researchers as a digital expression reference. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AL360374–AL36537.] PMID:10958641
Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid
2015-01-01
Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221
Musiyenko, Alla; Bitko, Vira; Barik, Sailen
2007-07-01
Stable RNA interference (RNAi) is commonly achieved by recombinant expression of short hairpin RNA (shRNA). To generate virus-resistant cell lines, we cloned a shRNA cassette against the phosphoprotein gene of respiratory syncytial virus (RSV) into a polIII-driven plasmid vector. Analysis of individual stable transfectants showed a spectrum of RSV resistance correlating with the levels of shRNA expressed from different chromosomal locations. Interestingly, resistance in a minority of clones was due to mono-allelic disruption of the cellular gene for vasodilator-stimulated phosphoprotein (VASP). Thus, pure clones of chromosomally integrated DNA-directed RNAi can exhibit gene disruption phenotypes resembling but unrelated to RNAi.
Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization.
Geber, A; Williamson, P R; Rex, J H; Sweeney, E C; Bennett, J E
1992-01-01
In order to isolate the structural gene involved in sucrose utilization, we screened a sucrose-induced Candida albicans cDNA library for clones expressing alpha-glucosidase activity. The C. albicans maltase structural gene (CAMAL2) was isolated. No other clones expressing alpha-glucosidase activity. were detected. A genomic CAMAL2 clone was obtained by screening a size-selected genomic library with the cDNA clone. DNA sequence analysis reveals that CAMAL2 encodes a 570-amino-acid protein which shares 50% identity with the maltase structural gene (MAL62) of Saccharomyces carlsbergensis. The substrate specificity of the recombinant protein purified from Escherichia coli identifies the enzyme as a maltase. Northern (RNA) analysis reveals that transcription of CAMAL2 is induced by maltose and sucrose and repressed by glucose. These results suggest that assimilation of sucrose in C. albicans relies on an inducible maltase enzyme. The family of genes controlling sucrose utilization in C. albicans shares similarities with the MAL gene family of Saccharomyces cerevisiae and provides a model system for studying gene regulation in this pathogenic yeast. Images PMID:1400249
Qu, Changfeng; He, Yingying; Zheng, Zhou; An, Meiling; Li, Lulu; Wang, Xixi; He, Xiaodong; Wang, Yibin; Liu, Fangming; Miao, Jinlai
2018-01-01
The α-carbonic anhydrase (α-CA) is a zinc ion-containing enzyme that catalyzes the hydration of carbon dioxide. In this paper, a full-length α-CA gene was cloned from Chlamydomonas sp. ICE-L using RT-PCR and RACE-PCR for bioinformatic analysis. The α-CA open reading frame obtained by PCR was cloned into a vector and transformed into Escherichia coli to generate α-CA-producing bacteria. The α-CA was highly expressed upon induction with isopropyl-β-d-thiogalactoside (IPTG) at a final concentration of 0.8 mM. A single band with a molecular weight of approximate 40 kDa expressed in the recombinant E. coli strain harboring the α-CA vector was observed in SDS-PAGE analysis. The carbon dioxide hydration activity and esterase activity of α-CA expressed by the recombinant strain were 0.404 U/mg and 0.319 U, respectively. In addition, three conditions, temperature, salinity and UVB radiation exposure, were selected to analyze α-CA transcription levels by qRT-PCR. The results suggested UVB exposure increased the expression of relative mRNA; meanwhile, the α-CA mRNA expression was rapidly induced by temperature and salinity stress, indicating that Chlamydomonas sp. ICE-L might modulate the α-CA mRNA expression to adapt to the extreme environments.
Hercend, T; Griffin, J D; Bensussan, A; Schmidt, R E; Edson, M A; Brennan, A; Murray, C; Daley, J F; Schlossman, S F; Ritz, J
1985-01-01
The initial characterization of two monoclonal antibodies directed at antigens selectively expressed on large granular lymphocytes (LGL) is reported in the present paper. These two reagents, anti-natural killer (NK) H1A and anti-NKH2, were obtained following immunization of mouse spleen cells with a cloned human NK cell line termed JT3. In fresh human peripheral blood, both anti-NKH1A and anti-NKH2 selectively reacted with cells that appeared morphologically as large granular lymphocytes. However, complement lysis studies and two color fluorescence analysis demonstrated that some LGL express both antigens and other cells express only NKH1A or NKH2. Functional analysis of these subsets indicated that the population of NKH1A+ cells contains the entire pool of NK active lymphocytes, whereas expression of NKH2 antigen appeared to delineate a unique subpopulation of LGL which, in a resting state, display a low degree of spontaneous cytotoxicity. Expression of NKH1A and NKH2 was also investigated using a series of nine well characterized human NK clones. All NK clones were found to be NKH1A+ and four out of nine also expressed NKH2. These results strongly supported the view that NKH1A is a "pan-NK" associated antigen, and indicated that at least a fraction of cloned NKH2 + LGL are strongly cytotoxic. Anti-NKH1A was shown to have the same specificity as the previously described N901 antibody and was found here to precipitate a 200,000-220,000-mol wt molecule in SDS-polyacrylamide gel electrophoresis (PAGE) analysis. Anti-NKH2 was specific for a structure that migrates at 60,000 mol wt in SDS-PAGE analysis under reducing conditions. Two color immunofluorescence analysis of NKH1A, NKH2, and other NK-associated antigens (Leu7 and B73.1) demonstrated variable degrees of coexpression of these antigens, which confirmed that NKH1A and NKH2 define distinct cell surface structures. Anti-NKH1A and anti-NKH2 appear to be useful reagents for characterizing LGL present in human peripheral blood and for identifying functionally relevant subsets within this heterogeneous population of cytotoxic lymphocytes. Images PMID:3884668
Gao, Fan-Xiang; Wang, Yang; Zhang, Qi-Ya; Mou, Cheng-Yan; Li, Zhi; Deng, Yuan-Sheng; Zhou, Li; Gui, Jian-Fang
2017-07-24
Gibel carp is an important aquaculture species in China, and a herpesvirus, called as Carassius auratus herpesvirus (CaHV), has hampered the aquaculture development. Diverse gynogenetic clones of gibel carp have been identified or created, and some of them have been used as aquaculture varieties, but their resistances to herpesvirus and the underlying mechanism remain unknown. To reveal their susceptibility differences, we firstly performed herpesvirus challenge experiments in three gynogenetic clones of gibel carp, including the leading variety clone A + , candidate variety clone F and wild clone H. Three clones showed distinct resistances to CaHV. Moreover, 8772, 8679 and 10,982 differentially expressed unigenes (DEUs) were identified from comparative transcriptomes between diseased individuals and control individuals of clone A + , F and H, respectively. Comprehensive analysis of the shared DEUs in all three clones displayed common defense pathways to the herpesvirus infection, activating IFN system and suppressing complements. KEGG pathway analysis of specifically changed DEUs in respective clones revealed distinct immune responses to the herpesvirus infection. The DEU numbers identified from clone H in KEGG immune-related pathways, such as "chemokine signaling pathway", "Toll-like receptor signaling pathway" and others, were remarkably much more than those from clone A + and F. Several IFN-related genes, including Mx1, viperin, PKR and others, showed higher increases in the resistant clone H than that in the others. IFNphi3, IFI44-like and Gig2 displayed the highest expression in clone F and IRF1 uniquely increased in susceptible clone A + . In contrast to strong immune defense in resistant clone H, susceptible clone A + showed remarkable up-regulation of genes related to apoptosis or death, indicating that clone A + failed to resist virus offensive and evidently induced apoptosis or death. Our study is the first attempt to screen distinct resistances and immune responses of three gynogenetic gibel carp clones to herpesvirus infection by comprehensive transcriptomes. These differential DEUs, immune-related pathways and IFN system genes identified from susceptible and resistant clones will be beneficial to marker-assisted selection (MAS) breeding or molecular module-based resistance breeding in gibel carp.
Cacao Flavor through Genetics – Anatomy of Fine Flavor
USDA-ARS?s Scientific Manuscript database
This presentation will discuss the transcript analysis of Moniliophthora roreri infected pods, which revealed a total of 3009 differentially expressed transcripts among resistant and susceptible clones. Comparison of the tolerant and susceptible clones by KEGG (Kyoto Encyclopedia of Genes and Genome...
Lu, M; Wang, L F; Du, X H; Yu, Y K; Pan, J B; Nan, Z J; Han, J; Wang, W X; Zhang, Q Z; Sun, Q P
2015-11-30
Various plant genes can be activated or inhibited by phytohormones under conditions of biotic and abiotic stress, especially in response to jasmonic acid (JA) and salicylic acid (SA). Interactions between JA and SA may be synergistic or antagonistic, depending on the stress condition. In this study, we cloned a full-length cDNA (LeWRKY1, GenBank accession No. FJ654265) from Lycopersicon esculentum by rapid amplification of cDNA ends. Sequence analysis showed that this gene is a group II WRKY transcription factor. Analysis of LeWRKY1 mRNA expression in various tissues by qRT-PCR showed that the highest and lowest expression occurred in the leaves and stems, respectively. In addition, LeWRKY1 expression was induced by JA and Botrytis cinerea Pers., but not by SA.
Hamazaki, Hideaki; Hamazaki, Michiko Horikawa
2016-01-15
Protein-glucosylgalactosylhydroxylysine glucosidase (PGGHG; EC3.2.1.107) cleaves glucose from disaccharide unit (Glc-α1,2-Gal) linked to hydroxylysine residues of collagen. In the present paper we first show that PGGHG is the product of ATHL1 gene as follows. (1) PGGHG was purified from chick embryos and digested with trypsin. LC-MS/MS analysis suggested the tryptic-peptides were from the ATHL1 gene product. (2) Chick embryo ATHL1 cDNA was cloned to a cloning and expression vector and two plasmid clones with different ATHL1 CDS insert were obtained. (3) Each plasmid DNA was transformed into Escherichia coli cells for expression and two isoforms of chicken PGGHG were obtained. (4) Both isoforms effectively released glucose from type IV collagen. Next, we searched for carboxyl residues crucial for catalytic activity as follows; human ATHL1 cDNA was cloned into a cloning and expression vector and 18 mutants were obtained by site-directed mutagenesis for 15 carboxyl residues conserved in ATHL1 of jawed vertebrates. The expression analysis indicated that substitutions of Asp301, Glu430 and Glu574 with sterically conservative (D301N, E430Q, E574Q) or functionally conservative (D301E, E430D, E574D) residues led to the complete elimination of enzyme activity. These findings lead us to the conclusion that PGGHG is encoded by ATHL1 and three carboxyl residues (corresponding to Asp301, Glu430 and Glu574 of human PGGHG) might be involved in the catalytic site of PGGHG. Copyright © 2015 Elsevier Inc. All rights reserved.
Ovule development: identification of stage-specific and tissue-specific cDNAs.
Nadeau, J A; Zhang, X S; Li, J; O'Neill, S D
1996-01-01
A differential screening approach was used to identify seven ovule-specific cDNAs representing genes that are expressed in a stage-specific manner during ovule development. The Phalaenopsis orchid takes 80 days to complete the sequence of ovule developmental events, making it a good system to isolate stage-specific ovule genes. We constructed cDNA libraries from orchid ovule tissue during archesporial cell differentiation, megasporocyte formation, and the transition to meiosis, as well as during the final mitotic divisions of female gametophyte development. RNA gel blot hybridization analysis revealed that four clones were stage specific and expressed solely in ovule tissue, whereas one clone was specific to pollen tubes. Two other clones were not ovule specific. Sequence analysis and in situ hybridization revealed the identities and domain of expression of several of the cDNAs. O39 encodes a putative homeobox transcription factor that is expressed early in the differentiation of the ovule primordium; O40 encodes a cytochrome P450 monooxygenase (CYP78A2) that is pollen tube specific. O108 encodes a protein of unknown function that is expressed exclusively in the outer layer of the outer integument and in the female gametophyte of mature ovules. O126 encodes a glycine-rich protein that is expressed in mature ovules, and O141 encodes a cysteine proteinase that is expressed in the outer integument of ovules during seed formation. Sequences homologous to these ovule clones can now be isolated from other organisms, and this should facilitate their functional characterization. PMID:8742709
Li, Lishu; Ikezono, Tetsuo; Sekine, Kuwon; Shindo, Susumu; Matsumura, Tomohiro; Pawankar, Ruby; Ichimiya, Issei; Yagi, Toshiaki
2010-08-01
We have cloned guinea pig Coch cDNA and the sequence information will be useful for future molecular study combined with physiological experiments. Proper Coch gene expression appears to be dependent on the unique extracellular micro-environment of the inner ear in vivo. These results provide insight into the Coch gene expression and its regulation. To characterize the guinea pig Coch gene, we performed molecular cloning and expression analysis in the inner ear and cultured fibrocytes of the spiral ligament. The Coch cDNA was isolated using RACE. Cochlin isofoms were studied by Western blot using three different types of mammalian inner ear. The cochlear fibrocytes were cultured and characterized by immunostaining. Coch gene expression in the fibrocytes was investigated and the influence of cytokine stimulation was evaluated. The full-length 1991 bp Coch cDNA that encodes a 553 amino acid protein was isolated. The sequence had significant homology with other mammals, and the sizes of the Cochlin isoforms were identical. In the cultured fibrocytes, Coch mRNA was expressed in a very small amount and the isoform production was different, compared with the results in vivo. Cytokine stimulation did not alter the level of mRNA expression or isoform formation.
Yuan, Lin; Wang, Anfeng; Yao, Chaogang; Huang, Yongye; Duan, Feifei; Lv, Qinyan; Wang, Dongxu; Ouyang, Hongsheng; Li, Zhanjun; Lai, Liangxue
2014-01-01
Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos. PMID:25429426
Identification of Genes Differentially Expressed During Heat Shock Treatment in Aedes aegypti
2009-01-01
Chan, C. W. Cheng, and R. S. Wu. 2003. Cloning of theHSP70 gene in barnacle larvae and its expression under hypoxic conditions. Mar. Pollut. Bull. 46...665Ð671. Chuang, K. H., S. H. Ho, and Y. L. Song. 2007. Cloning and expression analysis of heat shock cognate 70 gene pro- moter in tiger shrimp ...in larvae , but not adults, of a polar insect. Proc. Natl. Acad. Sci. U.S.A. 103: 14223Ð14227. Robich, R. M., J. P. Rinehart, L. J. Kitchen, and D. L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasquo, Alessandra; Bonamore, Alessandra; Franceschini, Stefano
The cloning, expression, crystallization and preliminary X-ray data analysis of norcoclaurine synthase from T. flavum, a protein which catalyzes the first committed step in the biosynthesis of benzylisoquinoline alkaloids, are reported. Norcoclaurine synthase (NCS) catalyzes the condensation of 3,4-dihydroxyphenylethylamine (dopamine) and 4-hydroxyphenylacetaldehyde (4-HPAA) as the first committed step in the biosynthesis of benzylisoquinoline alkaloids in plants. The protein was cloned, expressed and purified. Crystals were obtained at 294 K by the hanging-drop vapour-diffusion method using ammonium sulfate and sodium chloride as precipitant agents and diffract to better than 3.0 Å resolution using a synchrotron-radiation source. The crystals belong to themore » trigonal space group P3{sub 1}21, with unit-cell parameters a = b = 86.31, c = 118.36 Å. A selenomethionine derivative was overexpressed, purified and crystallized in the same space group. A complete MAD data set was collected at 2.7 Å resolution. The model is under construction.« less
ERIC Educational Resources Information Center
Cook, Ryan; Hannon, Drew; Southard, Jonathan N.; Majumdar, Sudipta
2018-01-01
A one semester undergraduate biochemistry laboratory experience is described for an understanding of recombinant technology from gene cloning to protein characterization. An integrated experimental design includes three sequential modules: molecular cloning, protein expression and purification, and protein analysis and characterization. Students…
NASA Astrophysics Data System (ADS)
Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.
2015-09-01
A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.
Biase, Fernando H.; Rabel, Chanaka; Guillomot, Michel; Hue, Isabelle; Andropolis, Kalista; Olmstead, Colleen A.; Oliveira, Rosane; Wallace, Richard; Le Bourhis, Daniel; Richard, Christophe; Campion, Evelyne; Chaulot-Talmon, Aurélie; Giraud-Delville, Corinne; Taghouti, Géraldine; Jammes, Hélène; Renard, Jean-Paul; Sandra, Olivier; Lewin, Harris A.
2016-01-01
A major unresolved issue in the cloning of mammals by somatic cell nuclear transfer (SCNT) is the mechanism by which the process fails after embryos are transferred to the uterus of recipients before or during the implantation window. We investigated this problem by using RNA sequencing (RNA-seq) to compare the transcriptomes in cattle conceptuses produced by SCNT and artificial insemination (AI) at day (d) 18 (preimplantation) and d 34 (postimplantation) of gestation. In addition, endometrium was profiled to identify the communication pathways that might be affected by the presence of a cloned conceptus, ultimately leading to mortality before or during the implantation window. At d 18, the effects on the transcriptome associated with SCNT were massive, involving more than 5,000 differentially expressed genes (DEGs). Among them are 121 genes that have embryonic lethal phenotypes in mice, cause defects in trophoblast and placental development, and/or affect conceptus survival in mice. In endometria at d 18, <0.4% of expressed genes were affected by the presence of a cloned conceptus, whereas at d 34, ∼36% and <0.7% of genes were differentially expressed in intercaruncular and caruncular tissues, respectively. Functional analysis of DEGs in placental and endometrial tissues suggests a major disruption of signaling between the cloned conceptus and the endometrium, particularly the intercaruncular tissue. Our results support a “bottleneck” model for cloned conceptus survival during the periimplantation period determined by gene expression levels in extraembryonic tissues and the endometrial response to altered signaling from clones. PMID:27940919
Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize.
Wu, S; Kriz, A L; Widholm, J M
1994-01-01
The cloning and analysis of two different cDNA clones encoding putative maize (Zea mays L.) chitinases obtained by polymerase chain reaction (PCR) and cDNA library screening is described. The cDNA library was made from poly(A)+ RNA from leaves challenged with mercuric chloride for 2 d. The two clones, pCh2 and pCh11, appear to encode class I chitinase isoforms with cysteine-rich domains (not found in pCh11 due to the incomplete sequence) and proline-/glycine-rich or proline-rich hinge domains, respectively. The pCh11 clone resembles a previously reported maize seed chitinase; however, the deduced proteins were found to have acidic isoelectric points. Analysis of all monocot chitinase sequences available to date shows that not all class I chitinases possess the basic isoelectric points usually found in dicotyledonous plants and that monocot class II chitinases do not necessarily exhibit acidic isoelectric points. Based on sequence analysis, the pCh2 protein is apparently synthesized as a precursor polypeptide with a signal peptide. Although these two clones belong to class I chitinases, they share only about 70% amino acid homology in the catalytic domain region. Southern blot analysis showed that pCh2 may be encoded by a small gene family, whereas pCh11 was single copy. Northern blot analysis demonstrated that these genes are differentially regulated by mercuric chloride treatment. Mercuric chloride treatment caused rapid induction of pCh2 from 6 to 48 h, whereas pCh11 responded only slightly to the same treatment. During seed germination, embryos constitutively expressed both chitinase genes and the phytohormone abscisic acid had no effect on the expression. The fungus Aspergillus flavus was able to induce both genes to comparable levels in aleurone layers and embryos but not in endosperm tissue. Maize callus growth on the same plate with A. flavus for 1 week showed induction of the transcripts corresponding to pCh2 but not to pCh11. These studies indicate that the different chitinase isoforms in maize might have different functions in the plant, since they show differential expression patterns under different conditions. PMID:7972490
Yan, Y; Xu, W; Chen, H; Ma, Z; Zhu, Y; Cai, S
1994-01-01
The partial structure gene encoding ES antigen derived from Trichinella spiralis (TSP) muscle larvae was cloned, characterized, and expressed in E. coli. The target DNA (0.7 kb) was directly obtained from the TSP total RNA by using RNA PCR technique. Based on the analysis with the RE digestion, the fragment was cloned into the fusion expression vector pEX31C. It was shown that a kind of 37kDa fusion protein was expressed in E. coli containing the recombinant plasmid by SDS-PAGE electrophoresis. The expressed protein was over 22% of the total cell protein, and it was aggregated in the form of inclusion bodies in E. coli. The purified protein could be recognized in ELISA both by sera from swine-infected with TSP and by the monoclonal antibody against TSP. These findings suggest that the recombinant protein is a potentially valuable antigen both for immunodiagnosis and vaccine development of trichinellosis.
Park, Dong-Soo; Lee, Sang-Kyu; Lee, Jong-Hee; Song, Min-Young; Song, Song-Yi; Kwak, Do-Yeon; Yeo, Un-Sang; Jeon, Nam-Soo; Park, Soo-Kwon; Yi, Gihwan; Song, You-Chun; Nam, Min-Hee; Ku, Yeon-Chung; Jeon, Jong-Seong
2007-08-01
The development of rice varieties (Oryza sativa L.) that are resistant to the brown planthopper (BPH; Nilaparvata lugens Stål) is an important objective in current breeding programs. In this study, we generated 132 BC(5)F(5) near-isogenic rice lines (NILs) by five backcrosses of Samgangbyeo, a BPH resistant indica variety carrying the Bph1 locus, with Nagdongbyeo, a BPH susceptible japonica variety. To identify genes that confer BPH resistance, we employed representational difference analysis (RDA) to detect transcripts that were exclusively expressed in one of our BPH resistant NIL, SNBC61, during insect feeding. The chromosomal mapping of the RDA clones that we subsequently isolated revealed that they are located in close proximity either to known quantitative trait loci or to an introgressed SSR marker from the BPH resistant donor parent Samgangbyeo. Genomic DNA gel-blot analysis further revealed that loci of all RDA clones in SNBC61 correspond to the alleles of Samgangbyeo. Most of the RDA clones were found to be exclusively expressed in SNBC61 and could be assigned to functional groups involved in plant defense. These RDA clones therefore represent candidate defense genes for BPH resistance.
Molecular cloning and expression analysis of annexin A2 gene in sika deer antler tip.
Xia, Yanling; Qu, Haomiao; Lu, Binshan; Zhang, Qiang; Li, Heping
2018-04-01
Molecular cloning and bioinformatics analysis of annexin A2 ( ANXA2 ) gene in sika deer antler tip were conducted. The role of ANXA2 gene in the growth and development of the antler were analyzed initially. The reverse transcriptase polymerase chain reaction (RT-PCR) was used to clone the cDNA sequence of the ANXA2 gene from antler tip of sika deer ( Cervus Nippon hortulorum ) and the bioinformatics methods were applied to analyze the amino acid sequence of Anxa2 protein. The mRNA expression levels of the ANXA2 gene in different growth stages were examined by real time reverse transcriptase polymerase chain reaction (real time RT-PCR). The nucleotide sequence analysis revealed an open reading frame of 1,020 bp encoding 339 amino acids long protein of calculated molecular weight 38.6 kDa and isoelectric point 6.09. Homologous sequence alignment and phylogenetic analysis indicated that the Anxa2 mature protein of sika deer had the closest genetic distance with Cervus elaphus and Bos mutus . Real time RT-PCR results showed that the gene had differential expression levels in different growth stages, and the expression level of the ANXA2 gene was the highest at metaphase (rapid growing period). ANXA2 gene may promote the cell proliferation, and the finding suggested Anxa2 as an important candidate for regulating the growth and development of deer antler.
Distance between RBS and AUG plays an important role in overexpression of recombinant proteins.
Berwal, Sunil K; Sreejith, R K; Pal, Jayanta K
2010-10-15
The spacing between ribosome binding site (RBS) and AUG is crucial for efficient overexpression of genes when cloned in prokaryotic expression vectors. We undertook a brief study on the overexpression of genes cloned in Escherichia coli expression vectors, wherein the spacing between the RBS and the start codon was varied. SDS-PAGE and Western blot analysis indicated a high level of protein expression only in constructs where the spacing between RBS and AUG was approximately 40 nucleotides or more, despite the synthesis of the transcripts in the representative cases investigated. Copyright 2010 Elsevier Inc. All rights reserved.
Akazawa, Daisuke; Date, Tomoko; Morikawa, Kenichi; Murayama, Asako; Miyamoto, Michiko; Kaga, Minako; Barth, Heidi; Baumert, Thomas F; Dubuisson, Jean; Wakita, Takaji
2007-05-01
Huh7 cells constitute a permissive cell line for cell culture of hepatitis C virus (HCV) particles. However, our Huh7 line shows limited permissiveness for HCV. Thus, in this study we set out to determine which host factors are important for conferring permissiveness. To analyze the limited permissiveness of our Huh7 cells, 70 clones were obtained after single-cell cloning of parental Huh7 cells. The cloned Huh7 cells exhibited various levels of HCV pseudoparticles and JFH-1 virus infection efficiency, and some clones were not permissive. A subgenomic replicon was then transfected into the cloned Huh7 cells. While the replication efficiencies differed among the cloned Huh7 cells, these efficiencies did not correlate with infectious permissibility. Flow cytometry showed that CD81, scavenger receptor class B type I, and low-density-lipoprotein receptor expression on the cell surfaces of the Huh7 clones differed among the clones. Interestingly, we found that all of the permissive cell clones expressed CD81 while the nonpermissive cell clones did not. To confirm the importance of CD81 expression for HCV permissiveness, CD81 was then transiently and stably expressed on a nonpermissive Huh7 cell clone, which was consequently restored to HCV infection permissiveness. Furthermore, permissiveness was down-regulated upon transfection of CD81 silencing RNA into a CD81-positive cell clone. In conclusion, CD81 expression is an important determinant of HCV permissiveness of Huh7 cell clones harboring different characteristics.
Generation of mammalian cells stably expressing multiple genes at predetermined levels.
Liu, X; Constantinescu, S N; Sun, Y; Bogan, J S; Hirsch, D; Weinberg, R A; Lodish, H F
2000-04-10
Expression of cloned genes at desired levels in cultured mammalian cells is essential for studying protein function. Controlled levels of expression have been difficult to achieve, especially for cell lines with low transfection efficiency or when expression of multiple genes is required. An internal ribosomal entry site (IRES) has been incorporated into many types of expression vectors to allow simultaneous expression of two genes. However, there has been no systematic quantitative analysis of expression levels in individual cells of genes linked by an IRES, and thus the broad use of these vectors in functional analysis has been limited. We constructed a set of retroviral expression vectors containing an IRES followed by a quantitative selectable marker such as green fluorescent protein (GFP) or truncated cell surface proteins CD2 or CD4. The gene of interest is placed in a multiple cloning site 5' of the IRES sequence under the control of the retroviral long terminal repeat (LTR) promoter. These vectors exploit the approximately 100-fold differences in levels of expression of a retrovirus vector depending on its site of insertion in the host chromosome. We show that the level of expression of the gene downstream of the IRES and the expression level and functional activity of the gene cloned upstream of the IRES are highly correlated in stably infected target cells. This feature makes our vectors extremely useful for the rapid generation of stably transfected cell populations or clonal cell lines expressing specific amounts of a desired protein simply by fluorescent activated cell sorting (FACS) based on the level of expression of the gene downstream of the IRES. We show how these vectors can be used to generate cells expressing high levels of the erythropoietin receptor (EpoR) or a dominant negative Smad3 protein and to generate cells expressing two different cloned proteins, Ski and Smad4. Correlation of a biologic effect with the level of expression of the protein downstream of the IRES provides strong evidence for the function of the protein placed upstream of the IRES.
1993-01-01
HLA-A2+ melanomas express common melanoma-associated antigens (Ags) recognized in vitro by autologous cytotoxic T lymphocytes (CTL). However, it is not known whether tumor Ags can drive in vivo a selective accumulation/expansion of Ag-specific, tumor-infiltrating T lymphocytes (TIL). Therefore, to evaluate this possibility, 39 CTL clones isolated from several independent mixed lymphocyte tumor cultures (MLTC) of TIL and peripheral blood lymphocytes (PBL) of an HLA- A2+ melanoma patient and selected for T cell receptor (TCR)-dependent, HLA-restricted tumor lysis, were used for analysis of TCR alpha and beta chain structure by the cDNA polymerase chain reaction (PCR) technique with variable gene-specific primers followed by sequencing. Despite absence of oligoclonality in fresh TIL and PBL, as well as in T cells of day 28 MLTC (day of cloning), sequence analysis of TCR alpha and beta chains of TIL clones revealed a dominance of a major category of melanoma-specific, HLA-A2-restricted T cells expressing a V alpha 8.2/J alpha AP511/C alpha and V beta 2.1/D beta 1/J beta 1.1/C beta 1 TCR. The same TCR was also found in 2 out of 14 PBL clones. The other PBL clones employed a V alpha 2.1 gene segment associated with either V beta 13.2, 14, or w22. Clones A81 (V alpha 2.1/J alpha IGRJ alpha 04/C alpha and V beta 14/D beta 1/J beta 1.2/C beta 1) and A21 (V alpha 8.2/J alpha AP511/C alpha and V beta 2.1/D beta 1/J beta 1.1/C beta 1), representative of the two most frequent TCR of PBL and TIL, respectively, expressed different lytic patterns, but both were HLA-A2 restricted and lysed only HLA-A2+ melanomas and normal melanocytes, thus indicating recognition of two distinct HLA-A2-associated and tissue-related Ags. Finally, by the inverse PCR technique, the specific TCR beta chain (V beta 2.1/D beta 1/J beta 1.1/C beta 1) expressed by the dominant TIL clone was found to represent 19 and 18.4% of all V beta 2 sequences expressed in the fresh tumor sample and in the purified TIL, respectively, but < 0.19% of V beta 2+ sequences expressed in PBL. These results are consistent with the hypothesis that a clonal expansion/accumulation of a melanocyte-lineage-specific and HLA-A2-restricted T cell clone occurred in vivo at the site of tumor growth. PMID:8376931
Ioannides, C G; Freedman, R S; Platsoucas, C D; Rashed, S; Kim, Y P
1991-03-01
CTL clones were developed from tumor infiltrating lymphocytes (TIL) from the ascites of a patient with ovarian carcinoma by coculture of TIL with autologous tumor cells and subsequent cloning in the presence of autologous tumor cells. These CTL clones expressed preferential cytolytic activity against autologous tumor cells but not against allogeneic ovarian tumor cells and the NK-sensitive cell line K562. The cytolytic activity of these CTL against autologous tumors was inhibited by anti-TCR (WT31 mAb), anti-HLA class I, and anti-CD3 mAb but not by the NK function antibody Leu 11b. Cloning of the autologous tumor cells in vitro revealed that the CTL clones of the ovarian TIL expressed differential abilities to lyse autologous tumor cell clones. The specificity analysis of these autologous tumor specific CTL suggested that they recognize several antigenic determinants present on the ovarian tumor cells. Our results indicate the presence of at least three antigenic epitopes on the tumor cells (designated OVA-1A, OVA-1B, and OVA-1C), one of which (OVA-1C) is unstable. These determinants are present either simultaneously or separately, and six types of ovarian clones can be distinguished on the basis of their expression. These results indicate that CTL of the TIL detect intratumor antigenic heterogeneity. The novel heterogeneity identified within the ovarian tumor cells in this report may be of significance for understanding cellular immunity in ovarian cancer and developing adoptive specific immunotherapeutic approaches in ovarian cancer.
Passantino, Lisa; Muñoz, Alexandra B; Costa, Max
2013-10-01
Pentavalent vanadium compounds induce intracellular changes in vitro that are consistent with those of other carcinogenic substances. While there is no clear evidence that vanadium compounds cause cancer in humans, vanadium pentoxide causes lung cancer in rodents after long-term inhalation exposures and in turn IARC has categorized it as a group 2B possible human carcinogen. The goal of this study was to investigate the carcinogenicity of NaVO3 in the human immortalized bronchial epithelial cell line, Beas-2B. Cells were treated with 10 μM NaVO3 for 5 weeks, with or without recovery time, followed by gene expression microarray analysis. In a separate experiment, cells were exposed to 1-10 μM NaVO3 for 4 weeks and then grown in soft agar to test for anchorage-independent growth. A dose-dependent increase in the number of colonies was observed. In scratch tests, NaVO3-transformed clones could repair a wound faster than controls. In a gene expression microarray analysis of soft agar clones there were 2010 differentially expressed genes (DEG) (adjusted p-value ≤ 0.05) in NaVO3-transformed clones relative to control clones. DEG from this experiment were compared with the DEG of 5 week NaVO3 exposure with or without recovery, all with adjusted p-values < 0.05, and 469 genes were altered in the same direction for transformed clones, 5 week NaVO3-treated cells, and the recovered cells. The data from this study imply that chronic exposure to NaVO3 causes changes that are consistent with cellular transformation including anchorage-independent growth, enhanced migration ability, and gene expression changes that were likely epigenetically inherited.
Semiz, Asli; Sen, Alaattin
2015-03-01
Cytochrome P450 monooxygenases mediate a broad range of oxidative reactions involved in the biosynthesis of both primary and secondary metabolites in plants. Until now, only two P450 genes, CYP720B1 from Pinus taeda and CYP720B4 from Picea sitchensis, have been functionally characterised and described in the literature. The purpose of this study was to describe the cloning and expression of CYP720B from Pinus brutia due to its suggested role in the synthesis of bioactive compounds used for chemical defence against insects. A PCR product of the P. brutia CYP720B gene was cloned into the pCR8/GW/TOPO cloning vector. After optimising the sequence for codon usage in yeast, it was transferred into the inducible expression vector pYES-DEST52 and transfected into the S. cerevisiae INVSc1 strain. Sequence analysis showed that the P. brutia CYP720B gene contains an open reading frame of 1,464 nucleotides, which encodes a 53,570 Da putative protein of 487 amino acid residues. The putative protein contains the classic heme-binding sequence motif that is conserved in all P450 enzymes. It shares 99 and 61% identity with the deduced amino acid sequences of CYP720B1 from Pinus taeda and CYP720B4 from Picea sitchensis, respectively. Recombinant CYP720B protein expression was confirmed using western blot analysis. Furthermore, recombinant CYP720B was functionally active, showing a Soret peak at approximately 448 nm in the reduced CO difference spectra. These data suggest that the cloned gene is an orthologue of CYP720B in P. brutia and might be involved in DRA biosynthesis.
Pang, Yun-Wei; An, Lei; Wang, Peng; Yu, Yong; Yin, Qiu-Dan; Wang, Xiao-Hong; Xin-Zhang; Qian-Zhang; Yang, Mei-Ling; Min-Guo; Wu, Zhong-Hong; Tian, Jian-Hui
2013-05-01
This study was conducted to investigate the effect of melatonin during the culture of donor cells and cloned embryos on the in vitro developmental competence and quality of cloned porcine embryos. At concentrations of 10(-6 )M or 10(-8) M, melatonin significantly enhanced the proliferation of porcine fetal fibroblasts (PFFs), and the blastocyst rate was significantly increased in the 10(-10) M melatonin-treated donor cell group. Cloned embryo development was also improved in embryo culture medium that was supplemented with 10(-9) M or 10(-12) M melatonin. When both donor cells and cloned embryos were treated with melatonin, the cleavage rate and total cell number of blastocysts were not significantly affected; however, the blastocyst rate was increased significantly (20.0% versus 11.7%). TUNEL assays showed that combined melatonin treatment reduced the rate of apoptotic nuclei (3.6% versus 6.1%). Gene expression analysis of the apoptosis-related genes BAX, BCL2L1, and p53 showed that the expression of BCL2L1 was significantly elevated 2.7-fold relative to the control group, while the expression of BAX and p53 was significantly decreased by 3.7-fold and 23.2-fold, respectively. In addition, we detected the expression of two melatonin receptors (MT1 and MT2) in PFFs but not in porcine cloned embryos. We conclude that exogenous melatonin enhances the development of porcine cloned embryos and improves embryo quality by inhibiting p53-mediated apoptotic pathway. The proliferation of PFFs may be mediated by receptor binding, but the beneficial effects of melatonin on embryonic development may be receptor-independent, possibly through melatonin's ability to directly scavenge free radicals. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Li, Shengwei; Gao, Xiaoping; Peng, Rui; Zhang, Sheng; Fu, Wei; Zou, Fangdong
A basic goal in the development of recombinant proteins is the generation of cell lines that express the desired protein stably over many generations. Here, we constructed engineered Chinese hamster ovary cell lines (CHO-S) with a pCHO-hVR1 vector that carried an extracellular domain of a VEGF receptor (VR) fusion gene. Forty-five clones with high hVR1 expression were selected for karyotype analysis. Using fluorescence in situ hybridization (FISH) and G-banding, we found that pCHO-hVR1 was integrated into three chromosomes, including chromosomes 1, Z3 and Z4. Four clones were selected to evaluate their productivity under non-fed, non-optimized shake flask conditions. The results showed that clones 1 and 2 with integration sites on chromosome 1 revealed high levels of hVR1 products (shake flask of approximately 800 mg/L), whereas clones 3 and 4 with integration sites on chromosomes Z3 or Z4 had lower levels of hVR1 products. Furthermore, clones 1 and 2 maintained their productivity stabilities over a continuous period of 80 generations, and clones 3 and 4 showed significant declines in their productivities in the presence of selection pressure. Finally, pCHO-hVR1 localized to the same region at chromosome 1q13, the telomere region of normal chromosome 1. In this study, these results demonstrate that the integration of exogenous hVR1 gene on chromosome 1, band q13, may create a high protein-producing CHO-S cell line, suggesting that chromosome 1q13 may contain a useful target site for the high expression of exogenous protein. This study shows that the integration into the target site of chromosome 1q13 may avoid the problems of random integration that cause gene silencing or also overcome position effects, facilitating exogenous gene expression in CHO-S cells.
Burns, Jorge S.; Kristiansen, Malthe; Kristensen, Lars P.; Larsen, Kenneth H.; Nielsen, Maria O.; Christiansen, Helle; Nehlin, Jan; Andersen, Jens S.; Kassem, Moustapha
2011-01-01
Background Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. Methodology/Principal Findings Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. Conclusions Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was required to bring about matrix-endothelial interactions and for xenografted hMSC -BD11 cells to optimally recruit host vasculature. PMID:21779348
Yun, Yeo Hong; Koo, Ja Sun
2015-01-01
Phenylalanine ammonia-lyase (PAL) gene is known to be expressed in plants, and is involved in the differentiation, growth and synthesis of secondary metabolites. However, its expression in fungi remains to be explored. To understand its expression in mushroom fungi, the PAL gene of the edible mushroom Flammulina velutipes (Fvpal) was cloned and characterized. The cloned Fvpal consists of 2,175 bp, coding for a polypeptide containing 724 amino acids and having 11 introns. The translated amino acid sequence of Fvpal shares a high identity (66%) with that of ectomycorrhizal fungus Tricholoma matsutake. Distinctively, the Fvpal expression in the mycelium was higher in minimal medium supplemented with L-tyrosine than with other aromatic amino acids. During cultivation of the mushroom on sawdust medium, Fvpal expression in the fruit body correspondingly increased as the mushroom grew. In the fruiting body, Fvpal was expressed more in the stipe than in the pileus. These results suggest that F. velutipes PAL activity differs in the different organs of the mushroom. Overall, this is first report to show that the PAL gene expression is associated with mushroom growth in fungi. PMID:26539050
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woon, J. S. K., E-mail: jameswoon@siswa.ukm.edu.my; Murad, A. M. A., E-mail: munir@ukm.edu.my; Abu Bakar, F. D., E-mail: fabyff@ukm.edu.my
A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-Tmore » Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.« less
BIGEL analysis of gene expression in HL60 cells exposed to X rays or 60 Hz magnetic fields
NASA Technical Reports Server (NTRS)
Balcer-Kubiczek, E. K.; Zhang, X. F.; Han, L. H.; Harrison, G. H.; Davis, C. C.; Zhou, X. J.; Ioffe, V.; McCready, W. A.; Abraham, J. M.; Meltzer, S. J.
1998-01-01
We screened a panel of 1,920 randomly selected cDNAs to discover genes that are differentially expressed in HL60 cells exposed to 60 Hz magnetic fields (2 mT) or X rays (5 Gy) compared to unexposed cells. Identification of these clones was accomplished using our two-gel cDNA library screening method (BIGEL). Eighteen cDNAs differentially expressed in X-irradiated compared to control HL60 cells were recovered from a panel of 1,920 clones. Differential expression in experimental compared to control cells was confirmed independently by Northern blotting of paired total RNA samples hybridized to each of the 18 clone-specific cDNA probes. DNA sequencing revealed that 15 of the 18 cDNA clones produced matches with the database for genes related to cell growth, protein synthesis, energy metabolism, oxidative stress or apoptosis (including MYC, neuroleukin, copper zinc-dependent superoxide dismutase, TC4 RAS-like protein, peptide elongation factor 1alpha, BNIP3, GATA3, NF45, cytochrome c oxidase II and triosephosphate isomerase mRNAs). In contrast, BIGEL analysis of the same 1,920 cDNAs revealed no differences greater than 1.5-fold in expression levels in magnetic-field compared to sham-exposed cells. Magnetic-field-exposed and control samples were analyzed further for the presence of mRNA encoding X-ray-responsive genes by hybridization of the 18 specific cDNA probes to RNA from exposed and control HL60 cells. Our results suggest that differential gene expression is induced in approximately 1% of a random pool of cDNAs by ionizing radiation but not by 60 Hz magnetic fields under the present experimental conditions.
Lazaros, Leandros; Kitsou, Chrysoula; Kostoulas, Charilaos; Bellou, Sofia; Hatzi, Elissavet; Ladias, Paris; Stefos, Theodoros; Markoula, Sofia; Galani, Vasiliki; Vartholomatos, Georgios; Tzavaras, Theodore; Georgiou, Ioannis
2017-03-01
To investigate the expression of long interspersed element (LINE) 1, human endogenous retrovirus (HERV) K10, and short interspersed element-VNTR-Alu element (SVA) retrotransposons in ejaculated human spermatozoa by means of reverse-transcription (RT) polymerase chain reaction (PCR) analysis as well as the potential incorporation of cloned human and mouse active retroelements in human sperm cell genome. Laboratory study. University research laboratories and academic hospital. Normozoospermic and oligozoospermic white men. RT-PCR analysis was performed to confirm the retrotransposon expression in human spermatozoa. Exogenous retroelements were tagged with a plasmid containing a green fluorescence (EGFP) retrotransposition cassette, and the de novo retrotransposition events were tested with the use of PCR, fluorescence-activated cell sorting analysis, and confocal microscopy. Retroelement expression in human spermatozoa, incorporation of cloned human and mouse active retroelements in human sperm genome, and de novo retrotransposition events in human spermatozoa. RT-PCR products of expressed human LINE-1, HERV-K10, and SVA retrotransposons were observed in ejaculated human sperm samples. The incubation of human spermatozoa with either retrotransposition-active human LINE-1 and HERV-K10 or mouse reverse transcriptase-deficient VL30 retrotransposons tagged with an EGFP-based retrotransposition cassette led to EGFP-positive spermatozo; 16.67% of the samples were positive for retrotransposition. The respective retrotransposition frequencies for the LINE-1, HERV-K10, and VL30 retrotransposons in the positive samples were 0.34 ± 0.13%, 0.37 ± 0.17%, and 0.30 ± 0.14% per sample of 10,000 spermatozoa. Our results show that: 1) LINE-1, HERV-K10, and SVA retrotransposons are transcriptionally expressed in human spermatozoa; 2) cloned active retroelements of human and mammalian origin can be incorporated in human sperm genome; 3) active reverse transcriptases exist in human spermatozoa; and 4) de novo retrotransposition events occur in human spermatozoa. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gault, J.; Zonana, J.; Zeltinger, J.
A conserved mouse genomic clone was used to identify a homologous human genomic clone (the DXS732E locus), which was subsequently employed to isolate cDNAs from a human fetal brain library. Nine unique overlapping cDNAs were isolated, and sequences analysis of 3.9 kb identified a putative 1 kb ORF. GRAIL analysis of the sequence supported the hypothesis that the putative ORF was coding sequence, and Prosite analysis of the putative ORF identified potential glycosylation and phosphorylation sites. The 5{prime} end of the gene maps within a CpG island, and comparison of cDNA sequences indicate the gene is alternatively spliced at itsmore » 3{prime} end. Northern analysis and RT-PCR indicate that two different sized messages appear to be expressed with the gene expressed in human fetal kidney, intestine, brain, and muscle. The gene is expressed in 77 day human skin, a time when hair follicle formation occurs. Anhidrotic ectodermal dysplasia (EDA) results in the abnormal morphogenesis of hair, teeth and eccrine sweat glands. A positional cloning strategy towards cloning the EDA gene had been used, and deletion and X-autosome translocation patients have been useful in further delimiting the EDA region. The present gene at the DXS732E locus is partially deleted in one EDA patient who does not have other apparent abnormalities. No rearrangements of the gene have been detected in two female X-autosome translocation EDA patients, nor in four additional male patients with submicroscopic molecular deletions.« less
Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Lagoumintzis, George; Poulas, Konstantinos
2017-01-01
During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.
Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Poulas, Konstantinos
2017-01-01
During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors. PMID:29091919
Expression of Innate Immune Response Genes in Liver and Three Types of Adipose Tissue in Cloned Pigs
Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan
2012-01-01
Abstract The pig has been proposed as a relevant model for human obesity-induced inflammation, and cloning may improve the applicability of this model. We tested the assumptions that cloning would reduce interindividual variation in gene expression of innate immune factors and that their expression would remain unaffected by the cloning process. We investigated the expression of 40 innate immune factors by high-throughput quantitative real-time PCR in samples from liver, abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and neck SAT in cloned pigs compared to normal outbred pigs. The variation in gene expression was found to be similar for the two groups, and the expression of a small number of genes was significantly affected by cloning. In the VAT and abdominal SAT, six out of seven significantly differentially expressed genes were downregulated in the clones. In contrast, most differently expressed genes in both liver and neck SAT were upregulated (seven out of eight). Remarkably, acute phase proteins (APPs) dominated the upregulated genes in the liver, whereas APP expression was either unchanged or downregulated in abdominal SAT and VAT. The general conclusion from this work is that cloning leads to subtle changes in specific subsets of innate immune genes. Such changes, even if minor, may have phenotypic effects over time, e.g., in models of long-term inflammation related to obesity. PMID:22928970
Seo, H S; Kim, H Y; Jeong, J Y; Lee, S Y; Cho, M J; Bahk, J D
1995-03-01
A cDNA clone, RGA1, was isolated by using a GPA1 cDNA clone of Arabidopsis thaliana G protein alpha subunit as a probe from a rice (Oryza sativa L. IR-36) seedling cDNA library from roots and leaves. Sequence analysis of genomic clone reveals that the RGA1 gene has 14 exons and 13 introns, and encodes a polypeptide of 380 amino acid residues with a calculated molecular weight of 44.5 kDa. The encoded protein exhibits a considerable degree of amino acid sequence similarity to all the other known G protein alpha subunits. A putative TATA sequence (ATATGA), a potential CAAT box sequence (AGCAATAC), and a cis-acting element, CCACGTGG (ABRE), known to be involved in ABA induction are found in the promoter region. The RGA1 protein contains all the consensus regions of G protein alpha subunits except the cysteine residue near the C-terminus for ADP-ribosylation by pertussis toxin. The RGA1 polypeptide expressed in Escherichia coli was, however, ADP-ribosylated by 10 microM [adenylate-32P] NAD and activated cholera toxin. Southern analysis indicates that there are no other genes similar to the RGA1 gene in the rice genome. Northern analysis reveals that the RGA1 mRNA is 1.85 kb long and expressed in vegetative tissues, including leaves and roots, and that its expression is regulated by light.
Analysis of intracellular cytokines using flowcytometry.
Arora, Sunil K
2002-01-01
Characterization of T-cell clones and identification of functional subsets of the helper T-cells with polarized cytokine production is based on testing of cytokine expression. Several methods have been developed that allow cytokine expression to be measured like ELISA, RT-PCR, ELISPOT, ISH and flowcytometry. Among all these methods, monitoring of cytokine production using flowcytometric analysis has its own advantages and disadvantages. Multi-parametric characterization of cytokine production on single cell basis, without long-term culture and cloning along with high throughput of samples is main feature attached to flowcytometric analysis. The interpretation may be difficult at times due to change in the phenotype of the cells. Cells with similar surface phenotype but synthesizing different cytokines and having different functional characteristics can be analyzed with this technique.
Seki, N; Muramatsu, M; Sugano, S; Suzuki, Y; Nakagawara, A; Ohhira, M; Hayashi, A; Hori, T; Saito, T
1998-01-01
Huntington disease (HD) is an inherited neurodegenerative disorder which is associated with CAG expansion in the coding region of the gene for huntingtin protein. Recently, a huntingtin interacting protein, HIP1, was isolated by the yeast two-hybrid system. Here we report the isolation of a cDNA clone for HIP1R (huntingtin interacting protein-1 related), which encodes a predicted protein product sharing a striking homology with HIP1. RT-PCR analysis showed that the messenger RNA was ubiquitously expressed in various human tissues. Based on PCR-assisted analysis of a radiation hybrid panel and fluorescence in situ hybridization, HIP1R was localized to the q24 region of chromosome 12.
Burgess, D; Penton, A; Dunsmuir, P; Dooner, H
1997-02-01
Three ADP-glucose pyrophosphorylase (ADPG-PPase) cDNA clones have been isolated and characterized from a pea cotyledon cDNA library. Two of these clones (Psagps1 and Psagps2) encode the small subunit of ADPG-PPase. The deduced amino acid sequences for these two clones are 95% identical. Expression of these two genes differs in that the Psagps2 gene shows comparatively higher expression in seeds relative to its expression in other tissues. Psagps2 expression also peaks midway through seed development at a time in which Psagps1 transcripts are still accumulating. The third cDNA isolated (Psagp11) encodes the large subunit of ADPG-PPase. It shows greater selectivity in expression than either of the small subunit clones. It is highly expressed in sink organs (seed, pod, and seed coat) and undetectable in leaves.
Identification of antigens by monoclonal antibody PD4 and its expression in Escherichia coli
Ning, Jin-Ying; Sun, Guo-Xun; Huang, Su; Ma, Hong; An, Ping; Meng, Lin; Song, Shu-Mei; Wu, Jian; Shou, Cheng-Chao
2003-01-01
AIM: To clone and express the antigen of monoclonal antibody (MAb) PD4 for further investigation of its function. METHODS: MGC803 cDNA expression library was constructed and screened with PD4 as probes to clone the antigen. After failed in the library screening, immunoprecipitation and SDS-polyacrylamide gel electrophoresis were applied to purify the antigen for sequence analysis. The antigen coming from Mycoplasma hyorhinis (M. hyorhinis) was further confirmed with Western blot analysis by infecting M. hyorhinis -free HeLa cells and eliminating the M. hyorhinis from MGC803 cells. The full p37 gene was cloned by PCR and expressed successfully in Escherichia coli after site-directed mutations. Immunofluorescence assay was used to demonstrate if p37 protein could directly bind to gastric tumor cell AGS. RESULTS: The cDNA library constructed with MGC803 cells was screened by MAb PD4 as probes. Unfortunately, the positive clones identified with MAb PD4 were also reacted with unrelated antibodies. Then, immunoprecipitation was performed and the purified antigen was identified to be a membrane protein of Mycoplasma hyorhinis (M. hyorhinis) by sequencing of N-terminal amino acid residues. The membrane protein was intensively verified with Western blot by eliminating M. hyorhinis from MGC803 cells and by infecting M. hyorhinis-free HeLa cells. The full p37 gene was cloned and expressed successfully in Escherichia coli after site-directed mutations. Immunofluorescence demonstrated that p37 protein could directly bind to gastric tumor cell AGS. CONCLUSION: The antigen recognized by MAb PD4 is from M. hyorhinis, which suggests the actions involved in MAb PD4 is possibly mediated by p37 protein or M. hyorhinis. As p37 protein can bind directly to tumor cells, the pathogenic role of p37 involved in tumorigenesis justifies further investigation. PMID:14562370
Jäger, Dirk; Unkelbach, Marc; Frei, Claudia; Bert, Florian; Scanlan, Matthew J; Jäger, Elke; Old, Lloyd J; Chen, Yao-Tseng; Knuth, Alexander
2002-06-28
Serological analysis of recombinant cDNA expression libraries (SEREX) has led to the identification of several categories of new tumor antigens. We analyzed a testicular cDNA expression library with serum obtained from a breast cancer patient and isolated 13 genes designated NW-BR-1 through NW-BR-13. Of these, 3 showed tumor-restricted expression (NW-BR-1, -2 and -3), the others being expressed ubiquitously. NW-BR-3, representing 9 of 24 primary clones, showed tissue-restricted mRNA expression, being expressed in normal testis but not in 15 other normal tissues tested by Northern blotting. RT-PCR analysis showed strong NW-BR-3 expression in normal testis, weak expression in brain, kidney, trachea, uterus and normal prostate, and was negative in liver, heart, lung, colon, small intestine, bone marrow, breast, thymus, muscle, spleen, and stomach. NW-BR-3 mRNA expression was found in different tumor tissues and tumor cell lines by RT-PCR, thus showing a 'cancer/testis' (CT)-like mRNA expression pattern. NW-BR-3 shares 71% nucleotide and amino acid homology to a mouse gene cloned from mouse testicular tissue. Based on the mRNA expression pattern, NW-BR-3 represents a new candidate target gene for cancer immunotherapy. NW-BR-1 and NW-BR-2 also showed tumor-restricted mRNA expression. NW-BR-1 is a partial clone of the breast differentiation antigen NY-BR-1 previously identified by SEREX. NY-BR-1 is expressed in normal breast, testis and 80% of breast cancers. NW-BR-2 is identical to the CT antigen SCP-1, initially isolated by SEREX analysis of renal cancer. This study provides further evidence that SEREX is a powerful tool to identify new tumor antigens potentially relevant for immunotherapy approaches.
Tsuruta, Lilian Rumi; Lopes Dos Santos, Mariana; Yeda, Fernanda Perez; Okamoto, Oswaldo Keith; Moro, Ana Maria
2016-12-01
Genetic characterization of protein-producing clones represents additional value to cell line development. In the present study, ten Per.C6 clones producing a Rebmab100 monoclonal antibody were selected using two cloning methods: six clones originated from limiting dilution cloning and four by the automated colony picker ClonePix FL. A stability program was performed for 50 generations, including 4 batches distributed along the timeframe to determine specific productivity (Qp) maintenance. Four stable clones (two from limiting dilution and two from ClonePix FL) were further evaluated. The relative mRNA expression levels of both heavy chain (HC) and light chain (LC) genes were verified at generations 0, 30-35, and 50-55 of the stability program. At generations 0 and 30-35, LC gene expression level was higher than HC gene, whereas at generation 50-55, the opposite prevailed. A high correlation was observed between Qp and HC or LC mRNA expression level for all clones at each generation analyzed along the continuous culture. The mRNA stability study was performed at steady-state culture. The LC gene displayed a higher half-life and lower decay constant than HC gene, accounting for the higher observed expression level of LC mRNA in comparison to HC mRNA. Clone R6 was highlighted due its high Qp, mRNA expression levels, and mRNA stability. Besides the benefits of applying genetic characterization for the selection of stable and high-producing clones, the present study shows for the first time the correlation between Qp and HC or LC expression levels and also mRNA stability in clones derived from human cell line Per.C6(®).
Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A
2009-01-01
Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an important step towards the identification of all genes in the citrus genome. Furthermore, public availability of the cDNA clones generated in this study, and not only their sequence, enables testing of the biological function of the genes represented in the collection. Expression of the citrus SEP3 homologue, CitrSEP, in Arabidopsis results in early flowering, along with other phenotypes resembling the over-expression of the Arabidopsis SEPALLATA genes. Our findings suggest that the members of the SEP gene family play similar roles in these quite distant plant species. PMID:19747386
Analysis of the antibody repertoire of lymphoma patients.
Huang, Shaoming; Preuss, Klaus-Dieter; Xie, Xiaoxun; Regitz, Evi; Pfreundschuh, Michael
2002-12-01
Cancer testis or cancer germline antigens (CGA) are promising vaccine candidates because they are expressed only in malignant but not in normal tissues, except for germ cells in the testis. Since non-Hodgkin's lymphomas (NHL) express the known CGA at low frequencies, we aimed at increasing the number of CGA with frequent expression in NHL by screening a cDNA expression library derived from normal testis for reactivity with high-titered IgG antibodies in the sera of lymphoma patients using SEREX, the serological identification of antigens by recombinant cDNA expression cloning. The analysis of 1.6x10(6) clones with the sera of 25 lymphoma patients revealed 42 clones which coded for 23 antigens, 12 of which had already been included in the SEREX databank. Four cDNA clones coded for unknown and 19 for known genes. Three antigens reacted only with the serum by which they had been detected, 9 antigens reacted with the sera of several NHL patients, but not with that of healthy controls, and 11 antigens reacted with both normal and NHL sera. Most of the antigens were ubiquitously expressed. Only HOM-NHL-6, HOM-NHL-8, HOM-NHL-21 and HOM-NHL-23 showed a restricted expression pattern. HOM-NHL-6 and HOM-NHL-8 were homologous to the previously described CGA NY-ESO-1 and HOM-TES-14/SCP-1, respectively. HOM-NHL-21 was expressed in rare cases of lymphomas, but not in normal tissues except for testis and brain, while HOM-NHL-23 appeared to be a testis-specific antigen. In summary, using the antibody repertoire of these 25 NHL patients, no new CGA were detected. The number of CGA detectable by the classical SEREX approach appears to be limited, and novel strategies are necessary to identify antigens that can serve as a vaccine target in a broad spectrum of NHL patients.
Expression Analysis of the Theileria parva Subtelomere-Encoded Variable Secreted Protein Gene Family
Schmied, Stéfanie; Affentranger, Sarah; Parvanova, Iana; Kang'a, Simon; Nene, Vishvanath; Katzer, Frank; McKeever, Declan; Müller, Joachim; Bishop, Richard; Pain, Arnab; Dobbelaere, Dirk A. E.
2009-01-01
Background The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs) form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm. Methodology/Principal Findings We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals. Conclusions Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene expression and the potential biological role of these enigmatic proteins. PMID:19325907
Molecular cloning, sequencing, and expression of Eimeria tenella HSP70 partial gene.
Bogado, A L G; Martins, G F; Sasse, J P; Guimarães, J da S; Garcia, J L
2017-03-15
Members of the Eimeria genus are protozoan parasites of the subphylum Apicomplexa (Eimeriidae family), and belong to the coccidia group. Eimeria tenella is one of the most pathogenic species owing to its ability to penetrate the mucosa, and cause inflammation and damage. It is an obligate intracellular parasite that causes disease by destroying the host cells during multiplication. Heat shock protein 70 (HSP70) is a molecular chaperone that prevents cellular stress. The objective of this study was to clone, sequence, and express E. tenella HSP70 protein. After selecting the region of highest hydrophilicity in the hsp70 gene, we cloned complementary DNA (cDNA) into a pTrcHis2-TOPO vector and transformed it into TOP10 Escherichia coli cells; after induction, the bacteria expressed a 23-kDa protein with insoluble expression levels of approximately 5 mg/L. In summary, the partial hsp70 gene was successfully expressed in E. coli, producing a 23-kDa protein under insoluble conditions, and the antigen characteristics predicted by hydrophilicity analysis suggest the development of a vaccine for use in avian coccidiosis.
Gong, Mingbo; Tang, Chaoxi; Zhu, Changxiong
2014-11-01
A primary cDNA library of Penicillium oxalicum I1 was constructed using the switching mechanism at the 5' end of the RNA transcript (SMART) technique. A total of 106 clones showed halos in tricalcium phosphate (TCP) medium, and clone I-40 showed clear halos. The full-length cDNA of clone I-40 was 1355 bp with a complete open reading frame (ORF) of 1032 bp, encoding a protein of 343 amino acids. Multiple alignment analysis revealed a high degree of homology between the ORF of clone I-40 and delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDH) of other fungi. The ORF expression vector was constructed and transformed into Escherichia coli DH5α. The transformant (ORF-1) with the P5CDH gene secreted organic acid in medium with TCP as the sole source of phosphate. Acetic acid and α-ketoglutarate were secreted in 4 and 24 h, respectively. ORF-1 decreased the pH of the medium from 6.62 to 3.45 and released soluble phosphate at 0.172 mg·mL(-1) in 28 h. Expression of the P. oxalicum I1 p5cdh gene in E. coli could enhance organic acid secretion and phosphate-solubilizing ability.
Xia, Xiaohua; Huo, Weiran; Wan, Ruyan; Zhang, Linxia; Xia, Xiaopei; Chang, Zhongjie
2017-01-01
Sox3 is a single-exon gene located on the X chromosome in most vertebrates. It belongs to the SoxB1 subfamily, which is part of the larger Sox family. Previous studies have revealed that Sox3 is expressed in many fish species. However, how Sox3 influences the development of Misgurnus anguillicaudatus remains unknown. In this study, a Sox3 homologue, termed MaSox3, was cloned from the brain of M. anguillicaudatus using homology-based cloning and the rapid amplification of cDNA ends method. Sequence analysis reveals that MaSox3 encodes a hydrophilic protein, which contains a characteristic HMG-box DNA-binding domain of 79 amino acids, and shares high homology with Sox3 in other species. Additionally, quantitative real-time reverse transcription PCR and in situ hybridization showed that MaSox3 is consistently expressed during embryogenesis, with peak expression during the neurula stage and broad expression in the central nervous system. Moreover, tissue distribution analyses have revealed that MaSox3 is abundant in the adult brain, the particle cell layer, and the gonad. Additionally, its expression is observed in primary spermatocyte cells, primary oocytes and previtellogenic oocyte cells. Taken together, all of these results suggest that the expression of the MaSox3 gene is highly conserved during vertebrate evolution and involved in a wide range of developmental processes including embryogenesis, neurogenesis and gonad development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh Tzechen; Wang Zhirong; Hamby, Carl V.
2005-08-19
Resveratrol (trans-3,4',5-trihydroxystilbene) is a grape-derived polyphenol under intensive study for its potential in cancer prevention. In the case of cultured human melanoma cells, no one to our knowledge has investigated whether resveratrol exerts similar anti-proliferative activities in cells with different metastatic potential. Therefore, we examined the effects of this polyphenol on the growth of weakly metastatic Line IV clone 3 and on autologous, highly metastatic Line IV clone 1 cultured melanoma cells. Comparable inhibition of growth and colony formation resulted from treatment by resveratrol in both cell lines. Flow cytometric analysis revealed that resveratrol-treated clone 1 cells had a dose-dependentmore » increase in S phase and a concomitant reduction in the G{sub 1} phase. No detectable change in cell cycle phase distribution was found in similarly treated clone 3 cells. Western blots demonstrated a significant increase in the expression of the tumor suppressor gene p53, without a commensurate change in p21 and several other cell cycle regulatory proteins in both cell types. Chromatography of Line IV clone 3 and clone 1 cell extracts on resveratrol affinity columns revealed that the basal expression of dihydronicotinamide riboside quinone reductase 2 (NQO2) was higher in Line IV clone 1 than clone 3 cells. Levels of NQO2 but not its structural analog NQO1 were dose-dependently increased by resveratrol in both cell lines. We propose that induction of NQO2 may relate to the observed increased expression of p53 that, in turn, contributes to the observed suppression of cell growth in both melanoma cell lines.« less
Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing
2016-01-01
Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones. PMID:27555864
Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing
2016-01-01
Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones.
Yi, S Y; Hwang, B K
1998-10-31
Differential display techniques were used to isolate cDNA clones corresponding to genes which were expressed in soybean hypocotyls by Phytophthora sojae f.sp. glycines infection. With a partial cDNA clone C20CI4 from the differential display PCR as a probe, a new basic peroxidase cDNA clone, designated GMIPER1, was isolated from a cDNA library of soybean hypocotyls infected with P. sojae f.sp. glycines. Sequence analysis revealed that the peroxidase clone encodes a mature protein of 35,813 Da with a putative signal peptide of 27 amino acids in its N-terminus. The amino acid sequence of the soybean peroxidase GMIPER1 is between 54-75% identical to other plant peroxidases including a soybean seed coat peroxidase. Southern blot analysis indicated that multiple copies of sequences related to GMIPER1 exist in the soybean genome. The mRNAs corresponding to the GMIPER1 cDNA accumulated predominantly in the soybean hypocotyls infected with the incompatible race of P. sojae f.sp. glycines, but were expressed at low levels in the compatible interaction. Soybean GMIPER1 mRNAs were not expressed in hypocotyls, leaves, stems, and roots of soybean seedlings. However, treatments with ethephon, salicylic acid or methyl jasmonate induced the accumulation of the GMIPER1 mRNAs in the different organs of soybean. These results suggest that the GMIPER1 gene encoding a putative pathogen-induced peroxidase may play an important role in induced resistance of soybean to P. sojae f.sp. glycines and in response to various external stresses.
A versatile and efficient high-throughput cloning tool for structural biology.
Geertsma, Eric R; Dutzler, Raimund
2011-04-19
Methods for the cloning of large numbers of open reading frames into expression vectors are of critical importance for challenging structural biology projects. Here we describe a system termed fragment exchange (FX) cloning that facilitates the high-throughput generation of expression constructs. The method is based on a class IIS restriction enzyme and negative selection markers. FX cloning combines attractive features of established recombination- and ligation-independent cloning methods: It allows the straightforward transfer of an open reading frame into a variety of expression vectors and is highly efficient and very economic in its use. In addition, FX cloning avoids the common but undesirable feature of significantly extending target open reading frames with cloning related sequences, as it leaves a minimal seam of only a single extra amino acid to either side of the protein. The method has proven to be very robust and suitable for all common pro- and eukaryotic expression systems. It considerably speeds up the generation of expression constructs compared to traditional methods and thus facilitates a broader expression screening.
Alonso, Pablo; Cortizo, Millán; Cantón, Francisco R; Fernández, Belén; Rodríguez, Ana; Centeno, Maria L; Cánovas, Francisco M; Ordás, Ricardo J
2007-12-01
As part of a study aimed at understanding the physiological and molecular mechanisms involved in adventitious shoot bud formation in pine cotyledons, we conducted a transcriptome analysis to identify early-induced genes during the first phases of adventitious caulogenesis in Pinus pinea L. cotyledons cultured in the presence of benzyladenine. A subtractive cDNA library with more than 700 clones was constructed. Of these clones, 393 were sequenced, analyzed and grouped according to their putative function. Quantitative real-time PCR analysis was performed to confirm the differential expression of 30 candidate genes. Results are contrasted with available data for other species.
Cloning and expression analysis of FaPR-1 gene in strawberry
NASA Astrophysics Data System (ADS)
Mo, Fan; Luo, Ya; Ge, Cong; Mo, Qin; Ling, Yajie; Luo, Shu; Tang, Haoru
2018-04-01
The FaPR-1 gene was cloned by RT-PCR from `Benihoppe' strawberry and its bioinformatics analysis was conducted. The results showed that the open reading frame was 483 bp encoding encoding l60 amino acids which protein molecular weight and theoretical isoelectricity were 17854.17 and 8.72 respectively. Subcellular localization prediction shows that this gene is located extracellularly. By comparing strawberry FaPR-l and other plant Pathogenesis-related protein, homology and phylogenetic tree construction showed that the homology with grapes, peach is relatively close. In the treatments of ABA, sucrose and the mixture of the two, the expression of FaPR-1 in strawberry fruit were significantly increased.
Jiménez, Juan J.; Gútiez, Loreto; Cintas, Luis M.; Herranz, Carmen; Hernández, Pablo E.
2015-01-01
We have evaluated the cloning and functional expression of previously described broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris. Synthetic genes, matching the codon usage of P. pastoris, were designed from the known mature amino acid sequence of these bacteriocins and cloned into the protein expression vector pPICZαA. The recombinant derived plasmids were linearized and transformed into competent P. pastoris X-33, and the presence of integrated plasmids into the transformed cells was confirmed by PCR and sequencing of the inserts. The antimicrobial activity, expected in supernatants of the recombinant P. pastoris producers, was purified using a multistep chromatographic procedure including ammonium sulfate precipitation, desalting by gel filtration, cation exchange-, hydrophobic interaction-, and reverse phase-chromatography (RP-FPLC). However, a measurable antimicrobial activity was only detected after the hydrophobic interaction and RP-FPLC steps of the purified supernatants. MALDI-TOF MS analysis of the antimicrobial fractions eluted from RP-FPLC revealed the existence of peptide fragments of lower and higher molecular mass than expected. MALDI-TOF/TOF MS analysis of selected peptides from eluted RP-FPLC samples with antimicrobial activity indicated the presence of peptide fragments not related to the amino acid sequence of the cloned bacteriocins. PMID:25821820
[TSA improve transgenic porcine cloned embryo development and transgene expression].
Kong, Qing-Ran; Zhu, Jiang; Huang, Bo; Huan, Yan-Jun; Wang, Feng; Shi, Yong-Qian; Liu, Zhong-Feng; Wu, Mei-Ling; Liu, Zhong-Hua
2011-07-01
Uncompleted epigenetic reprogramming is attributed to the low efficiency of producing transgenic cloned animals. Histone modification associated with epigenetics can directly influence the embryo development and transgene expression. Trichostatin A (TSA), as an inhibitor of histone deacetylase, can change the status of histone acetylation, improve somatic cell reprogramming, and enhance cloning efficiency. TSA prevents the chromatin structure from being condensed, so that transcription factor could binds to DNA sequence easily and enhance transgene expression. Our study established the optimal TSA treatment on porcine donor cells and cloned embryos, 250 nmol/L, 24 h and 40 nmol/L, 24 h, respectively. Furthermore, we found that both the cloned embryo and the donor cell treated by TSA resulted in the highest development efficiency. Meanwhile, TSA can improve transgene expression in donor cell and cloned embryo. In summary, TSA can significantly improve porcine reconstructed embryo development and transgene expression.
Zhu, Jiewei; Huang, Xiuli; Liu, Tong; Gao, Shigang; Chen, Jie
2012-08-01
ZmDIP was cloned and its function against Curvularia lunata was analyzed, according to a previous finding on a drought-inducible protein in resistant maize identified through MALDI-TOF-MS/MS. The ZmDIP expression varied in roots, leaf sheaths, and young, as well as old, leaves of different maize inbred lines. The ZmDIP transcript level changed in leaves over the course of time after inoculation with C. lunata. A prokaryotic expression analysis demonstrated that the gene can regulate the salt stress tolerance of Escherichia coli. The ZmDIP transient expression in the maize leaf showed that the gene was also linked to leaf resistance against the C. lunata infection. ZmDIP-mediated ROS and ABA signaling pathways were inferred to be closely associated with maize leaf resistance to the pathogen infection.
Molecular cloning and expression of the calmodulin gene from guinea pig hearts.
Feng, Rui; Liu, Yan; Sun, Xuefei; Wang, Yan; Hu, Huiyuan; Guo, Feng; Zhao, Jinsheng; Hao, Liying
2015-06-01
The aim of the present study was to isolate and characterize a complementary DNA (cDNA) clone encoding the calmodulin (CaM; GenBank accession no. FJ012165) gene from guinea pig hearts. The CaM gene was amplified from cDNA collected from guinea pig hearts and inserted into a pGEM®-T Easy vector. Subsequently, CaM nucleotide and protein sequence similarity analysis was conducted between guinea pigs and other species. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to investigate the CaM 3 expression patterns in different guinea pig tissues. Sequence analysis revealed that the CaM gene isolated from the guinea pig heart had ∼90% sequence identity with the CaM 3 genes in humans, mice and rats. Furthermore, the deduced peptide sequences of CaM 3 in the guinea pig showed 100% homology to the CaM proteins from other species. In addition, the RT-PCR results indicated that CaM 3 was widely and differentially expressed in guinea pigs. In conclusion, the current study provided valuable information with regard to the cloning and expression of CaM 3 in guinea pig hearts. These findings may be helpful for understanding the function of CaM3 and the possible role of CaM3 in cardiovascular diseases.
Londraville, R L; Cramer, T D; Franck, J P; Tullis, A; Block, B A
2000-10-01
Complete cDNAs for the fast-twitch Ca2+ -ATPase isoform (SERCA 1) were cloned and sequenced from blue marlin (Makaira nigricans) extraocular muscle (EOM). Complete cDNAs for SERCA 1 were also cloned from fast-twitch skeletal muscle of the same species. The two sequences are identical over the coding region except for the last five codons on the carboxyl end; EOM SERCA 1 cDNA codes for 996 amino acids and the fast-twitch cDNAs code for 991 aa. Phylogenetic analysis revealed that EOM SERCA 1 clusters with an isoform of Ca2+ -ATPase normally expressed in early development of mammals (SERCA 1B). This is the first report of SERCA 1B in an adult vertebrate. RNA hybridization assays indicate that 1B expression is limited to extraocular muscles. Because EOM gives rise to the thermogenic heater organ in marlin, we investigated whether SERCA 1B may play a role in heat generation, or if 1B expression is common in EOM among vertebrates. Chicken also expresses SERCA 1B in EOM, but rat expresses SERCA 1A; because SERCA 1B is not specific to heater tissue we conclude it is unlikely that it plays a specific role in intracellular heat production. Comparative sequence analysis does reveal, however, several sites that may be the source of functional differences between fish and mammalian SERCAs.
USDA-ARS?s Scientific Manuscript database
This paper presents the first study describing the isolation, cloning and characterization of a full length gene encoding Bowman-Birk protease inhibitor (RbTI) from rice bean (Vigna umbellata). A full-length protease inhibitor gene with complete open reading frame of 327bp encoding 109 amino acids w...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trindade, Inês B.; Fonseca, Bruno M.; Matias, Pedro M.
The gene encoding a putative siderophore-interacting protein from the marine bacterium S. frigidimarina was successfully cloned, followed by expression and purification of the gene product. Optimized crystals diffracted to 1.35 Å resolution and preliminary crystallographic analysis is promising with respect to structure determination and increased insight into the poorly understood molecular mechanisms underlying iron acquisition. Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI-RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this proteinmore » are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing.« less
Characterization of embryo-specific genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that is not expressed in mature tissues -- the embryonic genes. In the last two years, using cDNA clones, we have isolated 22 cDNA clones, and characterized the expression pattern of their corresponding RNA. At least 4 cDNA clones detect RNAs of embryonic genes. These cDNA clones detect RNAs expressed in somatic as well as zygotic embryos of carrot. Using the cDNA clones, we screened the genomic library of carrot embryo DNA, and isolatedmore » genomic clones for three genes. The structure and function of two genes DC 8 and DC 59 have been characterized and are reported in this paper.« less
Cloning and expression of calmodulin gene in Scoparia dulcis.
Saitoh, Daisuke; Asakura, Yuki; Nkembo, Marguerite Kasidimoko; Shite, Masato; Sugiyama, Ryuji; Lee, Jung-Bum; Hayashi, Toshimitsu; Kurosaki, Fumiya
2007-06-01
A homology-based cloning strategy yielded a cDNA clone, designated Sd-cam, encoding calmodulin protein from Scoparia dulcis. The restriction digests of genomic DNA of S. dulcis showed a single hybridized signal when probed with the fragment of this gene in Southern blot analyses, suggesting that Sd-cam occurs as a sole gene encoding calmodulin in the plant. The reverse-transcription polymerase chain reaction analysis revealed that Sd-cam was appreciably expressed in leaf, root and stem tissues. It appeared that transcription of this gene increased transiently when the leaf cultures of S. dulcis were treated with methyl jasmonate and calcium ionophore A23187. These results suggest that transcriptional activation of Sd-cam is one of the early cellular events of the methyl jasmonate-induced responses of S. dulcis.
Reddy, M K; Nair, S; Singh, B N; Mudgil, Y; Tewari, K K; Sopory, S K
2001-01-24
We report the cloning and sequencing of both cDNA and genomic DNA of a 33 kDa chloroplast ribonucleoprotein (33RNP) from pea. The analysis of the predicted amino acid sequence of the cDNA clone revealed that the encoded protein contains two RNA binding domains, including the conserved consensus ribonucleoprotein sequences CS-RNP1 and CS-RNP2, on the C-terminus half and the presence of a putative transit peptide sequence in the N-terminus region. The phylogenetic and multiple sequence alignment analysis of pea chloroplast RNP along with RNPs reported from the other plant sources revealed that the pea 33RNP is very closely related to Nicotiana sylvestris 31RNP and 28RNP and also to 31RNP and 28RNP of Arabidopsis and spinach, respectively. The pea 33RNP was expressed in Escherichia coli and purified to homogeneity. The in vitro import of precursor protein into chloroplasts confirmed that the N-terminus putative transit peptide is a bona fide transit peptide and 33RNP is localized in the chloroplast. The nucleic acid-binding properties of the recombinant protein, as revealed by South-Western analysis, showed that 33RNP has higher binding affinity for poly (U) and oligo dT than for ssDNA and dsDNA. The steady state transcript level was higher in leaves than in roots and the expression of this gene is light stimulated. Sequence analysis of the genomic clone revealed that the gene contains four exons and three introns. We have also isolated and analyzed the 5' flanking region of the pea 33RNP gene.
NASA Astrophysics Data System (ADS)
Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Larsen, Jill
We have used a model of non-oncogenically immortalized normal human bronchial epithelial cells to determine the response of such cells to particles found outside the protection of the earth’s electromagnetic field. We have identified an enhanced frequency of cellular transformation, as measured by growth in soft agar, for both 56Fe and 28Si (1 GeV/n) that is maximal (4-6 fold) at 0.25 Gy and 0.40 Gy, respectively. At 4 months post-irradiation 38 individual soft agar clones were isolated. These clones were characterized extensively for cellular and molecular changes. Gene expression analysis suggested that these clones had down-regulated several genes associated with anti-oxidant pathways including GLS2, GPX1 and 4, SOD2, PIG3, and NQO1 amongst others. As a result, many of these transformed clones were exposed to high levels of intracellular radical oxygen species (ROS), although there appeared not to be any enhanced mitochondrial ROS. DNA repair pathways associated with ATM/ATR signaling were also upregulated. However, these transformants do not develop into tumors when injected into immune-compromised mice, suggesting that they have not progressed sufficiently to become oncogenic. Therefore we chose 6 soft agar clones for continuous culture for an additional 14 months. Amongst the 6 clones, only one clone showed any significant change in phenotype. Clone 3kt-ff.2a, propagated for 18 months, were 2-fold more radioresistant, had a shortened doubling time and the background rate of transformation more than doubled. Furthermore, the morphology of transformed clones changed. Clones from this culture are being compared to the original clone as well as the parental HBEC3KT and will be injected into immune-compromised mice for oncogenic potential. Oncogenically progressed HBECs, HBEC3KT cells that overexpress a mutant RAS gene and where p53 has been knocked down, designated HBEC3KTR53, responded quite differently to HZE particle exposure. First, these cells are more radioresistant to all radiations used when compared to the parental cell line HBEC3KT. Furthermore, within days of their exposure to low and high LET radiations they exhibit enhanced cellular transformation over the parental cells. Moreover, HZE radiations are many fold more effective at initiating cellular transformation. Gene expression analysis identified several pathways that support oncogenic growth as overrepresented in the progressed cells. With continual culture some clones undergo epithelial to mesenchymal transition, change morphology and express markers associated with EMT. And, at least one clone is oncogenic forming highly aggressive tumors in an immune compromised mouse strain. It is important to note that HBEC3KTR53 cells will not form tumors in mice, however, this irradiated clone has moved through the multi-step process of carcinogenesis. We are now examining the molecular alterations that led to oncogenesis in this clone.
Chen, Yunjia; Qiu, Shihong; Luan, Chi-Hao; Luo, Ming
2007-01-01
Background Expression of higher eukaryotic genes as soluble, stable recombinant proteins is still a bottleneck step in biochemical and structural studies of novel proteins today. Correct identification of stable domains/fragments within the open reading frame (ORF), combined with proper cloning strategies, can greatly enhance the success rate when higher eukaryotic proteins are expressed as these domains/fragments. Furthermore, a HTP cloning pipeline incorporated with bioinformatics domain/fragment selection methods will be beneficial to studies of structure and function genomics/proteomics. Results With bioinformatics tools, we developed a domain/domain boundary prediction (DDBP) method, which was trained by available experimental data. Combined with an improved cloning strategy, DDBP had been applied to 57 proteins from C. elegans. Expression and purification results showed there was a 10-fold increase in terms of obtaining purified proteins. Based on the DDBP method, the improved GATEWAY cloning strategy and a robotic platform, we constructed a high throughput (HTP) cloning pipeline, including PCR primer design, PCR, BP reaction, transformation, plating, colony picking and entry clones extraction, which have been successfully applied to 90 C. elegans genes, 88 Brucella genes, and 188 human genes. More than 97% of the targeted genes were obtained as entry clones. This pipeline has a modular design and can adopt different operations for a variety of cloning/expression strategies. Conclusion The DDBP method and improved cloning strategy were satisfactory. The cloning pipeline, combined with our recombinant protein HTP expression pipeline and the crystal screening robots, constitutes a complete platform for structure genomics/proteomics. This platform will increase the success rate of purification and crystallization dramatically and promote the further advancement of structure genomics/proteomics. PMID:17663785
Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls
NASA Astrophysics Data System (ADS)
Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.; Hoson, T.
2003-05-01
Under hypergravity conditions, the cell wall of stem organs becomes mechanically rigid and elongation growth is suppressed, which can be recognized as the mechanism for plants to resist gravitational force. The changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by the differential display method, for identifying genes involved in hypergravity-induced growth suppression. Sixty-two cDNA clones were expressed differentially between the control and 300 g conditions: the expression levels of 39 clones increased, whereas those of 23 clones decreased under hypergravity conditions. Sequence analysis and database searching revealed that 12 clones, 9 up-regulated and 3 down-regulated, have homology to known proteins. The expression of these genes was further analyzed using RT-PCR. Finally, six genes were confirmed to be up-regulated by hypergravity. One of such genes encoded 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor ofterpenoids such as membrane sterols and several types of hormones. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of genes encoding CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water, and those of the α-tubulin gene. These genes may be involved in a series of cellular events leading to growth suppression of stem organs under hypergravity conditions.
Genes up-regulated during red coloration in UV-B irradiated lettuce leaves.
Park, Jong-Sug; Choung, Myoung-Gun; Kim, Jung-Bong; Hahn, Bum-Soo; Kim, Jong-Bum; Bae, Shin-Chul; Roh, Kyung-Hee; Kim, Yong-Hwan; Cheon, Choong-Ill; Sung, Mi-Kyung; Cho, Kang-Jin
2007-04-01
Molecular analysis of gene expression differences between green and red lettuce leaves was performed using the SSH method. BlastX comparisons of subtractive expressed sequence tags (ESTs) indicated that 7.6% of clones encoded enzymes involved in secondary metabolism. Such clones had a particularly high abundance of flavonoid-metabolism proteins (6.5%). Following SSH, 566 clones were rescreened for differential gene expression using dot-blot hybridization. Of these, 53 were found to overexpressed during red coloration. The up-regulated expression of six genes was confirmed by Northern blot analyses. The expression of chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and dihydroflavonol 4-reductase (DFR) genes showed a positive correlation with anthocyanin accumulation in UV-B-irradiated lettuce leaves; flavonoid 3',5'-hydroxylase (F3',5'H) and anthocyanidin synthase (ANS) were expressed continuously in both samples. These results indicated that the genes CHS, F3H, and DFR coincided with increases in anthocyanin accumulation during the red coloration of lettuce leaves. This study show a relationship between red coloration and the expression of up-regulated genes in lettuce. The subtractive cDNA library and EST database described in this study represent a valuable resource for further research for secondary metabolism in the vegetable crops.
Cloning and expression of a cDNA coding for catalase from zebrafish (Danio rerio).
Ken, C F; Lin, C T; Wu, J L; Shaw, J F
2000-06-01
A full-length complementary DNA (cDNA) clone encoding a catalase was amplified by the rapid amplication of cDNA ends-polymerase chain reaction (RACE-PCR) technique from zebrafish (Danio rerio) mRNA. Nucleotide sequence analysis of this cDNA clone revealed that it comprised a complete open reading frame coding for 526 amino acid residues and that it had a molecular mass of 59 654 Da. The deduced amino acid sequence showed high similarity with the sequences of catalase from swine (86.9%), mouse (85.8%), rat (85%), human (83.7%), fruit fly (75.6%), nematode (71.1%), and yeast (58.6%). The amino acid residues for secondary structures are apparently conserved as they are present in other mammal species. Furthermore, the coding region of zebrafish catalase was introduced into an expression vector, pET-20b(+), and transformed into Escherichia coli expression host BL21(DE3)pLysS. A 60-kDa active catalase protein was expressed and detected by Coomassie blue staining as well as activity staining on polyacrylamide gel followed electrophoresis.
Nocarova, Eva; Fischer, Lukas
2009-04-22
Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with a visual marker for BY-2 transformation. The cloning procedure can be used not only for efficient reduction of expression heterogeneity of such transgenes, but also as a useful tool for studies of transgene expression and other purposes.
Tedder, Philip; Zubko, Elena; Westhead, David R.; Meyer, Peter
2009-01-01
Two pools of small RNAs were cloned from inflorescences of Petunia hybrida using a 5′-ligation dependent and a 5′-ligation independent approach. The two libraries were integrated into a public website that allows the screening of individual sequences against 359,769 unique clones. The library contains 15 clones with 100% identity and 53 clones with one mismatch to miRNAs described for other plant species. For two conserved miRNAs, miR159 and miR390, we find clear differences in tissue-specific distribution, compared with other species. This shows that evolutionary conservation of miRNA sequences does not necessarily include a conservation of the miRNA expression profile. Almost 60% of all clones in the database are 24-nucleotide clones. In accordance with the role of 24mers in marking repetitive regions, we find them distributed across retroviral and transposable element sequences but other 24mers map to promoter regions and to different transcript regions. For one target region we observe tissue-specific variation of matching 24mers, which demonstrates that, as for 21mers, 24mer concentrations are not necessarily identical in different tissues. Asymmetric distribution of a putative novel miRNA in the two libraries suggests that the cloning method can be selective for the representation of certain small RNAs in a collection. PMID:19369427
Peng, Jinbiao; Han, Hongxiao; Hong, Yang; Wang, Yan; Guo, Fanji; Shi, Yaojun; Fu, Zhiqiang; Liu, Jinming; Cheng, Guofeng; Lin, Jiaojiao
2010-03-01
The present study was intend to clone and express the cDNA encoding Cyclophilin B (CyPB) of Schistosoma japonicum, its preliminary biological function and further immunoprotective effect against schistosome infection in mice. RT-PCR technique was applied to amplify a full-length cDNA encoding protein Cyclophilin B (Sj CyPB) from schistosomula cDNA. The expression profiles of Sj CyPB were determined by Real-time PCR using the template cDNAs isolated from 7, 13, 18, 23, 32 and 42 days parasites. The cDNA containing the Open Reading Frame of CyPB was then subcloned into a pGEX-6P-1 vector and transformed into competent Escherichia coli BL21 for expressing. The recombinant protein was renaturated, purified and its antigenicity were detected by Western blotting, and the immunoprotective effect induced by recombinant Sj CyPB was evaluated in Balb/C mice. The cDNA containing the ORF of Sj CyPB was cloned with the length of 672 base pairs, encoding 223 amino acids. Real-time PCR analysis revealed that the gene had the highest expression in 18-day schistosomula, suggesting that Sj CyPB was schistosomula differentially expressed gene. The recombinant protein showed a good antigenicity detected by Western blotting. Animal experiment indicated that the vaccination of recombinant CyPB protein in mice led to 31.5% worm and 41.01% liver egg burden reduction, respectively, compared with those of the control. A full-length cDNA differentially expressed in schistosomula was obtained. The recombinant Sj CyPB protein could induce partial protection against schistosome infection.
Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua
2003-01-01
AIM: To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. METHODS: The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. RESULTS: Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. CONCLUSION: Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators. PMID:12632483
Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua
2003-03-01
To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Feifei; Gao, Feng; Li, Honglin
The cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of Rv3705c from M. tuberculosis are described. The conserved protein Rv3705c from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant. The Rv3705c crystals exhibited space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 198.0, c = 364.1 Å, α = β = 90, γ = 120°, and diffracted to a resolution of 3.3 Å.
Dehghan, Esmaeil; Reed, Darwin W; Covello, Patrick S; Hasanpour, Zeinab; Palazon, Javier; Oksman-Caldentey, Kirsi-Marja; Ahmadi, Farajollah Shahriari
2017-10-01
Tetraploidy improves overexpression of h6h and scopolamine production of H. muticus, while in H. senecionis, pmt overexpression and elicitation can be used as effective methods for increasing tropane alkaloids. The effects of metabolic engineering in a polyploid context were studied by overexpression of h6h in the tetraploid hairy root cultures of H. muticus. Flow cytometry analysis indicated genetic stability in the majority of the clones, while only a few clones showed genetic instability. Among all the diploid and tetraploid clones, the highest level of h6h transgene expression and scopolamine accumulation was interestingly observed in the tetraploid clones of H. muticus. Therefore, metabolic engineering of the tropane biosynthetic pathway in polyploids is suggested as a potential system for increasing the production of tropane alkaloids. Transgenic hairy root cultures of Hyoscyamus senecionis were also established. While overexpression of pmt in H. senecionis was correlated with a sharp increase in hyoscyamine production, the h6h-overexpressing clones were not able to accumulate higher levels of scopolamine than the leaves of intact plants. Applying methyl jasmonate was followed by a sharp increase in the expression of pmt and a drop in the expression of tropinone reductase II (trII) which consequently resulted in the higher biosynthesis of hyoscyamine and total alkaloids in H. senecionis.
Brede, Dag Anders; Lothe, Sheba; Salehian, Zhian; Faye, Therese; Nes, Ingolf F.
2007-01-01
This report describes the first functional analysis of a bacteriocin immunity gene from Propionibacterium freudenreichii and its use as a selection marker for food-grade cloning. Cloning of the pcfI gene (previously orf5 [located as part of the pcfABC propionicin F operon]) rendered the sensitive host 1,000-fold more tolerant to the propionicin F bacteriocin. The physiochemical properties of the 127-residue large PcfI protein resemble those of membrane-bound immunity proteins from bacteriocin systems found in lactic acid bacteria. The high level of immunity conferred by pcfI allowed its use as a selection marker for plasmid transformation in P. freudenreichii. Electroporation of P. freudenreichii IFO12426 by use of the pcfI expression plasmid pSL102 and propionicin F selection (200 bacteriocin units/ml) yielded 107 transformants/μg DNA. The 2.7-kb P. freudenreichii food-grade cloning vector pSL104 consists of the pLME108 replicon, a multiple cloning site, and pcfI expressed from the constitutive PpampS promoter for selection. The pSL104 vector efficiently facilitated cloning of the propionicin T1 bacteriocin in P. freudenreichii. High-level propionicin T1 production (640 BU/ml) was obtained with the IFO12426 strain, and the food-grade propionicin T1 expression plasmid pSL106 was maintained by ∼91% of the cells over 25 generations in the absence of selection. To the best of our knowledge this is the first report of an efficient cloning system that facilitates the generation of food-grade recombinant P. freudenreichii strains. PMID:17933941
Brede, Dag Anders; Lothe, Sheba; Salehian, Zhian; Faye, Therese; Nes, Ingolf F
2007-12-01
This report describes the first functional analysis of a bacteriocin immunity gene from Propionibacterium freudenreichii and its use as a selection marker for food-grade cloning. Cloning of the pcfI gene (previously orf5 [located as part of the pcfABC propionicin F operon]) rendered the sensitive host 1,000-fold more tolerant to the propionicin F bacteriocin. The physiochemical properties of the 127-residue large PcfI protein resemble those of membrane-bound immunity proteins from bacteriocin systems found in lactic acid bacteria. The high level of immunity conferred by pcfI allowed its use as a selection marker for plasmid transformation in P. freudenreichii. Electroporation of P. freudenreichii IFO12426 by use of the pcfI expression plasmid pSL102 and propionicin F selection (200 bacteriocin units/ml) yielded 10(7) transformants/microg DNA. The 2.7-kb P. freudenreichii food-grade cloning vector pSL104 consists of the pLME108 replicon, a multiple cloning site, and pcfI expressed from the constitutive P(pampS) promoter for selection. The pSL104 vector efficiently facilitated cloning of the propionicin T1 bacteriocin in P. freudenreichii. High-level propionicin T1 production (640 BU/ml) was obtained with the IFO12426 strain, and the food-grade propionicin T1 expression plasmid pSL106 was maintained by approximately 91% of the cells over 25 generations in the absence of selection. To the best of our knowledge this is the first report of an efficient cloning system that facilitates the generation of food-grade recombinant P. freudenreichii strains.
Xu, Kun; Zhang, Ting Ting; Wang, Ling; Zhang, Cun Fang; Zhang, Long; Ma, Li Xia; Xin, Ying; Ren, Chong Hua; Zhang, Zhi Qiang; Yan, Qiang; Martineau, Daniel; Zhang, Zhi Ying
2013-02-01
Walleye dermal sarcoma virus (WDSV) is etiologically associated with a skin tumor, walleye dermal sarcoma (WDS), which develops in the fall and regresses in the spring. WDSV genome contains, in addition to gag, pol and env, three open reading frames (orfs) designated orf a (rv-cyclin), orf b and orf c. Unintegrated linear WDSV provirus DNA isolated from infected tumor cells was used to construct a full-length WDSV provirus clone pWDSV, while orf a was cloned into pSVK3 to construct the expression vector porfA. Stable co-transfection of a walleye cell line (W12) with pWDSV and pcDNA3 generated fewer and smaller G418-resistant colonies compared to the control. By Northern blot analysis, several small transcripts (2.8, 1.8, 1.2, and 0.8 kb) were detected using a WDSV LTR-specific probe. By RT-PCR and Southern blot analysis, three cDNAs (2.4, 1.6 and 0.8 kb) were identified, including both orf a and orf b messenger. Furthermore stable co-transfection of both a human lung adenocarcinoma cell line (SPC-A-1) and a cervical cancer cell line (HeLa) with pcDNA3 and ether porfA or pWDSV also generated fewer and smaller G418-resistant colonies. We conclude that expression of the full-length WDSV clone or the orf a gene inhibits the host fish and human tumor cell growth, and Orf A protein maybe a potential factor which contributes to the seasonal tumor development and regression. This is the first fish provirus clone that has been expressed in cell culture system, which will provide a new in vitro model for tumor research and oncotherapy study.
Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan; Heegaard, Peter M H
2013-06-01
The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity.
Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan
2013-01-01
Abstract The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity. PMID:23668862
Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir
2017-12-01
A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3'end of the reporter gene and the VP2 start sequence to allow co-translational 'cleavage' of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication.
CLONING AND CHARACTERIZATION OF OSTEOCLAST PRECURSORS FROM THE RAW264.7 CELL LINE
Cuetara, Bethany L. V.; Crotti, Tania N.; O'Donoghue, Anthony J.
2006-01-01
SUMMARY Osteoclasts are bone-resorbing cells that differentiate from macrophage precursors in response to receptor activator of NF-κB (RANKL). In vitro models of osteoclast differentiation are principally based on primary cell culture, which are poorly suited to molecular and transgene studies due to the limitations associated with the use of primary macrophage. RAW264.7 is a transfectable macrophage cell line with the capacity to form osteoclast-like cells. In the present study we have identified osteoclast precursors among clones of RAW264.7 cells. RAW264.7 cell were cloned by limiting dilution and induced to osteoclast differentiation by treatment with recombinant RANKL. Individual RAW264.7 cell clones formed tartrate resistant acid phosphatase (TRAP) positive multinuclear cells to various degrees with RANKL treatment. All clones tested expressed the RANKL receptor RANK. Each of the clones expressed the osteoclast marker genes TRAP and cathepsin-K mRNA with RANKL treatment. However, we noted that only select clones were able to form large, well-spread, TRAP positive multinuclear cells. Clones capable of forming large TRAP positive multinuclear cells also expressed β3 integrin and calcitonin receptor mRNAs and were capable of resorbing a mineralized matrix. All clones tested activated NF-κB with RANKL treatment. cDNA expression profiling of osteoclast precursor RAW264.7 cell clones demonstrates appropriate expression of a large number of genes before and after osteoclastic differentiation. These osteoclast precursor RAW264.7 cell clones provide a valuable model for dissecting the cellular and molecular regulation of osteoclast differentiation and activation. PMID:16948499
Choosing Between Yeast and Bacterial Expression Systems: Yield Dependent
NASA Technical Reports Server (NTRS)
Miller, Rebecca S.; Malone, Christine C.; Moore, Blake P.; Burk, Melissa; Crawford, Lisa; Karr, Laurel J.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Green fluorescent protein (GFP) is a naturally occurring fluorescent protein isolated from the jellyfish Aequorea victoria. The intrinsic fluorescence of the protein is due to a chromophore located in the center of the molecule. Its usefulness has been established as a marker for gene expression and localization of gene products. GFP has recently been utilized as a model protein for crystallization studies at NASA/MSFC, both in earth-based and in microgravity experiments. Because large quantities of purified protein were needed, the cDNA of GFP was cloned into the Pichia pastoris pPICZ(alpha) C strain, with very little protein secreted into the media. Microscopic analysis prior to harvest showed gigantic green fluorescent yeast, but upon harvesting most protein was degraded. Trial fermentations of GFP cloned into pPICZ A for intracellular expression provided unsatisfactory yield. GFP cloned into E, coli was overexpressed at greater than 150 mg/liter, with purification yields at greater than 100mg/liter.
Tao, Yaqiong; Zeng, Bo; Xu, Liu; Yue, Bisong; Yang, Dong; Zou, Fangdong
2010-01-01
Interferon-gamma (IFN-gamma) is the only member of type II IFN and is vital in the regulation of immune and inflammatory responses. Herein we report the cloning, expression, and sequence analysis of IFN-gamma from the giant panda (Ailuropoda melanoleuca). The open reading frame of this gene is 501 base pair in length and encodes a polypeptide consisting of 166 amino acids. All conserved N-linked glycosylation sites and cysteine residues among carnivores were found in the predicted amino acid sequence of the giant panda. Recombinant giant panda IFN-gamma with a V5 epitope and polyhistidine tag was expressed in HEK293 host cells and confirmed by Western blotting. Phylogenetic analysis of mammalian IFN-gamma-coding sequences indicated that the giant panda IFN-gamma was closest to that of carnivores, then to ungulates and dolphin, and shared a distant relationship with mouse and human. These results represent a first step into the study of IFN-gamma in giant panda.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Anna I.; Sarsam, Reta D.; Fisher, Andrew J., E-mail: ajfisher@ucdavis.edu
The cysQ gene from Mycobacterium tuberculosis was cloned and the expressed protein, a 3′-phosphoadenosine-5′’-phosphatase, was purified and crystallized. X-ray diffraction data were collected to 1.7 Å resolution.
Guillén, Natalia; Navarro, María A; Surra, Joaquín C; Arnal, Carmen; Fernández-Juan, Marta; Cebrián-Pérez, Jose Alvaro; Osada, Jesús
2007-02-15
Pig sphingomyelin synthase 1 (SMS1) cDNA was cloned, characterized and compared to the human ortholog. Porcine protein consists of 413 amino acids and displays a 97% sequence identity with human protein. A phylogenic tree of proteins reveals that porcine SMS1 is more closely related to bovine and rodent proteins than to human. Analysis of protein mass was higher than the theoretical prediction based on amino acid sequence suggesting a kind of posttranslational modification. Quantitative representation of tissue distribution obtained by real-time RT-PCR showed that it was widely expressed although important variations in levels were obtained among organs. Thus, the cardiovascular system, especially the heart, showed the highest value of all the tissues studied. Regional differences of expression were observed in the central nervous system and intestinal tract. Analysis of the hepatic mRNA and protein expressions of SMS1 following turpentine treatment revealed a progressive decrease in the former paralleled by a decrease in the protein concentration. These findings indicate the variation in expression in the different tissues might suggest a different requirement of Golgi sphingomyelin for the specific function in each organ and a regulation of the enzyme in response to turpentine-induced hepatic injury.
Cloning and Expression of cDNA for Rat Heme Oxygenase
NASA Astrophysics Data System (ADS)
Shibahara, Shigeki; Muller, Rita; Taguchi, Hayao; Yoshida, Tadashi
1985-12-01
Two cDNA clones for rat heme oxygenase have been isolated from a rat spleen cDNA library in λ gt11 by immunological screening using a specific polyclonal antibody. One of these clones has an insert of 1530 nucleotides that contains the entire protein-coding region. To confirm that the isolated cDNA encodes heme oxygenase, we transfected monkey kidney cells (COS-7) with the cDNA carried in a simian virus 40 vector. The heme oxygenase was highly expressed in endoplasmic reticulum of transfected cells. The nucleotide sequence of the cloned cDNA was determined and the primary structure of heme oxygenase was deduced. Heme oxygenase is composed of 289 amino acids and has one hydrophobic segment at its carboxyl terminus, which is probably important for the insertion of heme oxygenase into endoplasmic reticulum. The cloned cDNA was used to analyze the induction of heme oxygenase in rat liver by treatment with CoCl2 or with hemin. RNA blot analysis showed that both CoCl2 and hemin increased the amount of hybridizable mRNA, suggesting that these substances may act at the transcriptional level to increase the amount of heme oxygenase.
Trigoso, Yvonne D; Evans, Russell C; Karsten, William E; Chooback, Lilian
2016-01-01
The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5'and 3' terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40-50 mgs of protein, an improvement on the previous protein expression and multistep purification.
Trigoso, Yvonne D.; Evans, Russell C.; Karsten, William E.; Chooback, Lilian
2016-01-01
The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5’and 3’ terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40–50 mgs of protein, an improvement on the previous protein expression and multistep purification. PMID:26815040
Ding, Linxian; Zhang, Pinghua; Hong, Huachang; Lin, Hongjun; Yokota, Akira
2012-01-01
The purpose of the present study was to produce the Rpf (resuscitation promoting factor) protein by cloning and expressing the rpf gene, secreted by Micrococcus luteus IAM 14879, in Escherichia coli and to evaluate its role in the recovery of the VBNC (viable but non-culturable) state in high-GC Gram-positive bacteria. Genomic DNA was extracted from Micrococcus luteus IAM 14879 and the rpf gene was amplified by PCR using specific primers. The PCR products was purified, cloned into a pET15b expression vector, and transformed into Escherichia coli BL21 (DE3). Then the pET15b plasmid expression vector was used to confirm the purification of the recombinant proteins via SDS-PAGE. The VBNC state cells from the high-GC Gram-positive bacteria, Rhodococcus sp. DS471, were used to confirm the promotion and recovery of growth capacity. Rhodococcus sp. DS471 were isolated from soil and closely related to Micrococcus luteus IAM 14879. The gene sequences confirmed that the rpf gene from Micrococcus luteus IAM 14879 that was expressed in Escherichia coli, was 672 bp. SDS-PAGE analysis showed that the recombinant Rpf protein was obtained successfully, and further studies showed it capable of promoting the recovery of the VBNC state by about 100-fold relative to the control. Rpf of Micrococus luteus IAM 14879 can be successfully cloned and expressed in Escherichia coli and shows a strong ability to promote the recovery of the VBNC state of cells of Rhodococcus sp. DS471.
Brough, Rachel; Papanastasiou, Antigoni M; Porter, Andrew CG
2007-01-01
Background The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration. Many clones may therefore need to be screened before one with optimal induction characteristics is identified. Furthermore, such screens must be repeated for each new transgene investigated, and comparisons between clones with different transgenes is complicated by their different integration sites. Results To circumvent these problems we have developed a "screen and insert" strategy in which clones carrying a transgene for a fluorescent reporter are first screened for those with optimal induction characteristics. Site-specific recombination (SSR) is then be used repeatedly to insert any new transgene at the reporter transgene locus of such clones so that optimal induction characteristics are conferred upon it. Here we have tested in a human fibrosarcoma cell line (HT1080) two of many possible implementations of this approach. Clones (e.g. Rht14-10) in which a GFP reporter gene is very stringently regulated by the tetracycline (tet) transactivator (tTA) protein were first identified flow-cytometrically. Transgenes encoding luciferase, I-SceI endonuclease or Rad52 were then inserted by SSR at a LoxP site adjacent to the GFP gene resulting stringent tet-regulated transgene expression. In clone Rht14-10, increases in expression from essentially background levels (+tet) to more than 104-fold above background (-tet) were reproducibly detected after Cre-mediated insertion of either the luciferase or the I-SceI transgenes. Conclusion Although previous methods have made use of SSR to integrate transgenes at defined sites, none has effectively combined this with a pre-selection step to identify integration sites that support optimal regulatory characteristics. Rht14-10 and similar HT1080-derived clones can now be used in conjunction with a convenient delivery vector (pIN2-neoMCS), in a simple 3-step protocol leading to stringent and reproducible transgene regulation. This approach will be particularly useful for transgenes whose products are very active at low concentrations and/or for comparisons of multiple related transgenes. PMID:17493262
Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Zheng, Yao; Shan, Shuang; Li, Rui-Jun; Zhang, Yong-Jun; Guo, Yu-Yuan
2016-07-01
Ionotropic receptors (IRs) mainly detect the acids and amines having great importance in many insect species, representing an ancient olfactory receptor family in insects. In the present work, we performed RNAseq of Microplitis mediator antennae and identified seventeen IRs. Full-length MmedIRs were cloned and sequenced. Phylogenetic analysis of the Hymenoptera IRs revealed that ten MmedIR genes encoded "antennal IRs" and seven encoded "divergent IRs". Among the IR25a orthologous groups, two genes, MmedIR25a.1 and MmedIR25a.2, were found in M. mediator. Gene structure analysis of MmedIR25a revealed a tandem duplication of IR25a in M. mediator. The tissue distribution and development specific expression of the MmedIR genes suggested that these genes showed a broad expression profile. Quantitative gene expression analysis showed that most of the genes are highly enriched in adult antennae, indicating the candidate chemosensory function of this family in parasitic wasps. Using immunocytochemistry, we confirmed that one co-receptor, MmedIR8a, was expressed in the olfactory sensory neurons. Our data will supply fundamental information for functional analysis of the IRs in parasitoid wasp chemoreception. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wen, Zhifeng; Gao, Min; Jiao, Chen; Wang, Qian; Xu, Hui; Walter, Monika; Xu, Weirong; Bassett, Carole; Wang, Xiping
2012-01-01
Retinoblastoma-related (RBR) genes, a conserved gene family in higher eukaryotes, play important roles in cell differentiation, development, and mammalian cell death; however, little is known of their function in plants. In this study, a RBR gene was isolated from the Chinese wild grape, Vitis pseudoreticulata W. T. Wang clone "Baihe-35-1", and designated as VpRBR . The cDNA sequence of VpRBR was 3,030 bp and contained an open reading frame of 3,024 bp. Conceptual translation of this gene indicated a composition of 1,007 amino acids with a predicted molecular mass of 117.3 kDa. The predicted protein showed a retinoblastoma-associated protein domain A from amino acid residues 416 to 579, and domain B from residues 726 to 855. The result of expression analysis indicated that VpRBR was expressed in tissues, leaves, stem, tendrils, flower, and grape skin at different expression levels. Further quantitative reverse transcription-PCR (qRT-PCR) data indicated that VpRBR levels were higher in Erysiphe necator-treated "Baihe-35-1" and "Baihe-13-1", two resistant clones of Chinese wild V. pseudoreticulata , than in E. necator-treated "Hunan-1", a susceptible clone of V. pseudoreticulata . Furthermore, the expression of VpRBR in response to salicylic acid (SA), methyl jasmonate (MeJA), and ethylene (Eth) in grape leaves was also investigated. Taken together, these data indicate that VpRBR may contribute to some aspect of powdery mildew resistance in grape.
NASA Astrophysics Data System (ADS)
Yang, Xiao; Gao, Jinning; Ma, Liman; Li, Zan; Wang, Wenji; Wang, Zhongkai; Yu, Haiyang; Qi, Jie; Wang, Xubo; Wang, Zhigang; Zhang, Quanqi
2015-02-01
Cold-inducible RNA-binding protein (CIRP) is a kind of RNA binding proteins that plays important roles in many physiological processes. The CIRP has been widely studied in mammals and amphibians since it was first cloned from mammals. On the contrary, there are little reports in teleosts. In this study, the Po CIRP gene of the Japanese flounder was cloned and sequenced. The genomic sequence consists of seven exons and six introns. The putative PoCIRP protein of flounder was 198 amino acid residues long containing the RNA recognition motif (RRM). Phylogenetic analysis showed that the flounder PoCIRP is highly conserved with other teleost CIRPs. The 5' flanking sequence was cloned by genome walking and many transcription factor binding sites were identified. There is a CpGs region located in promoter and exon I region and the methylation state is low. Quantitative real-time PCR analysis uncovered that Po CIRP gene was widely expressed in adult tissues with the highest expression level in the ovary. The mRNA of the Po CIRP was maternally deposited and the expression level of the gene was regulated up during the gastrula and neurula stages. In order to gain the information how the protein interacts with mRNA, we performed the modeling of the 3D structure of the flounder PoCIRP. The results showed a cleft existing the surface of the molecular. Taken together, the results indicate that the CIRP is a multifunctional molecular in teleosts and the findings about the structure provide valuable information for understanding the basis of this protein's function.
Pratt, Drew; Afsar, Nina; Allgauer, Michael; Fetsch, Patricia; Palisoc, Maryknoll; Pittaluga, Stefania; Quezado, Martha
TTF-1 is widely used as a marker in routine surgical pathology in the work-up of malignancy. Aberrant expression of TTF-1 in extrapulmonary and extrathyroidal malignancies is a frequently reported phenomenon. In addition to the recently characterized pituicyte-derived tumors of the sella, immunoreactivity has been reported in diffuse gliomas with the SPT24 clone. Here, we sought to evaluate TTF-1 expression with three commercially available clones in a large series of gliomas. Expression was compared across the newly defined diagnostic entities in the 2016 WHO Classification of CNS Tumors. Using tissue microarrays (TMA), 212 diffuse gliomas (WHO grades II - IV) were systematically evaluated with TTF-1 immunohistochemistry using three clones: SPT24, 8G7G3/1, and SP141, and results correlated with clinicopathologic features. 14 high-grade diffuse gliomas demonstrated nuclear staining with the SP141 and SPT24 clones. Two tumors showed weak positivity with the 8G7G3/1 clone. All tumors were high grade by histology (WHO grades III and IV). 86% (12/14) of TTF-1-positive gliomas involved the frontal lobes at diagnosis. No relationship with IDH R132H, ATRX, p53, H3K27M, or EGFR immunohistochemistry was identified. TTF-1 expression in gliomas was not independently prognostic of overall survival. TTF-1 expression in diffuse gliomas is a rare but potentially misleading occurrence. In our cohort, staining occurred with both the SPT24 and SP141 clones at equal intensity and frequency. Clustering of TTF-1-positive tumors in the frontal lobe(s) suggests lineage-specific expression. Due to clone-specific expression in diffuse gliomas, caution must be exercised in the work-up of intracranial tumors with TTF-1. .
He, Xiaocui; Zhang, Yang; Yu, Ziniu
2010-10-01
Rieske protein gene in the Pacific oyster Crassostrea gigas was obtained by in silico cloning for the first time, and its expression profiles and subcellular localization were determined, respectively. The full-length cDNA of Cgisp is 985 bp in length and contains a 5'- and 3'-untranslated regions of 35 and 161 bp, respectively, with an open reading frame of 786 bp encoding a protein of 262 amino acids. The predicted molecular weight of 30 kDa of Cgisp protein was verified by prokaryotic expression. Conserved Rieske [2Fe-2S] cluster binding sites and highly matched-pair tertiary structure with 3CWB_E (Gallus gallus) were revealed by homologous analysis and molecular modeling. Eleven putative SNP sites and two conserved hexapeptide sequences, box I (THLGC) and II (PCHGS), were detected by multiple alignments. Real-time PCR analysis showed that Cgisp is expressed in a wide range of tissues, with adductor muscle exhibiting the top expression level, suggesting its biological function of energy transduction. The GFP tagging Cgisp indicated a mitochondrial localization, further confirming its physiological function.
Zhang, Tiejun; Chao, Yuehui; Kang, Junmei; Ding, Wang; Yang, Qingchuan
2013-07-01
Genes that regulate flowering time play crucial roles in plant development and biomass formation. Based on the cDNA sequence of Medicago truncatula (accession no. AY690425), the LFY gene of alfalfa was cloned. Sequence similarity analysis revealed high homology with FLO/LFY family genes of other plants. When fused to the green fluorescent protein, MsLFY protein was localized in the nucleus of onion (Allium cepa L.) epidermal cells. The RT-qPCR analysis of MsLFY expression patterns showed that the expression of MsLFY gene was at a low level in roots, stems, leaves and pods, and the expression level in floral buds was the highest. The expression of MsLFY was induced by GA3 and long photoperiod. Plant expression vector was constructed and transformed into Arabidopsis by the agrobacterium-mediated methods. PCR amplification with the transgenic Arabidopsis genome DNA indicated that MsLFY gene had integrated in Arabidopsis genome. Overexpression of MsLFY specifically caused early flowering under long day conditions compared with non-transgenic plants. These results indicated MsLFY played roles in promoting flowering time.
Tagliavia, Marcello; Cuttitta, Angela
2016-01-01
High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.
Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.
Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan
2016-10-01
This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.
Christiaens, H; Leer, R J; Pouwels, P H; Verstraete, W
1992-12-01
The conjugated bile acid hydrolase gene from the silage isolate Lactobacillus plantarum 80 was cloned and expressed in Escherichia coli MC1061. For the screening of this hydrolase gene within the gene bank, a direct plate assay developed by Dashkevicz and Feighner (M. P. Dashkevicz and S. D. Feighner, Appl. Environ. Microbiol. 53:331-336, 1989) was adapted to the growth requirements of E. coli. Because of hydrolysis and medium acidification, hydrolase-active colonies were surrounded with big halos of precipitated, free bile acids. This phenomenon was also obtained when the gene was cloned into a multicopy shuttle vector and subsequently reintroduced into the parental Lactobacillus strain. The cbh gene and surrounding regions were characterized by nucleotide sequence analysis. The deduced amino acid sequence was shown to have 52% similarity with a penicillin V amidase from Bacillus sphaericus. Preliminary characterization of the gene product showed that it is a cholylglycine hydrolase (EC 3.5.1.24) with only slight activity against taurine conjugates. The optimum pH was between 4.7 and 5.5. Optimum temperature ranged from 30 to 45 degrees C. Southern blot analysis indicated that the cloned gene has similarity with genomic DNA of bile acid hydrolase-active Lactobacillus spp. of intestinal origin.
Rapid one-step recombinational cloning
Fu, Changlin; Wehr, Daniel R.; Edwards, Janice; Hauge, Brian
2008-01-01
As an increasing number of genes and open reading frames of unknown function are discovered, expression of the encoded proteins is critical toward establishing function. Accordingly, there is an increased need for highly efficient, high-fidelity methods for directional cloning. Among the available methods, site-specific recombination-based cloning techniques, which eliminate the use of restriction endonucleases and ligase, have been widely used for high-throughput (HTP) procedures. We have developed a recombination cloning method, which uses truncated recombination sites to clone PCR products directly into destination/expression vectors, thereby bypassing the requirement for first producing an entry clone. Cloning efficiencies in excess of 80% are obtained providing a highly efficient method for directional HTP cloning. PMID:18424799
2014-01-01
Background It is well known that different Eimeria maxima strains exhibit significant antigenic variation. However, the genetic basis of these phenotypes remains unclear. Methods Total RNA and mRNA were isolated from unsporulated oocysts of E. maxima strains SH and NT, which were found to have significant differences in immunogenicity in our previous research. Two subtractive cDNA libraries were constructed using suppression subtractive hybridization (SSH) and specific genes were further analyzed by dot-blot hybridization and qRT-PCR analysis. Results A total of 561 clones were selected from both cDNA libraries and the length of the inserted fragments was 0.25–1.0 kb. Dot-blot hybridization revealed a total of 86 differentially expressed clones (63 from strain SH and 23 from strain NT). Nucleotide sequencing analysis of these clones revealed ten specific contigs (six from strain SH and four from strain NT). Further analysis found that six contigs from strain SH and three from strain NT shared significant identities with previously reported proteins, and one contig was presumed to be novel. The specific differentially expressed genes were finally verified by RT-PCR and qRT-PCR analyses. Conclusions The data presented here suggest that specific genes identified between the two strains may be important molecules in the immunogenicity of E. maxima that may present potential new drug targets or vaccine candidates for coccidiosis. PMID:24894832
1994-01-01
GL183 or EB6 (p58) molecules have been shown to function as receptors for different HLA-C alleles and to deliver an inhibitory signal to natural killer (NK) cells, thus preventing lysis of target cells. In this study, we analyzed a subset of NK cells characterized by a p58- negative surface phenotype. We show that p58-negative clones, although specific for class I molecules do not recognize HLA-C alleles. In addition, by the use of appropriate target cells transfected with different HLA-class I alleles we identified HLA-B7 as the protective element recognized by a fraction of p58-negative clones. In an attempt to identify the receptor molecules expressed by HLA-B7-specific clones, monoclonal antibodies (mAbs) were selected after mice immunization with such clones. Two of these mAbs, termed XA-88 and XA-185, and their F(ab')2 fragments, were found to reconstitute lysis of B7+ target cells by B7-specific NK clones. Both mAbs were shown to be directed against the recently clustered Kp43 molecule (CD94). Thus, mAb-mediated masking of Kp43 molecules interferes with recognition of HLA-B7 and results in target cell lysis. Moreover, in a redirected killing assay, the cross- linking of Kp43 molecules mediated by the XA185 mAb strongly inhibited the cytolytic activity of HLA-B7-specific NK clones, thus mimicking the functional effect of B7 molecules. Taken together, these data strongly suggest that Kp43 molecules function as receptors for HLA-B7 and that this receptor/ligand interaction results in inhibition of the NK- mediated cytolytic activity. Indirect immunofluorescence and FACS analysis of a large number of random NK clones showed that Kp43 molecules (a) were brightly expressed on a subset of p58-negative clones, corresponding to those specific for HLA-B7; (b) displayed a medium/low fluorescence in the p58-negative clones that are not B7- specific as well as in most p58+ NK clones; and (c) were brightly expressed as in the p58+ clone ET34 (GL183-/EB6+, Cw4-specific). Functional analysis revealed that Kp43 functioned as an inhibitory receptor only in NK clones displaying bright fluorescence. These studies also indicate that some NK clones (e.g., the ET34) can coexpress two distinct receptors (p58 and Kp43) for different class I alleles (Cw4 and B7). Finally, we show that Kp43 molecules function as receptors only for some HLA-B alleles and that still undefined receptor(s) must exist for other HLA-B alleles including B27. PMID:8046333
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosas, Maria F.; Vieira, Yuri A.; Postigo, Raul
2008-10-10
The foot-and-mouth disease virus (FMDV) 3A protein is involved in virulence and host range. A distinguishing feature of FMDV 3B among picornaviruses is that three non-identical copies are encoded in the viral RNA and required for optimal replication in cell culture. Here, we have studied the involvement of the 3AB region on viral infection using constitutive and transient expression systems. BHK-21 stably transformed clones expressed low levels of FMDV 3A or 3A(B) proteins in the cell cytoplasm. Transformed cells stably expressing these proteins did not exhibit inner cellular rearrangements detectable by electron microscope analysis. Upon FMDV infection, clones expressing eithermore » 3A alone or 3A(B) proteins showed a significant increase in the percentage of infected cells, the number of plaque forming units and the virus yield. The 3A-enhancing effect was specific for FMDV as no increase in viral multiplication was observed in transformed clones infected with another picornavirus, encephalomyocarditis virus, or the negative-strand RNA virus vesicular stomatitis virus. A potential role of 3A protein in viral RNA translation was discarded by the lack of effect on FMDV IRES-dependent translation. Increased viral susceptibility was not caused by a released factor; neither the supernatant of transformed clones nor the addition of purified 3A protein to the infection medium was responsible for this effect. Unlike stable expression, high levels of 3A or 3A(B) protein transient expression led to unspecific inhibition of viral infection. Therefore, the effect observed on viral yield, which inversely correlated with the intracellular levels of 3A protein, suggests a transacting role operating on the FMDV multiplication cycle.« less
Liu, Yan; Wu, Qian; Cui, Huiting; Li, Qinghe; Zhao, Yiqiang; Luo, Juan; Liu, Qiuyue; Sun, Xiuzhu; Tang, Bo; Zhang, Lei; Dai, Yunping; Li, Ning
2008-12-01
Both enhanced green fluorescence protein (EGFP) and neomycin phosphotransferase type II enzyme (NPTII) are widely used in transgenic studies, but their side effects have not been extensively investigated. In this study, we evaluated the expression profiles of the two marker genes and the relationship between their expression and organ abnormalities. Eight transgenic cloned cattle were studied, four harboring both EGFP and NPTII, and four harboring only the NPTII gene. Four age-matched cloned cattle were used as controls. EGFP and NPTII expression were measured and detected by Q-PCR, Western blot, ELISA, and RIA in heart, liver, and lungs, and the values ranged from 0.3 to 5 microg/g. The expression profiles exhibited differential or mosaic pattern between the organs, the pathologic symptoms of which were identified, but were similar to those of age-matched cloned cattle. All data indicated that the expression of EGFP and NPTII is not associated with organ abnormalities in transgenic cloned cattle.
Telke, Amar A; Rolain, Jean-Marc
2015-12-01
Shewanella algae MARS 14 is a colistin-resistant clinical isolate retrieved from bronchoalveolar lavage of a hospitalised patient. A functional genomics strategy was employed to discover the molecular support for colistin resistance in S. algae MARS 14. A pZE21 MCS-1 plasmid-based genomic expression library was constructed in Escherichia coli TOP10. The estimated library size was 1.30×10(8) bp. Functional screening of colistin-resistant clones was carried out on Luria-Bertani agar containing 8 mg/L colistin. Five colistin-resistant clones were obtained after complete screening of the genomic expression library. Analysis of DNA sequencing results found a unique gene in all selected clones. Amino acid sequence analysis of this unique gene using the Integrated Microbial Genomes (IMG) and KEGG databases revealed that this gene encodes ethanolamine phosphotransferase (EptA, or so-called PmrC). Reverse transcription PCR analysis indicated that resistance to colistin in S. algae MARS 14 was associated with overexpression of EptA (27-fold increase), which plays a crucial role in the arrangement of outer membrane lipopolysaccharide. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Lü, Dingding; Hou, Chengxiang; Qin, Guangxing; Gao, Kun; Chen, Tian; Guo, Xijie
2017-01-01
A full-length cDNA of lebocin 5 (BmLeb5) was first cloned from silkworm, Bombyx mori , by rapid amplification of cDNA ends. The BmLeb5 gene is 808 bp in length and the open reading frame encodes a 179-amino acid hydroxyproline-rich peptide. Bioinformatic analysis results showed that BmLeb5 owns an O-glycosylation site and four RXXR motifs as other lebocins. Sequence similarity and phylogenic analysis results indicated that lebocins form a multiple gene family in silkworm as cecropins. Quantitative real-time PCR analysis revealed that BmLeb5 was highest expressed in the fat body. In the silkworm larvae infected by Beauveria bassiana , the expression level of BmLeb5 was upregulated in the fat body and hemolymph which are the most important immune tissues in silkworm. The recombinant protein of BmLeb5 was for the first time successfully expressed with prokaryotic expression system and purified. There are no reports so far that the expression of lebocins could be induced by entomopathogenic fungus. Our study suggested that BmLeb5 might play an important role in the immune response of silkworm to defend B. bassiana infection. The results also provided helpful information for further studying the lebocin family functioned in antifungal immune response in the silkworm.
Chen, Qiangwen; Yan, Jiaping; Meng, Xiangxiang; Xu, Feng; Zhang, Weiwei; Liao, Yongling; Qu, Jinwang
2017-01-02
Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs), are terpenoids that form the main active substance of Ginkgo biloba . Terpenoids in the mevalonate (MVA) biosynthetic pathway include acetyl-CoA C -acetyltransferase (AACT) and mevalonate kinase (MVK) as core enzymes. In this study, two full-length (cDNAs) encoding AACT ( GbAACT , GenBank Accession No. KX904942) and MVK ( GbMVK , GenBank Accession No. KX904944) were cloned from G. biloba . The deduced GbAACT and GbMVK proteins contain 404 and 396 amino acids with the corresponding open-reading frame (ORF) sizes of 1215 bp and 1194 bp, respectively. Tissue expression pattern analysis revealed that GbAACT was highly expressed in ginkgo fruits and leaves, and GbMVK was highly expressed in leaves and roots. The functional complementation of GbAACT in AACT-deficient Saccharomyces cerevisiae strain Δerg10 and GbMVK in MVK-deficient strain Δerg12 confirmed that GbAACT mediated the conversion of mevalonate acetyl-CoA to acetoacetyl-CoA and GbMVK mediated the conversion of mevalonate to mevalonate phosphate. This observation indicated that GbAACT and GbMVK are functional genes in the cytosolic mevalonate (MVA) biosynthesis pathway. After G. biloba seedlings were treated with methyl jasmonate and salicylic acid, the expression levels of GbAACT and GbMVK increased, and TTL production was enhanced. The cloning, characterization, expression and functional analysis of GbAACT and GbMVK will be helpful to understand more about the role of these two genes involved in TTL biosynthesis.
Reproductive performance and expression of imprinted genes in somatic cell cloned boars.
Kawarasaki, Tatsuo; Enya, Satoko; Otake, Masayoshi; Shibata, Masatoshi; Mikawa, Satoshi
2017-11-01
To assess the performance of boars derived by somatic cell cloning, we analyzed various aspects of their reproductive characteristics and the expression of two imprinted genes. Cloned boars (cloned Duroc × Jinhua) were analyzed for birth weight, growth rate, age at first ejaculation, semen characteristics and fertility, in comparison with naturally bred control boars of the same strain. The expression of imprinted genes was analyzed using the microsatellite marker SWC9 for the paternally expressed gene insulin-like growth factor -2 (IGF2) and with single nucleotide polymorphisms (SNPs) for the gene maternally expressed 3 (MEG3). The cloned boars had high production of semen and were nearly equal in level of fertility to conventional pigs; they showed similar characteristics as naturally bred boars of the same strains. The expression of IGF2 was partially disturbed, but this disturbed expression was not linked to a change in developmental fate or reproductive performance. These results indicate that use of cloned boars could be highly effective for proliferation of pigs with desirable characteristics, preservation of genetic resources and risk reduction against epidemic diseases, such as foot-and-mouth disease, through storage of somatic cells as a precautionary measure for use in regenerating pig populations after a future pandemic. © 2017 Japanese Society of Animal Science.
Baxter, Laura L; Hsu, Benjamin J; Umayam, Lowell; Wolfsberg, Tyra G; Larson, Denise M; Frith, Martin C; Kawai, Jun; Hayashizaki, Yoshihide; Carninci, Piero; Pavan, William J
2007-06-01
As part of the RIKEN mouse encyclopedia project, two cDNA libraries were prepared from melanocyte-derived cell lines, using techniques of full-length clone selection and subtraction/normalization to enrich for rare transcripts. End sequencing showed that these libraries display over 83% complete coding sequence at the 5' end and 96-97% complete coding sequence at the 3' end. Evaluation of the libraries, derived from B16F10Y tumor cells and melan-c cells, revealed that they contain clones for a majority of the genes previously demonstrated to function in melanocyte biology. Analysis of genomic locations for transcripts revealed that the distribution of melanocyte genes is non-random throughout the genome. Three genomic regions identified that showed significant clustering of melanocyte-expressed genes contain one or more genes previously shown to regulate melanocyte development or function. A catalog of genes expressed in these libraries is presented, providing a valuable resource of cDNA clones and sequence information that can be used for identification of new genes important for melanocyte development, function, and disease.
Production of transgenic cloned pigs expressing the far-red fluorescent protein monomeric Plum.
Watanabe, Masahito; Kobayashi, Mirina; Nagaya, Masaki; Matsunari, Hitomi; Nakano, Kazuaki; Maehara, Miki; Hayashida, Gota; Takayanagi, Shuko; Sakai, Rieko; Umeyama, Kazuhiro; Watanabe, Nobuyuki; Onodera, Masafumi; Nagashima, Hiroshi
2015-01-01
Monomeric Plum (Plum), a far-red fluorescent protein with photostability and photopermeability, is potentially suitable for in vivo imaging and detection of fluorescence in body tissues. The aim of this study was to generate transgenic cloned pigs exhibiting systemic expression of Plum using somatic cell nuclear transfer (SCNT) technology. Nuclear donor cells for SCNT were obtained by introducing a Plum-expression vector driven by a combination of the cytomegalovirus early enhancer and chicken beta-actin promoter into porcine fetal fibroblasts (PFFs). The cleavage and blastocyst formation rates of reconstructed SCNT embryos were 81.0% (34/42) and 78.6% (33/42), respectively. At 36-37 days of gestation, three fetuses systemically expressing Plum were obtained from one recipient to which 103 SCNT embryos were transferred (3/103, 2.9%). For generation of offspring expressing Plum, rejuvenated PFFs were established from one cloned fetus and used as nuclear donor cells. Four cloned offspring and one stillborn cloned offspring were produced from one recipient to which 117 SCNT embryos were transferred (5/117, 4.3%). All offspring exhibited high levels of Plum fluorescence in blood cells, such as lymphocytes, monocytes and granulocytes. In addition, the skin, heart, kidney, pancreas, liver and spleen also exhibited Plum expression. These observations demonstrated that transfer of the Plum gene did not interfere with the development of porcine SCNT embryos and resulted in the successful generation of transgenic cloned pigs that systemically expressed Plum. This is the first report of the generation and characterization of transgenic cloned pigs expressing the far-red fluorescent protein Plum.
Analysis of the function of the agouti gene in obesity and diabetes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mynatt, R.L.; Miltenberger, R.J.; Klebig, M.L.
1996-09-01
This chapter discusses the agouti gene and dominant mutations in that gene that lead to agouti-induced obesity, and recent work with transgenic mice to elucidate the role of agouti in obesity. Agouti was cloned in 1992 by the lab of Rick Woychik at Oak Ridge National Laboratory, making it the first of many recently cloned mouse obesity genes. Sequence analysis predicted that mouse agouti is a secreted protein of 131 amino acids. The mature protein has a basic central region (lys57-arg85), a proline-rich domain (pro86-pro91) and a C-terminal region (cys 92-cys 13 1) containing 10 cysteine residues which form 5more » disulfide bonds. The human homologue of agouti has also been cloned by the Woychik lab and maps to human chromosome 20q 11.2. Human agouti is 132 amino acids long and is 85% similar to the mouse agouti protein and is normally expressed in adipose tissue. The researchers have been able to recapitulate obesity, hyperinsulinemia, and hyperglycemia with the ubiquitous expression of agouti. Agouti expression in either liver and adipose tissue alone does not cause obesity, and there`s a dose-dependent effect of agouti on body weight, food efficiency, body temperature, and insulin and glucose levels.« less
Zhang, Shi-Xin; Wu, Shao-Hua; Chen, Yue-Yi; Tian, Wei-Min
2015-01-01
The secondary laticifer in the secondary phloem is differentiated from the vascular cambia of the rubber tree (Hevea brasiliensis Muell. Arg.). The number of secondary laticifers is closely related to the rubber yield potential of Hevea. Pharmacological data show that jasmonic acid and its precursor linolenic acid are effective in inducing secondary laticifer differentiation in epicormic shoots of the rubber tree. In the present study, an experimental system of coronatine-induced laticifer differentiation was developed to perform SSH identification of genes with differential expression. A total of 528 positive clones were obtained by blue-white screening, of which 248 clones came from the forward SSH library while 280 clones came from the reverse SSH library. Approximately 215 of the 248 clones and 171 of the 280 clones contained cDNA inserts by colony PCR screening. A total of 286 of the 386 ESTs were detected to be differentially expressed by reverse northern blot and sequenced. Approximately 147 unigenes with an average length of 497 bp from the forward and 109 unigenes with an average length of 514 bp from the reverse SSH libraries were assembled and annotated. The unigenes were associated with the stress/defense response, plant hormone signal transduction and structure development. It is suggested that Ca2+ signal transduction and redox seem to be involved in differentiation, while PGA and EIF are associated with the division of cambium initials for COR-induced secondary laticifer differentiation in the rubber tree. PMID:26147807
Stibitz, S; Weiss, A A; Falkow, S
1988-01-01
The vir locus of Bordetella pertussis apparently encodes a trans-acting positive regulator that is required for the coordinate expression of genes associated with virulence: pertussis toxin, filamentous hemagglutinin (FHA), hemolysin, and adenylate cyclase toxin. DNA clones of vir and of genes required for the synthesis of some of the factors under vir control were obtained with DNA probes from the chromosomal DNA surrounding sites of Tn5 insertion mutations that inactivated those genes. Two vir clones were found which also contained genes required for the proper expression of FHA in B. pertussis. The plasmids which contained both the fha and vir genes expressed immunologically reactive FHA in Escherichia coli, as detected by colony blots, whereas plasmids which contained only fha or vir were negative in this assay. The regulation of FHA production in E. coli, as in B. pertussis, was temperature dependent and inhibited by high concentrations of either magnesium ions or nicotinic acid, indicating that the sequences cloned in E. coli contained the information required to preserve the physiological responses seen in B. pertussis. Further characterization of the vir-fha clones by Tn5 mutagenesis in E. coli and by the return of cloned sequences to B. pertussis in trans and to the B. pertussis chromosome led to the localization of the vir locus, the structural gene for FHA, and genes that are possibly required for the synthesis and export of FHA. Images PMID:2898470
Takeda, Kazuyoshi; Kitaura, Kazutaka; Suzuki, Ryuji; Owada, Yuki; Muto, Satoshi; Okabe, Naoyuki; Hasegawa, Takeo; Osugi, Jun; Hoshino, Mika; Tsunoda, Takuya; Okumura, Ko; Suzuki, Hiroyuki
2018-06-01
Therapeutic cancer peptide vaccination is an immunotherapy designed to elicit cytotoxic T-lymphocyte (CTL) responses in patients. A number of therapeutic vaccination trials have been performed, nevertheless there are only a few reports that have analyzed the T-cell receptors (TCRs) expressed on tumor antigen-specific CTLs. Here, we use next-generation sequencing (NGS) to analyze TCRs of vaccine-induced CTL clones and the TCR repertoire of bulk T cells in peripheral blood mononuclear cells (PBMCs) from two lung cancer patients over the course of long-term vaccine therapy. In both patients, vaccination with two epitope peptides derived from cancer/testis antigens (upregulated lung cancer 10 (URLC10) and cell division associated 1 (CDCA1)) induced specific CTLs expressing various TCRs. All URLC10-specific CTL clones tested showed Ca 2+ influx, IFN-γ production, and cytotoxicity when co-cultured with URLC10-pulsed tumor cells. Moreover, in CTL clones that were not stained with the URLC10/MHC-multimer, the CD3 ζ chain was not phosphorylated. NGS of the TCR repertoire of bulk PBMCs demonstrated that the frequency of vaccine peptide-specific CTL clones was near the minimum detectable threshold level. These results demonstrate that vaccination induces antigen-specific CTLs expressing various TCRs at different time points in cancer patients, and that some CTL clones are maintained in PBMCs during long-term treatment, including some with TCRs that do not bind peptide/MHC-multimer.
Song, Xiaomin; Wang, Jing; Wu, Fang; Li, Xu; Teng, Maikun; Gong, Weimin
2005-01-01
SPE10 is an antifungal protein isolated from the seeds of Pachyrrhizus erosus. cDNA encoding a 47 amino acid peptide was cloned by RT-PCR and the gene sequence proved SPE10 to be a new member of plant defensin family. The synthetic cDNA with codons preferred in yeast was cloned into the pPIC9 plasmid directly in-frame with the secretion signal alpha-mating factor, and highly expressed in methylotrophic Pichia pastoris. Activity assays showed the recombinant SPE10 inhibited specifically the growth of several pathogenic fungi as native SPE10. Circular dichroism and fluorescence spectroscopy analysis indicated that the native and recombinant protein should have same folding, though there are eight cystein residues in the sequence. Several evidence suggested SPE10 should be the first dimeric plant defensin reported so far.
Yang, Huilin; Peng, Silu; Zhang, Zhibin; Yan, Riming; Wang, Ya; Zhan, Jixun; Zhu, Du
2016-12-01
Huperzine A (HupA) is a drug used for the treatment of Alzheimer's disease. However, the biosynthesis of this medicinally important compound is not well understood. The HupA biosynthetic pathway is thought to be initiated by the decarboxylation of lysine to form cadaverine, which is then converted to 5-aminopentanal by copper amine oxidase (CAO). In this study, we cloned and expressed an SsCAO gene from a HupA-producing endophytic fungus, Shiraia sp. Slf14. Analysis of the deduced protein amino acid sequence showed that it contained the Asp catalytic base, conserved motif Asn-Tyr-Asp/Glu, and three copper-binding histidines. The cDNA of SsCAO was amplified and expressed in Escherichia coli BL21(DE3), from which a 76 kDa protein was obtained. The activity of this enzyme was tested, which provided more information about the SsCAO gene in the endophytic fungus. Gas Chromatograph-Mass Spectrometry (GC-MS) revealed that this SsCAO could accept cadaverine as a substrate to produce 5-aminopentanal, the precursor of HupA. Phylogenetic tree analysis indicated that the SsCAO from Shiraia sp. Slf14 was closely related to Stemphylium lycopersici CAO. This is the first report on the cloning and expression of a CAO gene from HupA-producing endophytic fungi. Functional characterization of this enzyme provides new insights into the biosynthesis of the HupA an anti-Alzheimer's drug. Copyright © 2016 Elsevier Inc. All rights reserved.
Peng, Silu; Yang, Huilin; Zhu, Du; Zhang, Zhibin; Yan, Riming; Wang, Ya
2016-04-14
Huperzine A (HupA) was approved as a drug for the treatment of Alzheimer's disease. The HupA biosynthetic pathway was started from lysine decarboxylase (LDC), which catalyzes lysine to cadaverine. In this study, we cloned and expressed an LDC gene from a HupA-producing endophytic fungus, and tested LDC activities. An endophytic fungus Shiraia sp. Slf14 from Huperzia serrata was used. LDC gene was obtained by RT-PCR, and cloned into pET-22b(+) and pET-32a(+) vectors to construct recombinant plasmids pET- 22b-LDC and pET-32a-LDC. These two recombinant plasmids were transformed into E. coli BL21, cultured for 8 h at 24 °C, 200 r/min with 1×10–3 mol/L IPTG into medium to express the LDC proteins, respectively. LDC proteins were purified by Ni2+ affinity chromatography. Catalytic activities were measured by Thin Layer Chromatography. At last, the physicochemical properties and structures of these two LDCs were obtained by bioinformatics software. LDC and Trx-LDC were expressed in E. coli BL21 successfully. SDS-PAGE analysis shows that the molecular weight of LDC and Trx-LDC were 24.4 kDa and 42.7 kDa respectively, which are consistent with bioinformatics analysis. In addition, TLC analysis reveals that both LDC and Trx-LDC had catalytic abilities. This work can provide fundamental data for enriching LDC molecular information and reveal the HupA biosynthetic pathway in endophytic fungi.
2014-01-01
Background Torque Teno Virus (TTV) is a DNA virus with high rate of prevalence globally. Since its discovery in 1997, several studies have questioned the role of this virus in causing disease. However, it still remains an enigma. Although methods are available for detection of TTV infection, there is still a need for simple, rapid and reliable method for screening of this virus in human population. Present investigation describes the cloning and expression of N22 region of TTV-genome and the use of expressed peptide in development of immunoassay to detect anti-TTV antibodies in serum. Since TTV genotype-1 is more common in India, the serum positive for genotype-1 was used as source of N22 for expression purpose. Methods Full length N22 region of ORF1 from TTV genotype-1 was amplified and cloned in pGEM®-T Easy vector. After cloning, the amplicon was transformed and expressed as a fusion protein containing hexa-histidine tag in pET-28a(+) vector using BL21 E. coli cells as host. Expression was conducted both in LB medium as well as ZYP-5052 auto-induction medium. The expressed peptide was purified using metal-chelate affinity chromatography and used as antigen in developing a blot immunoassay. Results Analysis of translated product by SDS-PAGE and western blotting demonstrated the presence of 25 kDa polypeptide produced after expression. Solubility studies showed the polypeptide to be associated with insoluble fraction. The use of this peptide as antigen in blot assay produced prominent spot on membrane treated with sera from TTV-infected patients. Analysis of sera from 75 patients with liver and renal diseases demonstrated a successful implication of N22 polypeptide based immunoassay in screening sera for anti-TTV antibodies. Comparison of the immunoassay developed using expressed N22 peptide with established PCR method for TTV-DNA detection showed good coherence between TTV-DNA and presence of anti-TTV antibodies in the sera analysed. Conclusions This concludes that TTV N22 region may be expressed and safely used as antigen for blot assay to detect anti-TTV antibodies in sera. PMID:24884576
Cloning and function analysis of an alfalfa (Medicago sativa L.) zinc finger protein promoter MsZPP.
Li, Yan; Sun, Yan; Yang, Qingchuan; Kang, Junmei; Zhang, Tiejun; Gruber, Margaret Yvonne; Fang, Feng
2012-08-01
A 1272 bp upstream sequence of MsZFN gene was cloned from alfalfa, which was designed as MsZPP (Genbank accession number: FJ 161979.2) using an adaptor-mediated genome walking method. A sole transcription start site was located 69 bp upstream of the translation start site. Its pattern of expression included roots, stem vascular tissues, floral reproductive organs, and leaves, but the promoter did not express in seeds, petals or sepals. Transcription levels can be stimulated by dark, MeJA, and IAA. However, GUS fusion activities had no change by treatments of GA, ABA, drought and high salt for 3 days. Deletion analysis revealed that all sections of the promoter can drive gus gene expression in the root, stem, leaves and floral reproductive organs; however, only fragments longer than the -460 bp promoter can stimulate strong gus gene expression in these organs. In addition, the -460 bp promoter fragment can drive gus expression not only in the vascular tissue, but also in leaf guard cells. The results suggest that the promoter MsZPP plays roles in the regulation of transgene expression, particularly due to its darkness, MeJA, and IAA responsiveness.
Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir
2017-01-01
Background A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. Methods The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3′end of the reporter gene and the VP2 start sequence to allow co-translational ‘cleavage’ of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Results Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. Conclusion NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication. PMID:29379384
2013-11-01
clones . Western blot analysis will be used to detect the protein expression after selection. 2. Differentiation into oligoprecursor cells (OPCs... monkey and mouse which will be tested in iPSC derived neurons aged with progerin. 13 Key Research Accomplishments: • Milestone 1 (month 1-2...iPSC clones with drug-inducible progerin construct we established the plasmid transfection for iPSC induced neural stem cells, the retroviral
Leung, K N; Nash, A A; Sia, D Y; Wildy, P
1984-12-01
A herpes simplex virus (HSV)-specific long-term T-cell clone has been established from the draining lymph node cells of BALB/c mice; the cells required repeated in vitro restimulation with UV-irradiated virus. The established T-cell clone expresses the Thy-1 and Lyt-1+2,3- surface antigens. For optimal proliferation of the cloned cells, both the presence of specific antigen and an exogenous source of T-cell growth factor are required. The proliferative response of the cloned T cells was found to be virus-specific but it did not distinguish between HSV-1 and HSV-2. Adoptive cell transfer of the cloned T cells helped primed B cells to produce anti-herpes antibodies: the response was antigen-specific and cell dose-dependent. The clone failed to produce a significant DTH reaction in vivo, but did produce high levels of macrophage-activating factor. Furthermore, the T-cell clone could protect from HSV infection, as measured by a reduction in local virus growth, and by enhanced survival following the challenge of mice with a lethal dose of virus. The mechanism(s) whereby this clone protects in vivo is discussed.
Marraccini, Pierre; Vinecky, Felipe; Alves, Gabriel S.C.; Ramos, Humberto J.O.; Elbelt, Sonia; Vieira, Natalia G.; Carneiro, Fernanda A.; Sujii, Patricia S.; Alekcevetch, Jean C.; Silva, Vânia A.; DaMatta, Fábio M.; Ferrão, Maria A.G.; Leroy, Thierry; Pot, David; Vieira, Luiz G.E.; da Silva, Felipe R.; Andrade, Alan C.
2012-01-01
The aim of this study was to investigate the molecular mechanisms underlying drought acclimation in coffee plants by the identification of candidate genes (CGs) using different approaches. The first approach used the data generated during the Brazilian Coffee expressed sequence tag (EST) project to select 13 CGs by an in silico analysis (electronic northern). The second approach was based on screening macroarrays spotted with plasmid DNA (coffee ESTs) with separate hybridizations using leaf cDNA probes from drought-tolerant and susceptible clones of Coffea canephora var. Conilon, grown under different water regimes. This allowed the isolation of seven additional CGs. The third approach used two-dimensional gel electrophoresis to identify proteins displaying differential accumulation in leaves of drought-tolerant and susceptible clones of C. canephora. Six of them were characterized by MALDI-TOF-MS/MS (matrix-assisted laser desorption-time of flight-tandem mass spectrometry) and the corresponding proteins were identified. Finally, additional CGs were selected from the literature, and quantitative real-time polymerase chain reaction (qPCR) was performed to analyse the expression of all identified CGs. Altogether, >40 genes presenting differential gene expression during drought acclimation were identified, some of them showing different expression profiles between drought-tolerant and susceptible clones. Based on the obtained results, it can be concluded that factors involved a complex network of responses probably involving the abscisic signalling pathway and nitric oxide are major molecular determinants that might explain the better efficiency in controlling stomata closure and transpiration displayed by drought-tolerant clones of C. canephora. PMID:22511801
Cloning, Codon Optimization, and Expression of Yersinia intermedia Phytase Gene in E. coli.
Mirzaei, Maryam; Saffar, Behnaz; Shareghi, Behzad
2016-06-01
Phytate is an anti-nutritional factor in plants, which catches the most phosphorus contents and some vital minerals. Therefore, Phytase is added mainly as an additive to the monogastric animals' foods to hydrolyze phytate and increase absorption of phosphorus. Y. intermedia phytase is a new phytase with special characteristics such as high specific activity, pH stability, and thermostability. Our aim was to clone, express, and characterizea codon optimized Y. intermedia phytase gene in E. coli . The Y. intermedia phytase gene was optimized according to the codon usage in E. coli . The sequence was synthesized and sub-cloned in pET-22b (+) vector and transformed into E. coli Bl21 (DE3). The protein was expressed in the presence of IPTG at a final concentration of 1 mM at 30°C. The purification of recombinant protein was performed by Ni 2+ affinity chromatography. Phytase activity and stability were determined in various pH and temperatures. The codon optimized Y. intermedia phytase gene was sub-cloned successfully.The expression was confirmed by SDS-PAGE and Western blot analysis. The recombinant enzyme (approximately 45 kDa) was purified. Specific activity of enzyme was 3849 (U.mg -1 ) with optimal pH 5 and optimal temperature of 55°C. Thermostability (80°C for 15 min) and pH stability (3-6) of the enzyme were 56 and more than 80%, respectively. The results of the expression and enzyme characterization revealed that the optimized Y. intermedia phytase gene has a good potential to be produced commercially andto be applied in animals' foodsindustry.
Han, Ying-Li; Hou, Cong-Cong; Du, Chen; Zhu, Jun-Quan
2017-01-01
Heat shock proteins 70 (HSP70s) are molecular chaperones that aid in protection against environmental stress. In this study, we cloned and characterized five members of the HSP70 family (designated as HSPa1a, HSC70-1, HSC70-2, HSPa4 and HSPa14) from Lateolabrax maculatus using rapid amplification cDNA ends (RACE). Multiple sequence alignment and structural analysis revealed that all members of the HSP70 family had a conserved domain architecture, with some distinguishing features unique to each HSP70. Quantitative real-time (qPCR) analysis revealed that all members of the HSP70 family were ubiquitously and differentially expressed in all major types of tissues, including testicular tissue. This indicated that HSP70s have vital and conserved biological functions, and may also function in the development of germinal cells. The expression of mRNA of the five HSP70 family members mRNA expression was significantly increased in the head kidney, intestine and gill after Vibrio harveyi challenge, suggesting that HSP70s play an important role in the immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ebbie: automated analysis and storage of small RNA cloning data using a dynamic web server
Ebhardt, H Alexander; Wiese, Kay C; Unrau, Peter J
2006-01-01
Background DNA sequencing is used ubiquitously: from deciphering genomes[1] to determining the primary sequence of small RNAs (smRNAs) [2-5]. The cloning of smRNAs is currently the most conventional method to determine the actual sequence of these important regulators of gene expression. Typical smRNA cloning projects involve the sequencing of hundreds to thousands of smRNA clones that are delimited at their 5' and 3' ends by fixed sequence regions. These primers result from the biochemical protocol used to isolate and convert the smRNA into clonable PCR products. Recently we completed a smRNA cloning project involving tobacco plants, where analysis was required for ~700 smRNA sequences[6]. Finding no easily accessible research tool to enter and analyze smRNA sequences we developed Ebbie to assist us with our study. Results Ebbie is a semi-automated smRNA cloning data processing algorithm, which initially searches for any substring within a DNA sequencing text file, which is flanked by two constant strings. The substring, also termed smRNA or insert, is stored in a MySQL and BlastN database. These inserts are then compared using BlastN to locally installed databases allowing the rapid comparison of the insert to both the growing smRNA database and to other static sequence databases. Our laboratory used Ebbie to analyze scores of DNA sequencing data originating from an smRNA cloning project[6]. Through its built-in instant analysis of all inserts using BlastN, we were able to quickly identify 33 groups of smRNAs from ~700 database entries. This clustering allowed the easy identification of novel and highly expressed clusters of smRNAs. Ebbie is available under GNU GPL and currently implemented on Conclusion Ebbie was designed for medium sized smRNA cloning projects with about 1,000 database entries [6-8].Ebbie can be used for any type of sequence analysis where two constant primer regions flank a sequence of interest. The reliable storage of inserts, and their annotation in a MySQL database, BlastN[9] comparison of new inserts to dynamic and static databases make it a powerful new tool in any laboratory using DNA sequencing. Ebbie also prevents manual mistakes during the excision process and speeds up annotation and data-entry. Once the server is installed locally, its access can be restricted to protect sensitive new DNA sequencing data. Ebbie was primarily designed for smRNA cloning projects, but can be applied to a variety of RNA and DNA cloning projects[2,3,10,11]. PMID:16584563
Highly repressible expression system for cloning genes that specify potentially toxic proteins.
O'Connor, C D; Timmis, K N
1987-01-01
A highly repressible expression vector system that allows the cloning of potentially deleterious genes has been constructed. Undesired expression of a cloned gene was prevented (i) at the level of initiation of transcription, by the presence of the strong but highly repressible leftward promoter of bacteriophage lambda, lambda pL, and (ii) at the level of transcript elongation or translation, through synthesis of antisense RNA complementary to the mRNA of the cloned gene. The system was tested by measuring the inhibition of expression of traT, the gene for the TraT major outer membrane lipoprotein. Direct detection and functional assays indicated that an essentially complete inhibition of traT expression was obtained. As a further test of the system, the gene encoding the EcoRI restriction endonuclease was cloned in the absence of the gene of the corresponding protective EcoRI modification methylase. Transformants harboring this construct were only viable when both repression controls were operational. Images PMID:2443481
Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells
NASA Astrophysics Data System (ADS)
Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc
1985-04-01
The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.
Rapid in silico cloning of genes using expressed sequence tags (ESTs).
Gill, R W; Sanseau, P
2000-01-01
Expressed sequence tags (ESTs) are short single-pass DNA sequences obtained from either end of cDNA clones. These ESTs are derived from a vast number of cDNA libraries obtained from different species. Human ESTs are the bulk of the data and have been widely used to identify new members of gene families, as markers on the human chromosomes, to discover polymorphism sites and to compare expression patterns in different tissues or pathologies states. Information strategies have been devised to query EST databases. Since most of the analysis is performed with a computer, the term "in silico" strategy has been coined. In this chapter we will review the current status of EST databases, the pros and cons of EST-type data and describe possible strategies to retrieve meaningful information.
Semova, Natalia; Kapanadze, Bagrat; Corcoran, Martin; Kutsenko, Alexei; Baranova, Ancha; Semov, Alexandre
2003-09-01
IRLB was originally identified as a partial cDNA clone, encoding a 191-aa protein binding the interferon-stimulated response element (ISRE) in the P2 promoter of human MYC. Here, we cloned the full-size IRLB using different bioinformatics tools and an RT-PCR approach. The full-size gene encompasses 131 kb within chromosome 15q22 and consists of 32 exons. IRLB is transcribed as a 6.6-kb mRNA encoding a protein of 1865 aa. IRLB is ubiquitously expressed and its expression is regulated in a growth- and cell cycle-dependent manner. In addition to the ISRE-binding domain IRLB contains a tripartite DENN domain, a nuclear localization signal, two PPRs, and a calmodulin-binding domain. The presence of DENN domains predicts possible interactions of IRLB with GTPases from the Rab family or regulation of growth-induced MAPKs. Strongly homologous proteins were identified in all available vertebrate genomes as well as in Caenorhabditis elegans and Drosophila melanogaster. In human and mouse a family of IRLB proteins exists, consisting of at least three members.
Siehnel, R J; Worobec, E A; Hancock, R E
1988-01-01
The gene encoding the outer membrane phosphate-selective porin protein P from Pseudomonas aeruginosa was cloned into Escherichia coli. The protein product was expressed and transported to the outer membrane of an E. coli phoE mutant and assembled into functional trimers. Expression of a product of the correct molecular weight was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis, using polyclonal antibodies to protein P monomer and trimer forms. Protein P trimers were partially purified from the E. coli clone and shown to form channels with the same conductance as those formed by protein P from P. aeruginosa. The location and orientation of the protein P-encoding (oprP) gene on the cloned DNA was identified by three methods: (i) mapping the insertion point of transposon Tn501 in a previously isolated P. aeruginosa protein P-deficient mutant; (ii) hybridization of restriction fragments from the cloned DNA to an oligonucleotide pool synthesized on the basis of the amino-terminal protein sequence of protein P; and (iii) fusion of a PstI fragment of the cloned DNA to the amino terminus of the beta-galactosidase gene of pUC8, producing a fusion protein that contained protein P-antigenic epitopes. Structural analysis of the cloned DNA and P. aeruginosa chromosomal DNA revealed the presence of two adjacent PstI fragments which cross-hybridized, suggesting a possible gene duplication. The P-related (PR) region hybridized to the oligonucleotide pool described above. When the PstI fragment which contained the PR region was fused to the beta-galactosidase gene of pUC8, a fusion protein was produced which reacted with a protein P-specific antiserum. However, the restriction endonuclease patterns of the PR region and the oprP gene differed significantly beyond the amino-terminal one-third of the two genes. Images PMID:2834340
Clonal sets of a binary relation
NASA Astrophysics Data System (ADS)
Zedam, Lemnaouar; Pérez-Fernández, Raúl; Bouremel, Hassane; De Baets, Bernard
2018-05-01
In a recent paper, we have introduced the notion of clone relation of a given binary relation. Intuitively, two elements are said to be "clones" if they are related in the same way w.r.t. every other element. In this paper, we generalize this notion from pairs of elements to sets of elements of any cardinality, resulting in the introduction of clonal sets. We investigate the most important properties of clonal sets, paying particular attention to the introduction of the clonal closure operator, to the analysis of the (lattice) structure of the set of clonal sets and to a distance metric expressing how close two elements are to being clones.
Cloning and characterization of a novel α-amylase from a fecal microbial metagenome.
Xu, Bo; Yang, Fuya; Xiong, Caiyun; Li, Junjun; Tang, Xianghua; Zhou, Junpei; Xie, Zhenrong; Ding, Junmei; Yang, Yunjuan; Huang, Zunxi
2014-04-01
To isolate novel and useful microbial enzymes from uncultured gastrointestinal microorganisms, a fecal microbial metagenomic library of the pygmy loris was constructed. The library was screened for amylolytic activity, and 8 of 50,000 recombinant clones showed amylolytic activity. Subcloning and sequence analysis of a positive clone led to the identification a novel gene (amyPL) coding for α-amylase. AmyPL was expressed in Escherichia coli BL21 (DE3) and the purified AmyPL was enzymatically characterized. This study is the first to report the molecular and biochemical characterization of a novel α-amylase from a gastrointestinal metagenomic library.
Isolation and expression of homeobox genes from the embryonic chicken eye.
Dhawan, R R; Schoen, T J; Beebe, D C
1997-06-11
To identify homeobox-containing genes that may play a role in the differentiation of ocular tissues. Total RNA was isolated from microdissected chicken embryo eye tissues at 3.5 days of development (embryonic day 3.5; E3.5). An "anchor-oligo-dT primer" was used for the synthesis of cDNA. Degenerate oligonucleotides designed from highly-conserved sequences in the third helix of the homeobox and the "anchor-primer" were used to amplify cDNAs by polymerase chain reaction (PCR). PCR products were cloned and sequenced. The spatial and temporal expression of selected transcripts was mapped by whole-mount in situ hybridization and northern blot analysis. After sequencing eighteen clones we identified a member of the distal-less family (dlx-3) in cDNA from presumptive neural retina and three chicken homologs of the Xenopus "anterior neural fold" (Xanf-1) in cDNA from anterior eye tissue. Dlx transcripts were mapped by in situ hybridization. Expression began at Hamburger and Hamilton stage 14 (E2.5) and was widely distributed in embryonic mesenchyme on E3 and E4. Expression increased in the retina during early development and persisted until after hatching. The one anf clone selected for further study was not detected by in situ or northern blot analysis. It is feasible to isolate homeobox cDNAs directly from microdissected embryonic tissues. Chicken dlx-3 mRNA has a wider distribution in the embryo than expected, based on the expression of the mouse homolog. Dlx-3 may play a role in establishing or maintaining the differentiation of the retina.
Transfer of scarlet fever-associated elements into the group A Streptococcus M1T1 clone.
Ben Zakour, Nouri L; Davies, Mark R; You, Yuanhai; Chen, Jonathan H K; Forde, Brian M; Stanton-Cook, Mitchell; Yang, Ruifu; Cui, Yujun; Barnett, Timothy C; Venturini, Carola; Ong, Cheryl-lynn Y; Tse, Herman; Dougan, Gordon; Zhang, Jianzhong; Yuen, Kwok-Yung; Beatson, Scott A; Walker, Mark J
2015-11-02
The group A Streptococcus (GAS) M1T1 clone emerged in the 1980s as a leading cause of epidemic invasive infections worldwide, including necrotizing fasciitis and toxic shock syndrome. Horizontal transfer of mobile genetic elements has played a central role in the evolution of the M1T1 clone, with bacteriophage-encoded determinants DNase Sda1 and superantigen SpeA2 contributing to enhanced virulence and colonization respectively. Outbreaks of scarlet fever in Hong Kong and China in 2011, caused primarily by emm12 GAS, led to our investigation of the next most common cause of scarlet fever, emm1 GAS. Genomic analysis of 18 emm1 isolates from Hong Kong and 16 emm1 isolates from mainland China revealed the presence of mobile genetic elements associated with the expansion of emm12 scarlet fever clones in the M1T1 genomic background. These mobile genetic elements confer expression of superantigens SSA and SpeC, and resistance to tetracycline, erythromycin and clindamycin. Horizontal transfer of mobile DNA conferring multi-drug resistance and expression of a new superantigen repertoire in the M1T1 clone should trigger heightened public health awareness for the global dissemination of these genetic elements.
Transfer of scarlet fever-associated elements into the group A Streptococcus M1T1 clone
Ben Zakour, Nouri L.; Davies, Mark R.; You, Yuanhai; Chen, Jonathan H. K.; Forde, Brian M.; Stanton-Cook, Mitchell; Yang, Ruifu; Cui, Yujun; Barnett, Timothy C.; Venturini, Carola; Ong, Cheryl-lynn Y.; Tse, Herman; Dougan, Gordon; Zhang, Jianzhong; Yuen, Kwok-Yung; Beatson, Scott A.; Walker, Mark J.
2015-01-01
The group A Streptococcus (GAS) M1T1 clone emerged in the 1980s as a leading cause of epidemic invasive infections worldwide, including necrotizing fasciitis and toxic shock syndrome123. Horizontal transfer of mobile genetic elements has played a central role in the evolution of the M1T1 clone45, with bacteriophage-encoded determinants DNase Sda16 and superantigen SpeA27 contributing to enhanced virulence and colonization respectively. Outbreaks of scarlet fever in Hong Kong and China in 2011, caused primarily by emm12 GAS8910, led to our investigation of the next most common cause of scarlet fever, emm1 GAS89. Genomic analysis of 18 emm1 isolates from Hong Kong and 16 emm1 isolates from mainland China revealed the presence of mobile genetic elements associated with the expansion of emm12 scarlet fever clones1011 in the M1T1 genomic background. These mobile genetic elements confer expression of superantigens SSA and SpeC, and resistance to tetracycline, erythromycin and clindamycin. Horizontal transfer of mobile DNA conferring multi-drug resistance and expression of a new superantigen repertoire in the M1T1 clone should trigger heightened public health awareness for the global dissemination of these genetic elements. PMID:26522788
Estornell, Leandro Hueso; Orzáez, Diego; López-Peña, Lucas; Pineda, Benito; Antón, María Teresa; Moreno, Vicente; Granell, Antonio
2009-04-01
A collection of fruit promoters, reporter genes and protein tags has been constructed in a triple-gateway format, a recombination-based cloning system that facilitates the tandem assembly of three DNA fragments into plant expression vectors. The new pENFRUIT collection includes, among others, the classical tomato-ripening promoters E8 and 2A11 and a set of six new tomato promoters. The new promoter activities were characterized in both transient assays and stable transgenic plants. The range of expression of the new promoters comprises strong (PNH, PLI), medium (PLE, PFF, PHD) and weak (PSN) promoters driving gene expression preferentially in the fruit, and covering a wide range of tissues and developmental stages. Together, a total of 78 possible combinations for the expression of a gene of interest in the fruit, plus a set of five reporters for new promoter analysis, was made available in the current collection. Moreover, the pENFRUIT promoter collection is adaptable to hairpin RNA strategies aimed at tissue/organ-specific gene silencing with only an additional cloning step. The pENFRUIT toolkit broadens the spectrum of promoter activities available for fruit biotechnology and fundamental research, and bypasses technical difficulties of current ligase-dependent cloning techniques in the construction of fruit expression cassettes. The pENFRUIT vector collection is available for the research community in a plasmid repository, facilitating its accessibility.
Yang, J; Yamamoto, M; Ishibashi, J; Taniai, K; Yamakawa, M
1998-08-01
An antibacterial protein, designated rhinocerosin, was purified to homogeneity from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros immunized with Escherichia coli. Based on the amino acid sequence of the N-terminal region, a degenerate primer was synthesized and reverse-transcriptase PCR was performed to clone rhinocerosin cDNA. As a result, a 279-bp fragment was obtained. The complete nucleotide sequence was determined by sequencing the extended rhinocerosin cDNA clone by 5' rapid amplification of cDNA ends. The deduced amino acid sequence of the mature portion of rhinocerosin was composed of 72 amino acids without cystein residues and was shown to be rich in glycine (11.1%) and proline (11.1%) residues. Comparison of the deduced amino acid sequence of rhinocerosin with those of other antibacterial proteins indicated that it has 77.8% and 44.6% identity with holotricin 2 and coleoptrecin, respectively. Rhinocerosin had strong antibacterial activity against E. coli, Streptococcus pyogenes, Staphylococcus aureus but not against Pseudomonas aeruginosa. Results of reverse-transcriptase PCR analysis of gene expression in different tissues indicated that the rhinocerosin gene is strongly expressed in the fat body and the Malpighian tubule, and weakly expressed in hemocytes and midgut. In addition, gene expression was inducible by bacteria in the fat body, the Malpighian tubule and hemocyte but constitutive expression was observed in the midgut.
Liu, Ying; Jiang, Yu-xin; Li, Chao-pin
2011-12-01
To clone tenecin gene, an antibacterial peptide gene, from Tenebrio molitor for its prokaryotic expression and explore the molecular mechanism for regulating the expression of antibacterial peptide in Tenebrio molitor larvae. The antibacterial peptide was induced from the larvae of Tenebrio molitor by intraperitoneal injection of Escherichia coli DH-5α (1×10(8)/ml). RT-PCR was performed 72 h after the injection to clone Tenecin gene followed by sequencing and bioinformatic analysis. The recombinant expression vector pET-28a(+)-Tenecin was constructed and transformed into E. coli BL21(DE3) cells and the expression of tenecin protein was observed after IPTG induction. Tenecin expression was detected in transformed E.coli using SDS-PAGE after 1 mmol/L IPTG induction. Tenecin gene, which was about 255 bp in length, encoded Tenecin protein with a relative molecular mass of 9 kD. Incubation of E.coli with 80, 60, 40, and 20 µg/ml tenecin for 18 h resulted in a diameter of the inhibition zone of 25.1∓0.03, 20.7∓0.06, 17.2∓0.11 and 9.3∓0.04 mm, respectively. Tenecin protein possesses strong antibacterial activity against E. coli DH-5α, which warrants further study of this protein for its potential as an antibacterial agent in clinical application.
Argüello-García, Raúl; Cruz-Soto, Maricela; Romero-Montoya, Lydia; Ortega-Pierres, Guadalupe
2009-12-01
The susceptibility of Giardia duodenalis trophozoites exposed in vitro to sublethal concentrations of metronidazole (MTZ) and albendazole (ABZ) may exhibit inter-culture (variability) and intra-culture (variation) differences in drug susceptibility. It was previously reported that MTZ-resistant trophozoites may display changes in pyruvate:ferredoxin oxidoreductase (PFOR) expression while changes at the beta-tubulin molecule are apparently absent in ABZ-resistant cultures. To assess the levels of gene expression of these molecules, we obtained cloned cultures growing at concentrations up to 23 microM MTZ (WBRM23) and up to 8muM ABZ (WBRA8) and gene sequence and expression of pfor and beta-tubulin loci were compared with these of drug-susceptible clone WB1. Neither the pfor nor the beta-tubulin genes showed changes at sequence level but the MTZ-resistant clones WBRM21 and WBRM23 showed up-regulation of the pfor RNA using the gdh gene as reference. By using WB1 and WBRA8 clones in representational difference analyses of gene expression (RDA) an insert referred to as ARR-VSP was selected and sequenced. It showed the highest homology to one VSP molecule in the Giardia Genome Database (orf GL50803_101765). This isogene was up-regulated in five ABZ-resistant clones and the clone WBRA8 exhibited the highest RNA expression level. When successive progenies of clones WB1, WBRM23 and WBRA8 were analyzed in Northern blot assays to detect pfor and ARR-VSP RNAs respectively, the expression patterns showed variation for both genes but it was much lower in the clone WBRA8. These results suggest that G. duodenalis cultures either susceptible or resistant to MTZ and ABZ may display variability and variation at RNA expression levels albeit these were more marked in the MTZ-resistant parasites. These data might have further implications defining major mechanisms involved in drug resistance of Giardia.
Liu, Jun; Luo, Yan; Liu, Qingqing; Zheng, Liming; Yang, Zhongcai; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Zhang, Yong
2013-03-01
Transgenic animals that express antimicrobial agents in their milk can inhibit bacterial pathogens that cause mastitis. Our objective was to produce human β-defensin-3 (HBD3) transgenic embryos by nuclear transfer using goat mammary epithelial cells (GMECs) as donor cells. Three GMEC lines (GMEC1, GMEC2, and GMEC3) were transfected with a HBD3 mammary-specific expression vector by electroporation. There was a difference (P < 0.05) in the rate of geneticin-resistant colony formation among cell lines GMEC1, GMEC2, and GMEC3 (39 and 47 vs. 19 colonies per 3 × 10(6) cells, respectively). After inducing expression, the mRNA and protein of HBD3 were detected by reverse transcription polymerase chain reaction and Western blot analysis in transgenic cells. Transgenic clonal cells expressing HBD3 were used as donor cells to investigate development of cloned embryos. There were no significant differences in rates of cleavage or blastocyst formation of cloned embryos from transgenic (GMEC1T2 and GMEC2T3) and nontransgenic (GMEC1 and GMEC2) GMECs (72.3 ± 5.0%, 69.5 ± 2.3%, 61.8 ± 4.8%, and 70.0 ± 2%; and 16.8 ± 0.5%, 17.5 ± 0.7%, 16.7 ± 0.9%, and 17.5 ± 0.6%, respectively). However, the fusion rate, cleavage rate, and blastocyst formation rate of cloned embryos from a transgenic clonal cell line (GMEC2T6, 50.7 ± 2.1%, 55.5 ± 2.0%, and 11.1 ± 0.6%) were lower than those of other groups (P < 0.05). We concluded that genetic modification of GMECs might not influence the in vitro development of cloned embryos, but that some of the transgenic clonal cells were not suitable for nuclear transfer to produce transgenic goats, because of low developmental rates. However, transgenic GMECs expressing HBD3 might be used as donor cells for producing transgenic goats that express increased concentrations of β-defensins in their milk. Copyright © 2013 Elsevier Inc. All rights reserved.
The visual pigments of the West Indian manatee (Trichechus manatus).
Newman, Lucy A; Robinson, Phyllis R
2006-10-01
Manatees are unique among the fully aquatic marine mammals in that they are herbivorous creatures, with hunting strategies restricted to grazing on sea-grasses. Since the other groups of (carnivorous) marine mammals have been found to possess various visual system adaptations to their unique visual environments, it was of interest to investigate the visual capability of the manatee. Previous work, both behavioral (Griebel & Schmid, 1996), and ultrastructural (Cohen, Tucker, & Odell, 1982; unpublished work cited by Griebel & Peichl, 2003), has suggested that manatees have the dichromatic color vision typical of diurnal mammals. This study uses molecular techniques to investigate the cone visual pigments of the manatee. The aim was to clone and sequence cone opsins from the retina, and, if possible, express and reconstitute functional visual pigments to perform spectral analysis. Both LWS and SWS cone opsins were cloned and sequenced from manatee retinae, which, upon expression and spectral analysis, had lambda(max) values of 555 and 410 nm, respectively. The expression of both the LWS and SWS cone opsin in the manatee retina is unique as both pinnipeds and cetaceans only express a cone LWS opsin.
Yen, Hsiu-Chuan; Li, Sin-Hua; Majima, Hideyuki J; Huang, Yu-Hsiang; Chen, Chiu-Ping; Liu, Chia-Chi; Tu, Ya-Chi; Chen, Chih-Wei
2011-06-01
Bleomycin (BLM) is an anti-cancer drug that can induce formation of reactive oxygen species (ROS). To investigate the association between up-regulation of antioxidant enzymes and coenzyme Q(10) (CoQ(10)) in acquired BLM resistance, one BLM-resistant clone, SBLM24 clone, was selected from a human oral cancer cell line, SCC61 clone. The BLM resistance of SBLM24 clone relative to a sub-clone of SCC61b cells was confirmed by analysis of clonogenic ability and cell cycle arrest. CoQ(10) levels and levels of Mn superoxide dismutase, glutathione peroxidase 1, catalase and thioredoxin reductase 1 were augmented in SBLM24 clone although there was also a mild increase in the expression of BLM hydrolase. Suppression of CoQ(10) levels by 4-aminobenzoate sensitized BLM-induced cytotoxicity. The results of suppression on enhanced ROS production by BLM and the cross-resistance to hydrogen peroxide in SBLM24 clone further demonstrated the development of adaptation to oxidative stress during the formation of acquired BLM resistance.
Rinder, H; Bayer, T A; Gertzen, E M; Hoffmann, W
1992-01-01
Ependymins are secretory products of meningeal cells and represent the predominant glycoproteins in the cerebrospinal fluid from various orders of teleost fish. In the zebrafish, their expression starts between 48 and 72 h post-fertilization. Generally, they share characteristics with proteins involved in cell-contact phenomena. Here, we characterize the ependymin gene from Brachydanio rerio and its flanking regions. The sequence was obtained from clones generated using the polymerase chain reaction (PCR), including a variation of an "anchored" PCR. Also, clones from a conventional phage library were analyzed. We found that the transcribed portion is arranged in six exons. Transient expression of an ependymin-promoter-lacZ gene fusion in zebrafish embryos revealed that the 2.0-kb upstream regulatory region used is sufficient to direct the ependymin-specific correct temporal and spatial expression pattern of the lacZ reporter gene.
Kim, Moo-Sang; Lim, Hak-Seob; Ahn, Sang Jung; Jeong, Yong-Kee; Kim, Chul Geun; Lee, Hyung Ho
2007-11-01
The origins of replication are associated with nuclear matrices or are found in close proximity to matrix attachment regions (MARs). In this report, fish MARs were cloned into an autonomously replicating sequence (ARS) cloning vector and were screened for ARS elements in Saccharomyces cerevisiae. Sixteen clones were isolated that were able to grow on the selective plates. In particular, an ARS905 that shows high efficiency among them was selected for this study. Southern hybridization indicated the autonomous replication of the transformation vector containing the ARS905 element. DNA sequences analysis showed that the ARS905 contained two ARS consensus sequences as well as MAR motifs, such as AT tracts, ORI patterns, and ATC tracts. In vitro matrix binding analysis, major matrix binding activity and ARS function coincided in a subfragment of the ARS905. To analyze the effects of ARS905 on expression of a reporter gene, an ARS905(E1158) with ARS activity was inserted into pBaEGFP(+) containing mud loach beta-actin promoter, EGFP as a reporter gene, and SV40 poly(A) signal. The pBaEGFP(+)-ARS905(E1158) was transfected into a fish cell line, CHSE-214. The intensity of EGFP transfected cells was a 7-fold of the control at 11days post-transfection. These results indicate that ARS905 enhances the expression of the EGFP gene and that it should be as a component of expression vectors in further fish biotechnological studies.
Faust, M; Ebensperger, C; Schulz, A S; Schleithoff, L; Hameister, H; Bartram, C R; Janssen, J W
1992-07-01
We have cloned the mouse homologue of the ufo oncogene. It encodes a novel tyrosine kinase receptor characterized by a unique extracellular domain containing two immunoglobulin-like and two fibronectin type III repeats. Comparison of the predicted ufo amino acid sequences of mouse and man revealed an overall identity of 87.6%. The ufo locus maps to mouse chromosome 7A3-B1 and thereby extends the known conserved linkage group between mouse chromosome 7 and human chromosome 19. RNA in situ hybridization analysis established the onset of specific ufo expression in the late embryogenesis at day 12.5 post coitum (p.c.) and localized ufo transcription to distinct substructures of a broad spectrum of developing tissues (e.g. subepidermal cells of the skin, mesenchymal cells of the periosteum). In adult animals ufo is expressed in cells forming organ capsules as well as in connective tissue structures. ufo may function as a signal transducer between specific cell types of mesodermal origin.
Cloning and expression analysis of Zmglp1, a new germin-like protein gene in maize.
Fan, Zhanmin; Gu, Hongya; Chen, Xiaowei; Song, Hui; Wang, Qian; Liu, Meihua; Qu, Li-Jia; Chen, Zhangliang
2005-06-17
The cDNA and genomic DNA of a green tissue-specific gene were cloned from maize (Zea mays L.) using cDNA-amplified fragment length polymorphism (cDNA-AFLP) and library screening. The deduced protein was highly similar to Hordeum vulgare germin-like protein 1 (HvGLP1), and the maize gene was therefore designated Zmglp1. Northern blot specifically detected the mRNA of Zmglp1 in young whorl leaves at the early-whorl stage. However, at the late-whorl, tassel, and silk stages, Zmglp1 transcripts were highly abundant in young whorl leaves; less abundant in mature leaves, young tassels, and cobs; and not detectable in roots, immature kernels, and stalks. RNA in situ hybridization revealed that Zmglp1 expressed only in mesophyllous, phloem, and guard cells in the young whorl leaves. Deletion analysis of the promoter in transgenic Arabidopsis resulted in the identification of several regions containing important regulatory cis-elements controlling the expression levels and circadian rhythm-oscillated patterns of Zmglp1.
Identification of Tf1 integration events in S. pombe under nonselective conditions
Cherry, Kristina E.; Hearn, Willis E.; Seshie, Osborne Y.; Singleton, Teresa L.; Singleton, Teresa L.
2014-01-01
Integration of retroviral elements into the host genome is a phenomena observed among many classes of retroviruses. Much information concerning integration of retroviral elements has been documented based on in vitro analysis or expression of selectable markers. To identify possible Tf1 integration events within silent regions of the S. pombe genome, we focused on performing an in vivo genome-wide analysis of Tf1 integration events from the nonselective phase of the retrotransposition assay. We analyzed 1000 individual colonies streaked from four independent Tf1 transposed patches under nonselection conditions. Our analysis detected a population of G418S/neo+ Tf1 integration events that would have been overlooked during the selective phase of the assay. Further RNA analysis from the G418S/neo+ clones revealed 50% of clones expressing the neo selectable marker. Our data reveals Tf1’s ability to insert within silent regions of S. pombe’s genome. PMID:24680781
Identification of Tf1 integration events in S. pombe under nonselective conditions.
Cherry, Kristina E; Hearn, Willis E; Seshie, Osborne Y K; Singleton, Teresa L
2014-06-01
Integration of retroviral elements into the host genome is a phenomena observed among many classes of retroviruses. Much information concerning the integration of retroviral elements has been documented based on in vitro analysis or expression of selectable markers. To identify possible Tf1 integration events within silent regions of the Schizosaccharomyces pombe genome, we focused on performing an in vivo genome-wide analysis of Tf1 integration events from the nonselective phase of the retrotransposition assay. We analyzed 1000 individual colonies streaked from four independent Tf1 transposed patches under nonselection conditions. Our analysis detected a population of G418(S)/neo(+) Tf1 integration events that would have been overlooked during the selective phase of the assay. Further RNA analysis from the G418(S)/neo(+) clones revealed 50% of clones expressing the neo selectable marker. Our data reveals Tf1's ability to insert within silent regions of S. pombe's genome. Copyright © 2014 Elsevier B.V. All rights reserved.
Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells
Bradley, Karri K; Jaggar, Jonathan H; Bonev, Adrian D; Heppner, Thomas J; Flynn, Elaine RM; Nelson, Mark T; Horowitz, Burton
1999-01-01
The molecular nature of the strong inward rectifier K+ channel in vascular smooth muscle was explored by using isolated cell RT-PCR, cDNA cloning and expression techniques.RT-PCR of RNA from single smooth muscle cells of rat cerebral (basilar), coronary and mesenteric arteries revealed transcripts for Kir2.1. Transcripts for Kir2.2 and Kir2.3 were not found.Quantitative PCR analysis revealed significant differences in transcript levels of Kir2.1 between the different vascular preparations (n = 3; P < 0.05). A two-fold difference was detected between Kir2.1 mRNA and β-actin mRNA in coronary arteries when compared with relative levels measured in mesenteric and basilar preparations.Kir2.1 was cloned from rat mesenteric vascular smooth muscle cells and expressed in Xenopus oocytes. Currents were strongly inwardly rectifying and selective for K+.The effect of extracellular Ba2+, Ca2+, Mg2+ and Cs2+ ions on cloned Kir2.1 channels expressed in Xenopus oocytes was examined. Ba2+ and Cs+ block were steeply voltage dependent, whereas block by external Ca2+ and Mg2+ exhibited little voltage dependence. The apparent half-block constants and voltage dependences for Ba2+, Cs+, Ca2+ and Mg2+ were very similar for inward rectifier K+ currents from native cells and cloned Kir2.1 channels expressed in oocytes.Molecular studies demonstrate that Kir2.1 is the only member of the Kir2 channel subfamily present in vascular arterial smooth muscle cells. Expression of cloned Kir2.1 in Xenopus oocytes resulted in inward rectifier K+ currents that strongly resemble those that are observed in native vascular arterial smooth muscle cells. We conclude that Kir2.1 encodes for inward rectifier K+ channels in arterial smooth muscle. PMID:10066894
Cloning and pharmacological characterization of the rabbit bradykinin B2 receptor.
Bachvarov, D R; Saint-Jacques, E; Larrivée, J F; Levesque, L; Rioux, F; Drapeau, G; Marceau, F
1995-12-01
Degenerate primers, corresponding to consensus sequences of third and sixth transmembrane domains of G protein-coupled receptor superfamily, were used for the polymerase chain reaction amplification and consecutive characterization of G protein-coupled receptors present in cultured rabbit aortic smooth muscle cells. One of the isolated resulting fragments was highly homologous to the corresponding region of the bradykinin (BK) B2 receptor cloned in other species. The polymerase chain reaction fragment was used to screen a rabbit genomic library, which allowed the identification of an intronless 1101-nucleotide open reading frame which codes for a 367-amino acid receptor protein. The rabbit B2 receptor sequence is more than 80% identical to the ones determined in three other species and retain putative glycosylation, palmitoylation and phosphorylation sites. In the rabbit genomic sequence, an acceptor splice sequence was found 8 base pairs upstream of the start codon. Northern blot analysis showed a high expression of a major transcript (4.2 kilobases) in the rabbit kidney and duodenum, and a less abundant expression in other tissues. Southern blot experiments suggest that a single copy of this gene exists in the rabbit genome. The cloned rabbit B2 receptor expressed in COS-1 cells binds [3H]BK in a saturable manner (KD 2.1 nM) and this ligand competes with a series of kinin agonists and antagonist with a rank order consistent with the B2 receptor identity. The insurmountable character of the antagonism exerted by Hoe 140 against BK on the rabbit B2 receptor, previously shown in pharmacological experiments, was confirmed in binding experiments with the cloned receptor expressed in a controlled manner. By contrast, Hoe 140 competed with [3H]BK in a surmountable manner for the human B2 receptor expressed in COS-1 cells. The cloning of the rabbit B2 receptor will be useful notably for the study of the structural basis of antagonist binding and for studies on receptor regulation in a relatively large animal.
Yamamoto, Akito; Kumakura, Shin-ichi; Uchida, Minoru; Barrett, J Carl; Tsutsui, Takeki
2003-09-01
The ability of the human papillomavirus type 16 (HPV-16) E6 or E7 gene to induce immortalization of normal human embryonic fibroblast WHE-7 cells was examined. WHE-7 cells at 9 population doublings (PD) were infected with retrovirus vectors encoding either HPV-16 E6 or E7 alone or both E6 and E7 (E6/E7). One of 4 isolated clones carrying E6 alone became immortal and is currently at >445 PD. Four of 4 isolated clones carrying E7 alone escaped from crisis and are currently at >330 PD. Three of 5 isolated clones carrying E6/E7 were also immortalized and are currently at >268 PD. The immortal clone carrying E6 only and 2 of the 3 immortal clones carrying E6/E7 expressed a high level of E6 protein, and all the immortal clones carrying E7 alone and the other immortal clone carrying E6/E7 expressed a high level of E7 protein when compared to their mortal or precrisis clones. The immortal clones expressing a high level of E6 or E7 protein were positive for telomerase activity or an alternative mechanism of telomere maintenance, respectively, known as ALT (alternative lengthening of telomeres). All the mortal or precrisis clones were negative for both phenotypes. All the immortal clones exhibited abrogation of G1 arrest after DNA damage by X-ray irradiation. The expression of INK4a protein (p16(INK4a)) was undetectable in the E6-infected mortal and immortal clones, whereas Rb protein (pRb) was hyperphosphorylated only in the immortal clone. The p16(INK4a) protein was overexpressed in all the E7-infected immortal clones and their clones in the pre-crisis period as well as all the E6/E7-infected mortal and immortal clones, but the pRb expression was downregulated in all of these clones. These results demonstrate for the first time to our knowledge that HPV-16 E6 or E7 alone can induce immortalization of normal human embryonic fibroblasts. Inactivation of p16(INK4a)/pRb pathways in combination with activation of a telomere maintenance mechanism is suggested to be necessary for immortalization of normal human embryonic fibroblasts by these viral oncogenes. The susceptibility of human cells to immortalization may be related to the state of differentiation of the cells. Copyright 2003 Wiley-Liss, Inc.
Chen, Jun; Young, Susan M; Allen, Chris; Seeber, Andrew; Péli-Gulli, Marie-Pierre; Panchaud, Nicolas; Waller, Anna; Ursu, Oleg; Yao, Tuanli; Golden, Jennifer E; Strouse, J Jacob; Carter, Mark B; Kang, Huining; Bologa, Cristian G; Foutz, Terry D; Edwards, Bruce S; Peterson, Blake R; Aubé, Jeffrey; Werner-Washburne, Margaret; Loewith, Robbie J; De Virgilio, Claudio; Sklar, Larry A
2012-04-20
TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high-throughput flow cytometry multiplexed screen using five GFP-tagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded, and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high-throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in a manner analogous to that of rapamycin. We have shown that CID 3528206 inhibited yeast cell growth and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC(50)'s of 150 nM and 3.9 μM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors.
Molecular cloning and characterization of arginine kinase gene of Toxocara canis.
Sahu, Shivani; Samanta, S; Harish, D R; Sudhakar, N R; Raina, O K; Shantaveer, S B; Madhu, D N; Kumar, Ashok
2015-06-01
Toxocara canis is an important gastrointestinal nematode of dogs and also a causative agent of visceral larva migrans in humans. Arginine kinase (AK) gene is one of the important biomolecule of phosphagen kinase of T. canis which is emerging as an exciting novel diagnostic target in toxocarosis. The present study was carried out to clone and characterize AK gene of T. canis for future utilization as a diagnostic molecule. Total RNA was extracted from intact adult worms and reverse transcription was done with oligo dT primers to obtain complementary DNA (cDNA). Polymerase chain reaction (PCR) was carried out using cDNA as template with specific primers which amplified a product of 1,202 bp. The amplicon was cloned into pDrive cloning vector and clone was confirmed by colony PCR and restriction endonuclease analysis. Sequence analysis of the gene showed 99.8 and 77.9 % homology with the published AK gene of T. canis (EF015466.1) and Ascaris suum respectively. Structural analysis shown that the mature AK protein consist of 400 amino acids with a molecular wt of 45360.73 Da. Further expression studies are required for producing the recombinant protein for its evaluation in the diagnosis of T. canis infection in humans as well as in adult dogs.
[Construction of transgenic tobacco expressing popW and analysis of its biological phenotype].
Wang, Cui; Liu, Hongxia; Cao, Jing; Wang, Chao; Guo, Jianhua
2014-04-01
In a previous study, we cloned popW from Ralstonia solanacearum strain ZJ3721, coding PopW, a new harpin protein. The procaryotically expressed PopW can induce resistance to Tobacco mosaic virus (TMV), enhance growth and improve quality of tobacco, when sprayed onto tobacco leaves. Here, we constructed an expression vector pB- popW by cloning popW into the bionary vector pBI121 and transformed it into Agrobacterium tumefaciens strain EHA105 via freeze-thaw method. Tobacco (Nicotiana tobacum cv. Xanthi nc.) transformation was conducted by infection of tobacco leaf discs with recombinant A. tumefaciens. After screening on MS medium containing kanamycin, PCR and RT-PCR analysis, 21 T3 lines were identified as positive transgenic. Genomic intergration and expression of the transferred gene were determined by PCR and RT-PCR. And GUS staining analysis indicated that the protein expressed in transgenic tobacco was bioactive and exhibited different expression levels among lines. Disease bioassays showed that the transgenic tobacco had enhanced resistance to TMV with biocontrol efficiency up to 54.25%. Transgenic tobacco also exhibited enhanced plant growth, the root length of 15 d old seedlings was 1.7 times longer than that of wild type tobacco. 60 d after transplanting to pots, the height, fresh weight and dry weight of transgenic tobacco were 1.4, 1.7, 1.8 times larger than that of wild type tobacco, respectively.
Murugananthkumar, R; Akhila, M V; Rajakumar, A; Mamta, S K; Sudhakumari, C C; Senthilkumaran, B
2016-12-01
Testicular receptor 2 (TR2; also known as Nr2c1) is one of the first orphan nuclear receptors identified and known to regulate various physiological process with or without any ligand. In this study, we report the cloning of full length nr2c1 and its expression analysis during gonadal development, seasonal testicular cycle and after human chorionic gonadotropin (hCG) induction. In addition, in situ hybridization (ISH) was performed to localize nr2c1 transcripts in adult testis and whole catfish (1day post hatch). Tissue distribution and gonadal ontogeny studies revealed high expression of nr2c1 in developing and adult testis. Early embryonic stage-wise expression of nr2c1 seems to emphasize its importance in cellular differentiation and development. Substantial expression of nr2c1 during pre-spawning phase and localization of nr2c1 transcripts in sperm/spermatids were observed. Significant upregulation after hCG induction indicate that nr2c1 is under the regulation of gonadotropins. Whole mount ISH analysis displayed nr2c1 expression in notochord indicating its role in normal vertebrate development. Taken together, our findings suggest that nr2c1 may have a plausible role in the testicular and embryonic development of catfish. Copyright © 2015. Published by Elsevier Inc.
The Transcriptome of the Reference Potato Genome Solanum tuberosum Group Phureja Clone DM1-3 516R44
Massa, Alicia N.; Childs, Kevin L.; Lin, Haining; Bryan, Glenn J.; Giuliano, Giovanni; Buell, C. Robin
2011-01-01
Advances in molecular breeding in potato have been limited by its complex biological system, which includes vegetative propagation, autotetraploidy, and extreme heterozygosity. The availability of the potato genome and accompanying gene complement with corresponding gene structure, location, and functional annotation are powerful resources for understanding this complex plant and advancing molecular breeding efforts. Here, we report a reference for the potato transcriptome using 32 tissues and growth conditions from the doubled monoploid Solanum tuberosum Group Phureja clone DM1-3 516R44 for which a genome sequence is available. Analysis of greater than 550 million RNA-Seq reads permitted the detection and quantification of expression levels of over 22,000 genes. Hierarchical clustering and principal component analyses captured the biological variability that accounts for gene expression differences among tissues suggesting tissue-specific gene expression, and genes with tissue or condition restricted expression. Using gene co-expression network analysis, we identified 18 gene modules that represent tissue-specific transcriptional networks of major potato organs and developmental stages. This information provides a powerful resource for potato research as well as studies on other members of the Solanaceae family. PMID:22046362
USDA-ARS?s Scientific Manuscript database
A bacterial endo-polygalacturonase (endo-PGase) gene from the plant pathogen Pectobacterium carotovorum was cloned into pGAPZaA vector and constitutively expressed in Pichia pastoris. The recombinant endo-PGase secreted by the Pichia clone showed a 1.7 fold increase when the culture medium included ...
Fujimura, Tatsuya; Kurome, Mayuko; Murakami, Hiroshi; Takahagi, Yoichi; Matsunami, Katsuyoshi; Shimanuki, Shinichi; Suzuki, Kohei; Miyagawa, Shuji; Shirakura, Ryota; Shigehisa, Tamotsu; Nagashima, Hiroshi
2004-01-01
The present paper describes production of cloned pigs from fibroblast cells of transgenic pigs expressing human decay accelerating factor (DAF, CD55) and N-acetylglucosaminyltransferase III (GnT-III) that remodels sugar-chain biosynthesis. Two nuclear transfer protocols were used: a two-step activation (TA) method and a delayed activation (DA) method. Enucleated in vitro-matured oocytes and donor cells were electrically fused in a calcium-containing medium by TA method or in a calcium-free medium by DA method, followed by electrical activation 1-1.5 h later, respectively. In vitro blastocyst formation rates of nuclear transferred embryos reconstructed by TA and DA method were 8% and 14%, respectively. As a result of embryo transfer of the reconstructed embryos made by each method into recipient pigs, both gave rise to cloned piglets. These cloned pigs expressed transgene as much as their nuclear donor cells. In conclusions, (1) pig cloning can be carried out by TA or DA nuclear transfer methods, (2) expression of transgenes can be maintained to cloned pigs from the nuclear donor cells derived from transgenic animals.
Identification of molecular performance from oil palm clones based on SSR markers
NASA Astrophysics Data System (ADS)
Putri, Lollie Agustina P.; Basyuni, M.; Bayu, Eva S.; Arvita, D.; Arifiyanto, D.; Syahputra, I.
2018-03-01
In Indonesia, the oil palms are an important economic crop, producing food and raw materials for the food, confectionary, cosmetics and oleo-chemical industrial demands of oil palm products. Clonal oil palm offers the potential for greater productivity because it is possible to establish uniform tree stands comprising identical copies (clones) of a limited number of highly productive oil palms. Unfortunately, tissue culture sometimes accentuates the expression of detects in oil palm, particularly when embryogenesis is induced in particullar callus for prolonged periods. This research is conducted by taking individual tree sample of clone germplasm two years old. The purpose of this research is to molecular performance analysis of some oil palm clones based on SSR markers. A total of 30 trees oil palm clones were used for analysis. In this experiment, the DNA profile diversity was assessed using five loci of oil palm’s specific SSR markers. The results of the experiment indicated out of 3 SSR markers (FR-0779, FR-3663 and FR-0782) showed monomorphic of PCR product and 2 SSR markers (FR-0783 and FR- 3745) showed polymorphic of PCR product. There are 10 total number of PCR product. These preliminary results demonstrated SSR marker can be used to evaluate genetic relatedness among trees of oil palm clones.
Cloning and functional analysis of 5'-upstream region of the Pokemon gene.
Yang, Yutao; Zhou, Xiaowei; Zhu, Xudong; Zhang, Chuanfu; Yang, Zhixin; Xu, Long; Huang, Peitang
2008-04-01
Pokemon, the POK erythroid myeloid ontogenic factor, not only regulates the expression of many genes, but also plays an important role in cell tumorigenesis. To investigate the molecular mechanism regulating expression of the Pokemon gene in humans, its 5'-upstream region was cloned and analyzed. Transient analysis revealed that the Pokemon promoter is constitutive. Deletion analysis and a DNA decoy assay indicated that the NEG-U and NEG-D elements were involved in negative regulation of the Pokemon promoter, whereas the POS-D element was mainly responsible for its strong activity. Electrophoretic mobility shift assays suggested that the NEG-U, NEG-D and POS-D elements were specifically bound by the nuclear extract from A549 cells in vitro. Mutation analysis demonstrated that cooperation of the NEG-U and NEG-D elements led to negative regulation of the Pokemon promoter. Moreover, the NEG-U and NEG-D elements needed to be an appropriate distance apart in the Pokemon promoter in order to cooperate. Taken together, our results elucidate the mechanism underlying the regulation of Pokemon gene transcription, and also define a novel regulatory sequence that may be used to decrease expression of the Pokemon gene in cancer gene therapy.
2013-01-01
Background Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. Results We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit’s component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. Conclusions We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins. PMID:23957834
Buj, Raquel; Iglesias, Noa; Planas, Anna M; Santalucía, Tomàs
2013-08-20
Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit's component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins.
Li, Jian-min; Chen, Wei; Jia, Xiu-jie; An, Xiao-ping; Li, Bing; Fan, Ying-ru; Tong, Yi-gang
2005-05-01
To obtain CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site and to express human-mouse chimeric antibody directed against Chikungunya Virus by using the cell line. The fusion gene of FRT and HBsAg was constructed by PCR and cloned into the MCS of pCI-neo to construct pCI-FRT-HBsAg. The pCI-FRT-HBsAg was transfected into CHO/dhfr(-) cells and cell clones with high expression of HBsAg were screened by detecting the amount of HBsAg with ELISA. A CHO cell clone with the highest expression was chosen and named as CHO/dhfr(-) FRT(+). pAFRT HFLF, a expression plasmid of chimeric antibody with RFT sequence was transfected into CHO/dhfr(-) FRT(+) cells and cell clones with high expression of the chimeric antibody were screened by increasing concentration of MTX. A CHO cell clone with high expression of the chimeric antibody was cultured in large scale and supernatant was collected from which the chimeric antibody was purified. The purified chimeric antibody was analyzed by SDS-PAGE, Western blot and IFA. A CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site was obtained successfully. A cell clone with yield of 5 mg/L of chimeric antibody was obtained, as compared with routine CHO cell expression system with a yield of 2 mg/L. A cell line with integrated FRT sequence in the chromosome transcription active site was obtained and with it human-mouse chimeric antibody directed against Chikungunya virus was expressed. This system lays a solid foundation which can be used for expressing antibodies and other proteins.
Mammalian cDNA Library from the NIH Mammalian Gene Collection (MGC) | Office of Cancer Genomics
The MGC provides the research community full-length clones for most of the defined (as of 2006) human and mouse genes, along with selected clones of cow and rat genes. Clones were designed to allow easy transfer of the ORF sequences into nearly any type of expression vector. MGC provides protein ‘expression-ready’ clones for each of the included human genes. MGC is part of the ORFeome Collaboration (OC).
Cloning and expression of a Ca(2+)-inhibitable adenylyl cyclase from NCB-20 cells.
Yoshimura, M; Cooper, D M
1992-01-01
A cDNA that encodes an adenylyl cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] has been cloned from NCB-20 cells, in which adenylyl cyclase activity is inhibited by Ca2+ at physiological concentrations. The cDNA clone (5.8 kilobases) was isolated by polymerase chain reaction (PCR) using degenerate primers designed by comparison of three adenylyl cyclase sequences (types I, II, and III) and subsequent library screening. Northern analysis revealed expression of mRNA (6.1 kilobases) corresponding to this cDNA in cardiac tissue, which is a prominent source of Ca(2+)-inhibitable adenylyl cyclase. The clone encodes a protein of 1165 amino acids, whose hydrophilicity profile was very similar to those of other mammalian adenylyl cyclases that have recently been cloned. A noticeable difference between this protein and other adenylyl cyclases was a lengthy aminoterminal region before the first transmembrane span. Transient expression of this cDNA in the human embryonic kidney cell line 293 revealed a 3-fold increase in cAMP production in response to forskolin compared with control transfected cells. In purified plasma membranes from transfected cells, increased adenylyl cyclase activity was also detected, which was susceptible to inhibition by submicromolar Ca2+. Thus, this adenylyl cyclase seems to represent the Ca(2+)-inhibitable form that is encountered in NCB-20 cells, cardiac tissue, and elsewhere. Its identification should permit a determination of the structural features that determine the mode of regulation of adenylyl cyclase by Ca2+. Images PMID:1379717
Ono, Yukiko; Kono, Tomohiro
2006-08-01
Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as well as embryo loss during development may occur even in cloned embryos reconstructed with nuclei from preimplantation-stage embryos, and these abnormalities are not specific to somatic cloning.
Jopcik, Martin; Moravcikova, Jana; Matusikova, Ildiko; Bauer, Miroslav; Rajninec, Miroslav; Libantova, Jana
2017-02-01
Chitinase gene from the carnivorous plant, Drosera rotundifolia , was cloned and functionally characterised. Plant chitinases are believed to play an important role in the developmental and physiological processes and in responses to biotic and abiotic stress. In addition, there is growing evidence that carnivorous plants can use them to digest insect prey. In this study, a full-length genomic clone consisting of the 1665-bp chitinase gene (gDrChit) and adjacent promoter region of the 698 bp in length were isolated from Drosera rotundifolia L. using degenerate PCR and a genome-walking approach. The corresponding coding sequence of chitinase gene (DrChit) was obtained following RNA isolation from the leaves of aseptically grown in vitro plants, cDNA synthesis with a gene-specific primer and PCR amplification. The open reading frame of cDNA clone consisted of 978 nucleotides and encoded 325 amino acid residues. Sequence analysis indicated that DrChit belongs to the class I group of plant chitinases. Phylogenetic analysis within the Caryophyllales class I chitinases demonstrated a significant evolutionary relatedness of DrChit with clade Ib, which contains the extracellular orthologues that play a role in carnivory. Comparative expression analysis revealed that the DrChit is expressed predominantly in tentacles and is up-regulated by treatment with inducers that mimick insect prey. Enzymatic activity of rDrChit protein expressed in Escherichia coli was confirmed and purified protein exhibited a long oligomer-specific endochitinase activity on glycol-chitin and FITC-chitin. The isolation and expression profile of a chitinase gene from D. rotundifolia has not been reported so far. The obtained results support the role of specific chitinases in digestive processes in carnivorous plant species.
Shen, Yuan; Cao, Min-Jie; Cai, Qiu-Feng; Su, Wen-Jin; Yu, Hui-Lin; Ruan, Wei-Wei; Liu, Guang-Ming
2011-05-01
Although crustaceans have been reported to be one of the most common causes of IgE-mediated allergic reactions, there are no reports about the characterization and identification of arginine kinase (AK) from the mud crab (Scylla serrata) as allergen. In the present study, the purification, molecular cloning, expression and immunological analyses of the IgE allergen AK from the mud crab were investigated. The results showed that cloned DNA fragments of AK from the mud crab had open reading frames of 1021 bp, predicted to encode proteins with 356 amino acid residues. Sequence alignment revealed that mud crab AK shares high homology with other crustacean species. Mud crab AK gene was further recombined with the vector of pGEX-4T-3 and expressed in Escherichia coli BL 21. 2-D electrophoresis suggested that native AK (nAK) and recombinant AK (rAK) shared the same molecular weight of 40 kDa, and the pI is 6.5 and 6.3, respectively. The nAK and rAK were further confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Immunoblotting analysis and colloidal gold immunochromatographic assay (GICA) using sera from subjects with crustacean allergy confirmed that the nAK and rAK reacted positively with these sera, indicating AK is a specific allergen of mud crab. Both of purified nAK and rAK reacted positively with sera from subjects with crustacean allergy in immunoblotting and GICA analysis, indicating AK is a common allergen of mud crab. In vitro expressed AK is proposed as a source of the protein for immunological or clinical studies. Copyright © 2011 Society of Chemical Industry.
Kerr, M; Fischer, J E; Purushotham, K R; Gao, D; Nakagawa, Y; Maeda, N; Ghanta, V; Hiramoto, R; Chegini, N; Humphreys-Beher, M G
1994-08-02
The murine transformed cell line YC-8 and beta-adrenergic receptor agonist (isoproternol) treated rat and mouse parotid gland acinar cells ectopically express cell surface beta 1-4 galactosyltransferase during active proliferation. This activity is dependent upon the expression of the GTA-kinase (p58) in these cells. Using total RNA, cDNA clones for the protein coding region of the kinase were isolated by reverse transcriptase-PCR cloning. DNA sequence analysis failed to show sequence differences with the normal homolog from mouse cells although Southern blot analysis of YC-8, and a second cell line KI81, indicated changes in the restriction enzyme digestion profile relative to murine cell lines which do not express cell surface galactosyltransferase. The rat cDNA clone from isoproterenol-treated salivary glands showed a high degree of protein and nucleic acid sequence homology to the GTA-kinase from both murine and human sources. Northern blot analysis of YC-8 and a control cell line LSTRA revealed the synthesis of a major 3.0 kb mRNA from both cell lines plus the unique expression of a 4.5 kb mRNA in the YC-8 cells. Reverse transcriptase-PCR of LSTRA and YC-8 confirmed the increased steady state levels of the GTA-kinase mRNA in YC-8. In the mouse, induction of cell proliferation by isoproterenol resulted in a 50-fold increase in steady state mRNA levels for the kinase over the low level of expression in quiescent cells. Expression of the rat 3' untranslated region in rat parotid cells in vitro led to an increased rate of DNA synthesis, cell number an ectopic expression of cell surface galactosyltransferase in the sense orientation. Antisense expression or vector alone did not alter growth characteristics of acinar cells. A polyclonal antibody monospecific to a murine amino terminal peptide sequence revealed a uniform distribution of GTA-kinase over the cytoplasm of acinar and duct cells of control mouse parotid glands. However, upon growth stimulation, kinase was detected primarily in a perinuclear and nuclear immunostaining pattern. Western blot analysis confirmed a translocation from a cytoplasmic localization in both LSTRA and quiescent salivary cells to a membrane-associated localization in YC-8 and proliferating salivary cells.
Tripathi, Prabhanshu; Nair, Smitha; Singh, B P; Arora, Naveen
2011-03-01
Serine protease from numerous sources have been identified and characterized as major allergens. The present study aimed to clone, express and characterize a serine protease from Curvularia lunata. cDNA library screening identified partial protease clones. A clone showed significant homology to subtilisin like serine proteases from Aspergillus and Penicillium species. Full length sequence was generated by RACE PCR, subcloned in pET vector, protein expressed in Escherichia coli and purified from inclusion bodies yielding 0.5 mg/L of culture. Bioinformatic analysis identified serine protease motifs of subtilase family, catalytic triad and N-glycosylation sites on the primary sequence. The protein resolved at 54-kDa on SDS-PAGE and was recognized as a major allergen on immunoblot with 13/16 C. lunata sensitive patients' sera in ELISA and immunoblot. Recombinant protein reacted with rabbit polyclonal antibodies against alkaline serine proteases from C. lunata. Recombinant protein required 50-56 ng of same protein for 50% inhibition of IgE binding in competitive ELISA. In addition, 13 of 16 patients' samples showed significant basophil histamine release upon stimulation with purified recombinant protein. In conclusion, a 54 kDa major allergen of C. lunata was cloned, expressed, characterized and showed biological activity. It has potential to be used in molecule based approach for allergy diagnosis and therapy. Copyright © 2010 Elsevier GmbH. All rights reserved.
Identification of apoptosis-related PLZF target genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardo, Maria Victoria; Yelo, Estefania; Gimeno, Lourdes
2007-07-27
The PLZF gene encodes a BTB/POZ-zinc finger-type transcription factor, involved in physiological development, proliferation, differentiation, and apoptosis. In this paper, we investigate proliferation, survival, and gene expression regulation in stable clones from the human haematopoietic K562, DG75, and Jurkat cell lines with inducible expression of PLZF. In Jurkat cells, but not in K562 and DG75 cells, PLZF induced growth suppression and apoptosis in a cell density-dependent manner. Deletion of the BTB/POZ domain of PLZF abrogated growth suppression and apoptosis. PLZF was expressed with a nuclear speckled pattern distinctively in the full-length PLZF-expressing Jurkat clones, suggesting that the nuclear speckled localizationmore » is required for PLZF-induced apoptosis. By microarray analysis, we identified that the apoptosis-inducer TP53INP1, ID1, and ID3 genes were upregulated, and the apoptosis-inhibitor TERT gene was downregulated. The identification of apoptosis-related PLZF target genes may have biological and clinical relevance in cancer typified by altered PLZF expression.« less
Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B
1997-01-01
mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865
Cloning, Expression, and Purification of Brucella suis Outer Membrane Proteins
2005-01-01
13-09-20061 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cloning, expression and purification of Brucella suis outer membrane proteins 5b. GRANT NUMBER...attractive for this purpose. In this study, we cloned, expressed and purified seven predicted OMPs of Brucella suis . The recombinant proteins were...fused with 6-his and V5 epitope tags at their C termini to facilitate detection and purification. The B. suis surface genes were PCR synthesized based
Leung, K N; Nash, A A; Sia, D Y; Wildy, P
1984-01-01
A herpes simplex virus (HSV)-specific long-term T-cell clone has been established from the draining lymph node cells of BALB/c mice; the cells required repeated in vitro restimulation with UV-irradiated virus. The established T-cell clone expresses the Thy-1 and Lyt-1+2,3- surface antigens. For optimal proliferation of the cloned cells, both the presence of specific antigen and an exogenous source of T-cell growth factor are required. The proliferative response of the cloned T cells was found to be virus-specific but it did not distinguish between HSV-1 and HSV-2. Adoptive cell transfer of the cloned T cells helped primed B cells to produce anti-herpes antibodies: the response was antigen-specific and cell dose-dependent. The clone failed to produce a significant DTH reaction in vivo, but did produce high levels of macrophage-activating factor. Furthermore, the T-cell clone could protect from HSV infection, as measured by a reduction in local virus growth, and by enhanced survival following the challenge of mice with a lethal dose of virus. The mechanism(s) whereby this clone protects in vivo is discussed. PMID:6209206
NASA Astrophysics Data System (ADS)
Cong, Ming; Zhao, Jianmin; Lü, Jiasen; Ren, Zhiming; Wu, Huifeng
2016-09-01
The halophyte Suaeda salsa can grow in heavy metal-polluted areas along intertidal zones having high salinity. Since phytochelatins can eff ectively chelate heavy metals, it was hypothesized that S. salsa possessed a phytochelatin synthase (PCS) gene. In the present study, the cDNA of PCS was obtained from S. salsa (designated as SsPCS) using homologous cloning and the rapid amplification of cDNA ends (RACE). A sequence analysis revealed that SsPCS consisted of 1 916 bp nucleotides, encoding a polypeptide of 492 amino acids with one phytochelatin domain and one phytochelatin C domain. A similarity analysis suggested that SsPCS shared up to a 58.6% identity with other PCS proteins and clustered with PCS proteins from eudicots. There was a new kind of metal ion sensor motif in its C-terminal domain. The SsPCS transcript was more highly expressed in elongated and fibered roots and stems ( P<0.05) than in leaves. Lead and mercury exposure significantly enhanced the mRNA expression of SsPCS ( P<0.05). To the best of our knowledge, SsPCS is the second PCS gene cloned from a halophyte, and it might contain a diff erent metal sensing capability than the first PCS from Thellungiella halophila. This study provided a new view of halophyte PCS genes in heavy metal tolerance.
Li, Fupeng; Wu, Baoduo; Qin, Xiaowei; Yan, Lin; Hao, Chaoyun; Tan, Lehe; Lai, Jianxiong
2014-08-10
In this study, we performed cloning and expression analysis of six putative sucrose transporter genes, designated TcSUT1, TcSUT2, TcSUT3, TcSUT4, TcSUT5 and TcSUT6, from the cacao genotype 'TAS-R8'. The combination of cDNA and genomic DNA sequences revealed that the cacao SUT genes contained exon numbers ranging from 1 to 14. The average molecular mass of all six deduced proteins was approximately 56 kDa (range 52 to 66 kDa). All six proteins were predicted to exhibit typical features of sucrose transporters with 12 trans-membrane spanning domains. Phylogenetic analysis revealed that TcSUT2 and TcSUT4 belonged to Group 2 SUT and Group 4 SUT, respectively, and the other TcSUT proteins were belonging to Group 1 SUT. Real-time PCR was conducted to investigate the expression pattern of each member of the SUT family in cacao. Our experiment showed that TcSUT1 was expressed dominantly in pods and that, TcSUT3 and TcSUT4 were highly expressed in both pods and in bark with phloem. Within pods, TcSUT1 and TcSUT4 were expressed more in the seed coat and seed from the pod enlargement stage to the ripening stage. TcSUT5 expression sharply increased to its highest expression level in the seed coat during the ripening stage. Expression pattern analysis indicated that TcSUT genes may be associated with photoassimilate transport into developing seeds and may, therefore, have an impact on seed production. Copyright © 2014 Elsevier B.V. All rights reserved.
James M. Slavicek; Nancy Hayes-Plazolles
1991-01-01
Viral immediate early gene products are usually regulatory proteins that control expression of other viral genes at the transcriptional level or are proteins that are part of the viral DNA replication complex. The identification and functional characterization of the immediate early gene products of Lymantria dispar nuclear polyhedrosis virus (LdNPV...
Jeng, Jaan-Yeh; Yeh, Tien-Shun; Lee, Jing-Wen; Lin, Shyh-Hsiang; Fong, Tsorng-Han; Hsieh, Rong-Hong
2008-02-01
To examine whether a reduction in the mtDNA level will compromise mitochondrial biogenesis and mitochondrial function, we created a cell model with depleted mtDNA. Stable transfection of small interfering (si)RNA of mitochondrial transcription factor A (Tfam) was used to interfere with Tfam gene expression. Selected stable clones showed 60-95% reduction in Tfam gene expression and 50-90% reduction in cytochrome b (Cyt b) gene expression. Tfam gene knockdown clones also showed decreased mtDNA-encoded cytochrome c oxidase subunit I (COX I) protein expression. However, no significant differences in protein expression were observed in nuclear DNA (nDNA)-encoded mitochondrial respiratory enzyme subunits. The cell morphology changed from a rhombus-like to a spindle-like form as determined in clones with decreased expressions of Tfam, mtRNA, and mitochondrial proteins. The mitochondrial respiratory enzyme activities and ATP production in such clones were significantly lower. The proportions of mtDNA mutations including 8-hydroxy-2'-deoxyguanosine (8-OHdG), a 4,977-bp deletion, and a 3,243-point mutation were also examined in these clones. No obvious increase in mtDNA mutations was observed in mitochondrial dysfunctional cell clones. The mitochondrial respiratory activity and ATP production ability recovered in cells with increased mtDNA levels after removal of the specific siRNA treatment. These experimental results provide direct evidence to substantiate that downregulation of mtDNA copy number and expression may compromise mitochondrial function and subsequent cell growth and morphology. (c) 2007 Wiley-Liss, Inc.
Ribosomal Binding Site Switching: An Effective Strategy for High-Throughput Cloning Constructions
Li, Yunlong; Zhang, Yong; Lu, Pei; Rayner, Simon; Chen, Shiyun
2012-01-01
Direct cloning of PCR fragments by TA cloning or blunt end ligation are two simple methods which would greatly benefit high-throughput (HTP) cloning constructions if the efficiency can be improved. In this study, we have developed a ribosomal binding site (RBS) switching strategy for direct cloning of PCR fragments. RBS is an A/G rich region upstream of the translational start codon and is essential for gene expression. Change from A/G to T/C in the RBS blocks its activity and thereby abolishes gene expression. Based on this property, we introduced an inactive RBS upstream of a selectable marker gene, and designed a fragment insertion site within this inactive RBS. Forward and reverse insertions of specifically tailed fragments will respectively form an active and inactive RBS, thus all background from vector self-ligation and fragment reverse insertions will be eliminated due to the non-expression of the marker gene. The effectiveness of our strategy for TA cloning and blunt end ligation are confirmed. Application of this strategy to gene over-expression, a bacterial two-hybrid system, a bacterial one-hybrid system, and promoter bank construction are also verified. The advantages of this simple procedure, together with its low cost and high efficiency, makes our strategy extremely useful in HTP cloning constructions. PMID:23185557
Li, Xue-rong; Wu, Yin-juan; Shang, Mei; Li, Ye; Xu, Jin; Yu, Xin-bing; Athar, Chishti
2014-08-01
To construct recombinant plasmid pSPPcGT which contains signal peptide peptidase gene of Plasmodium falciparum (PJSPP) and GFP, and transfect into P. falciparum (3D7 strain) to obtain mutant parasites which can express PJSPP-GFP. Plasmodium falciparum(3D7 strain) genomic DNA was extracted from cultured malaria parasites. The C-terminal region of PJSPP, an 883 bp gene fragment was amplified by PCR, and then cloned into pPM2GT vector to get recombinant vector pSPPcGT. The recombinant vectors were identified by PCR, double restriction enzyme digestion and DNA sequencing. pSPPcGT vector was transfected into malaria parasites. The positive clones were selected by adding inhibitor of Plasmodium falciparum dihydrofolate reductase WR99210 to the culture medium. The pSPP-GFP-transfected parasites were fixed with methanol, stained with DAPI, and observed under immunofluorescence microscope. The PJSPP-GFP expression in P. falciparum was identified by SDS-PAGE and Western blotting. The C-terminal region of PJSPP was amplified from P.falciparum (3D7 strain) genomic DNA by PCR with the length of 883 bp. The constructed recombinant vectors were identified by PCR screening, double restriction enzyme digestion and DNA sequencing. The pSPPcGT vector was transfected into P. falciparum and the positive clones were selected by WR99210. GFP fluorescence was observed in transfected parasites by immunofluorescence microscopy, and mainly located in the cytoplasm. The PJSPP-GFP expression in malaria parasites was confirmed by Western blotting with a relative molecular mass of Mr 64,000. Recombinant vector PJSPP-GFP is constructed and transfected into P. falciparum to obtain P. falciparum mutant clone which can express PfSPP-GFP.
Molecular cloning and expression of rat and mouse B61 gene: implications on organogenesis.
Takahashi, H; Ikeda, T
1995-09-07
ECK is a member of EPH receptor protein-tyrosine kinase subfamily and human B61 has been identified as the ligand for ECK recently. In order to better understand the roles of B61-ECK signalling pathway in mammalian development, we have cloned rat and mouse B61 cDNA and examined the expression pattern during rat development. Sequence analysis has revealed that there is a considerable degree of identity among rat, mouse and human B61 (98.0% between rat and mouse, 86.3% between rat and human in amino acid level). Examination of B61 mRNA expression by in situ hybridization analysis revealed tight association of B61 with endothelial cells at an early stage and epithelial cells in various tissues including lung, kidney, intestine, skin at later stage of organogenesis. In the developing skeletal system, B61 is expressed in periosteum, perichondrium and hypertrophic chondrocytes and osteoblasts. In the developing nervous system, expression of B61 is restricted in the neurons of dorsal root ganglia. These expression profiles of B61 in epithelial cells of various organs, developing skeletal system and dorsal root ganglia match those of ECK. Our data suggest that B61 plays pivotal roles in organogenesis, especially vasculogenesis/angiogenesis and epithelial cell proliferation/differentiation.
Microphysiometric analysis of human α1a-adrenoceptor expressed in Chinese hamster ovary cells
Taniguchi, Takanobu; Inagaki, Rika; Murata, Satoshi; Akiba, Isamu; Muramatsu, Ikunobu
1999-01-01
The human recombinant α1a-adrenoceptor (AR) has been stably expressed in Chinese hamster ovary cells. Four stable clones, aH4, aH5, aH6 and aH7, expressing 30, 370, 940 and 2900 fmol AR mg−1 protein, respectively, have been employed to characterize this AR subtype using radioligand binding and microphysiometry to measure extracellular acidification rates.Noradrenaline (NA) gave concentration-dependent responses in microphysiometry with increasing extracellular acidification rates. The potency of NA increased as the receptor density increased; pEC50 values of NA for the clones aH4, aH5, aH6 and aH7 were 6.9, 7.5, 7.8 and 8.1, respectively. This increase of potency according to receptor density indicates the presence of spare receptor for NA. Methoxamine, phenylephrine, oxymetazoline and clonidine also gave concentration-dependent responses with various intrinsic activities.Antagonists shifted concentration-response curves for NA rightward in a concentration-dependent manner. Schild analysis revealed that the affinity profile of this AR subtype to antagonists in the clone aH7 had a typical pattern for the α1a-AR; high affinity for prazosin and WB 4101, and low affinity for BMY7378 (pA2=9.5, 9.8 and 7.3, respectively). This profile is similar in the case of the clone aH4. These affinities were in good agreement with those obtained in binding experiments.These results have demonstrated that (1) classical receptor theory can be applied in microphysiometry, and (2) microphysiometry is a useful tool to investigate the pharmacological characterization of α1a-AR. PMID:10433504
Shu, Hu; Chen, Huapu; Liu, Yun; Yang, Lidong; Yang, Yuqing; Zhang, Haifa
2014-10-01
The peptide QRFP plays an important role in the regulation of vertebrate feeding behavior. In this study, we cloned the full length cDNA of a QRFP precursor in a teleost fish, the orange-spotted grouper (Epinephelus coioides). Sequence analysis has shown that the functional regions of QRFP in other vertebrates (QRFP-25 and QRFP-7) are conserved in orange-spotted grouper. RT-PCR demonstrated that the pre-processed mRNA of QRFP is widely expressed in orange-spotted grouper. Three days of food deprivation did not change the hypothalamic pre-processed QRFP expression. However, QRFP expression significantly increased when the fish were reefed after three days of fasting. Intraperitoneal injection of QRFP-25 peptide to orange-spotted grouper suppressed expression of orexin, but elevated expression of pro-opiomelanocortin (POMC) in the hypothalamus. We also investigated the effects of QRFP-25 on the expression of reproductive genes. The peptide suppressed the expression of seabream-type gonadotropin-releasing hormones (sbGnRH), luteinizing hormone beta subunit (LHβ) and follicle-stimulating hormone beta subunit (FSHβ) in vivo, as well as inhibited the expression of LHβ and FSHβ in pituitary cells in primary culture. Our results indicate that QRFP may play an inhibitory role in the regulation of feeding behavior and reproduction in orange-spotted grouper. Copyright © 2014 Elsevier Inc. All rights reserved.
Petersen, M; Sander, L; Child, R; van Onckelen, H; Ulvskov, P; Borkhardt, B
1996-06-01
Seven distinct partial cDNAs, similar in sequence to previously described polygalacturonases (PGs), were amplified from cDNA derived from rape pod wall, dehiscence zone and leaves by the polymerase chain reaction. Northern analysis showed that one clone, PG35-8, was expressed at low levels in the dehiscence zone during the first five weeks after anthesis but was very abundantly expressed at week 6. In contrast, no PG35-8-related RNA was detected in the pod wall. Our data suggest that there are temporal and spatial correlations between the breakdown of the middle lamella, of the dehiscence zone cells and the pattern of synthesis of PG35-8 transcripts which may indicate a role for this particular PG in rape pod dehiscence. PG35-8 was used to isolate five cDNA clones from a rape dehiscence zone cDNA library. Restriction enzyme analysis and partial sequencing revealed that they were derived from four highly homologous transcripts which are probably allelic forms of a single gene. One full-length clone, RDPG1, was completely sequenced. The predicted protein of RDPG1 showed its highest identity with PG from apple fruit with an identity of 52%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luethi, E.; Jasmat, N.B.; Grayling, R.A.
1991-03-01
A {lambda} recombinant phage expressing {beta}-mannanase activity in Escherichia coli has been isolated from a genomic library of the extremely thermophilic anaerobe Caldocellum saccharolyticum. The gene was cloned into pBR322 on a 5-kb BamHI fragment, and its location was obtained by deletion analysis. The sequence of a 2.1-kb fragment containing the mannanase gene has been determined. One open reading frame was found which could code for a protein of M{sub r} 38,904. The mannanase gene (manA) was overexpressed in E. coli by cloning the gene downstream from the lacZ promoter of pUC18. The enzyme was most active at pH 6more » and 80 C and degraded locust bean gum, guar gum, Pinus radiata glucomannan, and konjak glucomannan. The noncoding region downstream from the mannanase gene showed strong homology to celB, a gene coding for a cellulase from the same organism, suggesting that the manA gene might have been inserted into its present position on the C. saccharolyticum genome by homologous recombination.« less
Characterization of a candidate bcl-1 gene.
Withers, D A; Harvey, R C; Faust, J B; Melnyk, O; Carey, K; Meeker, T C
1991-01-01
The t(11;14)(q13;q32) translocation has been associated with human B-lymphocytic malignancy. Several examples of this translocation have been cloned, documenting that this abnormality joins the immunoglobulin heavy-chain gene to the bcl-1 locus on chromosome 11. However, the identification of the bcl-1 gene, a putative dominant oncogene, has been elusive. In this work, we have isolated genomic clones covering 120 kb of the bcl-1 locus. Probes from the region of an HpaII-tiny-fragment island identified a candidate bcl-1 gene. cDNAs representing the bcl-1 mRNA were cloned from three cell lines, two with the translocation. The deduced amino acid sequence from these clones showed bcl-1 to be a member of the cyclin gene family. In addition, our analysis of expression of bcl-1 in an extensive panel of human cell lines showed it to be widely expressed except in lymphoid or myeloid lineages. This observation may provide a molecular basis for distinct modes of cell cycle control in different mammalian tissues. Activation of the bcl-1 gene may be oncogenic by directly altering progression through the cell cycle. Images PMID:1833629
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishida, Yoshikazu; Hadano, Shinji; Nagayama, Tomiko
1994-07-15
The authors have established an approach to the isolation of expressed DNA sequences from a defined region of the human chromosome. The method relies on the direct screening of cDNA libraries using pooled single-copy microclones generated by a laser chromosome microdissection in conjunction with a single unique primer polymerase chain reaction (SUP-PCR) procedure. They applied this method to the distal region of human chromosome 4p (4p15-4pter), which contains the Huntington disease (HD) and the Wolf-Hirschhorn syndrome (WHS) loci. Twenty-one nonoverlapping and region-specific cDNA clones encoding novel genes were isolated in this manner. Ten of 21 clones were subregionally assigned tomore » 4p16.1-4pter, and the remainder mapped to the region proximal to 4p16.1. Northern blot and reverse transcription followed by the PCR (RT-PCR) analysis revealed that 16 of these 21 clones detected transcripts in total RNA from human tissues. The method is applicable to other chromosomal regions and is a powerful approach to the isolation of region-specific cDNA clones. 44 refs., 3 figs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, K.L.; Shibasaki, Yoshiro; Devon, R.S.
1995-08-10
Forty-nine clones derived by microdissection of a schizophrenia-associated t(1;11)(q42.1;q14.3) breakpoint region have been assigned by somatic cell hybrid mapping to seven discrete intervals on the long arm of human chromosome 11. Eleven of the clones were shown to map to a small region immediately distal to the translocation breakpoint on 11q. A 3-Mb contiguous clone map of this region was established by isolation of corresponding YAC recombinants. The contig was oriented and shown to traverse the translocation breakpoint by FISH and microsatellite marker analysis. This contig will facilitate the isolation of candidate sequences whose expression may be affected by themore » translocation. 28 refs., 4 figs., 3 tabs.« less
Chung, F Z; Lentes, K U; Gocayne, J; Fitzgerald, M; Robinson, D; Kerlavage, A R; Fraser, C M; Venter, J C
1987-01-26
Two cDNA clones, lambda-CLFV-108 and lambda-CLFV-119, encoding for the beta-adrenergic receptor, have been isolated from a human brain stem cDNA library. One human genomic clone, LCV-517 (20 kb), was characterized by restriction mapping and partial sequencing. The human brain beta-receptor consists of 413 amino acids with a calculated Mr of 46480. The gene contains three potential glucocorticoid receptor-binding sites. The beta-receptor expressed in human brain was homology with rodent (88%) and avian (52%) beta-receptors and with porcine muscarinic cholinergic receptors (31%), supporting our proposal [(1984) Proc. Natl. Acad. Sci. USA 81, 272 276] that adrenergic and muscarinic cholinergic receptors are structurally related. This represents the first cloning of a neurotransmitter receptor gene from human brain.
Peltzer, J; Colman, L; Cebrian, J; Musa, H; Peckham, M; Keller, A
2008-05-01
We have investigated whether the phenotype of myogenic clones derived from satellite cells of different muscles from the transgenic immortomouse depended on muscle type origin. Clones derived from neonatal, or 6- to 12-week-old fast and slow muscles, were analyzed for myosin and enolase isoforms as phenotypic markers. All clones derived from slow-oxidative muscles differentiated into myotubes with a preferentially slow contractile phenotype, whereas some clones derived from rapid-glycolytic or neonatal muscles expressed both fast and slow myosin isoforms. Thus, muscle origin appears to bias myosin isoform expression in myotubes. The neonatal clone (WTt) was cultivated in various medium and substrate conditions, allowing us to determine optimized conditions for their differentiation. Matrigel allowed expressions of adult myosin isoforms, and an isozymic switch from embryonic alpha- toward muscle-specific beta-enolase, never previously observed in vitro. These cells will be a useful model for in vitro studies of muscle fiber maturation and plasticity.
Cloning, sequencing, and expression of cDNA for human. beta. -glucuronidase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshima, A.; Kyle, J.W.; Miller, R.D.
1987-02-01
The authors report here the cDNA sequence for human placental ..beta..-glucuronidase (..beta..-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH/sub 2/-terminal amino acid sequence determined for human spleen ..beta..-glucuronidase agreed with that inferred from the DNAmore » sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human ..beta..-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human ..beta..-glucuronidase, demonstrate the existence of two populations of mRNA for ..beta..-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length.« less
Park, Dong-Soo; Song, Min-Young; Park, Soo-Kwon; Lee, Sang-Kyu; Lee, Jong-Hee; Song, Song-Yi; Eun, Moo Young; Hahn, Tae-Ryong; Sohn, Jae-Keun; Yi, Gihwan; Nam, Min-Hee; Jeon, Jong-Seong
2008-08-01
During brown planthopper (BPH) feeding on rice plants, we employed a modified representational difference analysis (RDA) method to detect rare transcripts among those differentially expressed in SNBC61, a BPH resistant near-isogenic line (NIL) carrying the Bph1 resistance gene. This identified 3 RDA clones: OsBphi237, OsBphi252 and OsBphi262. DNA gel-blot analysis revealed that the loci of the RDA clones in SNBC61 corresponded to the alleles of the BPH resistant donor Samgangbyeo. Expression analysis indicated that the RDA genes were up-regulated in SNBC61 during BPH feeding. Interestingly, analysis of 64 SNBC NILs, derived from backcrosses of Samgangbyeo with a BPH susceptible Nagdongbyeo, using a cleaved amplified polymorphic sequence (CAPS) marker indicated that OsBphi252, which encodes a putative lipoxygenase (LOX), co-segregates with BPH resistance. Our results suggest that OsBphi252 is tightly linked to Bph1, and may be useful in marker-assisted selection (MAS) for resistance to BPH.
1988-10-31
00 0 Cloning and Expression of Genes for Dengue Virus (Type-2 Encoded-Antigens for Rapid ODiagnosis and Vaccine DevelopmentN| ANNUAL PROGRESS REPORT...11. TITLE (include Security Classification) Cloning and Expression of Genes f or Dengue Virus Type 2 Fncoded Antigens for Rapid Diagnosis and Vaccine ...epidemics in Central and South Americas and the Caribbean is a cause of major concern. An effective vaccine is not available to protect individuals
Trindade, Inês B.; Fonseca, Bruno M.; Matias, Pedro M.; Louro, Ricardo O.; Moe, Elin
2016-01-01
Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI_RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this protein are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space group P21, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing. PMID:27599855
Tetteh, Kevin K. A.; Loukas, Alex; Tripp, Cindy; Maizels, Rick M.
1999-01-01
Larvae of Toxocara canis, a nematode parasite of dogs, infect humans, causing visceral and ocular larva migrans. In noncanid hosts, larvae neither grow nor differentiate but endure in a state of arrested development. Reasoning that parasite protein production is orientated to immune evasion, we undertook a random sequencing project from a larval cDNA library to characterize the most highly expressed transcripts. In all, 266 clones were sequenced, most from both 3′ and 5′ ends, and similarity searches against GenBank protein and dbEST nucleotide databases were conducted. Cluster analyses showed that 128 distinct gene products had been found, all but 3 of which represented newly identified genes. Ninety-five genes were represented by a single clone, but seven transcripts were present at high frequencies, each composing >2% of all clones sequenced. These high-abundance transcripts include a mucin and a C-type lectin, which are both major excretory-secretory antigens released by parasites. Four highly expressed novel gene transcripts, termed ant (abundant novel transcript) genes, were found. Together, these four genes comprised 18% of all cDNA clones isolated, but no similar sequences occur in the Caenorhabditis elegans genome. While the coding regions of the four genes are dissimilar, their 3′ untranslated tracts have significant homology in nucleotide sequence. The discovery of these abundant, parasite-specific genes of newly identified lectins and mucins, as well as a range of conserved and novel proteins, provides defined candidates for future analysis of the molecular basis of immune evasion by T. canis. PMID:10456930
Xu, Shiqing; Hu, Yongfei; Yuan, Aihua; Zhu, Baoli
2010-07-01
To clone, express and characterize a novel esterase from marine sediment microbial metagenomic library. Using esterase segregation agar containing tributyrin, we obtained esterase positive fosmid clone FL10 from marine sediment microbial metagenomic library. This fosmid was partially digested with Sau3A I to construct the sublibrary, from which the esterase positive subclone pFLS10 was obtained. The full length of the esterase gene was amplified and cloned into the expressing vector pET28a, and the recombinant plasmid was transformed into E. coli BL21 cells. We analyse the enzyme activity and study the characterization of the esterase after its expression and purification. An ORF (Open Reading Frame) of 924 bp was identified from the subclone pFLS10. Sequence analysis indicated that it showed 71% amino acid identity to esterase (ADA70030) from a marine sediment metagenomic library. The esterase is a novel low-temperature-active esterase and had highest lipolytic activity to the substrate of 4-nitrophenyl butyrate (C4). The optimum temperature of the esterase was 20 degrees C, the optimum pH was 7.5. The esterase in this study had good thermostability at 20 degrees C and good pH stability at pH8 -10. Significant increase in lipolytic activity was observed with addition of K+ and Mg2+, while decrease with Mn2+ etc. We obtained the novel esterase gene fls10 from the marine sediment microbial metagenomic library. The esterase had good thermostability and high lipolytic activity at low temperature and under basic conditions, which laid a basis for industrial application.
Zitzmann, N; Mehlert, A; Carrouée, S; Rudd, P M; Ferguson, M A; Carroué, S
2000-03-01
The variant surface glycoproteins (VSGs) of Trypanosoma brucei are a family of homodimeric glycoproteins that adopt similar shapes. An individual trypanosome expresses one VSG at a time in the form of a dense protective mono-layer on the plasma membrane. VSG genes are expressed from one of several polycistronic transcription units (expression sites) that contain several expression site associated genes. We used a transformed trypanosome clone expressing two different VSGs (VSG121 and VSG221) from the same expression site (that of VSG221) to establish whether the genotype of the trypanosome clone or the VSG structure itself controls VSG N-linked oligosaccharide and GPI anchor glycan processing. In-gel release and fluorescent labeling of N-linked oligosaccharides and on-blot fluorescent labeling and release of GPI anchor glycans were employed to compare the carbohydrate structures of VSG121 and VSG221 when expressed individually in wild-type trypanosome clones and when expressed together in the transformed trypanosome clone. The data indicate that the genotype of the trypanosome clone has no effect on the N-linked oligosaccharide structures present on a given VSG variant and only a minor effect on the GPI anchor glycans. The latter is most likely an effect of changes in inter-VSG packing when two VGSs are expressed simultaneously. Thus, N-linked oligosaccharide and GPI anchor processing enzymes appear to be constitutively expressed in bloodstream form African trypanosomes and the tertiary and quaternary structures of the VSG homodimers appear to dictate the processing and glycoform microheterogeneity of surface-expressed VSGs.
Hewitt, Stephen N.; Choi, Ryan; Kelley, Angela; Crowther, Gregory J.; Napuli, Alberto J.; Van Voorhis, Wesley C.
2011-01-01
Despite recent advances, the expression of heterologous proteins in Escherichia coli for crystallization remains a nontrivial challenge. The present study investigates the efficacy of maltose-binding protein (MBP) fusion as a general strategy for rescuing the expression of target proteins. From a group of sequence-verified clones with undetectable levels of protein expression in an E. coli T7 expression system, 95 clones representing 16 phylogenetically diverse organisms were selected for recloning into a chimeric expression vector with an N-terminal histidine-tagged MBP. PCR-amplified inserts were annealed into an identical ligation-independent cloning region in an MBP-fusion vector and were analyzed for expression and solubility by high-throughput nickel-affinity binding. This approach yielded detectable expression of 72% of the clones; soluble expression was visible in 62%. However, the solubility of most proteins was marginal to poor upon cleavage of the MBP tag. This study offers large-scale evidence that MBP can improve the soluble expression of previously non-expressing proteins from a variety of eukaryotic and prokaryotic organisms. While the behavior of the cleaved proteins was disappointing, further refinements in MBP tagging may permit the more widespread use of MBP-fusion proteins in crystallographic studies. PMID:21904041
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leong, JoAnn Ching
A prototype subunit vaccine to IHN virus is being developed by recombinant DNA techniques. The techniques involve the isolation and characterization of the glycoprotein gene, which encodes the viral protein responsible for inducing a protective immune response in fish. The viral glycoprotein gene has been cloned and a restriction map of the cloned gene has been prepared. Preliminary DNA sequence analysis of the cloned gene has been initiated so that manipulation of the gene for maximum expression in appropriate plasmid vectors is possible. A recombinant plasmid containing the viral gene inserted in the proper orientation adjacent to a very strongmore » lambda promoter and ribosome binding site has been constructed. Evaluation of this recombinant plasmid for gene expression is being conducted. Immunization trials with purified viral glycoprotein indicate that fish are protected against lethal doses of IHNV after immersion and intraperitoneal methods of immunization. In addition, cross protection immunization trials indicate that Type 2 and Type 1 IHN virus produce glycoproteins that are cross-protective.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Vibha; Gupta, Rakesh K.; Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021
2008-05-01
The cloning, purification and crystallization of a bacterioferritin from M. tuberculosis together with preliminary X-ray characterization of its crystals are reported. Bacterioferritins (Bfrs) comprise a subfamily of the ferritin superfamily of proteins that play an important role in bacterial iron storage and homeostasis. Bacterioferritins differ from ferritins in that they have additional noncovalently bound haem groups. To assess the physiological role of this subfamily of ferritins, a greater understanding of the structural details of bacterioferritins from various sources is required. The gene encoding bacterioferritin A (BfrA) from Mycobacterium tuberculosis was cloned and expressed in Escherichia coli. The recombinant protein productmore » was purified by affinity chromatography on a Strep-Tactin column and crystallized with sodium chloride as a precipitant at pH 8.0 using the vapour-diffusion technique. The crystals diffracted to 2.1 Å resolution and belonged to space group P4{sub 2}, with unit-cell parameters a = 123.0, b = 123.0, c = 174.6 Å.« less
Production of Cloned Miniature Pigs Expressing High Levels of Human Apolipoprotein(a) in Plasma.
Ozawa, Masayuki; Himaki, Takehiro; Ookutsu, Shoji; Mizobe, Yamato; Ogawa, Junki; Miyoshi, Kazuchika; Yabuki, Akira; Fan, Jianglin; Yoshida, Mitsutoshi
2015-01-01
High lipoprotein(a) [Lp(a)] levels are a major risk factor for the development of atherosclerosis. However, because apolipoprotein(a) [apo(a)], the unique component of Lp(a), is found only in primates and humans, the study of human Lp(a) has been hampered due to the lack of appropriate animal models. Using somatic cell nuclear transfer (SCNT) techniques, we produced transgenic miniature pigs expressing human apo(a) in the plasma. First, we placed the hemagglutinin (HA)-tagged cDNA of human apo(a) under the control of the β-actin promoter and cytomegalovirus enhancer, and then introduced this construct into kidney epithelial cells. Immunostaining of cells with anti-HA antibody allowed identification of cells stably expressing apo(a); one of the positive clones was used to provide donor cells for SCNT, yielding blastocysts that expressed apo(a). Immunohistochemical analysis of tissue sections and RT-PCR analysis of total RNA from organs of cloned piglet revealed that apo(a) is expressed in various tissues/organs including heart, liver, kidney, and intestine. More importantly, a transgenic line exhibited a high level (>400 mg/dL) of Lp(a) in plasma, and the transgenic apo(a) gene was transmitted to the offspring. Thus, we generated a human apo(a)-transgenic miniature pig that can be used as a model system to study advanced atherosclerosis related to human disease. The anatomical and physiological similarities between the swine and human cardiovascular systems will make this pig model a valuable source of information on the role of apo(a) in the formation of atherosclerosis, as well as the mechanisms underlying vascular health and disease.
A dual host vector for Fab phage display and expression of native IgG in mammalian cells.
Tesar, Devin; Hötzel, Isidro
2013-10-01
A significant bottleneck in antibody discovery by phage display is the transfer of immunoglobulin variable regions from phage clones to vectors that express immunoglobulin G (IgG) in mammalian cells for screening. Here, we describe a novel phagemid vector for Fab phage display that allows expression of native IgG in mammalian cells without sub-cloning. The vector uses an optimized mammalian signal sequence that drives robust expression of Fab fragments fused to an M13 phage coat protein in Escherichia coli and IgG expression in mammalian cells. To allow the expression of Fab fragments fused to a phage coat protein in E.coli and full-length IgG in mammalian cells from the same vector without sub-cloning, the sequence encoding the phage coat protein was embedded in an optimized synthetic intron within the immunoglobulin heavy chain gene. This intron is removed from transcripts in mammalian cells by RNA splicing. Using this vector, we constructed a synthetic Fab phage display library with diversity in the heavy chain only and selected for clones binding different antigens. Co-transfection of mammalian cells with DNA from individual phage clones and a plasmid expressing the invariant light chain resulted in the expression of native IgG that was used to assay affinity, ligand blocking activity and specificity.
Cloning of a Gene Whose Expression is Increased in Scrapie and in Senile Plaques in Human Brain
NASA Astrophysics Data System (ADS)
Wietgrefe, S.; Zupancic, M.; Haase, A.; Chesebro, B.; Race, R.; Frey, W.; Rustan, T.; Friedman, R. L.
1985-12-01
A complementary DNA library was constructed from messenger RNA's extracted from the brains of mice infected with the scrapie agent. The library was differentially screened with the objectives of finding clones that might be used as markers of infection and finding clones of genes whose increased expression might be correlated with the pathological changes common to scrapie and Alzheimer's disease. A gene was identified whose expression is increased in scrapie. The complementary DNA corresponding to this gene hybridized preferentially and focally to cells in the brains of scrapie-infected animals. The cloned DNA also hybridized to the neuritic plaques found with increased frequency in brains of patients with Alzheimer's disease.
Gay, Glen; Wagner, Drew T.; Keatinge-Clay, Adrian T.; Gay, Darren C.
2014-01-01
The ability to rapidly customize an expression vector of choice is a valuable tool for any researcher involved in high-throughput molecular cloning for protein overexpression. Unfortunately, it is common practice to amend or neglect protein targets if the gene that encodes the protein of interest is incompatible with the multiple-cloning region of a preferred expression vector. To address this issue, a method was developed to quickly exchange the multiple-cloning region of the popular expression plasmid pET-28 with a ligation-independent cloning cassette, generating pGAY-28. This cassette contains dual inverted restriction sites that reduce false positive clones by generating a linearized plasmid incapable of self-annealing after a single restriction-enzyme digest. We also establish that progressively cooling the vector and insert leads to a significant increase in ligation-independent transformation efficiency, demonstrated by the incorporation of a 10.3 kb insert into the vector. The method reported to accomplish plasmid reconstruction is uniquely versatile yet simple, relying on the strategic placement of primers combined with homologous recombination of PCR products in yeast. PMID:25304917
The Metarhizium anisopliae trp1 gene: cloning and regulatory analysis.
Staats, Charley Christian; Silva, Marcia Suzana Nunes; Pinto, Paulo Marcos; Vainstein, Marilene Henning; Schrank, Augusto
2004-07-01
The trp1 gene from the entomopathogenic fungus Metarhizium anisopliae, cloned by heterologous hybridization with the plasmid carrying the trpC gene from Aspergillus nidulans, was sequence characterized. The predicted translation product has the conserved catalytic domains of glutamine amidotransferase (G domain), indoleglycerolphosphate synthase (C domain), and phosphoribosyl anthranilate isomerase (F domain) organized as NH2-G-C-F-COOH. The ORF is interrupted by a single intron of 60 nt that is position conserved in relation to trp genes from Ascomycetes and length conserved in relation to Basidiomycetes species. RT-PCR analysis suggests constitutive expression of trp1 gene in M. anisopliae.
Wen, Yangming; Lan, Kaijian; Wang, Junjie; Yu, Jingyi; Qu, Yarong; Zhao, Wei; Zhang, Fuchun; Tan, Wanlong; Cao, Hong; Zhou, Chen
2013-06-01
To construct dengue virus-specific full-length fully human antibody libraries using mammalian cell surface display technique. Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) from convalescent patients with dengue fever. The reservoirs of the light chain and heavy chain variable regions (LCκ and VH) of the antibody genes were amplified by RT-PCR and inserted into the vector pDGB-HC-TM separately to construct the light chain and heavy chain libraries. The library DNAs were transfected into CHO cells and the expression of full-length fully human antibodies on the surface of CHO cells was analyzed by flow cytometry. Using 1.2 µg of the total RNA isolated from the PBMCs as the template, the LCκ and VH were amplified and the full-length fully human antibody mammalian display libraries were constructed. The kappa light chain gene library had a size of 1.45×10(4) and the heavy chain gene library had a size of 1.8×10(5). Sequence analysis showed that 8 out of the 10 light chain clones and 7 out of the 10 heavy chain clones randomly picked up from the constructed libraries contained correct open reading frames. FACS analysis demonstrated that all the 15 clones with correct open reading frames expressed full-length antibodies, which could be detected on CHO cell surfaces. After co-transfection of the heavy chain and light chain gene libraries into CHO cells, the expression of full-length antibodies on CHO cell surfaces could be detected by FACS analysis with an expressible diversity of the antibody library reaching 1.46×10(9) [(1.45×10(4)×80%)×(1.8×10(5)×70%)]. Using 1.2 µg of total RNA as template, the LCκ and VH full-length fully human antibody libraries against dengue virus have been successfully constructed with an expressible diversity of 10(9).
Weigel, B J; Burgett, S G; Chen, V J; Skatrud, P L; Frolik, C A; Queener, S W; Ingolia, T D
1988-01-01
beta-Lactam antibiotics such as penicillins and cephalosporins are synthesized by a wide variety of microbes, including procaryotes and eucaryotes. Isopenicillin N synthetase catalyzes a key reaction in the biosynthetic pathway of penicillins and cephalosporins. The genes encoding this protein have previously been cloned from the filamentous fungi Cephalosporium acremonium and Penicillium chrysogenum and characterized. We have extended our analysis to the isopenicillin N synthetase genes from the fungus Aspergillus nidulans and the gram-positive procaryote Streptomyces lipmanii. The isopenicillin N synthetase genes from these organisms have been cloned and sequenced, and the proteins encoded by the open reading frames were expressed in Escherichia coli. Active isopenicillin N synthetase enzyme was recovered from extracts of E. coli cells prepared from cells containing each of the genes in expression vectors. The four isopenicillin N synthetase genes studied are closely related. Pairwise comparison of the DNA sequences showed between 62.5 and 75.7% identity; comparison of the predicted amino acid sequences showed between 53.9 and 80.6% identity. The close homology of the procaryotic and eucaryotic isopenicillin N synthetase genes suggests horizontal transfer of the genes during evolution. Images PMID:3045077
Mao, Yizhou; Jiang, Biao; Peng, Qingwu; Liu, Wenrui; Lin, Yue; Xie, Dasen; He, Xiaoming; Li, Shaoshan
2017-05-01
The WRKY transcription factors play an important role in plant resistance for biotic and abiotic stresses. In the present study, we cloned 10 WRKY gene homologs (CqWRKY) in Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua) using the rapid-amplification of cDNA ends (RACE) or homology-based cloning methods. We characterized the structure of these CqWRKY genes. Phylogenetic analysis of these sequences with cucumber homologs suggested possible structural conservation of these genes among cucurbit crops. We examined the expression levels of these genes in response to fusaric acid (FA) treatment between resistant and susceptible Chieh-qua lines with quantitative real-time PCR. All genes could be upregulated upon FA treatment, but four CqWRKY genes exhibited differential expression between resistant and susceptible lines before and after FA application. CqWRKY31 seemed to be a positive regulator while CqWRKY1, CqWRKY23 and CqWRKY53 were negative regulators of fusaric resistance. This is the first report of characterization of WRKY family genes in Chieh-qua. The results may also be useful in breeding Chieh-qua for Fusarium wilt resistance.
Fu, L; Hou, Y L; Ding, X; Du, Y J; Zhu, H Q; Zhang, N; Hou, W R
2016-08-30
The complementary DNA (cDNA) of the giant panda (Ailuropoda melanoleuca) ferritin light polypeptide (FTL) gene was successfully cloned using reverse transcription-polymerase chain reaction technology. We constructed a recombinant expression vector containing FTL cDNA and overexpressed it in Escherichia coli using pET28a plasmids. The expressed protein was then purified by nickel chelate affinity chromatography. The cloned cDNA fragment was 580 bp long and contained an open reading frame of 525 bp. The deduced protein sequence was composed of 175 amino acids and had an estimated molecular weight of 19.90 kDa, with an isoelectric point of 5.53. Topology prediction revealed one N-glycosylation site, two casein kinase II phosphorylation sites, one N-myristoylation site, two protein kinase C phosphorylation sites, and one cell attachment sequence. Alignment indicated that the nucleotide and deduced amino acid sequences are highly conserved across several mammals, including Homo sapiens, Cavia porcellus, Equus caballus, and Felis catus, among others. The FTL gene was readily expressed in E. coli, which gave rise to the accumulation of a polypeptide of the expected size (25.50 kDa, including an N-terminal polyhistidine tag).
Murovska, M F; Chernobayeva, L G; Miroshnichenko, O I; Tomsons, V P; Konicheva, V V; Ivanova, S V; Tikhonenko, T I
1992-11-01
A possible approach to control of bovine lymphoproliferative disease caused by bovine leukaemia virus (BLV) may be the development of an "antiviral information immunity" based on the effect of anti-sense RNA (asRNA). A numbers of constructs were obtained, under control of various promotors (herpesvirus thymidine kinase, T-antigen SV40 promoter), carrying as DNA against gene X, the expression product of which is a transactivator of viral transcription from the BLV LTR promotor. As a model system for the analysis of antiviral activity of constructs developed, cloned continuous cell lines of BLV-producing FLK cells were used. The level of BLV expression in cells transfected with the constructs was determined by various parameters. Differences were detected in different clones obtained from non-transfected cells, as well as variation between transfected clones, as measured by reverse transcriptase, competitive radio-immunoassay for BLV p24, the viral particle count on agar membrane, and the tumorigenicity for nude mice. The differences in inhibition of expression of BLV genes and their products may be explained in terms of the site of integration of asDNA and the number of integrated copies.
Generation of cloned mice from adult neurons by direct nuclear transfer.
Mizutani, Eiji; Oikawa, Mami; Kassai, Hidetoshi; Inoue, Kimiko; Shiura, Hirosuke; Hirasawa, Ryutaro; Kamimura, Satoshi; Matoba, Shogo; Ogonuki, Narumi; Nagatomo, Hiroaki; Abe, Kuniya; Wakayama, Teruhiko; Aiba, Atsu; Ogura, Atsuo
2015-03-01
Whereas cloning mammals by direct somatic cell nuclear transfer has been successful using a wide range of donor cell types, neurons from adult brain remain "unclonable" for unknown reasons. Here, using a combination of two epigenetic approaches, we examined whether neurons from adult mice could be cloned. First, we used a specific antibody to discover cell types with reduced amounts of a repressive histone mark-dimethylated histone H3 lysine 9 (H3K9me2)-and identified CA1 pyramidal cells in the hippocampus and Purkinje cells in the cerebellum as candidates. Second, reconstructed embryos were treated with trichostatin A (TSA), a potent histone deacetylase inhibitor. Using CA1 cells, cloned offspring were obtained at high rates, reaching 10.2% and 4.6% (of embryos transferred) for male and female donors, respectively. Cerebellar Purkinje cell nuclei were too large to maintain their genetic integrity during nuclear transfer, leading to developmental arrest of embryos. However, gene expression analysis using cloned blastocysts corroborated a high rate of genomic reprogrammability of CA1 pyramidal and Purkinje cells. Neurons from the hippocampal dentate gyrus and cerebral cortex, which had higher amounts of H3K9me2, could also be used for producing cloned offspring, but the efficiencies were low. A more thorough analysis revealed that TSA treatment was essential for cloning adult neuronal cells. This study demonstrates, to our knowledge for the first time, that adult neurons can be cloned by nuclear transfer. Furthermore, our data imply that reduced amounts of H3K9me2 and increased histone acetylation appear to act synergistically to improve the development of cloned embryos. © 2015 by the Society for the Study of Reproduction, Inc.
Qiu, Zhifang; Mishra, Anuja; Li, Miao; Farnsworth, Steven L; Guerra, Bernadette; Lanford, Robert E; Hornsby, Peter J
2015-07-01
The marmoset is an important nonhuman primate model for regenerative medicine. For experimental autologous cell therapy based on induced pluripotent (iPS) cells in the marmoset, cells must be able to undergo robust and reliable directed differentiation that will not require customization for each specific iPS cell clone. When marmoset iPS cells were aggregated in a hanging drop format for 3 days, followed by exposure to dual SMAD inhibitors and retinoic acid in monolayer culture for 3 days, we found substantial variability in the response of different iPS cell clones. However, when clones were pretreated with 0.05-2% dimethyl sulfoxide (DMSO) for 24 hours, all clones showed a very similar maximal response to the directed differentiation scheme. Peak responses were observed at 0.5% DMSO in two clones and at 1% DMSO in a third clone. When patterns of gene expression were examined by microarray analysis, hierarchical clustering showed very similar responses in all 3 clones when they were pretreated with optimal DMSO concentrations. The change in phenotype following exposure to DMSO and the 6 day hanging drop/monolayer treatment was confirmed by immunocytochemistry. Analysis of DNA content in DMSO-exposed cells indicated that it is unlikely that DMSO acts by causing cells to exit from the cell cycle. This approach should be generally valuable in the directed neural differentiation of pluripotent cells for experimental cell therapy. Copyright © 2015. Published by Elsevier B.V.
Pirooznia, Mehdi; Gong, Ping; Guan, Xin; Inouye, Laura S; Yang, Kuan; Perkins, Edward J; Deng, Youping
2007-01-01
Background Eisenia fetida, commonly known as red wiggler or compost worm, belongs to the Lumbricidae family of the Annelida phylum. Little is known about its genome sequence although it has been extensively used as a test organism in terrestrial ecotoxicology. In order to understand its gene expression response to environmental contaminants, we cloned 4032 cDNAs or expressed sequence tags (ESTs) from two E. fetida libraries enriched with genes responsive to ten ordnance related compounds using suppressive subtractive hybridization-PCR. Results A total of 3144 good quality ESTs (GenBank dbEST accession number EH669363–EH672369 and EL515444–EL515580) were obtained from the raw clone sequences after cleaning. Clustering analysis yielded 2231 unique sequences including 448 contigs (from 1361 ESTs) and 1783 singletons. Comparative genomic analysis showed that 743 or 33% of the unique sequences shared high similarity with existing genes in the GenBank nr database. Provisional function annotation assigned 830 Gene Ontology terms to 517 unique sequences based on their homology with the annotated genomes of four model organisms Drosophila melanogaster, Mus musculus, Saccharomyces cerevisiae, and Caenorhabditis elegans. Seven percent of the unique sequences were further mapped to 99 Kyoto Encyclopedia of Genes and Genomes pathways based on their matching Enzyme Commission numbers. All the information is stored and retrievable at a highly performed, web-based and user-friendly relational database called EST model database or ESTMD version 2. Conclusion The ESTMD containing the sequence and annotation information of 4032 E. fetida ESTs is publicly accessible at . PMID:18047730
Wang, Jian; Qi, Meng-Die; Guo, Juan; Shen, Ye; Lin, Hui-Xin; Huang, Lu-Qi
2017-03-01
Andrographis paniculata is widely used as medicinal herb in China for a long time and andrographolide is its main medicinal constituent. To investigate the underlying andrographolide biosynthesis mechanisms, RNA-seq for A. paniculata leaves with MeJA treatment was performed. In A. paniculata transcriptomic data, the expression pattern of one member of NAC transcription factor family (ApNAC1) matched with andrographolide accumulation. The coding sequence of ApNAC1 was cloned by RT-PCR, and GenBank accession number was KY196416. The analysis of bioinformatics showed that the gene encodes a peptide of 323 amino acids, with a predicted relative molecular weight of 35.9 kDa and isoelectric point of 6.14. To confirm the subcellular localization, ApNAC1-GFP was transiently expressed in A. paniculata protoplast. The results indicated that ApNAC1 is a nucleus-localized protein. The analysis of real-time quantitative PCR revealed that ApNAC1 gene predominantly expresses in leaves. Compared with control sample, its expression abundance sharply increased with methyl jasmonate treatment. Based on its expression pattern, ApNAC1 gene might involve in andrographolide biosynthesis. ApNAC1 was heterologously expressed in Escherichia coli and recombinant protein was purified by Ni-NTA agarose. Further study will help us to understand the function of ApNAC1 in andrographolide biosynthesis. Copyright© by the Chinese Pharmaceutical Association.
Frame-Insensitive Expression Cloning of Fluorescent Protein from Scolionema suvaense.
Horiuchi, Yuki; Laskaratou, Danai; Sliwa, Michel; Ruckebusch, Cyril; Hatori, Kuniyuki; Mizuno, Hideaki; Hotta, Jun-Ichi
2018-01-26
Expression cloning from cDNA is an important technique for acquiring genes encoding novel fluorescent proteins. However, the probability of in-frame cDNA insertion following the first start codon of the vector is normally only 1/3, which is a cause of low cloning efficiency. To overcome this issue, we developed a new expression plasmid vector, pRSET-TriEX, in which transcriptional slippage was induced by introducing a DNA sequence of (dT) 14 next to the first start codon of pRSET. The effectiveness of frame-insensitive cloning was validated by inserting the gene encoding eGFP with all three possible frames to the vector. After transformation with one of these plasmids, E. coli cells expressed eGFP with no significant difference in the expression level. The pRSET-TriEX vector was then used for expression cloning of a novel fluorescent protein from Scolionema suvaense . We screened 3658 E. coli colonies transformed with pRSET-TriEX containing Scolionema suvaense cDNA, and found one colony expressing a novel green fluorescent protein, ScSuFP. The highest score in protein sequence similarity was 42% with the chain c of multi-domain green fluorescent protein like protein "ember" from Anthoathecata sp. Variations in the N- and/or C-terminal sequence of ScSuFP compared to other fluorescent proteins indicate that the expression cloning, rather than the sequence similarity-based methods, was crucial for acquiring the gene encoding ScSuFP. The absorption maximum was at 498 nm, with an extinction efficiency of 1.17 × 10⁵ M -1 ·cm -1 . The emission maximum was at 511 nm and the fluorescence quantum yield was determined to be 0.6. Pseudo-native gel electrophoresis showed that the protein forms obligatory homodimers.
Shite, Masato; Yamamura, Yoshimi; Hayashi, Toshimitsu; Kurosaki, Fumiya
2008-11-01
A homology-based cloning strategy yielded Sdga, a cDNA clone presumably encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex, from leaf tissues of Scoparia dulcis. Phylogenetic tree analysis of G-protein alpha-subunits from various biological sources suggested that, unlike in animal cells, classification of Galpha-proteins into specific subfamilies could not be applicable to the proteins from higher plants. Restriction digests of genomic DNA of S. dulcis showed a single hybridized signal in Southern blot analysis, suggesting that Sdga is a sole gene encoding Galpha-subunit in this plant. The expression level of Sdga appeared to be maintained at almost constant level after exposure of the leaves to methyl jasmonate as analyzed by reverse-transcription polymerase chain reaction. These results suggest that Sdga plays roles in methyl jasmonate-induced responses of S. dulcis without a notable change in the transcriptional level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, L.N.; Hanson, R.S.
Four new cloning vectors have been constructed from the broad-host-range cloning vector pRK290. These vectors, pLA2901, pLA2905, pLA2910, and pLA2917, confer resistance to kanamycin and tetracycline. The latter two are cosmid derivatives of pLA2901. The new vectors can be mobilized into, and are stably maintained in, a variety of gram-negative bacteria. A Sau3A genomic bank of Methylobacterium organophilum strain xx DNA has been constructed in pLA2917, and complementation analysis, with a variety of mutants unable to grow on methanol, revealed at least five separate regions necessary for growth on methanol. Complementation analysis and Tn5 mutagenesis data suggest that at leastmore » three genes are responsible for expression of active methanol dehydrogenase.« less
USDA-ARS?s Scientific Manuscript database
Diaprepes abbreviatus is an important pest that causes extensive damage to citrus in the USA. Analysis of an expressed sequence tag (EST) library from the digestive tract of larvae and adult D. abbreviatus identified cathepsins as major putative digestive enzymes. One class, sharing amino acid seque...
Xu, Y; Ehringer, M; Yang, F; Sikela, J M
2001-06-01
Inbred long-sleep (ILS) and short-sleep (ISS) mice show significant central nervous system-mediated differences in sleep time for sedative dose of ethanol and are frequently used as a rodent model for ethanol sensitivity. In this study, we have used complementary DNA (cDNA) array hybridization methodology to identify genes that are differentially expressed between the brains of ILS and ISS mice. To carry out this analysis, we used both the gene discovery array (GDA) and the Mouse GEM 1 Microarray. GDA consists of 18,378 nonredundant mouse cDNA clones on a single nylon filter. Complex probes were prepared from total brain mRNA of ILS or ISS mice by using reverse transcription and 33P labeling. The labeled probes were hybridized in parallel to the gene array filters. Data from GDA experiments were analyzed with SQL-Plus and Oracle 8. The GEM microarray includes 8,730 sequence-verified clones on a glass chip. Two fluorescently labeled probes were used to hybridize a microarray simultaneously. Data from GEM experiments were analyzed by using the GEMTools software package (Incyte). Differentially expressed genes identified from each method were confirmed by relative quantitative reverse transcription-polymerase chain reaction (RT-PCR). A total of 41 genes or expressed sequence tags (ESTs) display significant expression level differences between brains of ILS and ISS mice after GDA, GEM1 hybridization, and quantitative RT-PCR confirmation. Among them, 18 clones were expressed higher in ILS mice, and 23 clones were expressed higher in ISS mice. The individual gene or EST's function and mapping information have been analyzed. This study identified 41 genes that are differentially expressed between brains of ILS and ISS mice. Some of them may have biological relevance in mediation of phenotypic variation between ILS and ISS mice for ethanol sensitivity. This study also demonstrates that parallel gene expression comparison with high-density cDNA arrays is a rapid and efficient way to discover potential genes and pathways involved in alcoholism and alcohol-related physiologic processes.
Pollier, Jacob; González-Guzmán, Miguel; Ardiles-Diaz, Wilson; Geelen, Danny; Goossens, Alain
2011-01-01
cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) is a commonly used technique for genome-wide expression analysis that does not require prior sequence knowledge. Typically, quantitative expression data and sequence information are obtained for a large number of differentially expressed gene tags. However, most of the gene tags do not correspond to full-length (FL) coding sequences, which is a prerequisite for subsequent functional analysis. A medium-throughput screening strategy, based on integration of polymerase chain reaction (PCR) and colony hybridization, was developed that allows in parallel screening of a cDNA library for FL clones corresponding to incomplete cDNAs. The method was applied to screen for the FL open reading frames of a selection of 163 cDNA-AFLP tags from three different medicinal plants, leading to the identification of 109 (67%) FL clones. Furthermore, the protocol allows for the use of multiple probes in a single hybridization event, thus significantly increasing the throughput when screening for rare transcripts. The presented strategy offers an efficient method for the conversion of incomplete expressed sequence tags (ESTs), such as cDNA-AFLP tags, to FL-coding sequences.
Gong, Liang; Zhong, Guo-Hua; Hu, Mei-Ying; Luo, Qian; Ren, Zhen-Zhen
2010-01-01
Chemosensory proteins play an important role in transporting chemical compounds to their receptors on dendrite membranes. In this study, two full-length cDNA codings for chemosensory proteins of Plutella xylostella (Lepidoptera: Plutellidae) were obtained by RACE-PCR. PxylCSP3 and Pxyl-CSP4, with GenBank accession numbers ABM92663 and ABM92664, respectively, were cloned and sequenced. The gene sequences both consisted of three exons and two introns. RT-PCR analysis showed that Pxyl-CSP3 and Pxyl-CSP4 had different expression patterns in the examined developmental stages, but were expressed in all larval stages. Phylogenetic analysis indicated that lepidopteran insects consist of three branches, and Pxyl-CSP3 and Pxyl-CSP4 belong to different branches. The 5′regulatory regions of Pxyl-CSP3 and Pxyl-CSP4 were isolated and analyzed, and the results consist of not only the core promoter sequences (TATA-box), but also several transcriptional elements (BR-C Z4, Hb, Dfd, CF2-II, etc.). This study provides clues to better understanding the various physiological functions of CSPs in P. xylostella and other insects. PMID:21073345
Fu, Minghui; Jiang, Lihua; Li, Yuanmei; Yan, Guohua; Zheng, Lijun; Jinping, Peng
2014-12-01
Eichhornia crassipes is an aquatic plant native to the Amazon River Basin. It has become a serious weed in freshwater habitats in rivers, lakes and reservoirs both in tropical and warm temperate areas worldwide. Some research has stated that it can be used for water phytoremediation, due to its strong assimilation of nitrogen and phosphorus, and the accumulation of heavy metals, and its growth and spread may play an important role in environmental ecology. In order to explore the molecular mechanism of E. crassipes to responses to nitrogen deficiency, we constructed forward and reversed subtracted cDNA libraries for E. crassipes roots under nitrogen deficient condition using a suppressive subtractive hybridization (SSH) method. The forward subtraction included 2,100 clones, and the reversed included 2,650 clones. One thousand clones were randomly selected from each library for sequencing. About 737 (527 unigenes) clones from the forward library and 757 (483 unigenes) clones from the reversed library were informative. Sequence BlastX analysis showed that there were more transporters and adenosylhomocysteinase-like proteins in E. crassipes cultured in nitrogen deficient medium; while, those cultured in nitrogen replete medium had more proteins such as UBR4-like e3 ubiquitin-protein ligase and fasciclin-like arabinogalactan protein 8-like, as well as more cytoskeletal proteins, including actin and tubulin. Cluster of Orthologous Group (COG) analysis also demonstrated that in the forward library, the most ESTs were involved in coenzyme transportation and metabolism. In the reversed library, cytoskeletal ESTs were the most abundant. Gene Ontology (GO) analysis categories demonstrated that unigenes involved in binding, cellular process and electron carrier were the most differentially expressed unigenes between the forward and reversed libraries. All these results suggest that E. crassipes can respond to different nitrogen status by efficiently regulating and controlling some transporter gene expressions, certain metabolism processes, specific signal transduction pathways and cytoskeletal construction.
Qu, Chun-Pu; Xu, Zhi-Ru; Liu, Guan-Jun; Liu, Chun; Li, Yang; Wei, Zhi-Gang; Liu, Gui-Feng
2010-01-01
In aerobic organisms, protection against oxidative damage involves the combined action of highly specialized antioxidant enzymes, such as copper-zinc superoxide dismutase. In this work, a cDNA clone which encodes a copper-zinc superoxide dismutase gene, named PS-CuZnSOD, has been identified from P. sibiricum Laxm. by the rapid amplification of cDNA ends method (RACE). Analysis of the nucleotide sequence reveals that the PS-CuZnSOD gene cDNA clone consists of 669 bp, containing 87 bp in the 5' untranslated region; 459 bp in the open reading frame (ORF) encoding 152 amino acids; and 123 bp in 3' untranslated region. The gene accession nucleotide sequence number in GenBank is GQ472846. Sequence analysis indicates that the protein, like most plant superoxide dismutases (SOD), includes two conserved ecCuZnSOD signatures that are from the amino acids 43 to 51, and from the amino acids 137 to 148, and it has a signal peptide extension in the front of the N-terminus (1-16 aa). Expression analysis by real-time quantitative PCR reveals that the PS-CuZnSOD gene is expressed in leaves, stems and underground stems. PS-CuZnSOD gene expression can be induced by 3% NaHCO(3). The different mRNA levels' expression of PS-CuZnSOD show the gene's different expression modes in leaves, stems and underground stems under the salinity-alkalinity stress.
Kumar, Gokhlesh; Abd-Elfattah, Ahmed; El-Matbouli, Mansour
2015-03-01
Tetracapsuloides bryosalmonae Canning et al., 1999 (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. We have shown previously that the development and distribution of the European strain of T. bryosalmonae differs in the kidney of brown trout (Salmo trutta) Linnaeus, 1758 and rainbow trout (Oncorhynchus mykiss) Walbaum, 1792, and that intra-luminal sporogonic stages were found in brown trout but not in rainbow trout. We have now compared transcriptomes from kidneys of brown trout and rainbow trout infected with T. bryosalmonae using suppressive subtractive hybridization (SSH). The differentially expressed transcripts produced by SSH were cloned, transformed, and tested by colony PCR. Differential expression screening of PCR products was validated using dot blot, and positive clones having different signal intensities were sequenced. Differential screening and a subsequent NCBI-BLAST analysis of expressed sequence tags revealed nine clones expressed differently between both fish species. These differentially expressed genes were validated by quantitative real-time PCR of kidney samples from both fish species at different time points of infection. Expression of anti-inflammatory (TSC22 domain family protein 3) and cell proliferation (Prothymin alpha) genes were upregulated significantly in brown trout but downregulated in rainbow trout. The expression of humoral immune response (immunoglobulin mu) and endocytic pathway (Ras-related protein Rab-11b) genes were significantly upregulated in rainbow trout but downregulated in brown trout. This study suggests that differential expression of host anti-inflammatory, humoral immune and endocytic pathway responses, cell proliferation, and cell growth processes do not inhibit the development of intra-luminal sporogonic stages of the European strain of T. bryosalmonae in brown trout but may suppress it in rainbow trout.
Liu, Weihua; Cheng, Chunzhen; Lai, Gongti; Lin, Yuling; Lai, Zhongxiong
2015-01-01
Banana cultivars may experience chilling or freezing injury in some of their cultivated regions, where wild banana can still grow very well. The clarification of the cold-resistant mechanism of wild banana is vital for cold-resistant banana breeding. In this study, the central stress integrator gene KIN10 and some cold-acclimation related genes (HOS1 and ICE1s) from the cold-resistant wild banana 'Huanxi' (Musa itinerans) were cloned and their expression patterns under different temperature treatments were analyzed. Thirteen full-length cDNA transcripts including 6 KIN10s, 1 HOS1 and 6 ICE1s were successfully cloned. Quantitative real-time PCR (qRT-PCR) results showed that all these genes had the highest expression levels at the critical temperature of banana (13 °C). Under chilling temperature (4 °C), the expression level of KIN10 reduced significantly but the expression of HOS1 was still higher than that at the optimal temperature (28 °C, control). Both KIN10 and HOS1 showed the lowest expression levels at 0 °C, the expression level of ICE1, however, was higher than control. As sucrose plays role in plant cold-acclimation and in regulation of KIN10 and HOS1 bioactivities, the sucrose contents of wild banana under different temperatures were detected. Results showed that the sucrose content increased as temperature lowered. Our result suggested that KIN10 may participate in cold stress response via regulating sucrose biosynthesis, which is helpful in regulating cold acclimation pathway in wild banana.
Ruby; Santosh Kumar, R J; Vishwakarma, Rishi K; Singh, Somesh; Khan, Bashir M
2014-07-01
Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4'-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4'-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49% identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC-MS and HPLC, which confirmed its specificity for genistein 4'-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism.
Transgenic-cloned pigs systemically expressing red fluorescent protein, Kusabira-Orange.
Matsunari, Hitomi; Onodera, Masafumi; Tada, Norihiro; Mochizuki, Hideki; Karasawa, Satoshi; Haruyama, Erika; Nakayama, Naoki; Saito, Hitoshi; Ueno, Satoshi; Kurome, Mayuko; Miyawaki, Atsushi; Nagashima, Hiroshi
2008-09-01
Genetically engineered pigs with cell markers such as fluorescent proteins are highly useful in lines of research that include the tracking of transplanted cells or tissues. In this study, we produced transgenic-cloned pigs carrying a gene for the newly developed red fluorescent protein, humanized Kusabira-Orange (huKO), which was cloned from the coral stone Fungia concinna. The nuclear transfer embryos, reconstructed with fetal fibroblast cells that had been transduced with huKO cDNA using retroviral vector D Delta Nsap, developed efficiently in vitro into blastocysts (28.0%, 37/132). Nearly all (94.6%, 35/37) of the cloned blastocysts derived from the transduced cells exhibited clear huKO gene expression. A total of 429 nuclear transfer embryos were transferred to four recipients, all of which became pregnant and gave birth to 18 transgenic-cloned offspring in total. All of the pigs highly expressed huKO fluorescence in all of the 23 organs and tissues analyzed, including the brain, eyes, intestinal and reproductive organs, skeletal muscle, bone, skin, and hoof. Furthermore, such expression was also confirmed by histological analyses of various tissues such as pancreatic islets, renal corpuscles, neuronal and glial cells, the retina, chondrocytes, and hematopoietic cells. These data demonstrate that transgenic-cloned pigs exhibiting systemic red fluorescence expression can be efficiently produced by nuclear transfer of somatic cells retrovirally transduced with huKO gene.
Rondon, Michelle R.; Raffel, Sandra J.; Goodman, Robert M.; Handelsman, Jo
1999-01-01
As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes. PMID:10339608
Jin, J W; Kim, Y C; Hong, S; Kim, M S; Jeong, J B; Jeong, H D
2017-04-01
As suggested by the Office International des Epizooties (OIE), fishes belonging to the genus Oplegnathus are more sensitive to megalocytivirus infection than other fish species including red sea bream (Pagrus major). To assess the roles of the innate immune response to these different susceptibilities, we cloned the genes encoding inflammatory factors including IL-8 and COX-2, and the antiviral factor like Mx from red sea bream for the first time and performed phylogenetic and structural analysis. Analysed expression levels of IL-1β, IL-8 and COX-2 and the antiviral factor like Mx genes performed with in vivo challenge experiment showed no difference in inflammatory gene expression or respiratory burst activity between red sea bream and rock bream (Oplegnathus fasciatus). However, the Mx gene expression levels in red sea bream were markedly higher than those in rock bream, suggesting the importance of type I interferon (IFN)-induced proteins, particularly Mx, during megalocytivirus infection, rather than inflammation-related genes. The in vitro challenge experiments using embryonic primary cultures derived from both fish species showed no difference in cytopathic effects (CPE), viral replication profiles, and inflammatory and Mx gene expression pattern between the two fish species. © 2016 John Wiley & Sons Ltd.
Liu, Qiaolin; Xu, Baohong; Xiao, Tiaoyi; Su, Jianming; Zhong, Lei
2013-08-01
Coagulation factor VII has been studied in several species but, to date, not in grass carp (Ctenopharyngodon idella), a commercially important freshwater fish found in China. In this study, the full-length cDNA of grass carp coagulation factor VII (GcCFVII) was cloned using a RACE-Ready cDNA Kit, grass carp were challenged with a hemorrhagic virus, and temporal expression profiles of GcCFVII in the thymus, gills, liver, spleen, and head kidney were examined at 0 h, 24 h, 48 h, 72 h, 96 h, and 138 h using fluorescence quantitative PCR. The results showed the 1480 bp GcCFVII to contain three conservative motifs: Gla, EGF-CA, and Tryp-SPc, similar to other species. Phylogenetic analysis showed the evolution of GcCFVII gene to be consistent with the evolution of the species. After viral challenge, GcCFVII expression in five tissues of grass carp showed different patterns of fluctuation. These results provide a solid basis for further investigation of GcCFVII and its relationship with grass carp hemorrhage. Copyright © 2013 Elsevier Ltd. All rights reserved.
Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus
van den Akker, Guus G. H.; Surtel, Don A. M.; Cremers, Andy; Richardson, Stephen M.; Hoyland, Judith A.; van Rhijn, Lodewijk W.
2016-01-01
Introduction Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. Methods Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ). Results The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. Conclusion We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair. PMID:26794306
Novel Immortal Cell Lines Support Cellular Heterogeneity in the Human Annulus Fibrosus.
van den Akker, Guus G H; Surtel, Don A M; Cremers, Andy; Richardson, Stephen M; Hoyland, Judith A; van Rhijn, Lodewijk W; Voncken, Jan Willem; Welting, Tim J M
2016-01-01
Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors. Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ). The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections. We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair.
Human Neoplasms Elicit Multiple Specific Immune Responses in the Autologous Host
NASA Astrophysics Data System (ADS)
Sahin, Ugur; Tureci, Ozlem; Schmitt, Holger; Cochlovius, Bjorn; Johannes, Thomas; Schmits, Rudolf; Stenner, Frank; Luo, Guorong; Schobert, Ingrid; Pfreundschuh, Michael
1995-12-01
Expression of cDNA libraries from human melanoma, renal cancer, astrocytoma, and Hodgkin disease in Escherichia coli and screening for clones reactive with high-titer IgG antibodies in autologous patient serum lead to the discovery of at least four antigens with a restricted expression pattern in each tumor. Besides antigens known to elicit T-cell responses, such as MAGE-1 and tyrosinase, numerous additional antigens that were overexpressed or specifically expressed in tumors of the same type were identified. Sequence analyses suggest that many of these molecules, besides being the target of a specific immune response, might be of relevance for tumor growth. Antibodies to a given antigen were usually confined to patients with the same tumor type. The unexpected frequency of human tumor antigens, which can be readily defined at the molecular level by the serological analysis of autologous tumor cDNA expression cloning, indicates that human neoplasms elicit multiple specific immune responses in the autologous host and provides diagnostic and therapeutic approaches to human cancer.
Identification of a mouse synaptic glycoprotein gene in cultured neurons.
Yu, Albert Cheung-Hoi; Sun, Chun Xiao; Li, Qiang; Liu, Hua Dong; Wang, Chen Ran; Zhao, Guo Ping; Jin, Meilei; Lau, Lok Ting; Fung, Yin-Wan Wendy; Liu, Shuang
2005-10-01
Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation.
Notch as a Diagnostic Marker and Therapeutic Target in Human Breast Cancer
2008-05-01
JAG1. The soluble JAG1-ECD-FLAG was expressed in Chinese Hamster ovary K1 (CHO-K1) cells and then CHO clones were screened for their ability to... medium was collected from CHO-K1- hJAG1-ECD-Flag (clone14) grown in culture. The purification strategy to obtain hJAG1-ECD-Flag is as follows: 1) pre...expressed in Chinese hampster ovary K1 (CHO-K1) cells and then CHO clones were screened for their ability to express high levels of secreted JAG1-Flag
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beskrovnaya, O.Yu.; Fonshtein, M.Yu.; Kolibaba, L.G.
1989-01-01
Molecular cloning of Corynebacterium glutamicum genes for threonine and lysine synthesis has been done in Escherichia coli cells. The clonal library of EcoRI fragments of chromosomal DNA of C. glutamicum was constructed on the plasmid vector /lambda/pSL5. The genes for threonine and lysine synthesis were identified by complementation of E. coli mutations in thrB and lysA genes, respectively. Recombinant plasmids, isolated from independent ThrB/sup +/ clone have a common 4.1-kb long EcoRI DNA fragment. Hybrid plasmids isolated from LysA/sup +/ transductants of E. coli have common 2.2 and 3.3 kb long EcoRI fragments of C. glutamicum DNA. The hybrid plasmidsmore » consistently transduced the markers thrB/sup +/ and lysA/sup +/. The Southern hybridization analysis showed that the cloned DNA fragments hybridized with the fragments of identical length in C. glutamicum chromosomes.« less
High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli
Bruni, Renato
2014-01-01
Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647
Shang, Yonglei; Tesar, Devin; Hötzel, Isidro
2015-10-01
A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
High-Throughput Cloning and Expression Library Creation for Functional Proteomics
Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua
2013-01-01
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047
High-throughput cloning and expression library creation for functional proteomics.
Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua
2013-05-01
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recombinant Staphylococcal Enterotoxin Type A Stimulate Antitumoral Cytokines.
Agheli, Reza; Emkanian, Bijan; Halabian, Raheleh; Fallah Mehrabadi, Jalil; Imani Fooladi, Abbas Ali
2017-02-01
About 20 different types of staphylococcal enterotoxins are produced by Staphylococcus aureus, in which type A is more common in food poisoning syndrome. Also staphylococcal enterotoxin A superantigen is a potent inducer of cytotoxic T lymphocyte activity and cytokine production and could stimulate T cells containing T-cell receptor beta chain domains when binding to major histocompatibility complex class II molecules. Hence, it is an important reagent in cancer immunotherapy. For the construction of pET-21a/ entA cassette, the staphylococcal enterotoxin type A gene was isolated from S aureus strain HN2, cloned into pET-21a, and introduced into Escherichia coli strain BL-21(DE3). Consequently, Western blot analysis showed pET-21a/ entA cassette expression inserted entA gene successfully. It is the first prompt using a pET-21a as a cloning vector for entA gene and expression of construct in BL-21(DE3). In addition, this study examined the ability of standard staphylococcal enterotoxin A and cloned staphylococcal enterotoxin A to activate T cells in vitro. Lymphocyte cells derived from lymph node BALB/c mice were exposed to standard staphylococcal enterotoxin A and cloned staphylococcal enterotoxin (1.10, 102,103, and 104 ng/µL) in order to evaluate the magnitude of proliferation, activation, and apoptosis of lymphocyte cells based on MTT and apoptosis assays, respectively. Our investigation showed that the function of cloned staphylococcal enterotoxin A was same as standard staphylococcal enterotoxin A, and the optimal concentration for the activation of lymphocyte cells and induction of apoptosis was 100 ng/µL and 1000 ng/µL ( P < .05), respectively. Quantification of cytokines clearly showed that lymphocyte cells exposed to standard staphylococcal enterotoxin A and cloned staphylococcal enterotoxin A significantly secreted higher interferon γ and tumor necrosis factor α compared to control. According to our results, the biological activity of standard staphylococcal enterotoxin A and cloned staphylococcal enterotoxin A is identical; therefore, these procedures may be approved as an efficient method to express and purify this protein in a large scale.
Anisimov, Sergey V; Khavinson, Vladimir Kh; Anisimov, Vladimir N
2004-01-01
Aging is associated with significant alterations in gene expression in numerous organs and tissues. Anti-aging therapy with peptide bioregulators holds much promise for the correction of age-associated changes, making a screening for their molecular targets in tissues an important question of modern gerontology. The synthetic tetrapeptide Cortagen (Ala-Glu-Asp-Pro) was obtained by directed synthesis based on amino acid analysis of natural brain cortex peptide preparation Cortexin. In humans, Cortagen demonstrated a pronounced therapeutic effect upon the structural and functional posttraumatic recovery of peripheral nerve tissue. Importantly, other effects were also observed in cardiovascular and cerebrovascular parameters. Based on these latter observations, we hypothesized that acute course of Cortagen treatment, large-scale transcriptome analysis, and identification of transcripts with altered expression in heart would facilitate our understanding of the mechanisms responsible for this peptide biological effects. We therefore analyzed the expression of 15,247 transcripts in the heart of female 6-months CBA mice receiving injections of Cortagen for 5 consecutive days was studied by cDNA microarrays. Comparative analysis of cDNA microarray hybridisation with heart samples from control and experimental group revealed 234 clones (1,53% of the total number of clones) with significant changes of expression that matched 110 known genes belonging to various functional categories. Maximum up- and down-regulation was +5.42 and -2.86, respectively. Intercomparison of changes in cardiac expression profile induced by synthetic peptides (Cortagen, Vilon, Epitalon) and pineal peptide hormone melatonin revealed both common and specific effects of Cortagen upon gene expression in heart.
Xiu, Hao; Nuruzzaman, Mohammed; Guo, Xiangqian; Cao, Hongzhe; Huang, Jingjia; Chen, Xianghui; Wu, Kunlu; Zhang, Ru; Huang, Yuzhao; Luo, Junli; Luo, Zhiyong
2016-03-04
Despite the importance of WRKY genes in plant physiological processes, little is known about their roles in Panax ginseng C.A. Meyer. Forty-eight unigenes on this species were previously reported as WRKY transcripts using the next-generation sequencing (NGS) technology. Subsequently, one gene that encodes PgWRKY1 protein belonging to subgroup II-d was cloned and functionally characterized. In this study, eight WRKY genes from the NGS-based transcriptome sequencing dataset designated as PgWRKY2-9 have been cloned and characterized. The genes encoding WRKY proteins were assigned to WRKY Group II (one subgroup II-c, four subgroup II-d, and three subgroup II-e) based on phylogenetic analysis. The cDNAs of the cloned PgWRKYs encode putative proteins ranging from 194 to 358 amino acid residues, each of which includes one WRKYGQK sequence motif and one C₂H₂-type zinc-finger motif. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that the eight analyzed PgWRKY genes were expressed at different levels in various organs including leaves, roots, adventitious roots, stems, and seeds. Importantly, the transcription responses of these PgWRKYs to methyl jasmonate (MeJA) showed that PgWRKY2, PgWRKY3, PgWRKY4, PgWRKY5, PgWRKY6, and PgWRKY7 were downregulated by MeJA treatment, while PgWRKY8 and PgWRKY9 were upregulated to varying degrees. Moreover, the PgWRKY genes increased or decreased by salicylic acid (SA), abscisic acid (ABA), and NaCl treatments. The results suggest that the PgWRKYs may be multiple stress-inducible genes responding to both salt and hormones.
Liu, Ying; Lucas-Hahn, Andrea; Petersen, Bjoern; Li, Rong; Hermann, Doris; Hassel, Petra; Ziegler, Maren; Larsen, Knud; Niemann, Heiner; Callesen, Henrik
2017-06-01
The "Dolly" based cloning (classical nuclear transfer, [CNT]) and the handmade cloning (HMC) are methods that are nowadays routinely used for somatic cloning of large domestic species. Both cloning protocols share several similarities, but differ with regard to the required in vitro culture, which in turn results in different time intervals until embryo transfer. It is not yet known whether the differences between cloned embryos from the two protocols are due to the cloning methods themselves or the in vitro culture, as some studies have shown detrimental effects of in vitro culture on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either with (D5 or D6) or without (D0) in vitro culture. Embryos cloned by these two methods had a similar morphological appearance on D0, but displayed different cleavage rates and different quality of blastocysts, with HMC embryos showing higher blastocyst rates (HMC vs. CNT: 35% vs. 10%, p < 0.05) and cell numbers per blastocyst (HMC vs. CNT: 31 vs. 23 on D5 and 42 vs. 18 on D6, p < 0.05) compared to CNT embryos. With regard to histone acetylation and gene expression, CNT and HMC derived cloned embryos were similar on D0, but differed on D6. In conclusion, both cloning methods and the in vitro culture may affect porcine embryo development and epigenetic profile. The two cloning methods essentially produce embryos of similar quality on D0 and after 5 days in vitro culture, but thereafter both histone acetylation and gene expression differ between the two types of cloned embryos.
René, P; Lenne, F; Ventura, M A; Bertagna, X; de Keyzer, Y
2000-01-04
In the pituitary, vasopressin triggers ACTH release through a specific receptor subtype, termed V3 or V1b. We cloned the V3 cDNA and showed that its expression was almost exclusive to pituitary corticotrophs and some corticotroph tumors. To study the determinants of this tissue specificity, we have now cloned the gene for the human (h) V3 receptor and characterized its structure. It is composed of two exons, spanning 10kb, with the coding region interrupted between transmembrane domains 6 and 7. We established that the transcription initiation site is located 498 nucleotides upstream of the initiator codon and showed that two polyadenylation sites may be used, while the most frequent is the most downstream. Sequence analysis of the promoter region showed no TATA box but identified consensus binding motifs for Sp1, CREB, and half sites of the estrogen receptor binding site. However comparison with another corticotroph-specific gene, proopiomelanocortin, did not identify common regulatory elements in the two promoters except for a short GC-rich region. Unexpectedly, hV3 gene analysis revealed that a formerly cloned 'artifactual' hV3 cDNA indeed corresponded to a spliced antisense transcript, overlapping the 5' part of the coding sequence in exon 1 and the promoter region. This transcript, hV3rev, was detected in normal pituitary and in many corticotroph tumors expressing hV3 sense mRNA and may therefore play a role in hV3 gene expression.
Diagnosis and Prevention of Infection by Nairoviruses
1990-10-12
Spodoptera frugiperda expressed proteins 21 ELISA antigens and antisera ................................... 22 ELISA protocol...clones................. 37 Expression of DUG N protein in Spodoptera frugiperda cells ........ 37 Cross-reaction of expressed DUG N protein with CCHF...plaque assayed in Spodoptera frugiperda cells essentially as described by Brown and Faulkner (1977). Construction of baculovirus recombinant clones: DUG
Cytokinin oxidase/dehydrogenase genes in barley and wheat: cloning and heterologous expression.
Galuszka, Petr; Frébortová, Jitka; Werner, Tomás; Yamada, Mamoru; Strnad, Miroslav; Schmülling, Thomas; Frébort, Ivo
2004-10-01
The cloning of two novel genes that encode cytokinin oxidase/dehydrogenase (CKX) in barley is described in this work. Transformation of both genes into Arabidopsis and tobacco showed that at least one of the genes codes for a functional enzyme, as its expression caused a cytokinin-deficient phenotype in the heterologous host plants. Additional cloning of two gene fragments, and an in silico search in the public expressed sequence tag clone databases, revealed the presence of at least 13 more members of the CKX gene family in barley and wheat. The expression of three selected barley genes was analyzed by RT-PCR and found to be organ-specific with peak expression in mature kernels. One barley CKX (HvCKX2) was characterized in detail after heterologous expression in tobacco. Interestingly, this enzyme shows a pH optimum at 4.5 and a preference for cytokinin ribosides as substrates, which may indicate its vacuolar targeting. Different substrate specificities, and the pH profiles of cytokinin-degrading enzymes extracted from different barley tissues, are also presented.
Wang, Yuan; Wu, Jing; Xu, Bi-Yu; Liu, Ju-Hua; Zhang, Jian-Bin; Jia, Cai-Hong; Jin, Zhi-Qiang
2010-08-15
A full-length cDNA encoding an ADP-ribosylation factor (ARF) from banana (Musa acuminata) fruit was cloned and named MaArf. It contains an open reading frame encoding a 181-amino-acid polypeptide. Sequence analysis showed that MaArf shared high similarity with ARF of other plant species. The genomic sequence of MaArf was also obtained using polymerase chain reaction (PCR). Sequence analysis showed that MaArf was a split gene containing five exons and four introns in genomic DNA. Reverse-transcriptase PCR was used to analyze the spatial expression of MaArf. The results showed that MaArf was expressed in all the organs examined: root, rhizome, leaf, flower and fruit. Real-time quantitative PCR was used to explore expression patterns of MaArf in postharvest banana. There was differential expression of MaArf associated with ethylene biosynthesis. In naturally ripened banana, expression of MaArf was in accordance with ethylene biosynthesis. However, in 1-methylcyclopropene-treated banana, the expression of MaArf was inhibited and changed little. When treated with ethylene, MaArf expression in banana fruit significantly increased in accordance with ethylene biosynthesis; the peak of MaArf was 3 d after harvest, 11 d earlier than for naturally ripened banana fruits. These results suggest that MaArf is induced by ethylene in regulating postharvest banana ripening. Finally, subcellular localization assays showed the MaArf protein in the cytoplasm. Copyright 2010 Elsevier GmbH. All rights reserved.
Yamada, Kazunari; Tso, Jonathan L.; Menjivar, Jimmy C.; Tian, Jane Y.; Yong, William H.; Schaue, Dörthe; Mischel, Paul S.; Cloughesy, Timothy F.; Nelson, Stanley F.; Liau, Linda M.; McBride, William; Tso, Cho-Lea
2013-01-01
Glioblastoma stem cells (GSC) are a significant cell model for explaining brain tumor recurrence. However, mechanisms underlying their radiochemoresistance remain obscure. Here we show that most clonogenic cells in GSC cultures are sensitive to radiation treatment (RT) with or without temozolomide (TMZ). Only a few single cells survive treatment and regain their self-repopulating capacity. Cells re-populated from treatment-resistant GSC clones contain more clonogenic cells compared to those grown from treatment-sensitive GSC clones, and repeated treatment cycles rapidly enriched clonogenic survival. When compared to sensitive clones, resistant clones exhibited slower tumor development in animals. Upregulated genes identified in resistant clones via comparative expression microarray analysis characterized cells under metabolic stress, including blocked glucose uptake, impaired insulin/Akt signaling, enhanced lipid catabolism and oxidative stress, and suppressed growth and inflammation. Moreover, many upregulated genes highlighted maintenance and repair activities, including detoxifying lipid peroxidation products, activating lysosomal autophagy/ubiquitin-proteasome pathways, and enhancing telomere maintenance and DNA repair, closely resembling the anti-aging effects of caloric/glucose restriction (CR/GR), a nutritional intervention that is known to increase lifespan and stress resistance in model organisms. Although treatment–introduced genetic mutations were detected in resistant clones, all resistant and sensitive clones were subclassified to either proneural (PN) or mesenchymal (MES) glioblastoma subtype based on their expression profiles. Functional assays demonstrated the association of treatment resistance with energy stress, including reduced glucose uptake, fatty acid oxidation (FAO)-dependent ATP maintenance, elevated reactive oxygen species (ROS) production and autophagic activity, and increased AMPK activity and NAD+ levels accompanied by upregulated mRNA levels of SIRT1/PGC-1α axis and DNA repair genes. These data support the view that treatment resistance may arise from quiescent GSC exhibiting a GR-like phenotype, and suggest that targeting stress response pathways of resistant GSC may provide a novel strategy in combination with standard treatment for glioblastoma. PMID:24260384
Chapter 7. Cloning and analysis of natural product pathways.
Gust, Bertolt
2009-01-01
The identification of gene clusters of natural products has lead to an enormous wealth of information about their biosynthesis and its regulation, and about self-resistance mechanisms. Well-established routine techniques are now available for the cloning and sequencing of gene clusters. The subsequent functional analysis of the complex biosynthetic machinery requires efficient genetic tools for manipulation. Until recently, techniques for the introduction of defined changes into Streptomyces chromosomes were very time-consuming. In particular, manipulation of large DNA fragments has been challenging due to the absence of suitable restriction sites for restriction- and ligation-based techniques. The homologous recombination approach called recombineering (referred to as Red/ET-mediated recombination in this chapter) has greatly facilitated targeted genetic modifications of complex biosynthetic pathways from actinomycetes by eliminating many of the time-consuming and labor-intensive steps. This chapter describes techniques for the cloning and identification of biosynthetic gene clusters, for the generation of gene replacements within such clusters, for the construction of integrative library clones and their expression in heterologous hosts, and for the assembly of entire biosynthetic gene clusters from the inserts of individual library clones. A systematic approach toward insertional mutation of a complete Streptomyces genome is shown by the use of an in vitro transposon mutagenesis procedure.
Revollo, Javier; Wang, Yiying; McKinzie, Page; Dad, Azra; Pearce, Mason; Heflich, Robert H; Dobrovolsky, Vasily N
2017-12-01
We used Sanger sequencing and next generation sequencing (NGS) for analysis of mutations in the endogenous X-linked Pig-a gene of clonally expanded L5178YTk +/- cells. The clones developed from single cells that were sorted on a flow cytometer based upon the expression pattern of the GPI-anchored marker, CD90, on their surface. CD90-deficient and CD90-proficient cells were sorted from untreated cultures and CD90-deficient cells were sorted from cultures treated with benzo[a]pyrene (B[a]P). Pig-a mutations were identified in all clones developed from CD90-deficient cells; no Pig-a mutations were found in clones of CD90-proficient cells. The spectrum of B[a]P-induced Pig-a mutations was dominated by basepair substitutions, small insertions and deletions at G:C, or at sequences rich in G:C content. We observed high concordance between Pig-a mutations determined by Sanger sequencing and by NGS, but NGS was able to identify mutations in samples that were difficult to analyze by Sanger sequencing (e.g., mixtures of two mutant clones). Overall, the NGS method is a cost and labor efficient high throughput approach for analysis of a large number of mutant clones. Published by Elsevier B.V.
Kato, Yoko; Li, Xiangping; Amarnath, Dasari; Ushizawa, Koichi; Hashizume, Kazuyoshi; Tokunaga, Tomoyuki; Taniguchi, Masanori; Tsunoda, Yukio
2007-01-01
Placental abnormalities are the main factor in the high incidence of somatic cell clone abnormalities. The expression of several trophoblast cell-specific molecules is enhanced during gestational days 7 to 14. To determine the possible genes whose expression patterns might reflect calf normality, we first compared the gene expression profiles on day 15 between in vitro-fertilized (IVF) embryos and two types of somatic cell nuclear-transferred embryos with either a high (FNT) or low (CNT) incidence of neonatal abnormalities using a cDNA microarray containing 16 of 21 placenta-specific genes developed from tissues collected across gestation. To identify significant genes from the screening of day 15 embryos, genes with a less than two-fold difference in expression between IVF and CNT embryos, and those with a greater than two-fold difference between IVF and FNT and between CNT and FNT were considered to contribute to clone abnormalities. These two comparisons revealed 18 down-regulated and 18 upregulated genes of the 1722 genes examined. We then examined the expression levels of 10 genes with known functions in eight-cell and blastocyst-stage embryos by real-time PCR. The mRNA expression pattern of interferon (IFN)-tau, a trophectoderm-related gene, differed between IVF, CNT, and FNT eight-cell embryos; few or none of the IVF or CNT eight-cell embryos expressed IFN-tau mRNA, but all eight-cell FNT embryos expressed IFN-tau. IFN-tau mRNA expression was significantly higher in IVF blastocysts, however, than in nuclear-transferred blastocysts. Average IFN-tau mRNA expression in FNT blastocysts was not different from that in CNT blastocysts, due to one CNT blastocyst with high expression. The precise relation between early expression of IFN-tau mRNA and inferior developmental potential in cloned embryos should be examined further.
Yuan, X L; Li, Y; Pan, X H; Zhou, M; Gao, Q Y; Li, M C
2016-01-01
Interleukin (IL)-38 is the latest member of the IL-1 cytokine family. However, as a result of lacking efficient method to generate relatively large quantity of IL-38, its precise functions are poorly understood. In the present study, the cloning, expression, purification, and activity analysis of recombinant human IL-38 was described. Human IL-38 cDNA was cloned into the prokaryotic expression vector pET-44. The recombinant IL-38 containing a C-hexahistidine tag was expressed in Escherichia coli BL21 (DE3) which induced by isopropyl-β-D-thiogalactoside. The expressed fusion protein was purified by Ni-NTA affinity chromatography. IL-38 protein was largely found in the soluble fraction. The purified IL-38 appeared a single band on SDS-PAGE, the yield of IL-38 was 4 mg from 1 L of bacterial culture, and the purity was more than 98% with low endotoxin level (<0.1 EU/μg). Western blotting confirmed the identity of the purified protein. Activity analysis showed that IL-38 can inhibit effectively the expression of proinflammatory cytokines, such as tumor necrosis factor-α, IL-1β, IL-17, and monocyte chemoattractant protein-1 in lipopolysaccharide-activated THP-1 cells. The production and characterization of biologically active IL-38 will be beneficial for its potential role in clinical applications.
O'Sullivan, D J; O'Gara, F
1991-08-01
An iron-regulated promoter was cloned on a 2.1 kb Bg/II fragment from Pseudomonas sp. strain M114 and fused to the lacZ reporter gene. Iron-regulated lacZ expression from the resulting construct (pSP1) in strain M114 was mediated via the Fur-like repressor which also regulates siderophore production in this strain. A 390 bp StuI-PstI internal fragment contained the necessary information for iron-regulated promoter expression. This fragment was sequenced and the initiation point for transcription was determined by primer extension analysis. The region directly upstream of the transcription start point contained no significant homology to known promoter consensus sequences. However the -16 to -25 bp region contained homology to four other iron-regulated pseudomonad promoters. Deletion of bases downstream from the transcriptional start did not affect the iron-regulated expression of the promoter. The -37 and -43 bp regions exhibited some homology to the 19 bp Escherichia coli Fur-binding consensus sequence. When expressed in E. coli (via a cloned transacting factor from strain M114) lacZ expression from pSP1 was found to be regulated by iron. A region of greater than 77 bases but less than 131 upstream from the transcriptional start was found to be necessary for promoter activity, further suggesting that a transcriptional activator may be required for expression.
Xia, Hui; Wu, Shan; Ma, Fengwang
2014-10-01
There is now biochemical and genetic evidence that oxidative cleavage of cis-epoxycarotenoids by 9-cis-epoxycarotenoid dioxygenase (NCED) is the critical step in the regulation of abscisic acid (ABA) synthesis in higher plants. To understand the expression characteristics of NCED during ABA biosynthesis in apple (Malus), two NCED genes cDNA sequence were cloned from Malus prunifolia using RT-PCR techniques, named MpNCED1 and MpNCED2. The two cDNA sequences have full-length open reading frame, encoding a polypeptide of 607 and 614 amino acids, respectively. Sequences analysis showed that the deduced two apple NCED proteins were highly homologous to other NCED proteins from different plant species. Real-time PCR analysis revealed MpNCED2 were expressed continuously during the whole period of apple fruit development with the pattern of "higher-low-highest", while the expression of MpNCED1 clearly declined to a steady low level in the mid-later period of fruit development. Expression of the MpNCED2 increased under the drought stress, high temperature and low temperature strongly and rapidly, whereas expression of the MpNCED1 was detected in response to temperature stress, but did not detected under drought stress. These results revealed that MpNCED1 and MpNCED2 may play different roles in regulation of the ABA biosynthesis in fruit development and various stresses response.
Abolhassani, Mohsen; Roux, Kenneth H
2009-06-01
Tree nuts, including almond (prunus dulcis) are a source of food allergens often associated with life-threatening allergic reactions in susceptible individuals. Although the proteins in almonds have been biochemically characterized, relatively little has been reported regarding the identity of the allergens involved in almond sensitivity. The present study was undertaken to identify the allergens of the almond by cDNA library approach. cDNA library of almond seeds was constructed in Uni-Zap XR lamda vector and expressed in E. coli XL-1 blue. Plaques were immunoscreened with pooled sera of allergic patients. The cDNA clone reacting significantly with specific IgE antibodies was selected and subcloned and subsequently expressed in E. coli. The amino acids deducted from PCR product of clone showed homology to 60s acidic ribosomal protein of almond. The expressed protein was 11,450 Dalton without leader sequence. Immunoreactivity of the recombinant 60s ribosomal protein (r60sRP) was evaluated with dot blot analysis using pooled and individual sera of allergic patients. The data showed that r60sRP and almond extract (as positive control) possess the ability to bind the IgE antibodies. The results showed that expressed protein is an almond allergen.Whether this r60sRP represents a major allergen of almond needs to be further studied which requires a large number of sera from the almond atopic patients and also need to determine the IgE-reactive frequencies of each individual allergen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, L.; Desbarats, M.; Viel, J.
1996-08-15
The recently identified human PEX g ene apparently encodes for a neutral endopeptidase that is mutated in patients with X-linked hypophosphatemia. The 3{prime} and 5{prime} ends of the coding region of PEX have not been cloned, nor has the tissue expression of the gene been identified. Here we report the isolation and characterization of the complete open reading frame of the mouse Pex gene and the demonstration of its expression in bone. Mouse Pex cDNA is predicted to encode a protein of 749 amino acids with 95% identity to the available human PEX sequence and significant homology to members ofmore » the membrane-bound metalloendopeptidase family. Northern blot analysis revealed a 6.6-kb transcript in bone and in cultured osteoblasts from normal mice that was not detectable in samples from the Hyp mouse, the murine homolog of human X-linked hypophosphatemia. Pex transcripts were, however, detectable in Hyp bone by RT-PCR amplification. Of particular interest, a cDNA clone from rat incisor shows 93% sequence identity to the 5{prime} end of Pex cDNA, suggesting that Pex may be expressed in another calcified tissue, the tooth. The association of impaired mineralization of bone and teeth and disturbed renal phosphate reabsorption with altered expression of Pex suggests that the Pex gene product may play a critical role in these processes. 47 refs., 2 figs., 1 tab.« less
Grimplet, Jérôme; Tello, Javier; Laguna, Natalia; Ibáñez, Javier
2017-01-01
Grapevine cluster compactness has a clear impact on fruit quality and health status, as clusters with greater compactness are more susceptible to pests and diseases and ripen more asynchronously. Different parameters related to inflorescence and cluster architecture (length, width, branching, etc.), fruitfulness (number of berries, number of seeds) and berry size (length, width) contribute to the final level of compactness. From a collection of 501 clones of cultivar Garnacha Tinta, two compact and two loose clones with stable differences for cluster compactness-related traits were selected and phenotyped. Key organs and developmental stages were selected for sampling and transcriptomic analyses. Comparison of global gene expression patterns in flowers at the end of bloom allowed identification of potential gene networks with a role in determining the final berry number, berry size and ultimately cluster compactness. A large portion of the differentially expressed genes were found in networks related to cell division (carbohydrates uptake, cell wall metabolism, cell cycle, nucleic acids metabolism, cell division, DNA repair). Their greater expression level in flowers of compact clones indicated that the number of berries and the berry size at ripening appear related to the rate of cell replication in flowers during the early growth stages after pollination. In addition, fluctuations in auxin and gibberellin signaling and transport related gene expression support that they play a central role in fruit set and impact berry number and size. Other hormones, such as ethylene and jasmonate may differentially regulate indirect effects, such as defense mechanisms activation or polyphenols production. This is the first transcriptomic based analysis focused on the discovery of the underlying gene networks involved in grapevine traits of grapevine cluster compactness, berry number and berry size. PMID:28496449
Grimplet, Jérôme; Tello, Javier; Laguna, Natalia; Ibáñez, Javier
2017-01-01
Grapevine cluster compactness has a clear impact on fruit quality and health status, as clusters with greater compactness are more susceptible to pests and diseases and ripen more asynchronously. Different parameters related to inflorescence and cluster architecture (length, width, branching, etc.), fruitfulness (number of berries, number of seeds) and berry size (length, width) contribute to the final level of compactness. From a collection of 501 clones of cultivar Garnacha Tinta, two compact and two loose clones with stable differences for cluster compactness-related traits were selected and phenotyped. Key organs and developmental stages were selected for sampling and transcriptomic analyses. Comparison of global gene expression patterns in flowers at the end of bloom allowed identification of potential gene networks with a role in determining the final berry number, berry size and ultimately cluster compactness. A large portion of the differentially expressed genes were found in networks related to cell division (carbohydrates uptake, cell wall metabolism, cell cycle, nucleic acids metabolism, cell division, DNA repair). Their greater expression level in flowers of compact clones indicated that the number of berries and the berry size at ripening appear related to the rate of cell replication in flowers during the early growth stages after pollination. In addition, fluctuations in auxin and gibberellin signaling and transport related gene expression support that they play a central role in fruit set and impact berry number and size. Other hormones, such as ethylene and jasmonate may differentially regulate indirect effects, such as defense mechanisms activation or polyphenols production. This is the first transcriptomic based analysis focused on the discovery of the underlying gene networks involved in grapevine traits of grapevine cluster compactness, berry number and berry size.
Shackleford, Gregory M; Ganguly, Amit; MacArthur, Craig A
2001-01-01
Background Studies suggest that the related proteins nucleoplasmin and nucleophosmin (also called B23, NO38 or numatrin) are nuclear chaperones that mediate the assembly of nucleosomes and ribosomes, respectively, and that these activities are accomplished through the binding of basic proteins via their acidic domains. Recently discovered and less well characterized members of this family of acidic phosphoproteins include mouse nucleophosmin/nucleoplasmin 3 (Npm3) and Xenopus NO29. Here we report the cloning and initial characterization of the human ortholog of Npm3. Results Human genomic and cDNA clones of NPM3 were isolated and sequenced. NPM3 lies 5.5 kb upstream of FGF8 and thus maps to chromosome 10q24-26. In addition to amino acid similarities, NPM3 shares many physical characteristics with the nucleophosmin/nucleoplasmin family, including an acidic domain, multiple potential phosphorylation sites and a putative nuclear localization signal. Comparative analyses of 14 members of this family from various metazoans suggest that Xenopus NO29 is a candidate ortholog of human and mouse NPM3, and they further group both proteins closer with the nucleoplasmins than with the nucleophosmins. Northern blot analysis revealed that NPM3 was strongly expressed in all 16 human tissues examined, with especially robust expression in pancreas and testis; lung displayed the lowest level of expression. An analysis of subcellular fractions of NIH3T3 cells expressing epitope-tagged NPM3 revealed that NPM3 protein was localized solely in the nucleus. Conclusions Human NPM3 is an abundant and widely expressed protein with primarily nuclear localization. These biological activities, together with its physical relationship to the chaparones nucleoplasmin and nucleophosmin, are consistent with the proposed function of NPM3 as a molecular chaperone functioning in the nucleus. PMID:11722795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Xiaokuang; Davis, F.C.; Ingram, L.O.
1997-02-01
Genomic libraries from nine cellobiose-metabolizing bacteria were screened for cellobiose utilization. Positive clones were recovered from six libraries, all of which encode phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) proteins. Clones from Bacillus subtilis, Butyrivibrio fibrisolvens, and Klebsiella oxytoca allowed the growth of recombinant Escherichia coli in cellobiose-M9 minimal medium. The K. oxytoca clone, pLOI1906, exhibited an unusually broad substrate range (cellobiose, arbutin, salicin, and methylumbelliferyl derivatives of glucose, cellobiose, mannose, and xylose) and was sequenced. The insert in this plasmid encoded the carboxy-terminal region of a putative regulatory protein, cellobiose permease (single polypeptide), and phospho-{beta}-glucosidase, which appear to form an operon (casRAB).more » Subclones allowed both casA and casB to be expressed independently, as evidenced by in vitro complementation. An analysis of the translated sequences from the EIIC domains of cellobiose, aryl-{beta}-glucoside, and other disaccharide permeases allowed the identification of a 50-amino-acid conserved region. A disaccharide consensus sequence is proposed for the most conserved segment (13 amino acids), which may represent part of the EIIC active site for binding and phosphorylation. 63 refs., 4 figs., 4 tabs.« less
Villand, P; Aalen, R; Olsen, O A; Lüthi, E; Lönneborg, A; Kleczkowski, L A
1992-06-01
Several cDNAs encoding the small and large subunit of ADP-glucose pyrophosphorylase (AGP) were isolated from total RNA of the starchy endosperm, roots and leaves of barley by polymerase chain reaction (PCR). Sets of degenerate oligonucleotide primers, based on previously published conserved amino acid sequences of plant AGP, were used for synthesis and amplification of the cDNAs. For either the endosperm, roots and leaves, the restriction analysis of PCR products (ca. 550 nucleotides each) has revealed heterogeneity, suggesting presence of three transcripts for AGP in the endosperm and roots, and up to two AGP transcripts in the leaf tissue. Based on the derived amino acid sequences, two clones from the endosperm, beps and bepl, were identified as coding for the small and large subunit of AGP, respectively, while a leaf transcript (blpl) encoded the putative large subunit of AGP. There was about 50% identity between the endosperm clones, and both of them were about 60% identical to the leaf cDNA. Northern blot analysis has indicated that beps and bepl are expressed in both the endosperm and roots, while blpl is detectable only in leaves. Application of the PCR technique in studies on gene structure and gene expression of plant AGP is discussed.
Aziminia, Parastoo; Pilehchian-Langroudi, Reza; Esmaeilnia, Kasra
2016-08-01
Clostridium perfringens, a Gram-positive obligate anaerobic bacterium, is able to form resistant spores which are widely distributed in the environment. C. perfringens is subdivided into five types A to E based on its four major alpha, beta, epsilon and iota toxins. The aim of the present study was cloning and expression of C. perfringens type D vaccine strain epsilon toxin gene. Genomic DNA was extracted and the epsilon toxin gene was amplified using Pfu DNA polymerase. The PCR product was cloned into pJET1.2/blunt cloning vector. The recombinant vector (pJETε) was sequenced using universal primers. At the next step epsilon toxin gene was subcloned into pET22b(+) expression vector and transformed into E. coli Rosetta (DE3) host strain. The recombinant protein has been expressed in E. coli Rosetta (DE3) cells after subcloning of C. perfringens etx gene (1008 bp) into the expression vector. We concluded that E. coli Rosetta strain was suitable for the expression of recombinant C. perfringens epsilon toxin protein from pET22ε expression vector. This recombinant cell can be used for further research on recombinant vaccine development.
Development of a Stable Cell Line, Overexpressing Human T-cell Immunoglobulin Mucin 1
Ebrahimi, Mina; Kazemi, Tohid; Ganjalikhani-hakemi, Mazdak; Majidi, Jafar; khanahmad, Hossein; Rahimmanesh, Ilnaz; Homayouni, Vida; Kohpayeh, Shirin
2015-01-01
Background Recent researches have demonstrated that human T-cell immunoglobulin mucin 1 (TIM-1) glycoprotein plays important roles in regulation of autoimmune and allergic diseases, as well as in tumor immunity and response to viral infections. Therefore, targeting TIM-1 could be a potential therapeutic approach against such diseases. Objectives In this study, we aimed to express TIM-1 protein on Human Embryonic kidney (HEK) 293T cell line in order to have an available source of the TIM-1 antigen. Materials and Methods The cDNA was synthesized after RNA extraction from peripheral blood mononuclear cells (PBMC) and TIM-1 cDNA was amplified by PCR with specific primers. The PCR product was cloned in pcDNA™3.1/Hygro (+) and transformed in Escherichia coli TOP 10 F’. After cloning, authenticity of DNA sequence was checked and expressed in HEK 293T cells. Finally, expression of TIM-1 was analyzed by flow cytometry and real-time PCR. Results The result of DNA sequencing demonstrated correctness of TIM-1 DNA sequence. The flow cytometry results indicated that TIM-1 was expressed in about 90% of transfected HEK 293T cells. The real-time PCR analysis showed TIM-1 mRNA expression increased 195-fold in transfected cells compared with un-transfected cells. Conclusions Findings of present study demonstrated the successful cloning and expression of TIM-1 on HEK 293T cells. These cells could be used as an immunogenic source for production of specific monoclonal antibodies, nanobodies and aptamers against human TIM-1. PMID:28959306
McPhaul, M; Berg, P
1986-01-01
The rat asialoglycoprotein receptor (ASGP-R) has been expressed in cultured rat hepatoma cells (HTC cells) after transfection with cloned cDNAs. Fluorescence-activated cell sorting of transfected cells was used to identify the functional cDNA clones and to isolate cells expressing the ASGP-R. Simultaneous or sequential transfections with two cloned cDNAs that encode related but distinctive polypeptide chains were needed to obtain ASGP-R activity; transfection with either cDNA alone failed to produce detectable ASGP-R. The affinity of transduced ASGP-R for asialo orosomucoid is less than that of the native rat ASGP-R, and the number of surface receptors in clones expressing ASGP-R is about one-fifth that found on rat hepatocytes. Images PMID:3466162
Zhang, Xiaoyang; Wang, Dongxu; Han, Yang; Duan, Feifei; Lv, Qinyan; Li, Zhanjun
2014-11-01
To determine the expression patterns of imprinted genes and their methylation status in aborted cloned porcine fetuses and placentas. RNA and DNA were prepared from fetuses and placentas that were produced by SCNT and controls from artificial insemination. The expression of 18 imprinted genes was determined by quantitative real-time PCR (q-PCR). Bisulfite sequencing PCR (BSP) was conducted to determine the methylation status of PRE-1 short interspersed repetitive element (SINE), satellite DNA and H19 differentially methylated region 3 (DMR3). The weight, imprinted gene expression and genome-wide DNA methylation patterns were compared between the mid-gestation aborted and normal control samples. The results showed hypermethylation of PRE-1 and satellite sequences, the aberrant expression of imprinted genes, and the hypomethylation of H19 DMR3 occurred in mid-gestation aborted fetuses and placentas. Cloned pigs generated by somatic cell nuclear transfer (SCNT) showed a greater ratio of early abortion during mid-gestation than did normal controls because of the incomplete epigenetic reprogramming of the donor cells. Altered expression of imprinted genes and the hypermethylation profile of the repetitive regions (PRE-1 and satellite DNA) may be associated with defective development and early abortion of cloned pigs, emphasizing the importance of epigenetics during pregnancy and implications thereof for patient-specific embryonic stem cells for human therapeutic cloning and improvement of human assisted reproduction.
Isolation and characterization of porcine adipose tissue-derived adult stem cells.
Williams, Kellie J; Picou, Alicia A; Kish, Sharon L; Giraldo, Angelica M; Godke, Robert A; Bondioli, Kenneth R
2008-01-01
Stem cell characteristics such as self-renewal, differentiation and expression of CD34 and CD44 stem cell markers have not been identified in porcine adipose tissue-derived adult stem (ADAS) cells. The objective of this study was to develop a protocol for the isolation and culture of porcine adipose tissue-derived cells and to determine stem cell-like characteristics. Primary cultures were established and cell cultures were maintained. Cloning capacity was determined using a ring cloning procedure. Primary cultures and clones were differentiated and stained for multiple differentiated phenotypes. CD34 and CD44 messenger ribonucleic acid (mRNA) was isolated and reverse transcriptase polymerase chain reaction was used to compare expression profiles. An average of 2,700,000 nucleated cells/ml was isolated; 26% were adherent, and cells completed a cell cycle approximately every 3.3 days. Ring cloning identified 19 colonies. Primary cultures and clones were determined to differentiate along osteogenic, adipogenic and chondrogenic tissue lineages. The mRNA expression profiles showed CD34 expression was higher for undifferentiated ADAS cells versus differentiated cell types and the CD34 expression level was lower than that of CD44 among differentiated cells. Improved culture conditions and defined cellular characteristics of these porcine ADAS cells have been identified. Porcine ADAS can self-renew, can differentiate into multiple tissue lineages and they express CD34. Copyright 2008 S. Karger AG, Basel.
Investigation of the Molecular Response of Belugas to Stressors
2014-09-30
beluga whale ( Delphinapterus leucas ) interleukin-1beta and tumor necrosis factor-alpha. Canadian Journal of Veterinary Research 9 (4):233–240. 6 Sitt...cloning, phylogenetic analysis and expression of beluga whale ( Delphinapterus leucas ) interleukin 6. Veterinary Immunology Immunopathology 73: 31-44
Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Akbari, Bahman; Ahdi Khosroshahi, Shiva
2016-12-01
Purpose: EGFRvIII as the most common mutant variant of the epidermal growth factor receptor is resulting from deletion of exons 2-7 in the coding sequence and junction of exons 1 and 8 through a novel glycine residue. EGFRvIII is highly expressed in glioblastoma, carcinoma of the breast, ovary, and lung but not in normal cells. The aim of the present study was identification of a novel single chain antibody against EGFRvIII as a promising target for cancer therapy. Methods: In this study, a synthetic peptide corresponding to EGFRvIII protein was used for screening a naive human scFv phage library. A novel five-round selection strategy was used for enrichment of rare specific clones. Results: After five rounds of screening, six positive scFv clones against EGFRvIII were selected using monoclonal phage ELISA, among them, only three clones had expected size in PCR reaction. The specific interaction of two of the scFv clones with EGFRvIII was confirmed by indirect ELISA. One phage clone with higher affinity in scFv ELISA was purified for further analysis. The purity of the produced scFv antibody was confirmed using SDS-PAGE and Western blotting analyses. Conclusion: In the present study, a human anti- EGFRvIII scFv with high affinity was first identified from a scFv phage library. This study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFRvIII expressing cancers.
Viscogliosi, E; Delgado-Viscogliosi, P; Gerbod, D; Dauchez, M; Gratepanche, S; Alix, A J; Dive, D
1998-04-01
A superoxide dismutase (SOD) gene of the parasitic protist Trichomonas vaginalis was cloned, sequenced, expressed in Escherichia coli, and its gene product characterized. It is an iron-containing dimeric protein with a monomeric mass of 22,067 Da. Southern blots analyses suggested the presence of seven iron-containing (FeSOD) gene copies. Hydrophobic cluster analysis revealed some peculiarities in the 2D structure of the FeSOD from T. vaginalis and a strong structural conservation between prokaryotic and eukaryotic FeSODs. Phylogenetic reconstruction of the SOD sequences confirmed the dichotomy between FeSODs and manganese-containing SODs. FeSODs of protists appeared to group together with homologous proteobacterial enzymes suggesting a possible origin of eukaryotic FeSODs through an endosymbiotic event.
de Vries, G E; Arfman, N; Terpstra, P; Dijkhuizen, L
1992-01-01
The gene (mdh) coding for methanol dehydrogenase (MDH) of thermotolerant, methylotroph Bacillus methanolicus C1 has been cloned and sequenced. The deduced amino acid sequence of the mdh gene exhibited similarity to those of five other alcohol dehydrogenase (type III) enzymes, which are distinct from the long-chain zinc-containing (type I) or short-chain zinc-lacking (type II) enzymes. Highly efficient expression of the mdh gene in Escherichia coli was probably driven from its own promoter sequence. After purification of MDH from E. coli, the kinetic and biochemical properties of the enzyme were investigated. The physiological effect of MDH synthesis in E. coli and the role of conserved sequence patterns in type III alcohol dehydrogenases have been analyzed and are discussed. Images PMID:1644761
[Cloning of human CD45 gene and its expression in Hela cells].
Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang
2015-11-01
To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.
Inoue, Kimiko; Ogura, Atsuo
2013-01-01
The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (P<1.0×10–26). In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1–5% per embryos transferred in our laboratory), because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT. PMID:24146866
Pang, Meixia; Tong, Jingou; Yu, Xiaomu; Fu, Beide; Zhou, Ying
2018-04-01
Follistatin (FST) is a single-chain gonadal protein involving in various biological effects. FST plays important roles in not only ovary development but also body growth, whereas myostatin (MSTN) negatively regulates muscle growth. In this study, FST gene in bighead carp (HynFST) was cloned and characterized. A 5797 bp genomic sequence of HynFST, consisting six exons and five introns were cloned. The full-length cDNA of HynFST (2134 bp) has an open reading fragment encoding a polypeptide of 349 amino acids. Sequence comparison and phylogenetic analysis confirmed that FSTs are conserved throughout the vertebrates and HynFST belongs to FST-1 isoform. Nine single nucleotide polymorphisms (SNPs) of the HynFST were identified and three of them (g.2443 T > C, g.2852 T > C and g.5483A > G) were significantly associated with four growth-related traits. The average body weight of those fish with the combined genotype (CC CC GG) was 12.15-22.63% higher than that of triplotype (TT TT AA) in two bighead carp populations. HynFST was expressed in most of the development stages and various tissues with highest level in ovary. The co-expression results for FST and MSTN in brain and muscle of divergent weight groups showed that FST may inhibit MSTN expression, thus enhancing growth in bighead carp. Our results suggest that FST has significant genetic effects on the regulation of early growth in bighead carp. This study would facilitate the elucidation of multiple functions of FST gene in fish and exploration of the potentials as a gene marker in selective breeding programs for growth of bighead carp. Copyright © 2018 Elsevier Inc. All rights reserved.
Cloning and characterization of the Cerasus humilis sucrose phosphate synthase gene (ChSPS1)
Du, Junjie; Mu, Xiaopeng; Wang, Pengfei
2017-01-01
Sucrose is crucial to the growth and development of plants, and sucrose phosphate synthase (SPS) plays a key role in sucrose synthesis. To understand the genetic and molecular mechanisms of sucrose synthesis in Cerasus humilis, ChSPS1, a homologue of SPS, was cloned using RT-PCR. Sequence analysis showed that the open reading frame (ORF) sequence of ChSPS1 is 3174 bp in length, encoding a predicted protein of 1057 amino acids. The predicted protein showed a high degree of sequence identity with SPS homologues from other species. Real-time RT-PCR analysis showed that ChSPS1 mRNA was detected in all tissues and the transcription level was the highest in mature fruit. There is a significant positive correlation between expression of ChSPS1 and sucrose content. Prokaryotic expression of ChSPS1 indicated that ChSPS1 protein was expressed in E. coli and it had the SPS activity. Overexpression of ChSPS1 in tobacco led to upregulation of enzyme activity and increased sucrose contents in transgenic plants. Real-time RT-PCR analysis showed that the expression of ChSPS1 in transgenic tobacco was significantly higher than in wild type plants. These results suggested that ChSPS1 plays an important role in sucrose synthesis in Cerasus humilis. PMID:29036229
Gong, Ya-Nan; Li, Wei-Wei; Sun, Jiang-Ling; Ren, Fei; He, Lin; Jiang, Hui; Wang, Qun
2010-09-16
Fatty acid-binding proteins (FABPs), small cytosolic proteins that function in the uptake and utilization of fatty acids, have been extensively studied in higher vertebrates while invertebrates have received little attention despite similar nutritional requirements during periods of reproductive activity. Therefore, a cDNA encoding Eriocheir sinensis FABP (Es-FABP) was cloned based upon EST analysis of a hepatopancreas cDNA library. The full length cDNA was 750 bp and encoded a 131 aa polypeptide that was highly homologous to related genes reported in shrimp. The 9108 bp Es-FABP gene contained four exons that were interrupted by three introns, a genomic organization common among FABP multigene family members in vertebrates. Gene expression analysis, as determined by RT-PCR, revealed the presence of Es-FABP transcripts in hepatopancreas, hemocytes, ovary, gills, muscle, thoracic ganglia, heart, and intestine, but not stomach or eyestalk. Real-time quantitative RT-PCR analysis revealed that Es-FABP expression in ovary, hemocytes, and hepatopancreas was dependent on the status of ovarian development, with peak expression observed in January. Evidence provided in the present report supports a role of Es-FABP in lipid transport during the period of rapid ovarian growth in E. sinensis, and indirectly confirms the participation of the hepatopancreas, ovary, and hemocytes in lipid nutrient absorption and utilization processes.
Neville, Claire; Murphy, Alan; Kavanagh, Kevin; Doyle, Sean
2005-04-01
Aspergillus fumigatus is a significant human pathogen. Non-ribosomal peptide (NRP) synthesis is thought to be responsible for a significant proportion of toxin and siderophore production in the organism. Furthermore, it has been shown that 4'-phosphopantetheinylation is required for the activation of key enzymes involved in non-ribosomal peptide synthesis in other species. Here we report the cloning, recombinant expression and functional characterisation of a 4'-phosphopantetheinyl transferase from A. fumigatus and the identification of an atypical NRP synthetase (Afpes1), spanning 14.3 kb. Phylogenetic analysis has shown that the NRP synthetase exhibits greatest identity to NRP synthetases from Metarhizium anisolpiae (PesA) and Alternaria brassicae (AbrePsy1). Northern hybridisation and RT-PCR analysis have confirmed that both genes are expressed in A. fumigatus. A 120 kDa fragment of the A. fumigatus NRP synthetase, containing a putative thiolation domain, was cloned and expressed in the baculovirus expression system. Detection of a 4'-phosphopantetheinylated peptide (SFSAMK) from this protein, by MALDI-TOF mass spectrometric analysis after coincubation of the 4'-phosphopantetheinyl transferase with the recombinant NRP synthetase fragment and acetyl CoA, confirms that it is competent to play a role in NRP synthetase activation in A. fumigatus. The 4'-phosphopantetheinyl transferase also activates, by 4'-phosphopantetheinylation, recombinant alpha-aminoadipate reductase (Lys2p) from Candida albicans, a key enzyme involved in lysine biosynthesis.
Guo, Tingting; Huang, Jinhu; Zhang, Hongyu; Dong, Lingling; Guo, Dawei; Guo, Li; He, Fang; Bhutto, Zohaib Ahmed; Wang, Liping
2016-01-01
P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp. PMID:27572343
Dortay, Hakan; Akula, Usha Madhuri; Westphal, Christin; Sittig, Marie; Mueller-Roeber, Bernd
2011-01-01
Protein expression in heterologous hosts for functional studies is a cumbersome effort. Here, we report a superior platform for parallel protein expression in vivo and in vitro. The platform combines highly efficient ligation-independent cloning (LIC) with instantaneous detection of expressed proteins through N- or C-terminal fusions to infrared fluorescent protein (IFP). For each open reading frame, only two PCR fragments are generated (with three PCR primers) and inserted by LIC into ten expression vectors suitable for protein expression in microbial hosts, including Escherichia coli, Kluyveromyces lactis, Pichia pastoris, the protozoon Leishmania tarentolae, and an in vitro transcription/translation system. Accumulation of IFP-fusion proteins is detected by infrared imaging of living cells or crude protein extracts directly after SDS-PAGE without additional processing. We successfully employed the LIC-IFP platform for in vivo and in vitro expression of ten plant and fungal proteins, including transcription factors and enzymes. Using the IFP reporter, we additionally established facile methods for the visualisation of protein-protein interactions and the detection of DNA-transcription factor interactions in microtiter and gel-free format. We conclude that IFP represents an excellent reporter for high-throughput protein expression and analysis, which can be easily extended to numerous other expression hosts using the setup reported here. PMID:21541323
Kianmehr, Anvarsadat; Golavar, Raziyeh; Rouintan, Mandana; Mahrooz, Abdolkarim; Fard-Esfahani, Pezhman; Oladnabi, Morteza; Khajeniazi, Safoura; Mostafavi, Seyede Samaneh; Omidinia, Eskandar
2016-02-01
Darbepoetin alfa is an engineered and hyperglycosylated analog of recombinant human erythropoietin (EPO) which is used as a drug in treating anemia in patients with chronic kidney failure and cancer. This study desribes the secretory expression of a codon-optimized recombinant form of darbepoetin alfa in Leishmania tarentolae T7-TR. Synthetic codon-optimized gene was amplified by PCR and cloned into the pLEXSY-I-blecherry3 vector. The resultant expression vector, pLEXSYDarbo, was purified, digested, and electroporated into the L. tarentolae. Expression of recombinant darbepoetin alfa was evaluated by ELISA, reverse-transcription PCR (RT-PCR), Western blotting, and biological activity. After codon optimization, codon adaptation index (CAI) of the gene raised from 0.50 to 0.99 and its GC% content changed from 56% to 58%. Expression analysis confirmed the presence of a protein band at 40 kDa. Furthermore, reticulocyte experiment results revealed that the activity of expressed darbepoetin alfa was similar to that of its equivalent expressed in Chinese hamster ovary (CHO) cells. These data suggested that the codon optimization and expression in L. tarentolae host provided an efficient approach for high level expression of darbepoetin alfa. Copyright © 2015 Elsevier Inc. All rights reserved.
Tian, Xue; Meng, Xiaolin; Wang, Liangyan; Song, Yunfei; Zhang, Danli; Ji, Yuankai; Li, Xuejun; Dong, Changsheng
2015-01-25
Slc7a11 encoding solute carrier family 7 member 11 (amionic amino acid transporter light chain, xCT), has been identified to be a critical genetic regulator of pheomelanin synthesis in hair and melanocytes. To better understand the molecular characterization of Slc7a11 and the expression patterns in skin of white versus brown alpaca (lama paco), we cloned the full length coding sequence (CDS) of alpaca Slc7a11 gene and analyzed the expression patterns using Real Time PCR, Western blotting and immunohistochemistry. The full length CDS of 1512bp encodes a 503 amino acid polypeptide. Sequence analysis showed that alpaca xCT contains 12 transmembrane regions consistent with the highly conserved amino acid permease (AA_permease_2) domain similar to other vertebrates. Sequence alignment and phylogenetic analysis revealed that alpaca xCT had the highest identity and shared the same branch with Camelus ferus. Real Time PCR and Western blotting suggested that xCT was expressed at significantly high levels in brown alpaca skin, and transcripts and protein possessed the same expression pattern in white and brown alpaca skins. Additionally, immunohistochemical analysis further demonstrated that xCT staining was robustly increased in the matrix and root sheath of brown alpaca skin compared with that of white. These results suggest that Slc7a11 functions in alpaca coat color regulation and offer essential information for further exploration on the role of Slc7a11 in melanogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.
Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko
2013-01-01
Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene-essential for normal development but never before expressed in cloned embryos-was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning.
Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions
NASA Technical Reports Server (NTRS)
Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael T.; Wilson, Bobby; Wu, Honglu
2014-01-01
Lung cancer induced from exposure to space radiation is believed to be one of the most significant health risks for long-term space travels. In a previous study, normal human bronchial epithelial cells (HBECs), immortalized through the expression of Cdk4 and hTERT, were exposed to gamma rays and high energy Fe ions for the selection of transformed clones induced by low- and high-LET radiation. In this research, we analyzed chromosome aberrations in these selected clones for genomic instability using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. In most of the clones, we found chromosomal aberrations involving translocations between different chromosomes, with several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed clones and the parental HBEC cells regardless of the exposure condition. Our results indicated that the chromosomal aberrations in low- and high radiation-induced transformed clones are inadequately different from spontaneous soft agar growth. Further analysis is underway to reveal the genomic instability in more transformed clones
Stinear, Timothy P.; Holt, Kathryn E.; Chua, Kyra; Stepnell, Justin; Tuck, Kellie L.; Coombs, Geoffrey; Harrison, Paul Francis; Seemann, Torsten; Howden, Benjamin P.
2014-01-01
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has emerged as a major public health problem around the world. In Australia, ST93-IV[2B] is the dominant CA-MRSA clone and displays significantly greater virulence than other S. aureus. Here, we have examined the evolution of ST93 via genomic analysis of 12 MSSA and 44 MRSA ST93 isolates, collected from around Australia over a 17-year period. Comparative analysis revealed a core genome of 2.6 Mb, sharing greater than 99.7% nucleotide identity. The accessory genome was 0.45 Mb and comprised additional mobile DNA elements, harboring resistance to erythromycin, trimethoprim, and tetracycline. Phylogenetic inference revealed a molecular clock and suggested that a single clone of methicillin susceptible, Panton-Valentine leukocidin (PVL) positive, ST93 S. aureus likely spread from North Western Australia in the early 1970s, acquiring methicillin resistance at least twice in the mid 1990s. We also explored associations between genotype and important MRSA phenotypes including oxacillin MIC and production of exotoxins (α-hemolysin [Hla], δ-hemolysin [Hld], PSMα3, and PVL). High-level expression of Hla is a signature feature of ST93 and reduced expression in eight isolates was readily explained by mutations in the agr locus. However, subtle but significant decreases in Hld were also noted over time that coincided with decreasing oxacillin resistance and were independent of agr mutations. The evolution of ST93 S. aureus is thus associated with a reduction in both exotoxin expression and oxacillin MIC, suggesting MRSA ST93 isolates are under pressure for adaptive change. PMID:24482534
Brandt, Gretchen A; Parks, Tina E; Killian, Gary; Ealy, Alan D; Green, Jonathan A
2007-11-01
The pregnancy-associated glycoproteins (PAGs) are placental proteins that have been cloned from swine, sheep, goats, and cattle, but never from animals within the Cervidae family. The goal of this work was to characterize PAGs in white-tailed deer. Placenta and uterine tissues were collected from pregnant does at days 85 and 90 of pregnancy. RNA from cotyledons was used to amplify deer PAGs by RT-PCR. Ten distinct cDNAs were cloned and sequenced. Some normally conserved amino acids comprising the catalytic site were found to be altered in deer PAGs 4, 5, and 8; another PAG, (PAG-9) was a splice variant that lacked exon 7. In each case, these mutations would likely preclude proteolytic activity for these proteins. A phylogenetic analysis revealed that most of the deer PAGs fell within the ancient PAG grouping. The remainder fell within the more modern (BNC-specific) PAG group. Western blotting was performed with anti-PAG antibodies and this analysis revealed that deer PAGs comprise a heterogeneous group based on different antigenicities and electrophoretic mobilities. Immunohistochemistry and in situ hybridization revealed some unique localization patterns of PAGs in the deer placentome compared to those in other ruminants. Most notably, deer PAGs 4 and 5, which according to the phylogeny, are "ancient PAGs," were expected to be present in all trophoblasts; instead, they were localized to the BNC. Although many of the PAGs identified here are very similar to those in Bovidae, some are clearly distinct in their expression pattern and probably possess functional roles unique to cervid reproduction. (c) 2007 Wiley-Liss, Inc.
Patnaik, Bharat Bhusan; Kang, Seong Min; Seo, Gi Won; Lee, Hyo Jeong; Patnaik, Hongray Howrelia; Jo, Yong Hun; Tindwa, Hamisi; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung; Bang, In Seok; Han, Yeon Soo
2013-10-15
CD63, a member of the tetraspanin membrane protein family, plays a pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of a coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic "Cys-Cys-Gly" motif and "Cys188" residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50%-56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcripts are upregulated to the maximum level of 4.5 fold, in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also caused significant increase to the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens.
Patnaik, Bharat Bhusan; Kang, Seong Min; Seo, Gi Won; Lee, Hyo Jeong; Patnaik, Hongray Howrelia; Jo, Yong Hun; Tindwa, Hamisi; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung; Bang, In Seok; Han, Yeon Soo
2013-01-01
CD63, a member of the tetraspanin membrane protein family, plays a pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of a coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic “Cys-Cys-Gly” motif and “Cys188” residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50%–56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcripts are upregulated to the maximum level of 4.5 fold, in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also caused significant increase to the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens. PMID:24132157
Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing
2014-11-06
Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved understanding of the roles of the Hsf gene family during stress responses and fiber development.
Dai, Nir; Petreikov, Marina; Portnoy, Vitaly; Katzir, Nurit; Pharr, David M.; Schaffer, Arthur A.
2006-01-01
The Cucurbitaceae translocate a significant portion of their photosynthate as raffinose and stachyose, which are galactosyl derivatives of sucrose. These are initially hydrolyzed by α-galactosidase to yield free galactose (Gal) and, accordingly, Gal metabolism is an important pathway in Cucurbitaceae sink tissue. We report here on a novel plant-specific enzyme responsible for the nucleotide activation of phosphorylated Gal and the subsequent entry of Gal into sink metabolism. The enzyme was antibody purified, sequenced, and the gene cloned and functionally expressed in Escherichia coli. The heterologous protein showed the characteristics of a dual substrate UDP-hexose pyrophosphorylase (PPase) with activity toward both Gal-1-P and glucose (Glc)-1-P in the uridinylation direction and their respective UDP-sugars in the reverse direction. The two other enzymes involved in Glc-P and Gal-P uridinylation are UDP-Glc PPase and uridyltransferase, and these were also cloned, heterologously expressed, and characterized. The gene expression and enzyme activities of all three enzymes in melon (Cucumis melo) fruit were measured. The UDP-Glc PPase was expressed in melon fruit to a similar extent as the novel enzyme, but the expressed protein was specific for Glc-1-P in the UDP-Glc synthesis direction and did not catalyze the nucleotide activation of Gal-1-P. The uridyltransferase gene was only weakly expressed in melon fruit, and activity was not observed in crude extracts. The results indicate that this novel enzyme carries out both the synthesis of UDP-Gal from Gal-1-P as well as the subsequent synthesis of Glc-1-P from the epimerase product, UDP-Glc, and thus plays a key role in melon fruit sink metabolism. PMID:16829585
Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas
2017-08-02
The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS hybrid clones exhibited a mesenchymal phenotype and, with the exception of one hybrid clone, responded to EGF with an increased migratory activity. Fusion of human breast epithelial cells and human breast cancer cells can give rise to hybrid clone cells that possess certain CS/IC properties, suggesting that cell fusion might be a mechanism underlying how tumor cells exhibiting a CS/IC phenotype could originate.
Takayama, Naoya; Nishimura, Satoshi; Nakamura, Sou; Shimizu, Takafumi; Ohnishi, Ryoko; Endo, Hiroshi; Yamaguchi, Tomoyuki; Otsu, Makoto; Nishimura, Ken; Nakanishi, Mahito; Sawaguchi, Akira; Nagai, Ryozo; Takahashi, Kazutoshi; Yamanaka, Shinya; Nakauchi, Hiromitsu
2010-01-01
Human (h) induced pluripotent stem cells (iPSCs) are a potentially abundant source of blood cells, but how best to select iPSC clones suitable for this purpose from among the many clones that can be simultaneously established from an identical source is not clear. Using an in vitro culture system yielding a hematopoietic niche that concentrates hematopoietic progenitors, we show that the pattern of c-MYC reactivation after reprogramming influences platelet generation from hiPSCs. During differentiation, reduction of c-MYC expression after initial reactivation of c-MYC expression in selected hiPSC clones was associated with more efficient in vitro generation of CD41a+CD42b+ platelets. This effect was recapitulated in virus integration-free hiPSCs using a doxycycline-controlled c-MYC expression vector. In vivo imaging revealed that these CD42b+ platelets were present in thrombi after laser-induced vessel wall injury. In contrast, sustained and excessive c-MYC expression in megakaryocytes was accompanied by increased p14 (ARF) and p16 (INK4A) expression, decreased GATA1 expression, and impaired production of functional platelets. These findings suggest that the pattern of c-MYC expression, particularly its later decline, is key to producing functional platelets from selected iPSC clones. PMID:21098095
Yokozaki, H; Tahara, H; Oue, N; Tahara, E
2000-01-01
A new transcription variant of hepatocyte growth factor/scatter factor (HGF/SF) was cloned from human gastric cancer cell line HSC-39. Northern blot analysis of eight human gastric cancer cell lines (TMK-1, MKN-1, MKN-7, MKN-28, MKN-45, MKN-74, KATO-III and HSC-39) demonstrated that HSC-39 cells expressed a 1.3 kb abnormal HGF/SF transcript. Screening of 1 x 10(6) colonies of cDNA library from HSC-39 constructed in pAP3neo mammalian expression vector selected four positive clones containing HGF/SF transcript. Among them, two contained a 1.3 kbp insert detecting the identical transcript to that obtained with HGF/SF probe by Northern blotting. Deoxynucleotide sequencing of the 1.3 kbp insert revealed that it was composed of a part of HGF/SF cDNA from exon 14 to exon 18, corresponding to the whole sequence of HGF/SF light chain, with 5' 75 nucleotides unrelated to any sequence involved in HGF/SF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seoung Hoon; Kim, Taesoo; Park, Eui-Soon
2008-05-02
Bone homeostasis is tightly regulated by the balanced actions of osteoblasts (OBs) and osteoclasts (OCs). We previously analyzed the gene expression profile of OC differentiation using a cDNA microarray, and identified a novel osteoclastogenic gene candidate, clone OCL-1-E7 [J. Rho, C.R. Altmann, N.D. Socci, L. Merkov, N. Kim, H. So, O. Lee, M. Takami, A.H. Brivanlou, Y. Choi, Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis, DNA Cell Biol. 21 (2002) 541-549]. In this study, we have isolated full-length cDNAs corresponding to this clone from mice and humans to determine the functionalmore » roles of this gene in osteoclastogenesis. The full-length cDNA of OCL-1-E7 encodes 12 membrane-spanning domains that are typical of isoforms of the Na{sup +}/H{sup +} exchangers (NHEs), indicating that this clone is a novel member of the NHE family (hereafter referred to as NHE10). Here, we show that NHE10 is highly expressed in OCs in response to receptor activator of nuclear factor-{kappa}B ligand signaling and is required for OC differentiation and survival.« less
Shanthi, S; Vaseeharan, B
2012-03-20
A new member of antimicrobial peptide genes of the penaeidin family, penaeidin 3, was cloned from the haemocytes of Indian white shrimp Fenneropeneaus indicus (F. indicus), by reverse transcription PCR (RT-PCR) and rapid amplification of cDNA end (RACE-PCR) methods. The complete nucleotide sequence of cDNA clone of Indian white shrimp F. indicus Penaeidin 3 (Fi-Pen3) was 243bp long and has an open reading frame which encodes 80 amino acid peptide. The homology analysis of Fi-Pen3 sequence with other Penaeidins 3 shows higher similarity with Penaeus monodon (92%). The theoretical 3D structure generated through ab initio modelling indicated the presence of two-disulphide bridges in the alpha-helix. The signal peptide sequence of Fi-Pen3 is almost entirely homologous to that of other Penaeidin 3 of crustaceans, while differing relatively in the N-terminal domain of the mature peptide. The mature peptide has a predicted molecular weight of 84.9kDa, and a theoretical pI of 9.38. Phylogenetic analysis of Fi-Pen3 shows high resemblance with other Pen-3 from P. monodon, Litopenaeus stylirostris, Litopenaeus vannamei and Litopenaeus setiferus. Fi-Pen3 found to be expressed in haemocytes, heart, hepatopancreas, muscles, gills, intestine, and eyestalk with higher expression in haemocytes. Microbial challenge resulted in mRNA up-regulation, up to 6h post injection of Vibrio parahemolyticus. The Fi-Pen3 mRNA expression of F. indicus in the premolt stage (D(01) and D(02)) was significantly up-regulated than the postmolt (A and B) and intermolt stages (C). The findings of the present paper underline the involvement of Fi-Pen3 in innate immune system of F. indicus. Copyright © 2011 Elsevier GmbH. All rights reserved.
Akeroyd, Michiel; Olsthoorn, Maurien; Gerritsma, Jort; Gutker-Vermaas, Diana; Ekkelkamp, Laurens; van Rij, Tjeerd; Klaassen, Paul; Plugge, Wim; Smit, Ed; Strupat, Kerstin; Wenzel, Thibaut; van Tilborg, Marcel; van der Hoeven, Rob
2013-03-10
In the discovery of new enzymes genomic and cDNA expression libraries containing thousands of differential clones are generated to obtain biodiversity. These libraries need to be screened for the activity of interest. Removing so-called empty and redundant clones significantly reduces the size of these expression libraries and therefore speeds up new enzyme discovery. Here, we present a sensitive, generic workflow for high throughput screening of successful microbial protein over-expression in microtiter plates containing a complex matrix based on mass spectrometry techniques. MALDI-LTQ-Orbitrap screening followed by principal component analysis and peptide mass fingerprinting was developed to obtain a throughput of ∼12,000 samples per week. Alternatively, a UHPLC-MS(2) approach including MS(2) protein identification was developed for microorganisms with a complex protein secretome with a throughput of ∼2000 samples per week. TCA-induced protein precipitation enhanced by addition of bovine serum albumin is used for protein purification prior to MS detection. We show that this generic workflow can effectively reduce large expression libraries from fungi and bacteria to their minimal size by detection of successful protein over-expression using MS. Copyright © 2012 Elsevier B.V. All rights reserved.
Xie, Wu-Wei; Gao, Shun; Wang, Sheng-Hua; Zhu, Jin-Qiu; Xu, Ying; Tang, Lin; Chen, Fang
2010-01-01
A full-length cDNA of the carboxyltransferase (accA) gene of acetyl-coenzym A (acetyl-CoA) carboxylase from Jatropha curcas was cloned and sequenced. The gene with an open reading frame (ORF) of 1149 bp encodes a polypeptide of 383 amino acids, with a molecular mass of 41.9 kDa. Utilizing fluorogenic real-time polymerase chain reaction (RT-PCR), the expression levels of the accA gene in leaves and fruits at early, middle and late stages under pH 7.0/8.0 and light/darkness stress were investigated. The expression levels of the accA gene in leaves at early, middle and late stages increased significantly under pH 8.0 stress compared to pH 7.0. Similarly, the expression levels in fruits showed a significant increase under darkness condition compared to the control. Under light stress, the expression levels in the fruits at early, middle and late stages showed the largest fluctuations compared to those of the control. These findings suggested that the expression levels of the accA gene are closely related to the growth conditions and developmental stages in the leaves and fruits of Jatropha curcas.
Expression and Bioinformatics Analysis of Pectate Lyase Gene from Bacillus subtilis521
NASA Astrophysics Data System (ADS)
Xiao, Jing; Lu, Fu-Ping; Li, Yu; Li, Jin-Ting
In order to exploit new genetic resources, Pectate lyase(PEL) gene was amplified by PCR using the genome DNA from an alkaline Bacillus subtilis521. The PCR product was inserted into pET22b(+) vector. The recombinant plasmids were cloned in E.coli DH5α and then expressed in E.coli BL21. When cultured in the optimized medium, the positive clones E.coli BL21(pET22b(+)pel)showed intracellular pectate lyase activity of 90.0 U/mL. It was indicated that we had obtained the correct PEL gene. The pel has an open reading frame of 1263 nucleotides and codes for a product of 420 amino acids with a calculated molecular mass of 45.5 kD. Based on computer assisted analysis, a signal peptides and two conserved domains were revealed. The sequence analysis for PEL showed that it shares 26-82% homology with other strains in GenBank. In addition, the advanced structure of PEL were also predicted and analysed. This study will help to the experimental design of PEL fermentation and production purification and enzyme evolution.
Naqvi, Kubra F.; Staker, Bart L.; Dobson, Renwick C. J.; ...
2016-01-01
The enzyme dihydrodipicolinate synthase catalyzes the committed step in the synthesis of diaminopimelate and lysine to facilitate peptidoglycan and protein synthesis. Dihydrodipicolinate synthase catalyzes the condensation of L-aspartate 4-semialdehyde and pyruvate to synthesize L-2,3-dihydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the pathogenic bacteriumBartonella henselae, the causative bacterium of cat-scratch disease, are presented. Protein crystals were grown in conditions consisting of 20%(w/v) PEG 4000, 100 mMsodium citrate tribasic pH 5.5 and were shown to diffract to ~2.10 Å resolution. They belonged to space groupP2 12 12 1, with unit-cell parametersa= 79.96,b= 106.33,c= 136.25more » Å. The finalRvalues wereR r.i.m.= 0.098,R work= 0.183,R free= 0.233.« less
Molecular analysis of human gamma/delta+ clones from thymus and peripheral blood
1989-01-01
We analyzed the V gamma and V delta gene usage in TCR-gamma/delta- bearing T cell clones isolated from human peripheral blood and postnatal thymus using V-specific mAbs and Southern and Northern analyses. In peripheral blood most of the gamma/delta cells express the V gamma 9-JP-C gamma 1 chain paired with a delta chain bearing the V delta 2 gene product. This heterodimer is very rare in the postnatal thymus, where a different and less restricted pairing of V gamma 9 and V delta 2 chains is found. These findings indicate that physical constraints cannot explain the overrepresentation of a particular V gamma 9-JP/V delta 2 heterodimer in the peripheral blood, and we discuss alternative mechanisms that may account for this differential distribution. In addition, this analysis allowed us to map the specificity of the delta TCS1 mAb to V delta 1-J delta 1 and to identify at least five different expressed V delta genes. PMID:2572670
Angov, E; Camerini-Otero, R D
1994-01-01
We have cloned, expressed, and purified the RecA analog from the thermophilic eubacterium Thermus aquaticus YT-1. Analysis of the deduced amino acid sequence indicates that the T. aquaticus RecA is structurally similar to the Escherichia coli RecA and suggests that RecA-like function has been conserved in thermophilic organisms. Preliminary biochemical analysis indicates that the protein has an ATP-dependent single-stranded DNA binding activity and can pair and carry out strand exchange to form a heteroduplex DNA under reaction conditions previously described for E. coli RecA, but at 55 to 65 degrees C. Further characterization of a thermophilically derived RecA protein should yield important information concerning DNA-protein interactions at high temperatures. In addition, a thermostable RecA protein may have some general applicability in stabilizing DNA-protein interactions in reactions which occur at high temperatures by increasing the specificity (stringency) of annealing reactions. Images PMID:8113181
Inoue, Masaharu; Kikuchi, Maho; Komoriya, Tomoe; Watanabe, Kunitomo; Kouno, Hideki
2007-01-01
Clostridium perfringens (C. perfringens) is a Gram-positive bacterial pathogen that widely propagets in the soil and the gastrointestinal tract of human and animals. This bacteria causes food poisoning, gas gangrene and other various range of infectious diseases. But there is no standard diagnosis method of C. perfringens. In order to develop a new type of immunoassay for clinical purpose, we studied expression and extracellular secretion of recombinant alpha-toxin having enzyme activity in E. coli expression system. Cloning was carried out after PCR amplification from C. perfringens GAI 94074 which was clinical isolate. Three kinds of fragment were cloned using pET100/D-TOPO vector. These fragments coded for ribosome binding site, signal peptide, and alpha-toxin gene respectively. Recombinant pET100 plasmid transformed into TOP 10 cells and the obtained plasmids were transformed into BL21 (DE3) cells. Then, the transformants were induced expression with IPTG. In conclusion, we successfully cloned, expressed and exteracellular secreted C. perfringens alpha-toxin containing signal peptide. Biologically, the obtained recombinant protein was positive for phospholipase C activity.
Ulvsbäck, M; Lindström, C; Weiber, H; Abrahamsson, P A; Lilja, H; Lundwall, A
1989-11-15
In order to study the gene expression of the seminal plasma protein beta-microseminoprotein, also known as PSP94 and beta-inhibin, clones encoding this protein were isolated from a cDNA library constructed in lambda gt11. Nucleotide sequencing confirmed the structure of a previously cloned cDNA. By northern blot analysis identical sized transcripts were demonstrated in the prostate, the respiratory (tracheal, bronchial and lung) tissues and the antrum part of the gastric mucosa. Thus, the protein is not primarily associated with male reproductive function. Although probably of no physiological significance, a slight structural similarity to the ovarian inhibin beta-chains was identified in the C-terminal half of the molecule.
Medeiros, Flavia Natércia da Silva
2013-11-30
Different conceptions of nature influence media coverage and public opinion about biotechnology. This study reports on a discourse analysis of the ideas about nature and what is natural expressed in Brazilian media coverage of cloning and stem cell research. In the discourse against this research, the biotechnologies in question are placed outside the natural order of things and deemed immoral. In the discourse of those who defend it, nature is portrayed as indifferent to the fate of humans or even cruel, or else a barrier to be overcome, while cloning and embryonic stem cells are naturalized and Dolly the sheep is anthropomorphized. The mythifying or transcendental representations of nature do not just influence public opinion, but also have ethical and political implications.
Cloning and Expression of Yak Active Chymosin in Pichia pastoris
Luo, Fan; Jiang, Wei Hua; Yang, Yuan Xiao; Li, Jiang; Jiang, Ming Feng
2016-01-01
Rennet, a complex of enzymes found in the stomachs of ruminants, is an important component for cheese production. In our study, we described that yak chymosin gene recombinant Pichia pastoris strain could serve as a novel source for rennet production. Yaks total RNA was extracted from the abomasum of an unweaned yak. The yak preprochymosin, prochymosin, and chymosin genes from total RNA were isolated using gene specific primers based on cattle chymosin gene sequence respectively and analyzed their expression pattern byreal time-polymerase chain reaction. The result showed that the chymosin gene expression level of the sucking yaks was 11.45 times higher than one of adult yaks and yak chymosin belongs to Bovidae family in phylogenetic analysis. To express each, the preprochymosin, prochymosin, and chymosin genes were ligated into the expression vector pPICZαA, respectively, and were expressed in Pichia pastoris X33. The results showed that all the recombinant clones of P. pastoris containing the preprochymosin, prochymosin or chymosin genes could produce the active form of recombinant chymosin into the culture supernatant. Heterologous expressed prochymosin (14.55 Soxhlet unit/mL) had the highest enzyme activity of the three expressed chymosin enzymes. Therefore, we suggest that the yak chymosin gene recombinant Pichia pastoris strain could provide an alternative source of rennet production. PMID:27004812
Cloning and Expression of Yak Active Chymosin in Pichia pastoris.
Luo, Fan; Jiang, Wei Hua; Yang, Yuan Xiao; Li, Jiang; Jiang, Ming Feng
2016-09-01
Rennet, a complex of enzymes found in the stomachs of ruminants, is an important component for cheese production. In our study, we described that yak chymosin gene recombinant Pichia pastoris strain could serve as a novel source for rennet production. Yaks total RNA was extracted from the abomasum of an unweaned yak. The yak preprochymosin, prochymosin, and chymosin genes from total RNA were isolated using gene specific primers based on cattle chymosin gene sequence respectively and analyzed their expression pattern byreal time-polymerase chain reaction. The result showed that the chymosin gene expression level of the sucking yaks was 11.45 times higher than one of adult yaks and yak chymosin belongs to Bovidae family in phylogenetic analysis. To express each, the preprochymosin, prochymosin, and chymosin genes were ligated into the expression vector pPICZαA, respectively, and were expressed in Pichia pastoris X33. The results showed that all the recombinant clones of P. pastoris containing the preprochymosin, prochymosin or chymosin genes could produce the active form of recombinant chymosin into the culture supernatant. Heterologous expressed prochymosin (14.55 Soxhlet unit/mL) had the highest enzyme activity of the three expressed chymosin enzymes. Therefore, we suggest that the yak chymosin gene recombinant Pichia pastoris strain could provide an alternative source of rennet production.
TBX1 Represses Vegfr2 Gene Expression and Enhances the Cardiac Fate of VEGFR2+ Cells
Lania, Gabriella; Ferrentino, Rosa; Baldini, Antonio
2015-01-01
The T-box transcription factor TBX1 has critical roles in maintaining proliferation and inhibiting differentiation of cardiac progenitor cells of the second heart field (SHF). Haploinsufficiency of the gene that encodes it is a cause of congenital heart disease. Here, we developed an embryonic stem (ES) cell-based model in which Tbx1 expression can be modulated by tetracycline. Using this model, we found that TBX1 down regulates the expression of VEGFR2, and we confirmed this finding in vivo during embryonic development. In addition, we found a Vegfr2 domain of expression, not previously described, in the posterior SHF and this expression is extended by loss of Tbx1. VEGFR2 has been previously described as a marker of a subpopulation of cardiac progenitors. Clonal analysis of ES-derived VEGFR2+ cells indicated that 12.5% of clones expressed three markers of cardiac lineage (cardiomyocyte, smooth muscle and endothelium). However, a pulse of Tbx1 expression was sufficient to increase the percentage to 20.8%. In addition, the percentage of clones expressing markers of multiple cardiac lineages increased from 41.6% to 79.1% after Tbx1 pulse. These results suggest that TBX1 plays a role in maintaining a progenitor state in VEGFR2+ cells. PMID:26382615
Tuan, Pham Anh; Kim, Jae Kwang; Lee, Sanghyun; Chae, Soo Cheon; Park, Sang Un
2012-12-05
Riboflavin (vitamin B2) is the universal precursor of the coenzymes flavin mononucleotide and flavin adenine dinucleotide--cofactors that are essential for the activity of a wide variety of metabolic enzymes in animals, plants, and microbes. Using the RACE PCR approach, cDNAs encoding lumazine synthase (McLS) and riboflavin synthase (McRS), which catalyze the last two steps in the riboflavin biosynthetic pathway, were cloned from bitter melon (Momordica charantia), a popular vegetable crop in Asia. Amino acid sequence alignments indicated that McLS and McRS share high sequence identity with other orthologous genes and carry an N-terminal extension, which is reported to be a plastid-targeting sequence. Organ expression analysis using quantitative real-time RT PCR showed that McLS and McRS were constitutively expressed in M. charantia, with the strongest expression levels observed during the last stage of fruit ripening (stage 6). This correlated with the highest level of riboflavin content, which was detected during ripening stage 6 by HPLC analysis. McLS and McRS were highly expressed in the young leaves and flowers, whereas roots exhibited the highest accumulation of riboflavin. The cloning and characterization of McLS and McRS from M. charantia may aid the metabolic engineering of vitamin B2 in crops.
Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer.
Inoue, Kimiko; Kohda, Takashi; Sugimoto, Michihiko; Sado, Takashi; Ogonuki, Narumi; Matoba, Shogo; Shiura, Hirosuke; Ikeda, Rieko; Mochida, Keiji; Fujii, Takashi; Sawai, Ken; Otte, Arie P; Tian, X Cindy; Yang, Xiangzhong; Ishino, Fumitoshi; Abe, Kuniya; Ogura, Atsuo
2010-10-22
Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that inactivates one of the two X chromosomes in females, was ectopically expressed from the active X (Xa) chromosome in cloned mouse embryos of both sexes. Deletion of Xist on Xa showed normal global gene expression and resulted in about an eight- to ninefold increase in cloning efficiency. We also identified an Xist-independent mechanism that specifically down-regulated a subset of X-linked genes through somatic-type repressive histone blocks. Thus, we have identified nonrandom reprogramming errors in mouse cloning that can be altered to improve the efficiency of SCNT methods.
Hong, Y K; Kim, D H; Beletskii, A; Lee, C; Memili, E; Strauss, W M
2001-04-01
Most conditional expression vectors designed for mammalian cells have been valuable systems for studying genes of interest by regulating their expressions. The available vectors, however, are reliable for the short-length cDNA clones and not optimal for relatively long fragments of genomic DNA or long cDNAs. Here, we report the construction of two bacterial artificial chromosome (BAC) vectors, capable of harboring large inserts and shuttling among Escherichia coli, yeast, and mammalian cells. These two vectors, pEYMT and pEYMI, contain conditional expression systems which are designed to be regulated by tetracycline and mouse interferons, respectively. To test the properties of the vectors, we cloned in both vectors the green fluorescence protein (GFP) through an in vitro ligation reaction and the 17.8-kb-long X-inactive-specific transcript (Xist) cDNA through homologous recombination in yeast. Subsequently, we characterized their regulated expression properties using real-time quantitative RT-PCR (TaqMan) and RNA-fluorescent in situ hybridization (FISH). We demonstrate that these two BAC vectors are good systems for recombination-based cloning and regulated expression of large genes in mammalian cells. Copyright 2001 Academic Press.
Cloning of a yeast alpha-amylase promoter and its regulated heterologous expression
Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR; Hooker, Brian S [Kennewick, WA; Anderson, Daniel B [Pasco, WA
2003-04-01
The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.
An investigative graduate laboratory course for teaching modern DNA techniques.
de Lencastre, Alexandre; Thomas Torello, A; Keller, Lani C
2017-07-08
This graduate-level DNA methods laboratory course is designed to model a discovery-based research project and engages students in both traditional DNA analysis methods and modern recombinant DNA cloning techniques. In the first part of the course, students clone the Drosophila ortholog of a human disease gene of their choosing using Gateway ® cloning. In the second part of the course, students examine the expression of their gene of interest in human cell lines by reverse transcription PCR and learn how to analyze data from quantitative reverse transcription PCR (qRT-PCR) experiments. The adaptability of the Gateway ® cloning system is ideally suited for students to design and create different types of expression constructs to achieve a particular experimental goal (e.g., protein purification, expression in cell culture, and/or subcellular localization), and the genes chosen can be aligned to the research interests of the instructor and/or ongoing research in a department. Student evaluations indicate that the course fostered a genuine excitement for research and in depth knowledge of both the techniques performed and the theory behind them. Our long-term goal is to incorporate this DNA methods laboratory as the foundation for an integrated laboratory sequence for the Master of Science degree program in Molecular and Cellular Biology at Quinnipiac University, where students use the reagents and concepts they developed in this course in subsequent laboratory courses, including a protein methods and cell culture laboratory. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):351-359, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Identification and Cloning of gusA, Encoding a New β-Glucuronidase from Lactobacillus gasseri ADH†
Russell, W. M.; Klaenhammer, T. R.
2001-01-01
The gusA gene, encoding a new β-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a β-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored β-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to β-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a β-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified β-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested. PMID:11229918
Akbarzadeh-Sharbaf, Soudabeh; Yakhchali, Bagher; Minuchehr, Zarrin; Shokrgozar, Mohammad Ali; Zeinali, Sirous
2012-01-01
Background: There is a novel hypothesis in that antibodies may have specificity for two distinct antigens that have been named “dual specificity”. This hypothesis was evaluated for some defined therapeutic monoclonal antibodies (mAbs) such as Trastuzumab, Pertuzumab, Bevacizumab, and Cetuximab. In silico design and construction of expression vectors for trastuzumab monoclonal antibody also in this work were performed. Materials and Methods: First, in bioinformatics studies the 3D structures of concerned mAbs were obtained from the Protein Data Bank (PDB). Three-dimensional structural alignments were performed with SIM and MUSTANG softwares. AutoDock4.2 software also was used for the docking analysis. Second, the suitable genes for trastuzumab heavy and light chains were designed, synthesized, and cloned in the prokaryotic vector. These fragments individually were PCR amplified and cloned into pcDNA™ 3.3-TOPO® and pOptiVEC™ TOPO® shuttle vectors, using standard methods. Results: First, many bioinformatics tools and softwares were applied but we did not meet any new dual specificity in the selected antibodies. In the following step, the suitable expression cascade for the heavy and light chains of Trastuzumab therapeutic mAb were designed and constructed. Gene cloning was successfully performed and created constructs were confirmed using gene mapping and sequencing. Conclusions: This study was based on a recently developed technology for mAb expression in mammalian cells. The obtained constructs could be successfully used for biosimilar recombinant mAb production in CHO DG44 dihydrofolate reductase (DHFR) gene deficient cell line in the suspension culture medium. PMID:23210080
Cloning, expression and crystallisation of SGT1 co-chaperone protein from Glaciozyma antarctica
NASA Astrophysics Data System (ADS)
Yusof, Nur Athirah; Bakar, Farah Diba Abu; Beddoe, Travis; Murad, Abdul Munir Abdul
2013-11-01
Studies on psycrophiles are now in the limelight of today's post genomic era as they fascinate the research and development industries. The discovery from Glaciozyma antarctica, an extreme cold adapted yeast from Antarctica shows promising future to provide cost effective natural sustainable energy and create wider understanding of the property that permits this organisms to adapt to extreme temperature downshift. In plants and yeast, studies show the interaction between SGT1 and HSP90 are essential for disease resistance and heat stress by activating a number of resistance proteins. Here we report for the first time cloning, expression and crystallization of the recombinant SGT1 protein of G. antarctica (rGa_SGT1), a highly conserved eukaryotic protein that interacts with the molecular chaperones HSP90 (heat shock protein 90) apparently associated in a role of co-chaperone that may play important role in cold adaptation. The sequence analysis of rGa_SGT1 revealed the presence of all the characteristic features of SGT1 protein. In this study, we present the outlines and results of protein structural study of G. antarctica SGT1 protein. We validate this approach by starting with cloning the target insert into Ligation Independent Cloning system proceeded with expression using E. coli system, and crystallisation of the target rGA_SGT1 protein. The work is still on going with the target subunit of the complex proteins yielded crystals. These results, still ongoing, open a platform for better understanding of the uniqueness of this crucial molecular machine function in cold adaptation.
NASA Astrophysics Data System (ADS)
Haryati, Sri; Agung Prasetyo, Afiono; Sari, Yulia; Dharmawan, Ruben
2018-05-01
Toxoplasma gondii Surface Antigen 1 (SAG1) is often used as a diagnostic tool due to its immunodominant-specific as antigen. However, data of the Toxoplasma gondii SAG1 protein from Indonesian isolate is limited. To study the protein, genomic DNA was isolated from a Javanese acute toxoplasmosis blood samples patient. A complete coding sequence of Toxoplasma gondii SAG1 was cloned and inserted into an Escherichia coli expression plasmid and sequenced. The sequencing results were subjected to bioinformatics analysis. The Toxoplasma gondii SAG1 complete coding sequences were successfully cloned. Physicochemical analysis revealed the 336 aa of SAG1 had 34.7 kDa of weight. The isoelectric point and aliphatic index were 8.4 and 78.4, respectively. The N-terminal methionine half-life in Escherichia coli was more than 10 hours. The antigenicity, secondary structure, and identification of the HLA binding motifs also had been discussed. The results of this study would contribute information about Toxoplasma gondii SAG1 and benefits for further works willing to develop diagnostic and therapeutic strategies against the parasite.
Hu, Jian-Jian; Chen, Yu-Lei; Duan, Xue-Kun; Jin, Teng-Chuan; Li, Yue; Zhang, Ling-Jing; Liu, Guang-Ming; Cao, Min-Jie
2018-01-01
Vibrio parahemolyticus (V. parahemolyticus) is a major pathogen for abalone, an important economical shellfish in coastal area of China. There is little known about the abalone innate immune system against pathogen infection. Clip-domain serine proteases (cSPs) are increasingly recognized to play important roles in host immune defense in invertebrates. In this study, we cloned a cSP (Hdh-cSP) from abalone (Haliotis discus hannai). We found out that Hdh-cSP was widely expressed in multiple tissues of abalone, with highest level in the immune-like organ, hepatopancreas. V. parahemolyticus infection induced significantly elevated expression of Hdh-cSP in addition to better-characterized innate immune component genes including Rel/NF-κB, allograft inflammatory factor (ALInFa), macrophage expressed protein (MEP) and caspase-8. Importantly, the silencing of Hdh-cSP reduced the expression of these genes, suggesting that Hdh-cSP was an upstream regulatory factor in V. parahemolyticus infection. Further analysis showed that apoptosis of hemocytes was inhibited when the transcription of Hdh-cSP was knocked down, suggesting that Hdh-cSP participated in cell apoptosis by regulation of caspase 8 expression in V. parahemolyticus infection. Therefore, our study established an important role of cSP in the innate immunity against V. parahemolyticus infection in abalone. Copyright © 2017 Elsevier Ltd. All rights reserved.
Porco, Antonietta; Gamero, Elida E; Mylonás, Elena; Istúriz, Tomás
2008-01-01
Corynebacterium glutamicum is widely used in the industrial production of amino acids. We have found that this bacterium grows exponentially on a mineral medium supplemented with gluconate. Gluconate permease and Gluconokinase are expressed in an inducible form and, 6-phosphogluconate dehydrogenase, although constitutively expressed, shows a 3-fold higher specific level in gluconate grown cells than those grown in fructose under similar conditions. Interestingly, these activities are lower than those detected in the strain Escherichia coli M1-8, cultivated under similar conditions. Additionally, here we also confirmed that this bacterium lacks 6-phosphogluconate dehydratase activity. Thus, gluconate must be metabolized through the pentose phosphate pathway. Genes encoding gluconate transport and its phosphorylation were cloned from C. glutamicum, and expressed in suitable E. coli mutants. Sequence analysis revealed that the amino acid sequences obtained from these genes, denoted as gntP and gntK, were similar to those found in other bacteria. Analysis of both genes by RT-PCR suggested constitutive expression, in disagreement with the inducible character of their corresponding activities. The results suggest that gluconate might be a suitable source of reduction potential for improving the efficiency in cultures engaged in amino acids production. This is the first time that gluconate specific enzymatic activities are reported in C. glutamicum.
Molecular cloning and sequence analysis of stearoyl-CoA desaturase in milkfish, Chanos chanos.
Hsieh, S L; Liao, W L; Kuo, C M
2001-12-01
Stearoyl-CoA desaturase (EC 1.14.99.5) is a key enzyme in the biosynthesis of polyunsaturated fatty acids and the maintenance of the homeoviscous fluidity of biological membranes. The stearoyl-CoA desaturase cDNA in milkfish (Chanos chanos) was cloned by RT-PCR and RACE, and it was compared with the stearoyl-CoA desaturase in cold-tolerant teleosts, common carp and grass carp. Nucleotide sequence analysis revealed that the cDNA clone has a 972-bp open reading frame encoding 323 amino acid residues. Alignments of the deduced amino acid sequence showed that the milkfish stearoyl-CoA desaturase shares 79% and 75% identity with common carp and grass carp, and 63%-64% with other vertebrates such as sheep, hamsters, rats, mice, and humans. Like common carp and grass carp, the deduced amino acid sequence in milkfish well conserves three histidine cluster motifs (one HXXXXH and two HXXHH) that are essential for catalysis of stearoyl-CoA desaturase activity. However, RT-PCR analysis showed that stearoyl-CoA desaturase expression in milkfish is detected in the tissues of liver, muscle, kidney, brain, and gill, and more expression sites were found in milkfish than in common carp and grass carp. Phylogenic relationships among the deduced stearoyl-CoA desaturase amino acid sequence in milkfish and those in other vertebrates showed that the milkfish stearoyl-CoA desaturase amino acid sequence is phylogenetically closer to those of common carp and grass carp than to other higher vertebrates.
Tajima, Shoji; Shinohara, Keiko; Fukumoto, Maiko; Zaitsu, Reiko; Miyagawa, Junichi; Hino, Shinjiro; Fan, Jun; Akasaka, Koji; Matsuoka, Masao
2006-04-01
Sea urchin arylsulfatase (Ars) gene locus has features of an insulator, i.e., blocking of enhancer and promoter interaction, and protection of a transgene against positional effects [Akasaka et al. (1999) Cell. Mol. Biol. 45, 555-565]. To examine the effect of Ars insulator on long-term expression of a transgene, the insulator was inserted into LTR of retrovirus vector harboring hrGFP gene as a reporter, and then introduced into mouse myoblast cells. The isolated clones transduced with the reporter gene with or without Ars insulator were cultured for more than 20 wk in the absence of a selection reagent, and the expression of hrGFP was periodically determined. Expression of hrGFP in four clones transduced with the reporter gene without Ars insulator was completely silenced after 20 wk of culture. On the other hand, hrGFP was expressed in all clones with Ars insulator inserted in one of the two different orientations. Histone H3 deacetylation and DNA methylation of the 5'LTR promoter region, signs for heterochromatin and silencing, were suppressed in the clones that were expressing hrGFP. Ars insulator is effective in maintaining a transgene in mouse cells in an orientation-dependent manner, and will be a useful tool to ensure stable expression of a transgene.
Nectoux, J; Fichou, Y; Rosas-Vargas, H; Cagnard, N; Bahi-Buisson, N; Nusbaum, P; Letourneur, F; Chelly, J; Bienvenu, T
2010-07-01
More than 90% of Rett syndrome (RTT) patients have heterozygous mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene that encodes the methyl-CpG-binding protein 2, a transcriptional modulator. Because MECP2 is subjected to X chromosome inactivation (XCI), girls with RTT either express the wild-type or mutant allele in each individual cell. To test the consequences of MECP2 mutations resulting from a genome-wide transcriptional dysregulation and to identify its target genes in a system that circumvents the functional mosaicism resulting from XCI, we carried out gene expression profiling of clonal populations derived from fibroblast primary cultures expressing exclusively either the wild-type or the mutant MECP2 allele. Clonal cultures were obtained from skin biopsy of three RTT patients carrying either a non-sense or a frameshift MECP2 mutation. For each patient, gene expression profiles of wild-type and mutant clones were compared by oligonucleotide expression microarray analysis. Firstly, clustering analysis classified the RTT patients according to their genetic background and MECP2 mutation. Secondly, expression profiling by microarray analysis and quantitative RT-PCR indicated four up-regulated genes and five down-regulated genes significantly dysregulated in all our statistical analysis, including excellent potential candidate genes for the understanding of the pathophysiology of this neurodevelopmental disease. Thirdly, chromatin immunoprecipitation analysis confirmed MeCP2 binding to respective CpG islands in three out of four up-regulated candidate genes and sequencing of bisulphite-converted DNA indicated that MeCP2 preferentially binds to methylated-DNA sequences. Most importantly, the finding that at least two of these genes (BMCC1 and RNF182) were shown to be involved in cell survival and/or apoptosis may suggest that impaired MeCP2 function could alter the survival of neurons thus compromising brain function without inducing cell death.
Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko
2013-01-01
Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene—essential for normal development but never before expressed in cloned embryos—was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning. PMID:24205216
Cloning and functional analysis of the promoter region of the human Disc large gene.
Cavatorta, Ana Laura; Giri, Adriana A; Banks, Lawrence; Gardiol, Daniela
2008-11-15
A number of studies have demonstrated the involvement of human Disc large (DLG1) in the control of both cell polarity and maintenance of tissue architecture. However, the mechanisms controlling DLG1 transcription are not fully understood. This is relevant since DLG1 is lost in many tumours during the later stages of malignant progression. Therefore, we performed the cloning and functional analysis of a genomic 5' flanking region of the DLG1 open reading frame with promoter activity. We analyzed the activity of a series of 5' deletion constructs of the DLG1 promoter and determined the minimal essential sequences that are required for promoter activity as well as cis-elements that regulate transcription. We found, within the DLG1 promoter sequences, consensus-binding sites for the Snail family of transcription factors that repress the expression of epithelial markers and are up-regulated in a variety of tumours. Snail transcription factors repress the transcriptional activity of the DLG1 promoter and, ectopically expressed Snail proteins bind to the native DLG1 promoter. These data suggest a role for Snail transcription factors in the control of DLG1 expression and provide a basis for understanding the transcriptional regulation of DLG1.
Cloning, tissue expression and polymorphisms of chicken Krüppel-like factor 7 gene.
Zhang, Zhi-Wei; Wang, Zhi-Peng; Zhang, Kun; Wang, Ning; Li, Hui
2013-07-01
Krüppel-like factor 7 (KLF7) has been extensively studied in mammalian species, but its role in birds is still unclear. In the current study, cloning and sequencing showed that the full-length coding region of chicken KLF7 (Gallus gallus KLF7, gKLF7) was 891 bp long, encoding 296 amino acids. In addition, real-time RT-PCR analysis showed that gKLF7 was broadly expressed in all 15 chicken tissues selected, and its expression was significantly different in spleen, proventriculus, abdominal fat, brain, leg muscle, gizzard and heart between fat and lean broilers at 7 weeks of age. Additionally, one novel single nucleotide polymorphism (SNP), XM_426569.3: c. A141G, was identified in the second exon of gKLF7. Association analysis showed that this locus was significantly associated with fatness traits in Arbor Acres broiler random population and the eighth generation of Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) population (P < 0.05). These results suggest that gKLF7 might be a candidate gene for chicken fatness traits. © 2013 Japanese Society of Animal Science.
Vettore, André L.; da Silva, Felipe R.; Kemper, Edson L.; Souza, Glaucia M.; da Silva, Aline M.; Ferro, Maria Inês T.; Henrique-Silva, Flavio; Giglioti, Éder A.; Lemos, Manoel V.F.; Coutinho, Luiz L.; Nobrega, Marina P.; Carrer, Helaine; França, Suzelei C.; Bacci, Maurício; Goldman, Maria Helena S.; Gomes, Suely L.; Nunes, Luiz R.; Camargo, Luis E.A.; Siqueira, Walter J.; Van Sluys, Marie-Anne; Thiemann, Otavio H.; Kuramae, Eiko E.; Santelli, Roberto V.; Marino, Celso L.; Targon, Maria L.P.N.; Ferro, Jesus A.; Silveira, Henrique C.S.; Marini, Danyelle C.; Lemos, Eliana G.M.; Monteiro-Vitorello, Claudia B.; Tambor, José H.M.; Carraro, Dirce M.; Roberto, Patrícia G.; Martins, Vanderlei G.; Goldman, Gustavo H.; de Oliveira, Regina C.; Truffi, Daniela; Colombo, Carlos A.; Rossi, Magdalena; de Araujo, Paula G.; Sculaccio, Susana A.; Angella, Aline; Lima, Marleide M.A.; de Rosa, Vicente E.; Siviero, Fábio; Coscrato, Virginia E.; Machado, Marcos A.; Grivet, Laurent; Di Mauro, Sonia M.Z.; Nobrega, Francisco G.; Menck, Carlos F.M.; Braga, Marilia D.V.; Telles, Guilherme P.; Cara, Frank A.A.; Pedrosa, Guilherme; Meidanis, João; Arruda, Paulo
2003-01-01
To contribute to our understanding of the genome complexity of sugarcane, we undertook a large-scale expressed sequence tag (EST) program. More than 260,000 cDNA clones were partially sequenced from 26 standard cDNA libraries generated from different sugarcane tissues. After the processing of the sequences, 237,954 high-quality ESTs were identified. These ESTs were assembled into 43,141 putative transcripts. Of the assembled sequences, 35.6% presented no matches with existing sequences in public databases. A global analysis of the whole SUCEST data set indicated that 14,409 assembled sequences (33% of the total) contained at least one cDNA clone with a full-length insert. Annotation of the 43,141 assembled sequences associated almost 50% of the putative identified sugarcane genes with protein metabolism, cellular communication/signal transduction, bioenergetics, and stress responses. Inspection of the translated assembled sequences for conserved protein domains revealed 40,821 amino acid sequences with 1415 Pfam domains. Reassembling the consensus sequences of the 43,141 transcripts revealed a 22% redundancy in the first assembling. This indicated that possibly 33,620 unique genes had been identified and indicated that >90% of the sugarcane expressed genes were tagged. PMID:14613979
Devault, A; Gros, P
1990-01-01
We report the cloning and functional analysis of a complete clone for the third member of the mouse mdr gene family, mdr3. Nucleotide and predicted amino acid sequence analyses showed that the three mouse mdr genes encode highly homologous membrane glycoproteins, which share the same length (1,276 residues), the same predicted functional domains, and overall structural arrangement. Regions of divergence among the three proteins are concentrated in discrete segments of the predicted polypeptides. Sequence comparison indicated that the three mouse mdr genes were created from a common ancestor by two independent gene duplication events, the most recent one producing mdr1 and mdr3. When transfected and overexpressed in otherwise drug-sensitive cells, the mdr3 gene, like mdr1 and unlike mdr2, conferred multidrug resistance to these cells. In independently derived transfected cell clones expressing similar amounts of either MDR1 or MDR3 protein, the drug resistance profile conferred by mdr3 was distinct from that conferred by mdr1. Cells transfected with and expressing MDR1 showed a marked 7- to 10-fold preferential resistance to colchicine and Adriamycin compared with cells expressing equivalent amounts of MDR3. Conversely, cells transfected with and expressing MDR3 showed a two- to threefold preferential resistance to actinomycin D over their cellular counterpart expressing MDR1. These results suggest that MDR1 and MDR3 are membrane-associated efflux pumps which, in multidrug-resistant cells and perhaps normal tissues, have overlapping but distinct substrate specificities. Images PMID:1969610
Yamamura, Yoshimi; Sahin, F Pinar; Nagatsu, Akito; Mizukami, Hajime
2003-04-01
A cDNA (LEPS-2) encoding a novel cell wall protein was cloned from shikonin-producing callus tissues of Lithospermum erythrorhizon by differential display between a shikonin-producing culture strain and a non-producing strain. The LEPS-2 cDNA encoded a polypeptide of 184 amino acids. The deduced amino acid sequence exhibited no significant homology with known proteins. Expression of LEPS-2 gene as well as accumulation of LEPS-2 protein was highly correlated with shikonin production in L. erythrorhizon cells in culture. In the intact plant, expression of LEPS-2 was detected only in the roots where shikonin pigments accumulated. Cell fractionation experiments and immunocytochemical analysis showed that the protein was localized in the apoplast fraction of the cell walls. The shikonin pigments were also stored on the cell walls as oil droplets. These results indicate that expression of the LEPS-2 is closely linked with shikonin biosynthesis and the LEPS-2 protein may be involved in the intra-cell wall trapping of shikonin pigments.
Li, XiaoChing; Wang, Xiu-Jie; Tannenhauser, Jonathan; Podell, Sheila; Mukherjee, Piali; Hertel, Moritz; Biane, Jeremy; Masuda, Shoko; Nottebohm, Fernando; Gaasterland, Terry
2007-01-01
Vocal learning and neuronal replacement have been studied extensively in songbirds, but until recently, few molecular and genomic tools for songbird research existed. Here we describe new molecular/genomic resources developed in our laboratory. We made cDNA libraries from zebra finch (Taeniopygia guttata) brains at different developmental stages. A total of 11,000 cDNA clones from these libraries, representing 5,866 unique gene transcripts, were randomly picked and sequenced from the 3′ ends. A web-based database was established for clone tracking, sequence analysis, and functional annotations. Our cDNA libraries were not normalized. Sequencing ESTs without normalization produced many developmental stage-specific sequences, yielding insights into patterns of gene expression at different stages of brain development. In particular, the cDNA library made from brains at posthatching day 30–50, corresponding to the period of rapid song system development and song learning, has the most diverse and richest set of genes expressed. We also identified five microRNAs whose sequences are highly conserved between zebra finch and other species. We printed cDNA microarrays and profiled gene expression in the high vocal center of both adult male zebra finches and canaries (Serinus canaria). Genes differentially expressed in the high vocal center were identified from the microarray hybridization results. Selected genes were validated by in situ hybridization. Networks among the regulated genes were also identified. These resources provide songbird biologists with tools for genome annotation, comparative genomics, and microarray gene expression analysis. PMID:17426146
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela
To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in {approx}300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressedmore » for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.« less
Effects of ethylene on gene expression in carrot roots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, S.E.
1984-01-01
To investigate ethylene effects on expression of genetic information, cDNA clones corresponding to ethylene-induced carrot root mRNAs were constructed and isolated. RNA dot blot analysis showed that for the three clones studied peak cytosolic mRNA prevalence occurred at 21 hours of treatment followed thereafter by rapid messenger decay. DNA filter excess hybridization to in vitro synthesized nuclear RNA showed that the ethylene-induced mRNA increase is engendered by transcription of previously quiescent genes. The kinetics and magnitude of changes in mRNA prevalence parallel changes in transcriptional activity; therefore, the ethylene effect is primarily at the level of the transcription. In vivomore » pulse labelling with (/sup 35/S)-methionine showed that between 18 and 27 hours of ethylene treatment a 2.5 fold increase in translational efficiency occurred for one message studied. The resulting protein is the predominant protein synthesized in carrots treated with ethylene for 27 hours. Thus, ethylene exerts multiple regulatory controls on the expression of genetic information.« less
Yamada, Osamu; Sakamoto, Kazutoshi; Tominaga, Mihoko; Nakayama, Tasuku; Koseki, Takuya; Fujita, Akiko; Akita, Osamu
2005-03-01
We carried out protein sequencing of purified Antibiotic Peptide (ABP), and cloned two genes encoding this peptide as abp1 and abp2, from Rhizopus oligosporus NBRC 8631. Both genes contain an almost identical 231-bp segment, with only 3 nucleotide substitutions, encoding a 77 amino acid peptide. The abp gene product comprises a 28 amino acid signal sequence and a 49 amino acid mature peptide. Northern blot analysis showed that at least one of the abp genes is transcribed in R. oligosporus NBRC 8631. A truncated form of abp1 encoding only the mature peptide was fused with the alpha-factor signal peptide and engineered for expression in Pichia pastoris SMD1168H. Culture broth of the recombinant Pichia displayed ABP activity against Bacillus subtilis NBRC 3335 after induction of heterologous gene expression. This result indicates that mature ABP formed the active structure without the aid of other factors from R. oligosporus, and was secreted.
Bieber, A J; Snow, P M; Hortsch, M; Patel, N H; Jacobs, J R; Traquina, Z R; Schilling, J; Goodman, C S
1989-11-03
Drosophila neuroglian is an integral membrane glycoprotein that is expressed on a variety of cell types in the Drosophila embryo, including expression on a large subset of glial and neuronal cell bodies in the central and peripheral nervous systems and on the fasciculating axons that extend along them. Neuroglian cDNA clones were isolated by expression cloning. cDNA sequence analysis reveals that neuroglian is a member of the immunoglobulin superfamily. The extracellular portion of the protein consists of six immunoglobulin C2-type domains followed by five fibronectin type III domains. Neuroglian is closely related to the immunoglobulin-like vertebrate neural adhesion molecules and, among them, shows most extensive homology to mouse L1. Its homology to L1 and its embryonic localization suggest that neuroglian may play a role in neural and glial cell adhesion in the developing Drosophila embryo. We report here on the identification of a lethal mutation in the neuroglian gene.
Isolation and characterization of a novel human scFv inhibiting EGFR vIII expressing cancers.
Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Dariushnejad, Hassan; Hosseini, Mohammad Kazem
2016-12-01
EGFRvIII, a mutant form of epidermal growth factor receptor is highly expressed in glioblastoma, carcinoma of the breast, ovary, and lung but not in normal cells. This tumor specific antigen has emerged as a promising candidate for antibody based therapy of several cancers. The aim of the present study was isolation and characterization of a human single chain antibody against EGFRvIII as a promising target for cancer therapy. For this, a synthetic peptide corresponding to EGFRvIII protein was used for screening the naive human scFv phage library. Selection was performed using a novel screening strategy for enrichment of rare specific clones. After five rounds of screening, six positive scFv clones against EGFRvIII were selected using monoclonal phage ELISA, among them, a clone with an amber mutation in VH CDR2 coding sequence showed higher reactivity. The mutation was corrected through site directed mutagenesis and then scFv fragment was expressed after subcloning into the bacterial expression vector. Expression in BL21 pLysS resulted in a highly soluble scFv appeared in soluble fraction of E. coli lysate. Bioinformatic in silico analysis between scFv and EGFRvIII sequences confirmed specific binding of desired scFv to EGFRvIII in CDR regions. The specific reactivity of the purified scFv with native EGFRvIII was confirmed by cell based ELISA and western blot. In conclusion, human anti- EGFRvIII scFv isolated from a scFv phage library displayed high reactivity with EGFRvIII. The scFv isolated in this study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFRvIII expressing cancers. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Highly abundant and stage-specific mRNAs in the obligate pathogen Bremia lactucae.
Judelson, H S; Michelmore, R W
1990-01-01
Germinating spores of the obligate pathogen Bremia lactucae (lettuce downy mildew) contain several unusually abundant species of mRNA. Thirty-nine cDNA clones corresponding to prevalent transcripts were isolated from a library synthesized using poly(A)+ RNA from germinating spores; these clones represented only five distinct classes. Each corresponding mRNA accounted for from 0.4 to 9 percent by mass of poly(A)+ RNA from germinating spores and together represented greater than 20 percent of the mRNA. The expression of the corresponding genes, and a gene encoding Hsp70, was analyzed in spores during germination and during growth in planta. The Hsp70 mRNA and mRNA from one abundant cDNA clone (ham34) were expressed constitutively. Two clones (ham9 and ham12) hybridized only to mRNA from spores and germinating spores. Two clones (ham37 and ham27) showed hybridization specific to germinating spores. Quantification of the number of genes homologous to each cDNA clone indicated that four clones corresponded to one or two copies per haploid genome, and one hybridized to an approximately 11-member family of genes. A sequence of the gene corresponding to ham34 was obtained to investigate its function and to identify sequences conferring high levels of gene expression for use in constructing vectors for the transformation of B. lactucae.
Cloning of zebrafish Mustn1 orthologs and their expression during early development.
Camarata, Troy; Vasilyev, Aleksandr; Hadjiargyrou, Michael
2016-11-15
Mustn1 is a small nuclear protein that is involved in the development and regeneration of the musculoskeletal system. Previous work established a role for Mustn1 in myogenic and chondrogenic differentiation. In addition, recent evidence suggests a potential role for Mustn1 in cilia function in zebrafish. A detailed study of Mustn1 expression has yet to be conducted in zebrafish. As such, we report herein the cloning of the zebrafish Mustn1 orthologs, mustn1a and mustn1b, and their expression during zebrafish embryonic and larval development. Results indicate a 44% nucleotide identity between the two paralogs. Phylogenetic analysis further confirmed that the Mustn1a and 1b predicted proteins were highly related to other vertebrate members of the Mustn1 protein family. Whole mount in situ hybridization revealed expression of both mustn1a and 1b at the 7-somite stage through 72hpf in structures such as Kupffer's vesicle, segmental mesoderm, head structures, and otic vesicle. Additionally, in 5day old larva, mustn1a and 1b expression is detected in the neurocranium, otic capsule, and the gut. Although both were expressed in the neurocranium, mustn1a was localized in the hypophyseal fenestra whereas mustn1b was found near the posterior basicapsular commissure. mustn1b also displayed expression in the ceratohyal and ceratobranchial elements of the pharyngeal skeleton. These expression patterns were verified temporally by q-PCR analysis. Taken together, we conclude that Mustn1 expression is conserved in vertebrates and that the variations in expression of the two zebrafish paralogs suggest different modes of molecular regulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Zheng, Nuoyan; Huang, Xiahe; Yin, Bojiao; Wang, Dan; Xie, Qi
2012-12-01
Detection of protein-protein interaction can provide valuable information for investigating the biological function of proteins. The current methods that applied in protein-protein interaction, such as co-immunoprecipitation and pull down etc., often cause plenty of working time due to the burdensome cloning and purification procedures. Here we established a system that characterization of protein-protein interaction was accomplished by co-expression and simply purification of target proteins from one expression cassette within E. coli system. We modified pET vector into co-expression vector pInvivo which encoded PPV NIa protease, two cleavage site F and two multiple cloning sites that flanking cleavage sites. The target proteins (for example: protein A and protein B) were inserted at multiple cloning sites and translated into polyprotein in the order of MBP tag-protein A-site F-PPV NIa protease-site F-protein B-His(6) tag. PPV NIa protease carried out intracellular cleavage along expression, then led to the separation of polyprotein components, therefore, the interaction between protein A-protein B can be detected through one-step purification and analysis. Negative control for protein B was brought into this system for monitoring interaction specificity. We successfully employed this system to prove two cases of reported protien-protein interaction: RHA2a/ANAC and FTA/FTB. In conclusion, a convenient and efficient system has been successfully developed for detecting protein-protein interaction.
Singhal, Dinesh K; Singhal, Raxita; Malik, Hruda N; Singh, Surender; Kumar, Sudarshan; Kaushik, Jai K; Mohanty, Ashok K; Malakar, Dhruba
2015-12-01
Oct4, pluripotency marker and transcription factor, expresses in embryonic stem cells. It plays a pivotal role in determination of stem cells fate. Up and down regulation of Oct4 causes differentiation of embryonic stem cells. It is one of the main transcription factors which remained concerned in every study related to induced pluripotent stem cell. Here, we report the production of goat Oct4 protein using plasmid and lentiviral based vectors. Firstly, Oct4 ORF was cloned in pAcGFP1-N1 plasmid vector and positive clones were screened with colony PCR. Oct4 was over-expressed in CHO-K1 cell line and expression was confirmed by observing green florescent protein expression in CHO-K1 cells. Secondly, Oct4 lentiviral expression construct has been prepared using pLenti-gw vector. Oct4 ORF was cloned into pLenti4/V5-DEST vector and viral particles were produced in 293FT cells. Oct4 viral particles were used to infect goat fibroblast cells. Oct4 expression was observed and confirmed in transfected goat fibroblast cells using RT-PCR. Detection of Oct4 protein in western blotting assay affirmed the capacity of over-expression of our Oct4 lentiviral vector. The lentiviral expression construct and recombinant Oct4 protein may be used for reprogramming of somatic cell into induced pluripotent stem cell.
Haussmann, C; Rohdich, F; Lottspeich, F; Eberhardt, S; Scheuring, J; Mackamul, S; Bacher, A
1997-01-01
The enzyme catalyzing the epimerization at position 2' of dihydroneopterin triphosphate was purified by a factor of about 10,000 from cell extract of Escherichia coli. The cognate gene was cloned, sequenced, expressed, and mapped to kb 2427 on the E. coli chromosome. PMID:9006053
Huang, Fanglu; Li, Yanyan; Yu, Jinquan; Spencer, Jonathan B
2002-12-07
The gene btrR from Bacillus circulans has been cloned and expressed and shown to produce a protein which catalyses the transamination of 2-deoxy-scyllo-inosose to give 2-deoxy-scyllo-inosamine, an intermediate in the biosynthesis of 2-deoxystreptamine.
The Influence of Polyploidy on the Evolution of Yeast Grown in a Sub-Optimal Carbon Source
Scott, Amber L.; Richmond, Phillip A.; Dowell, Robin D.; Selmecki, Anna M.
2017-01-01
Abstract Polyploidization events have occurred during the evolution of many fungi, plant, and animal species and are thought to contribute to speciation and tumorigenesis, however little is known about how ploidy level contributes to adaptation at the molecular level. Here we integrate whole genome sequencing, RNA expression analysis, and relative fitness of ∼100 evolved clones at three ploidy levels. Independent haploid, diploid, and tetraploid populations were grown in a low carbon environment for 250 generations. We demonstrate that the key adaptive mutation in the evolved clones is predicted by a gene expression signature of just five genes. All of the adaptive mutations identified encompass a narrow set of genes, however the tetraploid clones gain a broader spectrum of adaptive mutations than haploid or diploid clones. While many of the adaptive mutations occur in genes that encode proteins with known roles in glucose sensing and transport, we discover mutations in genes with no canonical role in carbon utilization (IPT1 and MOT3), as well as identify novel dominant mutations in glucose signal transducers thought to only accumulate recessive mutations in carbon limited environments (MTH1 and RGT1). We conclude that polyploid cells explore more genotypic and phenotypic space than lower ploidy cells. Our study provides strong evidence for the beneficial role of polyploidization events that occur during the evolution of many species and during tumorigenesis. PMID:28957510
Johnson, L A; Beacham, I R; MacRae, I C; Free, M L
1992-01-01
Psychrotrophic lipolytic bacteria represent a significant problem in the storage of refrigerated dairy products. A lipase-encoding gene has been cloned and characterized from a highly lipolytic strain of Pseudomonas. The nucleotide sequence of the gene predicts a polypeptide of M(r) 49,905, which was identified when the gene was expressed in Escherichia coli. Images PMID:1622251
Huang, Jinqiang; Li, Yongjuan; Shao, Changwei; Wang, Na; Chen, Songlin
2017-06-20
The nanos gene encodes an RNA-binding zinc finger protein, which is required in the development and maintenance of germ cells. However, there is very limited information about nanos in flatfish, which impedes its application in fish breeding. In this study, we report the molecular cloning, characterization and functional analysis of the 3'-untranslated region of the nanos gene (Csnanos) from half-smooth tongue sole (Cynoglossus semilaevis), which is an economically important flatfish in China. The 1233-bp cDNA sequence, 1709-bp genomic sequence and flanking sequences (2.8-kb 5'- and 1.6-kb 3'-flanking regions) of Csnanos were cloned and characterized. Sequence analysis revealed that CsNanos shares low homology with Nanos in other species, but the zinc finger domain of CsNanos is highly similar. Phylogenetic analysis indicated that CsNanos belongs to the Nanos2 subfamily. Csnanos expression was widely detected in various tissues, but the expression level was higher in testis and ovary. During early development and sex differentiation, Csnanos expression exhibited a clear sexually dimorphic pattern, suggesting its different roles in the migration and differentiation of primordial germ cells (PGCs). Higher expression levels of Csnanos mRNA in normal females and males than in neomales indicated that the nanos gene may play key roles in maintaining the differentiation of gonad. Moreover, medaka PGCs were successfully labeled by the microinjection of synthesized mRNA consisting of green fluorescence protein and the 3'-untranslated region of Csnanos. These findings provide new insights into nanos gene expression and function, and lay the foundation for further study of PGC development and applications in tongue sole breeding. Copyright © 2017 Elsevier B.V. All rights reserved.
Cloning and analysis of fetal ovary microRNAs in cattle.
Tripurani, Swamy K; Xiao, Caide; Salem, Mohamed; Yao, Jianbo
2010-07-01
Ovarian folliculogenesis and early embryogenesis are complex processes, which require tightly regulated expression and interaction of a multitude of genes. Small endogenous RNA molecules, termed microRNAs (miRNAs), are involved in the regulation of gene expression during folliculogenesis and early embryonic development. To identify miRNAs in bovine oocytes/ovaries, a bovine fetal ovary miRNA library was constructed. Sequence analysis of random clones from the library identified 679 miRNA sequences, which represent 58 distinct bovine miRNAs. Of these distinct miRNAs, 42 are known bovine miRNAs present in the miRBase database and the remaining 16 miRNAs include 15 new bovine miRNAs that are homologous to miRNAs identified in other species, and one novel miRNA, which does not match any miRNAs in the database. The precursor sequences for 14 of the new 15 miRNAs as well as the novel miRNA were identified from the bovine genome database and their hairpin structures were predicted. Expression analysis of the 58 miRNAs in fetal ovaries in comparison to somatic tissue pools identified 8 miRNAs predominantly expressed in fetal ovaries. Further analysis of the eight miRNAs in germinal vesicle (GV) stage oocytes identified two miRNAs (bta-mir424 and bta-mir-10b), that are highly abundant in GV oocytes. Both miRNAs show similar expression patterns during oocyte maturation and preimplantation development of bovine embryos, being abundant in GV and MII stage oocytes, as well as in early stage embryos (until 16-cell stage). The amount of the novel miRNA is relatively small in oocytes and early cleavage embryos but greater in blastocysts, suggesting a role of this miRNA in blastocyst cell differentiation. Copyright 2010 Elsevier B.V. All rights reserved.
Pharmacological characterization of a β-adrenergic-like octopamine receptor in Plutella xylostella.
Huang, Qing-Ting; Ma, Hai-Hao; Deng, Xi-Le; Zhu, Hang; Liu, Jia; Zhou, Yong; Zhou, Xiao-Mao
2018-04-25
The β-adrenergic-like octopamine receptor (OA2B2) belongs to the class of G-protein coupled receptors. It regulates important physiological functions in insects, thus is potentially a good target for insecticides. In this study, the putative open reading frame sequence of the Pxoa2b2 gene in Plutella xylostella was cloned. Orthologous sequence alignment, phylogenetic tree analysis, and protein sequence analysis all showed that the cloned receptor belongs to the OA2B2 protein family. PxOA2B2 was transiently expressed in HEK-293 cells. It was found that PxOA2B2 could be activated by both octopamine and tyramine, resulting in increased intracellular cyclic AMP (cAMP) levels, whereas dopamine and serotonin were not effective in eliciting cAMP production. Further studies with series of PxOA2B2 agonists and antagonists showed that all four tested agonists (e.g., naphazoline, clonidine, 2-phenylethylamine, and amitraz) could activate the PxOA2B2 receptor, and two of tested antagonists (e.g., phentolamine and mianserin) had significant antagonistic effects. However, antagonist of yohimbine had no effects. Quantitative real-time polymerase chain reaction analysis showed that Pxoa2b2 gene was expressed in all developmental stages of P. xylostella and that the highest expression occurred in male adults. Further analysis with fourth-instar P. xylostella larvae showed that the Pxoa2b2 gene was mainly expressed in Malpighian tubule, epidermal, and head tissues. This study provides both a pharmacological characterization and the gene expression patterns of the OA2B2 in P. xylostella, facilitating further research for insecticides using PxOA2B2 as a target. © 2018 Wiley Periodicals, Inc.
Rat PPAR delta contains a CGG triplet repeat and is prominently expressed in the thalamic nuclei.
Xing, G; Zhang, L; Zhang, L; Heynen, T; Yoshikawa, T; Smith, M; Weiss, S; Detera-Wadleigh, S
1995-12-26
We have isolated a new rat sequence containing motifs of a nuclear hormone receptor from a brain cDNA library. The deduced amino acid sequence encoded by the cDNA clone showed a strong homology to the human NUCI and the mouse peroxisome proliferator activated receptor delta (PPAR delta). We therefore refer to this new clone as rat PPAR delta (rPPAR delta). The new feature of rPPAR delta is a 14 CGG triplet repeat on the 5' untranslated region, not previously reported in either NUCI or mPPAR delta. We found that rPPAR delta was expressed as a 3.5-kb transcript which showed a wide distribution in adult rat tissues. Abundant expression was detected in brain, heart, skeletal muscle, kidney and lung. Weaker expression was noted in the liver, spleen and testis. To determine the specific brain localization of rPPAR delta we performed in situ hybridization analysis. Prominent expression was observed in the thalamus, particularly in the posterior part of the ventral medial nucleus, a site responsive to pain and cold stress. These results raise the possibility that PPAR delta might play a role in modulating response to thermal and pain sensations.
Wang, Jianshu; Wang, Xuemin; Yuan, Bohua; Qiang, Sheng
2013-01-01
Gene expression profiles of Digitaria sanguinalis infected by Curvularia eragrostidis strain QZ-2000 at two concentrations of conidia and two dew durations were analyzed by cDNA amplified fragment length polymorphisms (cDNA-AFLP). Inoculum strength was more determinant of gene expression than dew duration. A total of 256 primer combinations were used for selective amplification and 1214 transcript-derived fragments (TDFs) were selected for their differential expression. Of these, 518 up-regulated differentially expressed TDFs were identified. Forty-six differential cDNA fragments were chosen to be cloned and 35 of them were successfully cloned and sequenced, of which 25 were homologous to genes of known function according to the GenBank database. Only 6 genes were up-regulated in Curvularia eragrostidis-inoculated D. sanguinalis, with functions involved in signal transduction, energy metabolism, cell growth and development, stress responses, abscisic acid biosynthesis and response. It appears that a few pathways may be important parts of the pathogenic strategy of C. eragrostidis strain QZ-2000 on D. sanguinalis. Our study provides the fundamentals to further study the pathogenic mechanism, screen for optimal C. eragrostidis strains as potential mycoherbicide and apply this product to control D. sanguinalis.
Shi, Xingzheng; Wang, Xinliang; Peng, Futian; Zhao, Yu
2012-08-01
Nonsymbiotic hemoglobins (nsHbs) are involved in a variety of cellular processes in plants. Previous studies indicate that nsHb expression improves plant tolerance during waterlogging and hypoxia. In the present work, the nsHb class-1 coding sequence was cloned from Malus hupehensis Rehd. var. pinyiensis Jiang and subsequently named MhGLB1. The results elucidated the expressed characteristics and physiological effects of MhGLB1. The full-length cDNA contained a 477 bp open reading frame encoding a protein with a molecular mass of 17.8 KDa with 158 amino acids. Quantitative real-time PCR analysis showed that MhGLB1 expresses in roots, stems and leaves growing under normal and nitrate-induced conditions. Hypoxic stress induced accumulation of MhGLB1 within 12 h, and abscisic acid significantly induced expression of MhGLB1 in roots. The photosynthetic, transpiration and stomatal conductance rates of transgenic MhGLB1 tomato plants decreased more slowly than that of wild-type plants under waterlogging treatment. These results indicated that the MhGLB1 gene has an important role in hypoxia.
Kimura, Tetsuya; Nakao, Akihide; Murata, Sachiko; Kobayashi, Yasuyuki; Tanaka, Yuji; Shibahara, Kenta; Kawazu, Tetsu; Nakagawa, Tsuyoshi
2013-01-01
We developed the Gateway recycling cloning system, which allows multiple linking of expression cassettes by multiple rounds of the Gateway LR reaction. Employing this system, the recycling donor vector pRED419 was subjected to the first LR reaction with an attR1-attR2 type destination vector. Then conversion vector pCON was subjected to an LR reaction to restore the attR1-attR2 site on the destination vector for the next cloning cycle. By repetition of these two simple steps, we linked four expression cassettes of a reporter gene in Gateway binary vector pGWB1, introduced the constructs into tobacco BY-2 cells, and observed the expression of transgenes.
Daumy, G O; Williams, J A; McColl, A S; Zuzel, T J; Danley, D
1986-10-01
The penicillin G acylase genes from the Proteus rettgeri wild type and from a hyperproducing mutant which is resistant to succinate repression were cloned in Escherichia coli K-12. Expression of both wild-type and mutant P. rettgeri acylase genes in E. coli K-12 was independent of orientation in the cloning vehicle and apparently resulted from recognition in E. coli of the P. rettgeri promoter sequences. The P. rettgeri acylase was secreted into the E. coli periplasmic space and was composed of subunits electrophoretically identical to those made in P. rettgeri. Expression of these genes in E. coli K-12 was not repressed by succinate as it is in P. rettgeri. Instead, expression of the enzymes was regulated by glucose catabolite repression.
Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages
Studier, F. William; Dubendorff, John W.
1998-01-01
This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.
Cloning and expression of autogenes encoding RNA poly,erases of T7-like bacteriophages
Studier, F. William; Dubendorff, John W.
1998-01-01
This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.
Bernier, G; Mathieu, M; De Repentigny, Y; Vidal, S M; Kothary, R
1996-11-15
We have recently cloned the gene responsible for the mouse neurological disorder dystonia musculorum. The predicted product of this gene, dystonin (Dst), is a neural isoform of bullous pemphigoid antigen 1 (Bpag1) with an N-terminal actin binding domain. Here we report on the cloning and characterization of mouse ACF7. Sequence analysis revealed extended homology of mACF7 with both the actin binding domain (ABD) and the Bpag1 portions of dystonin. Moreover, mACF7 and Dst display similar isoform diversity and encode similar sized transcripts in the nervous system. Phylogenetic analysis of mACF7 and dystonin ABD sequences suggests a recent evolutionary origin and that these proteins form a separate novel subfamily within the beta-spectrin superfamily of actin binding proteins. Given the implication of several actin binding proteins in genetic disorders, it is important to know the pattern of mACF7 expression. mACF7 transcripts are detected principally in lung, brain, spinal cord, skeletal and cardiac muscle, and skin. Intriguingly, mACF7 expression in lung is strongly induced just before birth and is restricted to type II alveolar cells. To determine whether spontaneous mutants that may be defective in mACF7 exist, we have mapped the mACF7 gene to mouse chromosome 4.
Characterization of Neospora caninum macrophage migration inhibitory factor
USDA-ARS?s Scientific Manuscript database
The present study is the first characterization of Neospora caninum macrophage migration inhibitory factor (NcMIF). BLAST-N analysis of NcMIF revealed high similarity (87%) to the Toxoplasma gondii MIF. NcMIF was cloned and expressed in Escherichia coli in three forms, NcMIF (mature protein), NcMI...
2013-01-01
Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker. Results We have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered. Conclusions Changing the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain. PMID:23497512
Wilke, Sonja; Krausze, Joern; Gossen, Manfred; Groebe, Lothar; Jäger, Volker; Gherardi, Ermanno; van den Heuvel, Joop; Büssow, Konrad
2010-06-01
Stable mammalian cell lines are excellent tools for the expression of secreted and membrane glycoproteins. However, structural analysis of these molecules is generally hampered by the complexity of N-linked carbohydrate side chains. Cell lines with mutations are available that result in shorter and more homogenous carbohydrate chains. Here, we use preparative fluorescence-activated cell sorting (FACS) and site-specific gene excision to establish high-yield glycoprotein expression for structural studies with stable clones derived from the well-established Lec3.2.8.1 glycosylation mutant of the Chinese hamster ovary (CHO) cell line. We exemplify the strategy by describing novel clones expressing single-chain hepatocyte growth factor/scatter factor (HGF/SF, a secreted glycoprotein) and a domain of lysosome-associated membrane protein 3 (LAMP3d). In both cases, stable GFP-expressing cell lines were established by transfection with a genetic construct including a GFP marker and two rounds of cell sorting after 1 and 2 weeks. The GFP marker was subsequently removed by heterologous expression of Flp recombinase. Production of HGF/SF and LAMP3d was stable over several months. 1.2 mg HGF/SF and 0.9 mg LAMP3d were purified per litre of culture, respectively. Homogenous glycoprotein preparations were amenable to enzymatic deglycosylation under native conditions. Purified and deglycosylated LAMP3d protein was readily crystallized. The combination of FACS and gene excision described here constitutes a robust and fast procedure for maximizing the yield of glycoproteins for structural analysis from glycosylation mutant cell lines.
Sununliganon, Laddawun; Singhatanadgit, Weerachai
2012-01-01
Cells derived from the periodontal ligament (PDL) have previously been reported to have stem cell-like characteristics (PDL stem cells; PDLSCs) and play an important part in bone engineering, including that of alveolar bone. However, these populations have been heterogeneous, and thus far no specific marker has yet been established from adult human stem cells derived from PDL tissue. We have previously isolated highly purified single cell-derived PDLSC clones and delineated their phenotypic and functional characteristics. In this report, we further obtained three homogeneous and distinct PDLSC clones demonstrating low, moderate and high mineralized matrix forming ability-namely PC12, PC4 and PC3, respectively, and the expression of mesenchymal stem cell pathway-specific genes in these clones was investigated. PCR array revealed that the expression of intercellular adhesion molecule 1 (ICAM1), integrin beta 1 (ITGB1) and telomerase reverse transcriptase (TERT) was associated with highly osteogenic PDLSC clones, as determined by the expression of key osteoblastic markers and their ability to form alizarin red S positive mineralized matrix in vitro. The present results suggest that these three mesenchymal stem cell-associated markers could potentially be used to isolate PDLSCs with high osteogenic capability for engineering new bone.
CD34 expression in human hair follicles and tricholemmoma: a comprehensive study.
Misago, Noriyuki; Toda, Shuji; Narisawa, Yutaka
2011-08-01
There has recently been controversy regarding whether clone My10 is superior to clone QBEND-10 for labeling cells of tricholemmal lineage. Moreover, there have been no previous reports on the CD34 expression in human vellus hair follicles. We performed a comprehensive study of the CD34 expression in human terminal and vellus hair follicles and in 10 tricholemmomas using both the QBEND-10 and the My10 clones. We also performed two different procedures of immunostaining, which included the using of the standard avidin-biotin-peroxidase (ABC) complex system and the Envision system. The most sensitive marker of CD34 for normal human hair follicles and tricholemmomas is QBEND-10 using the ABC system. The degree and strength of the CD34 positive staining mainly depended on the method being used (whether it was the ABC system or the Envision system) rather than the clone. CD34 staining was rarely (20-30%) seen in the anagen and catagen vellus hair follicles, and could only be seen by the QBEND-10 clone using the ABC system. CD34 expression in the tricholemmomas represented either a diffuse or peripheral pattern. CD34 may not be a tricholemmal lineage-specific antigen, but may be related to certain functions of the cells. Copyright © 2011 John Wiley & Sons A/S.
Bioinformatics and expressional analysis of cDNA clones from floral buds
NASA Astrophysics Data System (ADS)
Pawełkowicz, Magdalena Ewa; Skarzyńska, Agnieszka; Cebula, Justyna; Hincha, Dirck; ZiÄ bska, Karolina; PlÄ der, Wojciech; Przybecki, Zbigniew
2017-08-01
The application of genomic approaches may serve as an initial step in understanding the complexity of biochemical network and cellular processes responsible for regulation and execution of many developmental tasks. The molecular mechanism of sex expression in cucumber is still not elucidated. A study of differential expression was conducted to identify genes involved in sex determination and floral organ morphogenesis. Herein, we present generation of expression sequence tags (EST) obtained by differential hybridization (DH) and subtraction technique (cDNA-DSC) and their characteristic features such as molecular function, involvement in biology processes, expression and mapping position on the genome.
MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for Plants1[OPEN
Siligato, Riccardo; Wang, Xin; Yadav, Shri Ram; Lehesranta, Satu; Ma, Guojie; Ursache, Robertas; Sevilem, Iris; Zhang, Jing; Gorte, Maartje; Prasad, Kalika; Heidstra, Renze
2016-01-01
A powerful method to study gene function is expression or overexpression in an inducible, cell type-specific system followed by observation of consequent phenotypic changes and visualization of linked reporters in the target tissue. Multiple inducible gene overexpression systems have been developed for plants, but very few of these combine plant selection markers, control of expression domains, access to multiple promoters and protein fusion reporters, chemical induction, and high-throughput cloning capabilities. Here, we introduce a MultiSite Gateway-compatible inducible system for Arabidopsis (Arabidopsis thaliana) plants that provides the capability to generate such constructs in a single cloning step. The system is based on the tightly controlled, estrogen-inducible XVE system. We demonstrate that the transformants generated with this system exhibit the expected cell type-specific expression, similar to what is observed with constitutively expressed native promoters. With this new system, cloning of inducible constructs is no longer limited to a few special cases but can be used as a standard approach when gene function is studied. In addition, we present a set of entry clones consisting of histochemical and fluorescent reporter variants designed for gene and promoter expression studies. PMID:26644504
NASA Astrophysics Data System (ADS)
Kikuchi, Shoshi
2009-02-01
Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.
Malpartida, F; Zalacaín, M; Jiménez, A; Davies, J
1983-11-30
The gene encoding the phosphotransferase enzyme that modifies hygromycin B in its producing organism Streptomyces hygroscopicus, has been cloned in the Streptomyces vector pIJ41. Two plasmids, pFM4 and pFM6, containing 2.1 and 19.6 kb inserts of Streptomyces hygroscopicus DNA, respectively, which express the modifying enzyme, have been isolated. A 3.1 kb PstI restriction fragment from pFM4 was inserted in the Streptomyces vector pIJ350 and the resulting plasmids, pMZ11.1 and pMZ11.2, express the hygromycin B-resistance phenotype. The utility of this dominant marker for cloning experiments is discussed in the text.
Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells.
Spidel, Jared L; Vaessen, Benjamin; Chan, Yin Yin; Grasso, Luigi; Kline, J Bradford
2016-12-01
Single-cell based amplification of immunoglobulin variable regions is a rapid and powerful technique for cloning antigen-specific monoclonal antibodies (mAbs) for purposes ranging from general laboratory reagents to therapeutic drugs. From the initial screening process involving small quantities of hundreds or thousands of mAbs through in vitro characterization and subsequent in vivo experiments requiring large quantities of only a few, having a robust system for generating mAbs from cloning through stable cell line generation is essential. A protocol was developed to decrease the time, cost, and effort required by traditional cloning and expression methods by eliminating bottlenecks in these processes. Removing the clonal selection steps from the cloning process using a highly efficient ligation-independent protocol and from the stable cell line process by utilizing bicistronic plasmids to generate stable semi-clonal cell pools facilitated an increased throughput of the entire process from plasmid assembly through transient transfections and selection of stable semi-clonal cell pools. Furthermore, the time required by a single individual to clone, express, and select stable cell pools in a high-throughput format was reduced from 4 to 6months to only 4 to 6weeks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Wang, Kening; Kappel, Justin D; Canders, Caleb; Davila, Wilmer F; Sayre, Dean; Chavez, Mayra; Pesnicak, Lesley; Cohen, Jeffrey I
2012-12-01
We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine.
Kappel, Justin D.; Canders, Caleb; Davila, Wilmer F.; Sayre, Dean; Chavez, Mayra; Pesnicak, Lesley; Cohen, Jeffrey I.
2012-01-01
We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine. PMID:22993162
Guo, Shuang-shuang; Cheng, Lin; Yang, Li-min; Han, Mei
2015-11-01
The β-Glucuronidase gene (sbGUS) cDNA firstly from Scutellari abaicalensis leaf was cloned by RT-PCR, with GenBank accession number KR364726. The full length cDNA of sbGUS was 1 584 bp with an open reading frame (ORF), encoding an unstable protein with 527 amino acids. The bioinformatic analysis showed that the sbGUS encoding protein had isoelectric point (pI) of 5.55 and a calculated molecular weight about 58.724 8 kDa, with a transmembrane regions and signal peptide, had conserved domains of glycoside hydrolase super family and unintegrated trans-glycosidase catalytic structure. In the secondary structure, the percentage of alpha helix, extended strand, β-extended and random coil were 25.62%, 28.84%, 13.28% and 32.26%, respectively. The homologous analysis indicated the nucleotide sequence 98.93% similarity and the amino acid sequence 98.29% similarity with S. baicalensis (BAA97804.1), in the nine positions were different. The expression level of sGUS was the highest in root based on a real-time PCR analysis, followed by flower and stem, and the lowest was in stem. The results provide a foundation for exploring the molecular function of sbGUS involved in baicalcin biosynthesis based on synthetic biology approach in S. baicalensis plants.
CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE (cyt19)
Stephen B. Waters1 , Felicia Walton1 , Miroslav Styblo1 , Karen Herbin-Davis2, and David J. Thomas2 1 School of Medicine, University of North Carolina at Chape...
USDA-ARS?s Scientific Manuscript database
We have cloned a glucansucrase from the type strain of Leuconostoc mesenteroides (NRRL B-1118; ATCC 8293) and successfully expressed the enzyme in Escherichia coli. The recombinant processed enzyme has a putative sequence identical to the predicted secreted native enzyme (1,473 amino acids; 161,468...
USDA-ARS?s Scientific Manuscript database
The availability of sequenced insect genomes has allowed for discovery and functional characterization of novel genes and proteins. We report use of the Tribolium castaneum (Herbst) (red flour beetle) genome to identify, clone, express, and characterize a novel endo-ß-1,4-glucanase we named TcEG1 (...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartkiewicz, Karol; Miranowicz, Adam
We find an optimal quantum cloning machine, which clones qubits of arbitrary symmetrical distribution around the Bloch vector with the highest fidelity. The process is referred to as phase-independent cloning in contrast to the standard phase-covariant cloning for which an input qubit state is a priori better known. We assume that the information about the input state is encoded in an arbitrary axisymmetric distribution (phase function) on the Bloch sphere of the cloned qubits. We find analytical expressions describing the optimal cloning transformation and fidelity of the clones. As an illustration, we analyze cloning of qubit state described by themore » von Mises-Fisher and Brosseau distributions. Moreover, we show that the optimal phase-independent cloning machine can be implemented by modifying the mirror phase-covariant cloning machine for which quantum circuits are known.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, Andrew A., E-mail: andrewmc@embl.fr; Biget, Laurent; Lin, Chenwei
2007-04-01
The genes encoding XMT and DXMT, the enzymes from Coffea canephora (robusta) that catalyse the three independent N-methyl transfer reactions in the caffeine-biosynthesis pathway, have been cloned and the proteins have been expressed in Escherichia coli. Both proteins have been crystallized in the presence of the demethylated cofactor S-adenosyl-l-cysteine (SAH) and substrate (xanthosine for XMT and theobromine for DXMT). Caffeine is a secondary metabolite produced by a variety of plants including Coffea canephora (robusta) and there is growing evidence that caffeine is part of a chemical defence strategy protecting young leaves and seeds from potential predators. The genes encoding XMTmore » and DXMT, the enzymes from Coffea canephora (robusta) that catalyse the three independent N-methyl transfer reactions in the caffeine-biosynthesis pathway, have been cloned and the proteins have been expressed in Escherichia coli. Both proteins have been crystallized in the presence of the demethylated cofactor S-adenosyl-l-cysteine (SAH) and substrate (xanthosine for XMT and theobromine for DXMT). The crystals are orthorhombic, with space group P2{sub 1}2{sub 1}2{sub 1} for XMT and C222{sub 1} for DXMT. X-ray diffraction to 2.8 Å for XMT and to 2.5 Å for DXMT have been collected on beamline ID23-1 at the ESRF.« less
Mullins, Christina S; Hühns, Maja; Krohn, Mathias; Peters, Sven; Cheynet, Valérie; Oriol, Guy; Guillotte, Michèle; Ducrot, Sandrine; Mallet, François; Linnebacher, Michael
2016-01-01
A substantial part of the human genome originates from transposable elements, remnants of ancient retroviral infections. Roughly 8% of the human genome consists of about 400,000 LTR elements including human endogenous retrovirus (HERV) sequences. Mainly, the interplay between epigenetic and post-transcriptional mechanisms is thought to silence HERV expression in most physiological contexts. Interestingly, aberrant reactivation of several HERV-H loci appears specific to colorectal carcinoma (CRC). The expression of HERV-H Gag proteins (Gag-H) was assessed using novel monoclonal mouse anti Gag-H antibodies. In a flow cytometry screen four antibody clones were tested on a panel of primary CRC cell lines and the most well performing ones were subsequently validated in western blot analysis. Finally, Gag-H protein expression was analyzed by immune histology on cell line cytospins and on clinical samples. There, we found a heterogeneous staining pattern with no background staining of endothelial, stromal and infiltrating immune cells but diffuse staining of the cytoplasm for positive tumor and normal crypt cells of the colonic epithelium. Taken together, the Gag-H antibody clone(s) present a valuable tool for staining of cells with colonic origin and thus form the basis for future more detailed investigations. The observed Gag-H protein staining in colonic epithelium crypt cells demands profound analyses of a potential role for Gag-H in the normal physiology of the human gut.
Heat Stable Enzymes from Thermophiles
1998-02-01
final product and is somewhat messy to work with. Therefore, alternatives were tested. However, no combination of corn syrup , alternative sugars and...INTRODUCTION 9 CLONING OF ALKALINE PHOSPHATASE GENE AND PRODUCTION OF HIGH SPECIFIC ACTIVITY ENZYME 9 Cloning into E. coil and expression of high activity...JKR209, into an alternative, better producing organism. CLONING OF ALKALINE PHOSPHATASE GENE AND PRODUCTION OF HIGH SPECIFIC ACTIVITY ENZYME Cloning into
A small test of a sequence-based typing method: definition of the B*1520 allele.
Domena, J D; Little, A M; Arnett, K L; Adams, E J; Marsh, S G; Parham, P
1994-10-01
Santamaria et al. (Human Immunology 1993 37: 39-50) describe a method of sequence-based typing (SBT) for HLA-A, B and C alleles said to give "unambiguous typing of any sample, heterozygous or homozygous, without requiring additional typing information". From SBT analysis, which involves determination of partial sequences of mixed alleles, these investigators reported that cell lines KT17 (HLA-B35,62) and OLGA (HLA-B62) from the reference panel of the 10th International Histocompatibility Workshop express novel variants of HLA-B15 (B1501-MN6) and HLA-B35 (B3501-MN7) respectively. To study further the novel alleles, we cloned and sequenced full-length HLA-B cDNA clones isolated from the KT17 and OLGA cell lines. We find that KT17 expresses B*3501, as assigned by SBT, and B*1501, the common allele encoding the B62 antigen. We were unable to confirm that KT17 expresses the novel B1501-MN6 variant identified by SBT. For OLGA our analysis confirms the partial sequences obtained by SBT. Thus OLGA expresses B*1501 and a novel HLA-B allele. The complete sequence of the latter shows it is a hybrid having exons 1 and 2 in common with B*1501 and other B15 subtypes and exons 3-7 in common with B*3501 and related molecules including B*5301 and B*5801. The novel allele has been designated B*1520 because of its sequence similarity with the B15 group; furthermore, serological analysis shows that the B*1520 product does not express epitopes in common with either B35, B53 or B58. The B*1520 heavy chain has a similar isoelectric point to A*3101; B*1520 was undetected by previous applications of isoelectric focusing because B*1520 and A31 are both expressed by OLGA. In conclusion, HLA-B typing of two cell lines by cDNA cloning and sequencing gives concordant results with SBT for three of the four alleles. The cause of the discrepancy for the fourth allele is unknown, however, this finding indicates that the novel HLA-A, B and C sequences emerging from SBT studies need independent verification.
Nakajima, K; Hashimoto, T; Yamada, Y
1993-01-01
In the biosynthetic pathway of tropane alkaloids, tropinone reductase (EC 1.1.1.236) (TR)-I and TR-II, respectively, reduce a common substrate, tropinone, stereospecifically to the stereoisomeric alkamines tropine and pseudotropine (psi-tropine). cDNA clones coding for TR-I and TR-II, as well as a structurally related cDNA clone with an unknown function, were isolated from the solanaceous plant Datura stramonium. The cDNA clones for TR-I and TR-II encode polypeptides containing 273 and 260 amino acids, respectively, and when these clones were expressed in Escherichia coli, the recombinant TRs showed the same strict stereospecificity as that observed for the native TRs that had been isolated from plants. The deduced amino acid sequences of the two clones showed an overall identity of 64% in 260-amino acid residues and also shared significant similarities with enzymes in the short-chain, nonmetal dehydrogenase family. Genomic DNA-blot analysis detected the TR-encoding genes in three tropane alkaloid-producing solanaceous species but did not detect them in tobacco. We discuss how the two TRs may have evolved to catalyze the opposite stereospecific reductions. Images Fig. 4 Fig. 5 PMID:8415746
Single-step colony assay for screening antibody libraries.
Kato, Mieko; Hanyu, Yoshiro
2017-08-10
We describe a method, single-step colony assay, for simple and rapid screening of single-chain Fv fragment (scFv) libraries. Colonies of Escherichia coli expressing the scFv library are formed on a hydrophilic filter that is positioned in contact with a membrane coated with an antigen. scFv expression is triggered upon treatment of colonies with an induction reagent, following which scFvs are secreted from the cells and diffused to the antigen-coated membrane. scFvs that exhibit binding affinity for the antigen are captured by the membrane-immobilized antigen. Lastly, detection of scFv binding of the antigen on the membrane allows identification of the clones on the filter that express antigen-specific scFvs. We tested this methodology by using an anti-rabbit IgG scFv, scFv(A10B), and a rat immune scFv library. Experiments conducted using scFv(A10B) revealed that this method improves scFv expression during the colony assay. By using our method to screen an immune library of 3×10 3 scFv clones, we established several clones exhibiting affinity for the antigen. Moreover, we tested 7 other antigens, including peptides, and successfully identified positive clones. We believe that this simple procedure and controlled scFv expression of the single-step colony assay could make the antibody screening both rapid and reliable and lead to successful isolation of positive clones from antibody libraries. Copyright © 2017 Elsevier B.V. All rights reserved.
Michel, Marcus; Aliee, Maryam; Rudolf, Katrin; Bialas, Lisa; Jülicher, Frank; Dahmann, Christian
2016-01-01
The separation of cells with distinct fates and functions is important for tissue and organ formation during animal development. Regions of different fates within tissues are often separated from another along straight boundaries. These compartment boundaries play a crucial role in tissue patterning and growth by stably positioning organizers. In Drosophila, the wing imaginal disc is subdivided into a dorsal and a ventral compartment. Cells of the dorsal, but not ventral, compartment express the selector gene apterous. Apterous expression sets in motion a gene regulatory cascade that leads to the activation of Notch signaling in a few cell rows on either side of the dorsoventral compartment boundary. Both Notch and apterous mutant clones disturb the separation of dorsal and ventral cells. Maintenance of the straight shape of the dorsoventral boundary involves a local increase in mechanical tension at cell bonds along the boundary. The mechanisms by which cell bond tension is locally increased however remain unknown. Here we use a combination of laser ablation of cell bonds, quantitative image analysis, and genetic mutants to show that Notch and Apterous are required to increase cell bond tension along the dorsoventral compartment boundary. Moreover, clonal expression of the Apterous target gene capricious results in cell separation and increased cell bond tension at the clone borders. Finally, using a vertex model to simulate tissue growth, we find that an increase in cell bond tension at the borders of cell clones, but not throughout the cell clone, can lead to cell separation. We conclude that Apterous and Notch maintain the characteristic straight shape of the dorsoventral compartment boundary by locally increasing cell bond tension. PMID:27552097
Cho, Jungeun; Park, Minkyu; Choi, Doil; Lee, Seung Koo
2012-01-30
Garlic greening occurs when garlic cloves are stored at low temperature, increasing 1-propenyl cysteine sulfoxide, which is induced by γ-glutamyl transpeptidase (GGT) activity. Although the metabolism of the γ-glutamyl peptide is important for the biosynthesis of green pigments in crushed garlic cloves, garlic GGT is poorly characterised. For the analysis of GGT at the gene level, the garlic GGT sequence was partially cloned using an onion GGT sequence. The relationship between garlic greening and related gene expressions, depending on storage condition, was investigated using reverse transcription polymerase chain reaction for garlic GGT and alliinase. Three storage conditions were set: A, storage at a constant temperature of 20 °C; B, storage at 20 °C for 3 months and then transfer to 0 °C for an additional 3 months; C, storage at 0 °C for 3 months and then transfer to 20 °C for an additional 3 months. GGT expression increased under storage condition B and decreased under storage condition C. However, alliinase expression was not affected by storage condition. Greening in crushed garlic cloves increases with increasing GGT expression at low temperature, while alliinase expression is not affected. Copyright © 2011 Society of Chemical Industry.
1985-01-01
Previous studies (21) have shown that two mouse kappa light (L) chain variable (V) region polymorphisms, the IB-peptide and Efla markers, reflect expression of a characteristic group of V kappa regions, called V kappa Ser, by some inbred strains and not others. Expression of V kappa Ser is controlled by a locus on chromosome 6, the chromosome that contains the kappa locus. To further characterize this V kappa group and begin to analyze the basis for its strain-specific expression, full- length complementary DNA (cDNA) copies were produced of L chain mRNA from the M75 myeloma that had been induced in the C.C58 strain of mice, and which produces a V kappa Ser L chain. The C.C58 strain is congenic with BALB/cAn, differing in the region of chromosome 6 that controls expression of the V kappa polymorphisms and the Lyt-2 and Lyt-3 T cell alloantigens. The complete nucleotide sequence of this cloned cDNA was determined and compared with the nucleotide sequences the most closely related BALB/c myeloma L chains known. Results indicated significant differences throughout the variable region, but particularly toward the 5' portion of the sequence. A probe corresponding to 200 bp of the 5' end of the cloned V kappa Ser cDNA was used in Southern hybridizations of restriction digests of liver DNA from a number of inbred, recombinant, and recombinant inbred strains. Under stringent hybridization conditions, one strongly-hybridizing fragment was observed in Bam HI, Hind III, and Eco RI digests, and based on the size of the fragments, strains could be organized into two groups. The presence of strongly hybridizing Bam HI, Hind III, and Eco RI fragments of 3.2, 2.8, and 2.1 kb, respectively, was found to correlate completely with expression by the strain of the IB-peptide and Efla markers. All nonexpressor strains yielded hybridizing fragments of 7.8, 8.4, and 2.8 kb, respectively. Possible explanations for strain- specific expression of V kappa Ser-associated phenotypic markers are discussed. PMID:3926938
Liu, Penggang; Yu, Sijiu; Cui, Yan; He, Junfeng; Yu, Chuan; Wen, Zexing; Pan, Yangyang; Yang, Kun; Song, Liangli; Yang, Xue
2017-01-01
The aim of this study is to investigate the expression and localization of HSP70/90 in different tissues and explore the regulation effects of HSP70/90 at lactation period of female yaks. HSP90 mRNA was cloned from the heart samples of female yaks, Quantitative real-time (qRT-PCR), Western blotting (WB), immunohistochemistry and immunofluorescence assays were utilized to analyze the expressions of HSP70/90 mRNA and protein in different tissues. Sequence analysis showed that HSP90 is a conserved molecular chaperone of female yaks. The qRT-PCR, WB results showed that the expressions of HSP70/90 mRNA and protein were significantly different in different tissues, and 3-fold higher expression during the lactation period than the non-lactation period of breast tissue (P < 0.01). Immunohistochemistry and immunofluorescence assays results showed that HSP70/90 were located in the cardiac muscle cells, cerebellar medulla, theca cells lining at the reproductive system, and the mammary epithelia of the breasts. In addition, the expression level of HSP70 was higher than those of HSP90 in all examined tissues. Therefore, our results strongly suggest that the expression and localization of HSP70/90 could provide significant evidence to further research in tissue specific expression, and lactation function of female yaks.
Sun, Jin Kim; Uehara, Hisanori; Karashima, Takashi; Mccarty, Marya; Shih, Nancy; Fidler, Isaiah J
2001-01-01
Abstract We determined whether the expression of interleukin-8 (IL-8) by human prostate cancer cells correlates with induction of angiogenesis, tumorigenicity, and production of metastasis. Low and high IL-8-producing clones were isolated from the heterogeneous PC-3 human prostate cancer cell line. The secretion of IL-8 protein correlated with transcriptional activity and levels of IL-8 mRNA. All PC-3 cells expressed both IL-8 receptors, CXCR1 and CXCR2. The low and high IL-8-producing clones were injected into the prostate of nude mice. Titration studies indicated that PC-3 cells expressing high levels of IL-8 were highly tumorigenic, producing rapidly growing, highly vascularized prostate tumors with and a 100% incidence of lymph node metastasis. Low IL-8-expressing PC-3 cells were less tumorigenic, producing slower growing and less vascularized primary tumors and a significantly lower incidence of metastasis. In situ hybridization (ISH) analysis of the tumors for expression of genes that regulate angiogenesis and metastasis showed that the expression level of IL-8, matrix metalloproteinases, vascular endothelial growth factor (VEGF), and E-cadherin corresponded with microvascular density and biological behavior of the prostate cancers in nude mice. Collectively, the data show that the expression level of IL-8 in human prostate cancer cells is associated with angiogenesis, tumorigenicity, and metastasis. PMID:11326314
Molecular cloning of pepsinogens A and C from adult newt (Cynops pyrrhogaster) stomach.
Inokuchi, Tomofumi; Ikuzawa, Masayuki; Yamazaki, Shin; Watanabe, Yukari; Shiota, Koushiro; Katoh, Takuma; Kobayashi, Ken-Ichiro
2013-08-01
The full-length cDNAs of three pepsinogens (Pgs) were cloned from the stomach of newt, Cynops pyrrhogaster, and nucleotide sequences of the full-length cDNAs were determined. Molecular phylogenetic analysis showed that two Pgs, named PgC1 and PgC2, belong to the pepsinogen C group, and one Pg, named PgA, belongs to the pepsinogen A group. The sequences contain an open reading frame (ORF) encoding 385 amino acid residues for PgC1, 383 amino acid residues for PgC2 and 377 amino acid residues for PgA. In addition, all of the three amino acid sequences conserve some unique characteristics such as six cysteine residues and putative active site two aspartic acid residues. All of the pepsinogen mRNAs were detected in the stomach by RT-PCR but not in other organs. Although a slight difference at the time of the start of expression was seen among the three pepsinogen genes, all of them were expressed in the larval stage after hatching. This is the first report on cloning of pepsinogens from urodele stomach. Copyright © 2013 Elsevier Inc. All rights reserved.
Hirotani, M; Kuroda, R; Suzuki, H; Yoshikawa, T
2000-05-01
A cDNA encoding UDP-glucose: baicalein 7-O-glucosyltransferase (UBGT) was isolated from a cDNA library from hairy root cultures of Scutellaria baicalensis Georgi probed with a partial-length cDNA clone of a UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) from grape (Vitis vinifera L.). The heterologous probe contained a glucosyltransferase consensus amino acid sequence which was also present in the Scutellaria cDNA clones. The complete nucleotide sequence of the 1688-bp cDNA insert was determined and the deduced amino acid sequences are presented. The nucleotide sequence analysis of UBGT revealed an open reading frame encoding a polypeptide of 476 amino acids with a calculated molecular mass of 53,094 Da. The reaction product for baicalein and UDP-glucose catalyzed by recombinant UBGT in Escherichia coli was identified as authentic baicalein 7-O-glucoside using high-performance liquid chromatography and proton nuclear magnetic resonance spectroscopy. The enzyme activities of recombinant UBGT expressed in E. coli were also detected towards flavonoids such as baicalein, wogonin, apigenin, scutellarein, 7,4'-dihydroxyflavone and kaempferol, and phenolic compounds. The accumulation of UBGT mRNA in hairy roots was in response to wounding or salicylic acid treatments.
Ellard-Ivey, M; Hopkins, R B; White, T J; Lomax, T L
1999-01-01
We have isolated a full-length cDNA clone (CpCDPK1) encoding a calcium-dependent protein kinase (CDPK) gene from zucchini (Cucurbita pepo L.). The predicted amino acid sequence of the cDNA shows a remarkably high degree of similarity to members of the CDPK gene family from Arabidopsis thaliana, especially AtCPK1 and AtCPK2. Northern analysis of steady-state mRNA levels for CpCPK1 in etiolated and light-grown zucchini seedlings shows that the transcript is most abundant in etiolated hypocotyls and overall expression is suppressed by light. As described for other members of the CDPK gene family from different species, the CpCPK1 clone has a putative N-terminal myristoylation sequence. In this study, site-directed mutagenesis and an in vitro coupled transcription/translation system were used to demonstrate that the protein encoded by this cDNA is specifically myristoylated by a plant N-myristoyl transferase. This is the first demonstration of myristoylation of a CDPK protein which may contribute to the mechanism by which this protein is localized to the plasma membrane.
Takenaka, Shinji; Cheng, Minyi; Mulyono; Koshiya, Atsushi; Murakami, Shuichiro; Aoki, Kenji
2009-01-01
Bacillus cereus strain 10-L-2 synthesizes two arylamine N-acetyltransferases (Nat-a and Nat-b) with broad substrate specificities toward aniline and its derivatives. In southern blot analysis using probes encoding the NH2-terminus of Nat-b and a conserved region of N-acetyltransferases, digested total DNA of strain 10-L-2 showed one positive band. We cloned and sequenced the gene encoding Nat-b. The NH2-terminal amino acid sequence predicted from the open reading frame (768 base pairs) corresponded to that of purified Nat-b. The cloned Nat-b gene was expressed in Escherichia coli. The expressed enzyme (BcNAT) from the recombinant strain was partially purified and characterized. Nat-b from strain 10-L-2 and BcNAT from the recombinant strain were slightly different from each others in substrate specificity and thermo-stability. We examined the biotransformations of 2-aminophenols and phenylenediamines by the whole cells of the recombinant strain. The cells converted these compounds into their corresponding acetanilides. Only one amino group of phenylenediamines was acetylated. The cells utilized 4-nitroacetanilide as an acetyl donor instead of acetyl-CoA. 4-Aminoacetanilide was produced and 4-nitroaniline was released almost stoichiometrically.
Iwamoto, Kazuaki; Tsuruta, Hiroki; Nishitaini, Yosuke; Osawa, Ro
2008-09-01
The gene tanLpl, encoding a novel tannase enzyme (TanLpl), has been cloned from Lactobacillus plantarum ATCC 14917(T). This is the first report of a tannase gene cloned from a bacterial source other than from Staphylococcus lugdunensis, which has been reported elsewhere. The open reading frame of tanLpl, spanning 1410 bp, encoded a 469-amino-acid protein that showed 28.8% identity to the tannase of S. lugdunensis with several commonly conserved sequences. These sequences could not be found in putative tannases reported for other bacteria and fungi. TanLpl was expressed in Escherichia coli DH5alpha from a pGEM-T expression system and purified. SDS-PAGE analysis indicated that purified TanLpl was a monomer polypeptide of approximately 50 kDa in size. Subsequent enzymatic characterization revealed that TanLpl was most active in an alkaline pH range at 40 degrees C, which was quite different from that observed for a fungal tannase of Aspergillus oryzae. In addition, the Michaelis-Menten constant of TanLpl was markedly lower than that of A. oryzae tannase. The evidence suggests that TanLpl should be classified into a novel family of tannases.
Cloning and expression of a small heat and salt tolerant protein (Hsp22) from Chaetomium globosum.
Aggarwal, Rashmi; Gupta, Sangeeta; Sharma, Sapna; Banerjee, Sagar; Singh, Priyanka
2012-11-01
The present study reports molecular characterization of small heat shock protein gene in Indian isolates of Chaetomium globosum, C. perlucidum, C. reflexum, C. cochlioides and C. cupreum. Six isolates of C. globosum and other species showed a band of 630bp using specific primers. Amplified cDNA product of C. globosum (Cg 1) cloned and sequenced showed 603bp open reading frame encoding 200 amino-acids. The protein sequence had a molecular mass of 22 kDa and was therefore, named Hsp22. BlastX analysis revealed that the gene codes for a protein homologous to previously characterized Hsp22.4 gene from C. globosum (AAR36902.1, XP 001229241.1) and shared 95% identity in amino acid sequence. It also showed varying degree of similarities with small Hsp protein from Neurospora spp. (60%), Myceliophthora sp. (59%), Glomerella sp. (50%), Hypocrea sp. (52%), and Fusarium spp. (51%). This gene was further cloned into pET28a (+) and transformed E. coli BL21 cells were induced by IPTG, and the expressed protein of 30 kDa was analyzed by SDS-PAGE. The IPTG induced transformants displayed significantly greater resistance to NaCl and Na2CO3 stresses.
Krebber, A; Bornhauser, S; Burmester, J; Honegger, A; Willuda, J; Bosshard, H R; Plückthun, A
1997-02-14
A prerequisite for the use of recombinant antibody technologies starting from hybridomas or immune repertoires is the reliable cloning of functional immunoglobulin genes. For this purpose, a standard phage display system was optimized for robustness, vector stability, tight control of scFv-delta geneIII expression, primer usage for PCR amplification of variable region genes, scFv assembly strategy and subsequent directional cloning using a single rare cutting restriction enzyme. This integrated cloning, screening and selection system allowed us to rapidly obtain antigen binding scFvs derived from spleen-cell repertoires of mice immunized with ampicillin as well as from all hybridoma cell lines tested to date. As representative examples, cloning of monoclonal antibodies against a his tag, leucine zippers, the tumor marker EGP-2 and the insecticide DDT is presented. Several hybridomas whose genes could not be cloned in previous experimental setups, but were successfully obtained with the present system, expressed high amounts of aberrant heavy and light chain mRNAs, which were amplified by PCR and greatly exceeded the amount of binding antibody sequences. These contaminating variable region genes were successfully eliminated by employing the optimized phage display system, thus avoiding time consuming sequencing of non-binding scFv genes. To maximize soluble expression of functional scFvs subsequent to cloning, a compatible vector series to simplify modification, detection, multimerization and rapid purification of recombinant antibody fragments was constructed.
Evidence of drug-response heterogeneity rapidly generated from a single cancer cell.
Wang, Rong; Jin, Chengmeng; Hu, Xun
2017-06-20
One cancer cell line is believed to be composed of numerous clones with different drug sensitivity. We sought to investigate the difference of drug-response pattern in clones from a cell line or from a single cell. We showed that 22 clones derived from 4T1 cells were drastically different from each other with respect to drug-response pattern against 11 anticancer drugs and expression profile of 19 genes associated with drug resistance or sensitivity. Similar results were obtained using daughter clones derived from a single 4T1 cell. Each daughter clone showed distinct drug-response pattern and gene expression profile. Similar results were also obtained using Bcap37 cells. We conclude that a single cancer cell can rapidly produce a population of cells with high heterogeneity of drug response and the acquisition of drug-response heterogeneity is random.
Sociogenomics of self vs. non-self cooperation during development of Dictyostelium discoideum.
Li, Si I; Buttery, Neil J; Thompson, Christopher R L; Purugganan, Michael D
2014-07-21
Dictyostelium discoideum, a microbial model for social evolution, is known to distinguish self from non-self and show genotype-dependent behavior during chimeric development. Aside from a small number of cell-cell recognition genes, however, little is known about the genetic basis of self/non-self recognition in this species. Based on the key hypothesis that there should be differential expression of genes if D. discoideum cells were interacting with non-clone mates, we performed transcriptomic profiling study in this species during clonal vs. chimeric development. The transcriptomic profiles of D. discoideum cells in clones vs. different chimeras were compared at five different developmental stages using a customized microarray. Effects of chimerism on global transcriptional patterns associated with social interactions were observed. We find 1,759 genes significantly different between chimera and clone, 1,144 genes associated significant strain differences, and 6,586 genes developmentally regulated over time. Principal component analysis showed a small amount of the transcriptional variance to chimerism-related factors (Chimerism: 0.18%, Chimerism × Timepoint: 0.03%). There are 162 genes specifically regulated under chimeric development, with continuous small differences between chimera vs. clone over development. Almost 60% of chimera-associated differential genes were differentially expressed at the 4 h aggregate stage, which corresponds to the initial transition of D. discoideum from solitary life to a multicellular phase. A relatively small proportion of over-all variation in gene expression is explained by differences between chimeric and clonal development. The relatively small modifications in gene expression associated with chimerism is compatible with the high level of cooperation observed among different strains of D. discoideum; cells of distinct genetic backgrounds will co-aggregate indiscriminately and co-develop into fruiting bodies. Chimeric development may involve re-programming of the transcriptome through small modifications of the developmental genetic network, which may also indicate that response to social interaction involves many genes with individually small transcriptional effect.
Pourahmad Jaktaji, Razieh; Ebadi, Rayhaneh
2013-01-01
MarA activates two membrane dependent mechanisms of resistance to different antibiotics, such as ciprofloxacin and tetracycline, including promotion of outflux and inhibition of influx of antibiotics. Thus, MarA causes multiple antibiotic resistance phenotype. The activation of these mechanisms needs overexpression of marA. This could happen through mutation in marR. Thus, the aim of this study was to measure marA expression in ciprofloxacin resistant E. coli gyrA mutants and clones with or without marR mutation. For this purpose, real time PCR was used to measure relative expression of marA in above mutants and clones. Results showed that two clones, C14 and C17 overexpressed marA. It is concluded that the level of marA expression is important for activation of above mechanisms. PMID:24523773
Pourahmad Jaktaji, Razieh; Ebadi, Rayhaneh
2013-01-01
MarA activates two membrane dependent mechanisms of resistance to different antibiotics, such as ciprofloxacin and tetracycline, including promotion of outflux and inhibition of influx of antibiotics. Thus, MarA causes multiple antibiotic resistance phenotype. The activation of these mechanisms needs overexpression of marA. This could happen through mutation in marR. Thus, the aim of this study was to measure marA expression in ciprofloxacin resistant E. coli gyrA mutants and clones with or without marR mutation. For this purpose, real time PCR was used to measure relative expression of marA in above mutants and clones. Results showed that two clones, C14 and C17 overexpressed marA. It is concluded that the level of marA expression is important for activation of above mechanisms.
Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages
Studier, F.W.; Dubendorff, J.W.
1998-10-20
This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.
Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages
Studier, F.W.; Dubendorff, J.W.
1998-11-03
This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.
Positive Selection of γδ CTL by TL Antigen Expressed in the Thymus
Tsujimura, Kunio; Takahashi, Toshitada; Morita, Akimichi; Hasegawa-Nishiwaki, Hitomi; Iwase, Shigeru; Obata, Yuichi
1996-01-01
To elucidate the function of the mouse TL antigen in the thymus, we have derived two TL transgenic mouse strains by introducing Tla a -3 of A strain origin with its own promoter onto a C3H background with no expression of TL in the thymus. These transgenic mouse strains, both of which express high levels of Tlaa-3-TL antigen in their thymus, were analyzed for their T cell function with emphasis on cytotoxic T lymphocyte (CTL) generation. A T cell response against TL was induced in Tg.Tlaa-3-1, Tg.Tlaa-3-2, and control C3H mice by skin grafts from H-2K b/T3 b transgenic mice, Tg.Con.3-1, expressing T3b-TL ubiquitously. Spleen cells from mice that had rejected the T3b-TL positive skin grafts were restimulated in vitro with Tg.Con.3-1 irradiated spleen cells. In mixed lymphocyte cultures (MLC), approximately 20% and 15% of Thy-1+ T cells derived from Tg.Tlaa-3-1 and Tg.Tlaa-3-2, respectively, expressed TCRγδ, whereas almost all those from C3H expressed TCRαβ. The MLC from Tg.Tlaa-3-2 and C3H demonstrated high CTL activity against TL, while those from Tg.Tlaa-3-1 had little or none. The generation of γδ CTL recognizing TL in Tg.Tlaa-3-2, but not C3H mice, was confirmed by the establishment of CTL clones. A total of 14 γδ CTL clones were established from Tg.Tlaa-3-2, whereas none were obtained from C3H. Of the 14 γδ CTL clones, 8 were CD8+ and 6 were CD4−CD8− double negative. The CTL activity of all these clones was TL specific and inhibited by anti-TL, but not by anti-H-2 antibodies, demonstrating that they recognize TL directly without antigen presentation by H-2. The CTL activity was blocked by antibodies to TCRγδ and CD3, and also by antibodies to CD8α and CD8β in CD8+ clones, showing that the activity was mediated by TCRγδ and coreceptors. The thymic origin of these γδ CTL clones was indicated by the expression of Thy-1 and Ly-1 (CD5), and also CD8αβ heterodimers in CD8+ clones on their surfaces and by the usage of TCR Vγ4 chains in 12 of the 14 clones. Taken together, these results suggest that Tlaa-3-TL antigen expressed in the thymus engages in positive selection of a sizable population of γδ T cells. PMID:8976173
2010-12-30
collected after challenges were gamma- irradiated (6 Mrad) to destroy any infectious virus. Previous results indicated minimal damage to serum immuno...in Sf9 insect cells using Gateway baculovirus expression (Invitrogen). All ORF clones were fully sequenced. Recombinant proteins carried GST-tags and... insect cell expression, increased the likelihood that all products were correctly folded and functional. Successfully cloned, expressed and size
2017-10-01
CRISPR Subtask 1A: i) design and produce mammalian expression plasmids encoding the Cas9 protein and specially...duration in SOW: 2017 Q4 – 2018 Q1 Subtask 2A: i) produce mouse myocyte cell lines that have undergone gene disruption via a technique named CRISPR ii...named CRISPR ii) confirm gene disruption and GFP expression iii) select multiple individual clones characterized with quantitative gene
Li, Zhenyi; Long, Ruicai; Zhang, Tiejun; Wang, Zhen; Zhang, Fan; Yang, Qingchuan; Kang, Junmei; Sun, Yan
2017-03-01
Heat shock proteins (HSPs) are a ubiquitously expressed class of protective proteins that play a key role in plant response to stressful conditions. This study aimed to characterize and investigate the function of an HSP gene in alfalfa (Medicago sativa). MsHSP70, which contains a 2028-bp open reading frame, was identified through homology cloning. MsHSP70 shares high sequence identity (94.47%) with HSP70 from Medicago truncatula. Expression analysis of MsHSP70 in alfalfa organs revealed a relatively higher expression level in aerial organs such as flowers, stems and leaves than in roots. MsHSP70 was induced by heat shock, abscisic acid (ABA) and hydrogen peroxide. Transgenic Arabidopsis seedlings overexpressing MsHSP70 were hyposensitive to polyethylene glycol (PEG) and ABA treatments, suggesting that exogenous expression of MsHSP70 enhanced Arabidopsis tolerance to these stresses. Examination of physiological indexes related to drought and ABA stress demonstrated that in comparison with non-transgenic plants, T3 transgenic Arabidopsis plants had an increased proline content, higher superoxide dismutase (SOD) activity, and decreased malondialdehyde (MDA) content. Furthermore, higher relative water content (RWC) was detected in transgenic plants compared with non-transgenic plants under drought stress. These findings clearly indicate that molecular manipulation of MsHSP70 in plants can have substantial effects on stress tolerance.
Molecular cloning, expression, and in silico structural analysis of guinea pig IL-17.
Dirisala, Vijaya R; Jeevan, Amminikutty; Ramasamy, Suresh K; McMurray, David N
2013-11-01
Interleukin-17A (IL-17A) is a potent proinflammatory cytokine and the signature cytokine of Th17 cells, a subset which is involved in cytokine and chemokine production, neutrophil recruitment, promotion of T cell priming, and antibody production. IL-17 may play an important role in tuberculosis and other infectious diseases. In preparation for investigating its role in the highly relevant guinea pig model of pulmonary tuberculosis, we cloned guinea pig IL-17A for the first time. The complete coding sequence of the guinea pig IL-17A gene (477 nucleotides; 159 amino acids) was subcloned into a prokaryotic expression vector (pET-30a) resulting in the expression of a 17 kDa recombinant guinea pig IL-17A protein which was confirmed by mass spectrometry analysis. Homology modeling of guinea pig IL-17A revealed that the three-dimensional structure resembles that of human IL-17A. The secondary structure predicted for this protein showed the presence of one extra helix in the N-terminal region. The expression profile of IL-17A was analyzed quantitatively in spleen, lymph node, and lung cells from BCG-vaccinated guinea pigs by real-time PCR. The guinea pig IL-17A cDNA and its recombinant protein will serve as valuable tools for molecular and immunological studies in the guinea pig model of pulmonary TB and other human diseases.
cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea.
Zhu, Changfu; Yamamura, Saburo; Koiwa, Hiroyuki; Nishihara, Masashiro; Sandmann, Gerhard
2002-02-01
All cDNAs involved in carotenoid biosynthesis leading to lycopene in yellow petals of Gentiana lutea have been cloned from a cDNA library. They encode a geranylgeranyl pyrophosphate synthase, a phytoene synthase, a phytoene desaturase and a zeta-carotene desaturase. The indicated function of all cDNAs was established by heterologous complementation in Escherichia coli. The amino acid sequences deduced from the cDNAs were between 47.5% and 78.9% identical to those reported for the corresponding enzymes from other higher plants. Southern analysis suggested that the genes for each enzyme probably represent a small multi-gene family. Tissue-specific expression of the genes and expression during flower development was investigated. The expression of the phytoene synthase gene, psy, was enhanced in flowers but transcripts were not detected in stems and leaves by northern blotting. Transcripts of the genes for geranylgeranyl pyrophosphate (ggpps), phytoene desaturase (pds) and zeta-carotene desaturase (zds) were detected in flowers and leaves but not in stems. Analysis of the expression of psy and zds in petals revealed that levels of the transcripts were lowest in young buds and highest in fully open flowers, in parallel with the formation of carotenoids. Obviously, the transcription of these genes control the accumulation of carotenoids during flower development in G. lutea. For pds only a very slight increase of mRNA was found whereas the transcripts of ggpps decreased during flower development.
Li, Wenli; Terenius, Olle; Hirai, Makoto; Nilsson, Anders S; Faye, Ingrid
2005-01-01
The Chinese oak silk moth Antheraea pernyi is an important silk producer. To understand microbial resistance of this moth, we cloned Hemolin, encoding a multifunctional immune protein belonging to the immunoglobulin superfamily, and examined the expression in gonads and fat body. The ApHemolin amino acid sequence was compared to other Hemolin sequences in order to predict functional sites. Several sites were conserved; among them a phosphate binding site, which according to 3D structure modelling does not appear in neuroglian, the phylogenetically closest related protein. In addition, two conserved KDG sequences in the C-C' loop of immunoglobulin domains 1 and 3, give rise to gamma-turns, which is a common motif in the C'-C'' loop of the hypervariable region L2 in vertebrate immunoglobulins. The comparisons also show variable regions of specific interest for future studies of hemolin and its interaction with microbial entities.
Rolland-Turner, Magali; Farré, Guillaume; Boué, Franck
2006-04-15
The immune response in the fox (Vulpes vulpes), despite the success of the oral rabies vaccine is not well characterised, and specific immunological tools are needed. A quantitative RT-PCR using SyBR Green to investigate fox cytokine expression after antigen PBMC in vitro re-stimulation is presented here. First, we cloned by homology with dog cytokine sequences the fox IL2, IL6, IL10, IFNgamma and a partial 18S sequence. Fox specific primers were then defined and used to set up a species-specific quantitative RT-PCR assay using SyBR Green and 18S housekeeping gene as internal standard. The technique was validated using total RNA from fox PBMC stimulated with a polyclonal activator, Concanavaline A.
Xie, P; Wan, X P; Bu, Z; Zou, X T
2016-11-01
Ghrelin and cholecystokinin (CCK) are multifunctional peptides. In the current study, complete sequences of ghrelin (800 bp) and CCK (739 bp) were firstly cloned in Columba livia by using rapid amplification of cDNA ends (RACE) method. The open reading frames of ghrelin (351bp) and CCK (393bp) encoded 116 amino acids and 130 amino acids, respectively. Sequence comparison indicated that pigeon ghrelin and CCK shared high identity with those reported in other avian species. Quantitative real-time PCR analysis found that ghrelin and CCK mRNAs expressed in three intestinal segments of pigeon during development. Both ghrelin and CCK showed generally higher expressions at days posthatch than embryonic periods regardless of intestinal segments. In duodenum and ileum, the expressions of ghrelin and CCK mRNA reached the peak values at 8 d posthatch. Jejunum CCK mRNA level increased linearly after hatching, and reached the highest point at posthatch 28 d. Based on documented effects of long chain fatty acids (LCFAs) on pigeon ghrelin and CCK expression were also investigated in vitro. Higher concentrations (50 μM or 250 μM) of linoleic acid, α-linolenic acid or arachidonic acid can significantly increase ghrelin mRNA level in pigeon jejunum. However, for oleic acid, the induction of ghrelin gene expressions needed a lower concentration (5 μM). 5 μM of linoleic acid, α-linolenic acid or arachidonic acid and 250 μM palmitic acid repressed CCK expression significantly. A higher concentration (250 μM) of oleic acid or α-linolenic acid can up-regulate CCK mRNA level significantly. Our results indicated that ghrelin and CCK may act key functions in pigeon intestine development and their expressions could be regulated by LCFAs. © 2016 Poultry Science Association Inc.
Sweasy, Joann B.
2012-01-01
Maintenance of genomic stability is essential for cellular survival. The base excision repair (BER) pathway is critical for resolution of abasic sites and damaged bases, estimated to occur 20,000 times in cells daily. DNA polymerase β (Pol β) participates in BER by filling DNA gaps that result from excision of damaged bases. Approximately 30% of human tumours express Pol β variants, many of which have altered fidelity and activity in vitro and when expressed, induce cellular transformation. The prostate tumour variant Ile260Met transforms cells and is a sequence-context-dependent mutator. To test the hypothesis that mutations induced in vivo by Ile260Met lead to cellular transformation, we characterized the genome-wide expression profile of a clone expressing Ile260Met as compared with its non-induced counterpart. Using a 1.5-fold minimum cut-off with a false discovery rate (FDR) of <0.05, 912 genes exhibit altered expression. Microarray results were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and revealed unique expression profiles in other clones. Gene Ontology (GO) clusters were analyzed using Ingenuity Pathways Analysis to identify altered gene networks and associated nodes. We determined three nodes of interest that exhibited dysfunctional regulation of downstream gene products without themselves having altered expression. One node, peroxisome proliferator-activated protein γ (PPARG), was sequenced and found to contain a coding region mutation in PPARG2 only in transformed cells. Further analysis suggests that this mutation leads to dominant negative activity of PPARG2. PPARG is a transcription factor implicated to have tumour suppressor function. This suggests that the PPARG2 mutant may have played a role in driving cellular transformation. We conclude that PPARG induces cellular transformation by a mutational mechanism. PMID:22914675
Li, Lulu; An, Meiling; Qu, Changfeng; Zheng, Zhou; Wang, Yibin; Liu, Fangming; He, Yingying; He, Xiaodong; Miao, Jinlai
2017-07-01
Major intrinsic proteins (MIPs) form channels facilitating the passive transport of water and other small polar molecules across membranes. In this study, the complete open reading frame (ORF) of CiMIP1 (GenBank ID KY316061) encoding one kind of MIPs in the Antarctic ice microalga Chlamydomonas sp. ICE-L is successfully cloned using RACE. In addition, the expression patterns of CiMIP1 gene under different conditions of temperature and salinity are determined by qRT-PCR. The ORF of CiMIP1 gene encodes 308 amino acids, and the deduced amino acid sequence shows 74% homology with Chlamydomonas reinhardtii CrMIP1 (GenBank number 159471952). Phylogenetic analysis reveals that algal MIPs are divided into seven groups, and it is speculated that CiMIP1 most likely belongs to the MIPD subfamily. In addition, we are surprised to find that a third NPA motif exists at the carboxy terminus of the target protein except for two highly conserved ones. Expression analysis shows that the transcriptional levels of CiMIP1 gene are upregulated under either lower temperature or higher temperature and high salinity. In summary, the results together have provide new insights into the newly discovered gene in green algae and lay the foundation for further studies on the adaptation mechanism of Chlamydomonas sp. ICE-L to abiotic stresses.
Using "Pseudomonas Putida xylE" Gene to Teach Molecular Cloning Techniques for Undergraduates
ERIC Educational Resources Information Center
Dong, Xu; Xin, Yi; Ye, Li; Ma, Yufang
2009-01-01
We have developed and implemented a serial experiment in molecular cloning laboratory course for undergraduate students majored in biotechnology. "Pseudomonas putida xylE" gene, encoding catechol 2, 3-dioxygenase, was manipulated to learn molecular biology techniques. The integration of cloning, expression, and enzyme assay gave students…
[Cloning and functional characterization of phytoene desaturase in Andrographis paniculata].
Shen, Qin-qin; Li, Li-xia; Zhan, Peng-lin; Wang, Qiang
2015-10-01
A full-length cDNA of phytoene desaturase (PDS) gene from Andrographis paniculata was obtained through RACE-PCR. The cDNA sequence consists of 2 224 bp with an intact ORF of 1 752 bp (GeneBank: KP982892), encoding a ploypeptide of 584 amino acids. Homology analysis showed that the deduced protein has extensive sequence similarities to PDS from other plants, and contains a conserved NAD ( H) -binding domain of plant dehydrase cofactor binding-domain in N-terminal. Phylogenetic analysis demonstrated that ApPDS was more related to PDS of Sesamum indicum and Pogostemon cablin. The semi-quantitative RT-PCR analysis revealed that ApPDS expressed in whole aboveground tissues with the highest expression in leaves. Virus induced gene silencing (VIGS) was performed to characterize the functional of ApPDS in planta. Significant photobleaching was not observed in infiltrated leaves, while the PDS gene has been down-regulated significantly at the yellowish area. To the best of our knowledge, this represents the first report of PDS gene cloning and functional characterization from A. paniculata, which lays the foundation for further investigation of new genes, especially that correlative to andrographolide biosynthetic pathway.
NASA Astrophysics Data System (ADS)
Lee, Ja-Yun; Wu, Tzong-Yuan; Hsu, I.-Jen
2008-04-01
The cloning and transcription techniques on gene cloned fluorescent proteins have been widely used in many applications. They have been used as reporters of some conditions in a series of reactions. However, it is usually difficult to monitor the specific target with the exactly number of proteins during the process in turbid media, especially at micrometer scales. We successfully revealed an alternative way to monitor the cell cycle behavior and quantitatively analyzed the target cells with green and red fluorescent proteins (GFP and RFP) during different phases of the cell cycle by quantitatively analyzing its behavior and also monitoring its spatial distribution.
Papke, Roger L; Wecker, Lynn; Stitzel, Jerry A
2010-05-01
Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relatively comprehensive characterization of the three primary classes of nAChR: muscle-type receptors, heteromeric neuronal receptors, and homomeric alpha7-type receptors. We evaluated the activation of these receptor subtypes with acetylcholine and cytisine-related compounds, including varenicline. We also characterized the activity of classic nAChR antagonists, confirming the utility of mecamylamine and dihydro-beta-erythroidine as selective antagonists in mouse models of alpha3beta4 and alpha4beta2 receptors, respectively. We also conducted an in-depth analysis of decamethonium and hexamethonium on muscle and neuronal receptor subtypes. Our data indicate that, as with receptors cloned from other species, pairwise expression of neuronal alpha and beta subunits in oocytes generates heterogeneous populations of receptors, most likely caused by variations in subunit stoichiometry. Coexpression of the mouse alpha5 subunit had varying effects, depending on the other subunits expressed. The properties of cytisine-related compounds are similar for mouse, rat, and human nAChR, except that varenicline produced greater residual inhibition of mouse alpha4beta2 receptors than with human receptors. We confirm that decamethonium is a partial agonist, selective for muscle-type receptors, but also note that it is a nondepolarizing antagonist for neuronal-type receptors. Hexamethonium was a relatively nonselective antagonist with mixed competitive and noncompetitive activity.
Wecker, Lynn; Stitzel, Jerry A.
2010-01-01
Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relatively comprehensive characterization of the three primary classes of nAChR: muscle-type receptors, heteromeric neuronal receptors, and homomeric α7-type receptors. We evaluated the activation of these receptor subtypes with acetylcholine and cytisine-related compounds, including varenicline. We also characterized the activity of classic nAChR antagonists, confirming the utility of mecamylamine and dihydro-β-erythroidine as selective antagonists in mouse models of α3β4 and α4β2 receptors, respectively. We also conducted an in-depth analysis of decamethonium and hexamethonium on muscle and neuronal receptor subtypes. Our data indicate that, as with receptors cloned from other species, pairwise expression of neuronal α and β subunits in oocytes generates heterogeneous populations of receptors, most likely caused by variations in subunit stoichiometry. Coexpression of the mouse α5 subunit had varying effects, depending on the other subunits expressed. The properties of cytisine-related compounds are similar for mouse, rat, and human nAChR, except that varenicline produced greater residual inhibition of mouse α4β2 receptors than with human receptors. We confirm that decamethonium is a partial agonist, selective for muscle-type receptors, but also note that it is a nondepolarizing antagonist for neuronal-type receptors. Hexamethonium was a relatively nonselective antagonist with mixed competitive and noncompetitive activity. PMID:20100906
Tsutsumida, Hideaki; Swanson, Benjamin J; Singh, Pankaj K; Caffrey, Thomas C; Kitajima, Shinichi; Goto, Masamichi; Yonezawa, Suguru; Hollingsworth, Michael A
2006-05-15
MUC1 is a highly glycosylated, type I transmembrane protein expressed by normal ductal epithelial cells of the pancreas, breast, lung, and gastrointestinal tract, and overexpressed in many cases of adenocarcinoma. We down-regulated MUC1 expression by RNA interference and investigated the effects on malignant and metastatic potential of a human pancreatic cancer cell line, S2-013. MUC1-suppressed clones, S2-013.MTII.C1 and S2-013.MTII.C2, were established by targeting a sequence 3,151 bp from the initiation codon and characterized in vitro for proliferation, invasion, and adhesion. We evaluated the effects of MUC1 suppression in vivo on tumor growth and metastatic properties following implantation into the cecum or pancreas of athymic mice. MUC1-suppressed clones showed significantly decreased proliferation in vitro and in vivo. Global gene expression was evaluated by oligonucleotide microarray analysis. Surprisingly, genes predicted to increase doubling times (cyclin B1 and cyclin D3) were overexpressed in MUC1-suppressed clones. There were alterations in expression of several genes that may affect the malignant properties of pancreatic cancer. Adhesion of MUC1-suppressed cells in vitro to type IV collagen and fibronectin was slightly increased, and adhesion was slightly decreased to type I collagen and laminin. Results of implantation to cecum and pancreas showed significant reduction of metastasis to lymph nodes, lung, or peritoneal sites compared with S2-013.gfp-neo control cells. These results support the hypothesis that MUC1 contributes significantly to growth and metastasis, and that down-regulation of MUC1 protein expression decreases the metastatic potential of pancreatic adenocarcinoma.
Saleem, Faiza; Shakoori, Abdul Rauf
2017-01-01
The Cry (crystal) proteins from Bacillus thuringiensis are known to have toxicity against a variety of insects and have been exploited to control insect pests through transgenic plants and biopesticides. B. thuringiensis SBS BT-1 carrying the cry2 genes was isolated from soil samples in Pakistan. The 2-kb full length cry2Ac gene was cloned, sequenced, and submitted to the EMBL DNA database (Accession No. AM292031). For expression analysis, Escherichia coli DH5α was transformed with the fragment sub-cloned in pET22b expression vector using NdeI and HindIII restriction sites, and later confirmed by restriction endonuclease analysis. To assess the toxicity of Cry2Ac7 protein against lepidopteran and dipteran insects, BL21 (codon plus) strain of E. coli was further transformed with the recombinant plasmid. The 65-kDa protein was expressed in the form of inclusion bodies up to 180 OD units per liter of the medium. Inclusions were washed with a buffer containing 1.5% Triton-X 100 and >90% pure Cry2Ac7 was obtained. The inclusion bodies were dissolved in 50 mM K2CO3 (pH 11.5), dialyzed, and freeze-dried. This freeze-dried protein as well as inclusion bodies were used in bioassays against larvae of Helicoverpa armigera and Musca domestica. The freeze-dried protein was toxic to H. armigera larvae with an LC50 value of 131 ng/mL. However, Cry2Ac7 produced in E. coli did not show any mortality to M. domestica larvae. This is the first report of Cry2Ac protein toxic to H. armigera. PMID:29099767
Nielsen, D.; Eriksen, J.; Maare, C.; Jakobsen, A. H.; Skovsgaard, T.
1998-01-01
Fluctuation analysis experiments were performed to assess whether selection or induction determines expression of P-glycoprotein and resistance in the murine Ehrlich ascites tumour cell line (EHR2) after exposure to daunorubicin. Thirteen expanded populations of EHR2 cells were exposed to daunorubicin 7.5 x 10(-9) M or 10(-8) M for 2 weeks. Surviving clones were scored and propagated. Only clones exposed to daunorubicin 7.5 x 10(-9) M could be expanded for investigation. Drug resistance was assessed by the tetrazolium dye (MTT) cytotoxicity assay. Western blot was used for determination of P-glycoprotein. Compared with EHR2, the variant cells were 2.5- to 5.2-fold resistant to daunorubicin (mean 3.6-fold). P-glycoprotein was significantly increased in 11 of 25 clones (44%). Analysis of variance supported the hypothesis that spontaneous mutations conferred drug resistance in EHR2 cells exposed to daunorubicin 7.5 x 10(-9) M. At this level (5 log cell killing) of drug exposure, the mutation rate was estimated at 4.1 x 10(-6) per cell generation. In contrast, induction seemed to determine resistance in EHR2 cells in vitro exposed to daunorubicin 10(-8) M. The revertant EHR2/0.8/R was treated in vivo with daunorubicin for 24 h. After treatment, P-glycoprotein increased in EHR2/0.8/R (sevenfold) and the cell line developed resistance to daunorubicin (12-fold), suggesting that in EHR2/0.8/R the mdr1 gene was activated by induction. In conclusion, our study demonstrates that P-glycoprotein expression and daunorubicin resistance are primarily acquired by selection of spontaneously arising mutants. However, under certain conditions the mdr1 gene may be activated by induction. PMID:9820176
A New Cell-Free System to Study BRCA1 Function
2014-05-01
antibodies to FANCI, FANCD2, DNA pol e, FANCA , FANCM. We first wanted to test whether Approach, which is inhibited in BRCA1-depleted egg extracts...analysis. We have not initiated this task. 4c. For novel proteins whose binding to chromatin depends on BRCA1: clone the gene , express the protein
Interferon Antagonism as a Common Virulence Factor of Hemorrhagic Fever Viruses
2008-02-01
S. Prehn , A. Leutz, H. Haller, and E. Hartmann. 1997. Cloning of two novel human importin-alpha subunits and analysis of the expression pattern of...the importin-alpha protein family. FEBS Lett 417:104-8. 12. Kohler, M., C. Speck, M. Christiansen, F. R. Bischoff, S. Prehn , H. Haller, D. Gorlich
Li, Kaiquan; Liu, Lin; Shang, Shengnan; Wang, Yi; Zhan, Yaoyao; Song, Jian; Zhang, Xiangxiang; Chang, Yaqing
2017-10-01
The ras-related C3 botulinum toxin substrate 1 (Rac1) belongs to Ras homolog (Rho) small GTPases subfamily. As an important molecular switch, Rac1 regulates various processes in the cell, especially in cellular immune response. With attempt to clarify characters and functions of Rac1 in sea cucumbers, full length cDNA of a Rac1 homolog in the sea cucumber Apostichopus japonicus (AjRac1) was cloned by transcriptome database mining and rapid amplification of cDNA ends (RACE) techniques. The open reading frame of AjRac1 is 579 bp encoding a protein with a length of 192 aa. Sequence analysis showed that AjRac1 is highly conserved as compared to those from other eukaryotic species. Phylogenetic analysis revealed that amino acid sequence of AjRac1 closely related to those from Strongylocentrotus purpuratus. Results of expression analysis showed that AjRac1 exhibited a relative high expression in blastula stage, adult coelomocytes and respiratory tree in A. japonicus. The transcription of AjRac1 in adult coelomocytes altered significantly at 4 h- and 12 h-after Vibrio splendidus infection, respectively, which indicated that AjRac1 involved in sea cucumber innate immunity. All data presented in this study will deepen our understanding of characterizations and immunological functions of Rac1 in sea cucumbers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Xinran; Chen, Xiangdong; Yu, Wumengxiao; Liu, Yu; Zhang, Weiwei; Lan, Jin
2017-08-01
Blue light plays an important role during the growth of Ganoderma lucidum, one of the best-known medicinal macrofungi in China. In the present study, we cloned Glwc-1 and Glwc-2, the homologue of the blue light photoreceptors Ncwc-1 and Ncwc-2 of Neurospora crassa, from G. lucidum. The deduced amino acid sequence of Glwc-1 contained the similar function domains as NcWC-1 including LOV, PAS B, PAS C, and PAC domains. The deduced amino acid sequence of Glwc-2 contained PAS domain and GATA-type zinc finger (Znf) domain as well as NcWC-2. Phylogenetic analysis based on fungal WC-1 and WC-2 supported GlWC-1 and GlWC-2 were blue light receptors. The expression of Glwc-1 and Glwc-2 indicated that they might play an important role during the primordium differentiation process of G. lucidum, and the external blue light stimulation increased the expression of Glwc-1 and Glwc-2. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Feng-Li; Shi, Liang; Yao, Jian; Ren, Ang; Zhou, Chao; Mu, Da-Shuai; Zhao, Ming-Wen
2013-01-01
An isopentenyl diphosphate isomerase (IDI) gene, GlIDI, was isolated from Ganoderma lucidum, which produces triterpenes through the mevalonate pathway. The open reading frame of GlIDI encodes a 252 amino acid polypeptide with a theoretical molecular mass of 28.71 kDa and a theoretical isoelectric point of 5.36. GlIDI is highly homologous to other fungal IDIs and contains conserved active residues and nudix motifs shared by the IDI protein family. The color complementation assay indicated that GlIDI can accelerate the accumulation of β-carotene and confirmed that the cloned complementary DNA encoded a functional GlIDI protein. Gene expression analysis showed that the GlIDI transcription level was relatively low in the mycelia and reached a relatively high level in the mushroom primordia. In addition, its expression level could be up-regulated by 254 µM methyl jasmonate. Our results suggest that this enzyme may play an important role in triterpene biosynthesis.
Human retina-specific amine oxidase (RAO): cDNA cloning, tissue expression, and chromosomal mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imamura, Yutaka; Kubota, Ryo; Wang, Yimin
In search of candidate genes for hereditary retinal disease, we have employed a subtractive and differential cDNA cloning strategy and isolated a novel retina-specific cDNA. Nucleotide sequence analysis revealed an open reading frame of 2187 bp, which encodes a 729-amino-acid protein with a calculated molecular mass of 80,644 Da. The putative protein contained a conserved domain of copper amine oxidase, which is found in various species from bacteria to mammals. It showed the highest homology to bovine serum amine oxidase, which is believed to control the level of serum biogenic amines. Northern blot analysis of human adult and fetal tissuesmore » revealed that the protein is expressed abundantly and specifically in retina as a 2.7-kb transcript. Thus, we considered this protein a human retina-specific amine oxidase (RAO). The RAO gene (AOC2) was mapped by fluorescence in situ hybridization to human chromosome 17q21. We propose that AOC2 may be a candidate gene for hereditary ocular diseases. 38 refs., 4 figs.« less
Srivastava, Shaili; Bharti, Randhir Kumar; Verma, Praveen Kumar; Thakur, Indu Shekhar
2015-01-01
Bacterial strains isolated from marble mines rock and enriched in the chemostat culture with different concentrations of sodium bicarbonate. The enriched consortium had six bacterial isolates. One of bacterium isolate showed carbonic anhydrase (CA) activity by catalyzing the reversible hydration reaction of carbon dioxide to bicarbonate. The bacterium was identified as Serratia sp. by 16S rRNA sequence analysis. The carbonic anhydrase gene from Serratia sp. was found to be homologous with gamma carbonic anhydrase. The carbonic anhydrase gene was cloned in PET21b(+) and expressed it in recombinant Escherichia coli BL21 (DE3) with His-tag at the C-terminus. The recombinant protein was purified efficiently by using one-step nickel affinity chromatography. Expected size of carbonic anhydrase was approximately 29 kDa in SDS-PAGE gel. Recombinant carbonic anhydrase enzyme was used for biomineralization-based conversion of atmospheric CO2 into valuable calcite minerals. The calcification was confirmed by using XRD, FTIR, EDX and SEM analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byres, Emma; Martin, David M. A.; Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk
2005-06-01
The gene encoding the putative mevalonate diphosphate decarboxylase, an enzyme from the mevalonate pathway of isoprenoid precursor biosynthesis, has been cloned from T. brucei. Recombinant protein has been expressed, purified and highly ordered crystals obtained and characterized to aid the structure–function analysis of this enzyme. Mevalonate diphosphate decarboxylase catalyses the last and least well characterized step in the mevalonate pathway for the biosynthesis of isopentenyl pyrophosphate, an isoprenoid precursor. A gene predicted to encode the enzyme from Trypanosoma brucei has been cloned, a highly efficient expression system established and a purification protocol determined. The enzyme gives monoclinic crystals in spacemore » group P2{sub 1}, with unit-cell parameters a = 51.5, b = 168.7, c = 54.9 Å, β = 118.8°. A Matthews coefficient V{sub M} of 2.5 Å{sup 3} Da{sup −1} corresponds to two monomers, each approximately 42 kDa (385 residues), in the asymmetric unit with 50% solvent content. These crystals are well ordered and data to high resolution have been recorded using synchrotron radiation.« less
An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.
Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul
2015-05-01
An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Wu, Yifeng; Zhou, Yangbin; Song, Jiaping; Hu, Xiaojian; Ding, Yu; Zhang, Zhihong
2008-01-01
We have designed a laboratory curriculum using the green and red fluorescent proteins (GFP and RFP) to visualize the cloning, expression, chromatography purification, crystallization, and protease-cleavage experiments of protein science. The EGFP and DsRed monomer (mDsRed)-coding sequences were amplified by PCR and cloned into pMAL (MBP-EGFP) or…
Field performance of Populus expressing somaclonal variation in resistance to Septoria musiva
M. E. Ostry; K. T. Ward
2003-01-01
Over 1500 trees from two hybrid poplar clones regenerated from tissue culture and expressing somatic variation in leaf disease resistance in a laboratory leaf disk bioassay were field-tested for 5-11 years to examine their resistance to Septoria leaf spot and canker and to assess their growth characteristics compared with the source clones....
USDA-ARS?s Scientific Manuscript database
Genomic and cDNA sequences corresponding to a ferredoxin-sulfite reductase (SiR) have been cloned from bulb onion (Allium cepa L.) and the expression of the gene and activity of the enzyme characterised with respect to sulfur (S) supply. Cloning, mapping and expression studies revealed that onion ha...
Chen, Ping; Xu, Shan-Liang; Zhou, Wei; Guo, Xiao-Ge; Wang, Chun-Lin; Wang, Dan-Li; Zhao, Yun-Long
2014-05-01
The full-length cDNA of a transformer gene (Dptra) was cloned from the cladoceran Daphnia pulex using RACE. Dptra expression was assessed by qPCR and whole-mount in situ hybridization in different reproductive stages. The Dptra cDNA, 1652bp in length, has a 1158-bp open reading frame that encodes a 385 amino acid polypeptide containing one Sex determination protein N terminal (SDP_N) superfamily, eight putative phosphorylation sites, and an arginine-serine (RS)-rich domain at the N-terminus. Dptra showed 81%, 53%, 51% and 45% identity to orthologous genes in Daphnia magna, Apis mellifera, Apis cerana and Bombus terrestris, respectively. Phylogenetic analysis based on deduced amino acid sequences revealed that Dptra clustered in the hymenopteran clade and was most closely related to D. magna and A. mellifera. qPCR showed that Dptra expression increased significantly (P<0.05) in different reproductive stages in the following order: male, ephippial female, parthenogenetic female, resting egg and juvenile female. Dptra expression is significantly different between males and females and it is significantly greater in ephippial females and males than in parthenogenetic D. pulex (with summer eggs). Whole-mount in situ hybridization revealed that Dptra was expressed at different levels between males and females. In males, hybridization signals were found in the first antennae, second antennae and thoracic limb, whereas expression levels in the corresponding sites of parthenogenetic and ephippial females were relatively weak. This suggests that the Dptra gene plays significant roles in switching modes of reproduction and in sexual differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.
Reprogramming towards totipotency is greatly facilitated by synergistic effects of small molecules
Tajima, Yosuke; Yoshida, Koki; Oikawa, Mami; Azuma, Rika; Allen, George E.; Tsujikawa, Tomomi; Tsukaguchi, Tomomasa; Bradshaw, Charles R.; Jullien, Jerome; Yamagata, Kazuo; Matsumoto, Kazuya; Anzai, Masayuki; Imai, Hiroshi; Gurdon, John B.; Yamada, Masayasu
2017-01-01
ABSTRACT Animal cloning has been achieved in many species by transplanting differentiated cell nuclei to unfertilized oocytes. However, the low efficiencies of cloning have remained an unresolved issue. Here we find that the combination of two small molecules, trichostatin A (TSA) and vitamin C (VC), under culture condition with bovine serum albumin deionized by ion-exchange resins, dramatically improves the cloning efficiency in mice and 15% of cloned embryos develop to term by means of somatic cell nuclear transfer (SCNT). The improvement was not observed by adding the non-treated, rather than deionized, bovine serum. RNA-seq analyses of SCNT embryos at the two-cell stage revealed that the treatment with TSA and VC resulted in the upregulated expression of previously identified reprogramming-resistant genes. Moreover, the expression of early-embryo-specific retroelements was upregulated by the TSA and VC treatment. The enhanced gene expression was relevant to the VC-mediated reduction of histone H3 lysine 9 methylation in SCNT embryos. Our study thus shows a simply applicable method to greatly improve mouse cloning efficiency, and furthers our understanding of how somatic nuclei acquire totipotency. PMID:28412714
Functional importance of GLP-1 receptor species and expression levels in cell lines.
Knudsen, Lotte Bjerre; Hastrup, Sven; Underwood, Christina Rye; Wulff, Birgitte Schjellerup; Fleckner, Jan
2012-04-10
Of the mammalian species, only the GLP-1 receptors of rat and human origin have been described and characterized. Here, we report the cloning of the homologous GLP-1 receptors from mouse, rabbit, pig, cynomolgus monkey and chimp. The GLP-1 receptor is highly conserved across species, thus underlining the physiological importance of the peptide hormone and its receptor across a wide range of mammals. We expressed the receptors by stable transfection of BHK cells, both in cell lines with high expression levels of the cloned receptors, as well as in cell lines with lower expression levels, more comparable to endogenous expression of these receptors. High expression levels of cloned GLP-1 receptors markedly increased the potency of GLP-1 and other high affinity ligands, whereas the K(d) values were not affected. For a low affinity ligand like the ago-allosteric modulator Compound 2, expression levels of the human GLP-1 receptor were important for maximal efficacy as well as potency. The two natural metabolites of GLP-1, GLP-1(9-37) and GLP-1(9-36)amide were agonists when tested on a cell line with high expression of the recombinant human GLP-1 receptor, whereas they behaved as (low potent) antagonists on a cell line that expressed the receptor endogenously, as well as cells expressing a moderate level of the recombinant human GLP-1 receptor. The amide form was a more potent agonist than the free acid from. In conclusion, receptor expression level is an important parametre for selecting cell lines with cloned GLP-1 receptors for functional characterization of physiological and pharmaceutical ligands. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searcy, K.B.
Many genes are expressed in both sporophytic and microgametophytic phases of the angiosperm life cycle. Thus, selection in one phase could modify gene frequency in both phases. An attempt was made to investigate microgametophytic selection in response to toxic concentrations of heavy metals and the effect of this selection upon the resultant sporophyte generation. The plants used were clones of a zinc-tolerant Silene dioica, closely related nontolerant S. alba, and copper tolerant and non-tolerant clones of Mimulus guttatus. First, the expression of metal tolerance in pollen was established by in vitro pollen germination and tube growth, and was found tomore » be associated with the tolerance of the pollen source. Second, to test the extent to which the parallel expression of metal tolerance was determined by the gametophytic genotype, tolerant but segregating clones were grown with and without added metals. Finally, selection was applied during pollen germination, tube growth and fertilization. In Silene, neither the tolerance of the pollen nor the metal content of the styles affected pollen tube growth rate. In Mimulus, pollen from the nontolerant source grew faster, but the metal content of the floral tissue had no significant effect on pollen tube growth rate, and only slightly reduced the fertilization ability of pollen from the nontolerant clone.« less
Germain, Hugo; Lachance, Denis; Pelletier, Gervais; Fossdal, Carl Gunnar; Solheim, Halvor; Séguin, Armand
2012-01-01
A 1149 bp genomic fragment corresponding to the 5' non-coding region of the PgD1 (Picea glauca Defensin 1) gene was cloned, characterized, and compared with all Arabidopsis thaliana defensin promoters. The cloned fragment was found to contain several motifs specific to defence or hormonal response, including a motif involved in the methyl jasmonate reponse, a fungal elicitor responsive element, and TC-rich repeat cis-acting element involved in defence and stress responsiveness. A functional analysis of the PgD1 promoter was performed using the uidA (GUS) reporter system in stably transformed Arabidopsis and white spruce plants. The PgD1 promoter was responsive to jasmonic acid (JA), to infection by fungus and to wounding. In transgenic spruce embryos, GUS staining was clearly restricted to the shoot apical meristem. In Arabidopsis, faint GUS coloration was observed in leaves and flowers and a strong blue colour was observed in guard cells and trichomes. Transgenic Arabidopsis plants expressing the PgD1::GUS construct were also infiltrated with the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000. It caused a suppression of defensin expression probably resulting from the antagonistic relationship between the pathogen-stimulated salicylic acid pathway and the jasmonic acid pathway. It is therefore concluded that the PgD1 promoter fragment cloned appears to contain most if not all the elements for proper PgD1 expression and that these elements are also recognized in Arabidopsis despite the phylogenetic and evolutionary differences that separates them.
Expansion of the gateway multisite recombination cloning toolkit.
Shearin, Harold K; Dvarishkis, Alisa R; Kozeluh, Craig D; Stowers, R Steven
2013-01-01
Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters.
Expansion of the Gateway MultiSite Recombination Cloning Toolkit
Shearin, Harold K.; Dvarishkis, Alisa R.; Kozeluh, Craig D.; Stowers, R. Steven
2013-01-01
Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters. PMID:24204935
Restrepo Restrepo, Silvia; Aristizábal Gutiérrez, Fabio Ancizar; Montoya Castaño, Dolly
2015-01-01
Natural rubber (Hevea brasiliensis) is a tropical tree used commercially for the production of latex, from which 40,000 products are generated. The fungus Microcyclus ulei infects this tree, causing South American leaf blight (SALB) disease. This disease causes developmental delays and significant crop losses, thereby decreasing the production of latex. Currently several groups are working on obtaining clones of rubber tree with durable resistance to SALB through the use of extensive molecular biology techniques. In this study, we used a secondary clone that was resistant to M. ulei isolate GCL012. This clone, FX 3864 was obtained by crossing between clones PB 86 and B 38 (H. brasiliensis x H. brasiliensis). RNA-Seq high-throughput sequencing technology was used to analyze the differential expression of the FX 3864 clone transcriptome at 0 and 48 h post infection (hpi) with the M. ulei isolate GCL012. A total of 158,134,220 reads were assembled using the de novo assembly strategy to generate 90,775 contigs with an N50 of 1672. Using a reference-based assembly, 76,278 contigs were generated with an N50 of 1324. We identified 86 differentially expressed genes associated with the defense response of FX 3864 to GCL012. Seven putative genes members of the AP2/ERF ethylene (ET)-dependent superfamily were found to be down-regulated. An increase in salicylic acid (SA) was associated with the up-regulation of three genes involved in cell wall synthesis and remodeling, as well as in the down-regulation of the putative gene CPR5. The defense response of FX 3864 against the GCL012 isolate was associated with the antagonistic SA, ET and jasmonic acid (JA) pathways. These responses are characteristic of plant resistance to biotrophic pathogens. PMID:26287380
Zhang, Chun-Rong; Yang, Quan; Chen, Hu-Biao; Pang, Yu-Xin; Tang, Xiao-Min; Cheng, Xuan-Xuan; Wu, Wen-Ya; Chen, Shi-Min
2012-11-01
The rhizome of Alpinia officinarum is a widely used Chinese herbal medicine. The essential oil in A. officinarum rhizome is mainly composed of 1, 8-cineole and other monoterpenes, as the major bioactive ingredients. In plants, monoterpenes are synthesized through the methylerythritol phosphate (MEP) pathway in the plastids, and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is an enzyme catalyzing a committed step of the MEP pathway. In the present study, the full-length cDNA encoding DXR was cloned from the rhizome of A. officinarum, using homology-based RT-PCR and rapid amplification of cDNA ends (RACE) techniques. The new cDNA was designated as AoDXR and submitted to GenBank to be assigned with an accession number HQ874658. The full-length cDNA of AoDXR was 1 670 bp containing a 1 419 bp open reading frame encoding a polypeptide of 472 amino acids with a calculated molecular mass of 51.48 kDa and an isoelectric point of 6.15. Bioinformatic analyses revealed that AoDXR showed extensive homology with DXRs from other plant species and contained a conserved plastids transit peptide, a Pro-rich region and two highly conserved NADPH-binding motifs in its N-terminal region characterized by all plant DXRs. The phylogenetic analysis revealed that AoDXR belonged to angiosperm DXRs. The structural modeling of AoDXR showed that AoDXR had the typical V-shaped structure of DXR proteins. The tissue expression pattern analysis indicated that AoDXR expressed strongly in leaves, weak in rhizomes of A. officinarum. Exogenous methyl jasmonate (MeJA) could enhance the expression of AoDXR and the production of 1, 8-cineole in A. officinarum rhizomes. The cloning and characterization of AoDXR will be helpful to reveal the molecular regulation mechanism of monoterpene biosynthesis in A. officinarum and provides a candidate gene for metabolic engineering in improving the medicinal quality of A. officinarum rhizome.
Farshadpour, Fatemeh; Makvandi, Manoochehr; Taherkhani, Reza
2015-01-01
Background: Hepatitis E Virus (HEV) is the causative agent of enterically transmitted acute hepatitis and has high mortality rate of up to 30% among pregnant women. Therefore, development of a novel vaccine is a desirable goal. Objectives: The aim of this study was to construct tPAsp-PADRE-truncated open reading frame 2 (ORF2) and truncated ORF2 DNA plasmid, which can assist future studies with the preparation of an effective vaccine against Hepatitis E Virus. Materials and Methods: A synthetic codon-optimized gene cassette encoding tPAsp-PADRE-truncated ORF2 protein was designed, constructed and analyzed by some bioinformatics software. Furthermore, a codon-optimized truncated ORF2 gene was amplified by the polymerase chain reaction (PCR), with a specific primer from the previous construct. The constructs were sub-cloned in the pVAX1 expression vector and finally expressed in eukaryotic cells. Results: Sequence analysis and bioinformatics studies of the codon-optimized gene cassette revealed that codon adaptation index (CAI), GC content, and frequency of optimal codon usage (Fop) value were improved, and performance of the secretory signal was confirmed. Cloning and sub-cloning of the tPAsp-PADRE-truncated ORF2 gene cassette and truncated ORF2 gene were confirmed by colony PCR, restriction enzymes digestion and DNA sequencing of the recombinant plasmids pVAX-tPAsp-PADRE-truncated ORF2 (aa 112-660) and pVAX-truncated ORF2 (aa 112-660). The expression of truncated ORF2 protein in eukaryotic cells was approved by an Immunofluorescence assay (IFA) and the reverse transcriptase polymerase chain reaction (RT-PCR) method. Conclusions: The results of this study demonstrated that the tPAsp-PADRE-truncated ORF2 gene cassette and the truncated ORF2 gene in recombinant plasmids are successfully expressed in eukaryotic cells. The immunogenicity of the two recombinant plasmids with different formulations will be evaluated as a novel DNA vaccine in future investigations. PMID:26865938
Correia, Telmo; Grammel, Nicolas; Ortel, Ingo; Keller, Ullrich; Tudzynski, Paul
2003-12-01
Claviceps purpurea produces the pharmacological important ergopeptines, a class of cyclol-structured alkaloid peptides containing D-lysergic acid. These compounds are assembled from D-lysergic acid and three different amino acids by the nonribosomal peptide synthetase enzymes LPS1 and LPS2. Cloning of alkaloid biosynthesis genes from C. purpurea has revealed a gene cluster including two NRPS genes, cpps 1 and cpps 2. Protein sequence data had assigned earlier cpps1 to encode the trimodular LPS1 assembling the tripeptide portion of ergopeptines. Here, we show by transcriptional analysis, targeted inactivation, analysis of disruption mutants, and heterologous expression that cpps 2 encodes the monomodular LPS2 responsible for D-lysergic acid activation and incorporation into the ergopeptine backbone. The presence of two distinct NRPS subunits catalyzing formation of ergot peptides is the first example of a fungal NRPS system consisting of different NRPS subunits.
Cloning and expression of prion protein encoding gene of flounder ( Paralichthys olivaceus)
NASA Astrophysics Data System (ADS)
Zhang, Zhiwen; Sun, Xiuqin; Zhang, Jinxing; Zan, Jindong
2008-02-01
The prion protein (PrP) encoding gene of flounder ( Paralichthys olivaceus) was cloned. It was not interrupted by an intron. This gene has two promoters in its 5' upstream, indicating that its transcription may be intensive, and should have an important function. It was expressed in all 14 tissues tested, demonstrating that it is a house-keeping gene. Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.
Lu, L; Komada, M; Kitamura, N
1998-06-15
Hrs is a 115kDa zinc finger protein which is rapidly tyrosine phosphorylated in cells stimulated with various growth factors. We previously purified the protein from a mouse cell line and cloned its cDNA. In the present study, we cloned a human Hrs cDNA from a human placenta cDNA library by cross-hybridization, using the mouse cDNA as a probe, and determined its nucleotide sequence. The human Hrs cDNA encoded a 777-amino-acid protein whose sequence was 93% identical to that of mouse Hrs. Northern blot analysis showed that the Hrs mRNA was about 3.0kb long and was expressed in all the human adult and fetal tissues tested. In addition, we showed by genomic Southern blot analysis that the human Hrs gene was a single-copy gene with a size of about 20kb. Furthermore, the human Hrs gene was mapped to chromosome 17 by Southern blotting of genomic DNAs from human/rodent somatic cell hybrids. Copyright 1998 Elsevier Science B.V. All rights reserved.
Molecular Cloning and Sequence Analysis of a Phenylalanine Ammonia-Lyase Gene from Dendrobium
Cai, Yongping; Lin, Yi
2013-01-01
In this study, a phenylalanine ammonia-lyase (PAL) gene was cloned from Dendrobium candidum using homology cloning and RACE. The full-length sequence and catalytic active sites that appear in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum are also found: PAL cDNA of D. candidum (designated Dc-PAL1, GenBank No. JQ765748) has 2,458 bps and contains a complete open reading frame (ORF) of 2,142 bps, which encodes 713 amino acid residues. The amino acid sequence of DcPAL1 has more than 80% sequence identity with the PAL genes of other plants, as indicated by multiple alignments. The dominant sites and catalytic active sites, which are similar to that showing in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum, are also found in DcPAL1. Phylogenetic tree analysis revealed that DcPAL is more closely related to PALs from orchidaceae plants than to those of other plants. The differential expression patterns of PAL in protocorm-like body, leaf, stem, and root, suggest that the PAL gene performs multiple physiological functions in Dendrobium candidum. PMID:23638048
Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis.
Phillips, A L; Ward, D A; Uknes, S; Appleford, N E; Lange, T; Huttly, A K; Gaskin, P; Graebe, J E; Hedden, P
1995-07-01
Using degenerate oligonucleotide primers based on a pumpkin (Cucurbita maxima) gibberellin (GA) 20-oxidase sequence, six different fragments of dioxygenase genes were amplified by polymerase chain reaction from arabidopsis thaliana genomic DNA. One of these was used to isolate two different full-length cDNA clones, At2301 and At2353, from shoots of the GA-deficient Arabidopsis mutant ga1-2. A third, related clone, YAP169, was identified in the Database of Expressed Sequence Tags. The cDNA clones were expressed in Escherichia coli as fusion proteins, each of which oxidized GA12 at C-20 to GA15, GA24, and the C19 compound GA9, a precursor of bioactive GAs; the C20 tricarboxylic acid compound GA25 was formed as a minor product. The expression products also oxidized the 13-hydroxylated substrate GA53, but less effectively than GA12. The three cDNAs hybridized to mRNA species with tissue-specific patterns of accumulation, with At2301 being expressed in stems and inflorescences, At2353 in inflorescences and developing siliques, and YAP169 in siliques only. In the floral shoots of the ga1-2 mutant, transcript levels corresponding to each cDNA decreased dramatically after GA3 application, suggesting that GA biosynthesis may be controlled, at least in part, through down-regulation of the expression of the 20-oxidase genes.
Finotti, Alessia; Gasparello, Jessica; Breveglieri, Giulia; Cosenza, Lucia Carmela; Montagner, Giulia; Bresciani, Alberto; Altamura, Sergio; Bianchi, Nicoletta; Martini, Elisa; Gallerani, Eleonora; Borgatti, Monica; Gambari, Roberto
2015-01-01
Induction of fetal hemoglobin (HbF) is considered a promising strategy in the treatment of β-thalassemia, in which production of adult hemoglobin (HbA) is impaired by mutations affecting the β-globin gene. Recent results indicate that B-cell lymphoma/leukemia 11A (BCL11A) is a major repressor of γ-globin gene expression. Therefore, disrupting the binding of the BCL11A transcriptional repressor complex to the γ-globin gene promoter provides a novel approach for inducing expression of the γ-globin genes. To develop a cellular screening system for the identification of BCL11A inhibitors, we produced K562 cell clones with integrated copies of a BCL11A-XL expressing vector. We characterized 12 K562 clones expressing different levels of BCL11A-XL and found that a clear inverse relationship does exist between the levels of BCL11A-XL and the extent of hemoglobinization induced by a panel of HbF inducers. Using mithramycin as an inducer, we found that this molecule was the only HbF inducer efficient in rescuing the ability to differentiate along the erythroid program, even in K562 cell clones expressing high levels of BCL11A-XL, suggesting that BCL11A-XL activity is counteracted by mithramycin. PMID:26342260
[Construction and expression of recombinant human serum albumin-EPO fusion protein].
Huang, Ying-Chun; Gou, Xing-Hua; Han, Lei; Li, De-Hua; Zhao, Lan-Ying; Wu, Qia-Qing
2011-05-01
OBJECTIVE To construct the recombinant plasmid pCI-HLE encoding human serum album-EPO (HSA-EPO) fusion protein and to express it in CHO cell. The cDNA encoding human serum album and EPO were amplified by PCR, and then spliced with the synsitic DNA fragment encoding GS (GGGGS), by overlap PCR extension to form LEPO. After BamH I digestion, the HSA and LEPO was ligated to generate the fusion HSA-EPO gene and was then cloned into the expression vector pCI-neo to generate the recombinant plasmid pCI-HLE. The plasmid pCI-HLE was transfected into CHO cell by liposome protocol. Then, the recombinant cells were screened by G418 and identified by PCR and Western blot. Expression of fusion protein was evaluated by Enzyme Linked Immunosorbent Assay (ELISA). Restrictive enzymes digestion and DNA sequencing revealed that HSA-EPO fusion gene was cloned into expression vector pCI-neo successfully. PCR and Western blot analysis confirmed that the fusion gene was integrated in the genome of CHO cells and expressed successfully. The HSA-EPO production varied from 86 Iu/(mL x 10(6) x 72 h) to 637 IU/(mLx 10(6) x 72 h). The results confirmed that HSA-EPO fusion gene can be expressed in the CHO cells, with EPO immunogenicity, which could serve as foundation for the development of long-lasting recombinant HSA-EPO protein.
Li, Huilin; Jin, Hui; Li, Yaqian; Liu, Dejian; Foda, Mohamed Frahat; Jiang, Yunbo; Luo, Rui
2017-09-01
Nucleotide-binding oligomerization domain 1 (NOD1) is an imperative cytoplasmic pattern recognition receptor (PRR) and considered as a key member of the NOD-like receptor (NLR) family which plays a critical role in innate immunity through sensing microbial components derived from bacterial peptidoglycan. In the current study, the full-length of duck NOD1 (duNOD1) cDNA from duck embryo fibroblasts (DEFs) was cloned. Multiple sequence alignment and phylogenetic analysis demonstrated that duNOD1 exhibited a strong evolutionary relationship with chicken and rock pigeon NOD1. Tissue-specific expression analysis showed that duNOD1 was widely distributed in various organs, with the highest expression observed in the liver. Furthermore, duNOD1 overexpression induced NF-κB activation in DEFs and the CARD domain is crucial for duNOD1-mediated NF-κB activation. In addition, silencing the duNOD1 decreased the activity of NF-κB in DEFs stimulated by iE-DAP. Overexpression of duNOD1 significantly increased the expression of TNF-α, IL-6, and RANTES in DEFs. These findings highlight the crucial role of duNOD1 as an intracellular sensor in duck innate immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.
A high-throughput immobilized bead screen for stable proteins and multi-protein complexes
Lockard, Meghan A.; Listwan, Pawel; Pedelacq, Jean-Denis; Cabantous, Stéphanie; Nguyen, Hau B.; Terwilliger, Thomas C.; Waldo, Geoffrey S.
2011-01-01
We describe an in vitro colony screen to identify Escherichia coli expressing soluble proteins and stable, assembled multiprotein complexes. Proteins with an N-terminal 6His tag and C-terminal green fluorescent protein (GFP) S11 tag are fluorescently labeled in cells by complementation with a coexpressed GFP 1–10 fragment. After partial colony lysis, the fluorescent soluble proteins or complexes diffuse through a supporting filtration membrane and are captured on Talon® resin metal affinity beads immobilized in agarose. Images of the fluorescent colonies convey total expression and the level of fluorescence bound to the beads indicates how much protein is soluble. Both pieces of information can be used together when selecting clones. After the assay, colonies can be picked and propagated, eliminating the need to make replica plates. We used the method to screen a DNA fragment library of the human protein p85 and preferentially obtained clones expressing the full-length ‘breakpoint cluster region-homology' and NSH2 domains. The assay also distinguished clones expressing stable multi-protein complexes from those that are unstable due to missing subunits. Clones expressing stable, intact heterotrimeric E.coli YheNML complexes were readily identified in libraries dominated by complexes of YheML missing the N subunit. PMID:21642284
Luzio, J P; Brake, B; Banting, G; Howell, K E; Braghetta, P; Stanley, K K
1990-01-01
Organelle-specific integral membrane proteins were identified by a novel strategy which gives rise to monospecific antibodies to these proteins as well as to the cDNA clones encoding them. A cDNA expression library was screened with a polyclonal antiserum raised against Triton X-114-extracted organelle proteins and clones were then grouped using antibodies affinity-purified on individual fusion proteins. The identification, molecular cloning and sequencing are described of a type 1 membrane protein (TGN38) which is located specifically in the trans-Golgi network. Images Fig. 1. Fig. 3. PMID:2204342
Zhou, Huaixiang; Cheng, Xusheng; Xu, Xiaoyuan; Jiang, Tianlong; Zhou, Haimeng; Sheng, Qing; Nie, Zuoming
2018-03-22
Alpha-tubulin N-acetyltransferase 1 (ATAT1) is an acetyltransferase specific to α-tubulin and performs important functions in many cellular processes. Bombyx mori is an economic insect and also known as a model lepidoptera insect. In this study, we cloned a B. mori ATAT1 gene (BmATAT1) (Gen Bank accession number: XP_004932777.1). BmATAT1 contained an open reading frame (ORF) of 1,065 bp encoding 355 amino acids (aa). Expression profiling of BmATAT1 protein showed that the expression levels of BmATAT1 at different developmental stages and different tissues in fifth-instar larvae differ. BmATAT1 was highly expressed at the egg stage and in the head of the fifth-instar larvae. Subcellular localization showed that BmATAT1 was distributed in the cytoplasm and nucleus. Furthermore, BmATAT1 may lead to time-dependent induction of cell cycle arrest in the G2/M phase by flow cytometry analysis. Interestingly, using site-specific mutation, immunoprecipitation, and Western blotting, we further found a BmATAT1 acetylated site at K156, suggesting that this acetyltransferase could be regulated by acetylation itself. © 2018 Wiley Periodicals, Inc.
The organization and expression of the mdm2 gene.
de Oca Luna, R M; Tabor, A D; Eberspaecher, H; Hulboy, D L; Worth, L L; Colman, M S; Finlay, C A; Lozano, G
1996-05-01
The mdm2 gene encodes a zinc finger protein that negatively regulates p53 function by binding and masking the p53 transcriptional activation domain. Two different promoters control expression of mdm2, one of which is also transactivated by p53. We cloned and characterized the mdm2 gene from a murine 129 library. It contained at least 12 exons and spanned approximately 25 kb of DNA. Sequencing of the mdm2 gene revealed three nucleotide differences that resulted in amino acid substitutions in the previously published mdm2 sequence. Sequencing of normal BalbC/J DNA and the original cosmid clone isolated from the 3T3DM cell line revealed that they are identical, suggesting that the published sequence is in error at these three positions. In addition, we analyzed the expression pattern of mdm2 and found ubiquitous low-level expression throughout embryo development and in adult tissues. Analysis of mRNA from numerous tissues for several mdm2 spliced variants that had been identified in the transformed 3T3DM cell line revealed that these variants could not be detected in the developing embryo or in adult tissues.
Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M; Lentes, K U
1999-11-19
As a member of the uncoupling protein family, UCP2 is ubiquitously expressed in rodents and humans, implicating a major role in thermogenesis. To analyze promoter function and regulatory motifs involved in the transcriptional regulation of UCP2 gene expression, 3.3 kb of 5'-flanking region of the human UCP2 (hUCP2) gene have been cloned. Sequence analysis showed that the promoter region of hUCP2 lacks a classical TATA or CAAT box, however, appeared GC-rich resulting in the presence of several Sp-1 motifs and Ap-1/-2 binding sites near the transcription initiation site. Functional characterization of human UCP2 promoter-CAT fusion constructs in transient expression assays showed that minimal promoter activity was observed within 65 bp upstream of the transcriptional start site (+1). 75 bp further upstream (from nt -141 to -66) a strong cis-acting regulatory element (or enhancer) was identified, which significantly enhanced basal promoter activity. The regulation of human UCP2 gene expression involves complex interactions among positive and negative regulatory elements distributed over a minimum of 3.3 kb of the promoter region. Copyright 1999 Academic Press.
Zhang, Li-Feng; Li, Wan-Feng; Han, Su-Ying; Yang, Wen-Hua; Qi, Li-Wang
2013-10-15
A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis. © 2013.
Hamaguchi-Hamada, Kayoko; Kurumata-Shigeto, Mami; Minobe, Sumiko; Fukuoka, Nozomi; Sato, Manami; Matsufuji, Miyuki; Koizumi, Osamu; Hamada, Shun
2016-01-01
The head region of Hydra, the hypostome, is a key body part for developmental control and the nervous system. We herein examined genes specifically expressed in the head region of Hydra oligactis using suppression subtractive hybridization (SSH) cloning. A total of 1414 subtracted clones were sequenced and found to be derived from at least 540 different genes by BLASTN analyses. Approximately 25% of the subtracted clones had sequences encoding thrombospondin type-1 repeat (TSR) domains, and were derived from 17 genes. We identified 11 TSR domain-containing genes among the top 36 genes that were the most frequently detected in our SSH library. Whole-mount in situ hybridization analyses confirmed that at least 13 out of 17 TSR domain-containing genes were expressed in the hypostome of Hydra oligactis. The prominent expression of TSR domain-containing genes suggests that these genes play significant roles in the hypostome of Hydra oligactis.
Chevalier, Sébastien Alain; Ko, Nga Ling; Calattini, Sara; Mallet, Adeline; Prévost, Marie-Christine; Kehn, Kylene; Brady, John N; Kashanchi, Fatah; Gessain, Antoine; Mahieux, Renaud
2008-07-01
We and others have uncovered the existence of human T-cell lymphotropic virus type 3 (HTLV-3). We have now generated an HTLV-3 proviral clone. We established that gag, env, pol, pro, and tax/rex as well as minus-strand mRNAs are present in cells transfected with the HTLV-3 clone. HTLV-3 p24(gag) protein is detected in the cell culture supernatant. Transfection of 293T-long terminal repeat (LTR)-green fluorescent protein (GFP) cells with the HTLV-3 clone promotes formation of syncytia, a hallmark of Env expression, together with the appearance of fluorescent cells, demonstrating that Tax is expressed. Viral particles are visible by electron microscopy. These particles are infectious, as demonstrated by infection experiments with purified virions.
Jeong, Yeon Woo; Lee, Geun-Shik; Kim, Joung Joo; Park, Sun Woo; Ko, Kyeong Hee; Kang, Mina; Kim, Yu Kyung; Jung, Eui-Man; Hyun, Sang Hwan; Shin, Taeyoung; Jeung, Eui-Bae; Hwang, Woo Suk
2012-08-01
Dogs are useful models for studying human metabolic diseases such as type 2 diabetes mellitus due to similarities in physiology, anatomy and life styles with humans. Somatic cell nuclear transfer (SCNT) facilitates the production of transgenic dogs. In this study, we generated transgenic dogs expressing the phosphoenolpyruvate carboxykinase (PEPCK) gene, which is closely involved in the pathogenesis of type 2 diabetes mellitus. In addition, we assessed the cloning efficiency associated with adult or fetal (cloned or natural mating) fibroblasts as a nuclear source. Cloning efficiency was determined by the fusion, pregnancy and cloning rates. The fusion rates were significantly high for fibroblasts from cloned fetuses, but the pregnancy and cloning rates were relatively high for cells from normal fetuses. Based on these data, fetal fibroblasts were selected as the nuclear donor for SCNT and genetically engineered to overexpress the PEPCK gene and dual selection marker genes controlled by the PEPCK promoter. The transgenic cells were introduced into oocytes and transferred into five recipient dogs, resulting in two pregnancies. Finally, three puppies were born and confirmed by microsatellite analysis to be genetically identical to the donor. One puppy successfully overexpressed PEPCK mRNA and protein in the liver. This canine disease model may be useful for studying the pathogenesis and/or therapeutic targets of type 2 diabetes mellitus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, J.M.; Thompson, E.B.
1981-06-01
Fifty-four independent dexamethasone-resistant clones were isolated from the clonal, glucocorticoid-sensitive human leukemic T-cell line CEM-C7. Resistance to 1 ..mu..M dexamethasone was acquired spontaneously at a rate of 2.6 x 10/sup -5/ per cell per generation as determined by fluctuation analysis. After mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), the phenotypic expression time for dexamethasone resistance was determined to be 3 days. The mutagens ICR 191 and MNNG were effective in increasing the dexamethasone-resistant fraction of cells in mutagenized cultures; ICR 191 produced a 35.6-fold increase, and MNNG produced an 8.5-fold increase. All the spontaneous dexamethasone-resistant clones contained glucocorticoid receptors, usually less than halfmore » of the amount found in the parental clone. They are therefore strikingly different from dexamethasone-resistant clones derived from the mouse cell lines S49 and W7. Dexamethasone-resistant clones isolated after mutagenesis of CEM-C7 contained, on the average, lower concentrations of receptor than did those isolated spontaneously, and one clone contained no detectable receptor. These results are consistent with a mutational origin for dexamethasone resistance in these human cells at a haploid or functionally hemizygous locus. They also suggest that this is a useful system for mutation assay.« less
Oishi, M; Gohma, H; Lejukole, H Y; Taniguchi, Y; Yamada, T; Suzuki, K; Shinkai, H; Uenishi, H; Yasue, H; Sasaki, Y
2004-05-01
Expressed sequence tags (ESTs) generated based on characterization of clones isolated randomly from cDNA libraries are used to study gene expression profiles in specific tissues and to provide useful information for characterizing tissue physiology. In this study, two directionally cloned cDNA libraries were constructed from 60 day-old bovine whole fetus and fetal placenta. We have characterized 5357 and 1126 clones, and then identified 3464 and 795 unique sequences for the fetus and placenta cDNA libraries: 1851 and 504 showed homology to already identified genes, and 1613 and 291 showed no significant matches to any of the sequences in DNA databases, respectively. Further, we found 94 unique sequences overlapping in both the fetus and the placenta, leading to a catalog of 4165 genes expressed in 60 day-old fetus and placenta. The catalog is used to examine expression profile of genes in 60 day-old bovine fetus and placenta.
Lenzner, Steffen; Prietz, Sandra; Feil, Silke; Nuber, Ulrike A; Ropers, H-Hilger; Berger, Wolfgang
2002-09-01
Mutations in the NDP gene give rise to a variety of eye diseases, including classic Norrie disease (ND), X-linked exudative vitreoretinopathy (EVRX), retinal telangiectasis (Coats disease), and advanced retinopathy of prematurity (ROP). The gene product is a cystine-knot-containing extracellular signaling molecule of unknown function. In the current study, gene expression was determined in a mouse model of ND, to unravel disease-associated mechanisms at the molecular level. Gene transcription in the eyes of 2-year-old Ndp knockout mice was compared with that in the eyes of age-matched wild-type control animals, by means of cDNA subtraction and microarrays. Clones (n = 3072) from the cDNA subtraction libraries were spotted onto glass slides and hybridized with fluorescently labeled RNA-derived targets. More than 230 differentially expressed clones were sequenced, and their expression patterns were verified by virtual Northern blot analysis. Numerous gene transcripts that are absent or downregulated in the eye of Ndp knockout mice are photoreceptor cell specific. In younger Ndp knockout mice (up to 1 year old), however, all these transcripts were found to be expressed at normal levels. The identification of numerous photoreceptor cell-specific transcripts with a reduced expression in 2-year-old, but not in young, Ndp knockout mice indicates that normal gene expression in these light-sensitive cells of mutant mice is established and maintained over a long period and that rods and cones are affected relatively late in the mouse model of ND. Obviously, the absence of the Ndp gene product is not compatible with long-term survival of photoreceptor cells in the mouse.
Watanabe, Satoshi; Sakurai, Takayuki; Nakamura, Shingo; Miyoshi, Kazuchika; Sato, Masahiro
2018-04-04
Recent advances in genome editing systems such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) have facilitated genomic modification in mammalian cells. However, most systems employ transient treatment with selective drugs such as puromycin to obtain the desired genome-edited cells, which often allows some untransfected cells to survive and decreases the efficiency of generating genome-edited cells. Here, we developed a novel targeted toxin-based drug-free selection system for the enrichment of genome-edited cells. Cells were transfected with three expression vectors, each of which carries a guide RNA (gRNA), humanized Cas9 ( hCas9 ) gene, or Clostridium perfringens -derived endo-β-galactosidase C ( EndoGalC ) gene. Once EndoGalC is expressed in a cell, it digests the cell-surface α-Gal epitope, which is specifically recognized by BS-I-B₄ lectin (IB4). Three days after transfection, these cells were treated with cytotoxin saporin-conjugated IB4 (IB4SAP) for 30 min at 37 °C prior to cultivation in a normal medium. Untransfected cells and those weakly expressing EndoGalC will die due to the internalization of saporin. Cells transiently expressing EndoGalC strongly survive, and some of these surviving clones are expected to be genome-edited bi-allelic knockout (KO) clones due to their strong co-expression of gRNA and hCas9. When porcine α-1,3-galactosyltransferase gene, which can synthesize the α-Gal epitope, was attempted to be knocked out, 16.7% and 36.7% of the surviving clones were bi-allelic and mono-allelic knockout (KO) cells, respectively, which was in contrast to the isolation of clones in the absence of IB4SAP treatment. Namely, 0% and 13.3% of the resulting clones were bi-allelic and mono-allelic KO cells, respectively. A similar tendency was seen when other target genes such as DiGeorge syndrome critical region gene 2 and transforming growth factor-β receptor type 1 gene were targeted to be knocked out. Our results indicate that a combination of the CRISPR/Cas9 system and targeted toxin technology using IB4SAP allows efficient enrichment of genome-edited clones, particularly bi-allelic KO clones.
Xiong, Xianrong; Lan, Daoliang; Li, Jian; Zhong, Jincheng; Zi, Xiangdong; Ma, Li; Wang, Yong
2013-08-01
Abnormal epigenetic reprogramming of the donor nucleus after somatic cell nuclear transfer (SCNT) is thought to be the main cause of low cloning efficiency. Following SCNT, the donor nucleus often fails to express early embryonic genes and establish a normal embryonic pattern of chromatin modification. Therefore, in this study, we have attempted to improve epigenetic reprogramming of the donor nucleus and cloned embryos with Zebularine and Scriptaid. Yak fibroblasts were treated with 20 μM Zebularine alone or 20 μM Zebularine plus 0.5 μM Scriptaid for 24 h, whereas yak cloned embryos were treated exclusively with 0.5 μM Scriptaid for 12 h. There was no effect on cellular viability and proliferation after drug treatment. The treatment of fibroblasts with Zebularine or Zebularine plus Scriptaid increased histone acetylation of histone 3 lysine 9 (H3K9), but decreased the level of DNA methylation of Oct-4 and Sox-2 promoter regions. When donor cells were used after Zebularine plus Scriptaid treatment to reconstruct cloned embryos and then treated with Scriptaid, the developmental competence and cryosurvival of embryos were improved significantly. In addition, the relative expression of Oct-4 and Sox-2 were increased significantly. The expression levels of Dnmt-1 and Hdac-1 were significantly decreased when fibroblasts and cloned embryos were treated with Zebularine or Scriptaid. This work provides functional evidence that treatment with Zebularine and Scriptaid modifies the epigenetic status of yak fibroblasts, subsequently enhancing in vitro developmental potential and the quality of yak cloned embryos.
Hypoxia enhances periodontal ligament stem cell proliferation via the MAPK signaling pathway.
He, Y; Jian, C X; Zhang, H Y; Zhou, Y; Wu, X; Zhang, G; Tan, Y H
2016-11-21
There is high incidence of periodontal disease in high-altitude environments; hypoxia may influence the proliferation and clone-forming ability of periodontal ligament stem cells (PDLSCs). The MAPK signaling pathway is closely correlated with cell proliferation, differentiation, and apoptosis. Thus, we isolated and cultured PDLSCs under hypoxic conditions to clarify the impact of hypoxia on PDLSC proliferation and the underlying mechanism. PDLSCs were separated and purified by the limiting dilution method and identified by flow cytometry. PDLSCs were cultured under hypoxic or normoxic conditions to observe their cloning efficiency. PDLSC proliferation at different oxygen concentrations was evaluated by MTT assay. Expression of p38/MAPK and MAPK/ERK signaling pathway members was detected by western blotting. Inhibitors for p38/MAPK or ERK were applied to PDLSCs to observe their impacts on clone formation and proliferation. Isolated PDLSCs exhibited typical stem cell morphological characteristics, strong abilities of globular clone formation and proliferation, and upregulated expression of mesenchymal stem cell markers. Stem cell marker expression was not statistically different between PDLSCs cultured under hypoxia and normoxia (P > 0.05). The clone number in the hypoxia group was significantly higher than that in the control (P < 0.05). PDLSC proliferation under hypoxia was higher than that of the control (P < 0.001). p38 and ERK1/2 phosphorylation in hypoxic PDLSCs was markedly enhanced compared to that in the control (P < 0.05). Either P38/MAPK inhibitor or ERK inhibitor treatment reduced clone formation and proliferation. Therefore, hypoxia enhanced PDLSC clone formation and proliferation by activating the p38/MAPK and ERK/MAPK signaling pathways.
Asega, Amanda Francine; do Nascimento, João Roberto O; Schroeven, Lindsey; Van den Ende, Wim; Carvalho, Maria Angela M
2008-08-01
Variations in the inulin contents have been detected in rhizophores of Vernonia herbacea during the phenological cycle. These variations indicate the occurrence of active inulin synthesis and depolymerization throughout the cycle and a role for this carbohydrate as a reserve compound. 1-Fructan exohydrolase (1-FEH) is the enzyme responsible for inulin depolymerization, and its activity has been detected in rhizophores of sprouting plants. Defoliation and low temperature are enhancer conditions of this 1-FEH activity. The aim of the present work was the cloning of this enzyme. Rhizophores were collected from plants induced to sprout, followed by storage at 5 degrees C. A full length 1-FEH cDNA sequence was obtained by PCR and inverse PCR techniques, and expressed in Pichia pastoris. Cold storage enhances FEH gene expression. Vh1-FEH was shown to be a functional 1-FEH, hydrolyzing predominantly beta-2,1 linkages, sharing high identity with chicory FEH sequences, and its activity was inhibited by 81% in the presence of 10 mM sucrose. In V. herbacea, low temperature and sucrose play a role in the control of fructan degradation. This is the first study concerning the cloning and functional analysis of a 1-FEH cDNA of a native species from the Brazilian Cerrado. Results will contribute to understanding the role of fructans in the establishment of a very successful fructan flora of the Brazilian Cerrado, subjected to water limitation and low temperature during winter.
Lu, Jie; Yao, Yufeng; Jiang, Weihong; Jiao, Ruishen
2003-02-01
Acetyl CoA carboxylase (EC 6.4.1.2, ACC) catalyzes the ATP-dependent carboxylation of acetyl CoA to yield malonyl CoA, which is the first committed step in fatty acid synthesis. A pair of degenerate PCR primers were designed according to the conserved amino acid sequence of AccA from M. tuberculosis and S. coelicolor. The product of the PCR amplification, a DNA fragment of 250bp was used as a probe for screening the U32 genomic cosmid library and its gene, accA, coding the biotinylated protein subunit of acetyl CoA carboxylase, was successfully cloned from U32. The accA ORF encodes a 598-amino-acid protein with the calculated molecular mass of 63.7kD, with 70.1% of G + C content. A typical Streptomyces RBS sequence, AGGAGG, was found at the - 6 position upstream of the start codon GTG. Analysis of the deduced amino acid sequence showed the presence of biotin-binding site and putative ATP-bicarbonate interaction region, which suggested the U32 AccA may act as a biotin carboxylase as well as a biotin carrier protein. Gene accA was then cloned into the pET28 (b) vector and expressed solubly in E. coli BL21 (DE3) by 0.1 mmol/L IPTG induction. Western blot confirmed the covalent binding of biotin with AccA. Northern blot analyzed transcriptional regulation of accA by 5 different nitrogen sources.
Noh, Ju Young; Patnaik, Bharat Bhusan; Tindwa, Hamisi; Seo, Gi Won; Kim, Dong Hyun; Patnaik, Hongray Howrelia; Jo, Yong Hun; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung; Han, Yeon Soo
2014-01-25
Apolipophorin III (apoLp-III) is a well-known hemolymph protein having a functional role in lipid transport and immune response of insects. We cloned full-length cDNA encoding putative apoLp-III from larvae of the coleopteran beetle, Tenebrio molitor (TmapoLp-III), by identification of clones corresponding to the partial sequence of TmapoLp-III, subsequently followed with full length sequencing by a clone-by-clone primer walking method. The complete cDNA consists of 890 nucleotides, including an ORF encoding 196 amino acid residues. Excluding a putative signal peptide of the first 20 amino acid residues, the 176-residue mature apoLp-III has a calculated molecular mass of 19,146Da. Genomic sequence analysis with respect to its cDNA showed that TmapoLp-III was organized into four exons interrupted by three introns. Several immune-related transcription factor binding sites were discovered in the putative 5'-flanking region. BLAST and phylogenetic analyses reveal that TmapoLp-III has high sequence identity (88%) with Tribolium castaneum apoLp-III but shares little sequence homologies (<26%) with other apoLp-IIIs. Homology modeling of Tm apoLp-III shows a bundle of five amphipathic alpha helices, including a short helix 3'. The 'helix-short helix-helix' motif was predicted to be implicated in lipid binding interactions, through reversible conformational changes and accommodating the hydrophobic residues to the exterior for stability. Highest level of TmapoLp-III mRNA was detected at late pupal stages, albeit it is expressed in the larval and adult stages at lower levels. The tissue specific expression of the transcripts showed significantly higher numbers in larval fat body and adult integument. In addition, TmapoLp-III mRNA was found to be highly upregulated in late stages of L. monocytogenes or E. coli challenge. These results indicate that TmapoLp-III may play an important role in innate immune responses against bacterial pathogens in T. molitor. Copyright © 2013 Elsevier B.V. All rights reserved.