Sample records for cloning expression localization

  1. Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa x Populus deltoides) phenylalanine ammonia-lyase genes.

    PubMed Central

    Subramaniam, R; Reinold, S; Molitor, E K; Douglas, C J

    1993-01-01

    A heterologous probe encoding phenylalanine ammonia-lyase (PAL) was used to identify PAL clones in cDNA libraries made with RNA from young leaf tissue of two Populus deltoides x P. trichocarpa F1 hybrid clones. Sequence analysis of a 2.4-kb cDNA confirmed its identity as a full-length PAl clone. The predicted amino acid sequence is conserved in comparison with that of PAL genes from several other plants. Southern blot analysis of popular genomic DNA from parental and hybrid individuals, restriction site polymorphism in PAL cDNA clones, and sequence heterogeneity in the 3' ends of several cDNA clones suggested that PAL is encoded by at least two genes that can be distinguished by HindIII restriction site polymorphisms. Clones containing each type of PAL gene were isolated from a poplar genomic library. Analysis of the segregation of PAL-specific HindIII restriction fragment-length polymorphisms demonstrated the existence of two independently segregating PAL loci, one of which was mapped to a linkage group of the poplar genetic map. Developmentally regulated PAL expression in poplar was analyzed using RNA blots. Highest expression was observed in young stems, apical buds, and young leaves. Expression was lower in older stems and undetectable in mature leaves. Cellular localization of PAL expression by in situ hybridization showed very high levels of expression in subepidermal cells of leaves early during leaf development. In stems and petioles, expression was associated with subepidermal cells and vascular tissues. PMID:8108506

  2. In silico cloning, expression of Rieske-like apoprotein gene and protein subcellular localization in the Pacific oyster, Crassostrea gigas.

    PubMed

    He, Xiaocui; Zhang, Yang; Yu, Ziniu

    2010-10-01

    Rieske protein gene in the Pacific oyster Crassostrea gigas was obtained by in silico cloning for the first time, and its expression profiles and subcellular localization were determined, respectively. The full-length cDNA of Cgisp is 985 bp in length and contains a 5'- and 3'-untranslated regions of 35 and 161 bp, respectively, with an open reading frame of 786 bp encoding a protein of 262 amino acids. The predicted molecular weight of 30 kDa of Cgisp protein was verified by prokaryotic expression. Conserved Rieske [2Fe-2S] cluster binding sites and highly matched-pair tertiary structure with 3CWB_E (Gallus gallus) were revealed by homologous analysis and molecular modeling. Eleven putative SNP sites and two conserved hexapeptide sequences, box I (THLGC) and II (PCHGS), were detected by multiple alignments. Real-time PCR analysis showed that Cgisp is expressed in a wide range of tissues, with adductor muscle exhibiting the top expression level, suggesting its biological function of energy transduction. The GFP tagging Cgisp indicated a mitochondrial localization, further confirming its physiological function.

  3. The Selector Gene apterous and Notch Are Required to Locally Increase Mechanical Cell Bond Tension at the Drosophila Dorsoventral Compartment Boundary

    PubMed Central

    Michel, Marcus; Aliee, Maryam; Rudolf, Katrin; Bialas, Lisa; Jülicher, Frank; Dahmann, Christian

    2016-01-01

    The separation of cells with distinct fates and functions is important for tissue and organ formation during animal development. Regions of different fates within tissues are often separated from another along straight boundaries. These compartment boundaries play a crucial role in tissue patterning and growth by stably positioning organizers. In Drosophila, the wing imaginal disc is subdivided into a dorsal and a ventral compartment. Cells of the dorsal, but not ventral, compartment express the selector gene apterous. Apterous expression sets in motion a gene regulatory cascade that leads to the activation of Notch signaling in a few cell rows on either side of the dorsoventral compartment boundary. Both Notch and apterous mutant clones disturb the separation of dorsal and ventral cells. Maintenance of the straight shape of the dorsoventral boundary involves a local increase in mechanical tension at cell bonds along the boundary. The mechanisms by which cell bond tension is locally increased however remain unknown. Here we use a combination of laser ablation of cell bonds, quantitative image analysis, and genetic mutants to show that Notch and Apterous are required to increase cell bond tension along the dorsoventral compartment boundary. Moreover, clonal expression of the Apterous target gene capricious results in cell separation and increased cell bond tension at the clone borders. Finally, using a vertex model to simulate tissue growth, we find that an increase in cell bond tension at the borders of cell clones, but not throughout the cell clone, can lead to cell separation. We conclude that Apterous and Notch maintain the characteristic straight shape of the dorsoventral compartment boundary by locally increasing cell bond tension. PMID:27552097

  4. Cloning, expression analysis, and chromosomal localization of HIP1R, an isolog of huntingtin interacting protein (HIP1).

    PubMed

    Seki, N; Muramatsu, M; Sugano, S; Suzuki, Y; Nakagawara, A; Ohhira, M; Hayashi, A; Hori, T; Saito, T

    1998-01-01

    Huntington disease (HD) is an inherited neurodegenerative disorder which is associated with CAG expansion in the coding region of the gene for huntingtin protein. Recently, a huntingtin interacting protein, HIP1, was isolated by the yeast two-hybrid system. Here we report the isolation of a cDNA clone for HIP1R (huntingtin interacting protein-1 related), which encodes a predicted protein product sharing a striking homology with HIP1. RT-PCR analysis showed that the messenger RNA was ubiquitously expressed in various human tissues. Based on PCR-assisted analysis of a radiation hybrid panel and fluorescence in situ hybridization, HIP1R was localized to the q24 region of chromosome 12.

  5. Cloning, expression and nuclear localization of human NPM3, a member of the nucleophosmin/nucleoplasmin family of nuclear chaperones

    PubMed Central

    Shackleford, Gregory M; Ganguly, Amit; MacArthur, Craig A

    2001-01-01

    Background Studies suggest that the related proteins nucleoplasmin and nucleophosmin (also called B23, NO38 or numatrin) are nuclear chaperones that mediate the assembly of nucleosomes and ribosomes, respectively, and that these activities are accomplished through the binding of basic proteins via their acidic domains. Recently discovered and less well characterized members of this family of acidic phosphoproteins include mouse nucleophosmin/nucleoplasmin 3 (Npm3) and Xenopus NO29. Here we report the cloning and initial characterization of the human ortholog of Npm3. Results Human genomic and cDNA clones of NPM3 were isolated and sequenced. NPM3 lies 5.5 kb upstream of FGF8 and thus maps to chromosome 10q24-26. In addition to amino acid similarities, NPM3 shares many physical characteristics with the nucleophosmin/nucleoplasmin family, including an acidic domain, multiple potential phosphorylation sites and a putative nuclear localization signal. Comparative analyses of 14 members of this family from various metazoans suggest that Xenopus NO29 is a candidate ortholog of human and mouse NPM3, and they further group both proteins closer with the nucleoplasmins than with the nucleophosmins. Northern blot analysis revealed that NPM3 was strongly expressed in all 16 human tissues examined, with especially robust expression in pancreas and testis; lung displayed the lowest level of expression. An analysis of subcellular fractions of NIH3T3 cells expressing epitope-tagged NPM3 revealed that NPM3 protein was localized solely in the nucleus. Conclusions Human NPM3 is an abundant and widely expressed protein with primarily nuclear localization. These biological activities, together with its physical relationship to the chaparones nucleoplasmin and nucleophosmin, are consistent with the proposed function of NPM3 as a molecular chaperone functioning in the nucleus. PMID:11722795

  6. Cloning of HSP90, expression and localization of HSP70/90 in different tissues including lactating/non-lactating yak (Bos grunniens) breast tissue.

    PubMed

    Liu, Penggang; Yu, Sijiu; Cui, Yan; He, Junfeng; Yu, Chuan; Wen, Zexing; Pan, Yangyang; Yang, Kun; Song, Liangli; Yang, Xue

    2017-01-01

    The aim of this study is to investigate the expression and localization of HSP70/90 in different tissues and explore the regulation effects of HSP70/90 at lactation period of female yaks. HSP90 mRNA was cloned from the heart samples of female yaks, Quantitative real-time (qRT-PCR), Western blotting (WB), immunohistochemistry and immunofluorescence assays were utilized to analyze the expressions of HSP70/90 mRNA and protein in different tissues. Sequence analysis showed that HSP90 is a conserved molecular chaperone of female yaks. The qRT-PCR, WB results showed that the expressions of HSP70/90 mRNA and protein were significantly different in different tissues, and 3-fold higher expression during the lactation period than the non-lactation period of breast tissue (P < 0.01). Immunohistochemistry and immunofluorescence assays results showed that HSP70/90 were located in the cardiac muscle cells, cerebellar medulla, theca cells lining at the reproductive system, and the mammary epithelia of the breasts. In addition, the expression level of HSP70 was higher than those of HSP90 in all examined tissues. Therefore, our results strongly suggest that the expression and localization of HSP70/90 could provide significant evidence to further research in tissue specific expression, and lactation function of female yaks.

  7. [Prokaryotic expression and histological localization of the Taenia solium CDC37 gene].

    PubMed

    Huang, Jiang; Li, Bo; Dai, Jia-Lin; Zhang, Ai-Hua

    2013-02-01

    To express Taenia solium gene encoding cell division cycle 37 protein (TsCDC37) and investigate its antigenicity and localization in adults of Taenia solium. The complete coding sequence of TsCDC37 was amplified by PCR based on the recombinant plasmid clone from the cDNA library of adult Taenia solium. The PCR product was cloned into a prokaryotic expression vector pET-28a (+). The recombinant expression plasmid was identified by PCR, double endonuclease digestion and sequencing. The recombinant plasmid was transformed into E. coli BL21/DE3 and followed by expression of the protein induced by IPTG. The mice were immunized subcutaneously with purified recombinant TsCDC37 formulated in Freund's adjuvant. The antigenicity of the recombinant protein was examined by Western blotting. The localization of TsCDC37 in adult worms was demonstrated by immunofluorescent technique. The recombinant expression vector was constructed successfully. The recombinant protein was about M(r) 52 000, it was then purified and specifically recognized by immuno sera of SD rats and sera from patients infected with Taenia solium, Taenia saginata or Taenia asiatica. The immunofluorescence assay revealed that TsCDC37 located at the tegument of T. solium adult and the eggs. TsCDC37 gene has been expressed with immunoreactivity. The recombinant protein is mainly expressed in tegument and egg, and is a common antigen of the three human taenia cestodes.

  8. Xuhuai goat H-FABP gene clone, subcellular localization of expression products and the preparation of transgenic mice.

    PubMed

    Yin, Yan-hui; Li, Bi-chun; Wei, Guang-hui; Zhu, Cai-ye; Li, Wei; Zhang, Ya-ni; Du, Li-xin; Cao, Wen-guang

    2012-05-01

    The aim of this study was to clone the heart-type fatty acid binding protein (H-FABP) gene of Xuhuai goat, to explore it bioinformatically, and analyze the subcellular localization using enhanced green fluorescent protein (EGFP). The results showed that the coding sequence (CDS) length of Xuhuai goat H-FABP gene was 402 bp, encoding 133 amino acids (GenBank accession number AY466498.1). The H-FABP cDNA coding sequence was compared with the corresponding region of human, chicken, brown rat, cow, wild boar, donkey, and zebrafish. The similarity were 89%, 76%, 85%, 84%, 93%, 91%, 70%, respectively. For the corresponding amino acid sequences, the similarity were 90%, 79%, 88%, 97%, 95%, 94%, 72%, respectively. This study did not find the signal peptide region in the H-FABP protein; it revealed that H-FABP protein might be a nonsecreted protein. H-FABP expression was detected in vitro by reverse transcription-polymerase chain reaction (RT-PCR), and the EGFP-H-FABP fusion protein was localized to the cytoplasm. The gene could also be transiently and permanently expressed in mice.

  9. [Cloning, subcellular localization, and heterologous expression of ApNAC1 gene from Andrographis paniculata].

    PubMed

    Wang, Jian; Qi, Meng-Die; Guo, Juan; Shen, Ye; Lin, Hui-Xin; Huang, Lu-Qi

    2017-03-01

    Andrographis paniculata is widely used as medicinal herb in China for a long time and andrographolide is its main medicinal constituent. To investigate the underlying andrographolide biosynthesis mechanisms, RNA-seq for A. paniculata leaves with MeJA treatment was performed. In A. paniculata transcriptomic data, the expression pattern of one member of NAC transcription factor family (ApNAC1) matched with andrographolide accumulation. The coding sequence of ApNAC1 was cloned by RT-PCR, and GenBank accession number was KY196416. The analysis of bioinformatics showed that the gene encodes a peptide of 323 amino acids, with a predicted relative molecular weight of 35.9 kDa and isoelectric point of 6.14. To confirm the subcellular localization, ApNAC1-GFP was transiently expressed in A. paniculata protoplast. The results indicated that ApNAC1 is a nucleus-localized protein. The analysis of real-time quantitative PCR revealed that ApNAC1 gene predominantly expresses in leaves. Compared with control sample, its expression abundance sharply increased with methyl jasmonate treatment. Based on its expression pattern, ApNAC1 gene might involve in andrographolide biosynthesis. ApNAC1 was heterologously expressed in Escherichia coli and recombinant protein was purified by Ni-NTA agarose. Further study will help us to understand the function of ApNAC1 in andrographolide biosynthesis. Copyright© by the Chinese Pharmaceutical Association.

  10. Molecular cloning and characterization of genistein 4'-O-glucoside specific glycosyltransferase from Bacopa monniera.

    PubMed

    Ruby; Santosh Kumar, R J; Vishwakarma, Rishi K; Singh, Somesh; Khan, Bashir M

    2014-07-01

    Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4'-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4'-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49% identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC-MS and HPLC, which confirmed its specificity for genistein 4'-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism.

  11. Molecular cloning, expression analysis and transcript localization of testicular orphan nuclear receptor 2 in the male catfish, Clarias batrachus.

    PubMed

    Murugananthkumar, R; Akhila, M V; Rajakumar, A; Mamta, S K; Sudhakumari, C C; Senthilkumaran, B

    2016-12-01

    Testicular receptor 2 (TR2; also known as Nr2c1) is one of the first orphan nuclear receptors identified and known to regulate various physiological process with or without any ligand. In this study, we report the cloning of full length nr2c1 and its expression analysis during gonadal development, seasonal testicular cycle and after human chorionic gonadotropin (hCG) induction. In addition, in situ hybridization (ISH) was performed to localize nr2c1 transcripts in adult testis and whole catfish (1day post hatch). Tissue distribution and gonadal ontogeny studies revealed high expression of nr2c1 in developing and adult testis. Early embryonic stage-wise expression of nr2c1 seems to emphasize its importance in cellular differentiation and development. Substantial expression of nr2c1 during pre-spawning phase and localization of nr2c1 transcripts in sperm/spermatids were observed. Significant upregulation after hCG induction indicate that nr2c1 is under the regulation of gonadotropins. Whole mount ISH analysis displayed nr2c1 expression in notochord indicating its role in normal vertebrate development. Taken together, our findings suggest that nr2c1 may have a plausible role in the testicular and embryonic development of catfish. Copyright © 2015. Published by Elsevier Inc.

  12. The murine ufo receptor: molecular cloning, chromosomal localization and in situ expression analysis.

    PubMed

    Faust, M; Ebensperger, C; Schulz, A S; Schleithoff, L; Hameister, H; Bartram, C R; Janssen, J W

    1992-07-01

    We have cloned the mouse homologue of the ufo oncogene. It encodes a novel tyrosine kinase receptor characterized by a unique extracellular domain containing two immunoglobulin-like and two fibronectin type III repeats. Comparison of the predicted ufo amino acid sequences of mouse and man revealed an overall identity of 87.6%. The ufo locus maps to mouse chromosome 7A3-B1 and thereby extends the known conserved linkage group between mouse chromosome 7 and human chromosome 19. RNA in situ hybridization analysis established the onset of specific ufo expression in the late embryogenesis at day 12.5 post coitum (p.c.) and localized ufo transcription to distinct substructures of a broad spectrum of developing tissues (e.g. subepidermal cells of the skin, mesenchymal cells of the periosteum). In adult animals ufo is expressed in cells forming organ capsules as well as in connective tissue structures. ufo may function as a signal transducer between specific cell types of mesodermal origin.

  13. Studies of the effects of Vilon and Epithalon on gene expression in mouse heart using DNA-microarray technology.

    PubMed

    Anisimov, S V; Bokheler, K R; Khavinson, V Kh; Anisimov, V N

    2002-03-01

    Expression of 15,247 clones from a cDNA library in the heart of mice receiving Vilon and Epithalon was studied by DNA-microarray technology. We revealed 300 clones (1.94% of the total count), whose expression changed more than by 2 times. Vilon changed expression of 36 clones, while Epithalon modulated expression of 98 clones. Combined treatment with Vilon and Epithalon changed expression of 144 clones. Vilon alone or in combination with Epithalon activated expression of 157 clones (maximally by 6.13 times) and inhibited expression of 23 clones (maximally by 2.79 times). Epithalon alone or in combination with Vilon activated expression of 194 clones (maximally by 6.61 times) and inhibited expression of 48 clones (maximally by 2.71 times). Our results demonstrate the specific effects of Epithalon and Vilon on gene expression.

  14. Choosing Between Yeast and Bacterial Expression Systems: Yield Dependent

    NASA Technical Reports Server (NTRS)

    Miller, Rebecca S.; Malone, Christine C.; Moore, Blake P.; Burk, Melissa; Crawford, Lisa; Karr, Laurel J.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Green fluorescent protein (GFP) is a naturally occurring fluorescent protein isolated from the jellyfish Aequorea victoria. The intrinsic fluorescence of the protein is due to a chromophore located in the center of the molecule. Its usefulness has been established as a marker for gene expression and localization of gene products. GFP has recently been utilized as a model protein for crystallization studies at NASA/MSFC, both in earth-based and in microgravity experiments. Because large quantities of purified protein were needed, the cDNA of GFP was cloned into the Pichia pastoris pPICZ(alpha) C strain, with very little protein secreted into the media. Microscopic analysis prior to harvest showed gigantic green fluorescent yeast, but upon harvesting most protein was degraded. Trial fermentations of GFP cloned into pPICZ A for intracellular expression provided unsatisfactory yield. GFP cloned into E, coli was overexpressed at greater than 150 mg/liter, with purification yields at greater than 100mg/liter.

  15. The strategy of fusion genes construction determines efficient expression of introduced transcription factors.

    PubMed

    Adamus, Tomasz; Konieczny, Paweł; Sekuła, Małgorzata; Sułkowski, Maciej; Majka, Marcin

    2014-01-01

    The main goal in gene therapy and biomedical research is an efficient transcription factors (TFs) delivery system. SNAIL, a zinc finger transcription factor, is strongly involved in tumor, what makes its signaling pathways an interesting research subject. The necessity of tracking activation of intracellular pathways has prompted fluorescent proteins usage as localization markers. Advanced molecular cloning techniques allow to generate fusion proteins from fluorescent markers and transcription factors. Depending on fusion strategy, the protein expression levels and nuclear transport ability are significantly different. The P2A self-cleavage motif through its cleavage ability allows two single proteins to be simultaneously expressed. The aim of this study was to compare two strategies for introducing a pair of genes using expression vector system. We have examined GFP and SNAI1 gene fusions by comprising common nucleotide polylinker (multiple cloning site) or P2A motif in between them, resulting in one fusion or two independent protein expressions respectively. In each case transgene expression levels and translation efficiency as well as nuclear localization of expressed protein have been analyzed. Our data showed that usage of P2A motif provides more effective nuclear transport of SNAIL transcription factor than conventional genes linker. At the same time the fluorescent marker spreads evenly in subcellular space.

  16. Hyper-reactive cloned mice generated by direct nuclear transfer of antigen-specific CD4+ T cells.

    PubMed

    Kaminuma, Osamu; Katayama, Kazufumi; Inoue, Kimiko; Saeki, Mayumi; Nishimura, Tomoe; Kitamura, Noriko; Shimo, Yusuke; Tofukuji, Soichi; Ishida, Satoru; Ogonuki, Narumi; Kamimura, Satoshi; Oikawa, Mami; Katoh, Shigeki; Mori, Akio; Shichijo, Michitaka; Hiroi, Takachika; Ogura, Atsuo

    2017-06-01

    T-cell receptor (TCR)-transgenic mice have been employed for evaluating antigen-response mechanisms, but their non-endogenous TCR might induce immune response differently than the physiologically expressed TCR Nuclear transfer cloning produces animals that retain the donor genotype in all tissues including germline and immune systems. Taking advantage of this feature, we generated cloned mice that carry endogenously rearranged TCR genes from antigen-specific CD4 + T cells. We show that T cells of the cloned mice display distinct developmental pattern and antigen reactivity because of their endogenously pre-rearranged TCRα (rTα) and TCRβ (rTβ) alleles. These alleles were transmitted to the offspring, allowing us to establish a set of mouse lines that show chronic-type allergic phenotypes, that is, bronchial and nasal inflammation, upon local administrations of the corresponding antigens. Intriguingly, the existence of either rTα or rTβ is sufficient to induce in vivo hypersensitivity. These cloned mice expressing intrinsic promoter-regulated antigen-specific TCR are a unique animal model with allergic predisposition for investigating CD4 + T-cell-mediated pathogenesis and cellular commitment in immune diseases. © 2017 The Authors.

  17. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton

    PubMed Central

    Yampolsky, Lev Y.; Schaer, Tobias M. M.; Ebert, Dieter

    2014-01-01

    Many organisms have geographical distributions extending from the tropics to near polar regions or can experience up to 30°C temperature variation within the lifespan of an individual. Two forms of evolutionary adaptation to such wide ranges in ambient temperatures are frequently discussed: local adaptation and phenotypic plasticity. The freshwater planktonic crustacean Daphnia magna, whose range extends from South Africa to near arctic sites, shows strong phenotypic and genotypic variation in response to temperature. In this study, we use D. magna clones from 22 populations (one clone per population) ranging from latitude 0° (Kenya) to 66° North (White Sea) to explore the contributions of phenotypic plasticity and local adaptation to high temperature tolerance. Temperature tolerance was studied as knockout time (time until immobilization, Timm) at 37°C in clones acclimatized to either 20°C or 28°C. Acclimatization to 28°C strongly increased Timm, testifying to adaptive phenotypic plasticity. At the same time, Timm significantly correlated with average high temperature at the clones’ sites of origin, suggesting local adaptation. As earlier studies have found that haemoglobin expression contributes to temperature tolerance, we also quantified haemoglobin concentration in experimental animals and found that both acclimatization temperature (AccT) and temperature at the site of origin are positively correlated with haemoglobin concentration. Furthermore, Daphnia from warmer climates upregulate haemoglobin much more strongly in response to AccT, suggesting local adaptation for plasticity in haemoglobin expression. Our results show that both local adaptation and phenotypic plasticity contribute to temperature tolerance, and elucidate a possible role of haemoglobin in mediating these effects that differs along a cold–warm gradient. PMID:24352948

  18. Expression in Escherichia coli of a dominant immunogen of Trypanosoma cruzi recognized by human chagasic sera.

    PubMed Central

    Cotrim, P C; Paranhos, G S; Mortara, R A; Wanderley, J; Rassi, A; Camargo, M E; da Silveira, J F

    1990-01-01

    A genomic clone expressing a Trypanosoma cruzi antigen in Escherichia coli was identified using human chagasic sera. Chagasic antibodies affinity purified on extracts of this clone recognized a high-molecular-weight protein expressed in all developmental stages of the parasite life cycle, as well as in various T. cruzi strains. The antigen is associated with the cytoskeleton of the parasite and localizes along the attachment region between the flagellum and the cell body. Antibodies to the recombinant antigen were detected in the sera of 115 chagasic patients from different endemic regions, but not in sera of patients with leishmaniasis, T. rangeli infection, or other parasitic diseases. Our data suggest that the presence of antibodies to this antigen may be specifically associated with Chagas' disease. Images PMID:1691209

  19. Generation of isogenic D4Z4 contracted and noncontracted immortal muscle cell clones from a mosaic patient: a cellular model for FSHD.

    PubMed

    Krom, Yvonne D; Dumonceaux, Julie; Mamchaoui, Kamel; den Hamer, Bianca; Mariot, Virginie; Negroni, Elisa; Geng, Linda N; Martin, Nicolas; Tawil, Rabi; Tapscott, Stephen J; van Engelen, Baziel G M; Mouly, Vincent; Butler-Browne, Gillian S; van der Maarel, Silvère M

    2012-10-01

    In most cases facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of the D4Z4 repeat in the 4q subtelomere. This contraction is associated with local chromatin decondensation and derepression of the DUX4 retrogene. Its complex genetic and epigenetic cause and high clinical variability in disease severity complicate investigations on the pathogenic mechanism underlying FSHD. A validated cellular model bypassing the considerable heterogeneity would facilitate mechanistic and therapeutic studies of FSHD. Taking advantage of the high incidence of somatic mosaicism for D4Z4 repeat contraction in de novo FSHD, we have established a clonal myogenic cell model from a mosaic patient. Individual clones are genetically identical except for the size of the D4Z4 repeat array, being either normal or FSHD sized. These clones retain their myogenic characteristics, and D4Z4 contracted clones differ from the noncontracted clones by the bursts of expression of DUX4 in sporadic nuclei, showing that this burst-like phenomenon is a locus-intrinsic feature. Consequently, downstream effects of DUX4 expression can be observed in D4Z4 contracted clones, like differential expression of DUX4 target genes. We also show their participation to in vivo regeneration with immunodeficient mice, further expanding the potential of these clones for mechanistic and therapeutic studies. These cell lines will facilitate pairwise comparisons to identify FSHD-specific differences and are expected to create new opportunities for high-throughput drug screens. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Successful pod infections by Moniliophthora roreri result in differential Theobroma cacao gene expression depending on the clone's level of tolerance.

    PubMed

    Ali, Shahin S; Melnick, Rachel L; Crozier, Jayne; Phillips-Mora, Wilberth; Strem, Mary D; Shao, Jonathan; Zhang, Dapeng; Sicher, Richard; Meinhardt, Lyndel; Bailey, Bryan A

    2014-09-01

    An understanding of the tolerance mechanisms of Theobroma cacao used against Moniliophthora roreri, the causal agent of frosty pod rot, is important for the generation of stable disease-tolerant clones. A comparative view was obtained of transcript populations of infected pods from two susceptible and two tolerant clones using RNA sequence (RNA-Seq) analysis. A total of 3009 transcripts showed differential expression among clones. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differentially expressed genes indicated shifts in 152 different metabolic pathways between the tolerant and susceptible clones. Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) analyses of 36 genes verified the differential expression. Regression analysis validated a uniform progression in gene expression in association with infection levels and fungal loads in the susceptible clones. Expression patterns observed in the susceptible clones diverged in tolerant clones, with many genes showing higher expression at a low level of infection and fungal load. Principal coordinate analyses of real-time qRT-PCR data separated the gene expression patterns between susceptible and tolerant clones for pods showing malformation. Although some genes were constitutively differentially expressed between clones, most results suggested that defence responses were induced at low fungal load in the tolerant clones. Several elicitor-responsive genes were highly expressed in tolerant clones, suggesting rapid recognition of the pathogen and induction of defence genes. Expression patterns suggested that the jasmonic acid-ethylene- and/or salicylic acid-mediated defence pathways were activated in the tolerant clones, being enhanced by reduced brassinosteroid (BR) biosynthesis and catabolic inactivation of both BR and abscisic acids. Finally, several genes associated with hypersensitive response-like cell death were also induced in tolerant clones. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  1. Cloning and expression analysis of FaPR-1 gene in strawberry

    NASA Astrophysics Data System (ADS)

    Mo, Fan; Luo, Ya; Ge, Cong; Mo, Qin; Ling, Yajie; Luo, Shu; Tang, Haoru

    2018-04-01

    The FaPR-1 gene was cloned by RT-PCR from `Benihoppe' strawberry and its bioinformatics analysis was conducted. The results showed that the open reading frame was 483 bp encoding encoding l60 amino acids which protein molecular weight and theoretical isoelectricity were 17854.17 and 8.72 respectively. Subcellular localization prediction shows that this gene is located extracellularly. By comparing strawberry FaPR-l and other plant Pathogenesis-related protein, homology and phylogenetic tree construction showed that the homology with grapes, peach is relatively close. In the treatments of ABA, sucrose and the mixture of the two, the expression of FaPR-1 in strawberry fruit were significantly increased.

  2. The Homothorax homeoprotein activates the nuclear localization of another homeoprotein, Extradenticle, and suppresses eye development in Drosophila

    PubMed Central

    Pai, Chi-Yun; Kuo, Tung-Sheng; Jaw, Thomas J.; Kurant, Estee; Chen, Cheng-Tse; Bessarab, Dmitri A.; Salzberg, Adi; Sun, Y. Henry

    1998-01-01

    The Extradenticle (Exd) protein in Drosophila acts as a cofactor to homeotic proteins. Its nuclear localization is regulated. We report the cloning of the Drosophila homothorax (hth) gene, a homolog of the mouse Meis1 proto-oncogene that has a homeobox related to that of exd. Comparison with Meis1 finds two regions of high homology: a novel MH domain and the homeodomain. In imaginal discs, hth expression coincides with nuclear Exd. hth and exd also have virtually identical, mutant clonal phenotypes in adults. These results suggest that hth and exd function in the same pathway. We show that hth acts upstream of exd and is required and sufficient for Exd protein nuclear localization. We also show that hth and exd are both negative regulators of eye development; their mutant clones caused ectopic eye formation. Targeted expression of hth, but not of exd, in the eye disc abolished eye development completely. We suggest that hth acts with exd to delimit the eye field and prevent inappropriate eye development. PMID:9450936

  3. Cloning and expression of N-glycosylation-related mannosidase from Glaciozyma antarctica for the production of a mannosynthase

    NASA Astrophysics Data System (ADS)

    Elangovan, Dharshini; Kamaruddin, Shazilah; Hashim, Noor Haza Fazlin; Bakar, Farah Diba Abu; Murad, Abd. Munir Abd.; Mahadi, Nor Muhammad; Allman, Sarah Ann; Mackeen, Mukram Mohamed

    2016-11-01

    The controlled synthesis of oligosaccharides is of growing interest due to the important roles of oligosaccharides in various biological processes. Enzymatic synthesis enables regio- and stereo-selective control during synthesis which still remains a challenge using total chemical synthesis. In this study, endoplasmic reticulum 1,2-α-mannosidase from Glaciozyma antractica was recombinantly expressed in Pichia pastoris. The gene sequence for ER mannosidase was obtained from the Glaciozyma antractica database. The BLAST (Basic Local Alignment Search Tool) results from bioinformatics screening showed that ER mannosidase had 41 % identity with the equivalent mannosidases from Sacchromyces cerevesiae. ER mannosidase from G. antartica was then cloned into the pPICZαC expression vector and used to transform in the host Pichia pastoris X33 cells. The ER mannosidase (MW˜58 kDa) was successfully expressed at 25 °C with 1.0 % methanol induction.

  4. Functional expression of plant acetolactate synthase genes in Escherichia coli

    PubMed Central

    Smith, Julie K.; Schloss, John V.; Mazur, Barbara J.

    1989-01-01

    Acetolactate synthase (ALS; EC 4.1.3.18) is the first common enzyme in the biosynthetic pathways leading to leucine, isoleucine, and valine. It is the target enzyme for three classes of structurally unrelated herbicides, the sulfonylureas, the imidazolinones, and the triazolopyrimidines. A cloned ALS gene from the small cruciferous plant Arabidopsis thaliana has been fused to bacterial transcription/translation signals and the resulting plasmid has been used to transform Escherichia coli. The cloned plant gene, which includes sequences encoding the chloroplast transit peptide, is functionally expressed in the bacteria. It is able to complement genetically a strain of E. coli that lacks endogenous ALS activity. An ALS gene cloned from a line of Arabidopsis previously shown to be resistant to sulfonylurea herbicides has been similarly expressed in E. coli. The herbicide-resistance phenotype is expressed in the bacteria, as assayed by both enzyme activity and the ability to grow in the presence of herbicides. This system has been useful for purifying substantial amounts of the plant enzyme, for studying the sequence parameters involved in subcellular protein localization, and for characterizing the interactions that occur between ALS and its various inhibitors. Images PMID:16594052

  5. Clonal analysis of T-cell responses to herpes simplex virus: isolation, characterization and antiviral properties of an antigen-specific helper T-cell clone.

    PubMed

    Leung, K N; Nash, A A; Sia, D Y; Wildy, P

    1984-12-01

    A herpes simplex virus (HSV)-specific long-term T-cell clone has been established from the draining lymph node cells of BALB/c mice; the cells required repeated in vitro restimulation with UV-irradiated virus. The established T-cell clone expresses the Thy-1 and Lyt-1+2,3- surface antigens. For optimal proliferation of the cloned cells, both the presence of specific antigen and an exogenous source of T-cell growth factor are required. The proliferative response of the cloned T cells was found to be virus-specific but it did not distinguish between HSV-1 and HSV-2. Adoptive cell transfer of the cloned T cells helped primed B cells to produce anti-herpes antibodies: the response was antigen-specific and cell dose-dependent. The clone failed to produce a significant DTH reaction in vivo, but did produce high levels of macrophage-activating factor. Furthermore, the T-cell clone could protect from HSV infection, as measured by a reduction in local virus growth, and by enhanced survival following the challenge of mice with a lethal dose of virus. The mechanism(s) whereby this clone protects in vivo is discussed.

  6. Sperm flagella protein components: Human meichroacidin constructed by the membrane occupation and recognition nexus motif

    PubMed Central

    MATSUOKA, YASUHIRO; NISHIMURA, HIROMI; NUMAZAWA, KAHORI; TSUCHIDA, JUNJI; MIYAGAWA, YASUSHI; TSUJIMURA, AKIRA; MATSUMIYA, KIYOMI; OKUYAMA, AKIHIKO; NISHIMUNE, YOSHITAKE

    2005-01-01

    Background and Aims:   In a previous study, the authors of the present study cloned mouse meichroacidin (MCA), which is expressed in stages of spermatogenesis from pachytene spermatocytes through round spermatid germ cells. MCA protein contains the membrane occupation and recognition nexus (MORN) motif and localizes to a male meiotic metaphase chromosome. Recently, a MCA homolog of carp (Cyprinus carpio), MORN motif‐containing sperm‐specific axonemal protein (MSAP), was reportedly identified and localized in sperm flagella. Present knowledge of human spermiogenesis requires the identification of proteins in human sperm. The present study identified the human orthologue of MCA. Methods:   Colony hybridization using a human testis plasmid cDNA library was carried out to clone human MCA (h‐MCA) cDNA. Northern blot, Western blot, and immunohistochemical analyses were carried out. Results:   h‐MCA was found to be specifically expressed in the testes. The h‐MCA amino acid sequence shared 79.8% identity with mouse MCA and contained MORN motifs. h‐MCA localized in the sperm flagellum and basal body, as does MSAP in carp. Conclusion:   Expression and localization analyses showed that h‐MCA is a component of the sperm flagellum and basal body and might play an important role in the development of the sperm flagellum in humans. (Reprod Med Biol 2005; 4: 213–219) PMID:29699225

  7. A potyvirus vector efficiently targets recombinant proteins to chloroplasts, mitochondria and nuclei in plant cells when expressed at the amino terminus of the polyprotein.

    PubMed

    Majer, Eszter; Navarro, José-Antonio; Daròs, José-Antonio

    2015-09-01

    Plant virus-based expression systems allow quick and efficient production of recombinant proteins in plant biofactories. Among them, a system derived from tobacco etch virus (TEV; genus potyvirus) permits coexpression of equimolar amounts of several recombinant proteins. This work analyzed how to target recombinant proteins to different subcellular localizations in the plant cell using this system. We constructed TEV clones in which green fluorescent protein (GFP), with a chloroplast transit peptide (cTP), a nuclear localization signal (NLS) or a mitochondrial targeting peptide (mTP) was expressed either as the most amino-terminal product or embedded in the viral polyprotein. Results showed that cTP and mTP mediated efficient translocation of GFP to the corresponding organelle only when present at the amino terminus of the viral polyprotein. In contrast, the NLS worked efficiently at both positions. Viruses expressing GFP in the amino terminus of the viral polyprotein produced milder symptoms. Untagged GFPs and cTP and NLS tagged amino-terminal GFPs accumulated to higher amounts in infected tissues. Finally, viral progeny from clones with internal GFPs maintained the extra gene better. These observations will help in the design of potyvirus-based vectors able to coexpress several proteins while targeting different subcellular localizations, as required in plant metabolic engineering. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Molecular cloning, structural analysis, and expression of a human IRLB, MYC promoter-binding protein: new DENN domain-containing protein family emerges.

    PubMed

    Semova, Natalia; Kapanadze, Bagrat; Corcoran, Martin; Kutsenko, Alexei; Baranova, Ancha; Semov, Alexandre

    2003-09-01

    IRLB was originally identified as a partial cDNA clone, encoding a 191-aa protein binding the interferon-stimulated response element (ISRE) in the P2 promoter of human MYC. Here, we cloned the full-size IRLB using different bioinformatics tools and an RT-PCR approach. The full-size gene encompasses 131 kb within chromosome 15q22 and consists of 32 exons. IRLB is transcribed as a 6.6-kb mRNA encoding a protein of 1865 aa. IRLB is ubiquitously expressed and its expression is regulated in a growth- and cell cycle-dependent manner. In addition to the ISRE-binding domain IRLB contains a tripartite DENN domain, a nuclear localization signal, two PPRs, and a calmodulin-binding domain. The presence of DENN domains predicts possible interactions of IRLB with GTPases from the Rab family or regulation of growth-induced MAPKs. Strongly homologous proteins were identified in all available vertebrate genomes as well as in Caenorhabditis elegans and Drosophila melanogaster. In human and mouse a family of IRLB proteins exists, consisting of at least three members.

  9. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    PubMed Central

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  10. Genetic analysis of a region of the Bordetella pertussis chromosome encoding filamentous hemagglutinin and the pleiotropic regulatory locus vir.

    PubMed Central

    Stibitz, S; Weiss, A A; Falkow, S

    1988-01-01

    The vir locus of Bordetella pertussis apparently encodes a trans-acting positive regulator that is required for the coordinate expression of genes associated with virulence: pertussis toxin, filamentous hemagglutinin (FHA), hemolysin, and adenylate cyclase toxin. DNA clones of vir and of genes required for the synthesis of some of the factors under vir control were obtained with DNA probes from the chromosomal DNA surrounding sites of Tn5 insertion mutations that inactivated those genes. Two vir clones were found which also contained genes required for the proper expression of FHA in B. pertussis. The plasmids which contained both the fha and vir genes expressed immunologically reactive FHA in Escherichia coli, as detected by colony blots, whereas plasmids which contained only fha or vir were negative in this assay. The regulation of FHA production in E. coli, as in B. pertussis, was temperature dependent and inhibited by high concentrations of either magnesium ions or nicotinic acid, indicating that the sequences cloned in E. coli contained the information required to preserve the physiological responses seen in B. pertussis. Further characterization of the vir-fha clones by Tn5 mutagenesis in E. coli and by the return of cloned sequences to B. pertussis in trans and to the B. pertussis chromosome led to the localization of the vir locus, the structural gene for FHA, and genes that are possibly required for the synthesis and export of FHA. Images PMID:2898470

  11. Cloning of rat amelotin and localization of the protein to the basal lamina of maturation stage ameloblasts and junctional epithelium.

    PubMed

    Moffatt, Pierre; Smith, Charles E; St-Arnaud, René; Simmons, Darrin; Wright, J Timothy; Nanci, Antonio

    2006-10-01

    Formation of tooth enamel is a very complex process in which a specific set of proteins secreted by ameloblasts play a primordial role. As part of a screening procedure to identify novel proteins secreted by EO (enamel organ) cells of rat incisors, we isolated a partial cDNA fragment (EO-017) that is the homologue of the recently described mouse Amtn (amelotin) gene [Iwasaki, Bajenova, Somogyi-Ganss, Miller, Nguyen, Nourkeyhani, Gao, Wendel and Ganss (2005) J. Dent. Res. 84, 1127-1132]. Presented herein is the cloning of rat and pig full-length cDNAs with their deduced protein sequences. Detailed expression profiling by Northern-blot analysis and RT (reverse transcriptase)-PCR on rat and mouse tissues revealed highest expression in the mandible, more specifically in the maturation stage of the EO. Among all tissues tested, low expression was detected only in periodontal ligament, lung, thymus and gingiva. In silico analyses revealed that the Amtn gene is highly conserved in seven other mammals, but is absent from fish, birds and amphibians. The Amtn protein is enriched in proline, leucine, glutamine and threonine (52% of total) and contains a perfectly conserved protein kinase CK2 phosphorylation site. Transient transfection experiments in HEK-293 cells (human embryonic kidney cells) showed that secreted Amtn is post-translationally modified possibly through O-linked oligosaccharides on threonine residues. In concordance with its predominant expression site, immunofluorescence localization within the rat and mouse mandibles revealed Amtn localized to the basal lamina of maturation stage ameloblasts of incisors and unerupted molars. Intense Amtn protein expression was also detected in the internal basal lamina of junctional epithelium in molars. The peculiar and unique cellular localization of Amtn suggests a role in cell adhesion.

  12. Expression Studies of Gibberellin Oxidases in Developing Pumpkin Seeds1

    PubMed Central

    Frisse, Andrea; Pimenta, Maria João; Lange, Theo

    2003-01-01

    Two cDNA clones, 3-ox and 2-ox, have been isolated from developing pumpkin (Cucurbita maxima) embryos that show significant amino acid homology to gibberellin (GA) 3-oxidases and 2-oxidases, respectively. Recombinant fusion protein of clone 3-ox converted GA12-aldehyde, GA12, GA15, GA24, GA25, and GA9 to GA14-aldehyde, GA14, GA37, GA36, GA13, and GA4, respectively. Recombinant 2-ox protein oxidized GA9, GA4, and GA1 to GA51, GA34, and GA8, respectively. Previously cloned GA 7-oxidase revealed additional 3β-hydroxylation activity of GA12. Transcripts of this gene were identified in endosperm and embryo of the developing seed by quantitative reverse transcriptase-polymerase chain reaction and localized in protoderm, root apical meristem, and quiescent center by in situ hybridization. mRNA of the previously cloned GA 20-oxidase from pumpkin seeds was localized in endosperm and in tissues of protoderm, ground meristem, and cotyledons of the embryo. However, transcripts of the recently cloned GA 20-oxidase from pumpkin seedlings were found all over the embryo, and in tissues of the inner seed coat at the micropylar end. Previously cloned GA 2β,3β-hydroxylase mRNA molecules were specifically identified in endosperm tissue. Finally, mRNA molecules of the 3-ox and 2-ox genes were found in the embryo only. 3-ox transcripts were localized in tissues of cotyledons, protoderm, and inner cell layers of the root apical meristem, and 2-ox transcripts were found in all tissues of the embryo except the root tips. These results indicate tissue-specific GA-biosynthetic pathways operating within the developing seed. PMID:12644672

  13. Expression from cloned DNA of biologically active glycoprotein C of herpes simplex virus type 1 in mammalian cells.

    PubMed

    Ghosh-Choudhury, N; Butcher, M; Ghosh, H P

    1990-03-01

    A DNA fragment of the herpes simplex virus type 1 genome encoding glycoprotein C (gC-1) has been cloned into different eukaryotic expression vectors for transient and stable expression of the glycoprotein in a number of cell lines. All of these expression vectors use a non-HSV promoter, such as the adenovirus major late promoter or murine leukemia virus long terminal repeat promoter to express gC-1 in COS and CHO cells or 3T3 cells. The gC-1 protein synthesized was fully glycosylated with both N- and O-linked oligosaccharides. Synthesis of the mature 120K gC-1 glycoprotein involved partially glycosylated 100K and 105K proteins and the non-glycosylated 70K protein as intermediate molecules. Immunofluorescence studies showed that the expressed gC-1 was localized intracellularly in the nuclear envelope as well as on the cell surface. The expressed gC-1 was biologically active and could act as a receptor for the complement component C3b in the absence of other HSV proteins.

  14. Changes in WNT signaling-related gene expression associated with development and cloning in bovine extra-embryonic and endometrial tissues during the peri-implantation period.

    PubMed

    Biase, Fernando H; Rabel, Chanaka; Guillomot, Michel; Sandra, Olivier; Andropolis, Kalista; Olmstead, Colleen; Oliveira, Rosane; Wallace, Richard; Le Bourhis, Daniel; Richard, Christophe; Campion, Evelyne; Chaulot-Talmon, Aurélie; Giraud-Delville, Corinne; Taghouti, Géraldine; Jammes, Hélène; Hue, Isabelle; Renard, Jean Paul; Lewin, Harris A

    2013-12-01

    We determined if somatic cell nuclear transfer (SCNT) cloning is associated with WNT-related gene expression in cattle development, and if the expression of genes in the WNT pathway changes during the peri-implantation period. Extra-embryonic and endometrial tissues were collected at gestation days 18 and 34 (d18, d34). WNT5A, FZD4, FZD5, LRP5, CTNNB1, GNAI2, KDM1A, BCL2L1, and SFRP1 transcripts were localized in extra-embryonic tissue, whereas SFRP1 and DKK1 were localized in the endometrium. There were no differences in the localization of these transcripts in extra-embryonic tissue or endometrium from SCNT or artificial insemination (AI) pregnancies. Expression levels of WNT5A were 11-fold greater in the allantois of SCNT than AI samples. In the trophoblast, expression of WNT5A, FZD5, CTNNB1, and DKK1 increased significantly from d18 to d34, whereas expression of KDM1A and SFRP1 decreased, indicating that implantation is associated with major changes in WNT signaling. SCNT was associated with altered WNT5A expression in trophoblasts, with levels increasing 2.3-fold more in AI than SCNT conceptuses from d18 to d34. In the allantois, expression of WNT5A increased 6.3-fold more in SCNT than AI conceptuses from d18 to d34. Endometrial tissue expression levels of the genes tested did not differ between AI or SCNT pregnancies, although expression of individual genes showed variation across developmental stages. Our results demonstrate that SCNT is associated with altered expression of specific WNT-related genes in extra-embryonic tissue in a time- and tissue-specific manner. The pattern of gene expression in the WNT pathway suggests that noncanonical WNT signal transduction is important for implantation of cattle conceptuses. © 2013 Wiley Periodicals, Inc.

  15. FISH-Based Analysis of Clonally Derived CHO Cell Populations Reveals High Probability for Transgene Integration in a Terminal Region of Chromosome 1 (1q13).

    PubMed

    Li, Shengwei; Gao, Xiaoping; Peng, Rui; Zhang, Sheng; Fu, Wei; Zou, Fangdong

    A basic goal in the development of recombinant proteins is the generation of cell lines that express the desired protein stably over many generations. Here, we constructed engineered Chinese hamster ovary cell lines (CHO-S) with a pCHO-hVR1 vector that carried an extracellular domain of a VEGF receptor (VR) fusion gene. Forty-five clones with high hVR1 expression were selected for karyotype analysis. Using fluorescence in situ hybridization (FISH) and G-banding, we found that pCHO-hVR1 was integrated into three chromosomes, including chromosomes 1, Z3 and Z4. Four clones were selected to evaluate their productivity under non-fed, non-optimized shake flask conditions. The results showed that clones 1 and 2 with integration sites on chromosome 1 revealed high levels of hVR1 products (shake flask of approximately 800 mg/L), whereas clones 3 and 4 with integration sites on chromosomes Z3 or Z4 had lower levels of hVR1 products. Furthermore, clones 1 and 2 maintained their productivity stabilities over a continuous period of 80 generations, and clones 3 and 4 showed significant declines in their productivities in the presence of selection pressure. Finally, pCHO-hVR1 localized to the same region at chromosome 1q13, the telomere region of normal chromosome 1. In this study, these results demonstrate that the integration of exogenous hVR1 gene on chromosome 1, band q13, may create a high protein-producing CHO-S cell line, suggesting that chromosome 1q13 may contain a useful target site for the high expression of exogenous protein. This study shows that the integration into the target site of chromosome 1q13 may avoid the problems of random integration that cause gene silencing or also overcome position effects, facilitating exogenous gene expression in CHO-S cells.

  16. Clonal analysis of T-cell responses to herpes simplex virus: isolation, characterization and antiviral properties of an antigen-specific helper T-cell clone.

    PubMed Central

    Leung, K N; Nash, A A; Sia, D Y; Wildy, P

    1984-01-01

    A herpes simplex virus (HSV)-specific long-term T-cell clone has been established from the draining lymph node cells of BALB/c mice; the cells required repeated in vitro restimulation with UV-irradiated virus. The established T-cell clone expresses the Thy-1 and Lyt-1+2,3- surface antigens. For optimal proliferation of the cloned cells, both the presence of specific antigen and an exogenous source of T-cell growth factor are required. The proliferative response of the cloned T cells was found to be virus-specific but it did not distinguish between HSV-1 and HSV-2. Adoptive cell transfer of the cloned T cells helped primed B cells to produce anti-herpes antibodies: the response was antigen-specific and cell dose-dependent. The clone failed to produce a significant DTH reaction in vivo, but did produce high levels of macrophage-activating factor. Furthermore, the T-cell clone could protect from HSV infection, as measured by a reduction in local virus growth, and by enhanced survival following the challenge of mice with a lethal dose of virus. The mechanism(s) whereby this clone protects in vivo is discussed. PMID:6209206

  17. Development of a GFP expression vector for Cucurbit chlorotic yellows virus.

    PubMed

    Wei, Ying; Han, Xiaoyu; Wang, Zhenyue; Gu, Qinsheng; Li, Honglian; Chen, Linlin; Sun, Bingjian; Shi, Yan

    2018-05-24

    Cucurbit chlorotic yellows virus (CCYV), a bipartite crinivirus, causes chlorotic leaf spots and yellowing symptoms on cucurbit leaves. We previously developed an infectious clone of CCYV. Limited work has been conducted on the construction of a crinivirus green fluorescence protein (GFP) expression vector to date. We constructed a CCYV GFP expression vector using the "add a gene" strategy based on CCYV RNA2 cDNA constrcut. Three resultant clones, pCCYVGFP SGC , pCCYVGFP CGC , and pCCYVGFP CGS, were constructed with different promoters used to initiate GFP and CP expression. At 25 dpi GFP fluorescence was detectable not only in leaf veins but also in the surrounding cells. pCCYVGFP CGC -infected cucumber leaves exhibited cell spread at 25 dpi, whereas pCCYVGFP SGC and pCCYVGFP CGS were mainly found in single cells. Further observation of pCCYVGFP CGC GFP expression at 30 dpi, 40 dpi, and 50 dpi showed phloem-limited localization in the systemic leaves. We developed of a CCYV GFP expression vector that will be useful for further study of CCYV movement in cucurbits.

  18. Structural defect linked to nonrandom mutations in the matrix gene of Biden strain subacute sclerosing panencephalitis virus defined by cDNA cloning and expression of chimeric genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayata, M.; Hirano, A.; Wong, T.C.

    1989-03-01

    Biken strain, a nonproductive measles viruslike agent isolated from a subacute sclerosing panencephalitis (SSPE) patient, contains a posttranscriptional defect affecting matrix (M) protein. A putative M protein was translated in vitro with RNA from Biken strain-infected cells. A similar protein was detected in vivo by an antiserum against a peptide synthesized from the cloned M gene of Edmonston strain measles virus. By using a novel method, full-length cDNAs of the Biken M gene were selectively cloned. The cloned Biken M gene contained an open reading frame which encoded 8 extra carboxy-terminal amino acid residues and 20 amino acid substitutions predictedmore » to affect both the hydrophobicity and secondary structure of the gene product. The cloned gene was expressed in vitro and in vivo into a 37,500 M/sub r/ protein electrophoretically and antigenically distinct from the M protein of Edmonston strain but identical to the M protein in Biken strain-infected cells. Chimeric M proteins synthesized in vitro and in vivo showed that the mutations in the carboxy-proximal region altered the local antigenicity and those in the amino region affected the overall protein conformation. The protein expressed from the Biken M gene was unstable in vivo. Instability was attributed to multiple mutations. These results offer insights into the basis of the defect in Biken strain and pose intriguing questions about the evolutionary origins of SSPE viruses in general.« less

  19. Cloning and expression profile of FLT3 gene during progenitor cell-dependent liver regeneration.

    PubMed

    Aydin, Iraz T; Tokcaer, Zeynep; Dalgic, Aydin; Konu, Ozlen; Akcali, Kamil C

    2007-12-01

    The liver has a unique capacity to regenerate upon exposure to viral infections, toxic reactions and cancer formation. Liver regeneration is a complex phenomenon in which several factors participate during its onset. Cellular proliferation is an important component of this process and the factors that regulate this proliferation have a vital role. FLT3, a well-known hematopoietic stem cell and hepatic lineage surface marker, is involved in proliferative events of hematopoietic stem cells. However, its contribution to liver regeneration is not known. Therefore, the aim of this study was to clone and examine the role of FLT3 during liver regeneration in rats. Partial cDNA of rat homolog of FLT3 gene was cloned from thymus and the tissue specific expression of this gene at mRNA and protein levels was examined by RT-PCR and Western blot. After treating with 2-AAF and performing hepatectomy in rats to induce progenitor-dependent liver regeneration, the mRNA and protein expression profile of FLT3 was investigated by real-time PCR and Western blot during liver regeneration. In addition, cellular localization of FLT3 protein was determined by immunohistochemistry. The results indicated that rat FLT3 cDNA has high homology with mouse and human FLT3 cDNA. It was also found that FLT3 is expressed in most of the rat tissues and during liver regeneration. In addition, its intracellular localization is altered during the late stages of liver regeneration. The FLT3 receptor is activated at the late stages of liver regeneration and participates in the proliferation response that is observed during progenitor-dependent liver regeneration.

  20. CD81 expression is important for the permissiveness of Huh7 cell clones for heterogeneous hepatitis C virus infection.

    PubMed

    Akazawa, Daisuke; Date, Tomoko; Morikawa, Kenichi; Murayama, Asako; Miyamoto, Michiko; Kaga, Minako; Barth, Heidi; Baumert, Thomas F; Dubuisson, Jean; Wakita, Takaji

    2007-05-01

    Huh7 cells constitute a permissive cell line for cell culture of hepatitis C virus (HCV) particles. However, our Huh7 line shows limited permissiveness for HCV. Thus, in this study we set out to determine which host factors are important for conferring permissiveness. To analyze the limited permissiveness of our Huh7 cells, 70 clones were obtained after single-cell cloning of parental Huh7 cells. The cloned Huh7 cells exhibited various levels of HCV pseudoparticles and JFH-1 virus infection efficiency, and some clones were not permissive. A subgenomic replicon was then transfected into the cloned Huh7 cells. While the replication efficiencies differed among the cloned Huh7 cells, these efficiencies did not correlate with infectious permissibility. Flow cytometry showed that CD81, scavenger receptor class B type I, and low-density-lipoprotein receptor expression on the cell surfaces of the Huh7 clones differed among the clones. Interestingly, we found that all of the permissive cell clones expressed CD81 while the nonpermissive cell clones did not. To confirm the importance of CD81 expression for HCV permissiveness, CD81 was then transiently and stably expressed on a nonpermissive Huh7 cell clone, which was consequently restored to HCV infection permissiveness. Furthermore, permissiveness was down-regulated upon transfection of CD81 silencing RNA into a CD81-positive cell clone. In conclusion, CD81 expression is an important determinant of HCV permissiveness of Huh7 cell clones harboring different characteristics.

  1. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices.

    PubMed

    Li, Tao; Hu, Ya-Jun; Hao, Zhi-Peng; Li, Hong; Wang, You-Shan; Chen, Bao-Dong

    2013-01-01

    Arbuscular mycorrhizal (AM) symbiosis is known to stimulate plant drought tolerance. However, the molecular basis for the direct involvement of AM fungi (AMF) in plant water relations has not been established. Two full-length aquaporin genes, namely GintAQPF1 and GintAQPF2, were cloned by rapid amplification of cDNA 5'- and 3'-ends from an AMF, Glomus intraradices. Aquaporin localization, activities and water permeability were examined by heterologous expression in yeast. Gene expression during symbiosis was also analyzed by quantitative real-time polymerase chain reaction. GintAQPF1 was localized to the plasma membrane of yeast, whereas GintAQPF2 was localized to both plasma and intracellular membranes. Transformed yeast cells exhibited a significant decrease in cell volume on hyperosmotic shock and faster protoplast bursting on hypo-osmotic shock. Polyethylene glycol (PEG) stimulated, but glycerol inhibited, the aquaporin activities. Furthermore, the expression of the two genes in arbuscule-enriched cortical cells and extraradical mycelia of maize roots was also enhanced significantly under drought stress. GintAQPF1 and GintAQPF2 are the first two functional aquaporin genes from AMF reported to date. Our data strongly support potential water transport via AMF to host plants, which leads to a better understanding of the important role of AMF in plant drought tolerance. © 2012 Research Centre for Eco-Environmental Sciences, CAS New Phytologist © 2012 New Phytologist Trust.

  2. Cloning and expression of N-glycosylation-related glucosidase from Glaciozyma antarctica

    NASA Astrophysics Data System (ADS)

    Yajit, Noor Liana Mat; Kamaruddin, Shazilah; Hashim, Noor Haza Fazlin; Bakar, Farah Diba Abu; Murad, Abd. Munir Abd.; Mahadi, Nor Muhammad; Mackeen, Mukram Mohamed

    2016-11-01

    The need for functional oligosaccharides in various field is ever growing. The enzymatic approach for synthesis of oligosaccharides is advantageous over traditional chemical synthesis because of the regio- and stereo- selectivity that can be achieved without the need for protection chemistry. In this study, the α-glucosidase I protein sequence from Saccharomyces cerevisiae (UniProt database) was compared using Basic Local Alignment Search Tool (BLAST) with Glaciozyma antarctica genome database. Results showed 33% identity and an E-value of 1 × 10-125 for α-glucosidase I. The gene was amplified, cloned into the pPICZα C vector and used to transform Pichia pastoris X-33 cells. Soluble expression of α-Glucosidase I (˜91 kDa) was achieved at 28 °C with 1.0 % of methanol.

  3. Vectors for co-expression of an unrestricted number of proteins

    PubMed Central

    Scheich, Christoph; Kümmel, Daniel; Soumailakakis, Dimitri; Heinemann, Udo; Büssow, Konrad

    2007-01-01

    A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells. PMID:17311810

  4. Assignment of the structural gene for human beta glucuronidase to chromosome 7 and tetrameric association of subunits in the enzyme molecule.

    PubMed Central

    Chern, C J; Croce, C M

    1976-01-01

    The structural locus for human beta glucuronidase is assigned to chromosome 7, a localization based upon concordant segregation of the expression of the human enzyme and the presence of human chromosome 7 in somatic cell hybrid clones derived independently from fusions of different human and mouse cells. Hybrid clones containing only human chromosome 7 are included in this study. Electrophoresis of beta glucuronidase also has revealed that human beta glucuronidase has a tetrametric structure. Images Fig. 1 Fig. 2 Fig. 3 PMID:941902

  5. Molecular cloning and characterization of a gene regulating flowering time from Alfalfa (Medicago sativa L.).

    PubMed

    Zhang, Tiejun; Chao, Yuehui; Kang, Junmei; Ding, Wang; Yang, Qingchuan

    2013-07-01

    Genes that regulate flowering time play crucial roles in plant development and biomass formation. Based on the cDNA sequence of Medicago truncatula (accession no. AY690425), the LFY gene of alfalfa was cloned. Sequence similarity analysis revealed high homology with FLO/LFY family genes of other plants. When fused to the green fluorescent protein, MsLFY protein was localized in the nucleus of onion (Allium cepa L.) epidermal cells. The RT-qPCR analysis of MsLFY expression patterns showed that the expression of MsLFY gene was at a low level in roots, stems, leaves and pods, and the expression level in floral buds was the highest. The expression of MsLFY was induced by GA3 and long photoperiod. Plant expression vector was constructed and transformed into Arabidopsis by the agrobacterium-mediated methods. PCR amplification with the transgenic Arabidopsis genome DNA indicated that MsLFY gene had integrated in Arabidopsis genome. Overexpression of MsLFY specifically caused early flowering under long day conditions compared with non-transgenic plants. These results indicated MsLFY played roles in promoting flowering time.

  6. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.

    PubMed

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Lagoumintzis, George; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.

  7. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression

    PubMed Central

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors. PMID:29091919

  8. Expression of Innate Immune Response Genes in Liver and Three Types of Adipose Tissue in Cloned Pigs

    PubMed Central

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan

    2012-01-01

    Abstract The pig has been proposed as a relevant model for human obesity-induced inflammation, and cloning may improve the applicability of this model. We tested the assumptions that cloning would reduce interindividual variation in gene expression of innate immune factors and that their expression would remain unaffected by the cloning process. We investigated the expression of 40 innate immune factors by high-throughput quantitative real-time PCR in samples from liver, abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and neck SAT in cloned pigs compared to normal outbred pigs. The variation in gene expression was found to be similar for the two groups, and the expression of a small number of genes was significantly affected by cloning. In the VAT and abdominal SAT, six out of seven significantly differentially expressed genes were downregulated in the clones. In contrast, most differently expressed genes in both liver and neck SAT were upregulated (seven out of eight). Remarkably, acute phase proteins (APPs) dominated the upregulated genes in the liver, whereas APP expression was either unchanged or downregulated in abdominal SAT and VAT. The general conclusion from this work is that cloning leads to subtle changes in specific subsets of innate immune genes. Such changes, even if minor, may have phenotypic effects over time, e.g., in models of long-term inflammation related to obesity. PMID:22928970

  9. Insights into potential pathogenesis mechanisms associated with Campylobacter jejuni-induced abortion in ewes.

    PubMed

    Sanad, Yasser M; Jung, Kwonil; Kashoma, Isaac; Zhang, Xiaoli; Kassem, Issmat I; Saif, Yehia M; Rajashekara, Gireesh

    2014-11-25

    Campylobacter jejuni is commonly found in the gastrointestinal tract of many food-animals including sheep without causing visible clinical symptoms of disease. However, C. jejuni has been implicated in ovine abortion cases worldwide. Specifically, in the USA, the C. jejuni sheep abortion (SA) clone has been increasingly associated with sheep abortion. In vivo studies in sheep (the natural host) are needed to better characterize the virulence potential and pathogenesis of this clone. Pregnant ewes intravenously (IV) or orally inoculated with ovine or bovine abortion-associated C. jejuni SA clones exhibited partial or complete uterine prolapse with retained placenta, and abortion or stillbirth, whereas delivery of healthy lambs occurred in pregnant ewes inoculated with C. jejuni 81-176 or in the uninfected group. In sheep inoculated with the SA clone, histopathological lesions including suppurative necrotizing placentitis and/or endometritis coincided with: 1) increased apoptotic death of trophoblasts, 2) increased expression of the host genes (e.g. genes encoding interleukin IL-6 and IL-15) related to cellular necrosis and pro-inflammatory responses in uterus, and 3) decreased expression of the genes encoding GATA binding protein 6, chordin, and insulin-like 3 (INSL3) that account for embryonic development in uterus. Immunohistochemistry revealed localization of bacterial antigens in trophoblasts lining the chorioallantoic membrane of ewes inoculated with the C. jejuni SA clone. The results showed that C. jejuni SA clones are capable of causing abortion or stillbirth in experimentally infected sheep. Furthermore, down- or up-regulation of specific genes in the uterus of infected pregnant ewes might implicate host genes in facilitating the disease progression. Since the C. jejuni SA strains share genotypic similarities with clones that have been isolated from human clinical cases of gastroenteritis, these strains might represent a potential public health risk.

  10. Molecular cloning and characterization of ADP-glucose pyrophosphorylase cDNA clones isolated from pea cotyledons.

    PubMed

    Burgess, D; Penton, A; Dunsmuir, P; Dooner, H

    1997-02-01

    Three ADP-glucose pyrophosphorylase (ADPG-PPase) cDNA clones have been isolated and characterized from a pea cotyledon cDNA library. Two of these clones (Psagps1 and Psagps2) encode the small subunit of ADPG-PPase. The deduced amino acid sequences for these two clones are 95% identical. Expression of these two genes differs in that the Psagps2 gene shows comparatively higher expression in seeds relative to its expression in other tissues. Psagps2 expression also peaks midway through seed development at a time in which Psagps1 transcripts are still accumulating. The third cDNA isolated (Psagp11) encodes the large subunit of ADPG-PPase. It shows greater selectivity in expression than either of the small subunit clones. It is highly expressed in sink organs (seed, pod, and seed coat) and undetectable in leaves.

  11. A novel protein involved in heart development in Ambystoma mexicanum is localized in endoplasmic reticulum.

    PubMed

    Jia, P; Zhang, C; Huang, X P; Poda, M; Akbas, F; Lemanski, S L; Erginel-Unaltuna, N; Lemanski, L F

    2008-11-01

    The discovery of the naturally occurring cardiac non-function (c) animal strain in Ambystoma mexicanum (axolotl) provides a valuable animal model to study cardiomyocyte differentiation. In homozygous mutant animals (c/c), rhythmic contractions of the embryonic heart are absent due to a lack of organized myofibrils. We have previously cloned a partial sequence of a peptide cDNA (N1) from an anterior-endoderm-conditioned-medium RNA library that had been shown to be able to rescue the mutant phenotype. In the current studies we have fully cloned the N1 full length cDNA sequence from the library. N1 protein has been detected in both adult heart and skeletal muscle but not in any other adult tissues. GFP-tagged expression of the N1 protein has revealed localization of the N1 protein in the endoplasmic reticulum (ER). Results from in situ hybridization experiments have confirmed the dramatic decrease of expression of N1 mRNA in mutant (c/c) embryos indicating that the N1 gene is involved in heart development.

  12. Genetic analyses of Per.C6 cell clones producing a therapeutic monoclonal antibody regarding productivity and long-term stability.

    PubMed

    Tsuruta, Lilian Rumi; Lopes Dos Santos, Mariana; Yeda, Fernanda Perez; Okamoto, Oswaldo Keith; Moro, Ana Maria

    2016-12-01

    Genetic characterization of protein-producing clones represents additional value to cell line development. In the present study, ten Per.C6 clones producing a Rebmab100 monoclonal antibody were selected using two cloning methods: six clones originated from limiting dilution cloning and four by the automated colony picker ClonePix FL. A stability program was performed for 50 generations, including 4 batches distributed along the timeframe to determine specific productivity (Qp) maintenance. Four stable clones (two from limiting dilution and two from ClonePix FL) were further evaluated. The relative mRNA expression levels of both heavy chain (HC) and light chain (LC) genes were verified at generations 0, 30-35, and 50-55 of the stability program. At generations 0 and 30-35, LC gene expression level was higher than HC gene, whereas at generation 50-55, the opposite prevailed. A high correlation was observed between Qp and HC or LC mRNA expression level for all clones at each generation analyzed along the continuous culture. The mRNA stability study was performed at steady-state culture. The LC gene displayed a higher half-life and lower decay constant than HC gene, accounting for the higher observed expression level of LC mRNA in comparison to HC mRNA. Clone R6 was highlighted due its high Qp, mRNA expression levels, and mRNA stability. Besides the benefits of applying genetic characterization for the selection of stable and high-producing clones, the present study shows for the first time the correlation between Qp and HC or LC expression levels and also mRNA stability in clones derived from human cell line Per.C6(®).

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horodecki, Michal; Sen, Aditi; Sen, Ujjwal

    The impossibility of cloning and deleting of unknown states constitute important restrictions on processing of information in the quantum world. On the other hand, a known quantum state can always be cloned or deleted. However, if we restrict the class of allowed operations, there will arise restrictions on the ability of cloning and deleting machines. We have shown that cloning and deleting of known states is in general not possible by local operations. This impossibility hints at quantum correlation in the state. We propose dual measures of quantum correlation based on the dual restrictions of no local cloning and nomore » local deleting. The measures are relative entropy distances of the desired states in a (generally impossible) perfect local cloning or local deleting process from the best approximate state that is actually obtained by imperfect local cloning or deleting machines. Just like the dual measures of entanglement cost and distillable entanglement, the proposed measures are based on important processes in quantum information. We discuss their properties. For the case of pure states, estimations of these two measures are also provided. Interestingly, the entanglement of cloning for a maximally entangled state of two two-level systems is not unity.« less

  14. Cloning, localization and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus (pineapple).

    PubMed

    Antony, Edna; Taybi, Tahar; Courbot, Mikaël; Mugford, Sam T; Smith, J Andrew C; Borland, Anne M

    2008-01-01

    In photosynthetic tissues of the CAM plant pineapple (Ananas comosus), storage of soluble sugars in the central vacuole during the daytime and their remobilization at night is required to provide carbon skeletons for nocturnal CO(2) fixation. However, soluble sugars produced photosynthetically must also be exported to support growth processes in heterotrophic tissues. To begin to address how vacuolar sugar storage and assimilate partitioning are regulated in A. comosus, degenerate PCR and cDNA library screening were used to clone three candidate sugar transporters from the leaves of this species. Subcellular localization of the three transporters was investigated via expression of YFP-fusion proteins in tobacco epidermal cells and their co-localization with subcellular markers by confocal microscopy. Using this strategy, a putative hexose transporter (AcMST1) and a putative inositol transporter (AcINT1) were identified that both localized to the tonoplast, whereas a putative sucrose transporter (AcSUT1) was found to localize to prevacuolar compartments. A cDNA (AcMST2) with high similarity to a recently characterized tonoplast hexose transporter in Arabidopsis was also identified from an A. comosus fruit EST database. Analyses of transcript abundance indicated that AcMST1 was more highly expressed in fruits compared to leaves of A. comosus, whilst transcripts of AcINT1, AcSUT1, and AcMST2 were more abundant in leaves. Transcript abundance of AcINT1, the putative inositol transporter, showed day-night changes comparable to those of other CAM-related transcripts described in Mesembryanthemum crystallinum. The results are discussed in terms of the role of vacuolar sugar transporters in regulating carbon flow during the diel cycle in CAM plants.

  15. Ectopic expression of LEAFY COTYLEDON1-LIKE gene and localized auxin accumulation mark embryogenic competence in epiphyllous plants of Helianthus annuus × H. tuberosus

    PubMed Central

    Chiappetta, A.; Fambrini, M.; Petrarulo, M.; Rapparini, F.; Michelotti, V.; Bruno, L.; Greco, M.; Baraldi, R.; Salvini, M.; Pugliesi, C.; Bitonti, M. B.

    2009-01-01

    Background and Aims The clone EMB-2 of the interspecific hybrid Helianthus annuus × H. tuberosus provides an interesting system to study molecular and physiological aspects of somatic embryogenesis. Namely, in addition to non-epiphyllous (NEP) leaves that expand normally, EMB-2 produces epiphyllous (EP) leaves bearing embryos on the adaxial surface. This clone was used to investigate if the ectopic expression of H. annuus LEAFY COTYLEDON1-LIKE (Ha-L1L) gene and auxin activity are correlated with the establishment of embryogenic competence. Methods Ha-L1L expression was evaluated by semi-quantitative RT-PCR and in situ hybridization. The endogenous level and spatial distribution of free indole-3-acetic acid (IAA) were estimated by a capillary gas chromatography–mass spectrometry–selected ion monitoring method and an immuno-cytochemical approach. Key Results Ectopic expression of Ha-L1L was detected in specific cell domains of the adaxial epidermis of EP leaves prior to the development of ectopic embryos. Ha-L1L was expressed rapidly when NEP leaves were induced to regenerate somatic embryos by in vitro culture. Differences in auxin distribution pattern rather than in absolute level were observed between EP and A-2 leaves. More precisely, a strong IAA immuno-signal was detected in single cells or in small groups of cells along the epidermis of EP leaves and accompanied the early stages of embryo development. Changes in auxin level and distribution were observed in NEP leaves induced to regenerate by in vitro culture. Exogenous auxin treatments lightly influenced Ha-L1L transcript levels in spite of an enhancement of the regeneration frequency. Conclusions In EP leaves, Ha-L1L activity marks the putative founder cells of ectopic embryos. Although the ectopic expression of Ha-L1L seems to be not directly mediated by auxin levels per se, it was demonstrated that localized Ha-L1L expression and IAA accumulation in leaf epidermis domains represent early events of somatic embryogenesis displayed by the epiphyllous EMB-2 clone. PMID:19151043

  16. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg.

    PubMed

    Stockis, Julie; Colau, Didier; Coulie, Pierre G; Lucas, Sophie

    2009-12-01

    Human Treg and Th clones secrete the latent form of TGF-beta, in which the mature TGF-beta protein is bound to the latency-associated peptide (LAP), and is thereby prevented from binding to the TGF-beta receptor. We previously showed that upon TCR stimulation, human Treg clones but not Th clones produce active TGF-beta and bear LAP on their surface. Here, we show that latent TGF-beta, i.e. both LAP and mature TGF-beta, binds to glycoprotein A repetitions predominant (GARP), a transmembrane protein containing leucine rich repeats, which is present on the surface of stimulated Treg clones but not on Th clones. Membrane localization of latent TGF-beta mediated by binding to GARP may be necessary for the ability of Treg to activate TGF-beta upon TCR stimulation. However, it is not sufficient as lentiviral-mediated expression of GARP in human Th cells induces binding of latent TGF-beta to the cell surface, but does not result in the production of active TGF-beta upon stimulation of these Th cells.

  17. Molecular cloning and expression profile of an abiotic stress and hormone responsive MYB transcription factor gene from Panax ginseng.

    PubMed

    Afrin, Sadia; Zhu, Jie; Cao, Hongzhe; Huang, Jingjia; Xiu, Hao; Luo, Tiao; Luo, Zhiyong

    2015-04-01

    The v-myb avian myeloblastosis viral oncogene homolog (MYB) family constitutes one of the most abundant groups of transcription factors and plays vital roles in developmental processes and defense responses in plants. A ginseng (Panax ginseng C.A. Meyer) MYB gene was cloned and designated as PgMYB1. The cDNA of PgMYB1 is 762 base pairs long and encodes the R2R3-type protein consisting 238 amino acids. Subcellular localization showed that PgMYB1-mGFP5 fusion protein was specifically localized in the nucleus. To understand the functional roles of PgMYB1, we investigated the expression patterns of PgMYB1 in different tissues and under various conditions. Quantitative real-time polymerase chain reaction and western blot analysis showed that PgMYB1 was expressed at higher level in roots, leaves, and lateral roots than in stems and seeds. The expression of PgMYB1 was up-regulated by abscisic acid, salicylic acid, NaCl, and cold (chilling), and down-regulated by methyl jasmonate. These results suggest that PgMYB1 might be involved in responding to environmental stresses and hormones. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  18. A versatile and efficient high-throughput cloning tool for structural biology.

    PubMed

    Geertsma, Eric R; Dutzler, Raimund

    2011-04-19

    Methods for the cloning of large numbers of open reading frames into expression vectors are of critical importance for challenging structural biology projects. Here we describe a system termed fragment exchange (FX) cloning that facilitates the high-throughput generation of expression constructs. The method is based on a class IIS restriction enzyme and negative selection markers. FX cloning combines attractive features of established recombination- and ligation-independent cloning methods: It allows the straightforward transfer of an open reading frame into a variety of expression vectors and is highly efficient and very economic in its use. In addition, FX cloning avoids the common but undesirable feature of significantly extending target open reading frames with cloning related sequences, as it leaves a minimal seam of only a single extra amino acid to either side of the protein. The method has proven to be very robust and suitable for all common pro- and eukaryotic expression systems. It considerably speeds up the generation of expression constructs compared to traditional methods and thus facilitates a broader expression screening.

  19. Localization and physical mapping of genes encoding the A+U-rich element RNA-binding protein AUF1 to human chromosomes 4 and X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, B.J.; Long, L.; Pettenati, M.J.

    Messenger RNAs encoding many oncoproteins and cytokines are relatively unstable. Their instability, which ensures appropriate levels and timing of expression, is controlled in part by proteins that bind to A + U-rich instability elements (AREs) present in the 3{prime}-untranslated regions of the mRNAs. cDNAs encoding the AUF1 family of ARE-binding proteins were cloned from human and murine cDNA libraries. In the present study monochromosomal somatic cell hybrids were used to localize two AUF1 loci to human chromosomes 4 and X. In situ hybridization analyses using P1 clones as probes identified the 4q21.1-q21.2 and Xq12 regions as the locations of themore » AUF1 genes. 10 refs., 2 figs.« less

  20. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F.

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing tomore » the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.« less

  1. Development of Transgenic Cloned Pig Models of Skin Inflammation by DNA Transposon-Directed Ectopic Expression of Human β1 and α2 Integrin

    PubMed Central

    Staunstrup, Nicklas Heine; Madsen, Johannes; Primo, Maria Nascimento; Li, Juan; Liu, Ying; Kragh, Peter M.; Li, Rong; Schmidt, Mette; Purup, Stig; Dagnæs-Hansen, Frederik; Svensson, Lars; Petersen, Thomas K.; Callesen, Henrik; Bolund, Lars; Mikkelsen, Jacob Giehm

    2012-01-01

    Integrins constitute a superfamily of transmembrane signaling receptors that play pivotal roles in cutaneous homeostasis by modulating cell growth and differentiation as well as inflammatory responses in the skin. Subrabasal expression of integrins α2 and/or β1 entails hyperproliferation and aberrant differentiation of keratinocytes and leads to dermal and epidermal influx of activated T-cells. The anatomical and physiological similarities between porcine and human skin make the pig a suitable model for human skin diseases. In efforts to generate a porcine model of cutaneous inflammation, we employed the Sleeping Beauty DNA transposon system for production of transgenic cloned Göttingen minipigs expressing human β1 or α2 integrin under the control of a promoter specific for subrabasal keratinocytes. Using pools of transgenic donor fibroblasts, cloning by somatic cell nuclear transfer was utilized to produce reconstructed embryos that were subsequently transferred to surrogate sows. The resulting pigs were all transgenic and harbored from one to six transgene integrants. Molecular analyses on skin biopsies and cultured keratinocytes showed ectopic expression of the human integrins and localization within the keratinocyte plasma membrane. Markers of perturbed skin homeostasis, including activation of the MAPK pathway, increased expression of the pro-inflammatory cytokine IL-1α, and enhanced expression of the transcription factor c-Fos, were identified in keratinocytes from β1 and α2 integrin-transgenic minipigs, suggesting the induction of a chronic inflammatory phenotype in the skin. Notably, cellular dysregulation obtained by overexpression of either β1 or α2 integrin occurred through different cellular signaling pathways. Our findings mark the creation of the first cloned pig models with molecular markers of skin inflammation. Despite the absence of an overt psoriatic phenotype, these animals may possess increased susceptibility to severe skin damage-induced inflammation and should be of great potential in studies aiming at the development and refinement of topical therapies for cutaneous inflammation including psoriasis. PMID:22590584

  2. Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field.

    PubMed

    Bailey, Bryan A; Melnick, Rachel L; Strem, Mary D; Crozier, Jayne; Shao, Jonathan; Sicher, Richard; Phillips-Mora, Wilberth; Ali, Shahin S; Zhang, Dapeng; Meinhardt, Lyndel

    2014-09-01

    Frosty pod rot (FPR) of Theobroma cacao (cacao) is caused by the hemibiotrophic fungus Moniliophthora roreri. Cacao clones tolerant to FPR are being planted throughout Central America. To determine whether M. roreri shows a differential molecular response during successful infections of tolerant clones, we collected field-infected pods at all stages of symptomatology for two highly susceptible clones (Pound-7 and CATIE-1000) and three tolerant clones (UF-273, CATIE-R7 and CATIE-R4). Metabolite analysis was carried out on clones Pound-7, CATIE-1000, CATIE-R7 and CATIE-R4. As FPR progressed, the concentrations of sugars in pods dropped, whereas the levels of trehalose and mannitol increased. Associations between symptoms and fungal loads and some organic and amino acid concentrations varied depending on the clone. RNA-Seq analysis identified 873 M. roreri genes that were differentially expressed between clones, with the primary difference being whether the clone was susceptible or tolerant. Genes encoding transcription factors, heat shock proteins, transporters, enzymes modifying membranes or cell walls and metabolic enzymes, such as malate synthase and alternative oxidase, were differentially expressed. The differential expression between clones of 43 M. roreri genes was validated by real-time quantitative reverse transcription polymerase chain reaction. The expression profiles of some genes were similar in susceptible and tolerant clones (other than CATIE-R4) and varied with the biotrophic/necrotropic shift. Moniliophthora roreri genes associated with stress metabolism and responses to heat shock and anoxia were induced early in tolerant clones, their expression profiles resembling that of the necrotrophic phase. Moniliophthora roreri stress response genes, induced during the infection of tolerant clones, may benefit the fungus in overcoming cacao defense mechanisms. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  3. [TSA improve transgenic porcine cloned embryo development and transgene expression].

    PubMed

    Kong, Qing-Ran; Zhu, Jiang; Huang, Bo; Huan, Yan-Jun; Wang, Feng; Shi, Yong-Qian; Liu, Zhong-Feng; Wu, Mei-Ling; Liu, Zhong-Hua

    2011-07-01

    Uncompleted epigenetic reprogramming is attributed to the low efficiency of producing transgenic cloned animals. Histone modification associated with epigenetics can directly influence the embryo development and transgene expression. Trichostatin A (TSA), as an inhibitor of histone deacetylase, can change the status of histone acetylation, improve somatic cell reprogramming, and enhance cloning efficiency. TSA prevents the chromatin structure from being condensed, so that transcription factor could binds to DNA sequence easily and enhance transgene expression. Our study established the optimal TSA treatment on porcine donor cells and cloned embryos, 250 nmol/L, 24 h and 40 nmol/L, 24 h, respectively. Furthermore, we found that both the cloned embryo and the donor cell treated by TSA resulted in the highest development efficiency. Meanwhile, TSA can improve transgene expression in donor cell and cloned embryo. In summary, TSA can significantly improve porcine reconstructed embryo development and transgene expression.

  4. Ebbie: automated analysis and storage of small RNA cloning data using a dynamic web server

    PubMed Central

    Ebhardt, H Alexander; Wiese, Kay C; Unrau, Peter J

    2006-01-01

    Background DNA sequencing is used ubiquitously: from deciphering genomes[1] to determining the primary sequence of small RNAs (smRNAs) [2-5]. The cloning of smRNAs is currently the most conventional method to determine the actual sequence of these important regulators of gene expression. Typical smRNA cloning projects involve the sequencing of hundreds to thousands of smRNA clones that are delimited at their 5' and 3' ends by fixed sequence regions. These primers result from the biochemical protocol used to isolate and convert the smRNA into clonable PCR products. Recently we completed a smRNA cloning project involving tobacco plants, where analysis was required for ~700 smRNA sequences[6]. Finding no easily accessible research tool to enter and analyze smRNA sequences we developed Ebbie to assist us with our study. Results Ebbie is a semi-automated smRNA cloning data processing algorithm, which initially searches for any substring within a DNA sequencing text file, which is flanked by two constant strings. The substring, also termed smRNA or insert, is stored in a MySQL and BlastN database. These inserts are then compared using BlastN to locally installed databases allowing the rapid comparison of the insert to both the growing smRNA database and to other static sequence databases. Our laboratory used Ebbie to analyze scores of DNA sequencing data originating from an smRNA cloning project[6]. Through its built-in instant analysis of all inserts using BlastN, we were able to quickly identify 33 groups of smRNAs from ~700 database entries. This clustering allowed the easy identification of novel and highly expressed clusters of smRNAs. Ebbie is available under GNU GPL and currently implemented on Conclusion Ebbie was designed for medium sized smRNA cloning projects with about 1,000 database entries [6-8].Ebbie can be used for any type of sequence analysis where two constant primer regions flank a sequence of interest. The reliable storage of inserts, and their annotation in a MySQL database, BlastN[9] comparison of new inserts to dynamic and static databases make it a powerful new tool in any laboratory using DNA sequencing. Ebbie also prevents manual mistakes during the excision process and speeds up annotation and data-entry. Once the server is installed locally, its access can be restricted to protect sensitive new DNA sequencing data. Ebbie was primarily designed for smRNA cloning projects, but can be applied to a variety of RNA and DNA cloning projects[2,3,10,11]. PMID:16584563

  5. Negative effect of the 5'-untranslated leader sequence on Ac transposon promoter expression.

    PubMed

    Scortecci, K C; Raina, R; Fedoroff, N V; Van Sluys, M A

    1999-08-01

    Transposable elements are used in heterologous plant hosts to clone genes by insertional mutagenesis. The Activator (Ac) transposable element has been cloned from maize, and introduced into a variety of plants. However, differences in regulation and transposition frequency have been observed between different host plants. The cause of this variability is still unknown. To better understand the activity of the Ac element, we analyzed the Ac promoter region and its 5'-untranslated leader sequence (5' UTL). Transient assays in tobacco NT1 suspension cells showed that the Ac promoter is a weak promoter and its activity was localized by deletion analyses. The data presented here indicate that the core of the Ac promoter is contained within 153 bp fragment upstream to transcription start sites. An important inhibitory effect (80%) due to the presence of the 5' UTL was found on the expression of LUC reporter gene. Here we demonstrate that the presence of the 5' UTL in the constructs reduces the expression driven by either strong or weak promoters.

  6. Cloning, production, and purification of proteins for a medium-scale structural genomics project.

    PubMed

    Quevillon-Cheruel, Sophie; Collinet, Bruno; Trésaugues, Lionel; Minard, Philippe; Henckes, Gilles; Aufrère, Robert; Blondeau, Karine; Zhou, Cong-Zhao; Liger, Dominique; Bettache, Nabila; Poupon, Anne; Aboulfath, Ilham; Leulliot, Nicolas; Janin, Joël; van Tilbeurgh, Herman

    2007-01-01

    The South-Paris Yeast Structural Genomics Pilot Project (http://www.genomics.eu.org) aims at systematically expressing, purifying, and determining the three-dimensional structures of Saccharomyces cerevisiae proteins. We have already cloned 240 yeast open reading frames in the Escherichia coli pET system. Eighty-two percent of the targets can be expressed in E. coli, and 61% yield soluble protein. We have currently purified 58 proteins. Twelve X-ray structures have been solved, six are in progress, and six other proteins gave crystals. In this chapter, we present the general experimental flowchart applied for this project. One of the main difficulties encountered in this pilot project was the low solubility of a great number of target proteins. We have developed parallel strategies to recover these proteins from inclusion bodies, including refolding, coexpression with chaperones, and an in vitro expression system. A limited proteolysis protocol, developed to localize flexible regions in proteins that could hinder crystallization, is also described.

  7. Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1.

    PubMed

    Bieber, A J; Snow, P M; Hortsch, M; Patel, N H; Jacobs, J R; Traquina, Z R; Schilling, J; Goodman, C S

    1989-11-03

    Drosophila neuroglian is an integral membrane glycoprotein that is expressed on a variety of cell types in the Drosophila embryo, including expression on a large subset of glial and neuronal cell bodies in the central and peripheral nervous systems and on the fasciculating axons that extend along them. Neuroglian cDNA clones were isolated by expression cloning. cDNA sequence analysis reveals that neuroglian is a member of the immunoglobulin superfamily. The extracellular portion of the protein consists of six immunoglobulin C2-type domains followed by five fibronectin type III domains. Neuroglian is closely related to the immunoglobulin-like vertebrate neural adhesion molecules and, among them, shows most extensive homology to mouse L1. Its homology to L1 and its embryonic localization suggest that neuroglian may play a role in neural and glial cell adhesion in the developing Drosophila embryo. We report here on the identification of a lethal mutation in the neuroglian gene.

  8. Characterization of embryo-specific genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that is not expressed in mature tissues -- the embryonic genes. In the last two years, using cDNA clones, we have isolated 22 cDNA clones, and characterized the expression pattern of their corresponding RNA. At least 4 cDNA clones detect RNAs of embryonic genes. These cDNA clones detect RNAs expressed in somatic as well as zygotic embryos of carrot. Using the cDNA clones, we screened the genomic library of carrot embryo DNA, and isolatedmore » genomic clones for three genes. The structure and function of two genes DC 8 and DC 59 have been characterized and are reported in this paper.« less

  9. Molecular cloning and characterization of a cDNA encoding a novel apoplastic protein preferentially expressed in a shikonin-producing callus strain of Lithospermum erythrorhizon.

    PubMed

    Yamamura, Yoshimi; Sahin, F Pinar; Nagatsu, Akito; Mizukami, Hajime

    2003-04-01

    A cDNA (LEPS-2) encoding a novel cell wall protein was cloned from shikonin-producing callus tissues of Lithospermum erythrorhizon by differential display between a shikonin-producing culture strain and a non-producing strain. The LEPS-2 cDNA encoded a polypeptide of 184 amino acids. The deduced amino acid sequence exhibited no significant homology with known proteins. Expression of LEPS-2 gene as well as accumulation of LEPS-2 protein was highly correlated with shikonin production in L. erythrorhizon cells in culture. In the intact plant, expression of LEPS-2 was detected only in the roots where shikonin pigments accumulated. Cell fractionation experiments and immunocytochemical analysis showed that the protein was localized in the apoplast fraction of the cell walls. The shikonin pigments were also stored on the cell walls as oil droplets. These results indicate that expression of the LEPS-2 is closely linked with shikonin biosynthesis and the LEPS-2 protein may be involved in the intra-cell wall trapping of shikonin pigments.

  10. Molecular cloning and biochemical characterization of three phosphoglycerate kinase isoforms from developing sunflower (Helianthus annuus L.) seeds.

    PubMed

    Troncoso-Ponce, M A; Rivoal, J; Venegas-Calerón, M; Dorion, S; Sánchez, R; Cejudo, F J; Garcés, R; Martínez-Force, E

    2012-07-01

    Three cDNAs encoding different phosphoglycerate kinase (PGK, EC 2.7.2.3) isoforms, two cytosolic (HacPGK1 and HacPGK2) and one plastidic (HapPGK), were cloned and characterized from developing sunflower (Helianthus annuus L.) seeds. The expression profiles of these genes showed differences in heterotrophic tissues, such as developing seeds and roots, where HacPGK1 was predominant, while HapPGK was highly expressed in photosynthetic tissues. The cDNAs were expressed in Escherichia coli, and the corresponding proteins purified to electrophoretic homogeneity, using immobilized metal ion affinity chromatography, and biochemically characterized. Despite the high level of identity between sequences, the HacPGK1 isoform showed strong differences in terms of specific activity, temperature stability and pH sensitivity in comparison to HacPGK2 and HapPGK. A polyclonal immune serum was raised against the purified HacPGK1 isoform, which showed cross-immunoreactivity with the other PGK isoforms. This serum allowed the localization of high expression levels of PGK isozymes in embryo tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A cloning and expression analysis of pregnancy-associated glycoproteins expressed in trophoblasts of the white-tail deer placenta.

    PubMed

    Brandt, Gretchen A; Parks, Tina E; Killian, Gary; Ealy, Alan D; Green, Jonathan A

    2007-11-01

    The pregnancy-associated glycoproteins (PAGs) are placental proteins that have been cloned from swine, sheep, goats, and cattle, but never from animals within the Cervidae family. The goal of this work was to characterize PAGs in white-tailed deer. Placenta and uterine tissues were collected from pregnant does at days 85 and 90 of pregnancy. RNA from cotyledons was used to amplify deer PAGs by RT-PCR. Ten distinct cDNAs were cloned and sequenced. Some normally conserved amino acids comprising the catalytic site were found to be altered in deer PAGs 4, 5, and 8; another PAG, (PAG-9) was a splice variant that lacked exon 7. In each case, these mutations would likely preclude proteolytic activity for these proteins. A phylogenetic analysis revealed that most of the deer PAGs fell within the ancient PAG grouping. The remainder fell within the more modern (BNC-specific) PAG group. Western blotting was performed with anti-PAG antibodies and this analysis revealed that deer PAGs comprise a heterogeneous group based on different antigenicities and electrophoretic mobilities. Immunohistochemistry and in situ hybridization revealed some unique localization patterns of PAGs in the deer placentome compared to those in other ruminants. Most notably, deer PAGs 4 and 5, which according to the phylogeny, are "ancient PAGs," were expected to be present in all trophoblasts; instead, they were localized to the BNC. Although many of the PAGs identified here are very similar to those in Bovidae, some are clearly distinct in their expression pattern and probably possess functional roles unique to cervid reproduction. (c) 2007 Wiley-Liss, Inc.

  12. Analyses of expression and localization of two mammalian-type transglutaminases in Physarum polycephalum, an acellular slime mold.

    PubMed

    Wada, Fumitaka; Ogawa, Atsuko; Hanai, Yuko; Nakamura, Akio; Maki, Masatoshi; Hitomi, Kiyotaka

    2004-11-01

    Transglutaminase (TGase) is an enzyme that modifies proteins by crosslinking or polyamination. Physarum polycephalum, an acellular slime mold, is the evolutionally lowest organism that has a mammalian-type transglutaminase. We have cloned a cDNA for Physarum polycephalum TGase (PpTGB), homologous to a previously identified TGase (PpTGA), whose sequence is similar to that of mammalian TGases. PpTGB encodes a primary sequence identical to that of PpTGA except for 11 amino acid residues at the N-terminus. Reverse transcription-PCR and Western blotting analyses showed that both PpTGA and PpTGB are expressed in microplasmodia and macroplasmodia during their life cycle, except for in sporangia. For biochemical characterization, we carried out the ectopical expressions of PpTGA and PpTGB in Dictyostelium discoideum. Subcellular fractionation of these Dictyostelium cells showed that the expressed PpTGA, but not PpTGB, localizes to the membrane fraction. Furthermore, in Physarum, subcellular fractionation and immunostaining indicated specific localization at the plasma membrane in macroplasmodia, while the localization was entirely cytoplasmic in microplasmodia.

  13. Characterization of the synthesis and expression of the GTA-kinase from transformed and normal rodent cells.

    PubMed

    Kerr, M; Fischer, J E; Purushotham, K R; Gao, D; Nakagawa, Y; Maeda, N; Ghanta, V; Hiramoto, R; Chegini, N; Humphreys-Beher, M G

    1994-08-02

    The murine transformed cell line YC-8 and beta-adrenergic receptor agonist (isoproternol) treated rat and mouse parotid gland acinar cells ectopically express cell surface beta 1-4 galactosyltransferase during active proliferation. This activity is dependent upon the expression of the GTA-kinase (p58) in these cells. Using total RNA, cDNA clones for the protein coding region of the kinase were isolated by reverse transcriptase-PCR cloning. DNA sequence analysis failed to show sequence differences with the normal homolog from mouse cells although Southern blot analysis of YC-8, and a second cell line KI81, indicated changes in the restriction enzyme digestion profile relative to murine cell lines which do not express cell surface galactosyltransferase. The rat cDNA clone from isoproterenol-treated salivary glands showed a high degree of protein and nucleic acid sequence homology to the GTA-kinase from both murine and human sources. Northern blot analysis of YC-8 and a control cell line LSTRA revealed the synthesis of a major 3.0 kb mRNA from both cell lines plus the unique expression of a 4.5 kb mRNA in the YC-8 cells. Reverse transcriptase-PCR of LSTRA and YC-8 confirmed the increased steady state levels of the GTA-kinase mRNA in YC-8. In the mouse, induction of cell proliferation by isoproterenol resulted in a 50-fold increase in steady state mRNA levels for the kinase over the low level of expression in quiescent cells. Expression of the rat 3' untranslated region in rat parotid cells in vitro led to an increased rate of DNA synthesis, cell number an ectopic expression of cell surface galactosyltransferase in the sense orientation. Antisense expression or vector alone did not alter growth characteristics of acinar cells. A polyclonal antibody monospecific to a murine amino terminal peptide sequence revealed a uniform distribution of GTA-kinase over the cytoplasm of acinar and duct cells of control mouse parotid glands. However, upon growth stimulation, kinase was detected primarily in a perinuclear and nuclear immunostaining pattern. Western blot analysis confirmed a translocation from a cytoplasmic localization in both LSTRA and quiescent salivary cells to a membrane-associated localization in YC-8 and proliferating salivary cells.

  14. Domain selection combined with improved cloning strategy for high throughput expression of higher eukaryotic proteins

    PubMed Central

    Chen, Yunjia; Qiu, Shihong; Luan, Chi-Hao; Luo, Ming

    2007-01-01

    Background Expression of higher eukaryotic genes as soluble, stable recombinant proteins is still a bottleneck step in biochemical and structural studies of novel proteins today. Correct identification of stable domains/fragments within the open reading frame (ORF), combined with proper cloning strategies, can greatly enhance the success rate when higher eukaryotic proteins are expressed as these domains/fragments. Furthermore, a HTP cloning pipeline incorporated with bioinformatics domain/fragment selection methods will be beneficial to studies of structure and function genomics/proteomics. Results With bioinformatics tools, we developed a domain/domain boundary prediction (DDBP) method, which was trained by available experimental data. Combined with an improved cloning strategy, DDBP had been applied to 57 proteins from C. elegans. Expression and purification results showed there was a 10-fold increase in terms of obtaining purified proteins. Based on the DDBP method, the improved GATEWAY cloning strategy and a robotic platform, we constructed a high throughput (HTP) cloning pipeline, including PCR primer design, PCR, BP reaction, transformation, plating, colony picking and entry clones extraction, which have been successfully applied to 90 C. elegans genes, 88 Brucella genes, and 188 human genes. More than 97% of the targeted genes were obtained as entry clones. This pipeline has a modular design and can adopt different operations for a variety of cloning/expression strategies. Conclusion The DDBP method and improved cloning strategy were satisfactory. The cloning pipeline, combined with our recombinant protein HTP expression pipeline and the crystal screening robots, constitutes a complete platform for structure genomics/proteomics. This platform will increase the success rate of purification and crystallization dramatically and promote the further advancement of structure genomics/proteomics. PMID:17663785

  15. Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression.

    PubMed

    Nocarova, Eva; Fischer, Lukas

    2009-04-22

    Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with a visual marker for BY-2 transformation. The cloning procedure can be used not only for efficient reduction of expression heterogeneity of such transgenes, but also as a useful tool for studies of transgene expression and other purposes.

  16. Rat PPAR delta contains a CGG triplet repeat and is prominently expressed in the thalamic nuclei.

    PubMed

    Xing, G; Zhang, L; Zhang, L; Heynen, T; Yoshikawa, T; Smith, M; Weiss, S; Detera-Wadleigh, S

    1995-12-26

    We have isolated a new rat sequence containing motifs of a nuclear hormone receptor from a brain cDNA library. The deduced amino acid sequence encoded by the cDNA clone showed a strong homology to the human NUCI and the mouse peroxisome proliferator activated receptor delta (PPAR delta). We therefore refer to this new clone as rat PPAR delta (rPPAR delta). The new feature of rPPAR delta is a 14 CGG triplet repeat on the 5' untranslated region, not previously reported in either NUCI or mPPAR delta. We found that rPPAR delta was expressed as a 3.5-kb transcript which showed a wide distribution in adult rat tissues. Abundant expression was detected in brain, heart, skeletal muscle, kidney and lung. Weaker expression was noted in the liver, spleen and testis. To determine the specific brain localization of rPPAR delta we performed in situ hybridization analysis. Prominent expression was observed in the thalamus, particularly in the posterior part of the ventral medial nucleus, a site responsive to pain and cold stress. These results raise the possibility that PPAR delta might play a role in modulating response to thermal and pain sensations.

  17. An investigative graduate laboratory course for teaching modern DNA techniques.

    PubMed

    de Lencastre, Alexandre; Thomas Torello, A; Keller, Lani C

    2017-07-08

    This graduate-level DNA methods laboratory course is designed to model a discovery-based research project and engages students in both traditional DNA analysis methods and modern recombinant DNA cloning techniques. In the first part of the course, students clone the Drosophila ortholog of a human disease gene of their choosing using Gateway ® cloning. In the second part of the course, students examine the expression of their gene of interest in human cell lines by reverse transcription PCR and learn how to analyze data from quantitative reverse transcription PCR (qRT-PCR) experiments. The adaptability of the Gateway ® cloning system is ideally suited for students to design and create different types of expression constructs to achieve a particular experimental goal (e.g., protein purification, expression in cell culture, and/or subcellular localization), and the genes chosen can be aligned to the research interests of the instructor and/or ongoing research in a department. Student evaluations indicate that the course fostered a genuine excitement for research and in depth knowledge of both the techniques performed and the theory behind them. Our long-term goal is to incorporate this DNA methods laboratory as the foundation for an integrated laboratory sequence for the Master of Science degree program in Molecular and Cellular Biology at Quinnipiac University, where students use the reagents and concepts they developed in this course in subsequent laboratory courses, including a protein methods and cell culture laboratory. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):351-359, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  18. Trichoderma virens β-glucosidase I (BGLI) gene; expression in Saccharomyces cerevisiae including docking and molecular dynamics studies.

    PubMed

    Wickramasinghe, Gammadde Hewa Ishan Maduka; Rathnayake, Pilimathalawe Panditharathna Attanayake Mudiyanselage Samith Indika; Chandrasekharan, Naduviladath Vishvanath; Weerasinghe, Mahindagoda Siril Samantha; Wijesundera, Ravindra Lakshman Chundananda; Wijesundera, Wijepurage Sandhya Sulochana

    2017-06-21

    Cellulose, a linear polymer of β 1-4, linked glucose, is the most abundant renewable fraction of plant biomass (lignocellulose). It is synergistically converted to glucose by endoglucanase (EG) cellobiohydrolase (CBH) and β-glucosidase (BGL) of the cellulase complex. BGL plays a major role in the conversion of randomly cleaved cellooligosaccharides into glucose. As it is well known, Saccharomyces cerevisiae can efficiently convert glucose into ethanol under anaerobic conditions. Therefore, S.cerevisiae was genetically modified with the objective of heterologous extracellular expression of the BGLI gene of Trichoderma virens making it capable of utilizing cellobiose to produce ethanol. The cDNA and a genomic sequence of the BGLI gene of Trichoderma virens was cloned in the yeast expression vector pGAPZα and separately transformed to Saccharomyces cerevisiae. The size of the BGLI cDNA clone was 1363 bp and the genomic DNA clone contained an additional 76 bp single intron following the first exon. The gene was 90% similar to the DNA sequence and 99% similar to the deduced amino acid sequence of 1,4-β-D-glucosidase of T. atroviride (AC237343.1). The BGLI activity expressed by the recombinant genomic clone was 3.4 times greater (1.7 x 10 -3  IU ml -1 ) than that observed for the cDNA clone (5 x 10 -4  IU ml -1 ). Furthermore, the activity was similar to the activity of locally isolated Trichoderma virens (1.5 x 10 -3  IU ml -1 ). The estimated size of the protein was 52 kDA. In fermentation studies, the maximum ethanol production by the genomic and the cDNA clones were 0.36 g and 0.06 g /g of cellobiose respectively. Molecular docking results indicated that the bare protein and cellobiose-protein complex behave in a similar manner with considerable stability in aqueous medium. The deduced binding site and the binding affinity of the constructed homology model appeared to be reasonable. Moreover, it was identified that the five hydrogen bonds formed between the amino acid residues of BGLI and cellobiose are mainly involved in the integrity of enzyme-substrate association. The BGLI activity was remarkably higher in the genomic DNA clone compared to the cDNA clone. Cellobiose was successfully fermented into ethanol by the recombinant S.cerevisiae genomic DNA clone. It has the potential to be used in the industrial production of ethanol as it is capable of simultaneous saccharification and fermentation of cellobiose. Homology modeling, docking studies and molecular dynamics simulation studies will provide a realistic model for further studies in the modification of active site residues which could be followed by mutation studies to improve the catalytic action of BGLI.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Zhengfeng; Feng Yuan; Ying Mingsheng

    Local quantum operations and classical communication (LOCC) put considerable constraints on many quantum information processing tasks such as cloning and discrimination. Surprisingly, however, discrimination of any two pure states survives such constraints in some sense. We show that cloning is not that lucky; namely, probabilistic LOCC cloning of two product states is strictly less efficient than global cloning. We prove our result by giving explicitly the efficiency formula of local cloning of any two product states.

  20. Cloning changes the response to obesity of innate immune factors in blood, liver, and adipose tissues in domestic pigs.

    PubMed

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan; Heegaard, Peter M H

    2013-06-01

    The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity.

  1. Cloning Changes the Response to Obesity of Innate Immune Factors in Blood, Liver, and Adipose Tissues in Domestic Pigs

    PubMed Central

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan

    2013-01-01

    Abstract The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity. PMID:23668862

  2. CLONING AND CHARACTERIZATION OF OSTEOCLAST PRECURSORS FROM THE RAW264.7 CELL LINE

    PubMed Central

    Cuetara, Bethany L. V.; Crotti, Tania N.; O'Donoghue, Anthony J.

    2006-01-01

    SUMMARY Osteoclasts are bone-resorbing cells that differentiate from macrophage precursors in response to receptor activator of NF-κB (RANKL). In vitro models of osteoclast differentiation are principally based on primary cell culture, which are poorly suited to molecular and transgene studies due to the limitations associated with the use of primary macrophage. RAW264.7 is a transfectable macrophage cell line with the capacity to form osteoclast-like cells. In the present study we have identified osteoclast precursors among clones of RAW264.7 cells. RAW264.7 cell were cloned by limiting dilution and induced to osteoclast differentiation by treatment with recombinant RANKL. Individual RAW264.7 cell clones formed tartrate resistant acid phosphatase (TRAP) positive multinuclear cells to various degrees with RANKL treatment. All clones tested expressed the RANKL receptor RANK. Each of the clones expressed the osteoclast marker genes TRAP and cathepsin-K mRNA with RANKL treatment. However, we noted that only select clones were able to form large, well-spread, TRAP positive multinuclear cells. Clones capable of forming large TRAP positive multinuclear cells also expressed β3 integrin and calcitonin receptor mRNAs and were capable of resorbing a mineralized matrix. All clones tested activated NF-κB with RANKL treatment. cDNA expression profiling of osteoclast precursor RAW264.7 cell clones demonstrates appropriate expression of a large number of genes before and after osteoclastic differentiation. These osteoclast precursor RAW264.7 cell clones provide a valuable model for dissecting the cellular and molecular regulation of osteoclast differentiation and activation. PMID:16948499

  3. New ligation independent cloning vectors for expression of recombinant proteins with a self-cleaving CPD/6xHis-tag.

    PubMed

    Biancucci, Marco; Dolores, Jazel S; Wong, Jennifer; Grimshaw, Sarah; Anderson, Wayne F; Satchell, Karla J F; Kwon, Keehwan

    2017-01-05

    Recombinant protein purification is a crucial step for biochemistry and structural biology fields. Rapid robust purification methods utilize various peptide or protein tags fused to the target protein for affinity purification using corresponding matrices and to enhance solubility. However, affinity/solubility-tags often need to be removed in order to conduct functional and structural studies, adding complexities to purification protocols. In this work, the Vibrio cholerae MARTX toxin Cysteine Protease Domain (CPD) was inserted in a ligation-independent cloning (LIC) vector to create a C-terminal 6xHis-tagged inducible autoprocessing enzyme tag, called "the CPD-tag". The pCPD and alternative pCPD/ccdB cloning vectors allow for easy insertion of DNA and expression of the target protein fused to the CPD-tag, which is removed at the end of the purification step by addition of the inexpensive small molecule inositol hexakisphosphate to induce CPD autoprocessing. This process is demonstrated using a small bacterial membrane localization domain and for high yield purification of the eukaryotic small GTPase KRas. Subsequently, pCPD was tested with 40 proteins or sub-domains selected from a high throughput crystallization pipeline. pCPD vectors are easily used LIC compatible vectors for expression of recombinant proteins with a C-terminal CPD/6xHis-tag. Although intended only as a strategy for rapid tag removal, this pilot study revealed the CPD-tag may also increase expression and solubility of some recombinant proteins.

  4. Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.).

    PubMed

    Nakamura, Atsuko; Fukuda, Atsunori; Sakai, Shingo; Tanaka, Yoshiyuki

    2006-01-01

    We isolated two cDNA clones (OsCLC-1 and OsCLC-2) homologous to tobacco CLC-Nt1, which encodes a voltage-gated chloride channel, from rice (Oryza sativa L. ssp. japonica, cv. Nipponbare). The deduced amino acid sequences were highly conserved (87.9% identity with each other). Southern blot analysis of the rice genomic DNA revealed that OsCLC-1 and OsCLC-2 were single-copy genes on chromosomes 4 and 2, respectively. OsCLC-1 was expressed in most tissues, whereas OsCLC-2 was expressed only in the roots, nodes, internodes and leaf sheaths. The level of expression of OsCLC-1, but not of OsCLC-2, was increased by treatment with NaCl. Both genes could partly substitute for GEF1, which encodes the sole chloride channel in yeast, by restoring growth under ionic stress. These results indicate that both genes are chloride channel genes. The proteins from both genes were immunochemically detected in the tonoplast fraction. Tagged synthetic green fluorescent protein which was fused to OsCLC-1 or OsCLC-2 localized in the vacuolar membranes. These results indicate that the proteins may play a role in the transport of chloride ions across the vacuolar membrane. We isolated loss-of-function mutants of both genes from a panel of rice mutants produced by the insertion of a retrotransposon, Tos17, in the exon region, and found inhibition of growth at all life stages.

  5. Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Ma, Xiaoli; Cui, Weina; Liang, Wenji; Huang, Zhanjing

    2015-12-01

    A novel salt-induced gene with unknown functions was cloned through analysis of gene expression profile of a salt-tolerant wheat mutant RH8706-49 under salt stress. The gene was named Triticum aestivum salt-related protein (TaSP) and deposited in GenBank (Accession No. KF307326). Quantitative polymerase chain reaction (qPCR) results showed that TaSP expression was induced under salt, abscisic acid (ABA), and polyethylene glycol (PEG) stresses. Subcellular localization revealed that TaSP was mainly localized in cell membrane. Overexpression of TaSP in Arabidopsis could improve salt tolerance of 35S::TaSP transgenic Arabidopsis. 35S::TaSP transgenic Arabidopsis lines after salt stress presented better physiological indexes than the control group. In the non-invasive micro-test (NMT), an evident Na(+) excretion was observed at the root tip of salt-stressed 35S::TaSP transgenic Arabidopsis. TaSP promoter was cloned, and its beta-glucuronidase (GUS) activities before and after ABA, salt, cold, heat, and salicylic acid (SA) stresses were determined. Full-length TaSP promoter contained ABA and salt response elements. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Cloning, expression and N-terminal myristoylation of CpCPK1, a calcium-dependent protein kinase from zucchini (Cucurbita pepo L.).

    PubMed

    Ellard-Ivey, M; Hopkins, R B; White, T J; Lomax, T L

    1999-01-01

    We have isolated a full-length cDNA clone (CpCDPK1) encoding a calcium-dependent protein kinase (CDPK) gene from zucchini (Cucurbita pepo L.). The predicted amino acid sequence of the cDNA shows a remarkably high degree of similarity to members of the CDPK gene family from Arabidopsis thaliana, especially AtCPK1 and AtCPK2. Northern analysis of steady-state mRNA levels for CpCPK1 in etiolated and light-grown zucchini seedlings shows that the transcript is most abundant in etiolated hypocotyls and overall expression is suppressed by light. As described for other members of the CDPK gene family from different species, the CpCPK1 clone has a putative N-terminal myristoylation sequence. In this study, site-directed mutagenesis and an in vitro coupled transcription/translation system were used to demonstrate that the protein encoded by this cDNA is specifically myristoylated by a plant N-myristoyl transferase. This is the first demonstration of myristoylation of a CDPK protein which may contribute to the mechanism by which this protein is localized to the plasma membrane.

  7. Re-evaluating TTF-1 immunohistochemistry in diffuse gliomas: Expression is clone-dependent and associated with tumor location.

    PubMed

    Pratt, Drew; Afsar, Nina; Allgauer, Michael; Fetsch, Patricia; Palisoc, Maryknoll; Pittaluga, Stefania; Quezado, Martha

    TTF-1 is widely used as a marker in routine surgical pathology in the work-up of malignancy. Aberrant expression of TTF-1 in extrapulmonary and extrathyroidal malignancies is a frequently reported phenomenon. In addition to the recently characterized pituicyte-derived tumors of the sella, immunoreactivity has been reported in diffuse gliomas with the SPT24 clone. Here, we sought to evaluate TTF-1 expression with three commercially available clones in a large series of gliomas. Expression was compared across the newly defined diagnostic entities in the 2016 WHO Classification of CNS Tumors. Using tissue microarrays (TMA), 212 diffuse gliomas (WHO grades II - IV) were systematically evaluated with TTF-1 immunohistochemistry using three clones: SPT24, 8G7G3/1, and SP141, and results correlated with clinicopathologic features. 14 high-grade diffuse gliomas demonstrated nuclear staining with the SP141 and SPT24 clones. Two tumors showed weak positivity with the 8G7G3/1 clone. All tumors were high grade by histology (WHO grades III and IV). 86% (12/14) of TTF-1-positive gliomas involved the frontal lobes at diagnosis. No relationship with IDH R132H, ATRX, p53, H3K27M, or EGFR immunohistochemistry was identified. TTF-1 expression in gliomas was not independently prognostic of overall survival. TTF-1 expression in diffuse gliomas is a rare but potentially misleading occurrence. In our cohort, staining occurred with both the SPT24 and SP141 clones at equal intensity and frequency. Clustering of TTF-1-positive tumors in the frontal lobe(s) suggests lineage-specific expression. Due to clone-specific expression in diffuse gliomas, caution must be exercised in the work-up of intracranial tumors with TTF-1.
.

  8. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    PubMed

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  9. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    PubMed

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  10. Molecular cloning, expression analysis and subcellular localization of a Transparent Testa 12 ortholog in brown cotton (Gossypium hirsutum L.).

    PubMed

    Gao, Jun-Shan; Wu, Nan; Shen, Zhi-Lin; Lv, Kai; Qian, Sen-He; Guo, Ning; Sun, Xu; Cai, Yong-Ping; Lin, Yi

    2016-02-01

    Transparent Testa 12 (TT12) is a kind of transmembrane transporter of proanthocyanidins (PAs), which belongs to a membrane-localized multidrug and toxin efflux (MATE) family, but the molecular basis of PAs transport is still poorly understood. Here, we cloned a full-length TT12 cDNA from the fiber of brown cotton (Gossypium hirsutum), named GhTT12 (GenBank accession No. KF240564), which comprised 1733 bp with an open reading frame (ORF) of 1503 bp and encoded a putative protein containing 500 amino acid residues with a typical MATE conserved domain. The GhTT12 gene had 96.8% similarity to AA genome in Gossypium arboretum. Quantitative RT-PCR analysis denoted that the relative expression of GhTT12 in brown cotton was 1-5 folds higher than that in white cotton. The mRNA level was the highest at 5 days post anthesis (DPA) and reduced gradually during the fiber development. Expressing GhTT12-fused green fluorescent protein (GFP) in Nicotiana tabacum showed that GhTT12-GFP was localized in the vacuole membrane. The content of PAs increased firstly and decreased afterwards, and reached the maximum at 15 DPA in brown cotton. But for white cotton, the content of PAs remained at a low level during the fiber development. We speculate that GhTT12 may participate in the transportation of PAs from the cytoplasmic matrix to the vacuole. Taken together, our data revealed that GhTT12 was functional as a PAs transmembrane transporter. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Rapid one-step recombinational cloning

    PubMed Central

    Fu, Changlin; Wehr, Daniel R.; Edwards, Janice; Hauge, Brian

    2008-01-01

    As an increasing number of genes and open reading frames of unknown function are discovered, expression of the encoded proteins is critical toward establishing function. Accordingly, there is an increased need for highly efficient, high-fidelity methods for directional cloning. Among the available methods, site-specific recombination-based cloning techniques, which eliminate the use of restriction endonucleases and ligase, have been widely used for high-throughput (HTP) procedures. We have developed a recombination cloning method, which uses truncated recombination sites to clone PCR products directly into destination/expression vectors, thereby bypassing the requirement for first producing an entry clone. Cloning efficiencies in excess of 80% are obtained providing a highly efficient method for directional HTP cloning. PMID:18424799

  12. The cloning and characterization of a localized maternal transcript in Xenopus laevis whose zygotic counterpart is detected in the CNS.

    PubMed

    Reddy, B A; Kloc, M; Etkin, L D

    1992-12-01

    We have cloned a cDNA (xlan4) from a Xenopus laevis oocyte cDNA library whose cognate mRNA is localized in the animal pole region of full grown oocytes. The cDNA can be translated in vitro to produce a predicted size protein of 35 kDa and, is also expressed in E. coli as a fusion protein. The conceptual protein encoded by the xlan4 cDNA is 17.5% proline rich and possesses several PEST sequences found in proteins with short half-lives. The xlan4 mRNA is 2.6 kb and during early development its titer decreases until the neurula stage after which it begins to reaccumulate. Northern blots on dissected embryos and in situ hybridization revealed that the zygotic expression is limited to the dorsal axial structures consisting primarily of the CNS. UV irradiation of the vegetal pole region immediately following fertilization that produces ventralized embryos results in a loss of zygotic xlan4 expression. In the adult, xlan4 mRNA is limited primarily to the brain. The presence of this mRNA in animal pole region which contributes to the future neural cell lineages suggests that this gene product may function either in the specification of neural cell types or in a neural specific function.

  13. Cloning, localization and differential expression of Neuropeptide-Y during early brain development and gonadal recrudescence in the catfish, Clarias gariepinus.

    PubMed

    Sudhakumari, Cheni-Chery; Anitha, Arumugam; Murugananthkumar, Raju; Tiwari, Dinesh Kumar; Bhasker, Dharavath; Senthilkumaran, Balasubramanian; Dutta-Gupta, Aparna

    2017-09-15

    Neuropeptide-Y (NPY) has diverse physiological functions which are extensively studied in vertebrates. However, regulatory role of NPY in relation to brain ontogeny and recrudescence with reference to reproduction is less understood in fish. Present report for the first time evaluated the significance of NPY by transient esiRNA silencing and also analyzed its expression during brain development and gonadal recrudescence in the catfish, Clarias gariepinus. As a first step, full-length cDNA of NPY was cloned from adult catfish brain, which shared high homology with its counterparts from other teleosts upon phylogenetic analysis. Tissue distribution revealed dominant expression of NPY in brain and testis. NPY expression increased during brain development wherein the levels were higher in 100 and 150days post hatch females than the respective age-matched males. Seasonal cycle analysis showed high expression of NPY in brain during pre-spawning phase in comparison with other reproductive phases. Localization studies exhibited the presence of NPY, abundantly, in the regions of preoptic area, hypothalamus and pituitary. Transient silencing of NPY-esiRNA directly into the brain significantly decreased NPY expression in both the male and female brain of catfish which further resulted in significant decrease of transcripts of tryptophan hydroxylase 2, catfish gonadotropin-releasing hormone (cfGnRH), tyrosine hydroxylase and 3β-hydroxysteroid dehydrogenase in brain and luteinizing hormone-β/gonadotropin-II (lh-β/GTH-II) in pituitary exhibiting its influence on gonadal axis. In addition, significant decrease of several ovary-related transcripts was observed in NPY-esiRNA silenced female catfish, indicating the plausible role of NPY in ovary through cfGnRH-GTH axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Expression of EGFP and NPTII protein is not associated with organ abnormalities in deceased transgenic cloned cattle.

    PubMed

    Liu, Yan; Wu, Qian; Cui, Huiting; Li, Qinghe; Zhao, Yiqiang; Luo, Juan; Liu, Qiuyue; Sun, Xiuzhu; Tang, Bo; Zhang, Lei; Dai, Yunping; Li, Ning

    2008-12-01

    Both enhanced green fluorescence protein (EGFP) and neomycin phosphotransferase type II enzyme (NPTII) are widely used in transgenic studies, but their side effects have not been extensively investigated. In this study, we evaluated the expression profiles of the two marker genes and the relationship between their expression and organ abnormalities. Eight transgenic cloned cattle were studied, four harboring both EGFP and NPTII, and four harboring only the NPTII gene. Four age-matched cloned cattle were used as controls. EGFP and NPTII expression were measured and detected by Q-PCR, Western blot, ELISA, and RIA in heart, liver, and lungs, and the values ranged from 0.3 to 5 microg/g. The expression profiles exhibited differential or mosaic pattern between the organs, the pathologic symptoms of which were identified, but were similar to those of age-matched cloned cattle. All data indicated that the expression of EGFP and NPTII is not associated with organ abnormalities in transgenic cloned cattle.

  15. The oxytocin receptor gene (OXTR) localizes to human chromosome 3p25 by fluorescence in situ hybridization and PCR analysis of somatic cell hybrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, C.F. Jr.; Clancy, T.E.; Quan, R.

    1995-04-10

    The human oxytocin receptor regulates parturition and myometrial contractility, breast milk let-down, and reproductive behaviors in the mammalian central nervous system. Kimura et al. recently identified a human oxytocin receptor cDNA by means of expression cloning from a human myometrial cDNA library. To elucidate further the molecular mechanisms that regulate oxytocin receptor gene expression and to define the expected Mendelian inheritance of possible human disease states, we must determine the number of genes, their localization, and their organization and structure. We summarize below our data indicating that the human oxytocin receptor gene is localized to 3p25 and exists as amore » single copy in the haploid genome. 9 refs., 2 figs.« less

  16. Molecular Cloning and Functional Analysis of Three Type D Endogenous Retroviruses of Sheep Reveal a Different Cell Tropism from That of the Highly Related Exogenous Jaagsiekte Sheep Retrovirus

    PubMed Central

    Palmarini, Massimo; Hallwirth, Claus; York, Denis; Murgia, Claudio; de Oliveira, Tulio; Spencer, Thomas; Fan, Hung

    2000-01-01

    Integrated into the sheep genome are 15 to 20 copies of type D endogenous loci that are highly related to two exogenous oncogenic viruses, jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV). The exogenous viruses cause infectious neoplasms of the respiratory tract in small ruminants. In this study, we molecularly cloned three intact type D endogenous retroviruses of sheep (enJS56A1, enJS5F16, and enJS59A1; collectively called enJRSVs) and analyzed their genomic structures, their phylogenies with respect to their exogenous counterparts, their capacity to form viral particles, and the expression specificities of their long terminal repeats (LTRs). In addition, the pattern of expression of enJSRVs in vivo was studied by in situ hybridization. All of the three enJSRV proviruses had open reading frames for at least one of the structural genes. In particular, enJS56A1 had open reading frames for all structural genes, but it could not assemble viral particles when highly expressed in human 293T cells. We localized the defect for viral assembly in the first two-thirds of the gag gene by making a series of chimeras between enJS56A1 and the exogenous infectious molecular clone JSRV21. Phylogenetic analysis distinguished five ovine type D retroviruses: enJSRV groups A and B, ENTV, and two exogenous JSRV groups (African versus United Kingdom/North America isolates). Transient transfection assays indicated that the LTRs of the three enJSRVs were not preferentially active in differentiated lung epithelial cells. This suggests that the pulmonary tropic JSRV developed from a type D retrovirus that did not have lung specificity. Consistent with this, in situ hybridization of a panel of normal ovine tissues revealed high expression of enJSRV mRNA in the luminal epithelium and glandular epithelium of the uterus; lower expression was localized in the lamina propria of the gut and in the bronchiolar epithelium of the lungs. PMID:10933716

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filip, Radim; Marek, Petr; Fiurasek, Jaromir

    We analyze a reversibility of optimal Gaussian 1{yields}2 quantum cloning of a coherent state using only local operations on the clones and classical communication between them and propose a feasible experimental test of this feature. Performing Bell-type homodyne measurement on one clone and anticlone, an arbitrary unknown input state (not only a coherent state) can be restored in the other clone by applying appropriate local unitary displacement operation. We generalize this concept to a partial reversal of the cloning using only local operations and classical communication (LOCC) and we show that this procedure converts the symmetric cloner to an asymmetricmore » cloner. Further, we discuss a distributed LOCC reversal in optimal 1{yields}M Gaussian cloning of coherent states which transforms it to optimal 1{yields}M{sup '} cloning for M{sup '}

  18. Reproductive performance and expression of imprinted genes in somatic cell cloned boars.

    PubMed

    Kawarasaki, Tatsuo; Enya, Satoko; Otake, Masayoshi; Shibata, Masatoshi; Mikawa, Satoshi

    2017-11-01

    To assess the performance of boars derived by somatic cell cloning, we analyzed various aspects of their reproductive characteristics and the expression of two imprinted genes. Cloned boars (cloned Duroc × Jinhua) were analyzed for birth weight, growth rate, age at first ejaculation, semen characteristics and fertility, in comparison with naturally bred control boars of the same strain. The expression of imprinted genes was analyzed using the microsatellite marker SWC9 for the paternally expressed gene insulin-like growth factor -2 (IGF2) and with single nucleotide polymorphisms (SNPs) for the gene maternally expressed 3 (MEG3). The cloned boars had high production of semen and were nearly equal in level of fertility to conventional pigs; they showed similar characteristics as naturally bred boars of the same strains. The expression of IGF2 was partially disturbed, but this disturbed expression was not linked to a change in developmental fate or reproductive performance. These results indicate that use of cloned boars could be highly effective for proliferation of pigs with desirable characteristics, preservation of genetic resources and risk reduction against epidemic diseases, such as foot-and-mouth disease, through storage of somatic cells as a precautionary measure for use in regenerating pig populations after a future pandemic. © 2017 Japanese Society of Animal Science.

  19. DNA transformation via local heat shock

    NASA Astrophysics Data System (ADS)

    Li, Sha; Meadow Anderson, L.; Yang, Jui-Ming; Lin, Liwei; Yang, Haw

    2007-07-01

    This work describes transformation of foreign DNA into bacterial host cells by local heat shock using a microfluidic system with on-chip, built-in platinum heaters. Plasmid DNA encoding ampicillin resistance and a fluorescent protein can be effectively transformed into the DH5α chemically competent E. coli using this device. Results further demonstrate that only one-thousandth of volume is required to obtain transformation efficiencies as good as or better than conventional practices. As such, this work complements other lab-on-a-chip technologies for potential gene cloning/therapy and protein expression applications.

  20. Subcellular localization of the five members of the human steroid 5α-reductase family.

    PubMed

    Scaglione, Antonella; Montemiglio, Linda Celeste; Parisi, Giacomo; Asteriti, Italia Anna; Bruni, Renato; Cerutti, Gabriele; Testi, Claudia; Savino, Carmelinda; Mancia, Filippo; Lavia, Patrizia; Vallone, Beatrice

    2017-06-01

    In humans the steroid 5alpha-reductase (SRD5A) family comprises five integral membrane enzymes that carry out reduction of a double bond in lipidic substrates: Δ 4 -3-keto steroids, polyprenol and trans-enoyl CoA. The best-characterized reaction is the conversion of testosterone into the more potent dihydrotestosterone carried out by SRD5A1-2. Some controversy exists on their possible nuclear or endoplasmic reticulum localization. We report the cloning and transient expression in HeLa cells of the five members of the human steroid 5α-reductase family as both N- and C-terminus green fluorescent protein tagged protein constructs. Following the intrinsic fluorescence of the tag, we have determined that the subcellular localization of these enzymes is in the endoplasmic reticulum, upon expression in HeLa cells. The presence of the tag at either end of the polypeptide chain can affect protein expression and, in the case of trans enoyl-CoA reductase, it induces the formation of protein aggregates.

  1. Production of transgenic cloned pigs expressing the far-red fluorescent protein monomeric Plum.

    PubMed

    Watanabe, Masahito; Kobayashi, Mirina; Nagaya, Masaki; Matsunari, Hitomi; Nakano, Kazuaki; Maehara, Miki; Hayashida, Gota; Takayanagi, Shuko; Sakai, Rieko; Umeyama, Kazuhiro; Watanabe, Nobuyuki; Onodera, Masafumi; Nagashima, Hiroshi

    2015-01-01

    Monomeric Plum (Plum), a far-red fluorescent protein with photostability and photopermeability, is potentially suitable for in vivo imaging and detection of fluorescence in body tissues. The aim of this study was to generate transgenic cloned pigs exhibiting systemic expression of Plum using somatic cell nuclear transfer (SCNT) technology. Nuclear donor cells for SCNT were obtained by introducing a Plum-expression vector driven by a combination of the cytomegalovirus early enhancer and chicken beta-actin promoter into porcine fetal fibroblasts (PFFs). The cleavage and blastocyst formation rates of reconstructed SCNT embryos were 81.0% (34/42) and 78.6% (33/42), respectively. At 36-37 days of gestation, three fetuses systemically expressing Plum were obtained from one recipient to which 103 SCNT embryos were transferred (3/103, 2.9%). For generation of offspring expressing Plum, rejuvenated PFFs were established from one cloned fetus and used as nuclear donor cells. Four cloned offspring and one stillborn cloned offspring were produced from one recipient to which 117 SCNT embryos were transferred (5/117, 4.3%). All offspring exhibited high levels of Plum fluorescence in blood cells, such as lymphocytes, monocytes and granulocytes. In addition, the skin, heart, kidney, pancreas, liver and spleen also exhibited Plum expression. These observations demonstrated that transfer of the Plum gene did not interfere with the development of porcine SCNT embryos and resulted in the successful generation of transgenic cloned pigs that systemically expressed Plum. This is the first report of the generation and characterization of transgenic cloned pigs expressing the far-red fluorescent protein Plum.

  2. Molecular cloning, developmental expression, and cellular localization of the 70-kDa RPA-1 subunit of Drosophila melanogaster.

    PubMed

    Perdigão, J; Logarinho, E; Avides, M C; Sunkel, C E

    1999-12-01

    Replication protein A (RPA) is a highly conserved multifunctional heterotrimeric complex, involved in DNA replication, repair, recombination, and possibly transcription. Here, we report the cloning of the gene that codes for the largest subunit of the Drosophila melanogaster RPA homolog, dmRPA70. In situ hybridization showed that dmRPA70 RNA is present in developing embryos during the first 16 cycles. After this point, dm-RPA70 expression is downregulated in cells that enter a G1 phase and exit the mitotic cycle, becoming restricted to brief bursts of accumulation from late G1 to S phase. This pattern of regulated expression is also observed in the developing eye imaginal disc. In addition, we have shown that the presence of cyclin E is necessary and sufficient to drive the expression of dmRPA70 in embryonic cells arrested in G1 but is not required in tissues undergoing endoreduplication. Immunolocalization showed that in early developing embryos, the dmRPA70 protein associates with chromatin from the end of mitosis until the beginning of the next prophase in a dynamic speckled pattern that is strongly suggestive of its association with replication foci.

  3. Cloning, expression profiling, and acetylation identification of alpha-tubulin N-acetyltransferase 1 from Bombyx mori.

    PubMed

    Zhou, Huaixiang; Cheng, Xusheng; Xu, Xiaoyuan; Jiang, Tianlong; Zhou, Haimeng; Sheng, Qing; Nie, Zuoming

    2018-03-22

    Alpha-tubulin N-acetyltransferase 1 (ATAT1) is an acetyltransferase specific to α-tubulin and performs important functions in many cellular processes. Bombyx mori is an economic insect and also known as a model lepidoptera insect. In this study, we cloned a B. mori ATAT1 gene (BmATAT1) (Gen Bank accession number: XP_004932777.1). BmATAT1 contained an open reading frame (ORF) of 1,065 bp encoding 355 amino acids (aa). Expression profiling of BmATAT1 protein showed that the expression levels of BmATAT1 at different developmental stages and different tissues in fifth-instar larvae differ. BmATAT1 was highly expressed at the egg stage and in the head of the fifth-instar larvae. Subcellular localization showed that BmATAT1 was distributed in the cytoplasm and nucleus. Furthermore, BmATAT1 may lead to time-dependent induction of cell cycle arrest in the G2/M phase by flow cytometry analysis. Interestingly, using site-specific mutation, immunoprecipitation, and Western blotting, we further found a BmATAT1 acetylated site at K156, suggesting that this acetyltransferase could be regulated by acetylation itself. © 2018 Wiley Periodicals, Inc.

  4. Modular Detection of GFP-Labeled Proteins for Rapid Screening by Electron Microscopy in Cells and Organisms.

    PubMed

    Ariotti, Nicholas; Hall, Thomas E; Rae, James; Ferguson, Charles; McMahon, Kerrie-Ann; Martel, Nick; Webb, Robyn E; Webb, Richard I; Teasdale, Rohan D; Parton, Robert G

    2015-11-23

    Reliable and quantifiable high-resolution protein localization is critical for understanding protein function. However, the time required to clone and characterize any protein of interest is a significant bottleneck, especially for electron microscopy (EM). We present a modular system for enzyme-based protein tagging that allows for improved speed and sampling for analysis of subcellular protein distributions using existing clone libraries to EM-resolution. We demonstrate that we can target a modified soybean ascorbate peroxidase (APEX) to any GFP-tagged protein of interest by engineering a GFP-binding peptide (GBP) directly to the APEX-tag. We demonstrate that APEX-GBP (1) significantly reduces the time required to characterize subcellular protein distributions of whole libraries to less than 3 days, (2) provides remarkable high-resolution localization of proteins to organelle subdomains, and (3) allows EM localization of GFP-tagged proteins, including proteins expressed at endogenous levels, in vivo by crossing existing GFP-tagged transgenic zebrafish lines with APEX-GBP transgenic lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Influence of cloning by chromatin transfer on placental gene expression at Day 45 of pregnancy in cattle.

    PubMed

    Mesquita, Fernando S; Machado, Sergio A; Drnevich, Jenny; Borowicz, Pawel; Wang, Zhongde; Nowak, Romana A

    2013-01-30

    Poor success rates in somatic cell cloning are often attributed to abnormal early embryonic development as well as late abnormal fetal growth and placental development. Although promising results have been reported following chromatin transfer (CT), a novel cloning method that includes the remodeling of the donor nuclei in vitro prior to their transfer into enucleated oocytes, animals cloned by CT show placental abnormalities similar to those observed following conventional nuclear transfer. We hypothesized that the placental gene expression pattern from cloned fetuses was ontologically related to the frequently observed placental phenotype. The aim of the present study was to compare global gene expression by microarray analysis of Day 44-47 cattle placentas derived from CT cloned fetuses with those derived from in vitro fertilization (i.e. control), and confirm the altered mRNA and protein expression of selected molecules by qRT-PCR and immunohistochemistry, respectively. The differentially expressed genes identified in the present study are known to be involved in a range of activities associated with cell adhesion, cell cycle control, intracellular transport and proteolysis. Specifically, an imprinted gene, involved with cell proliferation and placentomegaly in humans (CDKN1C) and a peptidase that serves as a marker for non-invasive trophoblast cells in human placentas (DPP4), had mRNA and protein altered in CT placentas. It was concluded that the altered pattern of gene expression observed in CT samples may contribute to the abnormal placental development phenotypes commonly identified in cloned offspring, and that expression of imprinted as well as trophoblast invasiveness-related genes is altered in cattle cloned by CT. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Characterization of X-OCRL, a Xenopus laevis homologue of OCRL-1, the Lowe oculocerebrorenal syndrome candidate gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, D.S.; Nussbaum, R.L.

    1994-09-01

    The Lowe oculocerebrorenal syndrome (OCRL) is an X-linked disease characterized by congenital cataract, mental retardation, and renal tubular dysfunction. A candidate cDNA, OCRL-1, was identified by positional cloning and mutations in OCRL-1 have been detected in patients with Lowe syndrome. The OCRL-1 nucleotide sequence encodes a predicted protein of 968 amino acids and shares 51% amino acid identity with a human inositol polyphosphate-5-phosphatase. This suggests that the underlying defect in OCRL may be due to a defect in inositol phosphate metabolism. The isolation of OCRL-1 provides the opportunity to investigate its function through the use of animal model systems. Wemore » have isolated a partial cDNA clone encoding an OCRL-1 homologue, X-OCRL, from the South African clawed frog, Xenopus laevis. We used a portion of the human cDNA to screen a Xenopus laevis embryo cDNA library and isolated four positive clones. One clone, 42-5A, is a 650 bp insert with over 75% amino acid identity to the corresponding region of the human OCRL-1 sequence. 42-5A detects messenger RNA in adult Xenopus brain, stomach, small intestine, skin, muscle, lung, blood, and oviduct. X-OCRL messenger RNA is first detected during late gastrula and continues to be expressed throughout Xenopus development. In situ hybridization studies are underway to identify the cellular localization of X-OCRL expression in Xenopus embryos and adult tissues. We are especially interested in characterizing X-OCRL expression during formation of the amphibian lens since congenital cataracts are a constant feature of the human disease.« less

  7. Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucleoprotein gene (33RNP) from pea that is light stimulated.

    PubMed

    Reddy, M K; Nair, S; Singh, B N; Mudgil, Y; Tewari, K K; Sopory, S K

    2001-01-24

    We report the cloning and sequencing of both cDNA and genomic DNA of a 33 kDa chloroplast ribonucleoprotein (33RNP) from pea. The analysis of the predicted amino acid sequence of the cDNA clone revealed that the encoded protein contains two RNA binding domains, including the conserved consensus ribonucleoprotein sequences CS-RNP1 and CS-RNP2, on the C-terminus half and the presence of a putative transit peptide sequence in the N-terminus region. The phylogenetic and multiple sequence alignment analysis of pea chloroplast RNP along with RNPs reported from the other plant sources revealed that the pea 33RNP is very closely related to Nicotiana sylvestris 31RNP and 28RNP and also to 31RNP and 28RNP of Arabidopsis and spinach, respectively. The pea 33RNP was expressed in Escherichia coli and purified to homogeneity. The in vitro import of precursor protein into chloroplasts confirmed that the N-terminus putative transit peptide is a bona fide transit peptide and 33RNP is localized in the chloroplast. The nucleic acid-binding properties of the recombinant protein, as revealed by South-Western analysis, showed that 33RNP has higher binding affinity for poly (U) and oligo dT than for ssDNA and dsDNA. The steady state transcript level was higher in leaves than in roots and the expression of this gene is light stimulated. Sequence analysis of the genomic clone revealed that the gene contains four exons and three introns. We have also isolated and analyzed the 5' flanking region of the pea 33RNP gene.

  8. Highly repressible expression system for cloning genes that specify potentially toxic proteins.

    PubMed Central

    O'Connor, C D; Timmis, K N

    1987-01-01

    A highly repressible expression vector system that allows the cloning of potentially deleterious genes has been constructed. Undesired expression of a cloned gene was prevented (i) at the level of initiation of transcription, by the presence of the strong but highly repressible leftward promoter of bacteriophage lambda, lambda pL, and (ii) at the level of transcript elongation or translation, through synthesis of antisense RNA complementary to the mRNA of the cloned gene. The system was tested by measuring the inhibition of expression of traT, the gene for the TraT major outer membrane lipoprotein. Direct detection and functional assays indicated that an essentially complete inhibition of traT expression was obtained. As a further test of the system, the gene encoding the EcoRI restriction endonuclease was cloned in the absence of the gene of the corresponding protective EcoRI modification methylase. Transformants harboring this construct were only viable when both repression controls were operational. Images PMID:2443481

  9. In vitro resistance to 5-nitroimidazoles and benzimidazoles in Giardia duodenalis: variability and variation in gene expression.

    PubMed

    Argüello-García, Raúl; Cruz-Soto, Maricela; Romero-Montoya, Lydia; Ortega-Pierres, Guadalupe

    2009-12-01

    The susceptibility of Giardia duodenalis trophozoites exposed in vitro to sublethal concentrations of metronidazole (MTZ) and albendazole (ABZ) may exhibit inter-culture (variability) and intra-culture (variation) differences in drug susceptibility. It was previously reported that MTZ-resistant trophozoites may display changes in pyruvate:ferredoxin oxidoreductase (PFOR) expression while changes at the beta-tubulin molecule are apparently absent in ABZ-resistant cultures. To assess the levels of gene expression of these molecules, we obtained cloned cultures growing at concentrations up to 23 microM MTZ (WBRM23) and up to 8muM ABZ (WBRA8) and gene sequence and expression of pfor and beta-tubulin loci were compared with these of drug-susceptible clone WB1. Neither the pfor nor the beta-tubulin genes showed changes at sequence level but the MTZ-resistant clones WBRM21 and WBRM23 showed up-regulation of the pfor RNA using the gdh gene as reference. By using WB1 and WBRA8 clones in representational difference analyses of gene expression (RDA) an insert referred to as ARR-VSP was selected and sequenced. It showed the highest homology to one VSP molecule in the Giardia Genome Database (orf GL50803_101765). This isogene was up-regulated in five ABZ-resistant clones and the clone WBRA8 exhibited the highest RNA expression level. When successive progenies of clones WB1, WBRM23 and WBRA8 were analyzed in Northern blot assays to detect pfor and ARR-VSP RNAs respectively, the expression patterns showed variation for both genes but it was much lower in the clone WBRA8. These results suggest that G. duodenalis cultures either susceptible or resistant to MTZ and ABZ may display variability and variation at RNA expression levels albeit these were more marked in the MTZ-resistant parasites. These data might have further implications defining major mechanisms involved in drug resistance of Giardia.

  10. Correlation of EGFR expression, gene copy number and clinicopathological status in NSCLC.

    PubMed

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Reinmuth, Nils; Huber, Rudolf M; Schnabel, Philipp A; Vollmer, Ekkehard; Reck, Martin; Goldmann, Torsten

    2014-09-17

    Epidermal Growth Factor Receptor (EGFR) targeting therapies are currently of great relevance for the treatment of lung cancer. For this reason, in addition to mutational analysis immunohistochemistry (IHC) of EGFR in lung cancer has been discussed for the decision making of according therapeutic strategies. The aim of this study was to obtain standardization of EGFR-expression methods for the selection of patients who might benefit of EGFR targeting therapies. As a starting point of a broad investigation, aimed at elucidating the expression of EGFR on different biological levels, four EGFR specific antibodies were analyzed concerning potential differences in expression levels by Immunohistochemistry (IHC) and correlated with fluorescence in situ hybridization (FISH) analysis and clinicopathological data. 206 tumor tissues were analyzed in a tissue microarray format employing immunohistochemistry with four different antibodies including Dako PharmDx kit (clone 2-18C9), clone 31G7, clone 2.1E1 and clone SP84 using three different scoring methods. Protein expression was compared to FISH utilizing two different probes. EGFR protein expression determined by IHC with Dako PharmDx kit, clone 31G7 and clone 2.1E1 (p ≤ 0.05) correlated significantly with both FISH probes independently of the three scoring methods; best correlation is shown for 31G7 using the scoring method that defined EGFR positivity when ≥ 10% of the tumor cells show membranous staining of moderate and severe intensity (p=0.001). Overall, our data show differences in EGFR expression determined by IHC, due to the applied antibody. Highest concordance with FISH is shown for antibody clone 31G7, evaluated with score B (p=0.001). On this account, this antibody clone might by utilized for standard evaluation of EGFR expression by IHC. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_165.

  11. Hepatitis C virus envelope components alter localization of hepatocyte tight junction-associated proteins and promote occludin retention in the endoplasmic reticulum.

    PubMed

    Benedicto, Ignacio; Molina-Jiménez, Francisca; Barreiro, Olga; Maldonado-Rodríguez, Alejandra; Prieto, Jesús; Moreno-Otero, Ricardo; Aldabe, Rafael; López-Cabrera, Manuel; Majano, Pedro L

    2008-10-01

    Hepatocyte tight junctions (TJ) play key roles in characteristic liver functions, including bile formation and secretion. Infection by hepatitis C virus (HCV) may cause alterations of the liver architecture and disruption of the bile duct, which ultimately can lead to cholestasis. Herein, we employed the HCV replicon system to analyze the effect of HCV on TJ organization. TJ-associated proteins occludin, claudin-1, and Zonula Occludens protein-1 (ZO-1) disappeared from their normal localization at the border of adjacent cells in Huh7 clones harboring genomic but not subgenomic replicons expressing only the nonstructural proteins. Furthermore, cells containing genomic replicons showed a cytoplasmic accumulation of occludin in the endoplasmic reticulum (ER). TJ-associated function, measured as FITC-dextran paracellular permeability, of genomic replicon-containing cells, was also altered. Interestingly, clearance of the HCV replicon by interferon-alpha (IFN-alpha) treatment and by short hairpin RNA (shRNA) significantly restored the localization of TJ-associated proteins. Transient expression of all HCV structural proteins, but not core protein alone, altered the localization of TJ-associated proteins in Huh7 cells and in clones with subgenomic replicons. Confocal analysis showed that accumulation of occludin in the ER partially co-localized with HCV envelope glycoprotein E2. E2/occludin association was further confirmed by co-immunoprecipitation and pull-down assays. Additionally, using a cell culture model of HCV infection, we observed the cytoplasmic dot-like accumulation of occludin in infected Huh7 cells. We propose that HCV structural proteins, most likely those of the viral envelope, promote alterations of TJ-associated proteins, which may provide new insights for HCV-related pathogenesis.

  12. Immortalization of normal human embryonic fibroblasts by introduction of either the human papillomavirus type 16 E6 or E7 gene alone.

    PubMed

    Yamamoto, Akito; Kumakura, Shin-ichi; Uchida, Minoru; Barrett, J Carl; Tsutsui, Takeki

    2003-09-01

    The ability of the human papillomavirus type 16 (HPV-16) E6 or E7 gene to induce immortalization of normal human embryonic fibroblast WHE-7 cells was examined. WHE-7 cells at 9 population doublings (PD) were infected with retrovirus vectors encoding either HPV-16 E6 or E7 alone or both E6 and E7 (E6/E7). One of 4 isolated clones carrying E6 alone became immortal and is currently at >445 PD. Four of 4 isolated clones carrying E7 alone escaped from crisis and are currently at >330 PD. Three of 5 isolated clones carrying E6/E7 were also immortalized and are currently at >268 PD. The immortal clone carrying E6 only and 2 of the 3 immortal clones carrying E6/E7 expressed a high level of E6 protein, and all the immortal clones carrying E7 alone and the other immortal clone carrying E6/E7 expressed a high level of E7 protein when compared to their mortal or precrisis clones. The immortal clones expressing a high level of E6 or E7 protein were positive for telomerase activity or an alternative mechanism of telomere maintenance, respectively, known as ALT (alternative lengthening of telomeres). All the mortal or precrisis clones were negative for both phenotypes. All the immortal clones exhibited abrogation of G1 arrest after DNA damage by X-ray irradiation. The expression of INK4a protein (p16(INK4a)) was undetectable in the E6-infected mortal and immortal clones, whereas Rb protein (pRb) was hyperphosphorylated only in the immortal clone. The p16(INK4a) protein was overexpressed in all the E7-infected immortal clones and their clones in the pre-crisis period as well as all the E6/E7-infected mortal and immortal clones, but the pRb expression was downregulated in all of these clones. These results demonstrate for the first time to our knowledge that HPV-16 E6 or E7 alone can induce immortalization of normal human embryonic fibroblasts. Inactivation of p16(INK4a)/pRb pathways in combination with activation of a telomere maintenance mechanism is suggested to be necessary for immortalization of normal human embryonic fibroblasts by these viral oncogenes. The susceptibility of human cells to immortalization may be related to the state of differentiation of the cells. Copyright 2003 Wiley-Liss, Inc.

  13. Cloning and expression of Pectobacterium carotovorum endo-polygalacturonase gene in Pichia pastoris for production of oligogalacturonates

    USDA-ARS?s Scientific Manuscript database

    A bacterial endo-polygalacturonase (endo-PGase) gene from the plant pathogen Pectobacterium carotovorum was cloned into pGAPZaA vector and constitutively expressed in Pichia pastoris. The recombinant endo-PGase secreted by the Pichia clone showed a 1.7 fold increase when the culture medium included ...

  14. Cloning of the transgenic pigs expressing human decay accelerating factor and N-acetylglucosaminyltransferase III.

    PubMed

    Fujimura, Tatsuya; Kurome, Mayuko; Murakami, Hiroshi; Takahagi, Yoichi; Matsunami, Katsuyoshi; Shimanuki, Shinichi; Suzuki, Kohei; Miyagawa, Shuji; Shirakura, Ryota; Shigehisa, Tamotsu; Nagashima, Hiroshi

    2004-01-01

    The present paper describes production of cloned pigs from fibroblast cells of transgenic pigs expressing human decay accelerating factor (DAF, CD55) and N-acetylglucosaminyltransferase III (GnT-III) that remodels sugar-chain biosynthesis. Two nuclear transfer protocols were used: a two-step activation (TA) method and a delayed activation (DA) method. Enucleated in vitro-matured oocytes and donor cells were electrically fused in a calcium-containing medium by TA method or in a calcium-free medium by DA method, followed by electrical activation 1-1.5 h later, respectively. In vitro blastocyst formation rates of nuclear transferred embryos reconstructed by TA and DA method were 8% and 14%, respectively. As a result of embryo transfer of the reconstructed embryos made by each method into recipient pigs, both gave rise to cloned piglets. These cloned pigs expressed transgene as much as their nuclear donor cells. In conclusions, (1) pig cloning can be carried out by TA or DA nuclear transfer methods, (2) expression of transgenes can be maintained to cloned pigs from the nuclear donor cells derived from transgenic animals.

  15. Cloning, expression and decoding of the cold adaptation of a new widely represented thermolabile subtilisin-like protease.

    PubMed

    Acevedo, J P; Rodriguez, V; Saavedra, M; Muñoz, M; Salazar, O; Asenjo, J A; Andrews, B A

    2013-02-01

    Cloning, expression and characterization of a new cold-adapted protease with potential biotechnological application, isolated from Antarctic bacteria. A subtilisin-like gene was isolated from several Antarctic bacterial genus using CODPEHOP-designed primers and a genome walking method. This gene encodes a precursor protein, which undergoes an autocatalytic cleavage resulting in a 34.6 kDa active cold-adapted protease with a maximum activity at 25-35°C and optimum pH of 8.0-9.0. It showed a higher catalytic efficiency at lower temperatures compared to its mesophilic counterpart. Heat-induced inactivation resulted in a very low melting point. Local packing analysis using the homology model indicated Ala284 as an important cold-adaptation determinant, which was corroborated by the site-directed mutagenesis. A new thermolabile subtilisin-like protease has been successfully cloned and analysed, and an important hot spot in the evolution of the cold adaptation and substrate specificity of this enzyme was identified and tested. This work reports a new cold-adapted protease with a vast representation amongst Antarctic genus, suggesting therefore its evolutionary success in this cold environment. Likewise, important sites for genetic potentiation have been identified, which are extrapolated to other enzymes of the same kind. © 2012 The Society for Applied Microbiology.

  16. Cloning of an ADP-ribosylation factor gene from banana (Musa acuminata) and its expression patterns in postharvest ripening fruit.

    PubMed

    Wang, Yuan; Wu, Jing; Xu, Bi-Yu; Liu, Ju-Hua; Zhang, Jian-Bin; Jia, Cai-Hong; Jin, Zhi-Qiang

    2010-08-15

    A full-length cDNA encoding an ADP-ribosylation factor (ARF) from banana (Musa acuminata) fruit was cloned and named MaArf. It contains an open reading frame encoding a 181-amino-acid polypeptide. Sequence analysis showed that MaArf shared high similarity with ARF of other plant species. The genomic sequence of MaArf was also obtained using polymerase chain reaction (PCR). Sequence analysis showed that MaArf was a split gene containing five exons and four introns in genomic DNA. Reverse-transcriptase PCR was used to analyze the spatial expression of MaArf. The results showed that MaArf was expressed in all the organs examined: root, rhizome, leaf, flower and fruit. Real-time quantitative PCR was used to explore expression patterns of MaArf in postharvest banana. There was differential expression of MaArf associated with ethylene biosynthesis. In naturally ripened banana, expression of MaArf was in accordance with ethylene biosynthesis. However, in 1-methylcyclopropene-treated banana, the expression of MaArf was inhibited and changed little. When treated with ethylene, MaArf expression in banana fruit significantly increased in accordance with ethylene biosynthesis; the peak of MaArf was 3 d after harvest, 11 d earlier than for naturally ripened banana fruits. These results suggest that MaArf is induced by ethylene in regulating postharvest banana ripening. Finally, subcellular localization assays showed the MaArf protein in the cytoplasm. Copyright 2010 Elsevier GmbH. All rights reserved.

  17. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector

    PubMed Central

    2013-01-01

    Background Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. Results We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit’s component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. Conclusions We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins. PMID:23957834

  18. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector.

    PubMed

    Buj, Raquel; Iglesias, Noa; Planas, Anna M; Santalucía, Tomàs

    2013-08-20

    Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit's component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins.

  19. [Expression of human-mouse chimeric antibody directed against Chikungunya virus with site-specific integration system].

    PubMed

    Li, Jian-min; Chen, Wei; Jia, Xiu-jie; An, Xiao-ping; Li, Bing; Fan, Ying-ru; Tong, Yi-gang

    2005-05-01

    To obtain CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site and to express human-mouse chimeric antibody directed against Chikungunya Virus by using the cell line. The fusion gene of FRT and HBsAg was constructed by PCR and cloned into the MCS of pCI-neo to construct pCI-FRT-HBsAg. The pCI-FRT-HBsAg was transfected into CHO/dhfr(-) cells and cell clones with high expression of HBsAg were screened by detecting the amount of HBsAg with ELISA. A CHO cell clone with the highest expression was chosen and named as CHO/dhfr(-) FRT(+). pAFRT HFLF, a expression plasmid of chimeric antibody with RFT sequence was transfected into CHO/dhfr(-) FRT(+) cells and cell clones with high expression of the chimeric antibody were screened by increasing concentration of MTX. A CHO cell clone with high expression of the chimeric antibody was cultured in large scale and supernatant was collected from which the chimeric antibody was purified. The purified chimeric antibody was analyzed by SDS-PAGE, Western blot and IFA. A CHO/dhfr(-) cells line with integrated FRT sequence in the chromosome transcription active site was obtained successfully. A cell clone with yield of 5 mg/L of chimeric antibody was obtained, as compared with routine CHO cell expression system with a yield of 2 mg/L. A cell line with integrated FRT sequence in the chromosome transcription active site was obtained and with it human-mouse chimeric antibody directed against Chikungunya virus was expressed. This system lays a solid foundation which can be used for expressing antibodies and other proteins.

  20. Mammalian cDNA Library from the NIH Mammalian Gene Collection (MGC) | Office of Cancer Genomics

    Cancer.gov

    The MGC provides the research community full-length clones for most of the defined (as of 2006) human and mouse genes, along with selected clones of cow and rat genes. Clones were designed to allow easy transfer of the ORF sequences into nearly any type of expression vector. MGC provides protein ‘expression-ready’ clones for each of the included human genes. MGC is part of the ORFeome Collaboration (OC).

  1. Simple cloning strategy using GFPuv gene as positive/negative indicator.

    PubMed

    Miura, Hiromi; Inoko, Hidetoshi; Inoue, Ituro; Tanaka, Masafumi; Sato, Masahiro; Ohtsuka, Masato

    2011-09-15

    Because construction of expression vectors is the first requisite in the functional analysis of genes, development of simple cloning systems is a major requirement during the postgenomic era. In the current study, we developed cloning vectors for gain- or loss-of-function studies by using the GFPuv gene as a positive/negative indicator of cloning. These vectors allow us to easily detect correct clones and obtain expression vectors from a simple procedure by means of the combined use of the GFPuv gene and a type IIS restriction enzyme. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Cloning, Expression, and Purification of Brucella suis Outer Membrane Proteins

    DTIC Science & Technology

    2005-01-01

    13-09-20061 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cloning, expression and purification of Brucella suis outer membrane proteins 5b. GRANT NUMBER...attractive for this purpose. In this study, we cloned, expressed and purified seven predicted OMPs of Brucella suis . The recombinant proteins were...fused with 6-his and V5 epitope tags at their C termini to facilitate detection and purification. The B. suis surface genes were PCR synthesized based

  3. Maintenance of mitochondrial DNA copy number and expression are essential for preservation of mitochondrial function and cell growth.

    PubMed

    Jeng, Jaan-Yeh; Yeh, Tien-Shun; Lee, Jing-Wen; Lin, Shyh-Hsiang; Fong, Tsorng-Han; Hsieh, Rong-Hong

    2008-02-01

    To examine whether a reduction in the mtDNA level will compromise mitochondrial biogenesis and mitochondrial function, we created a cell model with depleted mtDNA. Stable transfection of small interfering (si)RNA of mitochondrial transcription factor A (Tfam) was used to interfere with Tfam gene expression. Selected stable clones showed 60-95% reduction in Tfam gene expression and 50-90% reduction in cytochrome b (Cyt b) gene expression. Tfam gene knockdown clones also showed decreased mtDNA-encoded cytochrome c oxidase subunit I (COX I) protein expression. However, no significant differences in protein expression were observed in nuclear DNA (nDNA)-encoded mitochondrial respiratory enzyme subunits. The cell morphology changed from a rhombus-like to a spindle-like form as determined in clones with decreased expressions of Tfam, mtRNA, and mitochondrial proteins. The mitochondrial respiratory enzyme activities and ATP production in such clones were significantly lower. The proportions of mtDNA mutations including 8-hydroxy-2'-deoxyguanosine (8-OHdG), a 4,977-bp deletion, and a 3,243-point mutation were also examined in these clones. No obvious increase in mtDNA mutations was observed in mitochondrial dysfunctional cell clones. The mitochondrial respiratory activity and ATP production ability recovered in cells with increased mtDNA levels after removal of the specific siRNA treatment. These experimental results provide direct evidence to substantiate that downregulation of mtDNA copy number and expression may compromise mitochondrial function and subsequent cell growth and morphology. (c) 2007 Wiley-Liss, Inc.

  4. Binding-, intracellular transport-, and biosynthesis-defective mutants of vasopressin type 2 receptor in patients with X-linked nephrogenic diabetes insipidus.

    PubMed Central

    Tsukaguchi, H; Matsubara, H; Taketani, S; Mori, Y; Seido, T; Inada, M

    1995-01-01

    Nephrogenic diabetes insipidus (NDI) is most often an X-linked disorder in which urine is not concentrated due to renal resistance to arginine vasopressin. We recently identified four vasopressin type 2 receptor gene mutations in unrelated X-linked NDI families, including R143P, delta V278, R202C, and 804insG. All these mutations reduced ligand binding activity to < 10% of the normal without affecting mRNA accumulation. To elucidate whether the receptors are expressed on the cell surface, we analyzed biosynthesis and localization of tagged or untagged receptors stably expressed in Chinese hamster ovary (CHO) cells, using two antibodies directed against distinct termini. Whole-cell and surface labeling studies revealed that the R202C clone had both surface-localized (50-55 kD) and intracellular proteins (40 and 75 kD), similar to the wild-type AVPR2 clone, whereas the R143P and delta V278 clones lacked the surface receptors, despite relatively increased intracellular components. The 804insG mutant cell produced no proteins despite an adequate mRNA level. Immunofluorescence staining confirmed that the R202C mutant reaches the cell surface, whereas the R143P and delta V278 mutants are retained within the cytoplasmic compartment. Thus, R202C, R143P/delta V278, and 804insG result in three distinct phenotypes, that is, a simple binding impairment at the cell surface, blocked intracellular transport, and ineffective biosynthesis or/and accelerated degradation of the receptor, respectively, and therefore are responsible for NDI. This phenotypic classification will help understanding of molecular pathophysiology of this disorder. Images PMID:7560098

  5. Ribosomal Binding Site Switching: An Effective Strategy for High-Throughput Cloning Constructions

    PubMed Central

    Li, Yunlong; Zhang, Yong; Lu, Pei; Rayner, Simon; Chen, Shiyun

    2012-01-01

    Direct cloning of PCR fragments by TA cloning or blunt end ligation are two simple methods which would greatly benefit high-throughput (HTP) cloning constructions if the efficiency can be improved. In this study, we have developed a ribosomal binding site (RBS) switching strategy for direct cloning of PCR fragments. RBS is an A/G rich region upstream of the translational start codon and is essential for gene expression. Change from A/G to T/C in the RBS blocks its activity and thereby abolishes gene expression. Based on this property, we introduced an inactive RBS upstream of a selectable marker gene, and designed a fragment insertion site within this inactive RBS. Forward and reverse insertions of specifically tailed fragments will respectively form an active and inactive RBS, thus all background from vector self-ligation and fragment reverse insertions will be eliminated due to the non-expression of the marker gene. The effectiveness of our strategy for TA cloning and blunt end ligation are confirmed. Application of this strategy to gene over-expression, a bacterial two-hybrid system, a bacterial one-hybrid system, and promoter bank construction are also verified. The advantages of this simple procedure, together with its low cost and high efficiency, makes our strategy extremely useful in HTP cloning constructions. PMID:23185557

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskar,; Kumari, Neeti; Goyal, Neena, E-mail: neenacdri@yahoo.com

    Highlights: Black-Right-Pointing-Pointer The study presents cloning and characterization of TCP1{gamma} gene from L. donovani. Black-Right-Pointing-Pointer TCP1{gamma} is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. Black-Right-Pointing-Pointer LdTCP{gamma} exhibited differential expression in different stages of promastigotes. Black-Right-Pointing-Pointer LdTCP{gamma} co-localized with actin, a cytoskeleton protein. Black-Right-Pointing-Pointer The data suggests that this gene may have a role in differentiation/biogenesis. Black-Right-Pointing-Pointer First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complexmore » (TCP1{gamma}), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1{gamma} of Leishmania donovani (LdTCP1{gamma}), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1{gamma} revealed the presence of all the characteristic features of TCP1{gamma}. However, leishmanial TCP1{gamma} represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1{gamma} exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1{gamma} as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1{gamma} was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1{gamma} with actin suggests that, this gene may have a role in maintaining the structural dynamics of cytoskeleton of parasite.« less

  7. Cloning and expression analysis of a gene that shows developmental regulation upon tuberization in potato.

    PubMed

    Jackson, S; Gascón, J; Carrera, E; Monte, E; Prat, S

    1997-01-01

    Differential screening of a potato leaf cDNA library with cDNA probes made from tuberizing and non-tuberizing Solanum demissum plants led to the identification of a clone that is upregulated in leaves and other tissues upon tuberization. This clone was also shown to have a high level of expression in green tomato fruit, its expression falling off as the fruit turns red. No sucrose or hormonal regulation of the expression of this clone was observed and it did not respond to wounding or heat stress. Clone 32B is 532 bp long and contains an open reading frame encoding a small protein of 98 amino acids. The deduced protein sequence has a putative signal peptide for ER transport and a 10 amino acid domain in the C-terminal region of the protein, both of which are also found in the cotton LEA5, Arabidopsis Di21 and the mungbean Arg2 proteins.

  8. Novel murine clonal cell lines either express slow or mixed (fast and slow) muscle markers following differentiation in vitro.

    PubMed

    Peltzer, J; Colman, L; Cebrian, J; Musa, H; Peckham, M; Keller, A

    2008-05-01

    We have investigated whether the phenotype of myogenic clones derived from satellite cells of different muscles from the transgenic immortomouse depended on muscle type origin. Clones derived from neonatal, or 6- to 12-week-old fast and slow muscles, were analyzed for myosin and enolase isoforms as phenotypic markers. All clones derived from slow-oxidative muscles differentiated into myotubes with a preferentially slow contractile phenotype, whereas some clones derived from rapid-glycolytic or neonatal muscles expressed both fast and slow myosin isoforms. Thus, muscle origin appears to bias myosin isoform expression in myotubes. The neonatal clone (WTt) was cultivated in various medium and substrate conditions, allowing us to determine optimized conditions for their differentiation. Matrigel allowed expressions of adult myosin isoforms, and an isozymic switch from embryonic alpha- toward muscle-specific beta-enolase, never previously observed in vitro. These cells will be a useful model for in vitro studies of muscle fiber maturation and plasticity.

  9. Two-qubit quantum cloning machine and quantum correlation broadcasting

    NASA Astrophysics Data System (ADS)

    Kheirollahi, Azam; Mohammadi, Hamidreza; Akhtarshenas, Seyed Javad

    2016-11-01

    Due to the axioms of quantum mechanics, perfect cloning of an unknown quantum state is impossible. But since imperfect cloning is still possible, a question arises: "Is there an optimal quantum cloning machine?" Buzek and Hillery answered this question and constructed their famous B-H quantum cloning machine. The B-H machine clones the state of an arbitrary single qubit in an optimal manner and hence it is universal. Generalizing this machine for a two-qubit system is straightforward, but during this procedure, except for product states, this machine loses its universality and becomes a state-dependent cloning machine. In this paper, we propose some classes of optimal universal local quantum state cloners for a particular class of two-qubit systems, more precisely, for a class of states with known Schmidt basis. We then extend our machine to the case that the Schmidt basis of the input state is deviated from the local computational basis of the machine. We show that more local quantum coherence existing in the input state corresponds to less fidelity between the input and output states. Also we present two classes of a state-dependent local quantum copying machine. Furthermore, we investigate local broadcasting of two aspects of quantum correlations, i.e., quantum entanglement and quantum discord, defined, respectively, within the entanglement-separability paradigm and from an information-theoretic perspective. The results show that although quantum correlation is, in general, very fragile during the broadcasting procedure, quantum discord is broadcasted more robustly than quantum entanglement.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz-Dobrzanski, Rafal; Lewenstein, Maciej; Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover

    We solve the problem of the optimal cloning of pure entangled two-qubit states with a fixed degree of entanglement using local operations and classical communication. We show that, amazingly, classical communication between the parties can improve the fidelity of local cloning if and only if the initial entanglement is higher than a certain critical value. It is completely useless for weakly entangled states. We also show that bound entangled states with positive partial transpose are not useful as a resource to improve the best local cloning fidelity.

  11. Cloning, sequencing, and expression of cDNA for human. beta. -glucuronidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshima, A.; Kyle, J.W.; Miller, R.D.

    1987-02-01

    The authors report here the cDNA sequence for human placental ..beta..-glucuronidase (..beta..-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH/sub 2/-terminal amino acid sequence determined for human spleen ..beta..-glucuronidase agreed with that inferred from the DNAmore » sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human ..beta..-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human ..beta..-glucuronidase, demonstrate the existence of two populations of mRNA for ..beta..-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length.« less

  12. Cloning and Expression of Genes for Dengue Virus Type-2 Encoded-Antigens for Rapid Diagnosis and Vaccine Development

    DTIC Science & Technology

    1988-10-31

    00 0 Cloning and Expression of Genes for Dengue Virus (Type-2 Encoded-Antigens for Rapid ODiagnosis and Vaccine DevelopmentN| ANNUAL PROGRESS REPORT...11. TITLE (include Security Classification) Cloning and Expression of Genes f or Dengue Virus Type 2 Fncoded Antigens for Rapid Diagnosis and Vaccine ...epidemics in Central and South Americas and the Caribbean is a cause of major concern. An effective vaccine is not available to protect individuals

  13. Cloning and functional characterization of three new pheromone receptors from the diamondback moth, Plutella xylostella.

    PubMed

    Liu, Yipeng; Liu, Yang; Jiang, Xingchuan; Wang, Guirong

    The highly specialized olfactory receptor neurons (ORNs) on the antennae of male moths can recognize blends of several pheromone components. In previous studies, a total of six candidate pheromone receptor (PR) genes were cloned and functionally characterized in the diamondback moth, Plutella xylostella. In the present work, we report on three novel candidate pheromone receptor genes: PxylOR8, PxylOR41, and PxylOR45 in the same species. Gene expression analysis revealed that PxylOR8 is specifically expressed in female adult antennae, while PxylOR41 and PxylOR45 are expressed in antennae in both sexes, but with a male bias. In situ hybridization revealed that PxylOR8, PxylOR41 and PxylOR45 are localized in long trichoid sensilla. Functional analyses on the three pheromone receptor genes were then performed using the heterologous expression system of Xenopus oocytes. PxylOR41 was tuned to two minor pheromone components Z9-14:Ac, Z9-14:OH, and their analog Z9-14:Ald. PxylOR8 and PxylOR45 did not respond to any tested pheromone components and analogs. These results may contribute to clarifying how pheromone detection works in P. xylostella. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Cloning of feline FOXP3 and detection of expression in CD4+CD25+ regulatory T cells

    PubMed Central

    Lankford, Susan; Petty, Christopher; LaVoy, Alora; Reckling, Stacie; Tompkins, Wayne; Dean, Gregg A.

    2008-01-01

    Regulatory T cells (Treg) are increased and directly infected by feline immunodeficiency virus (FIV) and likely play a role in other feline autoimmune, neoplastic, and infectious diseases. Phenotypically, Treg are best characterized by surface expression of CD4 and CD25 and intranuclear expression of the forkhead transcription factor Foxp3. Our objective was to clone and sequence feline FOXP3 for the purpose of developing assays to enhance studies of feline Treg. We determined the feline FOXP3 is 1293 nucleotides in length and codes for a protein that shares high homology to other species. A splice variant devoid of exon 2 was also identified. A real-time PCR assay was developed and used to show Foxp3 mRNA expression occurs primarily in CD4+CD25+ T cells. Two cross-reacting antibodies were identified by immunocytochemical staining of HEK293 cells transfected with feline FOXP3. The antibody labeling confirmed the nuclear localization of the protein. A flow cytometric assay was also validated and used to correlate the phenotypic and functional characteristics of feline Treg induced by treatment of lymph node lymphocytes with flagellin or LPS in combination with mitogen or IL2. Together, these studies provide useful tools to further investigate Foxp3 and Tregs in cats. PMID:18180044

  15. Identification of a novel splice variant of human PD-L1 mRNA encoding an isoform-lacking Igv-like domain.

    PubMed

    He, Xian-hui; Xu, Li-hui; Liu, Yi

    2005-04-01

    To investigate the expression and regulation of PD-1 ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMC). The cDNA encoding human PD-L1 precursor was cloned from the total RNA extracted from the resting and phorbol dibutyrate plus ionomycin- or phytohemagglutinin-activated PBMC, by reverse transcription polymerase chain reaction (RT-PCR), and independent clones were sequenced and analyzed. The expression and subcellular localization were examined in transiently transfected cells. The PD-L1 gene expression in different PBMC was also analyzed by RT-PCR. A novel human PD-L1 splice variant was identified from the activated PBMC. It was generated by splicing out exon? encoding an immunoglobulin variable domain (Igv)-like domain but retaining all other exons without a frame-shift. Consequently, the putative translated protein contained all other domains including the transmembrane region except for the Igv-like domain. Furthermore, the conventional isoform was expressed on the plasma surface whereas the novel isoform showed a pattern of intracellular membrane distribution in transiently transfected K562 cells. In addition, the expression pattern of the PD-L1 splice variant was variable in different individuals and in different cellular status. PD-L1 expression may be regulated at the posttranscriptional level through alternative splicing, and modulation of the PD-L1 isoform expression may influence the outcome of specific immune responses in the peripheral tissues.

  16. Protein structure controls the processing of the N-linked oligosaccharides and glycosylphosphatidylinositol glycans of variant surface glycoproteins expressed in bloodstream form Trypanosoma brucei.

    PubMed

    Zitzmann, N; Mehlert, A; Carrouée, S; Rudd, P M; Ferguson, M A; Carroué, S

    2000-03-01

    The variant surface glycoproteins (VSGs) of Trypanosoma brucei are a family of homodimeric glycoproteins that adopt similar shapes. An individual trypanosome expresses one VSG at a time in the form of a dense protective mono-layer on the plasma membrane. VSG genes are expressed from one of several polycistronic transcription units (expression sites) that contain several expression site associated genes. We used a transformed trypanosome clone expressing two different VSGs (VSG121 and VSG221) from the same expression site (that of VSG221) to establish whether the genotype of the trypanosome clone or the VSG structure itself controls VSG N-linked oligosaccharide and GPI anchor glycan processing. In-gel release and fluorescent labeling of N-linked oligosaccharides and on-blot fluorescent labeling and release of GPI anchor glycans were employed to compare the carbohydrate structures of VSG121 and VSG221 when expressed individually in wild-type trypanosome clones and when expressed together in the transformed trypanosome clone. The data indicate that the genotype of the trypanosome clone has no effect on the N-linked oligosaccharide structures present on a given VSG variant and only a minor effect on the GPI anchor glycans. The latter is most likely an effect of changes in inter-VSG packing when two VGSs are expressed simultaneously. Thus, N-linked oligosaccharide and GPI anchor processing enzymes appear to be constitutively expressed in bloodstream form African trypanosomes and the tertiary and quaternary structures of the VSG homodimers appear to dictate the processing and glycoform microheterogeneity of surface-expressed VSGs.

  17. Expression of proteins in Escherichia coli as fusions with maltose-binding protein to rescue non-expressed targets in a high-throughput protein-expression and purification pipeline

    PubMed Central

    Hewitt, Stephen N.; Choi, Ryan; Kelley, Angela; Crowther, Gregory J.; Napuli, Alberto J.; Van Voorhis, Wesley C.

    2011-01-01

    Despite recent advances, the expression of heterologous proteins in Escherichia coli for crystallization remains a nontrivial challenge. The present study investigates the efficacy of maltose-binding protein (MBP) fusion as a general strategy for rescuing the expression of target proteins. From a group of sequence-verified clones with undetectable levels of protein expression in an E. coli T7 expression system, 95 clones representing 16 phylogenetically diverse organisms were selected for recloning into a chimeric expression vector with an N-terminal histidine-tagged MBP. PCR-amplified inserts were annealed into an identical ligation-independent cloning region in an MBP-fusion vector and were analyzed for expression and solubility by high-throughput nickel-affinity binding. This approach yielded detectable expression of 72% of the clones; soluble expression was visible in 62%. However, the solubility of most proteins was marginal to poor upon cleavage of the MBP tag. This study offers large-scale evidence that MBP can improve the soluble expression of previously non-expressing proteins from a variety of eukaryotic and prokaryotic organisms. While the behavior of the cleaved proteins was disappointing, further refinements in MBP tagging may permit the more widespread use of MBP-fusion proteins in crystallographic studies. PMID:21904041

  18. A dual host vector for Fab phage display and expression of native IgG in mammalian cells.

    PubMed

    Tesar, Devin; Hötzel, Isidro

    2013-10-01

    A significant bottleneck in antibody discovery by phage display is the transfer of immunoglobulin variable regions from phage clones to vectors that express immunoglobulin G (IgG) in mammalian cells for screening. Here, we describe a novel phagemid vector for Fab phage display that allows expression of native IgG in mammalian cells without sub-cloning. The vector uses an optimized mammalian signal sequence that drives robust expression of Fab fragments fused to an M13 phage coat protein in Escherichia coli and IgG expression in mammalian cells. To allow the expression of Fab fragments fused to a phage coat protein in E.coli and full-length IgG in mammalian cells from the same vector without sub-cloning, the sequence encoding the phage coat protein was embedded in an optimized synthetic intron within the immunoglobulin heavy chain gene. This intron is removed from transcripts in mammalian cells by RNA splicing. Using this vector, we constructed a synthetic Fab phage display library with diversity in the heavy chain only and selected for clones binding different antigens. Co-transfection of mammalian cells with DNA from individual phage clones and a plasmid expressing the invariant light chain resulted in the expression of native IgG that was used to assay affinity, ligand blocking activity and specificity.

  19. Cloning and expression analysis of a novel G-protein-coupled receptor selectively expressed on granulocytes.

    PubMed

    Yousefi, S; Cooper, P R; Potter, S L; Mueck, B; Jarai, G

    2001-06-01

    The migration of neutrophils into sites of acute and chronic inflammation is mediated by chemokines. We used degenerate-primer reverse transcriptase-polymerase chain reaction (RT-PCR) to analyze chemokine receptor expression in neutrophils and identify novel receptors. RNA was isolated from human peripheral blood neutrophils and from neutrophils that had been stimulated for 5 h with granulocyte-macrophage colony-stimulating factor or by coculturing with primary human bronchial epithelial cells. Amplification products were cloned, and clone redundancy was determined. Seven known G-protein-coupled receptors were identified among 38 clones-CCR1, CCR4, CXCR1, CXCR2, CXCR4, HM63, and FPR1-as well as a novel gene, EX33. The full-length EX33 clone was obtained, and an in silico approach was used to identify the putative murine homologue. The EX33 gene encodes a 396-amino-acid protein with limited sequence identity to known receptors. Expression studies of several known chemokine receptors and EX33 revealed that resting neutrophils expressed higher levels of CXCRs and EX33 compared with activated neutrophils. Northern blot experiments revealed that EX33 is expressed mainly in bone marrow, lung, and peripheral blood leukocytes. Using RT-PCR analysis, we showed more abundant expression of EX33 in neutrophils and eosinophils, in comparison with that in T- or B-lymphocytes, indicating cell-specific expression among leukocytes.

  20. Identification and functional characterization of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode Globodera pallida.

    PubMed

    Jones, John T; Kumar, Amar; Pylypenko, Liliya A; Thirugnanasambandam, Amarnath; Castelli, Lydia; Chapman, Sean; Cock, Peter J A; Grenier, Eric; Lilley, Catherine J; Phillips, Mark S; Blok, Vivian C

    2009-11-01

    In this article, we describe the analysis of over 9000 expressed sequence tags (ESTs) from cDNA libraries obtained from various life cycle stages of Globodera pallida. We have identified over 50 G. pallida effectors from this dataset using bioinformatics analysis, by screening clones in order to identify secreted proteins up-regulated after the onset of parasitism and using in situ hybridization to confirm the expression in pharyngeal gland cells. A substantial gene family encoding G. pallida SPRYSEC proteins has been identified. The expression of these genes is restricted to the dorsal pharyngeal gland cell. Different members of the SPRYSEC family of proteins from G. pallida show different subcellular localization patterns in plants, with some localized to the cytoplasm and others to the nucleus and nucleolus. Differences in subcellular localization may reflect diverse functional roles for each individual protein or, more likely, variety in the compartmentalization of plant proteins targeted by the nematode. Our data are therefore consistent with the suggestion that the SPRYSEC proteins suppress host defences, as suggested previously, and that they achieve this through interaction with a range of host targets.

  1. A20 Functional Domains Regulate Subcellular Localization and NF-Kappa B Activation

    DTIC Science & Technology

    2013-08-15

    that the first function to be described for A20 was that of an anti -apoptotic protein (55). They based their choice of experiments and preliminary...mediated apoptosis (55). After positive selection of the resulting clones with neomycin and verification of A20 expression, they compared the...Karposi sarcoma herpesvirus (KSHV) mediated cell transformation (72). K13 can directly activate NF-κB by interacting with the IKK complex and is

  2. Molecular cloning of a human Ca2+-dependent cell-cell adhesion molecule homologous to mouse placental cadherin: its low expression in human placental tissues

    PubMed Central

    1989-01-01

    P-cadherin is a subclass of Ca2+-dependent cell-cell adhesion molecules present in mouse placenta, where its localization suggests a function of connecting the embryo to the uterus (Nose, A., and M. Takeichi. 1986. J. Cell Biol. 103:2649-2658). We recently identified a human cadherin detected by an mAb capable of disrupting cell-cell adhesion of A-431 cells, and found that it was closely related immunochemically to mouse P-cadherin. Curiously, this cadherin was undetectable in human placenta by immunohistochemical examination (Shimoyama, Y., S. Hirohashi, S. Hirano, M. Noguchi, Y. Shimosato, M. Takeichi, and O. Abe. 1989. Cancer Res. 49:2128-2133). We here report the cloning and sequencing of cDNA clone encoding the human homologue of mouse P- cadherin. The deduced amino acid sequence of the human P-cadherin consists of 829 amino acid and shows striking homology with mouse P- cadherin. On Northern blot analysis, human P-cadherin was scarcely expressed in human placenta in contrast to mouse P-cadherin, which was abundantly expressed in mouse placenta throughout pregnancy, and it was shown that E-cadherin, but not P-cadherin, was the major cadherin molecule in human placenta. Moreover, NIH3T3 cells transfected with human P-cadherin cDNA expressed the functional cadherin molecule, which was identical to the cadherin we had previously identified using the mAb, showing that this molecule really does mediate cell-cell adhesion and that the cadherin we detected immunochemically is undoubtedly human P-cadherin. The results obtained in this study support the idea that P- cadherin plays little role, if any, in Ca2+-dependent cell-cell binding in human placental tissue at least after several weeks of pregnancy. PMID:2793940

  3. Cloning of a Gene Whose Expression is Increased in Scrapie and in Senile Plaques in Human Brain

    NASA Astrophysics Data System (ADS)

    Wietgrefe, S.; Zupancic, M.; Haase, A.; Chesebro, B.; Race, R.; Frey, W.; Rustan, T.; Friedman, R. L.

    1985-12-01

    A complementary DNA library was constructed from messenger RNA's extracted from the brains of mice infected with the scrapie agent. The library was differentially screened with the objectives of finding clones that might be used as markers of infection and finding clones of genes whose increased expression might be correlated with the pathological changes common to scrapie and Alzheimer's disease. A gene was identified whose expression is increased in scrapie. The complementary DNA corresponding to this gene hybridized preferentially and focally to cells in the brains of scrapie-infected animals. The cloned DNA also hybridized to the neuritic plaques found with increased frequency in brains of patients with Alzheimer's disease.

  4. Expression of an alfalfa (Medicago sativa L.) peroxidase gene in transgenic Arabidopsis thaliana enhances resistance to NaCl and H2O2.

    PubMed

    Teng, K; Xiao, G Z; Guo, W E; Yuan, J B; Li, J; Chao, Y H; Han, L B

    2016-05-23

    Peroxidases (PODs) are enzymes that play important roles in catalyzing the reduction of H2O2 and the oxidation of various substrates. They function in many different and important biological processes, such as defense mechanisms, immune responses, and pathogeny. The POD genes have been cloned and identified in many plants, but their function in alfalfa (Medicago sativa L.) is not known, to date. Based on the POD gene sequence (GenBank accession No. L36157.1), we cloned the POD gene in alfalfa, which was named MsPOD. MsPOD expression increased with increasing H2O2. The gene was expressed in all of the tissues, including the roots, stems, leaves, and flowers, particularly in stems and leaves under light/dark conditions. A subcellular analysis showed that MsPOD was localized outside the cells. Transgenic Arabidopsis with MsPOD exhibited increased resistance to H2O2 and NaCl. Moreover, POD activity in the transgenic plants was significantly higher than that in wild-type Arabidopsis. These results show that MsPOD plays an important role in resistance to H2O2 and NaCl.

  5. Molecular cloning and expression of nanos in the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae).

    PubMed

    Ogaugwu, Christian E; Wimmer, Ernst A

    2013-01-01

    The gene nanos (nos) is a maternal-effect gene that plays an important role in posterior patterning and germ cell development in early stage embryos. nos is known from several diverse insect species, but has so far not been described for any Tephritid fruit fly. Here, we report the molecular cloning and expression pattern of the nos orthologous gene, Ccnos, in the Mediterranean fruit fly Ceratitis capitata, which is a destructive pest of high agricultural importance. CcNOS contains 398 amino acids and has a C-terminal region with two conserved CCHC zinc-binding motifs known to be essential for NOS function. Transcripts of Ccnos were confirmed by in situ hybridization to be maternally-derived and localized to the posterior pole of early stage embryos. Regulatory regions of nos have been employed in genetic engineering in some dipterans such as Drosophila and mosquitoes. Given the similarity in spatial and temporal expression between Ccnos and nos orthologs from other dipterans, its regulatory regions will be valuable to generate additional genetic tools that can be applied for engineering purposes to improve the fight against this devastating pest. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Rapid modification of the pET-28 expression vector for ligation independent cloning using homologous recombination in Saccharomyces cerevisiae

    PubMed Central

    Gay, Glen; Wagner, Drew T.; Keatinge-Clay, Adrian T.; Gay, Darren C.

    2014-01-01

    The ability to rapidly customize an expression vector of choice is a valuable tool for any researcher involved in high-throughput molecular cloning for protein overexpression. Unfortunately, it is common practice to amend or neglect protein targets if the gene that encodes the protein of interest is incompatible with the multiple-cloning region of a preferred expression vector. To address this issue, a method was developed to quickly exchange the multiple-cloning region of the popular expression plasmid pET-28 with a ligation-independent cloning cassette, generating pGAY-28. This cassette contains dual inverted restriction sites that reduce false positive clones by generating a linearized plasmid incapable of self-annealing after a single restriction-enzyme digest. We also establish that progressively cooling the vector and insert leads to a significant increase in ligation-independent transformation efficiency, demonstrated by the incorporation of a 10.3 kb insert into the vector. The method reported to accomplish plasmid reconstruction is uniquely versatile yet simple, relying on the strategic placement of primers combined with homologous recombination of PCR products in yeast. PMID:25304917

  7. Cloning and functional characterization of the guinea pig apoptosis inhibitor protein Survivin.

    PubMed

    Habtemichael, Negusse; Wünsch, Desiree; Bier, Carolin; Tillmann, Sarah; Unruhe, Britta; Frauenknecht, Katrin; Heinrich, Ulf-Rüdiger; Mann, Wolf J; Stauber, Roland H; Knauer, Shirley K

    2010-12-01

    The guinea pig is widely used as a model to study (patho)physiological processes, such as neurodegenerative disorders. Survivin's dual function as an apoptosis inhibitor and a mitotic regulator is crucial not only for ordered development but its modulation seems crucial also under disease conditions. However, data on the expression and function of the guinea pig Survivin protein (Survivin(Gp)) are currently lacking. Here, we here report the cloning and functional characterization of Survivin(Gp). The respective cDNA was cloned from spleen mRNA, containing a 426 bp open reading frame encoding for a protein of 142aa. Survivin(Gp) displays a high homology to the human and murine orthologue, especially in domains critical for function, such as binding sites for chromosomal passenger complex (CPC) proteins and the nuclear export signal (NES). Notably, phylogenetic analyses revealed that Survivin(Gp) is more related to humans than to rodents. Ectopic expression studies of a Survivin(Gp)-GFP fusion confirmed its dynamic intracellular localization, analogous to the human and murine counterparts. In interphase cells, Survivin(Gp)-GFP was predominantly cytoplasmic and accumulated in the nucleus following export inhibition with leptomycin B (LMB). A typical CPC protein localization during mitosis was observed for Survivin(Gp)-GFP. Microinjection experiments together with genetic knockout demonstrated that the NES is essential for the anti-apoptotic and regulatory role of Survivin(Gp) during cell division. In vivo protein interaction assays further demonstrated its dimerization with human Survivin and its interaction with human CPC proteins. Importantly, RNAi-depletion studies show that Survivin(Gp) can fully substitute for human Survivin as an apoptosis inhibitor and a mitotic effector. Immunohistochemistry, immunofluorescence, and western blotting were employed to detect Survivin expression in guinea pig tissues. Besides its expression in proliferating tissues, such as spleen and liver, we also found Survivin in terminally differentiated cell types. Importantly, Survivin was detectable also in the cochlea, suggesting a potential role for Survivin in the auditory system. We provide the first experimental evidence for the expression of Survivin in the guinea pig. As Survivin(Gp) can substitute for known functions of human Survivin, the guinea pig model will now also allow investigating Survivin's (patho)physiological role and to test Survivin-directed potential therapeutic strategies. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease.

    PubMed

    Yang, Li; Hu, Chunhua; Li, Na; Zhang, Jiayin; Yan, Jiawen; Deng, Ziniu

    2011-01-01

    The COOH terminal of pthA encoding three nuclear localizing signals (NLS) was amplified by polymerase chain reaction (PCR) from the plasmid of Xanthomonas axonopodis pv. citri, the pathogen of citrus canker disease. Then the sense and antisense strands of the nls were cloned into pBI121 vector. pthA-nls driven by the CaMV35 s promoter was transferred into sweet orange via Agrobacterium -mediated transformation. Successful integration was confirmed by PCR and Southern blotting, and 12 sense-nls (nls (+)) and 9 antisense-nls (nls (-)) transgenic clones were obtained. The expression of nls fragment was analyzed by RT-PCR, Real time q-PCR and Western blotting, in which the specific NLS protein was detected only in nls (+) transgenic clones. In an in vitro assay, when pin-puncture inoculation was performed with 2.5 × 10(7) cfu/ml of bacterial solution, the nls (+) transgenic clones showed no typical lesion development, while typical symptoms were observed in the wild types and the nls (-) transgenic clones. In vivo assay results indicated that the nls (+) transgenic clones showed less disease incidence, in comparison with the wild types and the nls (-) transgenic clones, when pin-puncture inoculation was performed with 10(4)-10(5) cfu/ml. The minimum disease incidence was 23.3% for 'Sucarri' sweet orange and 33.3% for 'Bingtang' sweet orange. When 10(4)-10(7) cfu/ml of pathogen was spray inoculated, the nls (+) transgenic clones did not show any symptom, and even the concentration raised to 10(9) cfu/ml, the disease incidence was 20-80%, while the wild types and the nls (-) transgenic clones had 100% disease development with whatever concentration of inoculum. Two transgenic clones were confirmed to be resistant to citrus canker disease in the repeated inoculation. The results suggested that the transformation of nls sense strands may offer an effective way to acquire resistance to citrus canker disease.

  9. Intracellular Localization Map of Human Herpesvirus 8 Proteins▿

    PubMed Central

    Sander, Gaby; Konrad, Andreas; Thurau, Mathias; Wies, Effi; Leubert, Rene; Kremmer, Elisabeth; Dinkel, Holger; Schulz, Thomas; Neipel, Frank; Stürzl, Michael

    2008-01-01

    Human herpesvirus 8 (HHV-8) is the etiological agent of Kaposi's sarcoma. We present a localization map of 85 HHV-8-encoded proteins in mammalian cells. Viral open reading frames were cloned with a Myc tag in expression plasmids, confirmed by full-length sequencing, and expressed in HeLa cells. Protein localizations were analyzed by immunofluorescence microscopy. Fifty-one percent of all proteins were localized in the cytoplasm, 22% were in the nucleus, and 27% were found in both compartments. Surprisingly, we detected viral FLIP (v-FLIP) in the nucleus and in the cytoplasm, whereas cellular FLIPs are generally localized exclusively in the cytoplasm. This suggested that v-FLIP may exert additional or alternative functions compared to cellular FLIPs. In addition, it has been shown recently that the K10 protein can bind to at least 15 different HHV-8 proteins. We noticed that K10 and only five of its 15 putative binding factors were localized in the nucleus when the proteins were expressed in HeLa cells individually. Interestingly, in coexpression experiments K10 colocalized with 87% (13 of 15) of its putative binding partners. Colocalization was induced by translocation of either K10 alone or both proteins. These results indicate active intracellular translocation processes in virus-infected cells. Specifically in this framework, the localization map may provide a useful reference to further elucidate the function of HHV-8-encoded genes in human diseases. PMID:18077714

  10. Tula hantavirus L protein is a 250 kDa perinuclear membrane-associated protein.

    PubMed

    Kukkonen, Sami K J; Vaheri, Antti; Plyusnin, Alexander

    2004-05-01

    The complete open reading frame of Tula hantavirus (TULV) L RNA was cloned in three parts. The middle third (nt 2191-4344) could be expressed in E. coli and was used to immunize rabbits. The resultant antiserum was then used to immunoblot concentrated TULV and infected Vero E6 cells. The L protein of a hantavirus was detected, for the first time, in infected cells and was found to be expressed as a single protein with an apparent molecular mass of 250 kDa in both virions and infected cells. Using the antiserum, the expression level of the L protein was followed and image analysis of immunoblots indicated that there were 10(4) copies per cell at the peak level of expression. The antiserum was also used to detect the L protein in cell fractionation studies. In cells infected with TULV and cells expressing recombinant L, the protein pelleted with the microsomal membrane fraction. The membrane association was confirmed with membrane flotation assays. To visualize L protein localization in cells, a fusion protein of L and enhanced green fluorescent protein, L-EGFP, was expressed in Vero E6 cells with a plasmid-driven T7 expression system. L-EGFP localized in the perinuclear region where it had partial co-localization with the Golgi matrix protein GM130 and the TULV nucleocapsid protein.

  11. Fundamental resource-allocating model in colleges and universities based on Immune Clone Algorithms

    NASA Astrophysics Data System (ADS)

    Ye, Mengdie

    2017-05-01

    In this thesis we will seek the combination of antibodies and antigens converted from the optimal course arrangement and make an analogy with Immune Clone Algorithms. According to the character of the Algorithms, we apply clone, clone gene and clone selection to arrange courses. Clone operator can combine evolutionary search and random search, global search and local search. By cloning and clone mutating candidate solutions, we can find the global optimal solution quickly.

  12. Re-Evaluation of the PBAN Receptor Molecule: Characterization of PBANR Variants Expressed in the Pheromone Glands of Moths

    PubMed Central

    Lee, Jae Min; Hull, J. Joe; Kawai, Takeshi; Goto, Chie; Kurihara, Masaaki; Tanokura, Masaru; Nagata, Koji; Nagasawa, Hiromichi; Matsumoto, Shogo

    2011-01-01

    Sex pheromone production in most moths is initiated following pheromone biosynthesis activating neuropeptide receptor (PBANR) activation. PBANR was initially cloned from pheromone glands (PGs) of Helicoverpa zea and Bombyx mori. The B. mori PBANR is characterized by a relatively long C-terminus that is essential for ligand-induced internalization, whereas the H. zea PBANR has a shorter C-terminus that lacks features present in the B. mori PBANR critical for internalization. Multiple PBANRs have been reported to be concurrently expressed in the larval CNS of Heliothis virescens. In the current study, we sought to examine the prevalence of multiple PBANRs in the PGs of three moths and to ascertain their potential functional relevance. Multiple PBANR variants (As, A, B, and C) were cloned from the PGs of all species examined with PBANR-C the most highly expressed. Alternative splicing of the C-terminal coding sequence of the PBAN gene gives rise to the variants, which are distinguishable only by the length and composition of their respective C-terminal tails. Transient expression of fluorescent PBANR chimeras in insect cells revealed that PBANR-B and PBANR-C localized exclusively to the cell surface while PBANR-As and PBANR-A exhibited varying degrees of cytosolic localization. Similarly, only the PBANR-B and PBANR-C variants underwent ligand-induced internalization. Taken together, our results suggest that PBANR-C is the principal receptor molecule involved in PBAN signaling regardless of moth species. The high GC content of the C-terminal coding sequence in the B and C variants, which makes amplification using conventional polymerases difficult, likely accounts for previous “preferential” amplification of PBANR-A like receptors from other species. PMID:22654850

  13. cDNA cloning, functional expression and cellular localization of rat liver mitochondrial electron-transfer flavoprotein-ubiquinone oxidoreductase protein.

    PubMed

    Huang, Shengbing; Song, Wei; Lin, Qishui

    2005-08-01

    A membrane-bound protein was purified from rat liver mitochondria. After being digested with V8 protease, two peptides containing identical 14 amino acid residue sequences were obtained. Using the 14 amino acid peptide derived DNA sequence as gene specific primer, the cDNA of correspondent gene 5'-terminal and 3'-terminal were obtained by RACE technique. The full-length cDNA that encoded a protein of 616 amino acids was thus cloned, which included the above mentioned peptide sequence. The full length cDNA was highly homologous to that of human ETF-QO, indicating that it may be the cDNA of rat ETF-QO. ETF-QO is an iron sulfur protein located in mitochondria inner membrane containing two kinds of redox center: FAD and [4Fe-4S] center. After comparing the sequence from the cDNA of the 616 amino acids protein with that of the mature protein of rat liver mitochondria, it was found that the N terminal 32 amino acid residues did not exist in the mature protein, indicating that the cDNA was that of ETF-QOp. When the cDNA was expressed in Saccharomyces cerevisiae with inducible vectors, the protein product was enriched in mitochondrial fraction and exhibited electron transfer activity (NBT reductase activity) of ETF-QO. Results demonstrated that the 32 amino acid peptide was a mitochondrial targeting peptide, and both FAD and iron-sulfur cluster were inserted properly into the expressed ETF-QO. ETF-QO had a high level expression in rat heart, liver and kidney. The fusion protein of GFP-ETF-QO co-localized with mitochondria in COS-7 cells.

  14. Regulation of c- and N-myc expression during induced differentiation of murine neuroblastoma cells.

    PubMed

    Larcher, J C; Vayssière, J L; Lossouarn, L; Gros, F; Croizat, B

    1991-04-01

    Using clones N1E-115 and N1A-103 from mouse neuroblastoma C1300, a comparative analysis of c- and N-myc gene expression was undertaken both in proliferating cells and in cultures exposed to conditions which induce differentiation. Under the latter conditions, while N1E-115 cells extend abundant neurites and express many biochemical features of mature neurons, clone N1A-103 stops dividing and expresses certain neurospecific markers but is unable to differentiate morphologically. In both clones, chemical agents, i.e. 1-methyl cyclohexane carboxylic acid (CCA) or dimethyl sulfoxide (DMSO), induce a decrease in c-myc expression. Similar results were found for N-myc gene in N1E-115 cells, but in contrast, in clone N1A-103, N-myc expression is increased with CCA and not modified with DMSO. Globally, this study favours the hypothesis that changes in c-myc expression would correspond to cell division blockade and differentiation, while modulations in N-myc are more closely related to an early phase of terminal differentiation.

  15. Frame-Insensitive Expression Cloning of Fluorescent Protein from Scolionema suvaense.

    PubMed

    Horiuchi, Yuki; Laskaratou, Danai; Sliwa, Michel; Ruckebusch, Cyril; Hatori, Kuniyuki; Mizuno, Hideaki; Hotta, Jun-Ichi

    2018-01-26

    Expression cloning from cDNA is an important technique for acquiring genes encoding novel fluorescent proteins. However, the probability of in-frame cDNA insertion following the first start codon of the vector is normally only 1/3, which is a cause of low cloning efficiency. To overcome this issue, we developed a new expression plasmid vector, pRSET-TriEX, in which transcriptional slippage was induced by introducing a DNA sequence of (dT) 14 next to the first start codon of pRSET. The effectiveness of frame-insensitive cloning was validated by inserting the gene encoding eGFP with all three possible frames to the vector. After transformation with one of these plasmids, E. coli cells expressed eGFP with no significant difference in the expression level. The pRSET-TriEX vector was then used for expression cloning of a novel fluorescent protein from Scolionema suvaense . We screened 3658 E. coli colonies transformed with pRSET-TriEX containing Scolionema suvaense cDNA, and found one colony expressing a novel green fluorescent protein, ScSuFP. The highest score in protein sequence similarity was 42% with the chain c of multi-domain green fluorescent protein like protein "ember" from Anthoathecata sp. Variations in the N- and/or C-terminal sequence of ScSuFP compared to other fluorescent proteins indicate that the expression cloning, rather than the sequence similarity-based methods, was crucial for acquiring the gene encoding ScSuFP. The absorption maximum was at 498 nm, with an extinction efficiency of 1.17 × 10⁵ M -1 ·cm -1 . The emission maximum was at 511 nm and the fluorescence quantum yield was determined to be 0.6. Pseudo-native gel electrophoresis showed that the protein forms obligatory homodimers.

  16. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    PubMed Central

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  17. Transgenic-cloned pigs systemically expressing red fluorescent protein, Kusabira-Orange.

    PubMed

    Matsunari, Hitomi; Onodera, Masafumi; Tada, Norihiro; Mochizuki, Hideki; Karasawa, Satoshi; Haruyama, Erika; Nakayama, Naoki; Saito, Hitoshi; Ueno, Satoshi; Kurome, Mayuko; Miyawaki, Atsushi; Nagashima, Hiroshi

    2008-09-01

    Genetically engineered pigs with cell markers such as fluorescent proteins are highly useful in lines of research that include the tracking of transplanted cells or tissues. In this study, we produced transgenic-cloned pigs carrying a gene for the newly developed red fluorescent protein, humanized Kusabira-Orange (huKO), which was cloned from the coral stone Fungia concinna. The nuclear transfer embryos, reconstructed with fetal fibroblast cells that had been transduced with huKO cDNA using retroviral vector D Delta Nsap, developed efficiently in vitro into blastocysts (28.0%, 37/132). Nearly all (94.6%, 35/37) of the cloned blastocysts derived from the transduced cells exhibited clear huKO gene expression. A total of 429 nuclear transfer embryos were transferred to four recipients, all of which became pregnant and gave birth to 18 transgenic-cloned offspring in total. All of the pigs highly expressed huKO fluorescence in all of the 23 organs and tissues analyzed, including the brain, eyes, intestinal and reproductive organs, skeletal muscle, bone, skin, and hoof. Furthermore, such expression was also confirmed by histological analyses of various tissues such as pancreatic islets, renal corpuscles, neuronal and glial cells, the retina, chondrocytes, and hematopoietic cells. These data demonstrate that transgenic-cloned pigs exhibiting systemic red fluorescence expression can be efficiently produced by nuclear transfer of somatic cells retrovirally transduced with huKO gene.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamoureux, Louis-Philippe; Navez, Patrick; Cerf, Nicolas J.

    It is shown that any quantum operation that perfectly clones the entanglement of all maximally entangled qubit pairs cannot preserve separability. This 'entanglement no-cloning' principle naturally suggests that some approximate cloning of entanglement is nevertheless allowed by quantum mechanics. We investigate a separability-preserving optimal cloning machine that duplicates all maximally entangled states of two qubits, resulting in 0.285 bits of entanglement per clone, while a local cloning machine only yields 0.060 bits of entanglement per clone.

  19. Notch as a Diagnostic Marker and Therapeutic Target in Human Breast Cancer

    DTIC Science & Technology

    2008-05-01

    JAG1. The soluble JAG1-ECD-FLAG was expressed in Chinese Hamster ovary K1 (CHO-K1) cells and then CHO clones were screened for their ability to... medium was collected from CHO-K1- hJAG1-ECD-Flag (clone14) grown in culture. The purification strategy to obtain hJAG1-ECD-Flag is as follows: 1) pre...expressed in Chinese hampster ovary K1 (CHO-K1) cells and then CHO clones were screened for their ability to express high levels of secreted JAG1-Flag

  20. Cytochrome P450-Dependent Metabolism of Oxylipins in Tomato. Cloning and Expression of Allene Oxide Synthase and Fatty Acid Hydroperoxide Lyase1

    PubMed Central

    Howe, Gregg A.; Lee, Gyu In; Itoh, Aya; Li, Lei; DeRocher, Amy E.

    2000-01-01

    Allene oxide synthase (AOS) and fatty acid hydroperoxide lyase (HPL) are plant-specific cytochrome P450s that commit fatty acid hydroperoxides to different branches of oxylipin metabolism. Here we report the cloning and characterization of AOS (LeAOS) and HPL (LeHPL) cDNAs from tomato (Lycopersicon esculentum). Functional expression of the cDNAs in Escherichia coli showed that LeAOS and LeHPL encode enzymes that metabolize 13- but not 9-hydroperoxide derivatives of C18 fatty acids. LeAOS was active against both 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid (13-HPOT) and 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid, whereas LeHPL showed a strong preference for 13-HPOT. These results suggest a role for LeAOS and LeHPL in the metabolism of 13-HPOT to jasmonic acid and hexenal/traumatin, respectively. LeAOS expression was detected in all organs of the plant. In contrast, LeHPL expression was predominant in leaves and flowers. Damage inflicted to leaves by chewing insect larvae led to an increase in the local and systemic expression of both genes, with LeAOS showing the strongest induction. Wound-induced expression of LeAOS also occurred in the def-1 mutant that is deficient in octadecanoid-based signaling of defensive proteinase inhibitor genes. These results demonstrate that tomato uses genetically distinct signaling pathways for the regulation of different classes of wound responsive genes. PMID:10859201

  1. Cloning and characterization of full length of a novel zebrafish gene Zsrg abundantly expressed in the germline stem cells.

    PubMed

    Lv, Daoyuan; Song, Ping; Chen, Yungui; Gong, Wuming; Mo, Saijun

    2005-04-08

    Using the digital differential display program of the National Center for Biotechnology Information, we identified a contig of expression sequence tags (ESTs) (Accession No. BM316936), which came from zebrafish ovary and testis libraries. The full-length cDNA of this transcript was cloned and further confirmed by polymerase chain reaction and sequencing. The full-length cDNA of the novel gene is 807bp and encodes a novel protein of 187 amino acids, which shares no significant homology with any other known proteins. Characterization of genomic sequences of the gene revealed that it spans 6kb on the linkage group 3 and is composed of five exons and four introns. RT-PCR analysis showed that it was expressed in mature oocytes and one-cell stage, and persisted until 24h of development. RT-PCR also revealed that it is expressed in gonad and kidney, with the highest level of expression in the testis. The expression sites of the novel gene in adult gonad were further localized by in situ hybridization to oogonia and growing oocytes in ovary and to spermatogonia, spermatocytes but not to spermatids in testis. Based on its abundance in testis and the germline stem cell-spermatogonia and oogonia, we hypothesize that it may function as a testicular development and gametogenesis related gene that plays important roles in spermatogenesis, and named it Zsrg (zebrafish testis spermatogenesis related gene, Zsrg).

  2. High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli

    PubMed Central

    Bruni, Renato

    2014-01-01

    Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647

  3. Modular protein expression by RNA trans-splicing enables flexible expression of antibody formats in mammalian cells from a dual-host phage display vector.

    PubMed

    Shang, Yonglei; Tesar, Devin; Hötzel, Isidro

    2015-10-01

    A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gheorghiu, Vlad; Yu Li; Cohen, Scott M.

    We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number ofmore » states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.« less

  5. Molecular cloning, expression and characterization of a functional GSTmu class from the cattle tick Boophilus annulatus.

    PubMed

    Shahein, Yasser Ezzat; El Sayed El-Hakim, Amr; Abouelella, Amira Mohamed Kamal; Hamed, Ragaa Reda; Allam, Shaimaa Abdul-Moez; Farid, Nevin Mahmoud

    2008-03-25

    A full-length cDNA of a glutathione S-transferase (GST) was cloned from a cDNA library of the local Egyptian cattle tick Boophilus annulatus. The 672 bp cloned fragment was sequenced and showed an open reading frame encoding a protein of 223 amino acids. Comparison of the deduced amino acid sequence with GSTs from other species revealed that the sequence is closely related to the mammalian mu-class GST. The cloned gene was expressed in E. coli under T7 promotor of pET-30b vector, and purified under native conditions. The purified enzyme appeared as a single band on 12% SDS-PAGE and has a molecular weight of 30.8 kDa including the histidine tag of the vector. The purified enzyme was assayed upon the chromogenic substrate 1-chloro-2,4-dinitrobenzene (CDNB) and the recombinant enzyme showed high level of activity even in the presence of the beta-galactosidase region on its 5' end and showed maximum activity at pH 7.5. The Km values for CDNB and GSH were 0.57 and 0.79 mM, respectively. The over expressed rBaGST showed high activity toward CDNB (121 units/mg protein) and less toward DCNB (29.3 units/mg protein). rBaGST exhibited peroxidatic activity on cumene hydroperoxide sharing this property with GSTs belonging to the GST alpha class. I50 values for cibacron blue and bromosulfophthalein were 0.22 and 8.45 microM, respectively, sharing this property with the mammalian GSTmu class. Immunoblotting revealed the presence of the GST molecule in B. annulatus protein extracts; whole tick, larvae, gut, salivary gland and ovary. Homologues to the GSTmu were also detected in other tick species as Hyalomma dromedarii and Rhipicephalus sp. while in Ornithodoros moubata, GSTmu homologue could not be detected.

  6. High-Throughput Cloning and Expression Library Creation for Functional Proteomics

    PubMed Central

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-01-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047

  7. High-throughput cloning and expression library creation for functional proteomics.

    PubMed

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-05-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    PubMed

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  9. Identification of a Polymorphic Gene, BCL2A1, Encoding Two Novel Hematopoietic Lineage-specific Minor Histocompatibility Antigens

    PubMed Central

    Akatsuka, Yoshiki; Nishida, Tetsuya; Kondo, Eisei; Miyazaki, Mikinori; Taji, Hirohumi; Iida, Hiroatsu; Tsujimura, Kunio; Yazaki, Makoto; Naoe, Tomoki; Morishima, Yasuo; Kodera, Yoshihisa; Kuzushima, Kiyotaka; Takahashi, Toshitada

    2003-01-01

    We report the identification of two novel minor histocompatibility antigens (mHAgs), encoded by two separate single nucleotide polymorphisms on a single gene, BCL2A1, and restricted by human histocompatibility leukocyte antigen (HLA)-A*2402 (the most common HLA-A allele in Japanese) and B*4403, respectively. Two cytotoxic T lymphocyte (CTL) clones specific for these mHAgs were first isolated from two distinct recipients after hematopoietic cell transplantation. Both clones lyse only normal and malignant cells within the hematopoietic lineage. To localize the gene encoding the mHAgs, two-point linkage analysis was performed on the CTL lytic patterns of restricting HLA-transfected B lymphoblastoid cell lines obtained from Centre d'Etude du Polymorphisme Humain. Both CTL clones showed a completely identical lytic pattern for 4 pedigrees and the gene was localized within a 3.6-cM interval of 15q24.3–25.1 region that encodes at least 46 genes. Of those, only BCL2A1 has been reported to be expressed in hematopoietic cells and possess three nonsynonymous nucleotide changes. Minigene transfection and epitope reconstitution assays with synthetic peptides identified both HLA-A*2402– and B*4403-restricted mHAg epitopes to be encoded by distinct polymorphisms within BCL2A1. PMID:12771180

  10. Expression cloning and chromosomal mapping of the leukocyte activation antigen CD97, a new seven-span transmembrane molecule of the secretin receptor superfamily with an unusual extracellular domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, J.; Hamann, D.; Lier, R.A.W.

    1995-08-15

    CD97 is a monomeric glycoprotein of 75 to 85 kDa that is induced rapidly on the surface of most leukocytes upon activation. We herein report the isolation of a cDNA encoding human CD97 by expression cloning in COS cells. The 3-kb cDNA clone encodes a mature polypeptide chain of 722 amino acids with a predicted molecular mass of 79 kDa. Within the C-terminal part of the protein, a region with seven hydrophobic segments was identified, suggesting that CD97 is a seven-span transmembrane molecule. Sequence comparison indicates that CD97 is the first leukocyte Ag in a recently described superfamily that includesmore » the receptors for secretin, calcitonin, and other mammalian and insect peptide hormones. Different from these receptors, CD97 has an extended extracellular region of 433 amino acids that possesses three N-terminal epidermal growth factor-like domains, two of them with a calcium-binding site, and single Arg-Gly-Asp (RGD) motif. The existence of structural elements characteristic for extracellular matrix proteins in a seven-span transmembrane molecule makes CD97 a receptor potentially involved in both adhesion and signaling processes early after leukocyte activation. The gene encoding CD97 is localized on chromosome 19 (19p13.12-13.2).« less

  11. Molecular cloning and tissue-specific transcriptional regulation of the first peroxidase family member, Udp1, in stinging nettle (Urtica dioica).

    PubMed

    Douroupi, Triantafyllia G; Papassideri, Issidora S; Stravopodis, Dimitrios J; Margaritis, Lukas H

    2005-12-05

    A full-length cDNA clone, designated Udp1, was isolated from Urtica dioica (stinging nettle), using a polymerase chain reaction based strategy. The putative Udp1 protein is characterized by a cleavable N-terminal signal sequence, likely responsible for the rough endoplasmic reticulum entry and a 310 amino acids mature protein, containing all the important residues, which are evolutionary conserved among different members of the plant peroxidase family. A unique structural feature of the Udp1 peroxidase is defined into the short carboxyl-terminal extension, which could be associated with the vacuolar targeting process. Udp1 peroxidase is differentially regulated at the transcriptional level and is specifically expressed in the roots. Interestingly, wounding and ultraviolet radiation stress cause an ectopic induction of the Udp1 gene expression in the aerial parts of the plant. A genomic DNA fragment encoding the Udp1 peroxidase was also cloned and fully sequenced, revealing a structural organization of three exons and two introns. The phylogenetic relationships of the Udp1 protein to the Arabidopsis thaliana peroxidase family members were also examined and, in combination with the homology modelling approach, dictated the presence of distinct structural elements, which could be specifically involved in the determination of substrate recognition and subcellular localization of the Udp1 peroxidase.

  12. Map-based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH) Insect Pest

    PubMed Central

    Ji, Hyeonso; Kim, Sung-Ryul; Kim, Yul-Ho; Suh, Jung-Pil; Park, Hyang-Mi; Sreenivasulu, Nese; Misra, Gopal; Kim, Suk-Man; Hechanova, Sherry Lou; Kim, Hakbum; Lee, Gang-Seob; Yoon, Ung-Han; Kim, Tae-Ho; Lim, Hyemin; Suh, Suk-Chul; Yang, Jungil; An, Gynheung; Jena, Kshirod K.

    2016-01-01

    Brown planthopper (BPH) is a phloem sap-sucking insect pest of rice which causes severe yield loss. We cloned the BPH18 gene from the BPH-resistant introgression line derived from the wild rice species Oryza australiensis. Map-based cloning and complementation test revealed that the BPH18 encodes CC-NBS-NBS-LRR protein. BPH18 has two NBS domains, unlike the typical NBS-LRR proteins. The BPH18 promoter::GUS transgenic plants exhibited strong GUS expression in the vascular bundles of the leaf sheath, especially in phloem cells where the BPH attacks. The BPH18 proteins were widely localized to the endo-membranes in a cell, including the endoplasmic reticulum, Golgi apparatus, trans-Golgi network, and prevacuolar compartments, suggesting that BPH18 may recognize the BPH invasion at endo-membranes in phloem cells. Whole genome sequencing of the near-isogenic lines (NILs), NIL-BPH18 and NIL-BPH26, revealed that BPH18 located at the same locus of BPH26. However, these two genes have remarkable sequence differences and the independent NILs showed differential BPH resistance with different expression patterns of plant defense-related genes, indicating that BPH18 and BPH26 are functionally different alleles. These findings would facilitate elucidation of the molecular mechanism of BPH resistance and the identified novel alleles to fast track breeding BPH resistant rice cultivars. PMID:27682162

  13. Map-based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH) Insect Pest.

    PubMed

    Ji, Hyeonso; Kim, Sung-Ryul; Kim, Yul-Ho; Suh, Jung-Pil; Park, Hyang-Mi; Sreenivasulu, Nese; Misra, Gopal; Kim, Suk-Man; Hechanova, Sherry Lou; Kim, Hakbum; Lee, Gang-Seob; Yoon, Ung-Han; Kim, Tae-Ho; Lim, Hyemin; Suh, Suk-Chul; Yang, Jungil; An, Gynheung; Jena, Kshirod K

    2016-09-29

    Brown planthopper (BPH) is a phloem sap-sucking insect pest of rice which causes severe yield loss. We cloned the BPH18 gene from the BPH-resistant introgression line derived from the wild rice species Oryza australiensis. Map-based cloning and complementation test revealed that the BPH18 encodes CC-NBS-NBS-LRR protein. BPH18 has two NBS domains, unlike the typical NBS-LRR proteins. The BPH18 promoter::GUS transgenic plants exhibited strong GUS expression in the vascular bundles of the leaf sheath, especially in phloem cells where the BPH attacks. The BPH18 proteins were widely localized to the endo-membranes in a cell, including the endoplasmic reticulum, Golgi apparatus, trans-Golgi network, and prevacuolar compartments, suggesting that BPH18 may recognize the BPH invasion at endo-membranes in phloem cells. Whole genome sequencing of the near-isogenic lines (NILs), NIL-BPH18 and NIL-BPH26, revealed that BPH18 located at the same locus of BPH26. However, these two genes have remarkable sequence differences and the independent NILs showed differential BPH resistance with different expression patterns of plant defense-related genes, indicating that BPH18 and BPH26 are functionally different alleles. These findings would facilitate elucidation of the molecular mechanism of BPH resistance and the identified novel alleles to fast track breeding BPH resistant rice cultivars.

  14. Candidate gene database and transcript map for peach, a model species for fruit trees.

    PubMed

    Horn, Renate; Lecouls, Anne-Claire; Callahan, Ann; Dandekar, Abhaya; Garay, Lilibeth; McCord, Per; Howad, Werner; Chan, Helen; Verde, Ignazio; Main, Doreen; Jung, Sook; Georgi, Laura; Forrest, Sam; Mook, Jennifer; Zhebentyayeva, Tatyana; Yu, Yeisoo; Kim, Hye Ran; Jesudurai, Christopher; Sosinski, Bryon; Arús, Pere; Baird, Vance; Parfitt, Dan; Reighard, Gregory; Scorza, Ralph; Tomkins, Jeffrey; Wing, Rod; Abbott, Albert Glenn

    2005-05-01

    Peach (Prunus persica) is a model species for the Rosaceae, which includes a number of economically important fruit tree species. To develop an extensive Prunus expressed sequence tag (EST) database for identifying and cloning the genes important to fruit and tree development, we generated 9,984 high-quality ESTs from a peach cDNA library of developing fruit mesocarp. After assembly and annotation, a putative peach unigene set consisting of 3,842 ESTs was defined. Gene ontology (GO) classification was assigned based on the annotation of the single "best hit" match against the Swiss-Prot database. No significant homology could be found in the GenBank nr databases for 24.3% of the sequences. Using core markers from the general Prunus genetic map, we anchored bacterial artificial chromosome (BAC) clones on the genetic map, thereby providing a framework for the construction of a physical and transcript map. A transcript map was developed by hybridizing 1,236 ESTs from the putative peach unigene set and an additional 68 peach cDNA clones against the peach BAC library. Hybridizing ESTs to genetically anchored BACs immediately localized 11.2% of the ESTs on the genetic map. ESTs showed a clustering of expressed genes in defined regions of the linkage groups. [The data were built into a regularly updated Genome Database for Rosaceae (GDR), available at (http://www.genome.clemson.edu/gdr/).].

  15. Identification and tissue distribution of mRNAs encoding salmon-type calcitonins-IV and -V in the rainbow trout.

    PubMed

    Hidaka, Yoshie; Suzuki, Masakazu

    2004-06-01

    Four types of calcitonin are produced in salmonid fish, although their functional diversity is almost unknown. To explore the significance of these isoforms, we have characterized salmon-type calcitonin (sCT) mRNAs in the rainbow trout (Oncorhynchus mykiss), and examined their tissue distribution. In addition to the previously isolated sCT-I cDNAs, two new forms of sCT cDNA were cloned from the ultimobranchial gland, and one of them (sCT-IV cDNA) was predicted to encode an N-terminal peptide of 80 amino acid residues, a putative cleavage site Lys-Arg, sCT-IV, a cleavage and amidation sequence Gly-Lys-Lys-Arg, and a C-terminal peptide of 18 amino acids. The sCT-IV precursor was 78% identical with the rainbow trout sCT-I precursors. The other cloned cDNA encoded a precursor for a novel CT, sCT-V. The sCT-V peptide was different from sCT-IV by only one amino acid residue: Val at position 8 in the latter was replaced by Met. The sCT-V precursor had 80 and 90% identity with the sCT-I and -IV precursors respectively. No cDNA clones were obtained for sCTs-II or -III.Tissue distribution of sCT-I, -IV and -V mRNAs was examined by RT-PCR and specific cleavage with restriction enzymes. An amplified fragment from sCT-I mRNA was detected not only in the ultimobranchial gland, but also in the gills, testis and ovary. RT-PCR analysis coupled to restriction digestion further revealed that sCT-IV mRNA was expressed in both the testis and the ultimobranchial gland. The expression sites of sCT-IV mRNA were localized to the Leydig cells of the testis and to the parenchymal cells of the ultimobranchial gland, by in situ hybridization histochemistry. Although the amino acid sequence of sCT-V peptide was nearly the same as that of sCT-IV, the sCT-V gene showed a much wider pattern of expression: the band amplified by RT-PCR was detected in all the tissues examined except the kidney, gills and blood cells. The sCT-V mRNA was shown to be localized in the parenchymal cells of the ultimobranchial gland, but not in other tissues at the cellular level, suggesting very low expression of sCT-V mRNA in those tissues. Our results show different patterns of tissue expression of three types of sCT genes in the rainbow trout, suggesting that sCTs-I, -IV and -V might differ in their local actions.

  16. Molecular cloning, subcellular localization and characterization of two adenylate kinases from cassava, Manihot esculenta Crantz cv. KU50.

    PubMed

    Boonrueng, Channarong; Tangpranomkorn, Surachat; Yazhisai, Uthaman; Sirikantaramas, Supaart

    2016-10-01

    Adenylate kinase (ADK) is a phosphotransferase that plays an important role in cellular energy homeostasis. Many isozymes located in different subcellular compartments have been reported. In this study, we focus on the characterization of cassava (Manihot esculenta) ADKs. We found 15 ADKs that are publicly available in the African cassava genome database. We cloned two ADKs, namely MeADK1 and MeADK2, which are phylogenetically grouped together with the plastidial ADK in potato. Both MeADK1 and MeADK2 showed 66% identity in the amino acid sequences with plastidial ADK in potato. However, we demonstrated that they are localized to mitochondria using GFP fusions of MeADK1 and MeADK2. The Escherichia coli-produced recombinant MeADK1 and MeADK2 preferred forward reactions that produce ATP. They exhibited similar specific activities. The semi-quantitative RT-PCR analysis showed that MeADK1 and MeADK2 in 2-month-old leaves have similar expression patterns under a diurnal light-dark cycle. However, MeADK2 transcripts were expressed at much higher levels than MeADK1 in 5-month-old leaves and roots. Thus, we conclude that MeADK2 might play a vital role in energy homeostasis in cassava mitochondria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Developmental Competence and Epigenetic Profile of Porcine Embryos Produced by Two Different Cloning Methods.

    PubMed

    Liu, Ying; Lucas-Hahn, Andrea; Petersen, Bjoern; Li, Rong; Hermann, Doris; Hassel, Petra; Ziegler, Maren; Larsen, Knud; Niemann, Heiner; Callesen, Henrik

    2017-06-01

    The "Dolly" based cloning (classical nuclear transfer, [CNT]) and the handmade cloning (HMC) are methods that are nowadays routinely used for somatic cloning of large domestic species. Both cloning protocols share several similarities, but differ with regard to the required in vitro culture, which in turn results in different time intervals until embryo transfer. It is not yet known whether the differences between cloned embryos from the two protocols are due to the cloning methods themselves or the in vitro culture, as some studies have shown detrimental effects of in vitro culture on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either with (D5 or D6) or without (D0) in vitro culture. Embryos cloned by these two methods had a similar morphological appearance on D0, but displayed different cleavage rates and different quality of blastocysts, with HMC embryos showing higher blastocyst rates (HMC vs. CNT: 35% vs. 10%, p < 0.05) and cell numbers per blastocyst (HMC vs. CNT: 31 vs. 23 on D5 and 42 vs. 18 on D6, p < 0.05) compared to CNT embryos. With regard to histone acetylation and gene expression, CNT and HMC derived cloned embryos were similar on D0, but differed on D6. In conclusion, both cloning methods and the in vitro culture may affect porcine embryo development and epigenetic profile. The two cloning methods essentially produce embryos of similar quality on D0 and after 5 days in vitro culture, but thereafter both histone acetylation and gene expression differ between the two types of cloned embryos.

  18. Diagnosis and Prevention of Infection by Nairoviruses

    DTIC Science & Technology

    1990-10-12

    Spodoptera frugiperda expressed proteins 21 ELISA antigens and antisera ................................... 22 ELISA protocol...clones................. 37 Expression of DUG N protein in Spodoptera frugiperda cells ........ 37 Cross-reaction of expressed DUG N protein with CCHF...plaque assayed in Spodoptera frugiperda cells essentially as described by Brown and Faulkner (1977). Construction of baculovirus recombinant clones: DUG

  19. Molecular cloning and promoter analysis of squalene synthase and squalene epoxidase genes from Betula platyphylla.

    PubMed

    Zhang, Mengyan; Wang, Siyao; Yin, Jing; Li, Chunxiao; Zhan, Yaguang; Xiao, Jialei; Liang, Tian; Li, Xin

    2016-09-01

    Betula platyphylla is a rich repository of pharmacologically active secondary metabolites known as birch triterpenoids (TBP). Here, we cloned the squalene synthase (SS) and squalene epoxidase genetic (SE) sequences from B. platyphylla that encode the key enzymes that are involved in triterpenoid biosynthesis and analyzed the conserved domains and phylogenetics of their corresponding proteins. The full-length sequence of BpSS is 1588 bp with a poly-A tail, which contained an open reading frame (ORF) of 1241 bp that encoded a protein of 413 amino acids. Additionally, the BpSE full-length sequence of 2040 bp with a poly-A tail was also obtained, which contained an ORF of 1581 bp encoding a protein of 526 amino acids. Their organ-specific expression patterns in 4-week-old tissue culture seedlings of B. platyphylla were detected by real-time PCR and showed that they were all highly expressed in leaves, as compared to stem and root tissues. Additionaly, both BpSS and BpSE were enhanced following stimulation with ethephon and MeJA. The expression of BpSS was enhanced by ABA, whereas BpSE was not. The SA treatment did not affect the BpSS and BpSE transcripts notably. Using a genome walking approach, promoter sequences of 965 and 1193 bp, respectively, for BpSS and BpSE were isolated, and they revealed several key cis-regulatory elements known to be involved in the response to phytohormone and abiotic plant stress. We also found that the BpSS protein is localized in the cytoplasm. Opening reading frames of BpSS and BpSE were ligated into yeast expression plasmid pYES2 under control of GAL1 promoter and introduced into the yeast INVScl1 strain. The transformants were cultured for 12 h, the squalene content of galactose-induced BpSS expression yeast cells was 13.2 times of control (empty vector control yeast cells) by high-performance liquid chromatography (HPLC) test method. And, the squalene epoxidase activity of induced BpSE expression yeast cell was about 11.8 times of control. These indicated that we cloned birch BpSS and BpSE that were indeed involved in the synthesis of triteropenoids. This is the first report wherein SS and SE from B. platyphylla were cloned and may be of significant interest to understand the regulatory role of SS and SE in the triterpenoids biosynthesis of B. platyphylla. This is the first report wherein SS and SE from B. platyphylla were cloned and may be of significant interest to understand the regulatory role of SS and SE in the biosynthesis of birch triterpenoids.

  20. Cytokinin oxidase/dehydrogenase genes in barley and wheat: cloning and heterologous expression.

    PubMed

    Galuszka, Petr; Frébortová, Jitka; Werner, Tomás; Yamada, Mamoru; Strnad, Miroslav; Schmülling, Thomas; Frébort, Ivo

    2004-10-01

    The cloning of two novel genes that encode cytokinin oxidase/dehydrogenase (CKX) in barley is described in this work. Transformation of both genes into Arabidopsis and tobacco showed that at least one of the genes codes for a functional enzyme, as its expression caused a cytokinin-deficient phenotype in the heterologous host plants. Additional cloning of two gene fragments, and an in silico search in the public expressed sequence tag clone databases, revealed the presence of at least 13 more members of the CKX gene family in barley and wheat. The expression of three selected barley genes was analyzed by RT-PCR and found to be organ-specific with peak expression in mature kernels. One barley CKX (HvCKX2) was characterized in detail after heterologous expression in tobacco. Interestingly, this enzyme shows a pH optimum at 4.5 and a preference for cytokinin ribosides as substrates, which may indicate its vacuolar targeting. Different substrate specificities, and the pH profiles of cytokinin-degrading enzymes extracted from different barley tissues, are also presented.

  1. Characterization of transformation related genes in oral cancer cells.

    PubMed

    Chang, D D; Park, N H; Denny, C T; Nelson, S F; Pe, M

    1998-04-16

    A cDNA representational difference analysis (cDNA-RDA) and an arrayed filter technique were used to characterize transformation-related genes in oral cancer. From an initial comparison of normal oral epithelial cells and a human papilloma virus (HPV)-immortalized oral epithelial cell line, we obtained 384 differentially expressed gene fragments and arrayed them on a filter. Two hundred and twelve redundant clones were identified by three rounds of back hybridization. Sequence analysis of the remaining clones revealed 99 unique clones corresponding to 69 genes. The expression of these transformation related gene fragments in three nontumorigenic HPV-immortalized oral epithelial cell lines and three oral cancer cell lines were simultaneously monitored using a cDNA array hybridization. Although there was a considerable cell line-to-cell line variability in the expression of these clones, a reliable prediction of their expression could be made from the cDNA array hybridization. Our study demonstrates the utility of combining cDNA-RDA and arrayed filters in high-throughput gene expression difference analysis. The differentially expressed genes identified in this study should be informative in studying oral epithelial cell carcinogenesis.

  2. Cloning of zebrafish Mustn1 orthologs and their expression during early development.

    PubMed

    Camarata, Troy; Vasilyev, Aleksandr; Hadjiargyrou, Michael

    2016-11-15

    Mustn1 is a small nuclear protein that is involved in the development and regeneration of the musculoskeletal system. Previous work established a role for Mustn1 in myogenic and chondrogenic differentiation. In addition, recent evidence suggests a potential role for Mustn1 in cilia function in zebrafish. A detailed study of Mustn1 expression has yet to be conducted in zebrafish. As such, we report herein the cloning of the zebrafish Mustn1 orthologs, mustn1a and mustn1b, and their expression during zebrafish embryonic and larval development. Results indicate a 44% nucleotide identity between the two paralogs. Phylogenetic analysis further confirmed that the Mustn1a and 1b predicted proteins were highly related to other vertebrate members of the Mustn1 protein family. Whole mount in situ hybridization revealed expression of both mustn1a and 1b at the 7-somite stage through 72hpf in structures such as Kupffer's vesicle, segmental mesoderm, head structures, and otic vesicle. Additionally, in 5day old larva, mustn1a and 1b expression is detected in the neurocranium, otic capsule, and the gut. Although both were expressed in the neurocranium, mustn1a was localized in the hypophyseal fenestra whereas mustn1b was found near the posterior basicapsular commissure. mustn1b also displayed expression in the ceratohyal and ceratobranchial elements of the pharyngeal skeleton. These expression patterns were verified temporally by q-PCR analysis. Taken together, we conclude that Mustn1 expression is conserved in vertebrates and that the variations in expression of the two zebrafish paralogs suggest different modes of molecular regulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Therapeutic use of Aldara in chronic myeloid leukemia.

    PubMed

    Marleau, Annette M; Lipton, Jeffrey H; Riordan, Neil H; Ichim, Thomas E

    2007-01-25

    The potent clinical responses seen in patients with chronic myeloid leukemia (CML) after administration of donor-specific lymphocytes, as well as the correlation between the presence of antigen specific T cells and prolonged remission in these patients, suggests a role for the immunological control of CML. Here we propose Aldara, a clinically used formulation of imiquimod, as an agent for augmenting immune responses to CML antigens. Our proposition is based upon 3 tenets: 1) Endogenous dendritic cells (DC) of CML patients, which are known to be derived from the malignant clone, express and present various leukemic antigens; 2) CML-antigen reactive T cell clones exist in the patient but in many situations are ineffectively stimulated to cause significant hematological responses; and 3) Antigen presentation by mature, activated DC, which endogenously express CML-antigens may endow the pre-existing ineffective T cell responses with ability to control CML progression. The practical use of Aldara as a localized activator of DC in the context of present day leukemic therapeutics, as well as various properties of this unique immune modulator will be discussed.

  4. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.

    PubMed

    Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian

    2015-10-05

    Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  5. Cloning and expression of Clostridium perfringens type D vaccine strain epsilon toxin gene in E. coli as a recombinant vaccine candidate.

    PubMed

    Aziminia, Parastoo; Pilehchian-Langroudi, Reza; Esmaeilnia, Kasra

    2016-08-01

    Clostridium perfringens, a Gram-positive obligate anaerobic bacterium, is able to form resistant spores which are widely distributed in the environment. C. perfringens is subdivided into five types A to E based on its four major alpha, beta, epsilon and iota toxins. The aim of the present study was cloning and expression of C. perfringens type D vaccine strain epsilon toxin gene. Genomic DNA was extracted and the epsilon toxin gene was amplified using Pfu DNA polymerase. The PCR product was cloned into pJET1.2/blunt cloning vector. The recombinant vector (pJETε) was sequenced using universal primers. At the next step epsilon toxin gene was subcloned into pET22b(+) expression vector and transformed into E. coli Rosetta (DE3) host strain. The recombinant protein has been expressed in E. coli Rosetta (DE3) cells after subcloning of C. perfringens etx gene (1008 bp) into the expression vector. We concluded that E. coli Rosetta strain was suitable for the expression of recombinant C. perfringens epsilon toxin protein from pET22ε expression vector. This recombinant cell can be used for further research on recombinant vaccine development.

  6. Formation of functional asialoglycoprotein receptor after transfection with cDNAs encoding the receptor proteins.

    PubMed Central

    McPhaul, M; Berg, P

    1986-01-01

    The rat asialoglycoprotein receptor (ASGP-R) has been expressed in cultured rat hepatoma cells (HTC cells) after transfection with cloned cDNAs. Fluorescence-activated cell sorting of transfected cells was used to identify the functional cDNA clones and to isolate cells expressing the ASGP-R. Simultaneous or sequential transfections with two cloned cDNAs that encode related but distinctive polypeptide chains were needed to obtain ASGP-R activity; transfection with either cDNA alone failed to produce detectable ASGP-R. The affinity of transduced ASGP-R for asialo orosomucoid is less than that of the native rat ASGP-R, and the number of surface receptors in clones expressing ASGP-R is about one-fifth that found on rat hepatocytes. Images PMID:3466162

  7. Altered imprinted gene expression and methylation patterns in mid-gestation aborted cloned porcine fetuses and placentas.

    PubMed

    Zhang, Xiaoyang; Wang, Dongxu; Han, Yang; Duan, Feifei; Lv, Qinyan; Li, Zhanjun

    2014-11-01

    To determine the expression patterns of imprinted genes and their methylation status in aborted cloned porcine fetuses and placentas. RNA and DNA were prepared from fetuses and placentas that were produced by SCNT and controls from artificial insemination. The expression of 18 imprinted genes was determined by quantitative real-time PCR (q-PCR). Bisulfite sequencing PCR (BSP) was conducted to determine the methylation status of PRE-1 short interspersed repetitive element (SINE), satellite DNA and H19 differentially methylated region 3 (DMR3). The weight, imprinted gene expression and genome-wide DNA methylation patterns were compared between the mid-gestation aborted and normal control samples. The results showed hypermethylation of PRE-1 and satellite sequences, the aberrant expression of imprinted genes, and the hypomethylation of H19 DMR3 occurred in mid-gestation aborted fetuses and placentas. Cloned pigs generated by somatic cell nuclear transfer (SCNT) showed a greater ratio of early abortion during mid-gestation than did normal controls because of the incomplete epigenetic reprogramming of the donor cells. Altered expression of imprinted genes and the hypermethylation profile of the repetitive regions (PRE-1 and satellite DNA) may be associated with defective development and early abortion of cloned pigs, emphasizing the importance of epigenetics during pregnancy and implications thereof for patient-specific embryonic stem cells for human therapeutic cloning and improvement of human assisted reproduction.

  8. Isolation and characterization of porcine adipose tissue-derived adult stem cells.

    PubMed

    Williams, Kellie J; Picou, Alicia A; Kish, Sharon L; Giraldo, Angelica M; Godke, Robert A; Bondioli, Kenneth R

    2008-01-01

    Stem cell characteristics such as self-renewal, differentiation and expression of CD34 and CD44 stem cell markers have not been identified in porcine adipose tissue-derived adult stem (ADAS) cells. The objective of this study was to develop a protocol for the isolation and culture of porcine adipose tissue-derived cells and to determine stem cell-like characteristics. Primary cultures were established and cell cultures were maintained. Cloning capacity was determined using a ring cloning procedure. Primary cultures and clones were differentiated and stained for multiple differentiated phenotypes. CD34 and CD44 messenger ribonucleic acid (mRNA) was isolated and reverse transcriptase polymerase chain reaction was used to compare expression profiles. An average of 2,700,000 nucleated cells/ml was isolated; 26% were adherent, and cells completed a cell cycle approximately every 3.3 days. Ring cloning identified 19 colonies. Primary cultures and clones were determined to differentiate along osteogenic, adipogenic and chondrogenic tissue lineages. The mRNA expression profiles showed CD34 expression was higher for undifferentiated ADAS cells versus differentiated cell types and the CD34 expression level was lower than that of CD44 among differentiated cells. Improved culture conditions and defined cellular characteristics of these porcine ADAS cells have been identified. Porcine ADAS can self-renew, can differentiate into multiple tissue lineages and they express CD34. Copyright 2008 S. Karger AG, Basel.

  9. [Cloning of human CD45 gene and its expression in Hela cells].

    PubMed

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  10. Latrunculin A treatment prevents abnormal chromosome segregation for successful development of cloned embryos.

    PubMed

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene-essential for normal development but never before expressed in cloned embryos-was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning.

  11. Cloning, characterization and expression of OsFMO(t) in rice encoding a flavin monooxygenase.

    PubMed

    Yi, Jicai; Liu, Lanna; Cao, Youpei; Li, Jiazuo; Mei, Mantong

    2013-12-01

    Flavin monooxygenases (FMO) play a key role in tryptophan (Trp)-dependent indole-acetic acid (IAA) biosynthesis in plants and regulate plant growth and development. In this study, the full-length genomic DNA and cDNA of OsFMO(t), a FMO gene that was originally identified from a rolled-leaf mutant in rice, was isolated and cloned from wild type of the rolled-leaf mutant. OsFMO(t) was found to have four exons and three introns, and encode a protein with 422 amino acid residues that contains two basic conserved motifs, with a 'GxGxxG' characteristic structure. OsFMO(t) showed high amino acid sequence identity with FMO proteins from other plants, in particular with YUCCA from Arabidopsis, FLOOZY from Petunia, and OsYUCCA1 from rice. Our phylogenetic analysis showed that OsFMO(t) and the homologous FMO proteins belong to the same clade in the evolutionary tree. Overexpression of OsFMO(t) in transformed rice calli produced IAA-excessive phenotypes that showed browning and lethal effects when exogenous auxins such as naphthylacetic acid (NAA) were added to the medium. These results suggested that the OsFMO(t) protein is involved in IAA biosynthesis in rice and its overexpression could lead to the malformation of calli. Spatio-temporal expression analysis using RT-PCR and histochemical analysis for GUS activity revealed that expression of OsFMO(t) was totally absent in the rolled-leaf mutant. However, in the wild type variety, this gene was expressed at different levels temporally and spatially, with the highest expression observed in tissues with fast growth and cell division such as shoot apexes, tender leaves and root tips. Our results demonstrated that IAA biosynthesis regulated by OsFMO(t) is likely localized and might play an essential role in shaping local IAA concentrations which, in turn, is critical for regulating normal growth and development in rice.

  12. A Circadian Rhythm-Regulated Tomato Gene Is Induced by Arachidonic Acid and Phythophthora infestans Infection1[W

    PubMed Central

    Weyman, Philip D.; Pan, Zhiqiang; Feng, Qin; Gilchrist, David G.; Bostock, Richard M.

    2006-01-01

    A cDNA clone of unknown function, DEA1, was isolated from arachidonic acid-treated tomato (Solanum lycopersicum) leaves by differential display PCR. The gene, DEA1, is expressed in response to the programmed cell death-inducing arachidonic acid within 8 h following treatment of a tomato leaflet, 16 h prior to the development of visible cell death. DEA1 transcript levels were also affected by the late blight pathogen, Phytophthora infestans. To gain further insight into the transcriptional regulation of DEA1, the promoter region was cloned by inverse PCR and was found to contain putative stress-, signaling-, and circadian-response elements. DEA1 is highly expressed in roots, stems, and leaves, but not in flowers. Leaf expression of DEA1 is regulated by circadian rhythms during long days with the peak occurring at midday and the low point midway through the dark period. During short days, the rhythm is lost and DEA1 expression becomes constitutive. The predicted DEA1 protein has a conserved domain shared by the eight-cysteine motif superfamily of protease inhibitors, α-amylase inhibitors, seed storage proteins, and lipid transfer proteins. A DEA1-green fluorescent protein fusion protein localized to the plasma membrane in protoplasts and plasmolysis experiments, suggesting that the native protein is associated with the plasmalemma in intact cells. PMID:16361525

  13. [Construction of fetal mesenchymal stem cell cDNA subtractive library].

    PubMed

    Yang, Li; Wang, Dong-Mei; Li, Liang; Bai, Ci-Xian; Cao, Hua; Li, Ting-Yu; Pei, Xue-Tao

    2002-04-01

    To identify differentially expressed genes between fetal mesenchymal stem cell (MSC) and adult MSC, especially specified genes expressed in fetal MSC, a cDNA subtractive library of fetal MSC was constructed using suppression subtractive hybridization (SSH) technique. At first, total RNA was isolated from fetal and adult MSC. Using SMART PCR synthesis method, single-strand and double-strand cDNAs were synthesized. After Rsa I digestion, fetal MSC cDNAs were divided into two groups and ligated to adaptor 1 and adaptor 2 respectively. Results showed that the amplified library contains 890 clones. Analysis of 890 clones with PCR demonstrated that 768 clones were positive. The positive rate is 86.3%. The size of inserted fragments in these positive clones was between 0.2 - 1 kb, with an average of 400 - 600 bp. SSH is a convenient and effective method for screening differentially expressed genes. The constructed cDNA subtractive library of fetal MSC cDNA lays solid foundation for screening and cloning new and specific function related genes of fetal MSC.

  14. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells

    PubMed Central

    Takayama, Naoya; Nishimura, Satoshi; Nakamura, Sou; Shimizu, Takafumi; Ohnishi, Ryoko; Endo, Hiroshi; Yamaguchi, Tomoyuki; Otsu, Makoto; Nishimura, Ken; Nakanishi, Mahito; Sawaguchi, Akira; Nagai, Ryozo; Takahashi, Kazutoshi; Yamanaka, Shinya; Nakauchi, Hiromitsu

    2010-01-01

    Human (h) induced pluripotent stem cells (iPSCs) are a potentially abundant source of blood cells, but how best to select iPSC clones suitable for this purpose from among the many clones that can be simultaneously established from an identical source is not clear. Using an in vitro culture system yielding a hematopoietic niche that concentrates hematopoietic progenitors, we show that the pattern of c-MYC reactivation after reprogramming influences platelet generation from hiPSCs. During differentiation, reduction of c-MYC expression after initial reactivation of c-MYC expression in selected hiPSC clones was associated with more efficient in vitro generation of CD41a+CD42b+ platelets. This effect was recapitulated in virus integration-free hiPSCs using a doxycycline-controlled c-MYC expression vector. In vivo imaging revealed that these CD42b+ platelets were present in thrombi after laser-induced vessel wall injury. In contrast, sustained and excessive c-MYC expression in megakaryocytes was accompanied by increased p14 (ARF) and p16 (INK4A) expression, decreased GATA1 expression, and impaired production of functional platelets. These findings suggest that the pattern of c-MYC expression, particularly its later decline, is key to producing functional platelets from selected iPSC clones. PMID:21098095

  15. Spread of Carbapenem-Resistant Acinetobacter baumannii Global Clone 2 in Asia and AbaR-Type Resistance Islands

    PubMed Central

    Kim, Dae Hun; Choi, Ji-Young; Kim, Hae Won; Kim, So Hyun; Chung, Doo Ryeon; Peck, Kyong Ran; Thamlikitkul, Visanu; So, Thomas Man-Kit; Yasin, Rohani M. D.; Hsueh, Po-Ren; Carlos, Celia C.; Hsu, Li Yang; Buntaran, Latre; Lalitha, M. K.; Song, Jae-Hoon

    2013-01-01

    In this surveillance study, we identified the genotypes, carbapenem resistance determinants, and structural variations of AbaR-type resistance islands among carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from nine Asian locales. Clonal complex 92 (CC92), corresponding to global clone 2 (GC2), was the most prevalent in most Asian locales (83/108 isolates; 76.9%). CC108, or GC1, was a predominant clone in India. OXA-23 oxacillinase was detected in CRAB isolates from most Asian locales except Taiwan. blaOXA-24 was found in CRAB isolates from Taiwan. AbaR4-type resistance islands, which were divided into six subtypes, were identified in most CRAB isolates investigated. Five isolates from India, Malaysia, Singapore, and Hong Kong contained AbaR3-type resistance islands. Of these, three isolates harbored both AbaR3- and AbaR4-type resistance islands simultaneously. In this study, GC2 was revealed as a prevalent clone in most Asian locales, with the AbaR4-type resistance island predominant, with diverse variants. The significance of this study lies in identifying the spread of global clones of carbapenem-resistant A. baumannii in Asia. PMID:23939892

  16. Spread of carbapenem-resistant Acinetobacter baumannii global clone 2 in Asia and AbaR-type resistance islands.

    PubMed

    Kim, Dae Hun; Choi, Ji-Young; Kim, Hae Won; Kim, So Hyun; Chung, Doo Ryeon; Peck, Kyong Ran; Thamlikitkul, Visanu; So, Thomas Man-Kit; Yasin, Rohani M D; Hsueh, Po-Ren; Carlos, Celia C; Hsu, Li Yang; Buntaran, Latre; Lalitha, M K; Song, Jae-Hoon; Ko, Kwan Soo

    2013-11-01

    In this surveillance study, we identified the genotypes, carbapenem resistance determinants, and structural variations of AbaR-type resistance islands among carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from nine Asian locales. Clonal complex 92 (CC92), corresponding to global clone 2 (GC2), was the most prevalent in most Asian locales (83/108 isolates; 76.9%). CC108, or GC1, was a predominant clone in India. OXA-23 oxacillinase was detected in CRAB isolates from most Asian locales except Taiwan. blaOXA-24 was found in CRAB isolates from Taiwan. AbaR4-type resistance islands, which were divided into six subtypes, were identified in most CRAB isolates investigated. Five isolates from India, Malaysia, Singapore, and Hong Kong contained AbaR3-type resistance islands. Of these, three isolates harbored both AbaR3- and AbaR4-type resistance islands simultaneously. In this study, GC2 was revealed as a prevalent clone in most Asian locales, with the AbaR4-type resistance island predominant, with diverse variants. The significance of this study lies in identifying the spread of global clones of carbapenem-resistant A. baumannii in Asia.

  17. Evidence for Multiple Phototransduction Pathways in a Reef-Building Coral

    PubMed Central

    Mason, Benjamin; Schmale, Michael; Gibbs, Patrick; Miller, Margaret W.; Wang, Qiang; Levay, Konstantin; Shestopalov, Valery; Slepak, Vladlen Z.

    2012-01-01

    Photosensitive behaviors and circadian rhythms are well documented in reef-building corals and their larvae, but the mechanisms responsible for photoreception have not been described in these organisms. Here we report the cloning, immunolocalization, and partial biochemical characterization of three opsins and four G proteins expressed in planulae of the Caribbean elkhorn coral, Acropora palmata. All three opsins (acropsins 1–3) possess conserved seven-pass transmembrane structure, and localize to distinct regions of coral planulae. Acropsin 1 was localized in the larval endoderm, while acropsin 2 was localized in solitary cells of the ectoderm. These rod-like cells displayed a remarkably polarized distribution, concentrated in the aboral end. We also cloned four A. palmata G protein alpha subunits. Three were homologs of vertebrate Gi, Go, and Gq. The fourth is presumably a novel G protein, which displays only 40% identity with the nearest known G protein, and we termed it Gc for “cnidarian”. We show that Gc and Gq can be activated by acropsins in a light-dependent manner in vitro. This indicates that at least acropsins 1 and 3 can form functional photoreceptors and potentially may play a role in color preference during settlement, vertical positioning and other light-guided behaviors observed in coral larvae. PMID:23227169

  18. Cloning and characterization of murine fanconi anemia group A gene: Fanca protein is expressed in lymphoid tissues, testis, and ovary.

    PubMed

    van de Vrugt, H J; Cheng, N C; de Vries, Y; Rooimans, M A; de Groot, J; Scheper, R J; Zhi, Y; Hoatlin, M E; Joenje, H; Arwert, F

    2000-04-01

    Fanconi anemia (FA) is an autosomal recessive disorder in humans characterized by bone marrow failure, cancer predisposition, and cellular hypersensitivity to cross-linking agents such as mitomycin C and diepoxybutane. FA genes display a caretaker function essential for maintenance of genomic integrity. We have cloned the murine homolog of FANCA, the gene mutated in the major FA complementation group (FA-A). The full-length mouse Fanca cDNA consists of 4503 bp and encodes a protein with a predicted molecular weight of 161 kDa. The deduced Fanca mouse protein shares 81% amino acid sequence similarity and 66% identity with the human protein. The nuclear localization signal and partial leucine zipper consensus motifs found in the human FANCA protein were also present in the murine homolog. In spite of the species difference, the murine Fanca cDNA was capable of correcting the cross-linker sensitive phenotype of human FA-A cells, suggesting functional conservation. Based on Northern as well as Western blots, Fanca was mainly expressed in lymphoid tissues, testis, and ovary. This expression pattern correlates with some of the clinical symptoms observed in FA patients. The availability of the murine Fanca cDNA now allows the gene to be studied in experimental mouse models.

  19. A protein that interacts with members of the nuclear hormone receptor family: identification and cDNA cloning.

    PubMed Central

    Zeiner, M; Gehring, U

    1995-01-01

    In search of proteins which interact with activated steroid hormone receptors, we screened a human liver lambda gt11 expression library with the glucocorticoid receptor. We identified and cloned a cDNA sequence of 1322 bp that encodes a protein of 274 aa. This protein consists predominantly of hydrophilic amino acids and contains a putative bipartite nuclear localization signal. The in vitro translated receptor-associating protein runs in SDS/polyacrylamide gels with an apparent molecular mass of 46 kDa. By use of the bacterially expressed fusion protein with glutathione S-transferase we have found that interaction is not limited to the glucocorticoid receptor but included other nuclear receptors--most notably, the estrogen and thyroid receptors. Binding also occurs with the glucocorticoid receptor complexed with the antiglucocorticoid RU 38486, with the estrogen receptor complexed with the antiestrogen 4-hydroxytamoxifen or ICI 164,384, and even with receptors not complexed with ligand. Association with steroid hormone receptors depends on prior receptor activation--i.e., release from heat shock proteins. The sequence identified here appears to be a general partner protein for nuclear hormone receptors, with the gene being expressed in a variety of mammalian tissues. Images Fig. 2 Fig. 3 Fig. 4 PMID:8524784

  20. [Novel bidirectional promoter from human genome].

    PubMed

    Orekhova, A S; Sverdlova, P S; Spirin, P V; Leonova, O G; Popenko, V I; Prasolov, V S; Rubtsov, P M

    2011-01-01

    In human and other mammalian genomes a number of closely linked gene pairs transcribed in opposite directions are found. According to bioinformatic analysis up to 10% of human genes are arranged in this way. In present work the fragment of human genome was cloned that separates genes localized at 2p13.1 and oriented "head-to-head", coding for hypothetical proteins with unknown functions--CCDC (Coiled Coil Domain Containing) 142 and TTC (TetraTricopeptide repeat Containing) 31. Intergenic CCDC142-TTC31 region overlaps with CpG-island and contains a number of potential binding sites for transcription factors. This fragment functions as bidirectional promoter in the system ofluciferase reporter gene expression upon transfection of human embryonic kidney (HEK293) cells. The vectors containing genes of two fluorescent proteins--green (EGFP) and red (DsRed2) in opposite orientations separated by the fragment of CCDC142-TTC31 intergenic region were constructed. In HEK293 cells transfected with these vectors simultaneous expression of two fluorescent proteins is observed. Truncated versions of intergenic region were obtained and their promoter activity measured. Minimal promoter fragment contains elements Inr, BRE, DPE characteristic for TATA-less promoters. Thus, from the human genome the novel bidirectional promoter was cloned that can be used for simultaneous constitutive expression of two genes in human cells.

  1. Tissue Gene Expression Analysis Using Arrayed Normalized cDNA Libraries

    PubMed Central

    Eickhoff, Holger; Schuchhardt, Johannes; Ivanov, Igor; Meier-Ewert, Sebastian; O'Brien, John; Malik, Arif; Tandon, Neeraj; Wolski, Eryk-Witold; Rohlfs, Elke; Nyarsik, Lajos; Reinhardt, Richard; Nietfeld, Wilfried; Lehrach, Hans

    2000-01-01

    We have used oligonucleotide-fingerprinting data on 60,000 cDNA clones from two different mouse embryonic stages to establish a normalized cDNA clone set. The normalized set of 5,376 clones represents different clusters and therefore, in almost all cases, different genes. The inserts of the cDNA clones were amplified by PCR and spotted on glass slides. The resulting arrays were hybridized with mRNA probes prepared from six different adult mouse tissues. Expression profiles were analyzed by hierarchical clustering techniques. We have chosen radioactive detection because it combines robustness with sensitivity and allows the comparison of multiple normalized experiments. Sensitive detection combined with highly effective clustering algorithms allowed the identification of tissue-specific expression profiles and the detection of genes specifically expressed in the tissues investigated. The obtained results are publicly available (http://www.rzpd.de) and can be used by other researchers as a digital expression reference. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AL360374–AL36537.] PMID:10958641

  2. [Cloning of Clostridium perfringens alpha-toxin gene and extracellular expression in Escherichia coli].

    PubMed

    Inoue, Masaharu; Kikuchi, Maho; Komoriya, Tomoe; Watanabe, Kunitomo; Kouno, Hideki

    2007-01-01

    Clostridium perfringens (C. perfringens) is a Gram-positive bacterial pathogen that widely propagets in the soil and the gastrointestinal tract of human and animals. This bacteria causes food poisoning, gas gangrene and other various range of infectious diseases. But there is no standard diagnosis method of C. perfringens. In order to develop a new type of immunoassay for clinical purpose, we studied expression and extracellular secretion of recombinant alpha-toxin having enzyme activity in E. coli expression system. Cloning was carried out after PCR amplification from C. perfringens GAI 94074 which was clinical isolate. Three kinds of fragment were cloned using pET100/D-TOPO vector. These fragments coded for ribosome binding site, signal peptide, and alpha-toxin gene respectively. Recombinant pET100 plasmid transformed into TOP 10 cells and the obtained plasmids were transformed into BL21 (DE3) cells. Then, the transformants were induced expression with IPTG. In conclusion, we successfully cloned, expressed and exteracellular secreted C. perfringens alpha-toxin containing signal peptide. Biologically, the obtained recombinant protein was positive for phospholipase C activity.

  3. CD4+ T-cell clones obtained from cattle chronically infected with Fasciola hepatica and specific for adult worm antigen express both unrestricted and Th2 cytokine profiles.

    PubMed Central

    Brown, W C; Davis, W C; Dobbelaere, D A; Rice-Ficht, A C

    1994-01-01

    The well-established importance of helper T (Th)-cell subsets in immunity and immunoregulation of many experimental helminth infections prompted a detailed study of the cellular immune response against Fasciola hepatica in the natural bovine host. T-cell lines established from two cattle infected with F. hepatica were characterized for the expression of T-cell surface markers and proliferative responses against F. hepatica adult worm antigen. Parasite-specific T-cell lines contained a mixture of CD4+, CD8+, and gamma/delta T-cell-receptor-bearing T cells. However, cell lines containing either fewer than 10% CD8+ T cells or depleted of gamma/delta T cells proliferated vigorously against F. hepatica antigen, indicating that these T-cell subsets are not required for proliferative responses in vitro. Seventeen F. hepatica-specific CD4+ Th-cell clones were examined for cytokine expression following concanavalin A stimulation. Biological assays to measure interleukin-2 (IL-2) or IL-4, gamma interferon (IFN-gamma), and tumor necrosis factor and Northern (RNA) blot analysis to verify the expression of IL-2, IL-4, and IFN-gamma revealed that the Th-cell clones expressed a spectrum of cytokine profiles. Several Th-cell clones were identified as Th2 cells by the strong expression of IL-4 but little or no IL-2 or IFN-gamma mRNA. The majority of Th-cell clones were classified as Th0 cells by the expression of either all three cytokines or combinations of IL-2 and IL-4 or IL-4 and IFN-gamma. No Th1-cell clones were obtained. All of the Th-cell clones expressed a typical memory cell surface phenotype, characterized as CD45Rlow, and all expressed the lymph node homing receptor (L selectin). These results are the first to describe cytokine responses of F. hepatica-specific T cells obtained from infected cattle and extend our previous analysis of Th0 and Th1 cells from cattle immune to Babesia bovis (W. C. Brown, V. M. Woods, D. A. E. Dobbelaere, and K. S. Logan, Infect. Immun. 61:3273-3281, 1993) to include F. hepatica-specific Th2 cells. Images PMID:7509319

  4. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer.

    PubMed

    Inoue, Kimiko; Kohda, Takashi; Sugimoto, Michihiko; Sado, Takashi; Ogonuki, Narumi; Matoba, Shogo; Shiura, Hirosuke; Ikeda, Rieko; Mochida, Keiji; Fujii, Takashi; Sawai, Ken; Otte, Arie P; Tian, X Cindy; Yang, Xiangzhong; Ishino, Fumitoshi; Abe, Kuniya; Ogura, Atsuo

    2010-10-22

    Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that inactivates one of the two X chromosomes in females, was ectopically expressed from the active X (Xa) chromosome in cloned mouse embryos of both sexes. Deletion of Xist on Xa showed normal global gene expression and resulted in about an eight- to ninefold increase in cloning efficiency. We also identified an Xist-independent mechanism that specifically down-regulated a subset of X-linked genes through somatic-type repressive histone blocks. Thus, we have identified nonrandom reprogramming errors in mouse cloning that can be altered to improve the efficiency of SCNT methods.

  5. Development of two bacterial artificial chromosome shuttle vectors for a recombination-based cloning and regulated expression of large genes in mammalian cells.

    PubMed

    Hong, Y K; Kim, D H; Beletskii, A; Lee, C; Memili, E; Strauss, W M

    2001-04-01

    Most conditional expression vectors designed for mammalian cells have been valuable systems for studying genes of interest by regulating their expressions. The available vectors, however, are reliable for the short-length cDNA clones and not optimal for relatively long fragments of genomic DNA or long cDNAs. Here, we report the construction of two bacterial artificial chromosome (BAC) vectors, capable of harboring large inserts and shuttling among Escherichia coli, yeast, and mammalian cells. These two vectors, pEYMT and pEYMI, contain conditional expression systems which are designed to be regulated by tetracycline and mouse interferons, respectively. To test the properties of the vectors, we cloned in both vectors the green fluorescence protein (GFP) through an in vitro ligation reaction and the 17.8-kb-long X-inactive-specific transcript (Xist) cDNA through homologous recombination in yeast. Subsequently, we characterized their regulated expression properties using real-time quantitative RT-PCR (TaqMan) and RNA-fluorescent in situ hybridization (FISH). We demonstrate that these two BAC vectors are good systems for recombination-based cloning and regulated expression of large genes in mammalian cells. Copyright 2001 Academic Press.

  6. Cloning of a yeast alpha-amylase promoter and its regulated heterologous expression

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR; Hooker, Brian S [Kennewick, WA; Anderson, Daniel B [Pasco, WA

    2003-04-01

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  7. Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium

    PubMed Central

    Biase, Fernando H.; Rabel, Chanaka; Guillomot, Michel; Hue, Isabelle; Andropolis, Kalista; Olmstead, Colleen A.; Oliveira, Rosane; Wallace, Richard; Le Bourhis, Daniel; Richard, Christophe; Campion, Evelyne; Chaulot-Talmon, Aurélie; Giraud-Delville, Corinne; Taghouti, Géraldine; Jammes, Hélène; Renard, Jean-Paul; Sandra, Olivier; Lewin, Harris A.

    2016-01-01

    A major unresolved issue in the cloning of mammals by somatic cell nuclear transfer (SCNT) is the mechanism by which the process fails after embryos are transferred to the uterus of recipients before or during the implantation window. We investigated this problem by using RNA sequencing (RNA-seq) to compare the transcriptomes in cattle conceptuses produced by SCNT and artificial insemination (AI) at day (d) 18 (preimplantation) and d 34 (postimplantation) of gestation. In addition, endometrium was profiled to identify the communication pathways that might be affected by the presence of a cloned conceptus, ultimately leading to mortality before or during the implantation window. At d 18, the effects on the transcriptome associated with SCNT were massive, involving more than 5,000 differentially expressed genes (DEGs). Among them are 121 genes that have embryonic lethal phenotypes in mice, cause defects in trophoblast and placental development, and/or affect conceptus survival in mice. In endometria at d 18, <0.4% of expressed genes were affected by the presence of a cloned conceptus, whereas at d 34, ∼36% and <0.7% of genes were differentially expressed in intercaruncular and caruncular tissues, respectively. Functional analysis of DEGs in placental and endometrial tissues suggests a major disruption of signaling between the cloned conceptus and the endometrium, particularly the intercaruncular tissue. Our results support a “bottleneck” model for cloned conceptus survival during the periimplantation period determined by gene expression levels in extraembryonic tissues and the endometrial response to altered signaling from clones. PMID:27940919

  8. [Hydroxyproline: Rich glycoproteins of the plant and cell wall]. Annual technical progress report, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varner, J.E.

    1993-06-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a numbermore » of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H{sub 2}O{sub 2} production reinforce the earlier ideas of others that H{sub 2}O{sub 2} is involved in normal lignification.« less

  9. [Hydroxyproline: Rich glycoproteins of the plant and cell wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varner, J.E.

    1993-01-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a numbermore » of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.« less

  10. Ars insulator identified in sea urchin possesses an activity to ensure the transgene expression in mouse cells.

    PubMed

    Tajima, Shoji; Shinohara, Keiko; Fukumoto, Maiko; Zaitsu, Reiko; Miyagawa, Junichi; Hino, Shinjiro; Fan, Jun; Akasaka, Koji; Matsuoka, Masao

    2006-04-01

    Sea urchin arylsulfatase (Ars) gene locus has features of an insulator, i.e., blocking of enhancer and promoter interaction, and protection of a transgene against positional effects [Akasaka et al. (1999) Cell. Mol. Biol. 45, 555-565]. To examine the effect of Ars insulator on long-term expression of a transgene, the insulator was inserted into LTR of retrovirus vector harboring hrGFP gene as a reporter, and then introduced into mouse myoblast cells. The isolated clones transduced with the reporter gene with or without Ars insulator were cultured for more than 20 wk in the absence of a selection reagent, and the expression of hrGFP was periodically determined. Expression of hrGFP in four clones transduced with the reporter gene without Ars insulator was completely silenced after 20 wk of culture. On the other hand, hrGFP was expressed in all clones with Ars insulator inserted in one of the two different orientations. Histone H3 deacetylation and DNA methylation of the 5'LTR promoter region, signs for heterochromatin and silencing, were suppressed in the clones that were expressing hrGFP. Ars insulator is effective in maintaining a transgene in mouse cells in an orientation-dependent manner, and will be a useful tool to ensure stable expression of a transgene.

  11. Differences in expression of retinal pigment epithelium mRNA between normal canines

    PubMed Central

    2004-01-01

    Abstract A reference database of differences in mRNA expression in normal healthy canine retinal pigment epithelium (RPE) has been established. This database identifies non-informative differences in mRNA expression that can be used in screening canine RPE for mutations associated with clinical effects on vision. Complementary DNA (cDNA) pools were prepared from mRNA harvested from RPE, amplified by PCR, and used in a subtractive hybridization protocol (representational differential analysis) to identify differences in RPE mRNA expression between canines. The effect of relatedness of the test canines on the frequency of occurrence of differences was evaluated by using 2 unrelated canines for comparison with 2 female sibling canines of blue heeler/bull terrier lineage. Differentially expressed cDNA species were cloned, sequenced, and identified by comparison to public database entries. The most frequently observed differentially expressed sequence from the unrelated canine comparison was cDNA with 21 base pairs (bp) identical to the human epithelial membrane protein 1 gene (present in 8 of 20 clones). Different clones from the same-sex sibling RPE contained repetitions of several short sequence motifs including the human epithelial membrane protein 1 (4 of 25 clones). Other prevalent differences between sibling RPE included sequences similar to a chicken genetic marker sequence motif (5 of 25), and 6 clones with homology to porcine major histocompatibility loci. In addition to identifying several repetitively occurring, noninformative, differentially expressed RPE mRNA species, the findings confirm that fewer differences occurred between siblings, highlighting the importance of using closely related subjects in representational difference analysis studies. PMID:15352545

  12. Latrunculin A Treatment Prevents Abnormal Chromosome Segregation for Successful Development of Cloned Embryos

    PubMed Central

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene—essential for normal development but never before expressed in cloned embryos—was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning. PMID:24205216

  13. Transcript levels of several epigenome regulatory genes in bovine somatic donor cells are not correlated with their cloning efficiency.

    PubMed

    Zhou, Wenli; Sadeghieh, Sanaz; Abruzzese, Ronald; Uppada, Subhadra; Meredith, Justin; Ohlrichs, Charletta; Broek, Diane; Polejaeva, Irina

    2009-09-01

    Among many factors that potentially affect somatic cell nuclear transfer (SCNT) embryo development is the donor cell itself. Cloning potentials of somatic donor cells vary greatly, possibly because the cells have different capacities to be reprogrammed by ooplasma. It is therefore intriguing to identify factors that regulate the reprogrammability of somatic donor cells. Gene expression analysis is a widely used tool to investigate underlying mechanisms of various phenotypes. In this study, we conducted a retrospective analysis investigating whether donor cell lines with distinct cloning efficiencies express different levels of genes involved in epigenetic reprogramming including histone deacetylase-1 (HDAC1), -2 (HDAC2); DNA methyltransferase-1 (DNMT1), -3a (DNMT3a),-3b (DNMT3b), and the bovine homolog of yeast sucrose nonfermenting-2 (SNF2L), a SWI/SNF family of ATPases. Cell samples from 12 bovine donor cell lines were collected at the time of nuclear transfer experiments and expression levels of the genes were measured using quantitative polymerase chain reaction (PCR). Our results show that there are no significant differences in expression levels of these genes between donor cell lines of high and low cloning efficiency defined as live calving rates, although inverse correlations are observed between in vitro embryo developmental rates and expression levels of HDAC2 and SNF2L. We also show that selection of stable reference genes is important for relative quantification, and different batches of cells can have different gene expression patterns. In summary, we demonstrate that expression levels of these epigenome regulatory genes in bovine donor cells are not correlated with cloning potential. The experimental design and data analysis method reported here can be applied to study any genes expressed in donor cells.

  14. Localization for robotic capsule looped by axially magnetized permanent-magnet ring based on hybrid strategy.

    PubMed

    Yang, Wanan; Li, Yan; Qin, Fengqing

    2015-01-01

    To actively maneuver a robotic capsule for interactive diagnosis in the gastrointestinal tract, visualizing accurate position and orientation of the capsule when it moves in the gastrointestinal tract is essential. A possible method that encloses the circuits, batteries, imaging device, etc into the capsule looped by an axially magnetized permanent-magnet ring is proposed. Based on expression of the axially magnetized permanent-magnet ring's magnetic fields, a localization and orientation model was established. An improved hybrid strategy that combines the advantages of particle-swarm optimization, clone algorithm, and the Levenberg-Marquardt algorithm was found to solve the model. Experiments showed that the hybrid strategy has good accuracy, convergence, and real time performance.

  15. Localization of the Intracellular Activity Domain of Pasteurella multocida Toxin to the N Terminus

    PubMed Central

    Wilson, Brenda A.; Ponferrada, Virgilio G.; Vallance, Jefferson E.; Ho, Mengfei

    1999-01-01

    We have shown that Pasteurella multocida toxin (PMT) directly causes transient activation of Gqα protein that is coupled to phosphatidylinositol-specific phospholipase Cβ1 in Xenopus oocytes (B. A. Wilson, X. Zhu, M. Ho, and L. Lu, J. Biol. Chem. 272:1268–1275, 1997). We found that antibodies directed against an N-terminal peptide of PMT inhibited the toxin-induced response in Xenopus oocytes, but antibodies against a C-terminal peptide did not. To test whether the intracellular activity domain of PMT is localized to the N terminus, we conducted a deletion mutational analysis of the PMT protein, using the Xenopus oocyte system as a means of screening for toxin activity. Using PCR and conventional cloning techniques, we cloned from a toxinogenic strain of P. multocida the entire toxA gene, encoding the 1,285-amino-acid PMT protein, and expressed the recombinant toxin as a His-tagged fusion protein in Escherichia coli. We subsequently generated a series of N-terminal and C-terminal deletion mutants and expressed the His-tagged PMT fragments in E. coli. These proteins were screened for cytotoxic activity on cultured Vero cells and for intracellular activity in the Xenopus oocyte system. Only the full-length protein without the His tag exhibited activity on Vero cells. The full-length PMT and N-terminal fragments containing the first 500 residues elicited responses in oocytes, but the C-terminal 780 amino acid fragment did not. Our results confirm that the intracellular activity domain of PMT is localized to the N-terminal 500 amino acids of the protein and that the C terminus is required for entry into cells. PMID:9864199

  16. Molecular Cloning and Functional Characterization of the Lycopene ε-Cyclase Gene via Virus-Induced Gene Silencing and Its Expression Pattern in Nicotiana tabacum

    PubMed Central

    Shi, Yanmei; Wang, Ran; Luo, Zhaopeng; Jin, Lifeng; Liu, Pingping; Chen, Qiansi; Li, Zefeng; Li, Feng; Wei, Chunyang; Wu, Mingzhu; Wei, Pan; Xie, He; Qu, Lingbo; Lin, Fucheng; Yang, Jun

    2014-01-01

    Lycopene ε-cyclase (ε-LCY) is a key enzyme that catalyzes the synthesis of α-branch carotenoids through the cyclization of lycopene. Two cDNA molecules encoding ε-LCY (designated Ntε-LCY1 and Ntε-LCY2) were cloned from Nicotiana tabacum. Ntε-LCY1 and Ntε-LCY2 are encoded by two distinct genes with different evolutionary origins, one originating from the tobacco progenitor, Nicotiana sylvestris, and the other originating from Nicotiana tomentosiformis. The two coding regions are 97% identical at the nucleotide level and 95% identical at the amino acid level. Transcripts of Ntε-LCY were detectable in both vegetative and reproductive organs, with a relatively higher level of expression in leaves than in other tissues. Subcellular localization experiments using an Ntε-LCY1-GFP fusion protein demonstrated that mature Ntε-LCY1 protein is localized within the chloroplast in Bright Yellow 2 suspension cells. Under low-temperature and low-irradiation stress, Ntε-LCY transcript levels substantially increased relative to control plants. Tobacco rattle virus (TRV)-mediated silencing of ε-LCY in Nicotiana benthamiana resulted in an increase of β-branch carotenoids and a reduction in the levels of α-branch carotenoids. Meanwhile, transcripts of related genes in the carotenoid biosynthetic pathway observably increased, with the exception of β-OHase in the TRV-ε-lcy line. Suppression of ε-LCY expression was also found to alleviate photoinhibition of Potosystem II in virus-induced gene silencing (VIGS) plants under low-temperature and low-irradiation stress. Our results provide insight into the regulatory role of ε-LCY in plant carotenoid biosynthesis and suggest a role for ε-LCY in positively modulating low temperature stress responses. PMID:25153631

  17. Molecular cloning and functional characterization of the lycopene ε-cyclase gene via virus-induced gene silencing and its expression pattern in Nicotiana tabacum.

    PubMed

    Shi, Yanmei; Wang, Ran; Luo, Zhaopeng; Jin, Lifeng; Liu, Pingping; Chen, Qiansi; Li, Zefeng; Li, Feng; Wei, Chunyang; Wu, Mingzhu; Wei, Pan; Xie, He; Qu, Lingbo; Lin, Fucheng; Yang, Jun

    2014-08-22

    Lycopene ε-cyclase (ε-LCY) is a key enzyme that catalyzes the synthesis of α-branch carotenoids through the cyclization of lycopene. Two cDNA molecules encoding ε-LCY (designated Ntε-LCY1 and Ntε-LCY2) were cloned from Nicotiana tabacum. Ntε-LCY1 and Ntε-LCY2 are encoded by two distinct genes with different evolutionary origins, one originating from the tobacco progenitor, Nicotiana sylvestris, and the other originating from Nicotiana tomentosiformis. The two coding regions are 97% identical at the nucleotide level and 95% identical at the amino acid level. Transcripts of Ntε-LCY were detectable in both vegetative and reproductive organs, with a relatively higher level of expression in leaves than in other tissues. Subcellular localization experiments using an Ntε-LCY1-GFP fusion protein demonstrated that mature Ntε-LCY1 protein is localized within the chloroplast in Bright Yellow 2 suspension cells. Under low-temperature and low-irradiation stress, Ntε-LCY transcript levels substantially increased relative to control plants. Tobacco rattle virus (TRV)-mediated silencing of ε-LCY in Nicotiana benthamiana resulted in an increase of β-branch carotenoids and a reduction in the levels of α-branch carotenoids. Meanwhile, transcripts of related genes in the carotenoid biosynthetic pathway observably increased, with the exception of β-OHase in the TRV-ε-lcy line. Suppression of ε-LCY expression was also found to alleviate photoinhibition of Potosystem II in virus-induced gene silencing (VIGS) plants under low-temperature and low-irradiation stress. Our results provide insight into the regulatory role of ε-LCY in plant carotenoid biosynthesis and suggest a role for ε-LCY in positively modulating low temperature stress responses.

  18. Progress in gene targeting and gene therapy for retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, G.J.; Humphries, M.M.; Erven, A.

    1994-09-01

    Previously, we localized disease genes involved in retinitis pigmentosa (RP), an inherited retinal degeneration, close to the rhodopsin and peripherin genes on 3q and 6p. Subsequently, we and others identified mutations in these genes in RP patients. Currently animal models for human retinopathies are being generated using gene targeting by homologous recombination in embryonic stem (ES) cells. Genomic clones for retinal genes including rhodopsin and peripherin have been obtained from a phage library carrying mouse DNA isogenic with the ES cell line (CC1.2). The peripherin clone has been sequenced to establish the genomic structure of the mouse gene. Targeting vectorsmore » for rhodopsin and peripherin including a neomycin cassette for positive selection and thymidine kinase genes enabling selection against random intergrants are under construction. Progress in vector construction will be presented. Simultaneously we are developing systems for delivery of gene therapies to retinal tissues utilizing replication-deficient adenovirus (Ad5). Efficacy of infection subsequent to various methods of intraocular injection and with varying viral titers is being assayed using an adenovirus construct containing a CMV promoter LacZ fusion as reporter and the range of tissues infected and the level of duration of LacZ expression monitored. Viral constructs with the LacZ reporter gene under the control of retinal specific promoters such as rhodopsin and IRBP cloned into pXCJL.1 are under construction. An update on developments in photoreceptor cell-directed expression of virally delivered genes will be presented.« less

  19. Highly abundant and stage-specific mRNAs in the obligate pathogen Bremia lactucae.

    PubMed

    Judelson, H S; Michelmore, R W

    1990-01-01

    Germinating spores of the obligate pathogen Bremia lactucae (lettuce downy mildew) contain several unusually abundant species of mRNA. Thirty-nine cDNA clones corresponding to prevalent transcripts were isolated from a library synthesized using poly(A)+ RNA from germinating spores; these clones represented only five distinct classes. Each corresponding mRNA accounted for from 0.4 to 9 percent by mass of poly(A)+ RNA from germinating spores and together represented greater than 20 percent of the mRNA. The expression of the corresponding genes, and a gene encoding Hsp70, was analyzed in spores during germination and during growth in planta. The Hsp70 mRNA and mRNA from one abundant cDNA clone (ham34) were expressed constitutively. Two clones (ham9 and ham12) hybridized only to mRNA from spores and germinating spores. Two clones (ham37 and ham27) showed hybridization specific to germinating spores. Quantification of the number of genes homologous to each cDNA clone indicated that four clones corresponded to one or two copies per haploid genome, and one hybridized to an approximately 11-member family of genes. A sequence of the gene corresponding to ham34 was obtained to investigate its function and to identify sequences conferring high levels of gene expression for use in constructing vectors for the transformation of B. lactucae.

  20. Molecular cloning and production of caprine recombinant Oct4 protein for generation induced pluripotent stem cells.

    PubMed

    Singhal, Dinesh K; Singhal, Raxita; Malik, Hruda N; Singh, Surender; Kumar, Sudarshan; Kaushik, Jai K; Mohanty, Ashok K; Malakar, Dhruba

    2015-12-01

    Oct4, pluripotency marker and transcription factor, expresses in embryonic stem cells. It plays a pivotal role in determination of stem cells fate. Up and down regulation of Oct4 causes differentiation of embryonic stem cells. It is one of the main transcription factors which remained concerned in every study related to induced pluripotent stem cell. Here, we report the production of goat Oct4 protein using plasmid and lentiviral based vectors. Firstly, Oct4 ORF was cloned in pAcGFP1-N1 plasmid vector and positive clones were screened with colony PCR. Oct4 was over-expressed in CHO-K1 cell line and expression was confirmed by observing green florescent protein expression in CHO-K1 cells. Secondly, Oct4 lentiviral expression construct has been prepared using pLenti-gw vector. Oct4 ORF was cloned into pLenti4/V5-DEST vector and viral particles were produced in 293FT cells. Oct4 viral particles were used to infect goat fibroblast cells. Oct4 expression was observed and confirmed in transfected goat fibroblast cells using RT-PCR. Detection of Oct4 protein in western blotting assay affirmed the capacity of over-expression of our Oct4 lentiviral vector. The lentiviral expression construct and recombinant Oct4 protein may be used for reprogramming of somatic cell into induced pluripotent stem cell.

  1. Dihydroneopterin triphosphate epimerase of Escherichia coli: purification, genetic cloning, and expression.

    PubMed Central

    Haussmann, C; Rohdich, F; Lottspeich, F; Eberhardt, S; Scheuring, J; Mackamul, S; Bacher, A

    1997-01-01

    The enzyme catalyzing the epimerization at position 2' of dihydroneopterin triphosphate was purified by a factor of about 10,000 from cell extract of Escherichia coli. The cognate gene was cloned, sequenced, expressed, and mapped to kb 2427 on the E. coli chromosome. PMID:9006053

  2. Biosynthesis of aminoglycoside antibiotics: cloning, expression and characterisation of an aminotransferase involved in the pathway to 2-deoxystreptamine.

    PubMed

    Huang, Fanglu; Li, Yanyan; Yu, Jinquan; Spencer, Jonathan B

    2002-12-07

    The gene btrR from Bacillus circulans has been cloned and expressed and shown to produce a protein which catalyses the transamination of 2-deoxy-scyllo-inosose to give 2-deoxy-scyllo-inosamine, an intermediate in the biosynthesis of 2-deoxystreptamine.

  3. Luciferase assay to study the activity of a cloned promoter DNA fragment.

    PubMed

    Solberg, Nina; Krauss, Stefan

    2013-01-01

    Luciferase based assays have become an invaluable tool for the analysis of cloned promoter DNA fragments, both for verifying the ability of a potential promoter fragment to drive the expression of a luciferase reporter gene in various cellular contexts, and for dissecting binding elements in the promoter. Here, we describe the use of the Dual-Luciferase(®) Reporter Assay System created by Promega (Promega Corporation, Wisconsin, USA) to study the cloned 6.7 kilobases (kb) mouse (m) Tcf3 promoter DNA fragment in mouse embryonic derived neural stem cells (NSC). In this system, the expression of the firefly luciferase driven by the cloned mTcf3 promoter DNA fragment (including transcription initiation sites) is correlated with a co-transfected control reporter expressing Renilla luciferase from the herpes simplex virus (HSV) thymidine kinase promoter. Using an internal control reporter allows to normalize the activity of the experimental reporter to the internal control, which minimizes experimental variability.

  4. Cloning HSP70 and HSP90 genes of kaluga (Huso dauricus) and the effects of temperature and salinity stress on their gene expression.

    PubMed

    Peng, Guogan; Zhao, Wen; Shi, Zhenguang; Chen, Huirong; Liu, Yang; Wei, Jie; Gao, Fengying

    2016-03-01

    The genes encoding HSP70 and HSP90 proteins were isolated from kaluga by homologous cloning and rapid amplification of complementary DNA (cDNA) ends (RACE). HSP70 (GenBank accession no. KP050541) and HSP90 (GenBank accession no. KP050542) cDNAs were composed of 2275 and 2718 bp and encoded polypeptides of 650 and 725 amino acids, respectively. Basic Local Alignment Search Tool (BLAST) analysis showed that HSP70 and HSP90 of kaluga shared high identities with those of Acipenser ruthenus, Acipenser schrenckii, and Acipenser baerii (98-99 %). Fluorescent real-time RT-PCR under unstressed conditions revealed that HSP70 and HSP90 were expressed in 11 different tissues of kaluga. Messenger RNA (mRNA) expressions of both HSP70 and HSP90 were highest in the intestine and lowest in the muscle. In addition, the patterns of mRNA expression of HSP70 and HSP90 were similar, although the level of expression was more in HSP90 than in HSP70 (P < 0.05).We also analyzed patterns of HSP70 and HSP90 expression in the muscle, gill, and liver of kaluga under different combinations of temperature and salinity stress, including temperatures of 4,10, 25, and 28 °C at 0 ppt salinity, and salinities of 10, 20, 30, and 40 ppt at 16 °C, where 16 °C at 0 ppt (parts per thousand) served as the control. We found that levels of mRNA expression of both HSP70 and HSP90 were highest at 4 °C in the muscle, gill, and liver and changed little with salinity stress. These results increase understanding of the mechanisms of stress response of cold freshwater fish.

  5. Identification and Characterization of Three Orchid MADS-Box Genes of the AP1/AGL9 Subfamily during Floral Transition1

    PubMed Central

    Yu, Hao; Goh, Chong Jin

    2000-01-01

    Gene expressions associated with in vitro floral transition in an orchid hybrid (Dendrobium grex Madame Thong-In) were investigated by differential display. One clone, orchid transitional growth related gene 7 (otg7), encoding a new MADS-box gene, was identified to be specifically expressed in the transitional shoot apical meristem (TSAM). Using this clone as a probe, three orchid MADS-box genes, DOMADS1, DOMADS2, and DOMADS3, were subsequently isolated from the TSAM cDNA library. Phylogenetic analyses show that DOMADS1 and DOMADS2 are new members of the AGL2 subfamily and SQUA subfamily, respectively. DOMADS3 contains the signature amino acids as with the members in the independent OSMADS1 subfamily separated from the AGL2 subfamily. All three of the DOMADS genes were expressed in the TSAM during floral transition and later in mature flowers. DOMADS1 RNA was uniformly expressed in both of the inflorescence meristem and the floral primordium and later localized in all of the floral organs. DOMADS2 showed a novel expression pattern that has not been previously characterized for any other MADS-box genes. DOMADS2 transcript was expressed early in the 6-week-old vegetative shoot apical meristem in which the obvious morphological change to floral development had yet to occur. It was expressed throughout the process of floral transition and later in the columns of mature flowers. The onset of DOMADS3 transcription was in the early TSAM at the stage before the differentiation of the first flower primordium. Later, DOMADS3 transcript was only detectable in the pedicel tissues. Our results suggest that the DOMADS genes play important roles in the process of floral transition. PMID:10938351

  6. Development of the gateway recycling cloning system for multiple linking of expression cassettes in a defined order, and direction on gateway compatible binary vectors.

    PubMed

    Kimura, Tetsuya; Nakao, Akihide; Murata, Sachiko; Kobayashi, Yasuyuki; Tanaka, Yuji; Shibahara, Kenta; Kawazu, Tetsu; Nakagawa, Tsuyoshi

    2013-01-01

    We developed the Gateway recycling cloning system, which allows multiple linking of expression cassettes by multiple rounds of the Gateway LR reaction. Employing this system, the recycling donor vector pRED419 was subjected to the first LR reaction with an attR1-attR2 type destination vector. Then conversion vector pCON was subjected to an LR reaction to restore the attR1-attR2 site on the destination vector for the next cloning cycle. By repetition of these two simple steps, we linked four expression cassettes of a reporter gene in Gateway binary vector pGWB1, introduced the constructs into tobacco BY-2 cells, and observed the expression of transgenes.

  7. Expression and regulation of the penicillin G acylase gene from Proteus rettgeri cloned in Escherichia coli.

    PubMed

    Daumy, G O; Williams, J A; McColl, A S; Zuzel, T J; Danley, D

    1986-10-01

    The penicillin G acylase genes from the Proteus rettgeri wild type and from a hyperproducing mutant which is resistant to succinate repression were cloned in Escherichia coli K-12. Expression of both wild-type and mutant P. rettgeri acylase genes in E. coli K-12 was independent of orientation in the cloning vehicle and apparently resulted from recognition in E. coli of the P. rettgeri promoter sequences. The P. rettgeri acylase was secreted into the E. coli periplasmic space and was composed of subunits electrophoretically identical to those made in P. rettgeri. Expression of these genes in E. coli K-12 was not repressed by succinate as it is in P. rettgeri. Instead, expression of the enzymes was regulated by glucose catabolite repression.

  8. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  9. Cloning and expression of autogenes encoding RNA poly,erases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  10. Altering the selection capabilities of common cloning vectors via restriction enzyme mediated gene disruption

    PubMed Central

    2013-01-01

    Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker. Results We have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered. Conclusions Changing the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain. PMID:23497512

  11. Highly osteogenic PDL stem cell clones specifically express elevated levels of ICAM1, ITGB1 and TERT.

    PubMed

    Sununliganon, Laddawun; Singhatanadgit, Weerachai

    2012-01-01

    Cells derived from the periodontal ligament (PDL) have previously been reported to have stem cell-like characteristics (PDL stem cells; PDLSCs) and play an important part in bone engineering, including that of alveolar bone. However, these populations have been heterogeneous, and thus far no specific marker has yet been established from adult human stem cells derived from PDL tissue. We have previously isolated highly purified single cell-derived PDLSC clones and delineated their phenotypic and functional characteristics. In this report, we further obtained three homogeneous and distinct PDLSC clones demonstrating low, moderate and high mineralized matrix forming ability-namely PC12, PC4 and PC3, respectively, and the expression of mesenchymal stem cell pathway-specific genes in these clones was investigated. PCR array revealed that the expression of intercellular adhesion molecule 1 (ICAM1), integrin beta 1 (ITGB1) and telomerase reverse transcriptase (TERT) was associated with highly osteogenic PDLSC clones, as determined by the expression of key osteoblastic markers and their ability to form alizarin red S positive mineralized matrix in vitro. The present results suggest that these three mesenchymal stem cell-associated markers could potentially be used to isolate PDLSCs with high osteogenic capability for engineering new bone.

  12. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  13. CD34 expression in human hair follicles and tricholemmoma: a comprehensive study.

    PubMed

    Misago, Noriyuki; Toda, Shuji; Narisawa, Yutaka

    2011-08-01

    There has recently been controversy regarding whether clone My10 is superior to clone QBEND-10 for labeling cells of tricholemmal lineage. Moreover, there have been no previous reports on the CD34 expression in human vellus hair follicles. We performed a comprehensive study of the CD34 expression in human terminal and vellus hair follicles and in 10 tricholemmomas using both the QBEND-10 and the My10 clones. We also performed two different procedures of immunostaining, which included the using of the standard avidin-biotin-peroxidase (ABC) complex system and the Envision system. The most sensitive marker of CD34 for normal human hair follicles and tricholemmomas is QBEND-10 using the ABC system. The degree and strength of the CD34 positive staining mainly depended on the method being used (whether it was the ABC system or the Envision system) rather than the clone. CD34 staining was rarely (20-30%) seen in the anagen and catagen vellus hair follicles, and could only be seen by the QBEND-10 clone using the ABC system. CD34 expression in the tricholemmomas represented either a diffuse or peripheral pattern. CD34 may not be a tricholemmal lineage-specific antigen, but may be related to certain functions of the cells. Copyright © 2011 John Wiley & Sons A/S.

  14. Treatment of porcine donor cells and reconstructed embryos with the antioxidant melatonin enhances cloning efficiency.

    PubMed

    Pang, Yun-Wei; An, Lei; Wang, Peng; Yu, Yong; Yin, Qiu-Dan; Wang, Xiao-Hong; Xin-Zhang; Qian-Zhang; Yang, Mei-Ling; Min-Guo; Wu, Zhong-Hong; Tian, Jian-Hui

    2013-05-01

    This study was conducted to investigate the effect of melatonin during the culture of donor cells and cloned embryos on the in vitro developmental competence and quality of cloned porcine embryos. At concentrations of 10(-6 )M or 10(-8) M, melatonin significantly enhanced the proliferation of porcine fetal fibroblasts (PFFs), and the blastocyst rate was significantly increased in the 10(-10) M melatonin-treated donor cell group. Cloned embryo development was also improved in embryo culture medium that was supplemented with 10(-9) M or 10(-12) M melatonin. When both donor cells and cloned embryos were treated with melatonin, the cleavage rate and total cell number of blastocysts were not significantly affected; however, the blastocyst rate was increased significantly (20.0% versus 11.7%). TUNEL assays showed that combined melatonin treatment reduced the rate of apoptotic nuclei (3.6% versus 6.1%). Gene expression analysis of the apoptosis-related genes BAX, BCL2L1, and p53 showed that the expression of BCL2L1 was significantly elevated 2.7-fold relative to the control group, while the expression of BAX and p53 was significantly decreased by 3.7-fold and 23.2-fold, respectively. In addition, we detected the expression of two melatonin receptors (MT1 and MT2) in PFFs but not in porcine cloned embryos. We conclude that exogenous melatonin enhances the development of porcine cloned embryos and improves embryo quality by inhibiting p53-mediated apoptotic pathway. The proliferation of PFFs may be mediated by receptor binding, but the beneficial effects of melatonin on embryonic development may be receptor-independent, possibly through melatonin's ability to directly scavenge free radicals. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  15. Diversity of chloroplast genome among local clones of cocoa (Theobroma cacao, L.) from Central Sulawesi

    NASA Astrophysics Data System (ADS)

    Suwastika, I. Nengah; Pakawaru, Nurul Aisyah; Rifka, Rahmansyah, Muslimin, Ishizaki, Yoko; Cruz, André Freire; Basri, Zainuddin; Shiina, Takashi

    2017-02-01

    Chloroplast genomes typically range in size from 120 to 170 kilo base pairs (kb), which relatively conserved among plant species. Recent evaluation on several species, certain unique regions showed high variability which can be utilized in the phylogenetic analysis. Many fragments of coding regions, introns, and intergenic spacers, such as atpB-rbcL, ndhF, rbcL, rpl16, trnH-psbA, trnL-F, trnS-G, etc., have been used for phylogenetic reconstructions at various taxonomic levels. Based on that status, we would like to analysis the diversity of chloroplast genome within species of local cacao (Theobroma cacao L.) from Central Sulawesi. Our recent data showed, there were more than 20 clones from local farming in Central Sulawesi, and it can be detected based on phenotypic and nuclear-genome-based characterization (RAPD- Random Amplified Polymorphic DNA and SSR- Simple Sequences Repeat) markers. In developing DNA marker for this local cacao, here we also included analysis based on the variation of chloroplast genome. At least several regions such as rpl32-TurnL, it can be considered as chloroplast markers on our local clone of cocoa. Furthermore, we could develop phylogenetic analysis in between clones of cocoa.

  16. MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for Plants1[OPEN

    PubMed Central

    Siligato, Riccardo; Wang, Xin; Yadav, Shri Ram; Lehesranta, Satu; Ma, Guojie; Ursache, Robertas; Sevilem, Iris; Zhang, Jing; Gorte, Maartje; Prasad, Kalika; Heidstra, Renze

    2016-01-01

    A powerful method to study gene function is expression or overexpression in an inducible, cell type-specific system followed by observation of consequent phenotypic changes and visualization of linked reporters in the target tissue. Multiple inducible gene overexpression systems have been developed for plants, but very few of these combine plant selection markers, control of expression domains, access to multiple promoters and protein fusion reporters, chemical induction, and high-throughput cloning capabilities. Here, we introduce a MultiSite Gateway-compatible inducible system for Arabidopsis (Arabidopsis thaliana) plants that provides the capability to generate such constructs in a single cloning step. The system is based on the tightly controlled, estrogen-inducible XVE system. We demonstrate that the transformants generated with this system exhibit the expected cell type-specific expression, similar to what is observed with constitutively expressed native promoters. With this new system, cloning of inducible constructs is no longer limited to a few special cases but can be used as a standard approach when gene function is studied. In addition, we present a set of entry clones consisting of histochemical and fluorescent reporter variants designed for gene and promoter expression studies. PMID:26644504

  17. Molecular cloning and expression in streptomyces lividans of a hygromycin B phosphotransferase gene from Streptomyces hygroscopicus.

    PubMed

    Malpartida, F; Zalacaín, M; Jiménez, A; Davies, J

    1983-11-30

    The gene encoding the phosphotransferase enzyme that modifies hygromycin B in its producing organism Streptomyces hygroscopicus, has been cloned in the Streptomyces vector pIJ41. Two plasmids, pFM4 and pFM6, containing 2.1 and 19.6 kb inserts of Streptomyces hygroscopicus DNA, respectively, which express the modifying enzyme, have been isolated. A 3.1 kb PstI restriction fragment from pFM4 was inserted in the Streptomyces vector pIJ350 and the resulting plasmids, pMZ11.1 and pMZ11.2, express the hygromycin B-resistance phenotype. The utility of this dominant marker for cloning experiments is discussed in the text.

  18. Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells.

    PubMed

    Spidel, Jared L; Vaessen, Benjamin; Chan, Yin Yin; Grasso, Luigi; Kline, J Bradford

    2016-12-01

    Single-cell based amplification of immunoglobulin variable regions is a rapid and powerful technique for cloning antigen-specific monoclonal antibodies (mAbs) for purposes ranging from general laboratory reagents to therapeutic drugs. From the initial screening process involving small quantities of hundreds or thousands of mAbs through in vitro characterization and subsequent in vivo experiments requiring large quantities of only a few, having a robust system for generating mAbs from cloning through stable cell line generation is essential. A protocol was developed to decrease the time, cost, and effort required by traditional cloning and expression methods by eliminating bottlenecks in these processes. Removing the clonal selection steps from the cloning process using a highly efficient ligation-independent protocol and from the stable cell line process by utilizing bicistronic plasmids to generate stable semi-clonal cell pools facilitated an increased throughput of the entire process from plasmid assembly through transient transfections and selection of stable semi-clonal cell pools. Furthermore, the time required by a single individual to clone, express, and select stable cell pools in a high-throughput format was reduced from 4 to 6months to only 4 to 6weeks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Cloning of Trametes versicolar genes induced by nitrogen starvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trudel, P.; Courchesne, D.; Roy, C.

    1988-06-01

    We have screened a genomic library of Trametes versicolar for genes whose expression is associated with nitrogen starvation, which has been shown to induce ligninolytic activity. Using two different approaches based on differential expression, we isolated 29 clones. These were shown by restriction mapping and cross-hybridization to code for 11 distinct differentially expressed genes. Northern analysis of the kinetics of expression of these genes revealed that at least four of them have kinetics of induction that parallel kinetics of induction of ligninolytic activity.

  20. Cytotoxic T cell clones isolated from ovarian tumor-infiltrating lymphocytes recognize multiple antigenic epitopes on autologous tumor cells.

    PubMed

    Ioannides, C G; Freedman, R S; Platsoucas, C D; Rashed, S; Kim, Y P

    1991-03-01

    CTL clones were developed from tumor infiltrating lymphocytes (TIL) from the ascites of a patient with ovarian carcinoma by coculture of TIL with autologous tumor cells and subsequent cloning in the presence of autologous tumor cells. These CTL clones expressed preferential cytolytic activity against autologous tumor cells but not against allogeneic ovarian tumor cells and the NK-sensitive cell line K562. The cytolytic activity of these CTL against autologous tumors was inhibited by anti-TCR (WT31 mAb), anti-HLA class I, and anti-CD3 mAb but not by the NK function antibody Leu 11b. Cloning of the autologous tumor cells in vitro revealed that the CTL clones of the ovarian TIL expressed differential abilities to lyse autologous tumor cell clones. The specificity analysis of these autologous tumor specific CTL suggested that they recognize several antigenic determinants present on the ovarian tumor cells. Our results indicate the presence of at least three antigenic epitopes on the tumor cells (designated OVA-1A, OVA-1B, and OVA-1C), one of which (OVA-1C) is unstable. These determinants are present either simultaneously or separately, and six types of ovarian clones can be distinguished on the basis of their expression. These results indicate that CTL of the TIL detect intratumor antigenic heterogeneity. The novel heterogeneity identified within the ovarian tumor cells in this report may be of significance for understanding cellular immunity in ovarian cancer and developing adoptive specific immunotherapeutic approaches in ovarian cancer.

  1. A herpes simplex virus 2 glycoprotein D mutant generated by bacterial artificial chromosome mutagenesis is severely impaired for infecting neuronal cells and infects only Vero cells expressing exogenous HVEM.

    PubMed

    Wang, Kening; Kappel, Justin D; Canders, Caleb; Davila, Wilmer F; Sayre, Dean; Chavez, Mayra; Pesnicak, Lesley; Cohen, Jeffrey I

    2012-12-01

    We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine.

  2. A Herpes Simplex Virus 2 Glycoprotein D Mutant Generated by Bacterial Artificial Chromosome Mutagenesis Is Severely Impaired for Infecting Neuronal Cells and Infects Only Vero Cells Expressing Exogenous HVEM

    PubMed Central

    Kappel, Justin D.; Canders, Caleb; Davila, Wilmer F.; Sayre, Dean; Chavez, Mayra; Pesnicak, Lesley; Cohen, Jeffrey I.

    2012-01-01

    We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine. PMID:22993162

  3. Expression and localization of exocytic and recycling Rabs from Magnaporthe oryzae in mammalian cells

    PubMed Central

    Qi, Yaoyao; Marlin, M. Caleb; Liang, Zhimin; Zhang, Dongmei; Zhou, Jie; Wang, Zonghua; Lu, Guodong; Li, Guangpu

    2018-01-01

    Rab GTPases are master regulators of intracellular membrane trafficking along endocytic and exocytic pathways. In this chapter, we began to characterize the exocytic and recycling Rabs from the filamentous fungus Magnaporthe oryzae (M. oryzae) that causes the rice blast disease. Among the 11 putative Rabs identified from the M. oryzae genome database (MoRabs), MoRab1, MoRab8, and MoRab11 appear orthologs of mammalian Rab1, Rab8, and Rab11 and likely function in exocytosis and endosomal recycling. To test this contention, we cloned, expressed, and determined intracellular localization of the three MoRabs in mammalian cells, in comparison to their human counterparts (hRabs). The MoRabs were well expressed as GFP fusion proteins and colocalized with the tdTomato-labeled hRabs on exocytic and recycling organelles, as determined by immunoblot analysis and confocal fluorescence microscopy. The colocalization supports the contention that the MoRabs are indeed Rab orthologs and may play important roles in the development and pathogenicity of M. oryzae. PMID:26360026

  4. Expression and Localization of Plant Protein Disulfide Isomerase.

    PubMed Central

    Shorrosh, B. S.; Subramaniam, J.; Schubert, K. R.; Dixon, R. A.

    1993-01-01

    A cDNA clone encoding a putative protein disulfide isomerase (PDI, EC 5.3.4.1) from alfalfa (Medicago sativa L.) was expressed in Escherichia coli cells, and an antiserum was raised against the expressed PDI-active protein. The antiserum recognized a protein of approximately 60 kD in extracts from alfalfa, soybean, and tobacco roots and stems. Levels of this protein remained relatively constant on exposure of alfalfa cell suspension cultures to the protein glycosylation inhibitor tunicamycin, whereas a slightly lower molecular mass form, also detected by the antiserum, was induced by this treatment. A lower molecular mass form of PDI was also observed in roots of alfalfa seedlings during the first 5 weeks after germination. PDI levels increased in developing soybean seeds up to 17 d after fertilization and then declined. Tissue print immunoblots revealed highest levels of PDI protein in the cambial tissues of soybean stems and petioles and in epidermal, subepidermal, cortical, and pith tissues of stems of alfalfa and tobacco. Immunogold electron microscopy confirmed the localization of PDI to the endoplasmic reticulum in soybean root nodules. PMID:12231974

  5. CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT S-ADENOSYL-1-METHIONINE: ARSENIC (III) METHYLTRANSFERASE

    EPA Science Inventory

    CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT
    S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE

    Stephen B. Waters, Ph.D., Miroslav Styblo, Ph.D., Melinda A. Beck, Ph.D., University of North Carolina at Chapel Hill; David J. Thomas, Ph.D., U.S. Environmental...

  6. CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE (CYT19)

    EPA Science Inventory

    CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE (cyt19)

    Stephen B. Waters1 , Felicia Walton1 , Miroslav Styblo1 , Karen Herbin-Davis2, and David J. Thomas2 1 School of Medicine, University of North Carolina at Chape...

  7. Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118

    USDA-ARS?s Scientific Manuscript database

    We have cloned a glucansucrase from the type strain of Leuconostoc mesenteroides (NRRL B-1118; ATCC 8293) and successfully expressed the enzyme in Escherichia coli. The recombinant processed enzyme has a putative sequence identical to the predicted secreted native enzyme (1,473 amino acids; 161,468...

  8. Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae)

    USDA-ARS?s Scientific Manuscript database

    The availability of sequenced insect genomes has allowed for discovery and functional characterization of novel genes and proteins. We report use of the Tribolium castaneum (Herbst) (red flour beetle) genome to identify, clone, express, and characterize a novel endo-ß-1,4-glucanase we named TcEG1 (...

  9. Chromosomal Organization and Sequence Diversity of Genes Encoding Lachrymatory Factor Synthase in Allium cepa L.

    PubMed Central

    Masamura, Noriya; McCallum, John; Khrustaleva, Ludmila; Kenel, Fernand; Pither-Joyce, Meegham; Shono, Jinji; Suzuki, Go; Mukai, Yasuhiko; Yamauchi,, Naoki; Shigyo, Masayoshi

    2012-01-01

    Lachrymatory factor synthase (LFS) catalyzes the formation of lachrymatory factor, one of the most distinctive traits of bulb onion (Allium cepa L.). Therefore, we used LFS as a model for a functional gene in a huge genome, and we examined the chromosomal organization of LFS in A. cepa by multiple approaches. The first-level analysis completed the chromosomal assignment of LFS gene to chromosome 5 of A. cepa via the use of a complete set of A. fistulosum–shallot (A. cepa L. Aggregatum group) monosomic addition lines. Subsequent use of an F2 mapping population from the interspecific cross A. cepa × A. roylei confirmed the assignment of an LFS locus to this chromosome. Sequence comparison of two BAC clones bearing LFS genes, LFS amplicons from diverse germplasm, and expressed sequences from a doubled haploid line revealed variation consistent with duplicated LFS genes. Furthermore, the BAC-FISH study using the two BAC clones as a probe showed that LFS genes are localized in the proximal region of the long arm of the chromosome. These results suggested that LFS in A. cepa is transcribed from at least two loci and that they are localized on chromosome 5. PMID:22690373

  10. cDNA cloning, tissue distribution, and chromosomal localization of myelodysplasia/myeloid leukemia factor 2 (MLF2).

    PubMed

    Kuefer, M U; Look, A T; Williams, D C; Valentine, V; Naeve, C W; Behm, F G; Mullersman, J E; Yoneda-Kato, N; Montgomery, K; Kucherlapati, R; Morris, S W

    1996-07-15

    A fusion gene between nucleophosmin (NPM) and myelodysplasia/myeloid leukemia factor 1 (MLF1) is formed by a recurrent t(3;5)(q25.1;q34) in myelodysplastic syndrome and acute myeloid leukemia. Here we report the identification of a novel gene, MLF2, which contains an open reading frame of 744 bp encoding a 248-amino-acid protein highly related to the previously identified MLF1 protein (63% similarity, 40% identity). In contrast to the tissue-restricted expression pattern of MLF1, the MLF2 messenger RNA is expressed ubiquitously. The MLF2 gene locus was mapped by fluorescence in situ hybridization to human chromosome 12p13, a chromosomal region frequently involved in translocations and deletions in acute leukemias of lymphoid or myeloid lineage. In a physical map of chromosome 12, MLF2 was found to reside on the yeast artificial chromosome clone 765b9. Southern blotting analysis of malignant cell DNAs prepared from a series of acute lymphoblastic leukemia cases with translocations involving chromosome arm 12p, as well as a group of acute myeloid leukemias with various cytogenetic abnormalities, failed to reveal MLF2 gene rearrangements.

  11. Assignment of chromosomal locus and evidence for alternatively spliced mRNAs of a human sperm membrane protein (hSMP-1).

    PubMed

    Wang, H; Miao, S; Chen, D; Wang, L; Koide, S S

    1999-10-06

    The gene (HSD-1) coding a human sperm membrane protein (hSMP-1) was isolated from a human testis cDNA expression library using antibodies found in the serum of an infertile woman. HSD-1 was localized to a single locus on chromosome 9 and assigned to band 9p12-p13 by fluorescent in situ hybridization (FISH) mapping and DAPI (4,6-diamidino-2-phenylindole) banding, using rat/human somatic cell hybrids and metaphase chromosomes of human lymphocytes. In rescreening a testis lambdagt10 cDNA expression library, the full-length cDNA (HSD-1) and several truncated cDNAs with heterologous regions were isolated from positive clones. The heterology consisted of deletion, insertion and alteration of the 5'-end. These heterologous truncated fragments may be produced by alternative splicing of mRNAs. Two recombinant prokaryotic expression vectors were constructed with one of the heterologous fragment (clone #26) with and without the alternative 5'-end. Escherichia coli transfected with the construct containing the alternative 5'-end failed to produce the recombinant product, whereas those transfected with the vector lacking the 5'-end produced hSMP-1. DNASIS analysis of the structure of #26 mRNA suggests that the 5'-end has a stable secondary configuration that may maintain the mRNA in an inactivated state, whereby hindering its translation and preventing the expression of the gene.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartkiewicz, Karol; Miranowicz, Adam

    We find an optimal quantum cloning machine, which clones qubits of arbitrary symmetrical distribution around the Bloch vector with the highest fidelity. The process is referred to as phase-independent cloning in contrast to the standard phase-covariant cloning for which an input qubit state is a priori better known. We assume that the information about the input state is encoded in an arbitrary axisymmetric distribution (phase function) on the Bloch sphere of the cloned qubits. We find analytical expressions describing the optimal cloning transformation and fidelity of the clones. As an illustration, we analyze cloning of qubit state described by themore » von Mises-Fisher and Brosseau distributions. Moreover, we show that the optimal phase-independent cloning machine can be implemented by modifying the mirror phase-covariant cloning machine for which quantum circuits are known.« less

  13. Heat Stable Enzymes from Thermophiles

    DTIC Science & Technology

    1998-02-01

    final product and is somewhat messy to work with. Therefore, alternatives were tested. However, no combination of corn syrup , alternative sugars and...INTRODUCTION 9 CLONING OF ALKALINE PHOSPHATASE GENE AND PRODUCTION OF HIGH SPECIFIC ACTIVITY ENZYME 9 Cloning into E. coil and expression of high activity...JKR209, into an alternative, better producing organism. CLONING OF ALKALINE PHOSPHATASE GENE AND PRODUCTION OF HIGH SPECIFIC ACTIVITY ENZYME Cloning into

  14. Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Xia, M.; Liu, Z.; Wang, W.; Yang, T.; Sathyanarayanan, P. V.; Franceschi, V. R.

    1999-01-01

    Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) was cloned from developing anthers of lily (Lilium longiflorum Thumb. cv. Nellie White) and tobacco (Nicotiana tabacum L. cv. Xanthi). Previous biochemical characterization and structure/function studies had revealed that CCaMK has dual modes of regulation by Ca(2+) and Ca(2+)/calmodulin. The unique structural features of CCaMK include a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain. The existence of these three features in a single polypeptide distinguishes it from other kinases. Western analysis revealed that CCaMK is expressed in a stage-specific manner in developing anthers. Expression of CCaMK was first detected in pollen mother cells and continued to increase, reaching a peak around the tetrad stage of meiosis. Following microsporogenesis, CCaMK expression rapidly decreased and at later stages of microspore development, no expression was detected. A tobacco genomic clone of CCaMK was isolated and transgenic tobacco plants were produced carrying the CCaMK promoter fused to the beta-glucuronidase reporter gene. Both CCaMK mRNA and protein were detected in the pollen sac and their localizations were restricted to the pollen mother cells and tapetal cells. Consistent results showing a stage-specific expression pattern were obtained by beta-glucuronidase analysis, in-situ hybridization and immunolocalization. The stage- and tissue-specific appearance of CCaMK in anthers suggests that it could play a role in sensing transient changes in free Ca(2+) concentration in target cells, thereby controlling developmental events in the anther.

  15. Cloning and pattern of expression of the shiro-uo vasa gene during embryogenesis and its roles in PGC development.

    PubMed

    Miyake, Akimitsu; Saito, Taiju; Kashiwagi, Noboru; Ando, Daisuke; Yamamoto, Akitsugu; Suzuki, Tohru; Nakatsuji, Norio; Nakatsuji, Takako

    2006-01-01

    The vasa genes are expressed in the germ cell lineage in many organisms, but their expression patterns show large variations. Recent studies suggest that vasa transcripts are involved in germ cell lineage development. In this paper, we isolated the vasa cDNA clone from a teleost, shiro-uo, Leucopsarion petersii and examined its expression pattern during embryogenesis. Then, we examined the functional significance of vasa mRNA during the formation of primordial germ cells (PGCs). The amino acid sequence of shiro-uo VASA is 61.1% identical to that of zebrafish. In whole-mount in situ hybridization, vasa transcripts appeared at the 4- and 8-cell stages as four spots at both ends of two cleavage planes between the lower tier of blastomeres and the yolk cell mass. At the 16-cell stage, eight spots were observed. After the blastula stage, shiro-uo vasa transcripts showed similar localization as in the zebrafish. Ultrastructural analysis of 4-cell stage embryos revealed the presence of a subcellular organelle that resembled 'nuage' in the germ cell lineage observed in the embryos of various organisms. We carried out micromanipulation of 4- or 8-cell stage embryos to remove the vasa mRNA-containing spots and then measured the number of the vasa-expressing PGCs in the genital ridge of the manipulated embryos. The numbers decreased when all of the four spots were removed, indicating that the vasa-containing spots at early cleavage stages have important functions in the development of PGCs.

  16. Improved production of genetically modified fetuses with homogeneous transgene expression after transgene integration site analysis and recloning in cattle.

    PubMed

    Bressan, Fabiana Fernandes; Dos Santos Miranda, Moyses; Perecin, Felipe; De Bem, Tiago Henrique; Pereira, Flavia Thomaz Verechia; Russo-Carbolante, Elisa Maria; Alves, Daiani; Strauss, Bryan; Bajgelman, Marcio; Krieger, José Eduardo; Binelli, Mario; Meirelles, Flavio Vieira

    2011-02-01

    Animal cloning by nuclear transfer (NT) has made the production of transgenic animals using genetically modified donor cells possible and ensures the presence of the gene construct in the offspring. The identification of transgene insertion sites in donor cells before cloning may avoid the production of animals that carry undesirable characteristics due to positional effects. This article compares blastocyst development and competence to establish pregnancies of bovine cloned embryos reconstructed with lentivirus-mediated transgenic fibroblasts containing either random integration of a transgene (random integration group) or nuclear transfer derived transgenic fibroblasts with known transgene insertion sites submitted to recloning (recloned group). In the random integration group, eGFP-expressing bovine fetal fibroblasts were selected by fluorescence activated cell sorting (FACS) and used as nuclei donor cells for NT. In the recloned group, a fibroblast cell line derived from a transgenic cloned fetus was characterized regarding transgene insertion and submitted to recloning. The recloned group had higher blastocyst production (25.38 vs. 14.42%) and higher percentage of 30-day pregnancies (14.29 vs. 2.56%) when compared to the random integration group. Relative eGFP expression analysis in fibroblasts derived from each cloned embryo revealed more homogeneous expression in the recloned group. In conclusion, the use of cell lines recovered from transgenic fetuses after identification of the transgene integration site allowed for the production of cells and fetuses with stable transgene expression, and recloning may improve transgenic animal yields.

  17. Single-step colony assay for screening antibody libraries.

    PubMed

    Kato, Mieko; Hanyu, Yoshiro

    2017-08-10

    We describe a method, single-step colony assay, for simple and rapid screening of single-chain Fv fragment (scFv) libraries. Colonies of Escherichia coli expressing the scFv library are formed on a hydrophilic filter that is positioned in contact with a membrane coated with an antigen. scFv expression is triggered upon treatment of colonies with an induction reagent, following which scFvs are secreted from the cells and diffused to the antigen-coated membrane. scFvs that exhibit binding affinity for the antigen are captured by the membrane-immobilized antigen. Lastly, detection of scFv binding of the antigen on the membrane allows identification of the clones on the filter that express antigen-specific scFvs. We tested this methodology by using an anti-rabbit IgG scFv, scFv(A10B), and a rat immune scFv library. Experiments conducted using scFv(A10B) revealed that this method improves scFv expression during the colony assay. By using our method to screen an immune library of 3×10 3 scFv clones, we established several clones exhibiting affinity for the antigen. Moreover, we tested 7 other antigens, including peptides, and successfully identified positive clones. We believe that this simple procedure and controlled scFv expression of the single-step colony assay could make the antibody screening both rapid and reliable and lead to successful isolation of positive clones from antibody libraries. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    PubMed Central

    Yuan, Lin; Wang, Anfeng; Yao, Chaogang; Huang, Yongye; Duan, Feifei; Lv, Qinyan; Wang, Dongxu; Ouyang, Hongsheng; Li, Zhanjun; Lai, Liangxue

    2014-01-01

    Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos. PMID:25429426

  19. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system.

    PubMed

    Krebber, A; Bornhauser, S; Burmester, J; Honegger, A; Willuda, J; Bosshard, H R; Plückthun, A

    1997-02-14

    A prerequisite for the use of recombinant antibody technologies starting from hybridomas or immune repertoires is the reliable cloning of functional immunoglobulin genes. For this purpose, a standard phage display system was optimized for robustness, vector stability, tight control of scFv-delta geneIII expression, primer usage for PCR amplification of variable region genes, scFv assembly strategy and subsequent directional cloning using a single rare cutting restriction enzyme. This integrated cloning, screening and selection system allowed us to rapidly obtain antigen binding scFvs derived from spleen-cell repertoires of mice immunized with ampicillin as well as from all hybridoma cell lines tested to date. As representative examples, cloning of monoclonal antibodies against a his tag, leucine zippers, the tumor marker EGP-2 and the insecticide DDT is presented. Several hybridomas whose genes could not be cloned in previous experimental setups, but were successfully obtained with the present system, expressed high amounts of aberrant heavy and light chain mRNAs, which were amplified by PCR and greatly exceeded the amount of binding antibody sequences. These contaminating variable region genes were successfully eliminated by employing the optimized phage display system, thus avoiding time consuming sequencing of non-binding scFv genes. To maximize soluble expression of functional scFvs subsequent to cloning, a compatible vector series to simplify modification, detection, multimerization and rapid purification of recombinant antibody fragments was constructed.

  20. Evidence of drug-response heterogeneity rapidly generated from a single cancer cell.

    PubMed

    Wang, Rong; Jin, Chengmeng; Hu, Xun

    2017-06-20

    One cancer cell line is believed to be composed of numerous clones with different drug sensitivity. We sought to investigate the difference of drug-response pattern in clones from a cell line or from a single cell. We showed that 22 clones derived from 4T1 cells were drastically different from each other with respect to drug-response pattern against 11 anticancer drugs and expression profile of 19 genes associated with drug resistance or sensitivity. Similar results were obtained using daughter clones derived from a single 4T1 cell. Each daughter clone showed distinct drug-response pattern and gene expression profile. Similar results were also obtained using Bcap37 cells. We conclude that a single cancer cell can rapidly produce a population of cells with high heterogeneity of drug response and the acquisition of drug-response heterogeneity is random.

  1. Study the Expression of marA Gene in Ciprofloxacin and Tetracycline Resistant Mutants of Esherichia coli

    PubMed Central

    Pourahmad Jaktaji, Razieh; Ebadi, Rayhaneh

    2013-01-01

    MarA activates two membrane dependent mechanisms of resistance to different antibiotics, such as ciprofloxacin and tetracycline, including promotion of outflux and inhibition of influx of antibiotics. Thus, MarA causes multiple antibiotic resistance phenotype. The activation of these mechanisms needs overexpression of marA. This could happen through mutation in marR. Thus, the aim of this study was to measure marA expression in ciprofloxacin resistant E. coli gyrA mutants and clones with or without marR mutation. For this purpose, real time PCR was used to measure relative expression of marA in above mutants and clones. Results showed that two clones, C14 and C17 overexpressed marA. It is concluded that the level of marA expression is important for activation of above mechanisms. PMID:24523773

  2. Study the Expression of marA Gene in Ciprofloxacin and Tetracycline Resistant Mutants of Esherichia coli.

    PubMed

    Pourahmad Jaktaji, Razieh; Ebadi, Rayhaneh

    2013-01-01

    MarA activates two membrane dependent mechanisms of resistance to different antibiotics, such as ciprofloxacin and tetracycline, including promotion of outflux and inhibition of influx of antibiotics. Thus, MarA causes multiple antibiotic resistance phenotype. The activation of these mechanisms needs overexpression of marA. This could happen through mutation in marR. Thus, the aim of this study was to measure marA expression in ciprofloxacin resistant E. coli gyrA mutants and clones with or without marR mutation. For this purpose, real time PCR was used to measure relative expression of marA in above mutants and clones. Results showed that two clones, C14 and C17 overexpressed marA. It is concluded that the level of marA expression is important for activation of above mechanisms.

  3. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-10-20

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  4. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-11-03

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  5. Positive Selection of γδ CTL by TL Antigen Expressed in the Thymus

    PubMed Central

    Tsujimura, Kunio; Takahashi, Toshitada; Morita, Akimichi; Hasegawa-Nishiwaki, Hitomi; Iwase, Shigeru; Obata, Yuichi

    1996-01-01

    To elucidate the function of the mouse TL antigen in the thymus, we have derived two TL transgenic mouse strains by introducing Tla a -3 of A strain origin with its own promoter onto a C3H background with no expression of TL in the thymus. These transgenic mouse strains, both of which express high levels of Tlaa-3-TL antigen in their thymus, were analyzed for their T cell function with emphasis on cytotoxic T lymphocyte (CTL) generation. A T cell response against TL was induced in Tg.Tlaa-3-1, Tg.Tlaa-3-2, and control C3H mice by skin grafts from H-2K b/T3 b transgenic mice, Tg.Con.3-1, expressing T3b-TL ubiquitously. Spleen cells from mice that had rejected the T3b-TL positive skin grafts were restimulated in vitro with Tg.Con.3-1 irradiated spleen cells. In mixed lymphocyte cultures (MLC), approximately 20% and 15% of Thy-1+ T cells derived from Tg.Tlaa-3-1 and Tg.Tlaa-3-2, respectively, expressed TCRγδ, whereas almost all those from C3H expressed TCRαβ. The MLC from Tg.Tlaa-3-2 and C3H demonstrated high CTL activity against TL, while those from Tg.Tlaa-3-1 had little or none. The generation of γδ CTL recognizing TL in Tg.Tlaa-3-2, but not C3H mice, was confirmed by the establishment of CTL clones. A total of 14 γδ CTL clones were established from Tg.Tlaa-3-2, whereas none were obtained from C3H. Of the 14 γδ CTL clones, 8 were CD8+ and 6 were CD4−CD8− double negative. The CTL activity of all these clones was TL specific and inhibited by anti-TL, but not by anti-H-2 antibodies, demonstrating that they recognize TL directly without antigen presentation by H-2. The CTL activity was blocked by antibodies to TCRγδ and CD3, and also by antibodies to CD8α and CD8β in CD8+ clones, showing that the activity was mediated by TCRγδ and coreceptors. The thymic origin of these γδ CTL clones was indicated by the expression of Thy-1 and Ly-1 (CD5), and also CD8αβ heterodimers in CD8+ clones on their surfaces and by the usage of TCR Vγ4 chains in 12 of the 14 clones. Taken together, these results suggest that Tlaa-3-TL antigen expressed in the thymus engages in positive selection of a sizable population of γδ T cells. PMID:8976173

  6. RNAi-dependent and -independent antiviral phenotypes of chromosomally integrated shRNA clones: role of VASP in respiratory syncytial virus growth.

    PubMed

    Musiyenko, Alla; Bitko, Vira; Barik, Sailen

    2007-07-01

    Stable RNA interference (RNAi) is commonly achieved by recombinant expression of short hairpin RNA (shRNA). To generate virus-resistant cell lines, we cloned a shRNA cassette against the phosphoprotein gene of respiratory syncytial virus (RSV) into a polIII-driven plasmid vector. Analysis of individual stable transfectants showed a spectrum of RSV resistance correlating with the levels of shRNA expressed from different chromosomal locations. Interestingly, resistance in a minority of clones was due to mono-allelic disruption of the cellular gene for vasodilator-stimulated phosphoprotein (VASP). Thus, pure clones of chromosomally integrated DNA-directed RNAi can exhibit gene disruption phenotypes resembling but unrelated to RNAi.

  7. Proteomic Basis of the Antibody Response to Monkeypox Virus Infection Examined in Cynomolgus Macaques and a Comparison to Human Smallpox Vaccination

    DTIC Science & Technology

    2010-12-30

    collected after challenges were gamma- irradiated (6 Mrad) to destroy any infectious virus. Previous results indicated minimal damage to serum immuno...in Sf9 insect cells using Gateway baculovirus expression (Invitrogen). All ORF clones were fully sequenced. Recombinant proteins carried GST-tags and... insect cell expression, increased the likelihood that all products were correctly folded and functional. Successfully cloned, expressed and size

  8. Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes.

    PubMed

    Gao, Fan-Xiang; Wang, Yang; Zhang, Qi-Ya; Mou, Cheng-Yan; Li, Zhi; Deng, Yuan-Sheng; Zhou, Li; Gui, Jian-Fang

    2017-07-24

    Gibel carp is an important aquaculture species in China, and a herpesvirus, called as Carassius auratus herpesvirus (CaHV), has hampered the aquaculture development. Diverse gynogenetic clones of gibel carp have been identified or created, and some of them have been used as aquaculture varieties, but their resistances to herpesvirus and the underlying mechanism remain unknown. To reveal their susceptibility differences, we firstly performed herpesvirus challenge experiments in three gynogenetic clones of gibel carp, including the leading variety clone A + , candidate variety clone F and wild clone H. Three clones showed distinct resistances to CaHV. Moreover, 8772, 8679 and 10,982 differentially expressed unigenes (DEUs) were identified from comparative transcriptomes between diseased individuals and control individuals of clone A + , F and H, respectively. Comprehensive analysis of the shared DEUs in all three clones displayed common defense pathways to the herpesvirus infection, activating IFN system and suppressing complements. KEGG pathway analysis of specifically changed DEUs in respective clones revealed distinct immune responses to the herpesvirus infection. The DEU numbers identified from clone H in KEGG immune-related pathways, such as "chemokine signaling pathway", "Toll-like receptor signaling pathway" and others, were remarkably much more than those from clone A + and F. Several IFN-related genes, including Mx1, viperin, PKR and others, showed higher increases in the resistant clone H than that in the others. IFNphi3, IFI44-like and Gig2 displayed the highest expression in clone F and IRF1 uniquely increased in susceptible clone A + . In contrast to strong immune defense in resistant clone H, susceptible clone A + showed remarkable up-regulation of genes related to apoptosis or death, indicating that clone A + failed to resist virus offensive and evidently induced apoptosis or death. Our study is the first attempt to screen distinct resistances and immune responses of three gynogenetic gibel carp clones to herpesvirus infection by comprehensive transcriptomes. These differential DEUs, immune-related pathways and IFN system genes identified from susceptible and resistant clones will be beneficial to marker-assisted selection (MAS) breeding or molecular module-based resistance breeding in gibel carp.

  9. Local circulating clones of Staphylococcus aureus in Ecuador.

    PubMed

    Zurita, Jeannete; Barba, Pedro; Ortega-Paredes, David; Mora, Marcelo; Rivadeneira, Sebastián

    The spread of pandemic Staphylococcus aureus clones, mainly methicillin-resistant S. aureus (MRSA), must be kept under surveillance to assemble an accurate, local epidemiological analysis. In Ecuador, the prevalence of the USA300 Latin American variant clone (USA300-LV) is well known; however, there is little information about other circulating clones. The aim of this work was to identify the sequence types (ST) using a Multiple-Locus Variable number tandem repeat Analysis 14-locus genotyping approach. We analyzed 132 S. aureus strains that were recovered from 2005 to 2013 and isolated in several clinical settings in Quito, Ecuador. MRSA isolates composed 46.97% (62/132) of the study population. Within MRSA, 37 isolates were related to the USA300-LV clone (ST8-MRSA-IV, Panton-Valentine Leukocidin [PVL] +) and 10 were related to the Brazilian clone (ST239-MRSA-III, PVL-). Additionally, two isolates (ST5-MRSA-II, PVL-) were related to the New York/Japan clone. One isolate was related to the Pediatric clone (ST5-MRSA-IV, PVL-), one isolate (ST45-MRSA-II, PVL-) was related to the USA600 clone, and one (ST22-MRSA-IV, PVL-) was related to the epidemic UK-EMRSA-15 clone. Moreover, the most prevalent MSSA sequence types were ST8 (11 isolates), ST45 (8 isolates), ST30 (8 isolates), ST5 (7 isolates) and ST22 (6 isolates). Additionally, we found one isolate that was related to the livestock associated S. aureus clone ST398. We conclude that in addition to the high prevalence of clone LV-ST8-MRSA-IV, other epidemic clones are circulating in Quito, such as the Brazilian, Pediatric and New York/Japan clones. The USA600 and UK-EMRSA-15 clones, which were not previously described in Ecuador, were also found. Moreover, we found evidence of the presence of the livestock associated clone ST398 in a hospital environment. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Using "Pseudomonas Putida xylE" Gene to Teach Molecular Cloning Techniques for Undergraduates

    ERIC Educational Resources Information Center

    Dong, Xu; Xin, Yi; Ye, Li; Ma, Yufang

    2009-01-01

    We have developed and implemented a serial experiment in molecular cloning laboratory course for undergraduate students majored in biotechnology. "Pseudomonas putida xylE" gene, encoding catechol 2, 3-dioxygenase, was manipulated to learn molecular biology techniques. The integration of cloning, expression, and enzyme assay gave students…

  11. Identification and characterization of a novel human hepatocellular carcinoma-associated gene

    PubMed Central

    Wang, Z-X; Wang, H-Y; Wu, M-C

    2001-01-01

    To investigate liver cancer-associated genes and to explore the molecular basis of liver cancer genesis, we have cloned a novel hepatocellular carcinoma (HCC)-related gene with a transcript of 2520 base pairs in length named HCCA2 by mRNA differential display polymerase chain reaction (DDPCR) and screening a placenta cDNA library. No significant homologous protein with known genes was found. Western blot analysis showed that HCCA2 could be expressed in transfected 293 cells. Northern hybridization analysis showed that HCCA2 mRNA was expressed in 79% (34/43) patients with HCC, most of whom had significantly high expression in HCC tissues, while not expressed in corresponding noncancerous liver tissues. The clinical pathological data showed that the HCCA2 was significantly associated with the invasion of tumour capsule (P= 0.0007) and the expression of ki-67 protein (P= 0.0022). Immunohistochemical staining confirmed that the HCCA2 protein was localized in cytoplasm of liver cancer tissues. According to amino acid analysis of the protein and its localization, it may play a role in a cascade of intracellular signal transduction because the protein was characterized with two Src homology 3 (SH3) binding-domains and several functional motifs of phophorylation. © 2001 Cancer Research Campaign  http://www.bjcancer.com PMID:11710830

  12. Betaglycan expression is transcriptionally up-regulated during skeletal muscle differentiation. Cloning of murine betaglycan gene promoter and its modulation by MyoD, retinoic acid, and transforming growth factor-beta.

    PubMed

    Lopez-Casillas, Fernando; Riquelme, Cecilia; Perez-Kato, Yoshiaki; Ponce-Castaneda, M Veronica; Osses, Nelson; Esparza-Lopez, Jose; Gonzalez-Nunez, Gerardo; Cabello-Verrugio, Claudio; Mendoza, Valentin; Troncoso, Victor; Brandan, Enrique

    2003-01-03

    Betaglycan is a membrane-anchored proteoglycan co-receptor that binds transforming growth factor beta (TGF-beta) via its core protein and basic fibroblast growth factor through its glycosaminoglycan chains. In this study we evaluated the expression of betaglycan during the C(2)C(12) skeletal muscle differentiation. Betaglycan expression, as determined by Northern and Western blot, was up-regulated during the conversion of myoblasts to myotubes. The mouse betaglycan gene promoter was cloned, and its sequence showed putative binding sites for SP1, Smad3, Smad4, muscle regulatory factor elements such as MyoD and MEF2, and retinoic acid receptor. Transcriptional activity of the mouse betaglycan promoter reporter was also up-regulated in differentiating C(2)C(12) cells. We found that MyoD, but not myogenin, stimulated this transcriptional activity even in the presence of high serum. Betaglycan promoter activity was increased by RA and inhibited by the three isoforms of TGF-beta. On the other hand, basic fibroblast growth factor, BMP-2, and hepatocyte growth factor/scatter factor, which are inhibitors of myogenesis, had little effect. In myotubes, up-regulated betaglycan was also detectable by TGF-beta affinity labeling and immunofluorescence microscopy studies. The latter indicated that betaglycan was localized both on the cell surface and in the ECM. Forced expression of betaglycan in C(2)C(12) myoblasts increases their responsiveness to TGF-beta2, suggesting that it performs a TGF-beta presentation function in this cell lineage. These results indicate that betaglycan expression is up-regulated during myogenesis and that MyoD and RA modulate its expression by a mechanism that is independent of myogenin.

  13. Massive Collection of Full-Length Complementary DNA Clones and Microarray Analyses:. Keys to Rice Transcriptome Analysis

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shoshi

    2009-02-01

    Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.

  14. Cloning and characterization of an Echinococcus granulosus ecdysteroid hormone nuclear receptor HR3-like gene

    PubMed Central

    Yang, Mei; Li, Jun; Wu, Jun; Wang, Hui; Guo, Baoping; Wu, Chuanchuan; Shou, Xi; Yang, Ning; Zhang, Zhuangzhi; McManus, Donald P.; Zhang, Fuchun; Zhang, Wenbao

    2017-01-01

    Cystic echinococcosis is an important parasitic zoonosis caused by the dog tapeworm Echinococcus granulosus. Little is known about adult worm development at the molecular level. Transcription analysis showed that the E. granulosus hormone receptor 3-like (EgHR3) gene was expressed in protoscoleces and adult worms, indicating its role in early adult development. In this study, we cloned and characterized EgHR3 showing that its cDNA contains an open reading frame (ORF) of 1890 bp encoding a 629 amino acid protein, which has a DNA-binding domain (DBD) and a ligand-binding domain (LBD). Immunolocalization revealed the protein was localized in the parenchyma of protoscoleces and adult worms. Real-time PCR analysis showed that EgHR3 was expressed significantly more in adults than in other stages of development (p<0.01) and that its expression was especially high in the early stage of adult worm development induced by bile acids. EgHR3 siRNA silenced 69–78% of the level of transcription in protoscoleces, which resulted in killing 43.6–60.9% of protoscoleces after 10 days of cultivation in vitro. EgHR3 may play an essential role in early adult worm development and in maintaining adult biological processes and may represent a novel drug or vaccine target against echinococcosis. PMID:28971798

  15. Cloning and expression of the cDNA encoding human fumarylacetoacetate hydrolase, the enzyme deficient in hereditary tyrosinemia: assignment of the gene to chromosome 15.

    PubMed Central

    Phaneuf, D; Labelle, Y; Bérubé, D; Arden, K; Cavenee, W; Gagné, R; Tanguay, R M

    1991-01-01

    Type 1 hereditary tyrosinemia (HT) is an autosomal recessive disease characterized by a deficiency of the enzyme fumarylacetoacetate hydrolase (FAH; E.C.3.7.1.2). We have isolated human FAH cDNA clones by screening a liver cDNA expression library using specific antibodies and plaque hybridization with a rat FAH cDNA probe. A 1,477-bp cDNA was sequenced and shown to code for FAH by an in vitro transcription-translation assay and sequence homology with tryptic fragments of purified FAH. Transient expression of this FAH cDNA in transfected CV-1 mammalian cells resulted in the synthesis of an immunoreactive protein comigrating with purified human liver FAH on SDS-PAGE and having enzymatic activity as shown by the hydrolysis of the natural substrate fumarylacetoacetate. This indicates that the single polypeptide chain encoded by the FAH gene contains all the genetic information required for functional activity, suggesting that the dimer found in vivo is a homodimer. The human FAH cDNA was used as a probe to determine the gene's chromosomal localization using somatic cell hybrids and in situ hybridization. The human FAH gene maps to the long arm of chromosome 15 in the region q23-q25. Images Figure 1 Figure 3 Figure 4 Figure 6 Figure 8 PMID:1998338

  16. Transposon-containing DNA cloning vector and uses thereof

    DOEpatents

    Berg, C.M.; Berg, D.E.; Wang, G.

    1997-07-08

    The present invention discloses a rapid method of restriction mapping, sequencing or localizing genetic features in a segment of deoxyribonucleic acid (DNA) that is up to 42 kb in size. The method in part comprises cloning of the DNA segment in a specialized cloning vector and then isolating nested deletions in either direction in vivo by intramolecular transposition into the cloned DNA. A plasmid has been prepared and disclosed. 4 figs.

  17. Transposon-containing DNA cloning vector and uses thereof

    DOEpatents

    Berg, Claire M.; Berg, Douglas E.; Wang, Gan

    1997-01-01

    The present invention discloses a rapid method of restriction mapping, sequencing or localizing genetic features in a segment of deoxyribonucleic acid (DNA) that is up to 42 kb in size. The method in part comprises cloning of the DNA segment in a specialized cloning vector and then isolating nested deletions in either direction in vivo by intramolecular transposition into the cloned DNA. A plasmid has been prepared and disclosed.

  18. Using Green and Red Fluorescent Proteins to Teach Protein Expression, Purification, and Crystallization

    ERIC Educational Resources Information Center

    Wu, Yifeng; Zhou, Yangbin; Song, Jiaping; Hu, Xiaojian; Ding, Yu; Zhang, Zhihong

    2008-01-01

    We have designed a laboratory curriculum using the green and red fluorescent proteins (GFP and RFP) to visualize the cloning, expression, chromatography purification, crystallization, and protease-cleavage experiments of protein science. The EGFP and DsRed monomer (mDsRed)-coding sequences were amplified by PCR and cloned into pMAL (MBP-EGFP) or…

  19. Field performance of Populus expressing somaclonal variation in resistance to Septoria musiva

    Treesearch

    M. E. Ostry; K. T. Ward

    2003-01-01

    Over 1500 trees from two hybrid poplar clones regenerated from tissue culture and expressing somatic variation in leaf disease resistance in a laboratory leaf disk bioassay were field-tested for 5-11 years to examine their resistance to Septoria leaf spot and canker and to assess their growth characteristics compared with the source clones....

  20. Genotypic variation in sulfur assimilation and metabolism of onion (Allium cepa L.) III. Characterization of sulfite reductase

    USDA-ARS?s Scientific Manuscript database

    Genomic and cDNA sequences corresponding to a ferredoxin-sulfite reductase (SiR) have been cloned from bulb onion (Allium cepa L.) and the expression of the gene and activity of the enzyme characterised with respect to sulfur (S) supply. Cloning, mapping and expression studies revealed that onion ha...

  1. Reprogramming towards totipotency is greatly facilitated by synergistic effects of small molecules

    PubMed Central

    Tajima, Yosuke; Yoshida, Koki; Oikawa, Mami; Azuma, Rika; Allen, George E.; Tsujikawa, Tomomi; Tsukaguchi, Tomomasa; Bradshaw, Charles R.; Jullien, Jerome; Yamagata, Kazuo; Matsumoto, Kazuya; Anzai, Masayuki; Imai, Hiroshi; Gurdon, John B.; Yamada, Masayasu

    2017-01-01

    ABSTRACT Animal cloning has been achieved in many species by transplanting differentiated cell nuclei to unfertilized oocytes. However, the low efficiencies of cloning have remained an unresolved issue. Here we find that the combination of two small molecules, trichostatin A (TSA) and vitamin C (VC), under culture condition with bovine serum albumin deionized by ion-exchange resins, dramatically improves the cloning efficiency in mice and 15% of cloned embryos develop to term by means of somatic cell nuclear transfer (SCNT). The improvement was not observed by adding the non-treated, rather than deionized, bovine serum. RNA-seq analyses of SCNT embryos at the two-cell stage revealed that the treatment with TSA and VC resulted in the upregulated expression of previously identified reprogramming-resistant genes. Moreover, the expression of early-embryo-specific retroelements was upregulated by the TSA and VC treatment. The enhanced gene expression was relevant to the VC-mediated reduction of histone H3 lysine 9 methylation in SCNT embryos. Our study thus shows a simply applicable method to greatly improve mouse cloning efficiency, and furthers our understanding of how somatic nuclei acquire totipotency. PMID:28412714

  2. Functional importance of GLP-1 receptor species and expression levels in cell lines.

    PubMed

    Knudsen, Lotte Bjerre; Hastrup, Sven; Underwood, Christina Rye; Wulff, Birgitte Schjellerup; Fleckner, Jan

    2012-04-10

    Of the mammalian species, only the GLP-1 receptors of rat and human origin have been described and characterized. Here, we report the cloning of the homologous GLP-1 receptors from mouse, rabbit, pig, cynomolgus monkey and chimp. The GLP-1 receptor is highly conserved across species, thus underlining the physiological importance of the peptide hormone and its receptor across a wide range of mammals. We expressed the receptors by stable transfection of BHK cells, both in cell lines with high expression levels of the cloned receptors, as well as in cell lines with lower expression levels, more comparable to endogenous expression of these receptors. High expression levels of cloned GLP-1 receptors markedly increased the potency of GLP-1 and other high affinity ligands, whereas the K(d) values were not affected. For a low affinity ligand like the ago-allosteric modulator Compound 2, expression levels of the human GLP-1 receptor were important for maximal efficacy as well as potency. The two natural metabolites of GLP-1, GLP-1(9-37) and GLP-1(9-36)amide were agonists when tested on a cell line with high expression of the recombinant human GLP-1 receptor, whereas they behaved as (low potent) antagonists on a cell line that expressed the receptor endogenously, as well as cells expressing a moderate level of the recombinant human GLP-1 receptor. The amide form was a more potent agonist than the free acid from. In conclusion, receptor expression level is an important parametre for selecting cell lines with cloned GLP-1 receptors for functional characterization of physiological and pharmaceutical ligands. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Gene discovery in Eimeria tenella by immunoscreening cDNA expression libraries of sporozoites and schizonts with chicken intestinal antibodies.

    PubMed

    Réfega, Susana; Girard-Misguich, Fabienne; Bourdieu, Christiane; Péry, Pierre; Labbé, Marie

    2003-04-02

    Specific antibodies were produced ex vivo from intestinal culture of Eimeria tenella infected chickens. The specificity of these intestinal antibodies was tested against different parasite stages. These antibodies were used to immunoscreen first generation schizont and sporozoite cDNA libraries permitting the identification of new E. tenella antigens. We obtained a total of 119 cDNA clones which were subjected to sequence analysis. The sequences coding for the proteins inducing local immune responses were compared with nucleotide or protein databases and with expressed sequence tags (ESTs) databases. We identified new Eimeria genes coding for heat shock proteins, a ribosomal protein, a pyruvate kinase and a pyridoxine kinase. Specific features of other sequences are discussed.

  4. Whole-Genome Sequencing and Assembly with High-Throughput, Short-Read Technologies

    PubMed Central

    Sundquist, Andreas; Ronaghi, Mostafa; Tang, Haixu; Pevzner, Pavel; Batzoglou, Serafim

    2007-01-01

    While recently developed short-read sequencing technologies may dramatically reduce the sequencing cost and eventually achieve the $1000 goal for re-sequencing, their limitations prevent the de novo sequencing of eukaryotic genomes with the standard shotgun sequencing protocol. We present SHRAP (SHort Read Assembly Protocol), a sequencing protocol and assembly methodology that utilizes high-throughput short-read technologies. We describe a variation on hierarchical sequencing with two crucial differences: (1) we select a clone library from the genome randomly rather than as a tiling path and (2) we sample clones from the genome at high coverage and reads from the clones at low coverage. We assume that 200 bp read lengths with a 1% error rate and inexpensive random fragment cloning on whole mammalian genomes is feasible. Our assembly methodology is based on first ordering the clones and subsequently performing read assembly in three stages: (1) local assemblies of regions significantly smaller than a clone size, (2) clone-sized assemblies of the results of stage 1, and (3) chromosome-sized assemblies. By aggressively localizing the assembly problem during the first stage, our method succeeds in assembling short, unpaired reads sampled from repetitive genomes. We tested our assembler using simulated reads from D. melanogaster and human chromosomes 1, 11, and 21, and produced assemblies with large sets of contiguous sequence and a misassembly rate comparable to other draft assemblies. Tested on D. melanogaster and the entire human genome, our clone-ordering method produces accurate maps, thereby localizing fragment assembly and enabling the parallelization of the subsequent steps of our pipeline. Thus, we have demonstrated that truly inexpensive de novo sequencing of mammalian genomes will soon be possible with high-throughput, short-read technologies using our methodology. PMID:17534434

  5. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woon, J. S. K., E-mail: jameswoon@siswa.ukm.edu.my; Murad, A. M. A., E-mail: munir@ukm.edu.my; Abu Bakar, F. D., E-mail: fabyff@ukm.edu.my

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-Tmore » Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.« less

  6. Expression of heavy metal tolerance in pollen and implications for gametophytic selection. [The plants used were clones of Silene dioica and Mimulus guttatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searcy, K.B.

    Many genes are expressed in both sporophytic and microgametophytic phases of the angiosperm life cycle. Thus, selection in one phase could modify gene frequency in both phases. An attempt was made to investigate microgametophytic selection in response to toxic concentrations of heavy metals and the effect of this selection upon the resultant sporophyte generation. The plants used were clones of a zinc-tolerant Silene dioica, closely related nontolerant S. alba, and copper tolerant and non-tolerant clones of Mimulus guttatus. First, the expression of metal tolerance in pollen was established by in vitro pollen germination and tube growth, and was found tomore » be associated with the tolerance of the pollen source. Second, to test the extent to which the parallel expression of metal tolerance was determined by the gametophytic genotype, tolerant but segregating clones were grown with and without added metals. Finally, selection was applied during pollen germination, tube growth and fertilization. In Silene, neither the tolerance of the pollen nor the metal content of the styles affected pollen tube growth rate. In Mimulus, pollen from the nontolerant source grew faster, but the metal content of the floral tissue had no significant effect on pollen tube growth rate, and only slightly reduced the fertilization ability of pollen from the nontolerant clone.« less

  7. Inhibition of melanoma cell proliferation by resveratrol is correlated with upregulation of quinone reductase 2 and p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh Tzechen; Wang Zhirong; Hamby, Carl V.

    2005-08-19

    Resveratrol (trans-3,4',5-trihydroxystilbene) is a grape-derived polyphenol under intensive study for its potential in cancer prevention. In the case of cultured human melanoma cells, no one to our knowledge has investigated whether resveratrol exerts similar anti-proliferative activities in cells with different metastatic potential. Therefore, we examined the effects of this polyphenol on the growth of weakly metastatic Line IV clone 3 and on autologous, highly metastatic Line IV clone 1 cultured melanoma cells. Comparable inhibition of growth and colony formation resulted from treatment by resveratrol in both cell lines. Flow cytometric analysis revealed that resveratrol-treated clone 1 cells had a dose-dependentmore » increase in S phase and a concomitant reduction in the G{sub 1} phase. No detectable change in cell cycle phase distribution was found in similarly treated clone 3 cells. Western blots demonstrated a significant increase in the expression of the tumor suppressor gene p53, without a commensurate change in p21 and several other cell cycle regulatory proteins in both cell types. Chromatography of Line IV clone 3 and clone 1 cell extracts on resveratrol affinity columns revealed that the basal expression of dihydronicotinamide riboside quinone reductase 2 (NQO2) was higher in Line IV clone 1 than clone 3 cells. Levels of NQO2 but not its structural analog NQO1 were dose-dependently increased by resveratrol in both cell lines. We propose that induction of NQO2 may relate to the observed increased expression of p53 that, in turn, contributes to the observed suppression of cell growth in both melanoma cell lines.« less

  8. Expansion of the gateway multisite recombination cloning toolkit.

    PubMed

    Shearin, Harold K; Dvarishkis, Alisa R; Kozeluh, Craig D; Stowers, R Steven

    2013-01-01

    Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters.

  9. Expansion of the Gateway MultiSite Recombination Cloning Toolkit

    PubMed Central

    Shearin, Harold K.; Dvarishkis, Alisa R.; Kozeluh, Craig D.; Stowers, R. Steven

    2013-01-01

    Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters. PMID:24204935

  10. Isolation and sequence analysis of the wheat B genome subtelomeric DNA.

    PubMed

    Salina, Elena A; Sergeeva, Ekaterina M; Adonina, Irina G; Shcherban, Andrey B; Afonnikov, Dmitry A; Belcram, Harry; Huneau, Cecile; Chalhoub, Boulos

    2009-09-05

    Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome) clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119,737 bp was annotated. It is composed of 33% transposable elements (TEs), 8.2% Spelt52 (namely, the subfamily Spelt52.2) and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11,666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags) suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0). Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat chromosomes. It has been demonstrated for the first time that Spelt52 sequences were involved in the evolution of terminal regions of common wheat chromosomes. Our research provides new insights into the microcollinearity in the terminal regions of wheat chromosomes 4BL and rice chromosome 3S.

  11. Cloning and expression of prion protein encoding gene of flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwen; Sun, Xiuqin; Zhang, Jinxing; Zan, Jindong

    2008-02-01

    The prion protein (PrP) encoding gene of flounder ( Paralichthys olivaceus) was cloned. It was not interrupted by an intron. This gene has two promoters in its 5' upstream, indicating that its transcription may be intensive, and should have an important function. It was expressed in all 14 tissues tested, demonstrating that it is a house-keeping gene. Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.

  12. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis.

    PubMed

    Phillips, A L; Ward, D A; Uknes, S; Appleford, N E; Lange, T; Huttly, A K; Gaskin, P; Graebe, J E; Hedden, P

    1995-07-01

    Using degenerate oligonucleotide primers based on a pumpkin (Cucurbita maxima) gibberellin (GA) 20-oxidase sequence, six different fragments of dioxygenase genes were amplified by polymerase chain reaction from arabidopsis thaliana genomic DNA. One of these was used to isolate two different full-length cDNA clones, At2301 and At2353, from shoots of the GA-deficient Arabidopsis mutant ga1-2. A third, related clone, YAP169, was identified in the Database of Expressed Sequence Tags. The cDNA clones were expressed in Escherichia coli as fusion proteins, each of which oxidized GA12 at C-20 to GA15, GA24, and the C19 compound GA9, a precursor of bioactive GAs; the C20 tricarboxylic acid compound GA25 was formed as a minor product. The expression products also oxidized the 13-hydroxylated substrate GA53, but less effectively than GA12. The three cDNAs hybridized to mRNA species with tissue-specific patterns of accumulation, with At2301 being expressed in stems and inflorescences, At2353 in inflorescences and developing siliques, and YAP169 in siliques only. In the floral shoots of the ga1-2 mutant, transcript levels corresponding to each cDNA decreased dramatically after GA3 application, suggesting that GA biosynthesis may be controlled, at least in part, through down-regulation of the expression of the 20-oxidase genes.

  13. Development and characterization of K562 cell clones expressing BCL11A-XL: Decreased hemoglobin production with fetal hemoglobin inducers and its rescue with mithramycin

    PubMed Central

    Finotti, Alessia; Gasparello, Jessica; Breveglieri, Giulia; Cosenza, Lucia Carmela; Montagner, Giulia; Bresciani, Alberto; Altamura, Sergio; Bianchi, Nicoletta; Martini, Elisa; Gallerani, Eleonora; Borgatti, Monica; Gambari, Roberto

    2015-01-01

    Induction of fetal hemoglobin (HbF) is considered a promising strategy in the treatment of β-thalassemia, in which production of adult hemoglobin (HbA) is impaired by mutations affecting the β-globin gene. Recent results indicate that B-cell lymphoma/leukemia 11A (BCL11A) is a major repressor of γ-globin gene expression. Therefore, disrupting the binding of the BCL11A transcriptional repressor complex to the γ-globin gene promoter provides a novel approach for inducing expression of the γ-globin genes. To develop a cellular screening system for the identification of BCL11A inhibitors, we produced K562 cell clones with integrated copies of a BCL11A-XL expressing vector. We characterized 12 K562 clones expressing different levels of BCL11A-XL and found that a clear inverse relationship does exist between the levels of BCL11A-XL and the extent of hemoglobinization induced by a panel of HbF inducers. Using mithramycin as an inducer, we found that this molecule was the only HbF inducer efficient in rescuing the ability to differentiate along the erythroid program, even in K562 cell clones expressing high levels of BCL11A-XL, suggesting that BCL11A-XL activity is counteracted by mithramycin. PMID:26342260

  14. A high-throughput immobilized bead screen for stable proteins and multi-protein complexes

    PubMed Central

    Lockard, Meghan A.; Listwan, Pawel; Pedelacq, Jean-Denis; Cabantous, Stéphanie; Nguyen, Hau B.; Terwilliger, Thomas C.; Waldo, Geoffrey S.

    2011-01-01

    We describe an in vitro colony screen to identify Escherichia coli expressing soluble proteins and stable, assembled multiprotein complexes. Proteins with an N-terminal 6His tag and C-terminal green fluorescent protein (GFP) S11 tag are fluorescently labeled in cells by complementation with a coexpressed GFP 1–10 fragment. After partial colony lysis, the fluorescent soluble proteins or complexes diffuse through a supporting filtration membrane and are captured on Talon® resin metal affinity beads immobilized in agarose. Images of the fluorescent colonies convey total expression and the level of fluorescence bound to the beads indicates how much protein is soluble. Both pieces of information can be used together when selecting clones. After the assay, colonies can be picked and propagated, eliminating the need to make replica plates. We used the method to screen a DNA fragment library of the human protein p85 and preferentially obtained clones expressing the full-length ‘breakpoint cluster region-homology' and NSH2 domains. The assay also distinguished clones expressing stable multi-protein complexes from those that are unstable due to missing subunits. Clones expressing stable, intact heterotrimeric E.coli YheNML complexes were readily identified in libraries dominated by complexes of YheML missing the N subunit. PMID:21642284

  15. Comprehensive T-cell immunophenotyping and next-generation sequencing of human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinomas.

    PubMed

    Poropatich, Kate; Fontanarosa, Joel; Swaminathan, Suchitra; Dittmann, Dave; Chen, Siqi; Samant, Sandeep; Zhang, Bin

    2017-11-01

    The success of programmed cell death 1 (PD-1) inhibition in achieving a clinical response in a subset of head and neck squamous cell carcinoma (HNSCC) patients emphasizes the need to better understand the immunobiology of HNSCC. Immunophenotyping was performed for 30 HCSCC patients [16 human papillomavirus (HPV)-positive; 14 HPV-negative] on matched tissue from the primary tumour site, locally metastatic cervical lymph nodes (LNs), uninvolved local cervical LNs, and peripheral blood. CD4 + and CD8 + T-cell lymphocytes obtained from tissue were analysed for expression levels of the inhibitory receptors PD-1, TIM-3 and CTLA-4. Next-generation sequencing of the T-cell receptor (TCR) β chain was performed on patients (n = 9) to determine receptor repertoire diversity and for clonality analysis. HPV-negative HNSCC patients, particularly those with stage IV disease, had significantly higher proportions of CD8 + T cells expressing CTLA-4 in tumour tissue (P = 0.0013) and in peripheral blood (P = 0.0344) than HPV-positive patients, as well as higher expression levels of TIM-3 + PD-1 + CD8 + T cells (P = 0.0072) than controls. For all patients, PD-1 expression on CD8 + T cells - particularly in HPV-negative HNSCC cases - strongly correlated (r = 0.63, P = 0.013) with tumour size at the primary site. The top CD8 + TCR clones from tumour tissue significantly overlapped with circulating peripheral blood TCR clones (r = 0.946), and HPV-positive patients had frequently expanded TCR clones that were more hydrophobic - and potentially more immunogenic - than those from HPV-negative patients. Collectively, our findings demonstrate, for the first time, that high-stage HPV-negative HNSCC patients with primary tumours at different sites in the head and neck have elevated peripheral CTLA-4 + CD8 + T-cell levels, that tumour-familiar CD8 + T cells are detectable in peripheral blood from HNSCC patients, and that TCRs from HPV-positive HNSCC patients potentially recognize distinctly immunogenic cognate antigens. However, our findings are preliminary, and need to be further confirmed in a larger patient cohort; also, how these factors affect patient response to immunotherapy needs to be determined. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. T cell receptor (TCR) structure of autologous melanoma-reactive cytotoxic T lymphocyte (CTL) clones: tumor-infiltrating lymphocytes overexpress in vivo the TCR beta chain sequence used by an HLA-A2- restricted and melanocyte-lineage-specific CTL clone

    PubMed Central

    1993-01-01

    HLA-A2+ melanomas express common melanoma-associated antigens (Ags) recognized in vitro by autologous cytotoxic T lymphocytes (CTL). However, it is not known whether tumor Ags can drive in vivo a selective accumulation/expansion of Ag-specific, tumor-infiltrating T lymphocytes (TIL). Therefore, to evaluate this possibility, 39 CTL clones isolated from several independent mixed lymphocyte tumor cultures (MLTC) of TIL and peripheral blood lymphocytes (PBL) of an HLA- A2+ melanoma patient and selected for T cell receptor (TCR)-dependent, HLA-restricted tumor lysis, were used for analysis of TCR alpha and beta chain structure by the cDNA polymerase chain reaction (PCR) technique with variable gene-specific primers followed by sequencing. Despite absence of oligoclonality in fresh TIL and PBL, as well as in T cells of day 28 MLTC (day of cloning), sequence analysis of TCR alpha and beta chains of TIL clones revealed a dominance of a major category of melanoma-specific, HLA-A2-restricted T cells expressing a V alpha 8.2/J alpha AP511/C alpha and V beta 2.1/D beta 1/J beta 1.1/C beta 1 TCR. The same TCR was also found in 2 out of 14 PBL clones. The other PBL clones employed a V alpha 2.1 gene segment associated with either V beta 13.2, 14, or w22. Clones A81 (V alpha 2.1/J alpha IGRJ alpha 04/C alpha and V beta 14/D beta 1/J beta 1.2/C beta 1) and A21 (V alpha 8.2/J alpha AP511/C alpha and V beta 2.1/D beta 1/J beta 1.1/C beta 1), representative of the two most frequent TCR of PBL and TIL, respectively, expressed different lytic patterns, but both were HLA-A2 restricted and lysed only HLA-A2+ melanomas and normal melanocytes, thus indicating recognition of two distinct HLA-A2-associated and tissue-related Ags. Finally, by the inverse PCR technique, the specific TCR beta chain (V beta 2.1/D beta 1/J beta 1.1/C beta 1) expressed by the dominant TIL clone was found to represent 19 and 18.4% of all V beta 2 sequences expressed in the fresh tumor sample and in the purified TIL, respectively, but < 0.19% of V beta 2+ sequences expressed in PBL. These results are consistent with the hypothesis that a clonal expansion/accumulation of a melanocyte-lineage-specific and HLA-A2-restricted T cell clone occurred in vivo at the site of tumor growth. PMID:8376931

  17. Use of Protein Biotinylation In Vivo for Immunoelectron Microscopic Localization of a Specific Protein Isoform

    PubMed Central

    Viens, Antoine; Harper, Francis; Pichard, Evelyne; Comisso, Martine; Pierron, Gérard; Ogryzko, Vasily

    2008-01-01

    Tagging of proteins in vivo by covalent attachment of a biotin moiety has emerged as a new prospective tool for protein detection and purification. Previously, we established a strategy for expression of in vivo biotinylated proteins in mammalian cells. It is based on coexpression of the protein of interest fused to a short biotin acceptor peptide and biotin ligase BirA cloned in the same vector. We show here that the in vivo biotinylation can be used for immunogold postembedding labeling in immunoelectron microscopy experiments. We show that immunoelectron microscopy with biotinylated nuclear proteins is compatible with a wide range of postembedding methods, facilitating combination of morphological and localization studies in a single experiment. We also show that the method works in both transient transfection and stable cell line expression protocols and can be used for colocalization studies. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. (J Histochem Cytochem 56:911–919, 2008) PMID:18574249

  18. Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38).

    PubMed Central

    Luzio, J P; Brake, B; Banting, G; Howell, K E; Braghetta, P; Stanley, K K

    1990-01-01

    Organelle-specific integral membrane proteins were identified by a novel strategy which gives rise to monospecific antibodies to these proteins as well as to the cDNA clones encoding them. A cDNA expression library was screened with a polyclonal antiserum raised against Triton X-114-extracted organelle proteins and clones were then grouped using antibodies affinity-purified on individual fusion proteins. The identification, molecular cloning and sequencing are described of a type 1 membrane protein (TGN38) which is located specifically in the trans-Golgi network. Images Fig. 1. Fig. 3. PMID:2204342

  19. Molecular cloning, phylogenetic analysis, and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.).

    PubMed

    Zhu, Jiantang; Hao, Pengchao; Chen, Guanxing; Han, Caixia; Li, Xiaohui; Zeller, Friedrich J; Hsam, Sai L K; Hu, Yingkao; Yan, Yueming

    2014-10-01

    The endoplasmic reticulum chaperone binding protein (BiP) is an important functional protein, which is involved in protein synthesis, folding assembly, and secretion. In order to study the role of BiP in the process of wheat seed development, we cloned three BiP homologous cDNA sequences in bread wheat (Triticum aestivum), completed by rapid amplification of cDNA ends (RACE), and examined the expression of wheat BiP in wheat tissues, particularly the relationship between BiP expression and the subunit types of HMW-GS using near-isogenic lines (NILs) of HMW-GS silencing, and under abiotic stress. Sequence analysis demonstrated that all BiPs contained three highly conserved domains present in plants, animals, and microorganisms, indicating their evolutionary conservation among different biological species. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that TaBiP (Triticum aestivum BiP) expression was not organ-specific, but was predominantly localized to seed endosperm. Furthermore, immunolocalization confirmed that TaBiP was primarily located within the protein bodies (PBs) in wheat endosperm. Three TaBiP genes exhibited significantly down-regulated expression following high molecular weight-glutenin subunit (HMW-GS) silencing. Drought stress induced significantly up-regulated expression of TaBiPs in wheat roots, leaves, and developing grains. The high conservation of BiP sequences suggests that BiP plays the same role, or has common mechanisms, in the folding and assembly of nascent polypeptides and protein synthesis across species. The expression of TaBiPs in different wheat tissue and under abiotic stress indicated that TaBiP is most abundant in tissues with high secretory activity and with high proportions of cells undergoing division, and that the expression level of BiP is associated with the subunit types of HMW-GS and synthesis. The expression of TaBiPs is developmentally regulated during seed development and early seedling growth, and under various abiotic stresses.

  20. Thrombospondin Type-1 Repeat Domain-Containing Proteins Are Strongly Expressed in the Head Region of Hydra.

    PubMed

    Hamaguchi-Hamada, Kayoko; Kurumata-Shigeto, Mami; Minobe, Sumiko; Fukuoka, Nozomi; Sato, Manami; Matsufuji, Miyuki; Koizumi, Osamu; Hamada, Shun

    2016-01-01

    The head region of Hydra, the hypostome, is a key body part for developmental control and the nervous system. We herein examined genes specifically expressed in the head region of Hydra oligactis using suppression subtractive hybridization (SSH) cloning. A total of 1414 subtracted clones were sequenced and found to be derived from at least 540 different genes by BLASTN analyses. Approximately 25% of the subtracted clones had sequences encoding thrombospondin type-1 repeat (TSR) domains, and were derived from 17 genes. We identified 11 TSR domain-containing genes among the top 36 genes that were the most frequently detected in our SSH library. Whole-mount in situ hybridization analyses confirmed that at least 13 out of 17 TSR domain-containing genes were expressed in the hypostome of Hydra oligactis. The prominent expression of TSR domain-containing genes suggests that these genes play significant roles in the hypostome of Hydra oligactis.

  1. Construction and characterization of a human T-cell lymphotropic virus type 3 infectious molecular clone.

    PubMed

    Chevalier, Sébastien Alain; Ko, Nga Ling; Calattini, Sara; Mallet, Adeline; Prévost, Marie-Christine; Kehn, Kylene; Brady, John N; Kashanchi, Fatah; Gessain, Antoine; Mahieux, Renaud

    2008-07-01

    We and others have uncovered the existence of human T-cell lymphotropic virus type 3 (HTLV-3). We have now generated an HTLV-3 proviral clone. We established that gag, env, pol, pro, and tax/rex as well as minus-strand mRNAs are present in cells transfected with the HTLV-3 clone. HTLV-3 p24(gag) protein is detected in the cell culture supernatant. Transfection of 293T-long terminal repeat (LTR)-green fluorescent protein (GFP) cells with the HTLV-3 clone promotes formation of syncytia, a hallmark of Env expression, together with the appearance of fluorescent cells, demonstrating that Tax is expressed. Viral particles are visible by electron microscopy. These particles are infectious, as demonstrated by infection experiments with purified virions.

  2. Cloning and high level expression of gene encoding ES antigen from Trichinella spiralis muscle larvae.

    PubMed

    Yan, Y; Xu, W; Chen, H; Ma, Z; Zhu, Y; Cai, S

    1994-01-01

    The partial structure gene encoding ES antigen derived from Trichinella spiralis (TSP) muscle larvae was cloned, characterized, and expressed in E. coli. The target DNA (0.7 kb) was directly obtained from the TSP total RNA by using RNA PCR technique. Based on the analysis with the RE digestion, the fragment was cloned into the fusion expression vector pEX31C. It was shown that a kind of 37kDa fusion protein was expressed in E. coli containing the recombinant plasmid by SDS-PAGE electrophoresis. The expressed protein was over 22% of the total cell protein, and it was aggregated in the form of inclusion bodies in E. coli. The purified protein could be recognized in ELISA both by sera from swine-infected with TSP and by the monoclonal antibody against TSP. These findings suggest that the recombinant protein is a potentially valuable antigen both for immunodiagnosis and vaccine development of trichinellosis.

  3. Generation of a total of 6483 expressed sequence tags from 60 day-old bovine whole fetus and fetal placenta.

    PubMed

    Oishi, M; Gohma, H; Lejukole, H Y; Taniguchi, Y; Yamada, T; Suzuki, K; Shinkai, H; Uenishi, H; Yasue, H; Sasaki, Y

    2004-05-01

    Expressed sequence tags (ESTs) generated based on characterization of clones isolated randomly from cDNA libraries are used to study gene expression profiles in specific tissues and to provide useful information for characterizing tissue physiology. In this study, two directionally cloned cDNA libraries were constructed from 60 day-old bovine whole fetus and fetal placenta. We have characterized 5357 and 1126 clones, and then identified 3464 and 795 unique sequences for the fetus and placenta cDNA libraries: 1851 and 504 showed homology to already identified genes, and 1613 and 291 showed no significant matches to any of the sequences in DNA databases, respectively. Further, we found 94 unique sequences overlapping in both the fetus and the placenta, leading to a catalog of 4165 genes expressed in 60 day-old fetus and placenta. The catalog is used to examine expression profile of genes in 60 day-old bovine fetus and placenta.

  4. The Combinational Use of CRISPR/Cas9 and Targeted Toxin Technology Enables Efficient Isolation of Bi-Allelic Knockout Non-Human Mammalian Clones.

    PubMed

    Watanabe, Satoshi; Sakurai, Takayuki; Nakamura, Shingo; Miyoshi, Kazuchika; Sato, Masahiro

    2018-04-04

    Recent advances in genome editing systems such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) have facilitated genomic modification in mammalian cells. However, most systems employ transient treatment with selective drugs such as puromycin to obtain the desired genome-edited cells, which often allows some untransfected cells to survive and decreases the efficiency of generating genome-edited cells. Here, we developed a novel targeted toxin-based drug-free selection system for the enrichment of genome-edited cells. Cells were transfected with three expression vectors, each of which carries a guide RNA (gRNA), humanized Cas9 ( hCas9 ) gene, or Clostridium perfringens -derived endo-β-galactosidase C ( EndoGalC ) gene. Once EndoGalC is expressed in a cell, it digests the cell-surface α-Gal epitope, which is specifically recognized by BS-I-B₄ lectin (IB4). Three days after transfection, these cells were treated with cytotoxin saporin-conjugated IB4 (IB4SAP) for 30 min at 37 °C prior to cultivation in a normal medium. Untransfected cells and those weakly expressing EndoGalC will die due to the internalization of saporin. Cells transiently expressing EndoGalC strongly survive, and some of these surviving clones are expected to be genome-edited bi-allelic knockout (KO) clones due to their strong co-expression of gRNA and hCas9. When porcine α-1,3-galactosyltransferase gene, which can synthesize the α-Gal epitope, was attempted to be knocked out, 16.7% and 36.7% of the surviving clones were bi-allelic and mono-allelic knockout (KO) cells, respectively, which was in contrast to the isolation of clones in the absence of IB4SAP treatment. Namely, 0% and 13.3% of the resulting clones were bi-allelic and mono-allelic KO cells, respectively. A similar tendency was seen when other target genes such as DiGeorge syndrome critical region gene 2 and transforming growth factor-β receptor type 1 gene were targeted to be knocked out. Our results indicate that a combination of the CRISPR/Cas9 system and targeted toxin technology using IB4SAP allows efficient enrichment of genome-edited clones, particularly bi-allelic KO clones.

  5. Zebularine and scriptaid significantly improve epigenetic reprogramming of yak fibroblasts and cloning efficiency.

    PubMed

    Xiong, Xianrong; Lan, Daoliang; Li, Jian; Zhong, Jincheng; Zi, Xiangdong; Ma, Li; Wang, Yong

    2013-08-01

    Abnormal epigenetic reprogramming of the donor nucleus after somatic cell nuclear transfer (SCNT) is thought to be the main cause of low cloning efficiency. Following SCNT, the donor nucleus often fails to express early embryonic genes and establish a normal embryonic pattern of chromatin modification. Therefore, in this study, we have attempted to improve epigenetic reprogramming of the donor nucleus and cloned embryos with Zebularine and Scriptaid. Yak fibroblasts were treated with 20 μM Zebularine alone or 20 μM Zebularine plus 0.5 μM Scriptaid for 24 h, whereas yak cloned embryos were treated exclusively with 0.5 μM Scriptaid for 12 h. There was no effect on cellular viability and proliferation after drug treatment. The treatment of fibroblasts with Zebularine or Zebularine plus Scriptaid increased histone acetylation of histone 3 lysine 9 (H3K9), but decreased the level of DNA methylation of Oct-4 and Sox-2 promoter regions. When donor cells were used after Zebularine plus Scriptaid treatment to reconstruct cloned embryos and then treated with Scriptaid, the developmental competence and cryosurvival of embryos were improved significantly. In addition, the relative expression of Oct-4 and Sox-2 were increased significantly. The expression levels of Dnmt-1 and Hdac-1 were significantly decreased when fibroblasts and cloned embryos were treated with Zebularine or Scriptaid. This work provides functional evidence that treatment with Zebularine and Scriptaid modifies the epigenetic status of yak fibroblasts, subsequently enhancing in vitro developmental potential and the quality of yak cloned embryos.

  6. Hypoxia enhances periodontal ligament stem cell proliferation via the MAPK signaling pathway.

    PubMed

    He, Y; Jian, C X; Zhang, H Y; Zhou, Y; Wu, X; Zhang, G; Tan, Y H

    2016-11-21

    There is high incidence of periodontal disease in high-altitude environments; hypoxia may influence the proliferation and clone-forming ability of periodontal ligament stem cells (PDLSCs). The MAPK signaling pathway is closely correlated with cell proliferation, differentiation, and apoptosis. Thus, we isolated and cultured PDLSCs under hypoxic conditions to clarify the impact of hypoxia on PDLSC proliferation and the underlying mechanism. PDLSCs were separated and purified by the limiting dilution method and identified by flow cytometry. PDLSCs were cultured under hypoxic or normoxic conditions to observe their cloning efficiency. PDLSC proliferation at different oxygen concentrations was evaluated by MTT assay. Expression of p38/MAPK and MAPK/ERK signaling pathway members was detected by western blotting. Inhibitors for p38/MAPK or ERK were applied to PDLSCs to observe their impacts on clone formation and proliferation. Isolated PDLSCs exhibited typical stem cell morphological characteristics, strong abilities of globular clone formation and proliferation, and upregulated expression of mesenchymal stem cell markers. Stem cell marker expression was not statistically different between PDLSCs cultured under hypoxia and normoxia (P > 0.05). The clone number in the hypoxia group was significantly higher than that in the control (P < 0.05). PDLSC proliferation under hypoxia was higher than that of the control (P < 0.001). p38 and ERK1/2 phosphorylation in hypoxic PDLSCs was markedly enhanced compared to that in the control (P < 0.05). Either P38/MAPK inhibitor or ERK inhibitor treatment reduced clone formation and proliferation. Therefore, hypoxia enhanced PDLSC clone formation and proliferation by activating the p38/MAPK and ERK/MAPK signaling pathways.

  7. Molecular cloning and expression in Saccharomyces cerevisiae of two Aspergillus nidulans xylanase genes.

    PubMed Central

    Pérez-Gonzalez, J A; De Graaff, L H; Visser, J; Ramón, D

    1996-01-01

    Two Aspergillus nidulans genes, xlnA and xlnB, encoding the X22 and X24 xylanases from this fungus, respectively, have been cloned and sequenced. Their cDNAs have been expressed in a laboratory Saccharomyces cerevisiae strain under the control of a constitutive yeast promoter, resulting in the construction of recombinant xylanolytic yeast strains. PMID:8787417

  8. Expression analysis of kenaf cinnamate 4-hydroxylase (C4H) ortholog during developmental and stress responses

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to clone and analyze the expression pattern of a C4H gene encoding cinnamate 4-hydroxylase from kenaf (Hibiscus cannabinus L.). A full-length C4H ortholog was cloned using degenerate primers and the RACE (rapid amplification of cDNA ends) method. The full-length C4H ortholog...

  9. kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system.

    PubMed Central

    Simonin, F; Gavériaux-Ruff, C; Befort, K; Matthes, H; Lannes, B; Micheletti, G; Mattéi, M G; Charron, G; Bloch, B; Kieffer, B

    1995-01-01

    Using the mouse delta-opioid receptor cDNA as a probe, we have isolated genomic clones encoding the human mu- and kappa-opioid receptor genes. Their organization appears similar to that of the human delta receptor gene, with exon-intron boundaries located after putative transmembrane domains 1 and 4. The kappa gene was mapped at position q11-12 in human chromosome 8. A full-length cDNA encoding the human kappa-opioid receptor has been isolated. The cloned receptor expressed in COS cells presents a typical kappa 1 pharmacological profile and is negatively coupled to adenylate cyclase. The expression of kappa-opioid receptor mRNA in human brain, as estimated by reverse transcription-polymerase chain reaction, is consistent with the involvement of kappa-opioid receptors in pain perception, neuroendocrine physiology, affective behavior, and cognition. In situ hybridization studies performed on human fetal spinal cord demonstrate the presence of the transcript specifically in lamina II of the dorsal horn. Some divergences in structural, pharmacological, and anatomical properties are noted between the cloned human and rodent receptors. Images Fig. 3 Fig. 4 PMID:7624359

  10. Male specific genes from dioecious white campion identified by fluorescent differential display.

    PubMed

    Scutt, Charles P; Jenkins, Tom; Furuya, Masaki; Gilmartin, Philip M

    2002-05-01

    Fluorescent differential display (FDD) has been used to screen for cDNAs that are differentially up-regulated in male flowers of the dioecious plant Silene latifolia in which an X/Y chromosome system of sex determination operates. To adapt FDD to the cloning of large numbers of differential cDNAs, a novel method of confirming the differential expression of these has been devised. FDD gels were Southern electro-blotted and probed with mixtures of individual cDNA clones derived from different FDD product ligation reactions. These Southern blots were then stripped and re-probed with further mixtures of individual cloned FDD products to identify the maximum number of recombinant clones carrying the true differential amplification products. Of 135 differential bands identified by FDD, 56 differential amplification products were confirmed; these represent 23 unique differentially expressed genes as determined by virtual Northern analysis and two genes expressed at or below the level of detection by virtual Northern analysis. These two low expressed genes show bands of hybridization on genomic Southern blots that are specific to male plants, indicating that they are derived from, or closely related to, Y chromosome genes.

  11. Identification of two internal signal peptide sequences: critical for classical swine fever virus non-structural protein 2 to trans-localize to the endoplasmic reticulum.

    PubMed

    Guo, Kang-kang; Tang, Qing-hai; Zhang, Yan-ming; Kang, Kai; He, Lei

    2011-05-18

    The membrane topology and molecular mechanisms for endoplasmic reticulum (ER) localization of classical swine fever virus (CSFV) non-structural 2 (NS2) protien is unclear. We attempted to elucidate the subcellular localization, and the molecular mechanisms responsible for the localization of this protein in our study. The NS2 gene was amplified by reverse transcription polymerase chain reaction, with the transmembrane region and hydrophilicity of the NS2 protein was predicted by bioinformatics analysis. Twelve cDNAs of the NS2 gene were amplified by the PCR deletion method and cloned into a eukaryotic expression vector, which was transfected into a swine umbilical vein endothelial cell line (SUVEC). Subcellular localization of the NS2 protein was characterized by confocal microscopy, and western blots were carried out to analyze protein expression. Our results showed that the -NH2 terminal of the CSFV NS2 protein was highly hydrophobic and the protein localized in the ER. At least four transmembrane regions and two internal signal peptide sequences (amino acids103-138 and 220-262) were identified and thought to be critical for its trans-localization to the ER. This is the first study to identify the internal signal peptide sequences of the CSFV NS2 protein and its subcellular localization, providing the foundation for further exploration of this protein's function of this protein and its role in CSFV pathogenesis.

  12. Cloning and Expression Analysis of Phenylalanine Ammonia-Lyase Gene in the Mycelium and Fruit Body of the Edible Mushroom Flammulina velutipes

    PubMed Central

    Yun, Yeo Hong; Koo, Ja Sun

    2015-01-01

    Phenylalanine ammonia-lyase (PAL) gene is known to be expressed in plants, and is involved in the differentiation, growth and synthesis of secondary metabolites. However, its expression in fungi remains to be explored. To understand its expression in mushroom fungi, the PAL gene of the edible mushroom Flammulina velutipes (Fvpal) was cloned and characterized. The cloned Fvpal consists of 2,175 bp, coding for a polypeptide containing 724 amino acids and having 11 introns. The translated amino acid sequence of Fvpal shares a high identity (66%) with that of ectomycorrhizal fungus Tricholoma matsutake. Distinctively, the Fvpal expression in the mycelium was higher in minimal medium supplemented with L-tyrosine than with other aromatic amino acids. During cultivation of the mushroom on sawdust medium, Fvpal expression in the fruit body correspondingly increased as the mushroom grew. In the fruiting body, Fvpal was expressed more in the stipe than in the pileus. These results suggest that F. velutipes PAL activity differs in the different organs of the mushroom. Overall, this is first report to show that the PAL gene expression is associated with mushroom growth in fungi. PMID:26539050

  13. Stringent and reproducible tetracycline-regulated transgene expression by site-specific insertion at chromosomal loci with pre-characterised induction characteristics

    PubMed Central

    Brough, Rachel; Papanastasiou, Antigoni M; Porter, Andrew CG

    2007-01-01

    Background The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration. Many clones may therefore need to be screened before one with optimal induction characteristics is identified. Furthermore, such screens must be repeated for each new transgene investigated, and comparisons between clones with different transgenes is complicated by their different integration sites. Results To circumvent these problems we have developed a "screen and insert" strategy in which clones carrying a transgene for a fluorescent reporter are first screened for those with optimal induction characteristics. Site-specific recombination (SSR) is then be used repeatedly to insert any new transgene at the reporter transgene locus of such clones so that optimal induction characteristics are conferred upon it. Here we have tested in a human fibrosarcoma cell line (HT1080) two of many possible implementations of this approach. Clones (e.g. Rht14-10) in which a GFP reporter gene is very stringently regulated by the tetracycline (tet) transactivator (tTA) protein were first identified flow-cytometrically. Transgenes encoding luciferase, I-SceI endonuclease or Rad52 were then inserted by SSR at a LoxP site adjacent to the GFP gene resulting stringent tet-regulated transgene expression. In clone Rht14-10, increases in expression from essentially background levels (+tet) to more than 104-fold above background (-tet) were reproducibly detected after Cre-mediated insertion of either the luciferase or the I-SceI transgenes. Conclusion Although previous methods have made use of SSR to integrate transgenes at defined sites, none has effectively combined this with a pre-selection step to identify integration sites that support optimal regulatory characteristics. Rht14-10 and similar HT1080-derived clones can now be used in conjunction with a convenient delivery vector (pIN2-neoMCS), in a simple 3-step protocol leading to stringent and reproducible transgene regulation. This approach will be particularly useful for transgenes whose products are very active at low concentrations and/or for comparisons of multiple related transgenes. PMID:17493262

  14. Cloning and molecular characterization of the salt-regulated jojoba ScRab cDNA encoding a small GTP-binding protein.

    PubMed

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2002-10-01

    Salt stress results in a massive change in gene expression. An 837 bp cDNA designated ScRab was cloned from shoot cultures of the salt tolerant jojoba (Simmondsia chinesis). The cloned cDNA encodes a full length 200 amino acid long polypeptide that bears high homology to the Rab subfamily of small GTP binding proteins, particularly, the Rab5 subfamily. ScRab expression is reduced in shoots grown in the presence of salt compared to shoots from non-stressed cultures. His6-tagged ScRAB protein was expressed in E. coli, and purified to homogeneity. The purified protein bound radiolabelled GTP. The unlabelled guanine nucleotides GTP, GTP gamma S and GDP but not ATP, CTP or UTP competed with GTP binding.

  15. Molecular cloning of a novel receptor tyrosine kinase, tif, highly expressed in human ovary and testis.

    PubMed

    Dai, W; Pan, H; Hassanain, H; Gupta, S L; Murphy, M J

    1994-03-01

    Using a combination of polymerase chain reaction and conventional cDNA library screening approaches, we have cloned and characterized a putative receptor tyrosine kinase termed tif. The extracellular domain of tif has an immunoglobulin-like loop and a fibronectin type III structure. The intracellular domain contains a tyrosine kinase domain. Compared with ryk, a ubiquitously expressed receptor tyrosine kinase, tif expression is tissue-specific with human ovary and testis containing the highest amount of tif mRNA. Many other tested human tissues such as heart, liver, pancreas and thymus do not contain detectable levels of tif mRNA. The molecular cloning and characterization of tif cDNA will facilitate the identification of a potential ligand(s) for the putative receptor and the study of its biological role.

  16. Molecular cloning of a putative gene encoding isopentenyltransferase from pingyitiancha (Malus hupehensis) and characterization of its response to nitrate.

    PubMed

    Peng, Jing; Peng, Futian; Zhu, Chunfu; Wei, Shaochong

    2008-06-01

    A putative isopentenyltransferase (IPT) encoding gene was identified from a pingyitiancha (Malus hupehensis Rehd.) expressed sequence tag database, and the full-length gene was cloned by RACE. Based on expression profile and sequence alignment, the nucleotide sequence of the clone, named MhIPT3, was most similar to AtIPT3, an IPT gene in Arabidopsis. The full-length cDNA contained a 963-bp open reading frame encoding a protein of 321 amino acids with a molecular mass of 37.3 kDa. Sequence analysis of genomic DNA revealed the absence of introns in the frame. Quantitative real-time PCR analysis demonstrated that the gene was expressed in roots, stems and leaves. Application of nitrate to roots of nitrogen-deprived seedlings strongly induced expression of MhIPT3 and was accompanied by the accumulation of cytokinins, whereas MhIPT3 expression was little affected by ammonium application to roots of nitrogen-deprived seedlings. Application of nitrate to leaves also up-regulated the expression of MhIPT3 and corresponded closely with the accumulation of isopentyladenine and isopentyladenosine in leaves.

  17. Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing α-L-rhamnosidase from Bifidobacterium dentium.

    PubMed

    Bang, Seo-Hyeon; Hyun, Yang-Jin; Shim, Juwon; Hong, Sung-Woon; Kim, Dong-Hyun

    2015-01-01

    To understand the metabolism of flavonoid rhamnoglycosides by human intestinal microbiota, we measured the metabolic activity of rutin and poncirin (distributed in many functional foods and herbal medicine) by 100 human stool specimens. The average α-Lrhamnosidase activities on the p-nitrophenyl-α-L-rhamnopyranoside, rutin, and poncirin subtrates were 0.10 ± 0.07, 0.25 ± 0.08, and 0.15 ± 0.09 pmol/min/mg, respectively. To investigate the enzymatic properties, α-L-rhamnosidase-producing bacteria were isolated from the specimens, and the α-L-rhamnosidase gene was cloned from a selected organism, Bifidobacterium dentium, and expressed in E. coli. The cloned α-L-rhamnosidase gene contained a 2,673 bp sequcence encoding 890 amino acid residues. The cloned gene was expressed using the pET 26b(+) vector in E. coli BL21, and the expressed enzyme was purified using Ni(2+)-NTA and Q-HP column chromatography. The specific activity of the purified α-L-rhamnosidase was 23.3 μmol/min/mg. Of the tested natural product constituents, the cloned α-L-rhamnosidase hydrolyzed rutin most potently, followed by poncirin, naringin, and ginsenoside Re. However, it was unable to hydrolyze quercitrin. This is the first report describing the cloning, expression, and characterization of α-L-rhamnosidase, a flavonoid rhamnoglycosidemetabolizing enzyme, from bifidobacteria. Based on these findings, the α-L-rhamnosidase of intestinal bacteria such as B. dentium seem to be more effective in hydrolyzing (1-->6) bonds than (1-->2) bonds of rhamnoglycosides, and may play an important role in the metabolism and pharmacological effect of rhamnoglycosides.

  18. Catalytic site of human protein-glucosylgalactosylhydroxylysine glucosidase: Three crucial carboxyl residues were determined by cloning and site-directed mutagenesis.

    PubMed

    Hamazaki, Hideaki; Hamazaki, Michiko Horikawa

    2016-01-15

    Protein-glucosylgalactosylhydroxylysine glucosidase (PGGHG; EC3.2.1.107) cleaves glucose from disaccharide unit (Glc-α1,2-Gal) linked to hydroxylysine residues of collagen. In the present paper we first show that PGGHG is the product of ATHL1 gene as follows. (1) PGGHG was purified from chick embryos and digested with trypsin. LC-MS/MS analysis suggested the tryptic-peptides were from the ATHL1 gene product. (2) Chick embryo ATHL1 cDNA was cloned to a cloning and expression vector and two plasmid clones with different ATHL1 CDS insert were obtained. (3) Each plasmid DNA was transformed into Escherichia coli cells for expression and two isoforms of chicken PGGHG were obtained. (4) Both isoforms effectively released glucose from type IV collagen. Next, we searched for carboxyl residues crucial for catalytic activity as follows; human ATHL1 cDNA was cloned into a cloning and expression vector and 18 mutants were obtained by site-directed mutagenesis for 15 carboxyl residues conserved in ATHL1 of jawed vertebrates. The expression analysis indicated that substitutions of Asp301, Glu430 and Glu574 with sterically conservative (D301N, E430Q, E574Q) or functionally conservative (D301E, E430D, E574D) residues led to the complete elimination of enzyme activity. These findings lead us to the conclusion that PGGHG is encoded by ATHL1 and three carboxyl residues (corresponding to Asp301, Glu430 and Glu574 of human PGGHG) might be involved in the catalytic site of PGGHG. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Primer sets for cloning the human repertoire of T cell Receptor Variable regions.

    PubMed

    Boria, Ilenia; Cotella, Diego; Dianzani, Irma; Santoro, Claudio; Sblattero, Daniele

    2008-08-29

    Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT, the ImMunoGeneTics information system. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.

  20. Anti-digoxin Fab variants generated by phage display.

    PubMed

    Murata, Viviane Midori; Schmidt, Mariana Costa Braga; Kalil, Jorge; Tsuruta, Lilian Rumi; Moro, Ana Maria

    2013-06-01

    Digoxin is a pharmaceutical used in the control of cardiac dysfunction. Its therapeutic window is narrow, with effect dosage very close to the toxic dosage. To counteract the toxic effect, polyclonal Fab fragments are commercially available. Our study is based on a monoclonal anti-digoxin antibody, which would provide a product with a specific potency and more precise dosage for the detoxification of patients under digoxin treatment. Phage display technology was used to select variants with high affinity. From an anti-digoxin hybridoma, RNA was extracted for subsequent cDNA synthesis. Specific primers were used for the LC and Fd amplifications, then cloned sequentially in a phagemid vector (pComb3X) for the combinatorial Fab library construction. Clones were selected for their ability to bind to digoxin-BSA. The presence of light and heavy chains was checked, randomly selected clones then sequenced and induced to produce soluble Fabs, and subsequently analyzed for anti-digoxin expression. Out of ten clones randomly chosen, six resulted positive expression of the product. The sequencing of these revealed two identical clones and one presenting a pseudogene in the LC. Four clones presenting variations in the framework1 showed binding to digoxin-BSA by ELISA and western blotting. The specific binding was further confirmed by Biacore(®), which allowed ranking of the clones. The development of these clones allowed the selection of variants with higher affinity than the original version.

  1. Establishment and characterization of scleroderma fibroblast clonal cell lines by introduction of the hTERT gene

    PubMed Central

    Kapanadze, Bagrat; Morris, Erin; Smith, Edwin; Trojanowska, Maria

    2010-01-01

    Abstract Lack of an adequate experimental model has hindered the ability to fully understand scleroderma (SSc) pathogenesis. Current SSc research is based on the study of cultured fibroblasts from skin biopsies. In depth characterization of the SSc fibroblast phenotype is hindered by the limited lifespan and heterogeneity of these cells. The goal of this study was to isolate high collagen-producing fibroblasts from SSc biopsies and extend their lifespan with hTERT immortalization to enable characterization of their phenotype. Fibroblasts from two pairs of closely matched normal and SSc biopsies were infected with an hTERT lentivirus. Infected colonies were isolated, cultured into clonal cell lines and analysed with respect to profibrotic gene expression. The mRNA levels of nine profibrotic genes were measured by quantitative real-time PCR. Protein levels were assessed by Western blot. The hTERT SSc clones were heterogeneous with regards to expression of the profibrotic genes measured. A subset of the SSc clones showed elevated expression levels of collagen I, connective tissue growth factor and thrombospondin 1 mRNA, while expression of other genes was not significantly changed. Elevated expression of collagen I protein and mRNA was correlative with elevated expression of connective tissue growth factor. Several hTERT clones expressed high levels of pSmad1, Smad1 and TGF-βRI indicative of altered TGF-β signalling. A portion of SSc clones expressed several profibrotic genes. This study demonstrates that select characteristics of the SSc phenotype are expressed in a subset of activated fibroblasts in culture. The clonal SSc cell lines may present a new and useful model to investigate the mechanisms involved in SSc fibrosis. PMID:19432820

  2. Establishment and characterization of scleroderma fibroblast clonal cell lines by introduction of the hTERT gene.

    PubMed

    Kapanadze, Bagrat; Morris, Erin; Smith, Edwin; Trojanowska, Maria

    2010-05-01

    Lack of an adequate experimental model has hindered the ability to fully understand scleroderma (SSc) pathogenesis. Current SSc research is based on the study of cultured fibroblasts from skin biopsies. In depth characterization of the SSc fibroblast phenotype is hindered by the limited lifespan and heterogeneity of these cells. The goal of this study was to isolate high collagen-producing fibroblasts from SSc biopsies and extend their lifespan with hTERT immortalization to enable characterization of their phenotype. Fibroblasts from two pairs of closely matched normal and SSc biopsies were infected with an hTERT lentivirus. Infected colonies were isolated, cultured into clonal cell lines and analysed with respect to profibrotic gene expression. The mRNA levels of nine profibrotic genes were measured by quantitative real-time PCR. Protein levels were assessed by Western blot. The hTERT SSc clones were heterogeneous with regards to expression of the profibrotic genes measured. A subset of the SSc clones showed elevated expression levels of collagen I, connective tissue growth factor and thrombospondin 1 mRNA, while expression of other genes was not significantly changed. Elevated expression of collagen I protein and mRNA was correlative with elevated expression of connective tissue growth factor. Several hTERT clones expressed high levels of pSmad1, Smad1 and TGF-betaRI indicative of altered TGF-beta signalling. A portion of SSc clones expressed several profibrotic genes. This study demonstrates that select characteristics of the SSc phenotype are expressed in a subset of activated fibroblasts in culture. The clonal SSc cell lines may present a new and useful model to investigate the mechanisms involved in SSc fibrosis.

  3. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance

    PubMed Central

    Gong, Zhizhong; Lee, Hojoung; Xiong, Liming; Jagendorf, André; Stevenson, Becky; Zhu, Jian-Kang

    2002-01-01

    Susceptibility to chilling injury prevents the cultivation of many important crops and limits the extended storage of horticultural commodities. Although freezing tolerance is acquired through cold-induced gene expression changes mediated in part by the CBF family of transcriptional activators, whether plant chilling resistance or sensitivity involves the CBF genes is not known. We report here that an Arabidopsis thaliana mutant impaired in the cold-regulated expression of CBF genes and their downstream target genes is sensitive to chilling stress. Expression of CBF3 under a strong constitutive promoter restores chilling resistance to the mutant plants. The mutated gene was cloned and found to encode a nuclear localized RNA helicase. Our results identify a regulator of CBF genes, and demonstrate the importance of gene regulation and the CBF transcriptional activators in plant chilling resistance. PMID:12165572

  4. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish

    USGS Publications Warehouse

    Hiroi, J.; Yasumasu, S.; McCormick, S.D.; Hwang, P.-P.; Kaneko, T.

    2008-01-01

    Cation-chloride cotransporters, such as the Na+/K +/2Cl- cotransporter (NKCC) and Na+/Cl - cotransporter (NCC), are localized to the apical or basolateral plasma membranes of epithelial cells and are involved in active ion absorption or secretion. The objectives of this study were to clone and identify 'freshwater-type' and 'seawater-type' cation-chloride cotransporters of euryhaline Mozambique tilapia (Oreochromis mossambicus) and to determine their intracellular localization patterns within mitochondria-rich cells (MRCs). From tilapia gills, we cloned four full-length cDNAs homologous to human cation-chloride cotransporters and designated them as tilapia NKCC1a, NKCC1b, NKCC2 and NCC. Out of the four candidates, the mRNA encoding NKCC1a was highly expressed in the yolk-sac membrane and gills (sites of the MRC localization) of seawater-acclimatized fish, whereas the mRNA encoding NCC was exclusively expressed in the yolk-sac membrane and gills of freshwater-acclimatized fish. We then generated antibodies specific for tilapia NKCC1a and NCC and conducted whole-mount immunofluorescence staining for NKCC1a and NCC, together with Na+/K+-ATPase, cystic fibrosis transmembrane conductance regulator (CFTR) and Na+/H+ exchanger 3 (NHE3), on the yolk-sac membrane of tilapia embryos acclimatized to freshwater or seawater. The simultaneous quintuple-color immunofluorescence staining allowed us to classify MRCs clearly into four types: types I, II, III and IV. The NKCC1a immunoreactivity was localized to the basolateral membrane of seawater-specific type-IV MRCs, whereas the NCC immunoreactivity was restricted to the apical membrane of freshwater-specific type-II MRCs. Taking account of these data at the level of both mRNA and protein, we deduce that NKCC1a is the seawater-type cotransporter involved in ion secretion by type-IV MRCs and that NCC is the freshwater-type cotransporter involved in ion absorption by type-II MRCs. We propose a novel ion-uptake model by MRCs in freshwater that incorporates apically located NCC. We also reevaluate a traditional ion-uptake model incorporating NHE3; the mRNA was highly expressed in freshwater, and the immunoreactivity was found at the apical membrane of other freshwater-specific MRCs.

  5. Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy.

    PubMed

    Hossain, Md Munir; Tesfaye, Dawit; Salilew-Wondim, Dessie; Held, Eva; Pröll, Maren J; Rings, Franca; Kirfel, Gregor; Looft, Christian; Tholen, Ernst; Uddin, Jasim; Schellander, Karl; Hoelker, Michael

    2014-01-18

    Low efficiency of Somatic Cell Nuclear Transfer (NT) has been widely addressed with high incidence of placental abnormalities due to genetic and epigenetic modifications. MiRNAs are shown to be major regulators of such modifications. The present study has been carried out to identify the expression patterns of 377 miRNAs, their functional associations and mechanism of regulation in bovine placentas derived from artificial insemination (AI), in vitro production (IVP) and NT pregnancies. This study reveals a massive deregulation of miRNAs as chromosomal cluster or miRNA families without sex-linkage in NT and in-vitro derived IVP placentas. Cell specific localization miRNAs in blastocysts and expression profiling of embryos and placentas at different developmental stages identified that the major deregulation of miRNAs exhibited in placentas at day 50 of pregnancies is found to be less dependent on global DNA methylation, rather than on aberrant miRNA biogenesis molecules. Among them, aberrant AGO2 expression due to hypermethylation of its promoter was evident. Along with other factors, aberrant AGO2 expression was observed to be associated with multiple defects in trophoblast differentiation through deregulation of miRNAs mediated mechanisms. These aberrant miRNA activities might be associated with genetic and epigenetic modifications in abnormal placentogenesis due to maldifferentiation of early trophoblast cell lineage in NT and IVP pregnancies. This study provides the first insight into genome wide miRNA expression, their role in regulation of trophoblast differentiation as well as abnormal placental development in Somatic Cell Nuclear Transfer pregnancies to pave the way to improve the efficiency of cloning by nuclear transfer.

  6. Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy

    PubMed Central

    2014-01-01

    Background Low efficiency of Somatic Cell Nuclear Transfer (NT) has been widely addressed with high incidence of placental abnormalities due to genetic and epigenetic modifications. MiRNAs are shown to be major regulators of such modifications. The present study has been carried out to identify the expression patterns of 377 miRNAs, their functional associations and mechanism of regulation in bovine placentas derived from artificial insemination (AI), in vitro production (IVP) and NT pregnancies. Results This study reveals a massive deregulation of miRNAs as chromosomal cluster or miRNA families without sex-linkage in NT and in-vitro derived IVP placentas. Cell specific localization miRNAs in blastocysts and expression profiling of embryos and placentas at different developmental stages identified that the major deregulation of miRNAs exhibited in placentas at day 50 of pregnancies is found to be less dependent on global DNA methylation, rather than on aberrant miRNA biogenesis molecules. Among them, aberrant AGO2 expression due to hypermethylation of its promoter was evident. Along with other factors, aberrant AGO2 expression was observed to be associated with multiple defects in trophoblast differentiation through deregulation of miRNAs mediated mechanisms. Conclusion These aberrant miRNA activities might be associated with genetic and epigenetic modifications in abnormal placentogenesis due to maldifferentiation of early trophoblast cell lineage in NT and IVP pregnancies. This study provides the first insight into genome wide miRNA expression, their role in regulation of trophoblast differentiation as well as abnormal placental development in Somatic Cell Nuclear Transfer pregnancies to pave the way to improve the efficiency of cloning by nuclear transfer. PMID:24438674

  7. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis).

    PubMed

    Zhang, Li-Feng; Li, Wan-Feng; Han, Su-Ying; Yang, Wen-Hua; Qi, Li-Wang

    2013-10-15

    A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis. © 2013.

  8. Cooperative Degradation of Chitin by Extracellular and Cell Surface-Expressed Chitinases from Paenibacillus sp. Strain FPU-7

    PubMed Central

    Itoh, Takafumi; Hibi, Takao; Fujii, Yutaka; Sugimoto, Ikumi; Fujiwara, Akihiro; Suzuki, Fumiko; Iwasaki, Yukimoto; Kim, Jin-Kyung; Taketo, Akira

    2013-01-01

    Chitin, a major component of fungal cell walls and invertebrate cuticles, is an exceedingly abundant polysaccharide, ranking next to cellulose. Industrial demand for chitin and its degradation products as raw materials for fine chemical products is increasing. A bacterium with high chitin-decomposing activity, Paenibacillus sp. strain FPU-7, was isolated from soil by using a screening medium containing α-chitin powder. Although FPU-7 secreted several extracellular chitinases and thoroughly digested the powder, the extracellular fluid alone broke them down incompletely. Based on expression cloning and phylogenetic analysis, at least seven family 18 chitinase genes were found in the FPU-7 genome. Interestingly, the product of only one gene (chiW) was identified as possessing three S-layer homology (SLH) domains and two glycosyl hydrolase family 18 catalytic domains. Since SLH domains are known to function as anchors to the Gram-positive bacterial cell surface, ChiW was suggested to be a novel multimodular surface-expressed enzyme and to play an important role in the complete degradation of chitin. Indeed, the ChiW protein was localized on the cell surface. Each of the seven chitinase genes (chiA to chiF and chiW) was cloned and expressed in Escherichia coli cells for biochemical characterization of their products. In particular, ChiE and ChiW showed high activity for insoluble chitin. The high chitinolytic activity of strain FPU-7 and the chitinases may be useful for environmentally friendly processing of chitin in the manufacture of food and/or medicine. PMID:24077704

  9. Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs

    PubMed Central

    Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2014-01-01

    Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489

  10. Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper-activated apoprotein and complex isoform patterns

    Treesearch

    Luis F. Larrondo; Marcela Avila; Loreto Salas; Dan Cullen; Rafael Vicuna

    2003-01-01

    Analysis of genomic clones encoding a putative laccase in homokaryon strains of Ceriporiopsis subvermispora led to the identification of an allelic variant of the previously described lcs-1 gene. A cDNA clone corresponding to this gene was expressed in Aspergillus nidulans and in Aspergillus niger. Enzyme assays and Western blots showed that both hosts secreted active...

  11. Cloning and expression of clt genes encoding milk-clotting proteases from Myxococcus xanthus 422.

    PubMed

    Poza, M; Prieto-Alcedo, M; Sieiro, C; Villa, T G

    2004-10-01

    The screening of a gene library of the milk-clotting strain Myxococcus xanthus 422 constructed in Escherichia coli allowed the description of eight positive clones containing 26 open reading frames. Only three of them (cltA, cltB, and cltC) encoded proteins that exhibited intracellular milk-clotting ability in E. coli, Saccharomyces cerevisiae, and Pichia pastoris expression systems.

  12. Immunobiologic effects of cytokine gene transfer of the B16-BL6 melanoma.

    PubMed

    Strome, S E; Krauss, J C; Cameron, M J; Forslund, K; Shu, S; Chang, A E

    1993-12-01

    The genetic modification of tumors offers an approach to modulate the host immune response to relatively weak native tumor antigens. We examined the immunobiologic effects of various cytokine genes transferred into the poorly immunogenic B16-BL6 murine melanoma. Retroviral expression vectors containing cDNAs for interleukin 2, interleukin 4, interferon gamma, or a neomycin-resistant control were electroporated into a B16-BL6 tumor clone. Selected transfected clones were examined for in vitro cytokine secretion and in vivo tumorigenicity. When cells from individual clones were injected intradermally into syngeneic mice, the interleukin 4-secreting clone grew significantly slower than did the neomycin-resistant transfected control, while the growth of the interleukin 2- and interferon gamma-expressing clones was not affected. Despite minimal cytokine secretion by interferon gamma-transfected cells, these cells expressed upregulated major histocompatibility class I antigen and were more susceptible to lysis by allosensitized cytotoxic T lymphocytes compared with parental or neomycin-resistant transfected tumor targets. We observed diverse immunobiologic effects associated with cytokine gene transfer into the B16-BL6 melanoma. Interleukin 4 transfection of tumor resulted in decreased in vivo tumorigenicity that may be related to a host immune response. Further studies to evaluate the host T-cell response to these gene-modified tumors are being investigated.

  13. Cloning and expression of delta-1-pyrroline-5-carboxylate dehydrogenase in Escherichia coli DH5α improves phosphate solubilization.

    PubMed

    Gong, Mingbo; Tang, Chaoxi; Zhu, Changxiong

    2014-11-01

    A primary cDNA library of Penicillium oxalicum I1 was constructed using the switching mechanism at the 5' end of the RNA transcript (SMART) technique. A total of 106 clones showed halos in tricalcium phosphate (TCP) medium, and clone I-40 showed clear halos. The full-length cDNA of clone I-40 was 1355 bp with a complete open reading frame (ORF) of 1032 bp, encoding a protein of 343 amino acids. Multiple alignment analysis revealed a high degree of homology between the ORF of clone I-40 and delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDH) of other fungi. The ORF expression vector was constructed and transformed into Escherichia coli DH5α. The transformant (ORF-1) with the P5CDH gene secreted organic acid in medium with TCP as the sole source of phosphate. Acetic acid and α-ketoglutarate were secreted in 4 and 24 h, respectively. ORF-1 decreased the pH of the medium from 6.62 to 3.45 and released soluble phosphate at 0.172 mg·mL(-1) in 28 h. Expression of the P. oxalicum I1 p5cdh gene in E. coli could enhance organic acid secretion and phosphate-solubilizing ability.

  14. Regulation of animal biotechnology: research needs.

    PubMed

    Rexroad, C E; Green, R D; Wall, R J

    2007-09-01

    Livestock that result from biotechnology have been a part of agricultural science for over 30 years but have not entered the market place as food or fiber. Two biotechnologies are at the forefront as challenges to the world's systems for regulating the market place: animal clones and transgenic animals. Both technologies have come before the Food and Drug Administration in the United States and it appears that action is imminent for clones. The FDA has asserted principles for evaluation of clones and asserts that "... remaining hazard(s) from cloning are likely to be subtle in nature." The science-based principles recognize that in some areas related to developmental biology and gene expression in clones, additional scientific information would be useful. The role of science then is to use the genomic tools that we have available to answer questions about epigenetic regulation of development and reprogramming of genes to the state found in germ cells. Transgenics pose additional challenges to regulators. If the transgenics are produced using cloning from modified cells then the additional scientific information needed will be related to the effects of insertion and expression of the transgenes. Other approaches such as retrovirally vectored transgenesis will elicit additional questions. These questions will be challenging because the science will have to be related to the expression and function of each gene or class of genes. For the promises of animal biotechnology to be fulfilled, scientists will have to resolve many questions for regulators and the public but tools to answer those questions are rapidly becoming available.

  15. Development and characterization of K562 cell clones expressing BCL11A-XL: Decreased hemoglobin production with fetal hemoglobin inducers and its rescue with mithramycin.

    PubMed

    Finotti, Alessia; Gasparello, Jessica; Breveglieri, Giulia; Cosenza, Lucia Carmela; Montagner, Giulia; Bresciani, Alberto; Altamura, Sergio; Bianchi, Nicoletta; Martini, Elisa; Gallerani, Eleonora; Borgatti, Monica; Gambari, Roberto

    2015-12-01

    Induction of fetal hemoglobin (HbF) is considered a promising strategy in the treatment of β-thalassemia, in which production of adult hemoglobin (HbA) is impaired by mutations affecting the β-globin gene. Recent results indicate that B-cell lymphoma/leukemia 11A (BCL11A) is a major repressor of γ-globin gene expression. Therefore, disrupting the binding of the BCL11A transcriptional repressor complex to the γ-globin gene promoter provides a novel approach for inducing expression of the γ-globin genes. To develop a cellular screening system for the identification of BCL11A inhibitors, we produced K562 cell clones with integrated copies of a BCL11A-XL expressing vector. We characterized 12 K562 clones expressing different levels of BCL11A-XL and found that a clear inverse relationship does exist between the levels of BCL11A-XL and the extent of hemoglobinization induced by a panel of HbF inducers. Using mithramycin as an inducer, we found that this molecule was the only HbF inducer efficient in rescuing the ability to differentiate along the erythroid program, even in K562 cell clones expressing high levels of BCL11A-XL, suggesting that BCL11A-XL activity is counteracted by mithramycin. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  16. Cloning, expression, and purification of recombinant protein MPT-64 from a virulent strain of Mycobacterium bovis in a prokaryotic system.

    PubMed

    Tashakkori, Maryam Mohammadi; Tebianian, Majid; Tabatabaei, Mohammad; Mosavari, Nader

    2016-12-01

    Tuberculosis (TB) is a zoonotic infectious disease common to humans and animals that is caused by the rod-shaped acid-fast bacterium Mycobacterium bovis. Rapid and sensitive detection of TB is promoted by specific antigens. Virulent strains of the TB complex from M. bovis contain 16 regions of difference (RD) in their genome that encode important proteins, including major protein of Mycobacterium Tuberculosis 64 (MBT-64, which is a primary immune-stimulating antigen encoded by RD-2. In this study, we cloned, expressed, and purified MPT-64 as a potent M. bovis antigen in a prokaryotic system for use in future diagnostic studies. The antigenic region of the Mpt64 gene was investigated by bioinformatics methods, cloned into the PQE-30 plasmid, and expressed in Escherichia coli M15 cells, followed by isopropyl β-d-1-thiogalactopyranoside induction. The expressed protein was analyzed sodium dodecyl sulfate polyacrylamide gel electrophoresis and purified using a nickel-affinity column. Biological activity was confirmed by western blot using specific antibodies. Our data verified the successful cloning of the Mpt64 gene (687-bp segment) via the expression vector and purification of recombinant MPT-64 as a 24-kDa protein. These results indicated successful expression and purification of recombinant MPT-64 protein in a prokaryotic system. This protein can be used for serological diagnosis, improved detection of pathogenicity and non-pathogenicity between infected cattle, and for verification of suspected cases of bovine TB. Copyright © 2016.

  17. Tailor-made fibroblast-specific and antibiotic-free interleukin 12 plasmid for gene electrotransfer-mediated cancer immunotherapy.

    PubMed

    Kamensek, Urska; Tesic, Natasa; Sersa, Gregor; Kos, Spela; Cemazar, Maja

    2017-01-01

    Electrotransfer mediated delivery of interleukin-12 (IL-12) gene, encoded on a plasmid vector, has already been demonstrated to have a potent antitumor efficacy and great potential for clinical application. In the present study, our aim was to construct an optimized IL-12-encoding plasmid that is safe from the regulatory point of view. In light of previous studies demonstrating that IL-12 should be released in a tumor localized manner for optimal efficacy, the strong ubiquitous promoter was replaced with a weak endogenous promoter of the collagen 2 gene, which is specific for fibroblasts. Next, to comply with increasing regulatory demands for clinically used plasmids, the expression cassette was cloned in a plasmid lacking the antibiotic resistance gene. The constructed fibroblast-specific and antibiotic-free IL-12 plasmid was demonstrated to support low IL-12 expression after gene electrotransfer in selected cell lines. Furthermore, the removal of antibiotic resistance did not affect the plasmid expression profile and lowered its cytotoxicity. With optimal IL-12 expression and minimal transgene non-specific effects, i.e., low cytotoxicity, the constructed plasmid could be especially valuable for different modern immunological approaches to achieve localized boosting of the host's immune system. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. BoALMT1, an Al-Induced Malate Transporter in Cabbage, Enhances Aluminum Tolerance in Arabidopsis thaliana

    PubMed Central

    Zhang, Lei; Wu, Xin-Xin; Wang, Jinfang; Qi, Chuandong; Wang, Xiaoyun; Wang, Gongle; Li, Mingyue; Li, Xingsheng; Guo, Yang-Dong

    2018-01-01

    Aluminum (Al) is present in approximately 50% of the arable land worldwide and is regarded as the main limiting factor of crop yield on acidic soil. Al-induced root malate efflux plays an important role in the Al tolerance of plants. Here, the aluminum induced malate transporter BoALMT1 (KF322104) was cloned from cabbage (Brassica oleracea). BoALMT1 showed higher expression in roots than in shoots. The expression of BoALMT1 was specifically induced by Al treatment, but not the trivalent cations lanthanum (La), cadmium (Cd), zinc (Zn), or copper (Cu). Subcellular localization studies were performed in onion epidermal cells and revealed that BoALMT1 was localized at the plasma membrane. Scanning Ion-selective Electrode Technique was used to analyze H+ flux. Xenopus oocytes and Arabidopsis thaliana expressing BoALMT1 excreted more H+ under Al treatment. Overexpressing BoALMT1 in transgenic Arabidopsis resulted in enhanced Al tolerance and increased malate secretion. The results suggested that BoALMT1 functions as an Al-resistant gene and encodes a malate transporter. Expressing BoALMT1 in Xenopus oocytes or A. thaliana indicated that BoALMT1 could increase malate secretion and H+ efflux to resist Al tolerance. PMID:29410672

  19. BoALMT1, an Al-Induced Malate Transporter in Cabbage, Enhances Aluminum Tolerance in Arabidopsis thaliana.

    PubMed

    Zhang, Lei; Wu, Xin-Xin; Wang, Jinfang; Qi, Chuandong; Wang, Xiaoyun; Wang, Gongle; Li, Mingyue; Li, Xingsheng; Guo, Yang-Dong

    2017-01-01

    Aluminum (Al) is present in approximately 50% of the arable land worldwide and is regarded as the main limiting factor of crop yield on acidic soil. Al-induced root malate efflux plays an important role in the Al tolerance of plants. Here, the aluminum induced malate transporter BoALMT1 (KF322104) was cloned from cabbage ( Brassica oleracea ). BoALMT1 showed higher expression in roots than in shoots. The expression of BoALMT1 was specifically induced by Al treatment, but not the trivalent cations lanthanum (La), cadmium (Cd), zinc (Zn), or copper (Cu). Subcellular localization studies were performed in onion epidermal cells and revealed that BoALMT1 was localized at the plasma membrane. Scanning Ion-selective Electrode Technique was used to analyze H + flux. Xenopus oocytes and Arabidopsis thaliana expressing BoALMT1 excreted more H + under Al treatment. Overexpressing BoALMT1 in transgenic Arabidopsis resulted in enhanced Al tolerance and increased malate secretion. The results suggested that BoALMT1 functions as an Al-resistant gene and encodes a malate transporter. Expressing BoALMT1 in Xenopus oocytes or A. thaliana indicated that BoALMT1 could increase malate secretion and H+ efflux to resist Al tolerance.

  20. The expression pattern and potential functions of PHB in the spermiogenesis of Phascolosoma esculenta.

    PubMed

    Hou, Cong-Cong; Gao, Xin-Ming; Ni, Jie; Mu, Dan-Li; Yang, Hai-Yan; Liu, Cheng; Zhu, Jun-Quan

    2018-04-30

    Prohibitin (PHB) is a ubiquitous, evolutionarily conserved protein that is mainly localized in the inner mitochondrial membrane and exerts various mitochondrial functions. Here, we first cloned the phb gene from P. esculenta. The Pe-PHB protein has high homology and a similar protein structure to that of other animals, and it can be divided into the N-terminal hydrophobic/transmembrane domain, SPFH domain, and C-terminal coiled-coil domain. The Pe-phb gene is widely expressed, and the gene expression of phb is highest in coelomic fluid where spermiogenesis occurs, indicating a specific function in the coelom. We further observed continuous expression of the phb gene and localization of PHB proteins in mitochondria during spermiogenesis, indicating that PHB, as a mitochondrial component, may play a role during this process via its mitochondrial function. In addition, ubiquitination of mitochondria was detected, and the PHB signal was co-localized with the poly-ubiquitin signal during spermiogenesis. Mature sperm also showed ubiquitination of mitochondria and PHB. Therefore, PHB may be a substrate of poly-ubiquitin to regulate the ubiquitination of mitochondria and even subsequent elimination during P. esculenta spermiogenesis, and it has a potential role in guaranteeing the maternal inheritance of mitochondria. Taken together, these results support the hypothesis that PHB participates in the spermiogenesis of P. esculenta by maintaining the normal function of mitochondria and regulating the degradation of mitochondria. Copyright © 2018. Published by Elsevier B.V.

  1. Interfaces of Malignant and Immunologic Clonal Dynamics in Ovarian Cancer.

    PubMed

    Zhang, Allen W; McPherson, Andrew; Milne, Katy; Kroeger, David R; Hamilton, Phineas T; Miranda, Alex; Funnell, Tyler; Little, Nicole; de Souza, Camila P E; Laan, Sonya; LeDoux, Stacey; Cochrane, Dawn R; Lim, Jamie L P; Yang, Winnie; Roth, Andrew; Smith, Maia A; Ho, Julie; Tse, Kane; Zeng, Thomas; Shlafman, Inna; Mayo, Michael R; Moore, Richard; Failmezger, Henrik; Heindl, Andreas; Wang, Yi Kan; Bashashati, Ali; Grewal, Diljot S; Brown, Scott D; Lai, Daniel; Wan, Adrian N C; Nielsen, Cydney B; Huebner, Curtis; Tessier-Cloutier, Basile; Anglesio, Michael S; Bouchard-Côté, Alexandre; Yuan, Yinyin; Wasserman, Wyeth W; Gilks, C Blake; Karnezis, Anthony N; Aparicio, Samuel; McAlpine, Jessica N; Huntsman, David G; Holt, Robert A; Nelson, Brad H; Shah, Sohrab P

    2018-05-07

    High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls

    NASA Astrophysics Data System (ADS)

    Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.; Hoson, T.

    2003-05-01

    Under hypergravity conditions, the cell wall of stem organs becomes mechanically rigid and elongation growth is suppressed, which can be recognized as the mechanism for plants to resist gravitational force. The changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by the differential display method, for identifying genes involved in hypergravity-induced growth suppression. Sixty-two cDNA clones were expressed differentially between the control and 300 g conditions: the expression levels of 39 clones increased, whereas those of 23 clones decreased under hypergravity conditions. Sequence analysis and database searching revealed that 12 clones, 9 up-regulated and 3 down-regulated, have homology to known proteins. The expression of these genes was further analyzed using RT-PCR. Finally, six genes were confirmed to be up-regulated by hypergravity. One of such genes encoded 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor ofterpenoids such as membrane sterols and several types of hormones. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of genes encoding CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water, and those of the α-tubulin gene. These genes may be involved in a series of cellular events leading to growth suppression of stem organs under hypergravity conditions.

  3. Ovule development: identification of stage-specific and tissue-specific cDNAs.

    PubMed Central

    Nadeau, J A; Zhang, X S; Li, J; O'Neill, S D

    1996-01-01

    A differential screening approach was used to identify seven ovule-specific cDNAs representing genes that are expressed in a stage-specific manner during ovule development. The Phalaenopsis orchid takes 80 days to complete the sequence of ovule developmental events, making it a good system to isolate stage-specific ovule genes. We constructed cDNA libraries from orchid ovule tissue during archesporial cell differentiation, megasporocyte formation, and the transition to meiosis, as well as during the final mitotic divisions of female gametophyte development. RNA gel blot hybridization analysis revealed that four clones were stage specific and expressed solely in ovule tissue, whereas one clone was specific to pollen tubes. Two other clones were not ovule specific. Sequence analysis and in situ hybridization revealed the identities and domain of expression of several of the cDNAs. O39 encodes a putative homeobox transcription factor that is expressed early in the differentiation of the ovule primordium; O40 encodes a cytochrome P450 monooxygenase (CYP78A2) that is pollen tube specific. O108 encodes a protein of unknown function that is expressed exclusively in the outer layer of the outer integument and in the female gametophyte of mature ovules. O126 encodes a glycine-rich protein that is expressed in mature ovules, and O141 encodes a cysteine proteinase that is expressed in the outer integument of ovules during seed formation. Sequences homologous to these ovule clones can now be isolated from other organisms, and this should facilitate their functional characterization. PMID:8742709

  4. Vascularization and VEGF expression altered in bovine yolk sacs from IVF and NT technologies.

    PubMed

    Mess, Andrea Maria; Carreira, Ana Claudia Oliveira; Marinovic de Oliveira, Cláudia; Fratini, Paula; Favaron, Phelipe Oliveira; Barreto, Rodrigo da Silva Nunes; Pfarrer, Christiane; Meirelles, Flávio Vieira; Miglino, Maria Angelica

    2017-01-01

    Reproductive technologies are widely used in cattle, although many are associated with high-embryonic mortality, especially during early gestation, when the yolk sac undergoes macroscopic changes in structure. We hypothesized that vasculogenesis and angiogenesis are affected, thereby affecting embryonic and placental differentiation. To test this, we studied yolk sac development and gene expression of the vascular endothelial growth factor system (VEGF-A, VEGFR-1/Flt-1, VEGFR-2/KDR). Samples from Days 25 to 40/41 of pregnancy from control cattle (n = 8) and from pregnancies established with IVF, (n = 7) or somatic cell nuclear transfer/clones (n = 5) were examined by histology, immunohistochemistry, and quantitative reverse transcriptase PCR. Yolk sacs in IVF- and nuclear transfer-derived pregnancies were immature. Development of villi was sparse in IVF yolk sacs, whereas vascularization was barely formed in clones and was associated, in part, with thin or interrupted endothelium. Transcript levels of the genes characterized exceed minimum detection limits for all groups, except in the mentioned clone with interrupted endothelium. Levels of mRNA for VEGF-A and VEGFR-2 were significantly higher in IVF yolk sacs. Clones had substantial individual variation in gene expression (both upregulation and downregulation). Our data confirmed the broad range in expression of VEGF genes. Furthermore, overexpression in IVF yolk sacs may compensate for an immature yolk sac structure, whereas in clones, patchy expression may cause structural alterations of blood vessels. In conclusion, we inferred that disturbances of yolk sac vasculature contributed to increased early embryonic mortality of bovine pregnancies established with reproductive technologies. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters

    PubMed Central

    2011-01-01

    Background Streptomyces species are a major source of antibiotics. They usually grow slowly at their optimal temperature and fermentation of industrial strains in a large scale often takes a long time, consuming more energy and materials than some other bacterial industrial strains (e.g., E. coli and Bacillus). Most thermophilic Streptomyces species grow fast, but no gene cloning systems have been developed in such strains. Results We report here the isolation of 41 fast-growing (about twice the rate of S. coelicolor), moderately thermophilic (growing at both 30°C and 50°C) Streptomyces strains, detection of one linear and three circular plasmids in them, and sequencing of a 6996-bp plasmid, pTSC1, from one of them. pTSC1-derived pCWH1 could replicate in both thermophilic and mesophilic Streptomyces strains. On the other hand, several Streptomyces replicons function in thermophilic Streptomyces species. By examining ten well-sporulating strains, we found two promising cloning hosts, 2C and 4F. A gene cloning system was established by using the two strains. The actinorhodin and anthramycin biosynthetic gene clusters from mesophilic S. coelicolor A3(2) and thermophilic S. refuineus were heterologously expressed in one of the hosts. Conclusions We have developed a gene cloning and expression system in a fast-growing and moderately thermophilic Streptomyces species. Although just a few plasmids and one antibiotic biosynthetic gene cluster from mesophilic Streptomyces were successfully expressed in thermophilic Streptomyces species, we expect that by utilizing thermophilic Streptomyces-specific promoters, more genes and especially antibiotic genes clusters of mesophilic Streptomyces should be heterologously expressed. PMID:22032628

  6. Probabilistic quantum cloning of a subset of linearly dependent states

    NASA Astrophysics Data System (ADS)

    Rui, Pinshu; Zhang, Wen; Liao, Yanlin; Zhang, Ziyun

    2018-02-01

    It is well known that a quantum state, secretly chosen from a certain set, can be probabilistically cloned with positive cloning efficiencies if and only if all the states in the set are linearly independent. In this paper, we focus on probabilistic quantum cloning of a subset of linearly dependent states. We show that a linearly-independent subset of linearly-dependent quantum states {| Ψ 1⟩,| Ψ 2⟩,…,| Ψ n ⟩} can be probabilistically cloned if and only if any state in the subset cannot be expressed as a linear superposition of the other states in the set {| Ψ 1⟩,| Ψ 2⟩,…,| Ψ n ⟩}. The optimal cloning efficiencies are also investigated.

  7. [Cloning and characterization of a novel rat gene RSD-7 differentially expressed in testis].

    PubMed

    Zhang, Xiao-dong; Gou, Da-wei; Miao, Shi-ying; Zhang, Jian-chao; Zong, Shu-dong; Wang, Lin-fang

    2003-06-01

    To isolate and identify the differentially expressed genes in spermatogenesis for the understanding molecular mechanism of spermatogenesis. Screening of the cDNA library, Northern blot, expression and purification in E. coli with GST expression system, immunocytochemical staining of testis sections were used. (1) A cDNA fragment designated as RSD-7 was isolated from rat testis cDNA library. It was 1,238 bp in length, coding a protein of 232 amino acids with the GenBank accession number AF315467. The encoding protein of RSD-7 cDNA had a Ubiquitin-like domain. (2) Northern blot indicated that RSD-7 was uniquely expressed in rat testis, and in the testis RSD-7 emerged on the 30th postnatal day and expressed until 120th postnatal day. (3) Expression and purification of RSD-7 protein in E. coli with GST expression system and were used to obtain anti-RSD-7 antibody. (4) Immunolocalization of RSD-7 in rat testis revealed that it is expressed only in Sertoli cells. Transcription pattern of RSD-7 and localization of RSD-7 protein in testis have been made, which established the base for the functional study of RSD-7.

  8. Cloning and expression of Bartonella henselae sucB gene encoding an immunogenic dihydrolipoamide succinyltransferase homologous protein.

    PubMed

    Kabeya, Hidenori; Maruyama, Soichi; Hirano, Kouji; Mikami, Takeshi

    2003-01-01

    Immunoscreening of a ZAP genomic library of Bartonella henselae strain Houston-1 expressed in Escherichia coli resulted in the isolation of a clone containing 3.5 kb BamHI genomic DNA fragment. This 3.5 kb DNA fragment was found to contain a sequence of a gene encoding a protein with significant homology to the dihydrolipoamide succinyltransferase of Brucella melitensis (sucB). Subsequent cloning and DNA sequence analysis revealed that the deduced amino acid sequence from the cloned gene showed 66.5% identity to SucB protein of B. melitensis, and 43.4 and 47.2% identities to those of Coxiella burnetii and E. coli, respectively. The gene was expressed as a His-Nus A-tagged fusion protein. The recombinant SucB protein (rSucB) was shown to be an immunoreactive protein of about 115 kDa by Western blot analysis with sera from B. henselae-immunized mice. Therefore the rSucB may be a candidate antigen for a specific serological diagnosis of B. henselae infection.

  9. Characterization of embryo-specific genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Z.R.

    1988-01-01

    The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that are not expressed in mature tissues -- the embryogenic genes. In order to isolate these genes, we immunized a rabbit with total extracts of somatic embryos of carrot, and enriched the anti-embryo antiserum for antibodies reacting with extracts of carrot somatic embryos. Using this enriched antiserum, we screened a lambda gt11 cDNA library constructed from embryo poly A{sup +} RNA, and isolated 10 cDNA clones that detect embryogenic mRNAs. Monospecific antibodies have beenmore » purified for proteins corresponding to each cDNA sequence. Four cDNA clones were further characterized in terms of the expression of their corresponding mRNA and protein in somatic embryos of carrot. In some cases, comparable gene sequences or products have been detected in somatic and zygotic embryos of other plant species. The characteristics of these 4 cDNA clones -- clone Nos. 8, 59, and 66 -- are described in this report. 3 figs.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlagnhaufer, C.D.; Arteca, R.N.; Pell, E.J.

    When potato plants (Solanum tuberosum L. cv Norland) are subjected to oxone stress ethylene is emitted. Increases in ethylene production are often the result of increased expression of the enzyme ACC synthase. We used the polymerase chain reaction (PCR) to clone a cDNA encoding an ozone-induced ACC synthase. After treating potato plants with 300 ppb ozone for 4 h, RNA was extracted using a guanidinium isothiocyanate method. Using degenerate oligonucleotides corresponding to several conserved regions of ACC synthase sequences reported from different plant tissues as primers, we were able to reverse transcribe the RNA and amplify a cDNA for ACCmore » synthase. The clone is 1098 bp in length encoding for 386 amino acids comprising [approximately]80% of the protein. Computer analysis of the deduced amino acid sequence showed that our clone is 50-70% homologous with ACC synthase genes cloned from other plant tissues. Using the cDNA as a probe in northern analysis we found that there is little or no expression in control tissue: however there is a large increase in the expression of the ACC synthase message in response to ozone treatment.« less

  11. Geranylgeranyl diphosphate synthase from Scoparia dulcis and Croton sublyratus. Plastid localization and conversion to a farnesyl diphosphate synthase by mutagenesis.

    PubMed

    Sitthithaworn, W; Kojima, N; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Noji, M; Saito, K; Niwa, Y; Sankawa, U

    2001-02-01

    cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene-producing plants, Scoparia dulcis and Croton sublyratus, have been isolated using the homology-based polymerase chain reaction (PCR) method. Both clones contained highly conserved aspartate-rich motifs (DDXX(XX)D) and their N-terminal residues exhibited the characteristics of chloroplast targeting sequence. When expressed in Escherichia coli, both the full-length and truncated proteins in which the putative targeting sequence was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to produce geranylgeranyl diphosphate (GGPP). The structural factors determining the product length in plant GGPPSs were investigated by constructing S. dulcis GGPPS mutants on the basis of sequence comparison with the first aspartate-rich motif (FARM) of plant farnesyl diphosphate synthase. The result indicated that in plant GGPPSs small amino acids, Met and Ser, at the fourth and fifth positions before FARM and Pro and Cys insertion in FARM play essential roles in determination of product length. Further, when a chimeric gene comprised of the putative transit peptide of the S. dulcis GGPPS gene and a green fluorescent protein was introduced into Arabidopsis leaves by particle gun bombardment, the chimeric protein was localized in chloroplasts, indicating that the cloned S. dulcis GGPPS is a chloroplast protein.

  12. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae

    DOE PAGES

    Reider Apel, Amanda; d'Espaux, Leo; Wehrs, Maren; ...

    2016-11-28

    Despite the extensive use of Saccharomyces cerevisiae as a platform for synthetic biology, strain engineering remains slow and laborious. Here, we employ CRISPR/Cas9 technology to build a cloning-free toolkit that addresses commonly encountered obstacles in metabolic engineering, including chromosomal integration locus and promoter selection, as well as protein localization and solubility. The toolkit includes 23 Cas9-sgRNA plasmids, 37 promoters of various strengths and temporal expression profiles, and 10 protein-localization, degradation and solubility tags. We facilitated the use of these parts via a web-based tool, that automates the generation of DNA fragments for integration. Our system builds upon existing gene editingmore » methods in the thoroughness with which the parts are standardized and characterized, the types and number of parts available and the ease with which our methodology can be used to perform genetic edits in yeast. We demonstrated the applicability of this toolkit by optimizing the expression of a challenging but industrially important enzyme, taxadiene synthase (TXS). This approach enabled us to diagnose an issue with TXS solubility, the resolution of which yielded a 25-fold improvement in taxadiene production.« less

  13. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reider Apel, Amanda; d'Espaux, Leo; Wehrs, Maren

    Despite the extensive use of Saccharomyces cerevisiae as a platform for synthetic biology, strain engineering remains slow and laborious. Here, we employ CRISPR/Cas9 technology to build a cloning-free toolkit that addresses commonly encountered obstacles in metabolic engineering, including chromosomal integration locus and promoter selection, as well as protein localization and solubility. The toolkit includes 23 Cas9-sgRNA plasmids, 37 promoters of various strengths and temporal expression profiles, and 10 protein-localization, degradation and solubility tags. We facilitated the use of these parts via a web-based tool, that automates the generation of DNA fragments for integration. Our system builds upon existing gene editingmore » methods in the thoroughness with which the parts are standardized and characterized, the types and number of parts available and the ease with which our methodology can be used to perform genetic edits in yeast. We demonstrated the applicability of this toolkit by optimizing the expression of a challenging but industrially important enzyme, taxadiene synthase (TXS). This approach enabled us to diagnose an issue with TXS solubility, the resolution of which yielded a 25-fold improvement in taxadiene production.« less

  14. Green fluorescent protein as a reporter of gene expression and protein localization.

    PubMed

    Kain, S R; Adams, M; Kondepudi, A; Yang, T T; Ward, W W; Kitts, P

    1995-10-01

    The green fluorescent protein (GFP) from the jellyfish Aequorea victoria is rapidly becoming an important reporter molecule for monitoring gene expression and protein localization in vivo, in situ and in real time. GFP emits bright green light (lambda max = 509 nm) when excited with UV or blue light (lambda max = 395 nm, minor peak at 470 nm). The fluorescence excitation and emission spectra of GFP are similar to those of fluorescein, and the conditions used to visualize this fluorophore are also suitable for GFP. Unlike other bioluminescent reporters, the chromophore in GFP is intrinsic to the primary structure of the protein, and GFP fluorescence does not require a substrate or cofactor. GFP fluorescence is stable, species-independent and can be monitored non-invasively in living cells and, in the case of transparent organisms, whole animals. Here we demonstrate GFP fluorescence in bacterial and mammalian cells and introduce our Living Colors line of GFP reporter vectors, GFP protein and anti-GFP antiserum. The reporter vectors for GFP include a promoterless GFP vector for monitoring the expression of cloned promoters/enhancers in mammalian cells and a series of six vectors for creating fusion protein to either the N or C terminus of GFP.

  15. Russell body inducing threshold depends on the variable domain sequences of individual human IgG clones and the cellular protein homeostasis.

    PubMed

    Stoops, Janelle; Byrd, Samantha; Hasegawa, Haruki

    2012-10-01

    Russell bodies are intracellular aggregates of immunoglobulins. Although the mechanism of Russell body biogenesis has been extensively studied by using truncated mutant heavy chains, the importance of the variable domain sequences in this process and in immunoglobulin biosynthesis remains largely unknown. Using a panel of structurally and functionally normal human immunoglobulin Gs, we show that individual immunoglobulin G clones possess distinctive Russell body inducing propensities that can surface differently under normal and abnormal cellular conditions. Russell body inducing predisposition unique to each immunoglobulin G clone was corroborated by the intrinsic physicochemical properties encoded in the heavy chain variable domain/light chain variable domain sequence combinations that define each immunoglobulin G clone. While the sequence based intrinsic factors predispose certain immunoglobulin G clones to be more prone to induce Russell bodies, extrinsic factors such as stressful cell culture conditions also play roles in unmasking Russell body propensity from immunoglobulin G clones that are normally refractory to developing Russell bodies. By taking advantage of heterologous expression systems, we dissected the roles of individual subunit chains in Russell body formation and examined the effect of non-cognate subunit chain pair co-expression on Russell body forming propensity. The results suggest that the properties embedded in the variable domain of individual light chain clones and their compatibility with the partnering heavy chain variable domain sequences underscore the efficiency of immunoglobulin G biosynthesis, the threshold for Russell body induction, and the level of immunoglobulin G secretion. We propose that an interplay between the unique properties encoded in variable domain sequences and the state of protein homeostasis determines whether an immunoglobulin G expressing cell will develop the Russell body phenotype in a dynamic cellular setting. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. T-helper cell receptors from long-term survivors after telomerase cancer vaccination for use in adoptive cell therapy.

    PubMed

    Kyte, Jon Amund; Gaudernack, Gustav; Faane, Anne; Lislerud, Kari; Inderberg, Else Marit; Brunsvig, Paal; Aamdal, Steinar; Kvalheim, Gunnar; Wälchli, Sébastien; Pule, Martin

    2016-01-01

    We herein report retargeting of T-helper (Th) cells against the universal cancer antigen telomerase for use in adoptive cell therapy. The redirected Th cells may counter tumor tolerance, transform the inflammatory milieu, and induce epitope spreading and cancer senescence. We have previously conducted a series of trials evaluating vaccination with telomerase peptides. From long-term survivors, we isolated >100 CD4 + Th-cell clones recognizing telomerase epitopes. The clones were characterized with regard to HLA restriction, functional avidity, fine specificity, proliferative capacity, cytokine profile, and recognition of naturally processed epitopes. DP4 is the most prevalent HLA molecule worldwide. Two DP4-restricted T-cell clones with different functional avidity, C13 and D71, were selected for molecular T-cell receptor (TCR) cloning. Both clones showed a high proliferative capacity, recognition of naturally processed telomerase epitopes, and a polyfunctional and Th1-weighted cytokine profile. TCR C13 and D71 were cloned into the retroviral vector MP71 together with the compact and GMP-applicable marker/suicide gene RQR8. Both TCRs were expressed well in recipient T cells after PBMC transduction. The transduced T cells co-expressed RQR8 and acquired the desired telomerase specificity, with a polyfunctional response including production of TNFa, IFNγ, and CD107a. Interestingly, the DP4-restricted TCRs were expressed and functional both in CD4 + and CD8 + T cells. The findings demonstrate that the cloned TCRs confer recipient T cells with the desired hTERT-specificity and functionality. We hypothesize that adoptive therapy with Th cells may offer a powerful novel approach for overcoming tumor tolerance and synergize with other forms of immunotherapy.

  17. Identification of the Propionicin F Bacteriocin Immunity Gene (pcfI) and Development of a Food-Grade Cloning System for Propionibacterium freudenreichii▿ †

    PubMed Central

    Brede, Dag Anders; Lothe, Sheba; Salehian, Zhian; Faye, Therese; Nes, Ingolf F.

    2007-01-01

    This report describes the first functional analysis of a bacteriocin immunity gene from Propionibacterium freudenreichii and its use as a selection marker for food-grade cloning. Cloning of the pcfI gene (previously orf5 [located as part of the pcfABC propionicin F operon]) rendered the sensitive host 1,000-fold more tolerant to the propionicin F bacteriocin. The physiochemical properties of the 127-residue large PcfI protein resemble those of membrane-bound immunity proteins from bacteriocin systems found in lactic acid bacteria. The high level of immunity conferred by pcfI allowed its use as a selection marker for plasmid transformation in P. freudenreichii. Electroporation of P. freudenreichii IFO12426 by use of the pcfI expression plasmid pSL102 and propionicin F selection (200 bacteriocin units/ml) yielded 107 transformants/μg DNA. The 2.7-kb P. freudenreichii food-grade cloning vector pSL104 consists of the pLME108 replicon, a multiple cloning site, and pcfI expressed from the constitutive PpampS promoter for selection. The pSL104 vector efficiently facilitated cloning of the propionicin T1 bacteriocin in P. freudenreichii. High-level propionicin T1 production (640 BU/ml) was obtained with the IFO12426 strain, and the food-grade propionicin T1 expression plasmid pSL106 was maintained by ∼91% of the cells over 25 generations in the absence of selection. To the best of our knowledge this is the first report of an efficient cloning system that facilitates the generation of food-grade recombinant P. freudenreichii strains. PMID:17933941

  18. Identification of the propionicin F bacteriocin immunity gene (pcfI) and development of a food-grade cloning system for Propionibacterium freudenreichii.

    PubMed

    Brede, Dag Anders; Lothe, Sheba; Salehian, Zhian; Faye, Therese; Nes, Ingolf F

    2007-12-01

    This report describes the first functional analysis of a bacteriocin immunity gene from Propionibacterium freudenreichii and its use as a selection marker for food-grade cloning. Cloning of the pcfI gene (previously orf5 [located as part of the pcfABC propionicin F operon]) rendered the sensitive host 1,000-fold more tolerant to the propionicin F bacteriocin. The physiochemical properties of the 127-residue large PcfI protein resemble those of membrane-bound immunity proteins from bacteriocin systems found in lactic acid bacteria. The high level of immunity conferred by pcfI allowed its use as a selection marker for plasmid transformation in P. freudenreichii. Electroporation of P. freudenreichii IFO12426 by use of the pcfI expression plasmid pSL102 and propionicin F selection (200 bacteriocin units/ml) yielded 10(7) transformants/microg DNA. The 2.7-kb P. freudenreichii food-grade cloning vector pSL104 consists of the pLME108 replicon, a multiple cloning site, and pcfI expressed from the constitutive P(pampS) promoter for selection. The pSL104 vector efficiently facilitated cloning of the propionicin T1 bacteriocin in P. freudenreichii. High-level propionicin T1 production (640 BU/ml) was obtained with the IFO12426 strain, and the food-grade propionicin T1 expression plasmid pSL106 was maintained by approximately 91% of the cells over 25 generations in the absence of selection. To the best of our knowledge this is the first report of an efficient cloning system that facilitates the generation of food-grade recombinant P. freudenreichii strains.

  19. Identification of a testis-expressed creatine transporter gene at 16p11.2 and confirmation of the X-linked locus to Xq28

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, G.S.; Funanage, V.L.; Proujansky, R.

    1996-05-15

    Creatine and creatine phosphate act as a buffer system for the regeneration of ATP in tissues with fluctuating energy demands. Following reports of the cloning of a creatine transporter in rat, rabbit, and human, we cloned and sequenced a creatine transporter from a human intestinal cDNA library. PCR amplification of genomic DNAs from somatic cell hybrid panels localized two creatine transporter (CT) genes: CT1 to Xq26-q28 and CT2 to 16p11.2. Refinement of CT1 to Xq28 was confirmed by FISH. Identification of CT2 sequences in YACs and cosmid contigs that had been ordered on human chromosome 16 enabled its assignment tomore » the proximal end of 16p11.2. Sequencing of the CT2 gene identified sequence differences between CT1 and CT2 transcripts that were utilized to determine that CT2 is expressed in testis only. CT2 is the most proximally identified gene on chromosome 16p to date. The existence of an autosomal, testis-specific form of the human creatine transporter gene suggests that creatine transporter activity is critical for normal function of spermatazoa following meiosis. 17 refs., 2 figs., 2 tabs.« less

  20. Cloning and characterization of a serotonin N-acetyltransferase from a gymnosperm, loblolly pine (Pinus taeda).

    PubMed

    Park, Sangkyu; Byeon, Yeong; Lee, Hyoung Yool; Kim, Young-Soon; Ahn, Taeho; Back, Kyoungwhan

    2014-10-01

    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in melatonin biosynthesis in both animals and plants. SNAT catalyzes serotonin into N-acetylserotonin, an immediate precursor for melatonin biosynthesis by N-acetylserotonin methyltransferase (ASMT). We cloned the SNAT gene from a gymnosperm loblolly pine (Pinus teada). The loblolly pine SNAT (PtSNAT) gene encodes 255 amino acids harboring a transit sequence with 67 amino acids and shows 67% amino acid identity with rice SNAT when comparing the mature polypeptide regions. Purified recombinant PtSNAT showed peak activity at 55°C with the K(m) (428 μM) and Vmax (3.9 nmol/min/mg protein) values. As predicted, PtSNAT localized to chloroplasts. The SNAT mRNA was constitutively expressed in all tissues, including leaf, bud, flower, and pinecone, whereas the corresponding protein was detected only in leaf. In accordance with the exclusive SNAT protein expression in leaf, melatonin was detected only in leaf at 0.45 ng per gram fresh weight. Sequence and phylogenetic analysis indicated that the gymnosperm PtSNAT had high homology with SNATs from all plant phyla (even with cyanobacteria), and formed a clade separated from the angiosperm SNATs, suggestive of direct gene transfer from cyanobacteria via endosymbiosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Chromosomal localization and cDNA cloning of the human DBP and TEF genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatib, Z.A.; Inaba, T.; Valentine, M.

    1994-09-15

    The authors have isolated cDNA and genomic clones and determined the human chromosome positions of two genes encoding transcription factors expressed in the liver and the pituitary gland: albumin D-site-binding protein (DBP) and thyrotroph embryonic factor (TEF). Both proteins have been identified as members of the PAR (proline and acidic amino acid-rich) subfamily of bZIP transcription factors in the rat, but human homologues have not been characterized. Using a fluorescence in situ hybridization technique, the DBP locus was assigned to chromosome 19q13, and TEF to chromosome 22q13. Each assignment was confirmed by means of human chromosome segregation in somatic cellmore » hybrids. Coding sequences of DBP and TEF, extending beyond the bZIP domain to the PAR region, were highly conserved in both human-human and interspecies comparisons. Conservation of the exon-intron boundaries of each bZIP domain-encoding exon suggested derivation from a common ancestral gene. DBP and TEF mRNAs were expressed in all tissues and cell lines examined, including brain, lung, liver, spleen, and kidney. Knowledge of the human chromosome locations of these PAR proteins will facilitate studies to assess their involvement in carcinogenesis and other fundamental biological processes. 37 refs., 5 figs., 1 tab.« less

  2. cDNA cloning, tissue distribution, and chromosomal localization of myelodysplasia/Myeloid Leukemia Factor 2 (MLF2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuefer, M.U.; Valentine, V.; Behm, F.G.

    A fusion gene between nucleophosmin (NPM) and myelodysplasia/myeloid leukemia factor 1 (MLF1) and myelodysplasia/myeloid leukemia factor 1 (MLF1) is formed by a recurrent t(3;5)(q25.1;q34) in myelodysplastic syndrome and acute myeloid leukemia. Here we report the identification of a novel gene, MLF2, which contains an open reading frame of 744 bp encoding a 248-amino-acid protein highly related to the previously identified MLF1 protein (63% similarity, 40% identity). In contrast to the tissue-restricted expression pattern of MLF1, and MLF2 messenger RNA is expressed ubiquitously. The MLF2 gene locus was mapped by fluorescence in situ hybridization to human chromosome 12p13, a chromosomal regionmore » frequently involved in translocations and deletions in acute leukemias of lymphoid or myeloid lineage. In a physical map of chromosome 12, MLF2 was found to reside on the yeast artificial chromosome clone 765b9. Southern blotting analysis of malignant cell DNAs prepared from a series of acute lymphoblastic leukemia cases with translocations involving chromosome arm 12p, as well as a group of acute myeloid leukemias with various cytogenetic abnormalities, failed to reveal MLF2 gene rearrangements. 19 refs., 2 figs.« less

  3. Molecular cloning of allelopathy related genes and their relation to HHO in Eupatorium adenophorum.

    PubMed

    Guo, Huiming; Pei, Xixiang; Wan, Fanghao; Cheng, Hongmei

    2011-10-01

    In this study, conserved sequence regions of HMGR, DXR, and CHS (encoding 3-hydroxy-3-methylglutaryl-CoA reductase, 1-deoxyxylulose-5-phosphate reductoisomerase and chalcone synthase, respectively) were amplified by reverse transcriptase (RT)-PCR from Eupatorium adenophorum. Quantitative real-time PCR showed that the expression of CHS was related to the level of HHO, an allelochemical isolated from E. adenophorum. Semi-quantitative RT-PCR showed that there was no significant difference in expression of genes among three different tissues, except for CHS. Southern blotting indicated that at least three CHS genes are present in the E. adenophorum genome. A full-length cDNA from CHS genes (named EaCHS1, GenBank ID: FJ913888) was cloned. The 1,455 bp cDNA contained an open reading frame (1,206 bp) encoding a protein of 401 amino acids. Preliminary bioinformatics analysis of EaCHS1 revealed that EaCHS1 was a member of CHS family, the subcellular localization predicted that EaCHS1 was a cytoplasmic protein. To the best of our knowledge, this is the first report of conserved sequences of these genes and of a full-length EaCHS1 gene in E. adenophorum. The results indicated that CHS gene is related to allelopathy of E. adenophorum.

  4. Molecular cloning of a defense-response-related cytochrome P450 gene from tobacco.

    PubMed

    Takemoto, D; Hayashi, M; Doke, N; Nishimura, M; Kawakita, K

    1999-12-01

    Plant defenses against pathogen attack involve a series of inducible responses that contribute to resistance. Tobacco leaves injected with HWC (hyphal wall components prepared from Phytophthora infestans) elicitor showed typical defense responses, including the induction of localized necrosis and the accumulation of pathogenesis-related proteins. In order to elucidate the molecular mechanisms by which plant defense systems are activated, we screened tobacco plants for genes differentially expressed in response to HWC. We performed differential screening by RT-PCR with random primers and obtained PCR products specific to HWC-treated leaf RNA. Northern hybridization using the PCR products as probes confirmed that one transcript was actually induced by HWC treatment. As the deduced amino acid sequence of this clone showed the highest degree of similarity to elicitor-induced soybean cytochrome P450 CYP82A4, it was designated CYP82E1. The expression of CYP82E1 was strongly induced in tobacco by the soybean pathogen Pseudomonas syringae pv. glycinea (nonpathogenic on tobacco), but it was activated only slightly and in a delayed fashion by the tobacco pathogen P. syringae pv. tabaci (pathogenic on tobacco), implying that the product of CYP82E1 may be involved in disease resistance in tobacco.

  5. Microsporidia, amitochondrial protists, possess a 70-kDa heat shock protein gene of mitochondrial evolutionary origin.

    PubMed

    Peyretaillade, E; Broussolle, V; Peyret, P; Méténier, G; Gouy, M; Vivarès, C P

    1998-06-01

    An intronless gene encoding a protein of 592 amino acid residues with similarity to 70-kDa heat shock proteins (HSP70s) has been cloned and sequenced from the amitochondrial protist Encephalitozoon cuniculi (phylum Microsporidia). Southern blot analyses show the presence of a single gene copy located on chromosome XI. The encoded protein exhibits an N-terminal hydrophobic leader sequence and two motifs shared by proteobacterial and mitochondrially expressed HSP70 homologs. Phylogenetic analysis using maximum likelihood and evolutionary distances place the E. cuniculi sequence in the cluster of mitochondrially expressed HSP70s, with a higher evolutionary rate than those of homologous sequences. Similar results were obtained after cloning a fragment of the homologous gene in the closely related species E. hellem. The presence of a nuclear targeting signal-like sequence supports a role of the Encephalitozoon HSP70 as a molecular chaperone of nuclear proteins. No evidence for cytosolic or endoplasmic reticulum forms of HSP70 was obtained through PCR amplification. These data suggest that Encephalitozoon species have evolved from an ancestor bearing mitochondria, which is in disagreement with the postulated presymbiotic origin of Microsporidia. The specific role and intracellular localization of the mitochondrial HSP70-like protein remain to be elucidated.

  6. The potential and biological test on cloned cassava crop remains on local sheep

    NASA Astrophysics Data System (ADS)

    Ginting, R.; Umar, S.; Hanum, C.

    2018-02-01

    This research aims at knowing the potential of cloned cassava crop remains dry matter and the impact of the feeding of the cloned cassava crop remains based complete feed on the consumption, the body weight gain, and the feed conversion of the local male sheep with the average of initial body weight of 7.75±1.75 kg. The design applied in the first stage research was random sampling method with two frames of tile and the second stage research applied Completely Randomized Design (CRD) with three (3) treatments and four (4) replicates. These treatments consisted of P1 (100% grass); P2 (50% grass, 50% complete feed pellet); P3 (100% complete feed from the raw material of cloned cassava crop remaining). Statistical tests showed that the feeding of complete feed whose raw material was from cloned cassava crop remains gave a highly significant impact on decreasing feed consumption, increasing body weight, lowering feed conversion, and increasing crude protein digestibility. The conclusion is that the cloned cassava crop remains can be used as complete sheep feed to replace green grass and can give the best result.

  7. A high-resolution genetic, physical, and comparative gene map of the doublefoot (Dbf) region of mouse chromosome 1 and the region of conserved synteny on human chromosome 2q35.

    PubMed

    Hayes, C; Rump, A; Cadman, M R; Harrison, M; Evans, E P; Lyon, M F; Morriss-Kay, G M; Rosenthal, A; Brown, S D

    2001-12-01

    The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0.4-cM (+/-0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation.

  8. Identification of a STOP1-like protein in Eucalyptus that regulates transcription of Al tolerance genes.

    PubMed

    Sawaki, Yoshiharu; Kobayashi, Yuriko; Kihara-Doi, Tomonori; Nishikubo, Nobuyuki; Kawazu, Tetsu; Kobayashi, Masatomo; Kobayashi, Yasufumi; Iuchi, Satoshi; Koyama, Hiroyuki; Sato, Shigeru

    2014-06-01

    Tolerance to soil acidity is an important trait for eucalyptus clones that are introduced to commercial forestry plantations in pacific Asian countries, where acidic soil is dominant in many locations. A conserved transcription factor regulating aluminum (Al) and proton (H⁺) tolerance in land-plant species, STOP1 (SENSITIVE TOPROTON RHIZOTOXICITY 1)-like protein, was isolated by polymerase chain reaction-based cloning, and then suppressed by RNA interference in hairy roots produced by Agrobacterium rhizogenes-mediated transformation. Eucalyptus STOP1-like protein complemented proton tolerance in an Arabidopsis thaliana stop1-mutant, and localized to the nucleus in a transient assay of a green fluorescent protein fusion protein expressed in tobacco leaves by Agrobacterium tumefaciens-mediated transformation. Genes encoding a citrate transporting MULTIDRUGS AND TOXIC COMPOUND EXTRUSION protein and an orthologue of ALUMINUM SENSITIVE 3 were suppressed in transgenic hairy roots in which the STOP1 orthologue was knocked down. In summary, we identified a series of genes for Al-tolerance in eucalyptus, including a gene for STOP1-like protein and the Al-tolerance genes it regulates. These genes may be useful for molecular breeding and genomic selection of elite clones to introduce into acid soil regions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Molecular cloning and tissue distribution of peroxisome proliferator-activated receptor-alpha (PPARα) and gamma (PPARγ) in the pigeon (Columba livia domestica).

    PubMed

    Xie, P; Yuan, C; Wang, C; Zou, X-T; Po, Z; Tong, H-B; Zou, J-M

    2014-01-01

    1. Peroxisome proliferator-activated receptors (PPAR) are involved in lipid metabolism through transcriptional regulation of target gene expression. The objective of the current study was to clone and characterise the PPARα and PPARγ genes in pigeon. 2. The full-length of 1941-bp PPARα and 1653-bp PPARγ were cloned from pigeons. The two genes were predicted to encode 468 and 475 amino acids, respectively. Both proteins contained two C4-type zinc fingers, a nuclear hormone receptor DNA-binding region signature and a HOLI domain (ligand binding domain of hormone receptors), and had high identities with other corresponding avian genes. 3. Using quantitative real-time PCR, pigeon PPARα gene expression was shown to be high in kidney, liver, gizzard and duodenum whereas PPARγ was predominantly expressed in adipose tissue.

  10. Yeast Surface Display of Two Proteins Previously Shown to Be Protective Against White Spot Syndrome Virus (WSSV) in Shrimp.

    PubMed

    Ananphongmanee, Vorawit; Srisala, Jiraporn; Sritunyalucksana, Kallaya; Boonchird, Chuenchit

    2015-01-01

    Cell surface display using the yeasts Saccharomyces cerevisiae and Pichia pastoris has been extensively developed for application in bioindustrial processes. Due to the rigid structure of their cell walls, a number of proteins have been successfully displayed on their cell surfaces. It was previously reported that the viral binding protein Rab7 from the giant tiger shrimp Penaeus monodon (PmRab7) and its binding partner envelope protein VP28 of white spot syndrome virus (WSSV) could independently protect shrimp against WSSV infection. Thus, we aimed to display these two proteins independently on the cell surfaces of 2 yeast clones with the ultimate goal of using a mixture of the two clones as an orally deliverable, antiviral agent to protect shrimp against WSSV infection. PmRab7 and VP28 were modified by N-terminal tagging to the C-terminal half of S. cerevisiae α-agglutinin. DNA fragments, harboring fused-gene expression cassettes under control of an alcohol oxidase I (AOX1) promoter were constructed and used to transform the yeast cells. Immunofluorescence microscopy with antibodies specific to both proteins demonstrated that mutated PmRab7 (mPmRab7) and partial VP28 (pVP28) were localized on the cell surfaces of the respective clones, and fluorescence intensity for each was significantly higher than that of control cells by flow cytometry. Enzyme-linked immunosorbant assay (ELISA) using cells displaying mPmRab7 or pVP28 revealed that the binding of specific antibodies for each was dose-dependent, and could be saturated. In addition, the binding of mPmRab7-expressing cells with free VP28, and vice versa was dose dependent. Binding between the two surface-expressed proteins was confirmed by an assay showing agglutination between cells expressing complementary mPmRab7 and pVP28. In summary, our genetically engineered P. pastoris can display biologically active mPmRab7 and pVP28 and is now ready for evaluation of efficacy in protecting shrimp against WSSV by oral administration.

  11. Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina

    NASA Astrophysics Data System (ADS)

    Ishida, Yuko; Ozaki, Mamiko

    2012-01-01

    In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.

  12. Cloning and Expressing Recombinant Protective Antigen Domains of B. anthracis

    DTIC Science & Technology

    2011-09-01

    future predictive modeling toolkits. 1 1. Introduction The use of Bacillus anthracis as a bio - weapon in the United States in 2001 affirmed the need...for improved sensing and detection of biological weapons of mass destruction (WMD). Protective Antigen (PA) protein of Bacillus anthracis is the...Cloning and Expressing Recombinant Protective Antigen Domains of B. anthracis by Deborah A. Sarkes, Joshua M. Kogot, Irene Val-Addo

  13. Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli.

    PubMed

    Yue, Chang-Wu; Zhang, Yi-Zheng

    2009-03-01

    A novel antifreeze protein cDNA was cloned by RT-PCR from the larva of the yellow mealworm Tenebrio molitor. The coding fragment of 339 bp encodes a protein of 112 amino acid residues and was fused to the expression vectors pET32a and pTWIN1. The resulted expression plasmids were transformed into Escherischia coli strains BL21 (DE3), ER2566, and Origami B (DE3), respectively. Several strategies were used for expression of the highly disulfide-bonded beta-helix-contained protein with the activity of antifreeze in different expression systems. A protocol for production of refolded and active T. molitor antifreeze protein in bacteria was obtained.

  14. Identification of Genes Differentially Expressed During Heat Shock Treatment in Aedes aegypti

    DTIC Science & Technology

    2009-01-01

    Chan, C. W. Cheng, and R. S. Wu. 2003. Cloning of theHSP70 gene in barnacle larvae and its expression under hypoxic conditions. Mar. Pollut. Bull. 46...665Ð671. Chuang, K. H., S. H. Ho, and Y. L. Song. 2007. Cloning and expression analysis of heat shock cognate 70 gene pro- moter in tiger shrimp ...in larvae , but not adults, of a polar insect. Proc. Natl. Acad. Sci. U.S.A. 103: 14223Ð14227. Robich, R. M., J. P. Rinehart, L. J. Kitchen, and D. L

  15. Molecular cloning and localization of a novel cotton annexin gene expressed preferentially during fiber development.

    PubMed

    Wang, Li Ke; Niu, Xiao Wei; Lv, Yan Hui; Zhang, Tian Zhen; Guo, Wang Zhen

    2010-10-01

    Annexins constitute a family of multifunction and structurally related proteins. These proteins are ubiquitous in the plant kingdom, and are important calcium-dependent membrane-binding proteins that participate in the polar development of different plant regions such as rhizoids, root caps, and pollen tube tips. In this study, a novel cotton annexin gene (designated as GhFAnnx) was isolated from a fiber cDNA library of cotton (Gossypium hirsutum). The full-length cDNA of GhFAnnx comprises an open reading frame of 945 bp that encodes a 314-amino acid protein with a calculated molecular mass of 35.7 kDa and an isoelectric point of 6.49. Genomic GhFAnnx sequences from different cotton species, TM-1, Hai7124 and two diploid progenitor cottons, G. herbaceum (A-genome) and G. raimondii (D-genome) showed that at least two copies of the GhFAnnx gene, each with six exons and five introns in the coding region, were identified in the allotetraploid cotton genome. The GhFAnnx gene cloned from the cDNA library in this study was mapped to the chromosome 10 of the A-subgenome of the tetraploid cotton. Sequence alignment revealed that GhFAnnx contained four repeats of 70 amino acids. Semi-quantitative reverse transcriptase-polymerase chain reaction revealed that GhFAnnx is preferentially expressed in different developmental fibers but its expression is low in roots, stems, and leaves. Subcellular localization of GhFAnnx in onion epidermal cells and cotton fibers suggests that this protein is ubiquitous in the epidermal cells of onion, but assembles at the edge and the inner side of the apex of the cotton fiber tips with brilliant spots. In summary, GhFAnnx influences fiber development and is associated with the polar expansion of the cotton fiber during elongation stages.

  16. Generation of mammalian cells stably expressing multiple genes at predetermined levels.

    PubMed

    Liu, X; Constantinescu, S N; Sun, Y; Bogan, J S; Hirsch, D; Weinberg, R A; Lodish, H F

    2000-04-10

    Expression of cloned genes at desired levels in cultured mammalian cells is essential for studying protein function. Controlled levels of expression have been difficult to achieve, especially for cell lines with low transfection efficiency or when expression of multiple genes is required. An internal ribosomal entry site (IRES) has been incorporated into many types of expression vectors to allow simultaneous expression of two genes. However, there has been no systematic quantitative analysis of expression levels in individual cells of genes linked by an IRES, and thus the broad use of these vectors in functional analysis has been limited. We constructed a set of retroviral expression vectors containing an IRES followed by a quantitative selectable marker such as green fluorescent protein (GFP) or truncated cell surface proteins CD2 or CD4. The gene of interest is placed in a multiple cloning site 5' of the IRES sequence under the control of the retroviral long terminal repeat (LTR) promoter. These vectors exploit the approximately 100-fold differences in levels of expression of a retrovirus vector depending on its site of insertion in the host chromosome. We show that the level of expression of the gene downstream of the IRES and the expression level and functional activity of the gene cloned upstream of the IRES are highly correlated in stably infected target cells. This feature makes our vectors extremely useful for the rapid generation of stably transfected cell populations or clonal cell lines expressing specific amounts of a desired protein simply by fluorescent activated cell sorting (FACS) based on the level of expression of the gene downstream of the IRES. We show how these vectors can be used to generate cells expressing high levels of the erythropoietin receptor (EpoR) or a dominant negative Smad3 protein and to generate cells expressing two different cloned proteins, Ski and Smad4. Correlation of a biologic effect with the level of expression of the protein downstream of the IRES provides strong evidence for the function of the protein placed upstream of the IRES.

  17. [Molecular cloning and expression of the severe acute respiratory syndrome-associated coronavirus nucleocapsid protein and its clinical application].

    PubMed

    Lu, Jian; Zhou, Bai-ping; Zhou, Yu-sen; Jiang, Xiao-ling; Wen, Li-xia; Le, Xiao-hua; Li, Bing; Xu, Liu-mei; Li, Li-xiong

    2005-03-01

    To clone and express nucleocapsid (N) protein of the severe acute respiratory syndrome (SARS)-associated coronavirus, and to evaluate its antigenicity and application value in the development of serological diagnostic test for SARS. SARS-associated coronavirus N protein gene was amplified from its genomic RNA by reverse transcript nested polymerase chain reaction (RT-nested-PCR) and cloned into pBAD/Thio-TOPO prokaryotic expression vector. The recombinant N fusion protein was expressed and purified, and its antigenicity and specificity was analyzed by Western Blot, to establish the recombinant N protein-based ELISA for detection of IgG antibodies to SARS-associated coronavirus, and SARS-associated coronavirus lysates-based ELISA was compared parallelly. The recombinant expression vector produced high level of the N fusion protein after induction, and that protein was purified successfully by affinity chromatography and displayed higher antigenicity and specificity as compared with whole virus lysates. The recombinant SARS-associated coronavirus N protein possessed better antigenicity and specificity and could be employed to establish a new, sensitive, and specific ELISA for SARS diagnosis.

  18. Molecular cloning, sequencing, and expression of Eimeria tenella HSP70 partial gene.

    PubMed

    Bogado, A L G; Martins, G F; Sasse, J P; Guimarães, J da S; Garcia, J L

    2017-03-15

    Members of the Eimeria genus are protozoan parasites of the subphylum Apicomplexa (Eimeriidae family), and belong to the coccidia group. Eimeria tenella is one of the most pathogenic species owing to its ability to penetrate the mucosa, and cause inflammation and damage. It is an obligate intracellular parasite that causes disease by destroying the host cells during multiplication. Heat shock protein 70 (HSP70) is a molecular chaperone that prevents cellular stress. The objective of this study was to clone, sequence, and express E. tenella HSP70 protein. After selecting the region of highest hydrophilicity in the hsp70 gene, we cloned complementary DNA (cDNA) into a pTrcHis2-TOPO vector and transformed it into TOP10 Escherichia coli cells; after induction, the bacteria expressed a 23-kDa protein with insoluble expression levels of approximately 5 mg/L. In summary, the partial hsp70 gene was successfully expressed in E. coli, producing a 23-kDa protein under insoluble conditions, and the antigen characteristics predicted by hydrophilicity analysis suggest the development of a vaccine for use in avian coccidiosis.

  19. Cloning and characterization of a tuberous root-specific promoter from cassava (Manihot esculenta Crantz).

    PubMed

    Koehorst-van Putten, Herma J J; Wolters, Anne-Marie A; Pereira-Bertram, Isolde M; van den Berg, Hans H J; van der Krol, Alexander R; Visser, Richard G F

    2012-12-01

    In order to obtain a tuberous root-specific promoter to be used in the transformation of cassava, a 1,728 bp sequence containing the cassava granule-bound starch synthase (GBSSI) promoter was isolated. The sequence proved to contain light- and sugar-responsive cis elements. Part of this sequence (1,167 bp) was cloned into binary vectors to drive expression of the firefly luciferase gene. Cassava cultivar Adira 4 was transformed with this construct or a control construct in which the luciferase gene was cloned behind the 35S promoter. Luciferase activity was measured in leaves, stems, roots and tuberous roots. As expected, the 35S promoter induced luciferase activity in all organs at similar levels, whereas the GBSSI promoter showed very low expression in leaves, stems and roots, but very high expression in tuberous roots. These results show that the cassava GBSSI promoter is an excellent candidate to achieve tuberous root-specific expression in cassava.

  20. Molecular cloning and expression of the gene encoding the kinetoplast-associated type II DNA topoisomerase of Crithidia fasciculata.

    PubMed

    Pasion, S G; Hines, J C; Aebersold, R; Ray, D S

    1992-01-01

    A type II DNA topoisomerase, topoIImt, was shown previously to be associated with the kinetoplast DNA of the trypanosomatid Crithidia fasciculata. The gene encoding this kinetoplast-associated topoisomerase has been cloned by immunological screening of a Crithidia genomic expression library with monoclonal antibodies raised against the purified enzyme. The gene CfaTOP2 is a single copy gene and is expressed as a 4.8-kb polyadenylated transcript. The nucleotide sequence of CfaTOP2 has been determined and encodes a predicted polypeptide of 1239 amino acids with a molecular mass of 138,445. The identification of the cloned gene is supported by immunoblot analysis of the beta-galactosidase-CfaTOP2 fusion protein expressed in Escherichia coli and by analysis of tryptic peptide sequences derived from purified topoIImt. CfaTOP2 shares significant homology with nuclear type II DNA topoisomerases of other eukaryotes suggesting that in Crithidia both nuclear and mitochondrial forms of topoisomerase II are encoded by the same gene.

  1. Identification and functional characterization of the soybean GmaPPO12 promoter conferring Phytophthora sojae induced expression.

    PubMed

    Chai, Chunyue; Lin, Yanling; Shen, Danyu; Wu, Yuren; Li, Hongjuan; Dou, Daolong

    2013-01-01

    Identification of pathogen-inducible promoters largely lags behind cloning of the genes for disease resistance. Here, we cloned the soybean GmaPPO12 gene and found that it was rapidly and strongly induced by Phytophthorasojae infection. Computational analysis revealed that its promoter contained many known cis-elements, including several defense related transcriptional factor-binding boxes. We showed that the promoter could mediate induction of GUS expression upon infection in both transient expression assays in Nicotianabenthamiana and stable transgenic soybean hairy roots. Importantly, we demonstrated that pathogen-induced expression of the GmaPPO12 promoter was higher than that of the soybean GmaPR1a promoter. A progressive 5' and 3' deletion analysis revealed two fragments that were essential for promoter activity. Thus, the cloned promoter could be used in transgenic plants to enhance resistance to phytophthora pathogens, and the identified fragment could serve as a candidate to produce synthetic pathogen-induced promoters.

  2. Thrombospondin Type-1 Repeat Domain-Containing Proteins Are Strongly Expressed in the Head Region of Hydra

    PubMed Central

    Hamaguchi-Hamada, Kayoko; Kurumata-Shigeto, Mami; Minobe, Sumiko; Fukuoka, Nozomi; Sato, Manami; Matsufuji, Miyuki; Koizumi, Osamu; Hamada, Shun

    2016-01-01

    The head region of Hydra, the hypostome, is a key body part for developmental control and the nervous system. We herein examined genes specifically expressed in the head region of Hydra oligactis using suppression subtractive hybridization (SSH) cloning. A total of 1414 subtracted clones were sequenced and found to be derived from at least 540 different genes by BLASTN analyses. Approximately 25% of the subtracted clones had sequences encoding thrombospondin type-1 repeat (TSR) domains, and were derived from 17 genes. We identified 11 TSR domain-containing genes among the top 36 genes that were the most frequently detected in our SSH library. Whole-mount in situ hybridization analyses confirmed that at least 13 out of 17 TSR domain-containing genes were expressed in the hypostome of Hydra oligactis. The prominent expression of TSR domain-containing genes suggests that these genes play significant roles in the hypostome of Hydra oligactis. PMID:27043211

  3. Erythroblast apoptosis and microenvironmental iron restriction trigger anemia in the VK*MYC model of multiple myeloma

    PubMed Central

    Bordini, Jessica; Bertilaccio, Maria Teresa Sabrina; Ponzoni, Maurilio; Fermo, Isabella; Chesi, Marta; Bergsagel, P. Leif; Camaschella, Clara; Campanella, Alessandro

    2015-01-01

    Multiple myeloma is a malignant disorder characterized by bone marrow proliferation of plasma cells and by overproduction of monoclonal immunoglobulin detectable in the sera (M-spike). Anemia is a common complication of multiple myeloma, but the underlying pathophysiological mechanisms have not been completely elucidated. We aimed to identify the different determinants of anemia using the Vk*MYC mouse, which spontaneously develops an indolent bone marrow localized disease with aging. Affected Vk*MYC mice develop a mild normochromic normocytic anemia. We excluded the possibility that anemia results from defective erythropoietin production, inflammation or increased hepcidin expression. Mature erythroid precursors are reduced in Vk*MYC bone marrow compared with wild-type. Malignant plasma cells express the apoptogenic receptor Fas ligand and, accordingly, active caspase 8 is detected in maturing erythroblasts. Systemic iron homeostasis is not compromised in Vk*MYC animals, but high expression of the iron importer CD71 by bone marrow plasma cells and iron accumulation in bone marrow macrophages suggest that iron competition takes place in the local multiple myeloma microenvironment, which might contribute to anemia. In conclusion, the mild anemia of the Vk*MYC model is mainly related to the local effect of the bone marrow malignant clone in the absence of an overt inflammatory status. We suggest that this reproduces the initial events triggering anemia in patients. PMID:25715406

  4. Erythroblast apoptosis and microenvironmental iron restriction trigger anemia in the VK*MYC model of multiple myeloma.

    PubMed

    Bordini, Jessica; Bertilaccio, Maria Teresa Sabrina; Ponzoni, Maurilio; Fermo, Isabella; Chesi, Marta; Bergsagel, P Leif; Camaschella, Clara; Campanella, Alessandro

    2015-06-01

    Multiple myeloma is a malignant disorder characterized by bone marrow proliferation of plasma cells and by overproduction of monoclonal immunoglobulin detectable in the sera (M-spike). Anemia is a common complication of multiple myeloma, but the underlying pathophysiological mechanisms have not been completely elucidated. We aimed to identify the different determinants of anemia using the Vk*MYC mouse, which spontaneously develops an indolent bone marrow localized disease with aging. Affected Vk*MYC mice develop a mild normochromic normocytic anemia. We excluded the possibility that anemia results from defective erythropoietin production, inflammation or increased hepcidin expression. Mature erythroid precursors are reduced in Vk*MYC bone marrow compared with wild-type. Malignant plasma cells express the apoptogenic receptor Fas ligand and, accordingly, active caspase 8 is detected in maturing erythroblasts. Systemic iron homeostasis is not compromised in Vk*MYC animals, but high expression of the iron importer CD71 by bone marrow plasma cells and iron accumulation in bone marrow macrophages suggest that iron competition takes place in the local multiple myeloma microenvironment, which might contribute to anemia. In conclusion, the mild anemia of the Vk*MYC model is mainly related to the local effect of the bone marrow malignant clone in the absence of an overt inflammatory status. We suggest that this reproduces the initial events triggering anemia in patients. Copyright© Ferrata Storti Foundation.

  5. Mutation of the XIST gene upregulates expression of X-linked genes but decreases the developmental rates of cloned male porcine embryos.

    PubMed

    Yang, Yang; Wu, Dan; Liu, Dewu; Shi, Junsong; Zhou, Rong; He, Xiaoyan; Quan, Jianping; Cai, Gengyuan; Zheng, Enqin; Wu, Zhenfang; Li, Zicong

    2017-06-01

    XIST is an X-linked, non-coding gene responsible for the cis induction of X-chromosome inactivation (XCI). Knockout of the XIST allele on an active X chromosome abolishes erroneous XCI and enhances the in vivo development of cloned mouse embryos by more than 10-fold. This study aimed to investigate whether a similar manipulation would improve cloning efficiency in pigs. A male, porcine kidney cell line containing an EGFP insert in exon 1 of the XIST gene, resulting in a knockout allele (XIST-KO), was generated by homologous recombination using transcription activator-like effector nucleases (TALENs). The expression of X-linked genes in embryos cloned from the XIST-KO kidney cells was significantly higher than in male embryos cloned from wild-type (WT) kidney cells, but remained lower than that of in vivo fertilization-produced counterparts. The XIST-KO cloned embryos also had a significantly lower blastocyst rate and a reduced full-term development rate compared to cloned WT embryos. These data suggested that while mutation of a XIST gene can partially rescue abnormal XCI, it cannot improve the developmental efficiency of cloned male porcine embryos-a deficiency that may be caused by incomplete rescue of abnormal XCI and/or by long-term drug selection of the XIST-KO nuclear donor cells, which might adversely affect the developmental efficiency of embryos created from them. © 2017 Wiley Periodicals, Inc.

  6. Chromosomal localization of actin genes in the malaria mosquito Anopheles darlingi

    PubMed Central

    BRIDI, L. C.; SHARAKHOVA, M. V.; SHARAKHOV, I. V.; CORDEIRO, J.; AZEVEDO, G. M.; TADEI, W. P.; RAFAEL, M. S.

    2012-01-01

    Physical and genetic maps have been used for chromosomal localization of genes in vectors of infectious diseases. The availability of polytene chromosomes in malaria mosquitoes provides a unique opportunity to precisely map genes of interest. We report physical mapping of two actin genes on polytene chromosomes of the major malaria vector in Amazon Anopheles darlingi. The clones with the actin genes sequences were obtained from a cDNA library constructed from RNA isolated from adult females and males of An. darlingi. Each of the two clones was mapped to a unique site on the chromosomal arm 2L in subdivisions 21A (clone pl05-A04) and 23B (clone pl17-G06). The obtained results together with previous mapping data provide a suitable basis for comparative genomics and for establishing chromosomal homologies among major malaria vectors. PMID:22804344

  7. Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis

    DOEpatents

    Ingram, Lonnie O.; Conway, Tyrrell

    1992-01-01

    The alcohol dehydrogenase II gene from Zymomonas mobilis has been cloned and sequenced. This gene can be expressed at high levels in other organisms to produce acetaldehyde or to convert acetaldehyde to ethanol.

  8. Participation of the arcRACME protein in self-activation of the arc operon located in the arginine catabolism mobile element in pandemic clone USA300.

    PubMed

    Rozo, Zayda Lorena Corredor; Márquez-Ortiz, Ricaurte Alejandro; Castro, Betsy Esperanza; Gómez, Natasha Vanegas; Escobar-Pérez, Javier

    2017-07-01

    Staphylococcus aureus pandemic clone USA300 has, in addition to its constitutive arginine catabolism (arc) gene cluster, an arginine catabolism mobile element (ACME) carrying another such cluster, which gives this clone advantages in colonisation and infection. Gene arcR, which encodes an oxygen-sensitive transcriptional regulator, is inside ACME and downstream of the constitutive arc gene cluster, and this situation may have an impact on its activation. Different relative expression behaviours are proven here for arcRACME and the arcACME operon compared to the constitutive ones. We also show that the artificially expressed recombinant ArcRACME protein binds to the promoter region of the arcACME operon; this mechanism can be related to a positive feedback model, which may be responsible for increased anaerobic survival of the USA300 clone during infection-related processes.

  9. Cloning and characterization of full-length mouse thymidine kinase 2: the N-terminal sequence directs import of the precursor protein into mitochondria.

    PubMed Central

    Wang, L; Eriksson, S

    2000-01-01

    The subcellular localization of mitochondrial thymidine kinase (TK2) has been questioned, since no mitochondrial targeting sequences have been found in cloned human TK2 cDNAs. Here we report the cloning of mouse TK2 cDNA from a mouse full-length enriched cDNA library. The mouse TK2 cDNA codes for a protein of 270 amino acids, with a 40-amino-acid presumed N-terminal mitochondrial targeting signal. In vitro translation and translocation experiments with purified rat mitochondria confirmed that the N-terminal sequence directed import of the precursor TK2 into the mitochondrial matrix. A single 2.4 kb mRNA transcript was detected in most tissues examined, except in liver, where an additional shorter (1.0 kb) transcript was also observed. There was no correlation between the tissue distribution of TK2 activity and the expression of TK2 mRNA. Full-length mouse TK2 protein and two N-terminally truncated forms, one of which corresponds to the mitochondrial form of TK2 and a shorter form corresponding to the previously characterized recombinant human TK2, were expressed in Escherichia coli and affinity purified. All three forms of TK2 phosphorylated thymidine, deoxycytidine and 2'-deoxyuridine, but with different kinetic efficiencies. A number of cytostatic pyrimidine nucleoside analogues were also tested and shown to be good substrates for the various forms of TK2. The active form of full-length mouse TK2 was a dimer, as judged by Superdex 200 chromatography. These results enhance our understanding of the structure and function of TK2, and may help to explain the mitochondrial disorder, mitochondrial neurogastrointestinal encephalomyopathy. PMID:11023833

  10. Human, rat and chicken small intestinal Na+-Cl−-creatine transporter: functional, molecular characterization and localization

    PubMed Central

    Peral, M J; García-Delgado, M; Calonge, M L; Durán, J M; De La Horra, M C; Wallimann, T; Speer, O; Ilundáin, A A

    2002-01-01

    In spite of all the fascinating properties of oral creatine supplementation, the mechanism(s) mediating its intestinal absorption has(have) not been investigated. The purpose of this study was to characterize intestinal creatine transport. [14C]Creatine uptake was measured in chicken enterocytes and rat ileum, and expression of the creatine transporter CRT was examined in human, rat and chicken small intestine by reverse transcription-polymerase chain reaction, Northern blot, in situ hybridization, immunoblotting and immunohistochemistry. Results show that enterocytes accumulate creatine against its concentration gradient. This accumulation was electrogenic, Na+- and Cl−-dependent, with a probable stoichiometry of 2 Na+: 1 Cl−: 1 creatine, and inhibited by ouabain and iodoacetic acid. The kinetic study revealed a Km for creatine of 29 μm. [14C]Creatine uptake was efficiently antagonized by non-labelled creatine, guanidinopropionic acid and cyclocreatine. More distant structural analogues of creatine, such as GABA, choline, glycine, β-alanine, taurine and betaine, had no effect on intestinal creatine uptake, indicating a high substrate specificity of the creatine transporter. Consistent with these functional data, messenger RNA for CRT was detected only in the cells lining the intestinal villus. The sequences of partial clones, and of the full-length cDNA clone, isolated from human and rat small intestine were identical to previously cloned CRT cDNAs. Immunological analysis revealed that CRT protein was mainly associated with the apical membrane of the enterocytes. This study reports for the first time that mammalian and avian enterocytes express CRT along the villus, where it mediates high-affinity, Na+- and Cl−-dependent, apical creatine uptake. PMID:12433955

  11. Functional exchangeability of the nuclear localization signal (NLS) of capsid protein between PCV1 and PCV2 in vitro: Implications for the role of NLS in viral replication

    PubMed Central

    2011-01-01

    Background Porcine circovirus type 2 (PCV2) is believed to be the primary causative agent of postweaning multisystemic wasting syndrome (PMWS). It is supposed that capsid protein of PCV may contribute to replication control via interaction between Cap and Rep in the nucleoplasm. In this study, we described the construction and in vitro characterization of NLS-exchanged PCV DNA clones based on a PMWS-associated PCV2b isolate from China to determine the role of ORF2 NLS in PCV replication. Results The PCV1, PCV2, PCV2-NLS1 and PCV1-NLS2 DNA clone were generated by ligating a copy of respective genome in tandem with a partial duplication. The PCV2-NLS1 and PCV1-NLS2 DNA clone contained a chimeric genome in which the ORF2 NLS was exchanged. The four DNA clones were all confirmed to be infectious in vitro when transfected into PK-15 cells, as PCV capsid protein were expressed in approximately 10-20% of the transfected cells. The in vitro growth characteristics of the DNA clones were then determined and compared. All the recovered progeny viruses gave rise to increasing infectious titers during passages and were genetically stable by genomic sequencing. The chimeric PCV1-NLS2 and PCV2-NLS1 viruses had the final titers of about 104.2 and 103.8 TCID50/ml, which were significantly lower than that of PCV1 and PCV2 (105.6 and 105.0 TCID50/ml, respectively). When the ORF2 NLS exchanged, the mutant PCV2 (PCV2-NLS1) still replicated less efficiently and showed lower infectious titer than did PCV1 mutant (PCV1-NLS2), which was consistent with the distinction between wild type PCV1 and PCV2. Conclusions Recovery of the chimeiric PCV1-NLS2 and PCV2-NLS1 progeny viruses indicate that the nuclear localization signal sequence of capsid protein are functionally exchangeable between PCV1 and PCV2 with respect to the role of nuclear importing and propagation. The findings also reveal that ORF2 NLS play an accessory role in the replication of PCV. However, we found that ORF2 NLS was not responsible for the distinction of in vitro growth characteristic between PCV1 and PCV2. Further studies are required to determine the in vivo viral replication and pathogenicity of the NLS chimeric DNA clones. PMID:21733152

  12. Molecular cloning and expression of Cro s 1: an occupational allergen from saffron pollen (Crocus sativus)

    PubMed Central

    Varasteh, Abdol-Reza; Sankian, Mojtaba; Midoro-Horiuti, Terumi; Moghadam, Malihe; Shakeri, Mohamad Taghi; Brooks, Edward G.; Goldblum, Randall M.; Chapman, Martin D.; Pomés, Anna

    2012-01-01

    Background: The cultivation of saffron is expanding through the southeast of Iran, and allergy to saffron pollen occurs in workers involved in processing this plant. We aimed to clone, sequence and express a major allergen involved in saffron pollen allergy, and to compare the recombinant with the natural allergen. Methods: The N-terminal amino acid sequence of Cro s 1, an allergen from saffron pollen, was determined after immunoblotting. The cDNA encoding for this allergen was cloned by PCR utilizing a primer based on the N-terminal amino acid sequence. Recombinant Cro s 1 (rCro s 1) was expressed as a soluble protein in Pichia pastoris and purified to homogeneity by gel filtration. Inhibition of IgE binding to rCro s 1 by pollen extract was analyzed by ELISA. Section Title The allergen Cro s 1 was identified from saffron pollen extracts and cloned by PCR. Cro s 1 cDNA defined an acidic polypeptide with homology to pollen proteins from Chenopodium album and Ligastrum vulgaris. The rCro s 1 was expressed in P. pastoris at 28 mg/l. Saffron pollen extract inhibited the binding of patient serum IgE to rCro s 1. Conclusion: We identified and cloned the first Crocus sativus pollen allergen. rCro s 1 cDNA shows a very high homology with Che a 1, the major allergen of lamb's-quarter, Chenopodium album, Caryophyllales, pollen (97%). Cro s 1 is a useful tool for specific diagnosis and structural studies of occupational allergy to saffron. PMID:26989701

  13. Cloning and expression of the rat homologue of the Huntington disease gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, I.; Epplen, J.T.; Riess, O.

    1994-09-01

    Huntington`s disease (HD) is an autosomal dominant neurodegenerative disorder which is manifested usually in adult life. The age of onset is variable and leads to progressive symptoms including involuntary choreatic movements and various cognitive and psychiatric disturbances. Recently, a gene (IT15) was cloned containing a (CAG){sub n} repeat which is elongated and unstable in HD patients. IT15 is widely expressed in human tissues but unrelated to any known deduced protein sequence. To further investigate the HD gene, 15 rat cDNA libraries were screened. 24 clones have been identified covering the Huntingtin gene. Comparison of the Huntingtin gene between human andmore » rat revealed homologies between 80% and 87% at the DNA level and about 90% at the protein level. These analyses will help to define biologically important sequence regions, e.g., via evolutionary conservation. One clone contains the (CAG){sub n} repeat which consists of eight triplets compared to seven triplets in the mouse and a median of 17 in human. As in humans there are two transcripts arising from differential 3{prime}-polyadenylation. In the 3{prime}UTR a stretch of about 280 bp is exchanged for a 250 bp fragment with no homology in rodents and man. The cDNA clones are currently used to study Huntingtin gene expression during development in rodent tissues. RNA in situ hybridization of embryonic sections shows predominant signals in all neuronal tissues. In contrast to previously published data Huntingtin mRNA expression in testis is increased in spermatocytes vs. spermatogonia.« less

  14. Molecular cloning and expression of Cro s 1: an occupational allergen from saffron pollen (Crocus sativus).

    PubMed

    Varasteh, Abdol-Reza; Sankian, Mojtaba; Midoro-Horiuti, Terumi; Moghadam, Malihe; Shakeri, Mohamad Taghi; Brooks, Edward G; Goldblum, Randall M; Chapman, Martin D; Pomés, Anna

    2012-10-01

    The cultivation of saffron is expanding through the southeast of Iran, and allergy to saffron pollen occurs in workers involved in processing this plant. We aimed to clone, sequence and express a major allergen involved in saffron pollen allergy, and to compare the recombinant with the natural allergen. The N-terminal amino acid sequence of Cro s 1, an allergen from saffron pollen, was determined after immunoblotting. The cDNA encoding for this allergen was cloned by PCR utilizing a primer based on the N-terminal amino acid sequence. Recombinant Cro s 1 (rCro s 1) was expressed as a soluble protein in Pichia pastoris and purified to homogeneity by gel filtration. Inhibition of IgE binding to rCro s 1 by pollen extract was analyzed by ELISA. The allergen Cro s 1 was identified from saffron pollen extracts and cloned by PCR. Cro s 1 cDNA defined an acidic polypeptide with homology to pollen proteins from Chenopodium album and Ligastrum vulgaris. The rCro s 1 was expressed in P. pastoris at 28 mg/l. Saffron pollen extract inhibited the binding of patient serum IgE to rCro s 1. We identified and cloned the first Crocus sativus pollen allergen. rCro s 1 cDNA shows a very high homology with Che a 1, the major allergen of lamb's-quarter, Chenopodium album, Caryophyllales, pollen (97%). Cro s 1 is a useful tool for specific diagnosis and structural studies of occupational allergy to saffron.

  15. cDNA cloning of the human monocarboxylate transporter 1 and chromosomal localization of the SLC16A1 locus to 1p13.2-p12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, C.K.; Li, X.; Luna, J.

    1994-09-15

    Lactate and pyruvate are transported across cell membranes by monocarboxylate transporters (MCTs). Here, the authors use the recently cloned cDNA for hamster MCT1 to isolate cDNA and genomic clones for human MCT1. Comparison of the human and hamster amino acid sequences revealed that the proteins are 86% identical. The gene for human MCT1 (gene symbol, SLC16A1) was localized to human chromosome bands 1p13.2-p12 by PCR analysis of panels of human X rodent cell hybrid lines and by fluorescence chromosomal in situ hybridization. 9 refs., 2 figs.

  16. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  17. Cloning of Gossypium hirsutum Sucrose Non-Fermenting 1-Related Protein Kinase 2 Gene (GhSnRK2) and Its Overexpression in Transgenic Arabidopsis Escalates Drought and Low Temperature Tolerance

    PubMed Central

    Bello, Babatunde; Zhang, Xueyan; Liu, Chuanliang; Yang, Zhaoen; Yang, Zuoren; Wang, Qianhua; Zhao, Ge; Li, Fuguang

    2014-01-01

    The molecular mechanisms of stress tolerance and the use of modern genetics approaches for the improvement of drought stress tolerance have been major focuses of plant molecular biologists. In the present study, we cloned the Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 (GhSnRK2) gene and investigated its functions in transgenic Arabidopsis. We further elucidated the function of this gene in transgenic cotton using virus-induced gene silencing (VIGS) techniques. We hypothesized that GhSnRK2 participates in the stress signaling pathway and elucidated its role in enhancing stress tolerance in plants via various stress-related pathways and stress-responsive genes. We determined that the subcellular localization of the GhSnRK2-green fluorescent protein (GFP) was localized in the nuclei and cytoplasm. In contrast to wild-type plants, transgenic plants overexpressing GhSnRK2 exhibited increased tolerance to drought, cold, abscisic acid and salt stresses, suggesting that GhSnRK2 acts as a positive regulator in response to cold and drought stresses. Plants overexpressing GhSnRK2 displayed evidence of reduced water loss, turgor regulation, elevated relative water content, biomass, and proline accumulation. qRT-PCR analysis of GhSnRK2 expression suggested that this gene may function in diverse tissues. Under normal and stress conditions, the expression levels of stress-inducible genes, such as AtRD29A, AtRD29B, AtP5CS1, AtABI3, AtCBF1, and AtABI5, were increased in the GhSnRK2-overexpressing plants compared to the wild-type plants. GhSnRK2 gene silencing alleviated drought tolerance in cotton plants, indicating that VIGS technique can certainly be used as an effective means to examine gene function by knocking down the expression of distinctly expressed genes. The results of this study suggested that the GhSnRK2 gene, when incorporated into Arabidopsis, functions in positive responses to drought stress and in low temperature tolerance. PMID:25393623

  18. Small RNA analysis in Petunia hybrida identifies unusual tissue-specific expression patterns of conserved miRNAs and of a 24mer RNA

    PubMed Central

    Tedder, Philip; Zubko, Elena; Westhead, David R.; Meyer, Peter

    2009-01-01

    Two pools of small RNAs were cloned from inflorescences of Petunia hybrida using a 5′-ligation dependent and a 5′-ligation independent approach. The two libraries were integrated into a public website that allows the screening of individual sequences against 359,769 unique clones. The library contains 15 clones with 100% identity and 53 clones with one mismatch to miRNAs described for other plant species. For two conserved miRNAs, miR159 and miR390, we find clear differences in tissue-specific distribution, compared with other species. This shows that evolutionary conservation of miRNA sequences does not necessarily include a conservation of the miRNA expression profile. Almost 60% of all clones in the database are 24-nucleotide clones. In accordance with the role of 24mers in marking repetitive regions, we find them distributed across retroviral and transposable element sequences but other 24mers map to promoter regions and to different transcript regions. For one target region we observe tissue-specific variation of matching 24mers, which demonstrates that, as for 21mers, 24mer concentrations are not necessarily identical in different tissues. Asymmetric distribution of a putative novel miRNA in the two libraries suggests that the cloning method can be selective for the representation of certain small RNAs in a collection. PMID:19369427

  19. Hyperexpression of α-hemolysin explains enhanced virulence of sequence type 93 community-associated methicillin-resistant Staphylococcus aureus

    PubMed Central

    2014-01-01

    Background The community-associated methicillin-resistant S. aureus (CA-MRSA) ST93 clone is becoming dominant in Australia and is clinically highly virulent. In addition, sepsis and skin infection models demonstrate that ST93 CA-MRSA is the most virulent global clone of S. aureus tested to date. While the determinants of virulence have been studied in other clones of CA-MRSA, the basis for hypervirulence in ST93 CA-MRSA has not been defined. Results Here, using a geographically and temporally dispersed collection of ST93 isolates we demonstrate that the ST93 population hyperexpresses key CA-MRSA exotoxins, in particular α-hemolysin, in comparison to other global clones. Gene deletion and complementation studies, and virulence comparisons in a murine skin infection model, showed unequivocally that increased expression of α-hemolysin is the key staphylococcal virulence determinant for this clone. Genome sequencing and comparative genomics of strains with divergent exotoxin profiles demonstrated that, like other S. aureus clones, the quorum sensing agr system is the master regulator of toxin expression and virulence in ST93 CA-MRSA. However, we also identified a previously uncharacterized AraC/XylS family regulator (AryK) that potentiates toxin expression and virulence in S. aureus. Conclusions These data demonstrate that hyperexpression of α-hemolysin mediates enhanced virulence in ST93 CA-MRSA, and additional control of exotoxin production, in particular α-hemolysin, mediated by regulatory systems other than agr have the potential to fine-tune virulence in CA-MRSA. PMID:24512075

  20. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene

    PubMed Central

    Hsu, Cary; Jones, Stephanie A.; Cohen, Cyrille J.; Zheng, Zhili; Kerstann, Keith; Zhou, Juhua; Robbins, Paul F.; Peng, Peter D.; Shen, Xinglei; Gomes, Theotonius J.; Dunbar, Cynthia E.; Munroe, David J.; Stewart, Claudia; Cornetta, Kenneth; Wangsa, Danny; Ried, Thomas; Rosenberg, Steven A.

    2007-01-01

    Malignancies arising from retrovirally transduced hematopoietic stem cells have been reported in animal models and human gene therapy trials. Whether mature lymphocytes are susceptible to insertional mutagenesis is unknown. We have characterized a primary human CD8+ T-cell clone, which exhibited logarithmic ex vivo growth in the absence of exogenous cytokine support for more than 1 year after transduction with a murine leukemia virus–based vector encoding the T-cell growth factor IL-15. Phenotypically, the clone was CD28−, CD45RA−, CD45RO+, and CD62L−, a profile consistent with effector memory T lymphocytes. After gene transfer with tumor-antigen–specific T-cell receptors, the clone secreted IFN-γ upon encountering tumor targets, providing further evidence that they derived from mature lymphocytes. Gene-expression analyses revealed no evidence of insertional activation of genes flanking the retroviral insertion sites. The clone exhibited constitutive telomerase activity, and the presence of autocrine loop was suggested by impaired cell proliferation following knockdown of IL-15Rα expression. The generation of this cell line suggests that nonphysiologic expression of IL-15 can result in the long-term in vitro growth of mature human T lymphocytes. The cytokine-independent growth of this line was a rare event that has not been observed in other IL-15 vector transduction experiments or with any other integrating vector system. It does not appear that the retroviral vector integration sites played a role in the continuous growth of this cell clone, but this remains under investigation. PMID:17353346

  1. Generation and functional characterization of a clonal murine periportal Kupffer cell line from H-2Kb -tsA58 mice.

    PubMed

    Dory, Daniel; Echchannaoui, Hakim; Letiembre, Maryse; Ferracin, Fabrizia; Pieters, Jean; Adachi, Yoshiyuki; Akashi, Sachiko; Zimmerli, Werner; Landmann, Regine

    2003-07-01

    Murine Kupffer cells (KCs) are heterogeneous and survive only for a short time in vitro. Here, a clonal, murine KC line was generated from transgenic mice, expressing the thermolabile mutant tsA58 of the Simian virus 40 large T antigen under the control of the H-2K(b) promoter. Thirty-three degrees Celsius and 37 degrees C but not 39 degrees C have been permissive for growth of the clone; it required conditioned media from hepatocytes and endothelial cells for proliferation. In contrast to primary cells, the cells of the clone were uniform, survived detachment, and could therefore be analyzed by cytofluorimetry. The clone, as primary KCs, constitutively expressed nonspecific esterase, peroxidase, MOMA-2, BM8, scavenger receptor A, CD14, and Toll-like receptor 4 (TLR4); the antigen-presenting molecules CD40, CD80, and CD1d; and endocytosed dextran-fluorescein isothiocyanate. It lacked complement, Fc receptors, F4/80 marker, and the phagosomal coat protein tryptophan aspartate-containing coat protein (TACO). The clone exhibited CD14- and TLR4/MD2-independent, plasma-dependent lipopolysaccharide (LPS) binding, Escherichia coli and Streptococcus pneumoniae phagocytosis, and LPS- and interferon-gamma-induced NO production but no tumor necrosis factor alpha, interleukin (IL)-6, or IL-10 release. The large size, surface-marker expression, and capacity to clear gram-negative and -positive bacteria indicate that the clone was derived from the periportal, large KC subpopulation. The clone allows molecular studies of anti-infective and immune functions of KCs.

  2. Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs.

    PubMed Central

    Travis, G H; Sutcliffe, J G

    1988-01-01

    To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, we developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA. Images PMID:2894033

  3. Cloning and characterization of a basic phospholipase A2 homologue from Micrurus corallinus (coral snake) venom gland.

    PubMed

    de Oliveira, Ursula Castro; Assui, Alessandra; da Silva, Alvaro Rossan de Brandão Prieto; de Oliveira, Jane Silveira; Ho, Paulo Lee

    2003-09-01

    During the cloning of abundant cDNAs expressed in the Micrurus corallinus coral snake venom gland, several putative toxins, including a phospholipase A2 homologue cDNA (clone V2), were identified. The V2 cDNA clone codes for a potential coral snake toxin with a signal peptide of 27 amino acid residues plus a predicted mature protein with 119 amino acid residues. The deduced protein is highly similar to known phospholipases A2, with seven deduced S-S bridges at the same conserved positions. This protein was expressed in Escherichia coli as a His-tagged protein that allowed the rapid purification of the recombinant protein. This protein was used to generate antibodies, which recognized the recombinant protein in Western blot. This antiserum was used to screen a large number of venoms, showing a ubiquitous distribution of immunorelated proteins in all elapidic venoms but not in the viperidic Bothrops jararaca venom. This is the first description of a complete primary structure of a phospholipase A2 homologue deduced by cDNA cloning from a coral snake.

  4. Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shitara, Shingo; Kakeda, Minoru; Nagata, Keiko

    2008-05-09

    Telomerase-mediated life-span extension enables the expansion of normal cells without malignant transformation, and thus has been thought to be useful in cell therapies. Currently, integrating vectors including the retrovirus are used for human telomerase reverse transcriptase (hTERT)-mediated expansion of normal cells; however, the use of these vectors potentially causes unexpected insertional mutagenesis and/or activation of oncogenes. Here, we established normal human fibroblast (hPF) clones retaining non-integrating human artificial chromosome (HAC) vectors harboring the hTERT expression cassette. In hTERT-HAC/hPF clones, we observed the telomerase activity and the suppression of senescent-associated SA-{beta}-galactosidase activity. Furthermore, the hTERT-HAC/hPF clones continued growing beyond 120 daysmore » after cloning, whereas the hPF clones retaining the silent hTERT-HAC senesced within 70 days. Thus, hTERT-HAC-mediated episomal expression of hTERT allows the extension of the life-span of human primary cells, implying that gene delivery by non-integrating HAC vectors can be used to control cellular proliferative capacity of primary cultured cells.« less

  5. Primer sets for cloning the human repertoire of T cell Receptor Variable regions

    PubMed Central

    Boria, Ilenia; Cotella, Diego; Dianzani, Irma; Santoro, Claudio; Sblattero, Daniele

    2008-01-01

    Background Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Results Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT®, the ImMunoGeneTics information system®. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. Conclusion This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets. PMID:18759974

  6. Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization.

    PubMed Central

    Geber, A; Williamson, P R; Rex, J H; Sweeney, E C; Bennett, J E

    1992-01-01

    In order to isolate the structural gene involved in sucrose utilization, we screened a sucrose-induced Candida albicans cDNA library for clones expressing alpha-glucosidase activity. The C. albicans maltase structural gene (CAMAL2) was isolated. No other clones expressing alpha-glucosidase activity. were detected. A genomic CAMAL2 clone was obtained by screening a size-selected genomic library with the cDNA clone. DNA sequence analysis reveals that CAMAL2 encodes a 570-amino-acid protein which shares 50% identity with the maltase structural gene (MAL62) of Saccharomyces carlsbergensis. The substrate specificity of the recombinant protein purified from Escherichia coli identifies the enzyme as a maltase. Northern (RNA) analysis reveals that transcription of CAMAL2 is induced by maltose and sucrose and repressed by glucose. These results suggest that assimilation of sucrose in C. albicans relies on an inducible maltase enzyme. The family of genes controlling sucrose utilization in C. albicans shares similarities with the MAL gene family of Saccharomyces cerevisiae and provides a model system for studying gene regulation in this pathogenic yeast. Images PMID:1400249

  7. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase.

    PubMed

    Trigoso, Yvonne D; Evans, Russell C; Karsten, William E; Chooback, Lilian

    2016-01-01

    The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5'and 3' terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40-50 mgs of protein, an improvement on the previous protein expression and multistep purification.

  8. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase

    PubMed Central

    Trigoso, Yvonne D.; Evans, Russell C.; Karsten, William E.; Chooback, Lilian

    2016-01-01

    The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5’and 3’ terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40–50 mgs of protein, an improvement on the previous protein expression and multistep purification. PMID:26815040

  9. [Cloning and expression of Micrococcus luteus IAM 14879 Rpf and its role in the recovery of the VBNC state in Rhodococcus sp. DS471].

    PubMed

    Ding, Linxian; Zhang, Pinghua; Hong, Huachang; Lin, Hongjun; Yokota, Akira

    2012-01-01

    The purpose of the present study was to produce the Rpf (resuscitation promoting factor) protein by cloning and expressing the rpf gene, secreted by Micrococcus luteus IAM 14879, in Escherichia coli and to evaluate its role in the recovery of the VBNC (viable but non-culturable) state in high-GC Gram-positive bacteria. Genomic DNA was extracted from Micrococcus luteus IAM 14879 and the rpf gene was amplified by PCR using specific primers. The PCR products was purified, cloned into a pET15b expression vector, and transformed into Escherichia coli BL21 (DE3). Then the pET15b plasmid expression vector was used to confirm the purification of the recombinant proteins via SDS-PAGE. The VBNC state cells from the high-GC Gram-positive bacteria, Rhodococcus sp. DS471, were used to confirm the promotion and recovery of growth capacity. Rhodococcus sp. DS471 were isolated from soil and closely related to Micrococcus luteus IAM 14879. The gene sequences confirmed that the rpf gene from Micrococcus luteus IAM 14879 that was expressed in Escherichia coli, was 672 bp. SDS-PAGE analysis showed that the recombinant Rpf protein was obtained successfully, and further studies showed it capable of promoting the recovery of the VBNC state by about 100-fold relative to the control. Rpf of Micrococus luteus IAM 14879 can be successfully cloned and expressed in Escherichia coli and shows a strong ability to promote the recovery of the VBNC state of cells of Rhodococcus sp. DS471.

  10. Antitumor effects of a tumor cell vaccine expressing a membrane-bound form of the IL-12 p35 subunit.

    PubMed

    Lim, Ho Yong; Ju, Hee Young; Chung, Hee-Yong; Kim, Young Sang

    2010-08-15

    We investigated whether expression of the IL-12 p35 subunit in membrane-bound form in tumor cells enhanced their immunogenicity. Since p35 is only secreted when associated with the IL-12 p40 subunit, we generated tumor cells expressing membrane-bound forms of p35 and p40 as chimeras with the transmembrane/cytoplasmic region of TNFα (mbIL-12p35 and mbIL-12p40). The relevant vectors were transfected into MethA fibrosarcoma cells, and mbIL-12p35 or mbIL-12p40-expressing tumor clones were isolated and their ability to induce antitumor immunity studied. Cells of the mbIL-12p35 tumor clone induced CD69 expression and IFNγ production in purified CD8(+) T cells in vitro, and their in vivo tumorigenicity was reduced. Cells of the mbIL-12p40 tumor clone failed to show either of these activities. Mice that had rejected cells of the mbIL-12p35 tumor clone possessed systemic antitumor immunity to wild type tumor cells. The growth rate of mbIL-12p35 tumor cells was greater in CD8(+) T cell-depleted mice than in CD4(+) T-cell- and NK cell-depleted mice or normal mice, suggesting that CD8(+) T cells were mainly responsible for the antitumor immunity. These results indicate that expression of mbIL-12p35 on tumor cells enhances their immunogenicity by increasing their ability to activate CD8(+) T cells, possibly by direct priming.

  11. A full-length cDNA infectious clone of North American type 1 porcine reproductive and respiratory syndrome virus: expression of green fluorescent protein in the Nsp2 region.

    PubMed

    Fang, Ying; Rowland, Raymond R R; Roof, Michael; Lunney, Joan K; Christopher-Hennings, Jane; Nelson, Eric A

    2006-12-01

    The recent emergence of a unique group of North American type 1 porcine reproductive and respiratory syndrome virus (PRRSV) in the United States presents new disease control problems for a swine industry that has already been impacted seriously by North American type 2 PRRSV. In this study, a full-length cDNA infectious clone was generated from a low-virulence North American type 1 PRRSV isolate, SD01-08. In vitro studies demonstrated that the cloned virus maintained growth properties similar to those of the parental virus. Virological, pathological, and immunological observations from animals challenged with cloned viruses were similar to those from animals challenged with the parental virus and a modified live virus vaccine. To further explore the potential use as a viral backbone for expressing foreign genes, the green fluorescent protein (GFP) was inserted into a unique deletion site located at amino acid positions 348 and 349 of the predicted Nsp2 region in the virus, and expression of the Nsp2-GFP fusion protein was visualized by fluorescent microscopy. The availability of this North American type 1 infectious clone provides an important research tool for further study of the basic viral biology and pathogenic mechanisms of this group of type 1 PRRSV in the United States.

  12. A Full-Length cDNA Infectious Clone of North American Type 1 Porcine Reproductive and Respiratory Syndrome Virus: Expression of Green Fluorescent Protein in the Nsp2 Region▿

    PubMed Central

    Fang, Ying; Rowland, Raymond R. R.; Roof, Michael; Lunney, Joan K.; Christopher-Hennings, Jane; Nelson, Eric A.

    2006-01-01

    The recent emergence of a unique group of North American type 1 porcine reproductive and respiratory syndrome virus (PRRSV) in the United States presents new disease control problems for a swine industry that has already been impacted seriously by North American type 2 PRRSV. In this study, a full-length cDNA infectious clone was generated from a low-virulence North American type 1 PRRSV isolate, SD01-08. In vitro studies demonstrated that the cloned virus maintained growth properties similar to those of the parental virus. Virological, pathological, and immunological observations from animals challenged with cloned viruses were similar to those from animals challenged with the parental virus and a modified live virus vaccine. To further explore the potential use as a viral backbone for expressing foreign genes, the green fluorescent protein (GFP) was inserted into a unique deletion site located at amino acid positions 348 and 349 of the predicted Nsp2 region in the virus, and expression of the Nsp2-GFP fusion protein was visualized by fluorescent microscopy. The availability of this North American type 1 infectious clone provides an important research tool for further study of the basic viral biology and pathogenic mechanisms of this group of type 1 PRRSV in the United States. PMID:16971421

  13. Genetically engineered hairy root cultures of Hyoscyamus senecionis and H. muticus: ploidy as a promising parameter in the metabolic engineering of tropane alkaloids.

    PubMed

    Dehghan, Esmaeil; Reed, Darwin W; Covello, Patrick S; Hasanpour, Zeinab; Palazon, Javier; Oksman-Caldentey, Kirsi-Marja; Ahmadi, Farajollah Shahriari

    2017-10-01

    Tetraploidy improves overexpression of h6h and scopolamine production of H. muticus, while in H. senecionis, pmt overexpression and elicitation can be used as effective methods for increasing tropane alkaloids. The effects of metabolic engineering in a polyploid context were studied by overexpression of h6h in the tetraploid hairy root cultures of H. muticus. Flow cytometry analysis indicated genetic stability in the majority of the clones, while only a few clones showed genetic instability. Among all the diploid and tetraploid clones, the highest level of h6h transgene expression and scopolamine accumulation was interestingly observed in the tetraploid clones of H. muticus. Therefore, metabolic engineering of the tropane biosynthetic pathway in polyploids is suggested as a potential system for increasing the production of tropane alkaloids. Transgenic hairy root cultures of Hyoscyamus senecionis were also established. While overexpression of pmt in H. senecionis was correlated with a sharp increase in hyoscyamine production, the h6h-overexpressing clones were not able to accumulate higher levels of scopolamine than the leaves of intact plants. Applying methyl jasmonate was followed by a sharp increase in the expression of pmt and a drop in the expression of tropinone reductase II (trII) which consequently resulted in the higher biosynthesis of hyoscyamine and total alkaloids in H. senecionis.

  14. Susceptibility to viral infection is enhanced by stable expression of 3A or 3AB proteins from foot-and-mouth disease virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosas, Maria F.; Vieira, Yuri A.; Postigo, Raul

    2008-10-10

    The foot-and-mouth disease virus (FMDV) 3A protein is involved in virulence and host range. A distinguishing feature of FMDV 3B among picornaviruses is that three non-identical copies are encoded in the viral RNA and required for optimal replication in cell culture. Here, we have studied the involvement of the 3AB region on viral infection using constitutive and transient expression systems. BHK-21 stably transformed clones expressed low levels of FMDV 3A or 3A(B) proteins in the cell cytoplasm. Transformed cells stably expressing these proteins did not exhibit inner cellular rearrangements detectable by electron microscope analysis. Upon FMDV infection, clones expressing eithermore » 3A alone or 3A(B) proteins showed a significant increase in the percentage of infected cells, the number of plaque forming units and the virus yield. The 3A-enhancing effect was specific for FMDV as no increase in viral multiplication was observed in transformed clones infected with another picornavirus, encephalomyocarditis virus, or the negative-strand RNA virus vesicular stomatitis virus. A potential role of 3A protein in viral RNA translation was discarded by the lack of effect on FMDV IRES-dependent translation. Increased viral susceptibility was not caused by a released factor; neither the supernatant of transformed clones nor the addition of purified 3A protein to the infection medium was responsible for this effect. Unlike stable expression, high levels of 3A or 3A(B) protein transient expression led to unspecific inhibition of viral infection. Therefore, the effect observed on viral yield, which inversely correlated with the intracellular levels of 3A protein, suggests a transacting role operating on the FMDV multiplication cycle.« less

  15. Cloning and biochemical characterization of an endo-1,4-β-mannanase from the coffee berry borer hypothenemus hampei

    PubMed Central

    2013-01-01

    Background The study of coffee polysaccharides-degrading enzymes from the coffee berry borer Hypothenemus hampei, has become an important alternative in the identification for enzymatic inhibitors that can be used as an alternative control of this dangerous insect. We report the cloning, expression and biochemical characterization of a mannanase gene that was identified in the midgut of the coffee berry borer and is responsible for the degradation of the most abundant polysaccharide in the coffee bean. Methods The amino acid sequence of HhMan was analyzed by multiple sequence alignment comparisons with BLAST (Basic Local Alignment Search Tool) and CLUSTALW. A Pichia pastoris expression system was used to express the recombinant form of the enzyme. The mannanase activity was quantified by the 3,5-dinitrosalicylic (DNS) and the hydrolitic properties were detected by TLC. Results An endo-1,4-β-mannanase from the digestive tract of the insect Hypothenemus hampei was cloned and expressed as a recombinant protein in the Pichia pastoris system. This enzyme is 56% identical to the sequence of an endo-β-mannanase from Bacillus circulans that belongs to the glycosyl hydrolase 5 (GH5) family. The purified recombinant protein (rHhMan) exhibited a single band (35.5 kDa) by SDS-PAGE, and its activity was confirmed by zymography. rHhMan displays optimal activity levels at pH 5.5 and 30°C and can hydrolyze galactomannans of varying mannose:galactose ratios, suggesting that the enzymatic activity is independent of the presence of side chains such as galactose residues. The enzyme cannot hydrolyze manno-oligosaccharides such as mannobiose and mannotriose; however, it can degrade mannotetraose, likely through a transglycosylation reaction. The Km and kcat values of this enzyme on guar gum were 2.074 mg ml-1 and 50.87 s-1, respectively, which is similar to other mannanases. Conclusion This work is the first study of an endo-1,4-β-mannanase from an insect using this expression system. Due to this enzyme’s importance in the digestive processes of the coffee berry borer, this study may enable the design of inhibitors against endo-1,4-β-mannanase to decrease the economic losses stemming from this insect. PMID:23965285

  16. Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, Spodoptera exigua, and expression characteristics in relation to thermal stress and development

    USDA-ARS?s Scientific Manuscript database

    Two full-length complementary DNAs (cDNAs) of heat shock protein (HSP) genes (Se-hsp90 and Se-hsp70) were cloned from the beet armyworm, Spodoptera exigua, and their expression was investigated in relation to cold shock, heat shock, and development. The open reading frames of Se-hsp90 and Sehsp70 ar...

  17. Molecular characterization and expression of microbial inulinase genes.

    PubMed

    Liu, Guang-Lei; Chi, Zhe; Chi, Zhen-Ming

    2013-05-01

    Many genes encoding exo- and endo-inulinases from bacteria, yeasts and filamentous fungi have been cloned and characterized. All the inulinases have several conserved motifs, such as WMND(E)PNGL, RDP, EC(V)P, SVEVF, Q and FS(T), which play an important role in inulinase catalysis and substrate binding. However, the exo-inulinases produced by yeasts has no conserved motif SVEVF and the yeasts do not produce any endo-inulinase. Exo- and endo-inulinases found in different microorganisms cluster separately at distant positions from each other. Most of the cloned inulinase genes have been expressed in Yarrowia lipolytica, Saccharomyces cerevisiae, Pichia pastoris, Klyuveromyces lactis and Escherichia coli, respectively. The recombinant inulinases produced and the engineered hosts using the cloned inulinase genes have many potential applications. Expression of most of the inulinase genes is repressed by glucose and fructose and induced by inulin and sucrose. However, the detailed mechanisms of the repression and induction are still unknown.

  18. Cloning of rat MLH1 and expression analysis of MSH2, MSH3, MSH6, and MLH1 during spermatogenesis.

    PubMed

    Geeta Vani, R; Varghese, C M; Rao, M R

    1999-12-15

    The mismatch repair system has been highly conserved in various species. In eukaryotic cells, the Mut S and Mut L homologues play crucial roles in both DNA mismatch repair and meiotic recombination. A full-length rat cDNA clone for rat MLH1 has been constructed using the RT-PCR method. The cDNA has an open reading frame of 2274 nucleotides for a protein of 757 amino acids. We have also obtained partial cDNA clones for MSH3 and MSH6. Northern blot analysis of rat MLH1, MSH2, MSH3, and MSH6 in the testes of rats of different ages showed differential expression of these genes as a function of developmental maturation of the testes. The expression analysis suggests that MSH3 may have a more predominant role in the meiotic recombination process. Copyright 1999 Academic Press.

  19. Cloning and heterologous expression of genes from the kinamycin biosynthetic pathway of Streptomyces murayamaensis.

    PubMed

    Gould, S J; Hong, S T; Carney, J R

    1998-01-01

    The genes for most of the biosynthesis of the kinamycin antibiotics have been cloned and heterologously expressed. Genomic DNA of Streptomyces murayamaensis was partially digested with MboI and a library of approximately 40 kb fragments in E. coli XL1-BlueMR was prepared using the cosmid vector pOJ446. Hybridization with the actI probe from the actinorhodin polyketide synthase genes identified two clusters of polyketide genes. After transferal of these clusters to S. lividans ZX7, expression of one cluster was established by HPLC with photodiode array detection. Peaks were identified from the kin cluster for dehydrorabelomycin, kinobscurinone, and stealthin C, which are known intermediates in kinamycin biosynthesis. Two shunt metabolites, kinafluorenone and seongomycin were also identified. The structure of the latter was determined from a quantity obtained from large-scale fermentation of one of the clones.

  20. The fluorescent photobleaching properties of GFP expressed in human lung cancer cells

    NASA Astrophysics Data System (ADS)

    Jin, Ying; Xing, Da

    2003-12-01

    The characteristic properties of GFP make this protein a good candidate for use as a molecular reporter to monitor patterns of protein localization, gene expression, and intracellular protein trafficking in living cells. In this study, the dicistronic expression vector (pEGFP-C1) was used to transfected into human lung cancer cell line (ASTC-a-1) and a positive clone which stably expressed GFP in high level was obtained. After more than three months' passengers, the cells were also remained the strong fluorescence under fluorescent microscope. The results showed that the green fluorescent protein expressed in tumor cells was also photobleached under intense irradiation (approximately 488 nm) and the degree of photobleaching varied with the difference of the intensity of the excitation. Using different interdiction parcel (None, ND4, ND8, ND16), there were significant differences in photobleaching among the different excitation. The photobleaching was also affected by the time length of excitation, and the intensity of fluorescence was obviously decreased along with the increasing of excitation time, especially to stronger excitation.

  1. m-carboxycinnamic acid bishydroxamide improves developmental competence, reduces apoptosis and alters epigenetic status and gene expression pattern in cloned buffalo (Bubalus bubalis) embryos.

    PubMed

    Agrawal, H; Selokar, N L; Saini, M; Singh, M K; Chauhan, M S; Palta, P; Singla, S K; Manik, R S

    2018-05-07

    Incomplete or aberrant reprogramming of nuclear genome is one of the major problems in somatic cell nuclear transfer. In this study, we studied the effect of histone deacetylase inhibitor m-carboxycinnamic acid bishydroxamide (CBHA) on in vitro development of buffalo embryos produced by Hand-made cloning. Cloned embryos were treated with CBHA (0, 5, 10, 20 or 50 μM) for 10 hr from the start of reconstruction till activation. At 10 μM, but not at other concentrations examined, CBHA increased (p < .05) the blastocyst rate (63.77 ± 3.97% vs 48.63 ± 3.55%) and reduced (p < .05) the apoptotic index of the cloned blastocysts (8.91 ± 1.94 vs 4.36 ± 1.08) compared to untreated controls, to levels similar to those in IVF blastocysts (4.78 ± 0.74). CBHA treatment, at all the concentrations examined, increased (p < .05) the global level of H3K9ac in cloned blastocysts than in untreated controls to that observed in IVF blastocysts. Treatment with CBHA (10 μM) decreased (p < .05) the global level of H3K27me3 in cloned blastocysts than in untreated controls but it was still higher (p < .05) than in IVF blastocysts. CBHA (10 μM) treatment increased (p < .05) the relative expression level of pluripotency-related genes OCT-4 and NANOG, and anti-apoptotic gene BCL-XL, and decreased (p < .05) that of pro-apoptotic gene BAX than in untreated controls but did not affect the relative expression level of apoptosis-related genes p53 and CASPASE3 and epigenetics-related genes DNMT1, DNMT3a and HDAC1. These results suggest that treatment of cloned embryos with 10 μM CBHA improves the blastocyst rate, reduces the level of apoptosis and alters the epigenetic status and gene expression pattern. © 2018 Blackwell Verlag GmbH.

  2. Molecular cloning of the Coch gene of guinea pig inner ear and its expression analysis in cultured fibrocytes of the spiral ligament.

    PubMed

    Li, Lishu; Ikezono, Tetsuo; Sekine, Kuwon; Shindo, Susumu; Matsumura, Tomohiro; Pawankar, Ruby; Ichimiya, Issei; Yagi, Toshiaki

    2010-08-01

    We have cloned guinea pig Coch cDNA and the sequence information will be useful for future molecular study combined with physiological experiments. Proper Coch gene expression appears to be dependent on the unique extracellular micro-environment of the inner ear in vivo. These results provide insight into the Coch gene expression and its regulation. To characterize the guinea pig Coch gene, we performed molecular cloning and expression analysis in the inner ear and cultured fibrocytes of the spiral ligament. The Coch cDNA was isolated using RACE. Cochlin isofoms were studied by Western blot using three different types of mammalian inner ear. The cochlear fibrocytes were cultured and characterized by immunostaining. Coch gene expression in the fibrocytes was investigated and the influence of cytokine stimulation was evaluated. The full-length 1991 bp Coch cDNA that encodes a 553 amino acid protein was isolated. The sequence had significant homology with other mammals, and the sizes of the Cochlin isoforms were identical. In the cultured fibrocytes, Coch mRNA was expressed in a very small amount and the isoform production was different, compared with the results in vivo. Cytokine stimulation did not alter the level of mRNA expression or isoform formation.

  3. Genes up-regulated during red coloration in UV-B irradiated lettuce leaves.

    PubMed

    Park, Jong-Sug; Choung, Myoung-Gun; Kim, Jung-Bong; Hahn, Bum-Soo; Kim, Jong-Bum; Bae, Shin-Chul; Roh, Kyung-Hee; Kim, Yong-Hwan; Cheon, Choong-Ill; Sung, Mi-Kyung; Cho, Kang-Jin

    2007-04-01

    Molecular analysis of gene expression differences between green and red lettuce leaves was performed using the SSH method. BlastX comparisons of subtractive expressed sequence tags (ESTs) indicated that 7.6% of clones encoded enzymes involved in secondary metabolism. Such clones had a particularly high abundance of flavonoid-metabolism proteins (6.5%). Following SSH, 566 clones were rescreened for differential gene expression using dot-blot hybridization. Of these, 53 were found to overexpressed during red coloration. The up-regulated expression of six genes was confirmed by Northern blot analyses. The expression of chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and dihydroflavonol 4-reductase (DFR) genes showed a positive correlation with anthocyanin accumulation in UV-B-irradiated lettuce leaves; flavonoid 3',5'-hydroxylase (F3',5'H) and anthocyanidin synthase (ANS) were expressed continuously in both samples. These results indicated that the genes CHS, F3H, and DFR coincided with increases in anthocyanin accumulation during the red coloration of lettuce leaves. This study show a relationship between red coloration and the expression of up-regulated genes in lettuce. The subtractive cDNA library and EST database described in this study represent a valuable resource for further research for secondary metabolism in the vegetable crops.

  4. The molecular and cellular response of normal and progressed human bronchial epithelial cells to HZE particles

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Larsen, Jill

    We have used a model of non-oncogenically immortalized normal human bronchial epithelial cells to determine the response of such cells to particles found outside the protection of the earth’s electromagnetic field. We have identified an enhanced frequency of cellular transformation, as measured by growth in soft agar, for both 56Fe and 28Si (1 GeV/n) that is maximal (4-6 fold) at 0.25 Gy and 0.40 Gy, respectively. At 4 months post-irradiation 38 individual soft agar clones were isolated. These clones were characterized extensively for cellular and molecular changes. Gene expression analysis suggested that these clones had down-regulated several genes associated with anti-oxidant pathways including GLS2, GPX1 and 4, SOD2, PIG3, and NQO1 amongst others. As a result, many of these transformed clones were exposed to high levels of intracellular radical oxygen species (ROS), although there appeared not to be any enhanced mitochondrial ROS. DNA repair pathways associated with ATM/ATR signaling were also upregulated. However, these transformants do not develop into tumors when injected into immune-compromised mice, suggesting that they have not progressed sufficiently to become oncogenic. Therefore we chose 6 soft agar clones for continuous culture for an additional 14 months. Amongst the 6 clones, only one clone showed any significant change in phenotype. Clone 3kt-ff.2a, propagated for 18 months, were 2-fold more radioresistant, had a shortened doubling time and the background rate of transformation more than doubled. Furthermore, the morphology of transformed clones changed. Clones from this culture are being compared to the original clone as well as the parental HBEC3KT and will be injected into immune-compromised mice for oncogenic potential. Oncogenically progressed HBECs, HBEC3KT cells that overexpress a mutant RAS gene and where p53 has been knocked down, designated HBEC3KTR53, responded quite differently to HZE particle exposure. First, these cells are more radioresistant to all radiations used when compared to the parental cell line HBEC3KT. Furthermore, within days of their exposure to low and high LET radiations they exhibit enhanced cellular transformation over the parental cells. Moreover, HZE radiations are many fold more effective at initiating cellular transformation. Gene expression analysis identified several pathways that support oncogenic growth as overrepresented in the progressed cells. With continual culture some clones undergo epithelial to mesenchymal transition, change morphology and express markers associated with EMT. And, at least one clone is oncogenic forming highly aggressive tumors in an immune compromised mouse strain. It is important to note that HBEC3KTR53 cells will not form tumors in mice, however, this irradiated clone has moved through the multi-step process of carcinogenesis. We are now examining the molecular alterations that led to oncogenesis in this clone.

  5. Generation of Five Human Lactoferrin Transgenic Cloned Goats Using Fibroblast Cells and Their Methylation Status of Putative Differential Methylation Regions of IGF2R and H19 Imprinted Genes

    PubMed Central

    Sun, Yanyan; Zhang, Yanli; Wang, Ziyu; Song, Yang; Wang, Feng

    2013-01-01

    Background Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. Methodology/Principal Findings Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. Conclusions/Significance In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future. PMID:24204972

  6. Cloning and sequencing of a gene encoding a 21-kilodalton outer membrane protein from Bordetella avium and expression of the gene in Salmonella typhimurium.

    PubMed Central

    Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R

    1992-01-01

    Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the Asd+ vector pYA292, and the construct was introduced into the avirulent delta cya delta crp delta asd S. typhimurium chi 3987 for oral immunization of birds. The gene encoding the 21-kDa protein was expressed equivalently in B. avium 197, delta asd E. coli chi 6097, and S. typhimurium chi 3987 and was localized primarily in the cytoplasmic membrane and outer membrane. In preliminary studies on oral inoculation of turkey poults with S. typhimurium chi 3987 expressing the gene encoding the B. avium 21-kDa protein, it was determined that a single dose of the recombinant Salmonella vaccine failed to elicit serum antibodies against the 21-kDa protein and challenge with wild-type B. avium 197 resulted in colonization of the trachea and thymus with B. avium 197. Images PMID:1447140

  7. Decellularized Matrix from Tumorigenic Human Mesenchymal Stem Cells Promotes Neovascularization with Galectin-1 Dependent Endothelial Interaction

    PubMed Central

    Burns, Jorge S.; Kristiansen, Malthe; Kristensen, Lars P.; Larsen, Kenneth H.; Nielsen, Maria O.; Christiansen, Helle; Nehlin, Jan; Andersen, Jens S.; Kassem, Moustapha

    2011-01-01

    Background Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. Methodology/Principal Findings Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. Conclusions Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was required to bring about matrix-endothelial interactions and for xenografted hMSC -BD11 cells to optimally recruit host vasculature. PMID:21779348

  8. [Construction and expression of the targeting super-antigen EGF-SEA fusion gene].

    PubMed

    Xie, Yang; Peng, Shaoping; Liao, Zhiying; Liu, Jiafeng; Liu, Xuemei; Chen, Weifeng

    2014-05-01

    To construct expression vector for the SEA-EGF fusion gene. Clone the SEA gene and the EGF gene segment with PCR and RT-PCR independently, and connect this two genes by the bridge PCR. Insert the fusion gene EGF-SEA into the expression vector PET-44. Induced the secretion of the fusion protein SEA-EGF by the antileptic. The gene fragment encoding EGF and SEA mature peptide was successfully cloned. The fusion gene EGF-SEA was successfully constructed and was inserted into expression vector. The new recombinant expression vector for fusion gene EGF-SEA is specific for head and neck cancer, laid the foundation for the further study of fusion protein SEA-EGF targeting immune therapy in head and neck tumors.

  9. Production of cloned embryos from caprine mammary epithelial cells expressing recombinant human β-defensin-3.

    PubMed

    Liu, Jun; Luo, Yan; Liu, Qingqing; Zheng, Liming; Yang, Zhongcai; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Zhang, Yong

    2013-03-01

    Transgenic animals that express antimicrobial agents in their milk can inhibit bacterial pathogens that cause mastitis. Our objective was to produce human β-defensin-3 (HBD3) transgenic embryos by nuclear transfer using goat mammary epithelial cells (GMECs) as donor cells. Three GMEC lines (GMEC1, GMEC2, and GMEC3) were transfected with a HBD3 mammary-specific expression vector by electroporation. There was a difference (P < 0.05) in the rate of geneticin-resistant colony formation among cell lines GMEC1, GMEC2, and GMEC3 (39 and 47 vs. 19 colonies per 3 × 10(6) cells, respectively). After inducing expression, the mRNA and protein of HBD3 were detected by reverse transcription polymerase chain reaction and Western blot analysis in transgenic cells. Transgenic clonal cells expressing HBD3 were used as donor cells to investigate development of cloned embryos. There were no significant differences in rates of cleavage or blastocyst formation of cloned embryos from transgenic (GMEC1T2 and GMEC2T3) and nontransgenic (GMEC1 and GMEC2) GMECs (72.3 ± 5.0%, 69.5 ± 2.3%, 61.8 ± 4.8%, and 70.0 ± 2%; and 16.8 ± 0.5%, 17.5 ± 0.7%, 16.7 ± 0.9%, and 17.5 ± 0.6%, respectively). However, the fusion rate, cleavage rate, and blastocyst formation rate of cloned embryos from a transgenic clonal cell line (GMEC2T6, 50.7 ± 2.1%, 55.5 ± 2.0%, and 11.1 ± 0.6%) were lower than those of other groups (P < 0.05). We concluded that genetic modification of GMECs might not influence the in vitro development of cloned embryos, but that some of the transgenic clonal cells were not suitable for nuclear transfer to produce transgenic goats, because of low developmental rates. However, transgenic GMECs expressing HBD3 might be used as donor cells for producing transgenic goats that express increased concentrations of β-defensins in their milk. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Single-cell heterogeneity and cell-cycle-related viral gene bursts in the human leukaemia virus HTLV-1

    PubMed Central

    Billman, Martin R; Rueda, David; Bangham, Charles R M

    2017-01-01

    Background: The human leukaemia virus HTLV-1 expresses essential accessory genes that manipulate the expression, splicing and transport of viral mRNAs.  Two of these genes, tax and hbz, also promote proliferation of the infected cell, and both genes are thought to contribute to oncogenesis in adult T-cell leukaemia/lymphoma.  The regulation of HTLV-1 proviral latency is not understood.  tax, on the proviral plus strand, is usually silent in freshly-isolated cells, whereas the minus-strand-encoded hbz gene is persistently expressed at a low level.  However, the persistently activated host immune response to Tax indicates frequent expression of tax in vivo.  Methods: We used single-molecule RNA-FISH to quantify the expression of HTLV-1 transcripts at the single-cell level in a total of >19,000 cells from five T-cell clones, naturally infected with HTLV-1, isolated by limiting dilution from peripheral blood of HTLV-1-infected subjects.  Results: We found strong heterogeneity both within and between clones in the expression of the proviral plus-strand (detected by hybridization to the tax gene) and the minus-strand ( hbz gene). Both genes are transcribed in bursts; tax expression is enhanced in the absence of hbz, while hbz expression increased in cells with high tax expression. Surprisingly, we found that hbz expression is strongly associated with the S and G 2/M phases of the cell cycle, independent of tax expression.  Contrary to current belief, hbz is not expressed in all cells at all times, even within one clone.  In hbz-positive cells, the abundance of hbz transcripts showed a very strong positive linear correlation with nuclear volume. Conclusions: The occurrence of intense, intermittent plus-strand gene bursts in independent primary HTLV-1-infected T-cell clones from unrelated individuals strongly suggests that the HTLV-1 plus-strand is expressed in bursts in vivo.  Our results offer an explanation for the paradoxical correlations observed between the host immune response and HTLV-1 transcription. PMID:29062917

  11. Recloned dogs derived from adipose stem cells of a transgenic cloned beagle.

    PubMed

    Oh, Hyun Ju; Park, Jung Eun; Kim, Min Jung; Hong, So Gun; Ra, Jeong Chan; Jo, Jung Youn; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2011-04-15

    A number of studies have postulated that efficiency in mammalian cloning is inversely correlated with donor cell differentiation status and may be increased by using undifferentiated cells as nuclear donors. Here, we attempted the recloning of dogs by nuclear transfer of canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) from a transgenic cloned beagle to determine if cAd-MSCs can be a suitable donor cell type. In order to isolate cAd-MSCs, adipose tissues were collected from a transgenic cloned beagle produced by somatic cell nuclear transfer (SCNT) of canine fetal fibroblasts modified genetically with a red fluorescent protein (RFP) gene. The cAd-MSCs expressed the RFP gene and cell-surface marker characteristics of MSCs including CD29, CD44 and thy1.1. Furthermore, cAd-MSCs underwent osteogenic, adipogenic, myogenic, neurogenic and chondrogenic differentiation when exposed to specific differentiation-inducing conditions. In order to investigate the developmental potential of cAd-MSCs, we carried out SCNT. Fused-couplets (82/109, 75.2%) were chemically activated and transferred into the uterine tube of five naturally estrus-synchronized surrogates. One of them (20%) maintained pregnancy and subsequently gave birth to two healthy cloned pups. The present study demonstrated for the first time the successful production of cloned beagles by nuclear transfer of cAd-MSCs. Another important outcome of the present study is the successful recloning of RFP-expressing transgenic cloned beagle pups by nuclear transfer of cells derived from a transgenic cloned beagle. In conclusion, the present study demonstrates that adipose stem cells can be a good nuclear donor source for dog cloning. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Expression and subcellular localization of ORC1 in Leishmania major

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Diwakar; Mukherji, Agnideep; Saha, Swati

    2008-10-10

    The mechanism of DNA replication is highly conserved in eukaryotes, with the process being preceded by the ordered assembly of pre-replication complexes (pre-RCs). Pre-RC formation is triggered by the association of the origin replication complex (ORC) with chromatin. Leishmania major appears to have only one ORC ortholog, ORC1. ORC1 in other eukaryotes is the largest of the ORC subunits and is believed to play a significant role in modulating replication initiation. Here we report for the first time, the cloning of ORC1 from L. major, and the analysis of its expression in L. major promastigotes. In human cells ORC1 levelsmore » have been found to be upregulated in G1 and subsequently degraded, thus playing a role in controlling replication initiation. We examine the subcellular localization of L. major ORC1 in relation to the different stages of the cell cycle. Our results show that, unlike what is widely believed to be the case with ORC1 in human cells, ORC1 in L. major is nuclear at all stages of the cell cycle.« less

  13. Construction and Cloning of Reporter-Tagged Replicon cDNA for an In Vitro Replication Study of Murine Norovirus-1 (MNV-1).

    PubMed

    Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir

    2017-12-01

    A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3'end of the reporter gene and the VP2 start sequence to allow co-translational 'cleavage' of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication.

  14. Localization and regulation of a facilitative urea transporter in the kidney of the red-eared slider turtle (Trachemys scripta elegans).

    PubMed

    Uchiyama, Minoru; Kikuchi, Ryosuke; Konno, Norifumi; Wakasugi, Tatsuya; Matsuda, Kouhei

    2009-01-01

    Urea is the major excretory end product of nitrogen metabolism in most chelonian reptiles. In the present study, we report the isolation of a 1632 base pair cDNA from turtle kidney with one open reading frame putatively encoding a 403-residue protein, the turtle urea transporter (turtle UT). The first cloned reptilian UT has high homology with UTs (facilitated urea transporters) cloned from vertebrates, and most closely resembles the UT-A subfamily. Injection of turtle UT cRNA into Xenopus oocytes induced a 6-fold increase in [(14)C]urea uptake that was inhibited by phloretin. The turtle UT mRNA expression and tissue distribution were examined by RT-PCR with total RNA from various tissues. Expression of turtle UT mRNA was restricted to the kidney, and no signal was detected in the other tissues, such as brain, heart, alimentary tract and urinary bladder. An approximately 58 kDa protein band was detected in membrane fractions of the kidney by western blot using an affinity-purified antibody that recognized turtle UT expressed in Xenopus oocytes. In an immunohistochemical study using the anti-turtle UT antibody, UT-immunopositive cells were observed along the distal tubule but not in the collecting duct. In turtles under dry conditions, plasma osmolality and urea concentration increased, and using semi-quantitative RT-PCR the UT mRNA expression level in the kidney was found to increase 2-fold compared with control. The present results, taken together, suggest that the turtle UT probably contributes to urea transport in the distal tubule segments of the kidney in response to hyperosmotic stress under dry conditions.

  15. Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 from Crocus: a novel regulator of apocarotenoid biosynthesis.

    PubMed

    Ashraf, Nasheeman; Jain, Deepti; Vishwakarma, Ram A

    2015-02-01

    Crocus sativus is a triploid sterile plant with long red stigmas which form commercial saffron. Saffron is the site for synthesis and accumulation of apocarotenoids like crocin, picrocrin and safranal which are responsible for its color, flavour and aroma making it world's most expensive spice. These compounds are formed by oxidative cleavage of zeaxanthin by carotenoid cleavage dioxygenases. Although the biosynthetic pathway of apocarotenoids is known to a considerable extent, the mechanism that regulates its tissue and developmental stage specific expression is not known. In the present work, we identified, cloned and characterized ultrapetala transcription factor called CsULT1 from Crocus. The gene contains an 80 amino acid long conserved SAND domain. The CsULT1 transcript was more abundant in stigma and showed increase in expression from pre anthesis stage till anthesis and decreased in post anthesis stage which corroborated with the accumulation pattern of crocin indicating its possible role in regulation of apocarotenoid biosynthesis. CsULT1 was found to be transcriptionally active and localized in nucleus. Its expression is induced in response to phytohormones like auxin, methyljasmonate and salicylic acid. Overexpression of CsULT1 in Crocus calli resulted in enhanced expression of key pathway genes like phytoene synthase (PSY), phytoene desaturase (PDS), beta carotene hydroxylase (BCH) and carotenoid cleavage dioxygenases (CCDs) indicating its role in regulation of apocarotenoid biosynthesis. This work presents first report on isolation and characterization of ultrapetala gene from Crocus. Our results suggest that CsULT1 is a novel regulator of Crocus apocarotenoid biosynthesis. We show for the first time involvement of plant SAND domain proteins in regulating secondary metabolic pathways.

  16. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules.

    PubMed

    Knolle, P A; Uhrig, A; Hegenbarth, S; Löser, E; Schmitt, E; Gerken, G; Lohse, A W

    1998-12-01

    Our study demonstrates that antigen-presenting liver sinusoidal endothelial cells (LSEC) induce production of interferon-gamma (IFN-gamma) from cloned Th1 CD4+ T cells. We show that LSEC used the mannose receptor for antigen uptake, which further strengthened the role of LSEC as antigen-presenting cell (APC) population in the liver. The ability of LSEC to activate cloned CD4+ T cells antigen-specifically was down-regulated by exogenous prostaglandin E2 (PGE2) and by IL-10. We identify two separate mechanisms by which IL-10 down-regulated T cell activation through LSEC. IL-10 decreased the constitutive surface expression of MHC class II as well as of the accessory molecules CD80 and CD86 on LSEC. Furthermore, IL-10 diminished mannose receptor activity in LSEC. Decreased antigen uptake via the mannose receptor and decreased expression of accessory molecules may explain the down-regulation of T cell activation through IL-10. Importantly, the expression of low numbers of antigen on MHC II in the absence of accessory signals on LSEC may lead to induction of anergy in T cells. Because PGE2 and IL-10 are released from LSEC or Kupffer cells (KC) in response to those concentrations of endotoxin found physiologically in portal venous blood, it is possible that the continuous presence of these mediators and their negative effect on the local APC may explain the inability of the liver to induce T cell activation and to clear chronic infections. Our results support the notion that antigen presentation by LSEC in the hepatic microenvironment contributes to the observed inability to mount an effective cell-mediated immune response in the liver.

  17. Distance between RBS and AUG plays an important role in overexpression of recombinant proteins.

    PubMed

    Berwal, Sunil K; Sreejith, R K; Pal, Jayanta K

    2010-10-15

    The spacing between ribosome binding site (RBS) and AUG is crucial for efficient overexpression of genes when cloned in prokaryotic expression vectors. We undertook a brief study on the overexpression of genes cloned in Escherichia coli expression vectors, wherein the spacing between the RBS and the start codon was varied. SDS-PAGE and Western blot analysis indicated a high level of protein expression only in constructs where the spacing between RBS and AUG was approximately 40 nucleotides or more, despite the synthesis of the transcripts in the representative cases investigated. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Genetic transformation of novel isolates of chicken Lactobacillus bearing probiotic features for expression of heterologous proteins: a tool to develop live oral vaccines

    PubMed Central

    Mota, Rodrigo M; Moreira, João Luiz S; Souza, Marcelo R; Fátima Horta, M; Teixeira, Santuza MR; Neumann, Elisabeth; Nicoli, Jacques R; Nunes, Álvaro C

    2006-01-01

    Background The use of lactic acid bacteria as vehicles to delivery antigens to immunize animals is a promising issue. When genetically modified, these bacteria can induce a specific local and systemic immune response against selected pathogens. Gastric acid and bile salts tolerance, production of antagonistic substances against pathogenic microorganisms, and adhesive ability to gut epithelium are other important characteristics that make these bacteria useful for oral immunization. Results Bacteria isolated on de Man, Rogosa and Sharpe medium (MRS) from different gastrointestinal portions of broiler chicks were evaluated for their resistance to artificial gastric acid and bile salts, production of hydrogen peroxide, and cell surface hydrophobicity. Thirty-eight isolates were first typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR amplicons (PCR-ARDRA). An expression cassette was assembled onto the pCR2.1-Topo vector by cloning the promoter, leader peptide, cell wall anchor and terminator sequences derived from the laminin binding S-layer protein gene of L. crispatus strain F5.7 (lbs gene). A sequence encoding the green fluorescent protein (GFP) was inserted as reporter gene, and an erythromycin resistance gene was added as selective marker. All constructs were able to express GFP in the cloning host E. coli XL1-Blue and different Lactobacillus strains as verified by FACS and laser scanning confocal microscopy. Conclusion Lactobacillus isolated from gastrointestinal tract of broiler chickens and selected for probiotic characteristics can be genetically modified by introducing an expression cassette into the lbs locus. The transformed bacteria expressed on its cell wall surface different fluorescent proteins used as reporters of promoter function. It is possible then that similar bacterial model expressing pathogen antigens can be used as live oral vaccines to immunize broilers against infectious diseases. PMID:16396687

  19. Development of genetically engineered bacteria for production of selected aromatic compounds

    DOEpatents

    Ward, Thomas E.; Watkins, Carolyn S.; Bulmer, Deborah K.; Johnson, Bruce F.; Amaratunga, Mohan

    2001-01-01

    The cloning and expression of genes in the common aromatic pathway of E. coli are described. A compound for which chorismate, the final product of the common aromatic pathway, is an anabolic intermediate can be produced by cloning and expressing selected genes of the common aromatic pathway and the genes coding for enzymes necessary to convert chorismate to the selected compound. Plasmids carrying selected genes of the common aromatic pathway are also described.

  20. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated ras oncogene and SV40 T-antigen.

    PubMed

    Su, L N; Little, J B

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. Cells transfected with EJ ras alone showed no morphological alterations nor significant changes in radiosensitivity. Cell clones expressing ras and/or SV40 T-antigen showed a reduced requirement for serum supplements, an increase in aneuploidy and chromosomal aberrations, and enhanced growth in soft agar as an early cellular response to SV40 T-antigen expression. The sequential order of transfection with SV40 T-antigen and ras influenced radio-sensitivity but not the induction of morphological changes. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself.

  1. Cloning and expression of phosphoglycerate mutase from the psychrophilic yeast, Glaciozyma antarctica PI12

    NASA Astrophysics Data System (ADS)

    Jaafar, Nardiah Rizwana; Bakar, Farah Diba Abu; Murad, Abdul Munir Abdul; Mahadi, Nor Muhammad

    2015-09-01

    The conversion of 3-phosphoglycerate to 2-phosphoglycerate during glycolysis and gluconeogenesis is catalyzed by phosphoglycerate mutase (PGM). Better understanding of metabolic reactions performed by this enzyme has been studied extensively in prokaryotes and eukaryotes. Here, we report a phosphoglycerate mutase from the psychrophilic yeast, Glaciozyma antarctica. cDNA encoding for PGM from G. antarctica PI12, a psychrophilic yeast isolated from sea ice at Casey Station, Antarctica was amplified. The gene was then cloned into a cloning vector and sequenced, which verified its identity as the gene putatively encoding for PGM. The recombinant protein was expressed in Escherichia coli BL21 (DE3) as inclusion bodies and this was confirmed by SDS-PAGE and Western blot.

  2. Isolation and expression of a Bacillus cereus gene encoding benzil reductase.

    PubMed

    Maruyama, R; Nishizawa, M; Itoi, Y; Ito, S; Inoue, M

    2001-12-20

    Benzil was reduced stereospecifically to (S)-benzoin by Bacillus cereus strain Tim-r01. To isolate the gene responsible for asymmetric reduction, we constructed a library consisting of Escherichia coli clones that harbored plasmids expressing Bacillus cereus genes. The library was screened using the halo formation assay, and one clone showed benzil reduction to (S)-benzoin. Thus, this clone seemed to carry a plasmid encoding a Bacillus cereus benzil reductase. The deduced amino acid sequence had marked homologies to the Bacillus subtilis yueD protein (41% identity), the yeast open reading frame YIR036C protein (31%), and the mammalian sepiapterin reductases (28% to 30%), suggesting that benzil reductase is a novel short-chain de-hydrogenases/ reductase. Copyright 2001 John Wiley & Sons, Inc.

  3. Cacao Flavor through Genetics – Anatomy of Fine Flavor

    USDA-ARS?s Scientific Manuscript database

    This presentation will discuss the transcript analysis of Moniliophthora roreri infected pods, which revealed a total of 3009 differentially expressed transcripts among resistant and susceptible clones. Comparison of the tolerant and susceptible clones by KEGG (Kyoto Encyclopedia of Genes and Genome...

  4. Hybrid sequencing approach applied to human fecal metagenomic clone libraries revealed clones with potential biotechnological applications.

    PubMed

    Džunková, Mária; D'Auria, Giuseppe; Pérez-Villarroya, David; Moya, Andrés

    2012-01-01

    Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be "domesticated" for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7-15 kb) cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs) with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts.

  5. Molecular cloning and expression in Saccharomyces cerevisiae and Neurospora crassa of the invertase gene from Neurospora crassa.

    PubMed

    Carú, M; Cifuentes, V; Pincheira, G; Jiménez, A

    1989-10-01

    A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suco and N. crassa inv strains transformed with pNC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suco (pNC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa, although S. cerevisiae suc+ did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI-restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.

  6. Sodium metavanadate exhibits carcinogenic tendencies in vitro in immortalized human bronchial epithelial cells.

    PubMed

    Passantino, Lisa; Muñoz, Alexandra B; Costa, Max

    2013-10-01

    Pentavalent vanadium compounds induce intracellular changes in vitro that are consistent with those of other carcinogenic substances. While there is no clear evidence that vanadium compounds cause cancer in humans, vanadium pentoxide causes lung cancer in rodents after long-term inhalation exposures and in turn IARC has categorized it as a group 2B possible human carcinogen. The goal of this study was to investigate the carcinogenicity of NaVO3 in the human immortalized bronchial epithelial cell line, Beas-2B. Cells were treated with 10 μM NaVO3 for 5 weeks, with or without recovery time, followed by gene expression microarray analysis. In a separate experiment, cells were exposed to 1-10 μM NaVO3 for 4 weeks and then grown in soft agar to test for anchorage-independent growth. A dose-dependent increase in the number of colonies was observed. In scratch tests, NaVO3-transformed clones could repair a wound faster than controls. In a gene expression microarray analysis of soft agar clones there were 2010 differentially expressed genes (DEG) (adjusted p-value ≤ 0.05) in NaVO3-transformed clones relative to control clones. DEG from this experiment were compared with the DEG of 5 week NaVO3 exposure with or without recovery, all with adjusted p-values < 0.05, and 469 genes were altered in the same direction for transformed clones, 5 week NaVO3-treated cells, and the recovered cells. The data from this study imply that chronic exposure to NaVO3 causes changes that are consistent with cellular transformation including anchorage-independent growth, enhanced migration ability, and gene expression changes that were likely epigenetically inherited.

  7. Cloning and expression of a CYP720B orthologue involved in the biosynthesis of diterpene resin acids in Pinus brutia.

    PubMed

    Semiz, Asli; Sen, Alaattin

    2015-03-01

    Cytochrome P450 monooxygenases mediate a broad range of oxidative reactions involved in the biosynthesis of both primary and secondary metabolites in plants. Until now, only two P450 genes, CYP720B1 from Pinus taeda and CYP720B4 from Picea sitchensis, have been functionally characterised and described in the literature. The purpose of this study was to describe the cloning and expression of CYP720B from Pinus brutia due to its suggested role in the synthesis of bioactive compounds used for chemical defence against insects. A PCR product of the P. brutia CYP720B gene was cloned into the pCR8/GW/TOPO cloning vector. After optimising the sequence for codon usage in yeast, it was transferred into the inducible expression vector pYES-DEST52 and transfected into the S. cerevisiae INVSc1 strain. Sequence analysis showed that the P. brutia CYP720B gene contains an open reading frame of 1,464 nucleotides, which encodes a 53,570 Da putative protein of 487 amino acid residues. The putative protein contains the classic heme-binding sequence motif that is conserved in all P450 enzymes. It shares 99 and 61% identity with the deduced amino acid sequences of CYP720B1 from Pinus taeda and CYP720B4 from Picea sitchensis, respectively. Recombinant CYP720B protein expression was confirmed using western blot analysis. Furthermore, recombinant CYP720B was functionally active, showing a Soret peak at approximately 448 nm in the reduced CO difference spectra. These data suggest that the cloned gene is an orthologue of CYP720B in P. brutia and might be involved in DRA biosynthesis.

  8. Identification and chromosomal localization of Atm, the mouse homolog of the ataxia-telangiectasia gene.

    PubMed

    Pecker, I; Avraham, K B; Gilbert, D J; Savitsky, K; Rotman, G; Harnik, R; Fukao, T; Schröck, E; Hirotsune, S; Tagle, D A; Collins, F S; Wynshaw-Boris, A; Ried, T; Copeland, N G; Jenkins, N A; Shiloh, Y; Ziv, Y

    1996-07-01

    Atm, the mouse homolog of the human ATM gene defective in ataxia-telangiectasia (A-T), has been identified. The entire coding sequence of the Atm transcript was cloned and found to contain an open reading frame encoding a protein of 3066 amino acids with 84% overall identity and 91% similarity to the human ATM protein. Variable levels of expression of Atm were observed in different tissues. Fluorescence in situ hybridization and linkage analysis located the Atm gene on mouse chromosome 9, band 9C, in a region homologous to the ATM region on human chromosome 11q22-q23.

  9. Cellular Localization of Wheat High Molecular Weight Glutenin Subunits in Transgenic Rice Grain

    PubMed Central

    Jo, Yeong-Min; Cho, Kyoungwon; Lee, Hye-Jung; Lim, Sun-Hyung; Kim, Jin Sun; Kim, Young-Mi; Lee, Jong-Yeol

    2017-01-01

    Rice (Oryza sativa L.) is a primary global food cereal. However, when compared to wheat, rice has poor food processing qualities. Dough that is made from rice flour has low viscoelasticity because rice seed lacks storage proteins that are comparable to gluten protein from wheat. Thus, current research efforts aim to improve rice flour processing qualities through the transgenic expression of viscoelastic proteins in rice seeds. In this study, we characterized the transgenic expression of wheat glutenin subunits in rice seeds. The two genes 1Dx5_KK and 1Dy10_JK, which both encode wheat high-molecular-weight glutenin subunits that confer high dough elasticity, were cloned from Korean wheat cultivars KeumKang and JoKyung, respectively. These genes were inserted into binary vectors under the control of the rice endosperm-specific Glu-B1 promoter and were expressed in the high-amylose Korean rice cultivar Koami (Oryza sativa L.). Individual expression of both glutenin subunits was confirmed by SDS-PAGE and immunoblot analyses performed using T3 generation of transgenic rice seeds. The subcellular localization of 1Dx5_KK and 1Dy10_JK in the rice seed endosperm was confirmed by immunofluorescence analysis, indicating that the wheat glutenin subunits accumulate in protein body-II and novel protein body types in the rice seed. These results contribute to our understanding of engineered seed storage proteins in rice. PMID:29156580

  10. Expression Profiles, Characterization and Function of HbTCTP in Rubber Tree (Hevea brasiliensis)

    PubMed Central

    Deng, Zhi; Chen, Jiangshu; Leclercq, Julie; Zhou, Zhuangzhi; Liu, Changren; Liu, Hui; Yang, Hong; Montoro, Pascal; Xia, Zhihui; Li, Dejun

    2016-01-01

    As a highly conserved protein, the translationally controlled tumor protein (TCTP) carries out vital roles in various life processes. In rubber tree, two TCTP genes, HbTCTP and HbTCTP1, were cloned, but only HbTCTP1 was studied in details. In this study, cis-acting regulatory elements, expression patterns, subcellular localization, interacting proteins, and antioxidant activity of HbTCTP were systematically analyzed. Besides the common cis-acting regulatory elements, HbTCTP promoter also harbored various known cis-elements that respond to hormone/stresses. Being consistent with the aforementioned results, HbTCTP was regulated by drought, low temperature, high salt, ethylene (ET), wounding, H2O2, and methyl jasmonate (MeJA) treatments. HbTCTP was expressed throughout different tissues and developmental stages of leaves. In addition, HbTCTP was associated with tapping panel dryness (TPD). HbTCTP was localized in the membrane, cytoplasm and the nucleus, and interacted with four proteins rubber elongation factor (REF), 17.5 kDa heat shock family protein, annexin, and REF-like stress related protein 1. Being similar to HbTCTP1, HbTCTP also indicated antioxidant activity in metal-catalyzed oxidation (MCO) system. Our results are useful for further understanding the molecular characterization and expression profiles of HbTCTP, but also lay a solid foundation for elucidating the function of HbTCTP in rubber tree. PMID:27375647

  11. A flow cytometry-based strategy to identify and express IgM from VH1-69+ clonal peripheral B cells.

    PubMed

    Charles, Edgar D; Orloff, Michael I M; Dustin, Lynn B

    2011-01-05

    Pathologic rheumatoid factor (RF) levels are hallmarks of several human diseases. Production of monoclonal RF in vitro is essential for studies of the antigenic specificities of RF, as well as for a dissection of the mechanisms of aberrant RF+ B cell activation. We have expanded upon previous methods to develop a flow cytometry-based method to efficiently clone monoclonal antibodies (mAbs) from humans with expansions of RF-like, immunoglobulin heavy chain variable region (IgVH) 1-69 gene segment-containing B cells. The cloned variable regions are expressed as IgM and produced during culture at concentrations between 5 and 20 μg/ml. Using this system, we show that clonal Igs from patients with HCV-related mixed cryoglobulinemia, when expressed as IgM, have RF activity. We anticipate that this system will be useful for the cloning and expression of mAbs partially encoded by VH1-69 and for determination of the reactivity patterns of polyspecific, low-affinity IgMs of human pathogenic importance. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Cloning and expression of soluble truncated variants of Borrelia OspA, OspB and Vmp7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, J.J.; Barbour, A.G.

    1996-11-05

    A method is provided for preparing soluble recombinant variations of Borrelia lipoproteins such as Borrelia burgdorferi outer surface protein A (OspA) and outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The method includes synthesizing a set of oligonucleotide primers, amplifying the template DNA utilizing the PCR, purifying the amplification products, cloning the amplification products into a suitable expression vector, transforming a suitable host utilizing the cloned expression vector, cultivating the transformed host for protein production and subsequently isolating and purifying the resulting protein. Also provided are soluble, recombinant variations of Borrelia burgdorferi outer surface proteinmore » A (OspA), outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The expression vectors harboring DNA encoding the recombinant variations, pET9-OspA, pET9-OspB and pET9-Vmp7, as well as the E. coli host BL21(DE3)/pLysS transformed with each of these vectors, are also disclosed. 38 figs.« less

  13. Expression of p21Waf1/Cip1 and cyclin D1 is increased in butyrate-resistant HeLa cells.

    PubMed

    Derjuga, A; Richard, C; Crosato, M; Wright, P S; Chalifour, L; Valdez, J; Barraso, A; Crissman, H A; Nishioka, W; Bradbury, E M; Th'ng, J P

    2001-10-12

    Sodium butyrate induced cell cycle arrest in mammalian cells through an increase in p21Waf1/Cip1, although another study showed that this arrest is related to pRB signaling. We isolated variants of HeLa cells adapted to growth in 5 mm butyrate. One of these variants, clone 5.1, constitutively expressed elevated levels of p21Waf1/Cip1 when incubated in regular growth medium and in the presence of butyrate. Despite this elevated level of p21Waf1/Cip1, the cells continue to proliferate, albeit at a slower rate than parental HeLa cells. Western blot analyses showed that other cell cycle regulatory proteins were not up-regulated to compensate for the elevated expression of p21Waf1/Cip1. However, cyclin D1 was down-regulated by butyrate in HeLa cells but not in clone 5.1. We conclude that continued expression of cyclin D1 allowed clone 5.1 to grow in the presence of butyrate and elevated levels of p21Waf1/Cip1.

  14. Expression cloning of human B cell immunoglobulins.

    PubMed

    Wardemann, Hedda; Kofer, Juliane

    2013-01-01

    The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.

  15. Cloning and expression of a cDNA coding for catalase from zebrafish (Danio rerio).

    PubMed

    Ken, C F; Lin, C T; Wu, J L; Shaw, J F

    2000-06-01

    A full-length complementary DNA (cDNA) clone encoding a catalase was amplified by the rapid amplication of cDNA ends-polymerase chain reaction (RACE-PCR) technique from zebrafish (Danio rerio) mRNA. Nucleotide sequence analysis of this cDNA clone revealed that it comprised a complete open reading frame coding for 526 amino acid residues and that it had a molecular mass of 59 654 Da. The deduced amino acid sequence showed high similarity with the sequences of catalase from swine (86.9%), mouse (85.8%), rat (85%), human (83.7%), fruit fly (75.6%), nematode (71.1%), and yeast (58.6%). The amino acid residues for secondary structures are apparently conserved as they are present in other mammal species. Furthermore, the coding region of zebrafish catalase was introduced into an expression vector, pET-20b(+), and transformed into Escherichia coli expression host BL21(DE3)pLysS. A 60-kDa active catalase protein was expressed and detected by Coomassie blue staining as well as activity staining on polyacrylamide gel followed electrophoresis.

  16. Cloning and expression of soluble truncated variants of Borrelia OspA, OspB and Vmp7

    DOEpatents

    Dunn, John J.; Barbour, Alan G.

    1996-11-05

    A method is provided herein for preparing soluble recombinant variations of Borrelia lipoproteins such as Borrelia burgdorferi outer surface protein A (OspA) and outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The method includes synthesizing a set of oligonucleotide primers, amplifying the template DNA utilizing the PCR, purifying the amplification products, cloning the amplification products into a suitable expression vector, transforming a suitable host utilizing the cloned expression vector, cultivating the transformed host for protein production and subsequently isolating and purifying the resulting protein. Also provided are soluble, recombinant variations of Borrelia burgdorferi outer surface protein A (OspA), outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The expression vectors harboring DNA encoding the recombinant variations, pET9-OspA, pET9-OspB and pET9-Vmp7, as well as the E. coli host BL21(DE3)/pLysS transformed with each of these vectors, are also disclosed.

  17. Cloning and expression of soluble truncated variants of Borrelia OspA, OspB and Vmp7

    DOEpatents

    Dunn, J.J.; Barbour, A.G.

    1996-11-05

    A method is provided for preparing soluble recombinant variations of Borrelia lipoproteins such as Borrelia burgdorferi outer surface protein A (OspA) and outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The method includes synthesizing a set of oligonucleotide primers, amplifying the template DNA utilizing the PCR, purifying the amplification products, cloning the amplification products into a suitable expression vector, transforming a suitable host utilizing the cloned expression vector, cultivating the transformed host for protein production and subsequently isolating and purifying the resulting protein. Also provided are soluble, recombinant variations of Borrelia burgdorferi outer surface protein A (OspA), outer surface protein B (OspB), and B. hermsii variable major protein 7 (Vmp7). The expression vectors harboring DNA encoding the recombinant variations, pET9-OspA, pET9-OspB and pET9-Vmp7, as well as the E. coli host BL21(DE3)/pLysS transformed with each of these vectors, are also disclosed. 38 figs.

  18. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    USGS Publications Warehouse

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  19. Expression of a Streptococcus mutans glucosyltransferase gene in Escherichia coli.

    PubMed

    Robeson, J P; Barletta, R G; Curtiss, R

    1983-01-01

    Chromosomal DNA from Streptococcus mutans strain UAB90 (serotype c) was cloned into Escherichia coli K-12. The clone bank was screened for any sucrose-hydrolyzing activity by selection for growth on raffinose in the presence of isopropyl-beta-D-thiogalactoside. A clone expressing an S. mutans glucosyltransferase was identified. The S. mutans DNA encoding this enzyme is a 1.73-kilobase fragment cloned into the HindIII site of plasmid pBR322. We designated the gene gtfA. The plasmid-encoded gtfA enzyme, a 55,000-molecular-weight protein, is synthesized at 40% the level of pBR322-encoded beta-lactamase in E. coli minicells. Using sucrose as substrate, the gtfA enzyme catalyzes the formation of fructose and a glucan with an apparent molecular weight of 1,500. We detected the gtfA protein in S. mutans cells with antibody raised against the cloned gtfA enzyme. Immunologically identical gtfA protein appears to be present in S. mutans cells of serotypes c, e, and f, and a cross-reacting protein was made by serotype b cells. Proteins from serotype a, g, and d S. mutans cells did not react with antibody to gtfA enzyme. The gtfA activity was present in the periplasmic space of E. coli clones, since 15% of the total gtfA activity was released by cold osmotic shock and the clones were able to grow on sucrose as sole carbon source.

  20. Cloning, Phylogenetic Analysis, and Distribution of Free Fatty Acid Receptor GPR120 Expression along the Gastrointestinal Tract of Housing versus Grazing Kid Goats.

    PubMed

    Ran, Tao; Li, Hengzhi; Liu, Yong; Zhou, Chuanshe; Tang, Shaoxun; Han, Xuefeng; Wang, Min; He, Zhixiong; Kang, Jinghe; Yan, Qiongxian; Tan, Zhiliang; Beauchemin, Karen A

    2016-03-23

    G-protein-coupled receptor 120 (GPR120) is reported as a long-chain fatty acid (LCFA) receptor that elicits free fatty acid (FFA) regulation on metabolism homeostasis. The study aimed to clone the gpr120 gene of goats (g-GPR120) and subsequently investigate phylogenetic analysis and tissue distribution throughout the digestive tracts of kid goats, as well as the effect of housing versus grazing (H vs G) feeding systems on GPR120 expression. Partial coding sequence (CDS) of g-GPR120 was cloned and submitted to NCBI (accession no. KU161270 ). Phylogenetic analysis revealed that g-GPR120 shared higher homology in both mRNA and amino acid sequences for ruminants than nonruminants. Immunochemistry, real-time PCR, and Western blot analysis showed that g-GPR120 was expressed throughout the digestive tracts of goats. The expression of g-GPR120 was affected by feeding system and age, with greater expression of g-GPR120 in the G group. It was concluded that the g-GPR120-mediated LCFA chemosensing mechanism is widely present in the tongue and gastrointestinal tract of goats and that its expression can be affected by feeding system and age.

  1. EMMA: An Extensible Mammalian Modular Assembly Toolkit for the Rapid Design and Production of Diverse Expression Vectors.

    PubMed

    Martella, Andrea; Matjusaitis, Mantas; Auxillos, Jamie; Pollard, Steven M; Cai, Yizhi

    2017-07-21

    Mammalian plasmid expression vectors are critical reagents underpinning many facets of research across biology, biomedical research, and the biotechnology industry. Traditional cloning methods often require laborious manual design and assembly of plasmids using tailored sequential cloning steps. This process can be protracted, complicated, expensive, and error-prone. New tools and strategies that facilitate the efficient design and production of bespoke vectors would help relieve a current bottleneck for researchers. To address this, we have developed an extensible mammalian modular assembly kit (EMMA). This enables rapid and efficient modular assembly of mammalian expression vectors in a one-tube, one-step golden-gate cloning reaction, using a standardized library of compatible genetic parts. The high modularity, flexibility, and extensibility of EMMA provide a simple method for the production of functionally diverse mammalian expression vectors. We demonstrate the value of this toolkit by constructing and validating a range of representative vectors, such as transient and stable expression vectors (transposon based vectors), targeting vectors, inducible systems, polycistronic expression cassettes, fusion proteins, and fluorescent reporters. The method also supports simple assembly combinatorial libraries and hierarchical assembly for production of larger multigenetic cargos. In summary, EMMA is compatible with automated production, and novel genetic parts can be easily incorporated, providing new opportunities for mammalian synthetic biology.

  2. Inactivation of p16INK4a, with retention of pRB and p53/p21cip1 function, in human MRC5 fibroblasts that overcome a telomere-independent crisis during immortalization.

    PubMed

    Taylor, Lisa M; James, Alexander; Schuller, Christine E; Brce, Jesena; Lock, Richard B; Mackenzie, Karen L

    2004-10-15

    Recent investigations, including our own, have shown that specific strains of fibroblasts expressing telomerase reverse transcriptase (hTERT) have an extended lifespan, but are not immortal. We previously demonstrated that hTERT-transduced MRC5 fetal lung fibroblasts (MRC5hTERTs) bypassed senescence but eventually succumbed to a second mortality barrier (crisis). In the present study, 67 MRC5hTERT clones were established by limiting dilution of a mass culture. Whereas 39/67 clones had an extended lifespan, all 39 extended lifespan clones underwent crisis. 11 of 39 clones escaped crisis and were immortalized. There was no apparent relationship between the fate of clones at crisis and the level of telomerase activity. Telomeres were hyperextended in the majority of the clones analyzed. There was no difference in telomere length of pre-crisis compared with post-crisis and immortal clones, indicating that hyperextended telomeres were conducive for immortalization and confirming that crisis was independent of telomere length. Immortalization of MRC5hTERT cells was associated with repression of the cyclin-dependent kinase inhibitor p16INK4a and up-regulation of pRB. However, the regulation of pRB phosphorylation and the response of the p53/p21cip1/waf1 pathway were normal in immortal cells subject to genotoxic stress. Overexpression of oncogenic ras failed to de-repress p16INK4a in immortal cells. Furthermore, expression of ras enforced senescent-like growth arrest in p16INK4a-positive, but not p16INK4a-negative MRC5hTERT cells. Immortal cells expressing ras formed small, infrequent colonies in soft agarose, but were non-tumorigenic. Overall, these results implicate the inactivation of p16INK4a as a critical event for overcoming telomere-independent crisis, immortalizing MRC5 fibroblasts and overcoming ras-induced premature senescence.

  3. Molecular Cloning and Ethylene Induction of mRNA Encoding a Phytoalexin Elicitor-Releasing Factor, beta-1,3-Endoglucanase, in Soybean.

    PubMed

    Takeuchi, Y; Yoshikawa, M; Takeba, G; Tanaka, K; Shibata, D; Horino, O

    1990-06-01

    Soybean (Glycine max) beta-1,3-endoglucanase (EC 3.2. 1.39) is involved in one of the earliest plant-pathogen interactions that may lead to active disease resistance by releasing elicitor-active carbohydrates from the cell walls of fungal pathogens. Ethylene induced beta-1,3-endoglucanase activity to 2- to 3-fold higher levels in cotyledons of soybean seedlings. A specific polyclonal antiserum raised against purified soybean beta-1,3-endoglucanase was used to immunoprecipitate in vitro translation products, demonstrating that ethylene induction increased translatable beta-1,3-endoglucanase mRNA. Several cDNA clones for the endoglucanase gene were obtained by antibody screening of a lambda-gt11 expression library prepared from soybean cotyledons. Hybrid-select translation experiments indicated that the cloned cDNA encoded a 36-kilodalton precursor protein product that was specifically immunoprecipitated with beta-1,3-endoglucanase antiserum. Escherichia coli cells expressing the cloned cDNA also synthesized an immunologically positive protein. Nucleotide sequence of three independent clones revealed a single uninterrupted open reading frame of 1041 nucleotides, corresponding to a polypeptide of 347 residue long. The primary amino acid sequence of beta-1,3-endoglucanase as deduced from the nucleotide sequence was confirmed by direct amino acid sequencing of trypsin digests of the glucanase. The soybean beta-1,3-endoglucanase exhibited 53% amino acid homology to a beta-1,3-glucanase cloned from cultured tobacco cells and 48% homology to a beta-(1,3-1,4)-glucanase from barley. Utilizing the largest cloned cDNA (pEG488) as a hybridization probe, it was found that the increase in translatable beta-1,3-endoglucanase mRNA seen upon ethylene treatment of soybean seedlings was due to 50- to 100-fold increase in steady state mRNA levels, indicating that ethylene regulates gene expression of this enzyme important in disease resistance at the level of gene transcription.

  4. Generating an Open Reading Frame (ORF) Entry Clone and Destination Clone.

    PubMed

    Reece-Hoyes, John S; Walhout, Albertha J M

    2018-01-02

    This protocol describes using the Gateway recombinatorial cloning system to create an Entry clone carrying an open reading frame (ORF) and then to transfer the ORF into a Destination vector. In this example, BP recombination is used to clone an ORF from a cDNA source into the Donor vector pDONR 221. The ORF from the resulting Entry clone is then transferred into the Destination vector pDEST-15; the product (the Destination clone) will express the ORF as an amino-terminal GST-fusion. The technique can be used as a guide for cloning any other DNA fragment of interest-a promoter sequence or 3' untranslated region (UTR), for example-with substitutions of different genetic material such as genomic DNA, att sites, and vectors as required. The series of constructions and transformations requires 9-15 d, not including time that may be required for sequence confirmation, if desired/necessary. © 2018 Cold Spring Harbor Laboratory Press.

  5. Cloning and Partial Characterization of an Aniline Metabolic Pathway (Preprint)

    DTIC Science & Technology

    1995-08-03

    of aniline to organic acids. The pathway resides on a 20.66 kb BamH1 fragment, and is induced by a broad range of substituted anilines, with para ...methyl substitutions, with preference to additions in the meta and para positions. Metabolism of aniline in CIT1 is initiated by aniline, 1,2...metabolism in E.coli, expressing the cloned pathway was confirmed using HPLC . Cloning, Partial Characterization, Aniline Metabolic Pathway U U

  6. HSPC117 deficiency in cloned embryos causes placental abnormality and fetal death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yingying; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080; Graduate University of Chinese Academy of Sciences, Beijing 100049

    2010-07-02

    Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilizedmore » embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo.« less

  7. Identification of antigens by monoclonal antibody PD4 and its expression in Escherichia coli

    PubMed Central

    Ning, Jin-Ying; Sun, Guo-Xun; Huang, Su; Ma, Hong; An, Ping; Meng, Lin; Song, Shu-Mei; Wu, Jian; Shou, Cheng-Chao

    2003-01-01

    AIM: To clone and express the antigen of monoclonal antibody (MAb) PD4 for further investigation of its function. METHODS: MGC803 cDNA expression library was constructed and screened with PD4 as probes to clone the antigen. After failed in the library screening, immunoprecipitation and SDS-polyacrylamide gel electrophoresis were applied to purify the antigen for sequence analysis. The antigen coming from Mycoplasma hyorhinis (M. hyorhinis) was further confirmed with Western blot analysis by infecting M. hyorhinis -free HeLa cells and eliminating the M. hyorhinis from MGC803 cells. The full p37 gene was cloned by PCR and expressed successfully in Escherichia coli after site-directed mutations. Immunofluorescence assay was used to demonstrate if p37 protein could directly bind to gastric tumor cell AGS. RESULTS: The cDNA library constructed with MGC803 cells was screened by MAb PD4 as probes. Unfortunately, the positive clones identified with MAb PD4 were also reacted with unrelated antibodies. Then, immunoprecipitation was performed and the purified antigen was identified to be a membrane protein of Mycoplasma hyorhinis (M. hyorhinis) by sequencing of N-terminal amino acid residues. The membrane protein was intensively verified with Western blot by eliminating M. hyorhinis from MGC803 cells and by infecting M. hyorhinis-free HeLa cells. The full p37 gene was cloned and expressed successfully in Escherichia coli after site-directed mutations. Immunofluorescence demonstrated that p37 protein could directly bind to gastric tumor cell AGS. CONCLUSION: The antigen recognized by MAb PD4 is from M. hyorhinis, which suggests the actions involved in MAb PD4 is possibly mediated by p37 protein or M. hyorhinis. As p37 protein can bind directly to tumor cells, the pathogenic role of p37 involved in tumorigenesis justifies further investigation. PMID:14562370

  8. Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization.

    PubMed

    Schwarzhans, Jan-Philipp; Wibberg, Daniel; Winkler, Anika; Luttermann, Tobias; Kalinowski, Jörn; Friehs, Karl

    2016-05-20

    The classic AOX1 replacement approach is still one of the most often used techniques for expression of recombinant proteins in the methylotrophic yeast Pichia pastoris. Although this approach is largely successful, it frequently delivers clones with unpredicted production characteristics and a work-intense screening process is required to find the strain with desired productivity. In this project 845 P. pastoris clones, transformed with a GFP expression cassette, were analyzed for their methanol-utilization (Mut)-phenotypes, GFP gene expression levels and gene copy numbers. Several groups of strains with irregular features were identified. Such features include GFP expression that is markedly higher or lower than expected based on gene copy number as well as strains that grew under selective conditions but where the GFP gene cassette and its expression could not be detected. From these classes of strains 31 characteristic clones were selected and their genomes sequenced. By correlating the assembled genome data with the experimental phenotypes novel insights were obtained. These comprise a clear connection between productivity and cassette-to-cassette orientation in the genome, the occurrence of false-positive clones due to a secondary recombination event, and lower total productivity due to the presence of untransformed cells within the isolates were discovered. To cope with some of these problems, the original vector was optimized by replacing the AOX1 terminator, preventing the occurrence of false-positive clones due to the secondary recombination event. Standard methods for transformation of P. pastoris led to a multitude of unintended and sometimes detrimental integration events, lowering total productivity. By documenting the connections between productivity and integration event we obtained a deeper understanding of the genetics of mutation in P. pastoris. These findings and the derived improved mutagenesis and transformation procedures and tools will help other scientists working on recombinant protein production in P. pastoris and similar non-conventional yeasts.

  9. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells

    PubMed Central

    Bradley, Karri K; Jaggar, Jonathan H; Bonev, Adrian D; Heppner, Thomas J; Flynn, Elaine RM; Nelson, Mark T; Horowitz, Burton

    1999-01-01

    The molecular nature of the strong inward rectifier K+ channel in vascular smooth muscle was explored by using isolated cell RT-PCR, cDNA cloning and expression techniques.RT-PCR of RNA from single smooth muscle cells of rat cerebral (basilar), coronary and mesenteric arteries revealed transcripts for Kir2.1. Transcripts for Kir2.2 and Kir2.3 were not found.Quantitative PCR analysis revealed significant differences in transcript levels of Kir2.1 between the different vascular preparations (n = 3; P < 0.05). A two-fold difference was detected between Kir2.1 mRNA and β-actin mRNA in coronary arteries when compared with relative levels measured in mesenteric and basilar preparations.Kir2.1 was cloned from rat mesenteric vascular smooth muscle cells and expressed in Xenopus oocytes. Currents were strongly inwardly rectifying and selective for K+.The effect of extracellular Ba2+, Ca2+, Mg2+ and Cs2+ ions on cloned Kir2.1 channels expressed in Xenopus oocytes was examined. Ba2+ and Cs+ block were steeply voltage dependent, whereas block by external Ca2+ and Mg2+ exhibited little voltage dependence. The apparent half-block constants and voltage dependences for Ba2+, Cs+, Ca2+ and Mg2+ were very similar for inward rectifier K+ currents from native cells and cloned Kir2.1 channels expressed in oocytes.Molecular studies demonstrate that Kir2.1 is the only member of the Kir2 channel subfamily present in vascular arterial smooth muscle cells. Expression of cloned Kir2.1 in Xenopus oocytes resulted in inward rectifier K+ currents that strongly resemble those that are observed in native vascular arterial smooth muscle cells. We conclude that Kir2.1 encodes for inward rectifier K+ channels in arterial smooth muscle. PMID:10066894

  10. Cloning and pharmacological characterization of the rabbit bradykinin B2 receptor.

    PubMed

    Bachvarov, D R; Saint-Jacques, E; Larrivée, J F; Levesque, L; Rioux, F; Drapeau, G; Marceau, F

    1995-12-01

    Degenerate primers, corresponding to consensus sequences of third and sixth transmembrane domains of G protein-coupled receptor superfamily, were used for the polymerase chain reaction amplification and consecutive characterization of G protein-coupled receptors present in cultured rabbit aortic smooth muscle cells. One of the isolated resulting fragments was highly homologous to the corresponding region of the bradykinin (BK) B2 receptor cloned in other species. The polymerase chain reaction fragment was used to screen a rabbit genomic library, which allowed the identification of an intronless 1101-nucleotide open reading frame which codes for a 367-amino acid receptor protein. The rabbit B2 receptor sequence is more than 80% identical to the ones determined in three other species and retain putative glycosylation, palmitoylation and phosphorylation sites. In the rabbit genomic sequence, an acceptor splice sequence was found 8 base pairs upstream of the start codon. Northern blot analysis showed a high expression of a major transcript (4.2 kilobases) in the rabbit kidney and duodenum, and a less abundant expression in other tissues. Southern blot experiments suggest that a single copy of this gene exists in the rabbit genome. The cloned rabbit B2 receptor expressed in COS-1 cells binds [3H]BK in a saturable manner (KD 2.1 nM) and this ligand competes with a series of kinin agonists and antagonist with a rank order consistent with the B2 receptor identity. The insurmountable character of the antagonism exerted by Hoe 140 against BK on the rabbit B2 receptor, previously shown in pharmacological experiments, was confirmed in binding experiments with the cloned receptor expressed in a controlled manner. By contrast, Hoe 140 competed with [3H]BK in a surmountable manner for the human B2 receptor expressed in COS-1 cells. The cloning of the rabbit B2 receptor will be useful notably for the study of the structural basis of antagonist binding and for studies on receptor regulation in a relatively large animal.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yan; Chen, Yue Yi; Yang, Shu Guang

    Metallothioneins (MTs) are of low molecular mass, cysteine-rich proteins. They play an important role in the detoxification of heavy metals and homeostasis of intracellular metal ions, and protecting against intracellular oxidative damages. In this study a full-length cDNA of type 2 plant metallothioneins, HbMT2a, was isolated from 25 mM Polyethyleneglycol (PEG) stressed leaves of Hevea brasiliensis by RACE. The HbMT2a was 372 bp in length and had a 237 bp open reading frame (ORF) encoding for a protein of 78 amino acid residues with molecular mass of 7.772 kDa. The expression of HbMT2a in the detached leaves of rubber tree clone RY7-33-97more » was up-regulated by Me-JA, ABA, PEG, H{sub 2}O{sub 2}, Cu{sup 2+} and Zn{sup 2+}, but down-regulated by water. The role of HbMT2a protein in protecting against metal toxicity was demonstrated in vitro. PET-28a-HbMT2-beared Escherichia coli. Differential expression of HbMT2a upon treatment with 10 °C was observed in the detached leaves of rubber tree clone 93-114 which is cold-resistant and Reken501 which is cold-sensitive. The expression patterns of HbMT2a in the two rubber tree clones may be ascribed to a change in the level of endogenous H{sub 2}O{sub 2}. - Highlights: • Cloning an HbMT2a gene from rubber tree. • Analyzing expression patterns of HbMT2a upon abiotic stress and heavy metal stress. • Finding different expression patterns of HbMT2a among two Hevea germplasm. • The expressed protein of HbMT2a enhances copper and zinc tolerance in Escherichia coli.« less

  12. Cloning and functional characterization of inward-rectifying potassium (Kir) channels from Malpighian tubules of the mosquito Aedes aegypti

    PubMed Central

    Piermarini, Peter M.; Rouhier, Matthew F.; Schepel, Matthew; Kosse, Christin; Beyenbach, Klaus W.

    2013-01-01

    Inward-rectifying K+ (Kir) channels play critical physiological roles in a variety of vertebrate cells/tissues, including the regulation of membrane potential in nerve and muscle, and the transepithelial transport of ions in osmoregulatory epithelia, such as kidneys and gills. It remains to be determined whether Kir channels play similar physiological roles in insects. In the present study, we sought to 1) clone the cDNAs of Kir channel subunits expressed in the renal (Malpighian) tubules of the mosquito Aedes aegypti, and 2) characterize the electrophysiological properties of the cloned Kir subunits when expressed heterologously in oocytes of Xenopus laevis. Here, we reveal that three Kir subunits are expressed abundantly in Aedes Malpighian tubules (AeKir1, AeKir2B, and AeKir3); each of their full-length cDNAs was cloned. Heterologous expression of the AeKir1 or the AeKir2B subunits in Xenopus oocytes elicits inward-rectifying K+ currents that are blocked by barium. Relative to the AeKir2B-expressing oocytes, the AeKir1-expressing oocytes 1) produce larger macroscopic currents, and 2) exhibit a modulation of their conductive properties by extracellular Na+. Attempts to functionally characterize the AeKir3 subunit in Xenopus oocytes were unsuccessful. Lastly, we show that in isolated Aedes Malpighian tubules, the cation permeability sequence of the basolateral membrane of principal cells (Tl+ > K+ > Rb+ > NH4+) is consistent with the presence of functional Kir channels. We conclude that in Aedes Malpighian tubules, Kir channels contribute to the majority of the barium-sensitive transepithelial transport of K+. PMID:23085358

  13. BIGEL analysis of gene expression in HL60 cells exposed to X rays or 60 Hz magnetic fields

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Zhang, X. F.; Han, L. H.; Harrison, G. H.; Davis, C. C.; Zhou, X. J.; Ioffe, V.; McCready, W. A.; Abraham, J. M.; Meltzer, S. J.

    1998-01-01

    We screened a panel of 1,920 randomly selected cDNAs to discover genes that are differentially expressed in HL60 cells exposed to 60 Hz magnetic fields (2 mT) or X rays (5 Gy) compared to unexposed cells. Identification of these clones was accomplished using our two-gel cDNA library screening method (BIGEL). Eighteen cDNAs differentially expressed in X-irradiated compared to control HL60 cells were recovered from a panel of 1,920 clones. Differential expression in experimental compared to control cells was confirmed independently by Northern blotting of paired total RNA samples hybridized to each of the 18 clone-specific cDNA probes. DNA sequencing revealed that 15 of the 18 cDNA clones produced matches with the database for genes related to cell growth, protein synthesis, energy metabolism, oxidative stress or apoptosis (including MYC, neuroleukin, copper zinc-dependent superoxide dismutase, TC4 RAS-like protein, peptide elongation factor 1alpha, BNIP3, GATA3, NF45, cytochrome c oxidase II and triosephosphate isomerase mRNAs). In contrast, BIGEL analysis of the same 1,920 cDNAs revealed no differences greater than 1.5-fold in expression levels in magnetic-field compared to sham-exposed cells. Magnetic-field-exposed and control samples were analyzed further for the presence of mRNA encoding X-ray-responsive genes by hybridization of the 18 specific cDNA probes to RNA from exposed and control HL60 cells. Our results suggest that differential gene expression is induced in approximately 1% of a random pool of cDNAs by ionizing radiation but not by 60 Hz magnetic fields under the present experimental conditions.

  14. Nuclear receptors HR96 and ultraspiracle from the fall armyworm (Spodoptera frugiperda), developmental expression and induction by xenobiotics.

    PubMed

    Giraudo, Maeva; Audant, Pascaline; Feyereisen, René; Le Goff, Gaëlle

    2013-05-01

    The fall armyworm Spodoptera frugiperda is a major polyphagous pest in agriculture and little is known on how this insect can adapt to the diverse and potentially toxic plant allelochemicals that they ingest or to insecticides. To investigate the involvement of nuclear receptors in the response of S. frugiperda to its chemical environment, we cloned SfHR96, a nuclear receptor orthologous to the mammalian xenobiotic receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR). We also cloned ultraspiracle (USP), the ortholog of retinoid X receptor (RXR) that serves as partner of dimerization of PXR and CAR. Cloning of SfUSP revealed the presence of two isoforms, SfUSP-1 and SfUSP-2 in this species, that differ in their N-terminal region. The expression of these receptors as well as the ecdysone receptor was studied during specific steps of development in different tissues. SfHR96 was constitutively expressed in larval midgut, fat body and Malpighian tubules throughout the last two instars and pupal stage, as well as in Sf9 cells. EcR and SfUSP-2 showed peaks of expression before larval moults and during metamorphosis, whereas SfUSP-1 was mainly expressed in the pre-pupal stage. Receptor induction was followed after exposure of larvae or cells to 11 chemical compounds. SfHR96 was not inducible by the tested compounds. EcR was significantly induced by the 20-hydroxyecdysone agonist, methoxyfenozide, and SfUSP showed an increase expression when exposed to the juvenile hormone analog, methoprene. The cloning of these nuclear receptors is a first step in understanding the important capacities of adaptation of this insect pest. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Irreversible barrier to the reprogramming of donor cells in cloning with mouse embryos and embryonic stem cells.

    PubMed

    Ono, Yukiko; Kono, Tomohiro

    2006-08-01

    Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as well as embryo loss during development may occur even in cloned embryos reconstructed with nuclei from preimplantation-stage embryos, and these abnormalities are not specific to somatic cloning.

  16. BPI-fold (BPIF) containing/plunc protein expression in human fetal major and minor salivary glands.

    PubMed

    Alves, Daniel Berretta Moreira; Bingle, Lynne; Bingle, Colin David; Lourenço, Silvia Vanessa; Silva, Andréia Aparecida; Pereira, Débora Lima; Vargas, Pablo Agustin

    2017-01-16

    The aim of this study was to determine expression, not previously described, of PLUNC (palate, lung, and nasal epithelium clone) (BPI-fold containing) proteins in major and minor salivary glands from very early fetal tissue to the end of the second trimester and thus gain further insight into the function of these proteins. Early fetal heads, and major and minor salivary glands were collected retrospectively and glands were classified according to morphodifferentiation stage. Expression of BPI-fold containing proteins was localized through immunohistochemistry. BPIFA2, the major BPI-fold containing protein in adult salivary glands, was detected only in the laryngeal pharynx; the lack of staining in salivary glands suggested salivary expression is either very late in development or is only in adult tissues. Early expression of BPIFA1 was seen in the trachea and nasal cavity with salivary gland expression only seen in late morphodifferentiation stages. BPIFB1 was seen in early neural tissue and at later stages in submandibular and sublingual glands. BPIFA1 is significantly expressed in early fetal oral tissue but BPIFB1 has extremely limited expression and the major salivary BPIF protein (BPIFA2) is not produced in fetal development. Further studies, with more sensitive techniques, will confirm the expression pattern and enable a better understanding of embryonic BPIF protein function.

  17. Local Adaptation at the Transcriptome Level in Brown Trout: Evidence from Early Life History Temperature Genomic Reaction Norms

    PubMed Central

    Meier, Kristian; Hansen, Michael Møller; Normandeau, Eric; Mensberg, Karen-Lise D.; Frydenberg, Jane; Larsen, Peter Foged; Bekkevold, Dorte; Bernatchez, Louis

    2014-01-01

    Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences in gene expression profiles for three brown trout (Salmo trutta) populations, one resident and two anadromous, experiencing different temperature regimes in the wild. The study was based on an F2 generation raised in a common garden setting. A previous study of the F1 generation revealed different reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees C) representing conditions encountered in the local environments. Global gene expression for fry at the stage of first feeding was analysed using a 32k cDNA microarray. The results revealed differences in gene expression between populations and temperatures and population × temperature interactions, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations. These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction norms. The responses observed suggest that populations may vary in their susceptibility to climate change. PMID:24454810

  18. Alfalfa Mob1-like proteins are involved in cell proliferation and are localized in the cell division plane during cytokinesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Citterio, Sandra; Piatti, Simonetta; Albertini, Emidio

    2006-04-15

    Mps-one-binder (Mob) proteins play a crucial role in yeast cytokinesis. After cloning two Mob1-like genes, MsMob1-A and MsMob1-B from alfalfa (Medicago sativa L.) we show that, although they are constitutively expressed in roots, stems, leaves, flowers and pods, their transcripts and proteins are mostly produced in actively proliferating tissues. A polyclonal antibody specifically raised against MsMob1 proteins was used for immunolocalization studies in synchronized root tip cells. The subcellular localization of MsMob1-like proteins is demonstrated to be cell cycle-regulated. Cytoplasmic localization is faint and diffused during G{sub 1} and S. It becomes concentrated in punctuate and fibrillar structures in G{submore » 2} as well as M phase. At the stage of cytokinesis, the protein is found at the emerging cell plate marking the progressive formation of the septum. Mob1 proteins partially co-localize with microtubules structures functionally related to the spindles and important for cytokinesis in eukaryotic cells. The MsMob1 expression cannot rescue the lethality of the yeast mob1 mutant, suggesting that interaction of Mob1 proteins with their effectors may be species-specific. Localization of Mob1 proteins in the inner layer of the root cap indicates an additional function for this class of proteins in plants, which is likely related to the onset of programmed cell death.« less

  19. The novel putative bile acid transporter SLC10A5 is highly expressed in liver and kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, Carla F.; Godoy, Jose R.; Doering, Barbara

    2007-09-14

    Here we report the identification, cloning, and characterization of SLC10A5, which is a new member of Solute Carrier Family 10 (SLC10), also known as the 'sodium/bile acid cotransporter family'. Expression of SLC10A5/Slc10a5 was examined by quantitative real-time PCR and revealed its highest expression levels in liver and kidney in humans, rat and mouse. In rat liver and kidney, Slc10a5 expression was localized by in situ hybridization to hepatocytes and proximal tubules, respectively. A SLC10A5-FLAG fusion protein was expressed in HEK293 cells and showed an apparent molecular weight of 42 kDa after immunoprecipitation. When expressed in Xenopus laevis oocytes, the SLC10A5-FLAGmore » protein was detected in the oocyte's plasma membrane but showed no transport activity for taurocholate, cholate, estrone-3-sulfate, or dehydroepiandrosterone sulfate. As bile acid carriers are the most related carriers to SLC10A5 though, we strongly suppose that SLC10A5 is an orphan carrier with yet non-identified substrates.« less

  20. Analysis of the antibody repertoire of lymphoma patients.

    PubMed

    Huang, Shaoming; Preuss, Klaus-Dieter; Xie, Xiaoxun; Regitz, Evi; Pfreundschuh, Michael

    2002-12-01

    Cancer testis or cancer germline antigens (CGA) are promising vaccine candidates because they are expressed only in malignant but not in normal tissues, except for germ cells in the testis. Since non-Hodgkin's lymphomas (NHL) express the known CGA at low frequencies, we aimed at increasing the number of CGA with frequent expression in NHL by screening a cDNA expression library derived from normal testis for reactivity with high-titered IgG antibodies in the sera of lymphoma patients using SEREX, the serological identification of antigens by recombinant cDNA expression cloning. The analysis of 1.6x10(6) clones with the sera of 25 lymphoma patients revealed 42 clones which coded for 23 antigens, 12 of which had already been included in the SEREX databank. Four cDNA clones coded for unknown and 19 for known genes. Three antigens reacted only with the serum by which they had been detected, 9 antigens reacted with the sera of several NHL patients, but not with that of healthy controls, and 11 antigens reacted with both normal and NHL sera. Most of the antigens were ubiquitously expressed. Only HOM-NHL-6, HOM-NHL-8, HOM-NHL-21 and HOM-NHL-23 showed a restricted expression pattern. HOM-NHL-6 and HOM-NHL-8 were homologous to the previously described CGA NY-ESO-1 and HOM-TES-14/SCP-1, respectively. HOM-NHL-21 was expressed in rare cases of lymphomas, but not in normal tissues except for testis and brain, while HOM-NHL-23 appeared to be a testis-specific antigen. In summary, using the antibody repertoire of these 25 NHL patients, no new CGA were detected. The number of CGA detectable by the classical SEREX approach appears to be limited, and novel strategies are necessary to identify antigens that can serve as a vaccine target in a broad spectrum of NHL patients.

  1. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression.

    PubMed

    Xu, Y L; Li, L; Wu, K; Peeters, A J; Gage, D A; Zeevaart, J A

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.

  2. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: Molecular cloning and functional expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yun-Ling; Li, Li; Wu, Keqiang

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA{sub 12}-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidasemore » gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA{sub 53} to GA{sub 44} and GA{sub 19} to GA{sub 20}. The Arabidopsis GA 20-oxidase shares 55% identity and >80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA locus of Arabidopsis. The ga5 semidwarf mutant contains a G {yields} A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Arabidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA{sub 4} treatment, suggesting end-product repression in the GA biosynthetic pathway. 28 refs., 6 figs.« less

  3. Analysis of Differentially Expressed Genes Associated with Coronatine-Induced Laticifer Differentiation in the Rubber Tree by Subtractive Hybridization Suppression

    PubMed Central

    Zhang, Shi-Xin; Wu, Shao-Hua; Chen, Yue-Yi; Tian, Wei-Min

    2015-01-01

    The secondary laticifer in the secondary phloem is differentiated from the vascular cambia of the rubber tree (Hevea brasiliensis Muell. Arg.). The number of secondary laticifers is closely related to the rubber yield potential of Hevea. Pharmacological data show that jasmonic acid and its precursor linolenic acid are effective in inducing secondary laticifer differentiation in epicormic shoots of the rubber tree. In the present study, an experimental system of coronatine-induced laticifer differentiation was developed to perform SSH identification of genes with differential expression. A total of 528 positive clones were obtained by blue-white screening, of which 248 clones came from the forward SSH library while 280 clones came from the reverse SSH library. Approximately 215 of the 248 clones and 171 of the 280 clones contained cDNA inserts by colony PCR screening. A total of 286 of the 386 ESTs were detected to be differentially expressed by reverse northern blot and sequenced. Approximately 147 unigenes with an average length of 497 bp from the forward and 109 unigenes with an average length of 514 bp from the reverse SSH libraries were assembled and annotated. The unigenes were associated with the stress/defense response, plant hormone signal transduction and structure development. It is suggested that Ca2+ signal transduction and redox seem to be involved in differentiation, while PGA and EIF are associated with the division of cambium initials for COR-induced secondary laticifer differentiation in the rubber tree. PMID:26147807

  4. Quantitative T-cell repertoire analysis of peripheral blood mononuclear cells from lung cancer patients following long-term cancer peptide vaccination.

    PubMed

    Takeda, Kazuyoshi; Kitaura, Kazutaka; Suzuki, Ryuji; Owada, Yuki; Muto, Satoshi; Okabe, Naoyuki; Hasegawa, Takeo; Osugi, Jun; Hoshino, Mika; Tsunoda, Takuya; Okumura, Ko; Suzuki, Hiroyuki

    2018-06-01

    Therapeutic cancer peptide vaccination is an immunotherapy designed to elicit cytotoxic T-lymphocyte (CTL) responses in patients. A number of therapeutic vaccination trials have been performed, nevertheless there are only a few reports that have analyzed the T-cell receptors (TCRs) expressed on tumor antigen-specific CTLs. Here, we use next-generation sequencing (NGS) to analyze TCRs of vaccine-induced CTL clones and the TCR repertoire of bulk T cells in peripheral blood mononuclear cells (PBMCs) from two lung cancer patients over the course of long-term vaccine therapy. In both patients, vaccination with two epitope peptides derived from cancer/testis antigens (upregulated lung cancer 10 (URLC10) and cell division associated 1 (CDCA1)) induced specific CTLs expressing various TCRs. All URLC10-specific CTL clones tested showed Ca 2+ influx, IFN-γ production, and cytotoxicity when co-cultured with URLC10-pulsed tumor cells. Moreover, in CTL clones that were not stained with the URLC10/MHC-multimer, the CD3 ζ chain was not phosphorylated. NGS of the TCR repertoire of bulk PBMCs demonstrated that the frequency of vaccine peptide-specific CTL clones was near the minimum detectable threshold level. These results demonstrate that vaccination induces antigen-specific CTLs expressing various TCRs at different time points in cancer patients, and that some CTL clones are maintained in PBMCs during long-term treatment, including some with TCRs that do not bind peptide/MHC-multimer.

  5. Expression of recombinant human α-lactalbumin in milk of transgenic cloned pigs is sufficient to enhance intestinal growth and weight gain of suckling piglets.

    PubMed

    Ma, Jin; Li, Qiuyan; Li, Yan; Wen, Xiao; Li, Zhiyuan; Zhang, Zaihu; Zhang, Jiuming; Yu, Zhengquan; Li, Ning

    2016-06-10

    Human α-lactalbumin (HLA) has very high nutritional value and important physiological functions during the neonatal period. The peptides derived from HLA provide diverse health benefits including antimicrobial, antiviral, immune-modulating, and antihypertensive effects. Thus, it is worth investigating the effects on offspring development of increasing HLA in milk. In this study, we found that recombinant human α-lactalbumin (rHLA) exhibits efficient inhibition of dipeptidyl peptidase-IV (DPP-IV) activity in an in vitro simulated gastrointestinal digestion system. Using a BAC clone containing the complete HLA gene as a candidate vector, we generated two lines of transgenic cloned sows via somatic cell nuclear transfer that over-expressed rHLA. The average concentrations of rHLA in milk from the two lines of transgenic cloned sows were 2.24 ± 0.71 mg/ml and 2.67 ± 1.29 mg/ml. The feeding experiments revealed that rHLA represses dipeptidyl peptidase-IV (DPP-IV) activity in vivo. Furthermore, the piglets reared by rHLA transgenic cloned sows exhibit better performance in gain of body weight and intestine growth than the control piglets reared by non-transgenic sows. Therefore, these findings indicate that rHLA could serve as a natural precursor for a DPP-IV inhibitor, and the transgenic technology that produced the over-expression of rHLA could be a useful method for pig breeders to improve lactation performance. Copyright © 2016. Published by Elsevier B.V.

  6. Characterization of the OmyY1 region on the rainbow trout Y chromosome

    USGS Publications Warehouse

    Phillips, Ruth B.; DeKoning, Jenefer J.; Brunelli, Joseph P.; Faber-Hammond, Joshua J.; Hansen, John D.; Christensen, Kris A.; Renn, Suzy C.P.; Thorgaard, Gary H.

    2013-01-01

    We characterized the male-specific region on the Y chromosome of rainbow trout, which contains both sdY (the sex-determining gene) and the male-specific genetic marker, OmyY1. Several clones containing the OmyY1 marker were screened from a BAC library from a YY clonal line and found to be part of an 800 kb BAC contig. Using fluorescence in situ hybridization (FISH), these clones were localized to the end of the short arm of the Y chromosome in rainbow trout, with an additional signal on the end of the X chromosome in many cells. We sequenced a minimum tiling path of these clones using Illumina and 454 pyrosequencing. The region is rich in transposons and rDNA, but also appears to contain several single-copy protein-coding genes. Most of these genes are also found on the X chromosome; and in several cases sex-specific SNPs in these genes were identified between the male (YY) and female (XX) homozygous clonal lines. Additional genes were identified by hybridization of the BACs to the cGRASP salmonid 4x44K oligo microarray. By BLASTn evaluations using hypothetical transcripts of OmyY1-linked candidate genes as query against several EST databases, we conclude at least 12 of these candidate genes are likely functional, and expressed.

  7. Comparative chromosomal localization of the canine-derived BAC clones containing LEP and IGF1 genes in four species of the family Canidae.

    PubMed

    Szczerbal, I; Rogalska-Niznik, N; Klukowska, J; Schelling, C; Dolf, G; Switonski, M

    2003-01-01

    In the present report we show the chromosomal localization of two BAC clones, carrying the leptin (LEP) and insuline-like growth factor 1 (IGF1) genes, respectively, in four species belonging to the family Canidae: the dog, red fox, arctic fox and the Chinese raccoon dog. The assignments are in agreement with earlier data obtained from comparative chromosome painting for the dog, red fox and arctic fox. Copyright 2003 S. Karger AG, Basel

  8. [Effect of human oviductal embryotrophic factors on gene expression of mouse preimplantation embryos].

    PubMed

    Yao, Yuan-Qing; Lee, Kai-Fai; Xu, Jia-Seng; Ho, Pak-Chung; Yeung, Shu-Biu

    2007-09-01

    To investigate the effect of embryotrophic factors (ETF) from human oviductal cells on gene expression of mouse early developmental embryos and discuss the role of fallopian tube in early development of embryos. ETF was isolated from conditioned medium of human oviductal cell line by sequential liquid chromatographic systems. Mouse embryos were treated by ETF in vitro. Using differential display RT-PCR, the gene expression of embryos treated by ETF was compared with embryos without ETF treatment. The differentially expressed genes were separated, re-amplified, cloned and sequenced. Gene expression profiles of embryos with ETF treatment was different from embryos without this treatment. Eight differentially expressed genes were cloned and sequenced. These genes functioned in RNA degradation, synthesis, splicing, protein trafficking, cellular differentiation and embryo development. Embryotrophic factors from human oviductal cells affect gene expression of early developmental embryos. The human oviductal cells play wide roles in early developmental stages of embryos.

  9. Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli.

    PubMed

    Triman, K; Becker, E; Dammel, C; Katz, J; Mori, H; Douthwaite, S; Yapijakis, C; Yoast, S; Noller, H F

    1989-10-20

    Temperature-sensitive mutants have been isolated following hydroxylamine mutagenesis of a plasmid containing Escherichia coli rRNA genes carrying selectable markers for spectinomycin resistance (U1192 in 16 S rRNA) and erythromycin resistance (G2058 in 23 S rRNA). These antibiotic resistance alleles, originally identified by Morgan and co-workers, enable us to follow expression of cloned rRNA genes in vivo. Recessive mutations causing the loss of expression of the cloned 16 S rRNA gene were identified by the loss of the ability of cells to survive on media containing spectinomycin. The mutations were localized by in vitro restriction fragment replacement followed by in vivo marker rescue and were identified by DNA sequence analysis. We report here seven single-base alterations in 16 S rRNA (A146, U153, A350, A359, A538, A1292 and U1293), five of which produce temperature-sensitive spectinomycin resistance and two that produce unconditional loss of resistance. In each case, loss of ribosomal function can be accounted for by disruption of base-pairing in the secondary structure of 16 S rRNA. For the temperature-sensitive mutants, there is a lag period of about two generations between a shift to the restrictive temperature and cessation of growth, implying that the structural defects cause impairment of ribosome assembly.

  10. Laboratory information management system for membrane protein structure initiative--from gene to crystal.

    PubMed

    Troshin, Petr V; Morris, Chris; Prince, Stephen M; Papiz, Miroslav Z

    2008-12-01

    Membrane Protein Structure Initiative (MPSI) exploits laboratory competencies to work collaboratively and distribute work among the different sites. This is possible as protein structure determination requires a series of steps, starting with target selection, through cloning, expression, purification, crystallization and finally structure determination. Distributed sites create a unique set of challenges for integrating and passing on information on the progress of targets. This role is played by the Protein Information Management System (PIMS), which is a laboratory information management system (LIMS), serving as a hub for MPSI, allowing collaborative structural proteomics to be carried out in a distributed fashion. It holds key information on the progress of cloning, expression, purification and crystallization of proteins. PIMS is employed to track the status of protein targets and to manage constructs, primers, experiments, protocols, sample locations and their detailed histories: thus playing a key role in MPSI data exchange. It also serves as the centre of a federation of interoperable information resources such as local laboratory information systems and international archival resources, like PDB or NCBI. During the challenging task of PIMS integration, within the MPSI, we discovered a number of prerequisites for successful PIMS integration. In this article we share our experiences and provide invaluable insights into the process of LIMS adaptation. This information should be of interest to partners who are thinking about using LIMS as a data centre for their collaborative efforts.

  11. Molecular Cloning and Characterization of Violaxanthin De-Epoxidase (CsVDE) in Cucumber

    PubMed Central

    Huang, Hongyu; Kong, Lingcui; Niu, Dandan; Sui, Xiaolei; Zhang, Zhenxian

    2013-01-01

    Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under high light stress. We have cloned a violaxanthin de-epoxidase gene (CsVDE) from cucumber. The amino acid sequence of CsVDE has high homology with VDEs in other plants. RT-PCR analysis and histochemical staining show that CsVDE is expressed in all green tissues in cucumber and Arabidopsis. Using GFP fusion protein and immunogold labeling methods, we show that CsVDE is mainly localized in chloroplasts in cucumber. Under high light stress, relative expression of CsVDE and the de-epoxidation ratio (A+Z)/(V+A+Z) is increased rapidly, and abundance of the gold particles was also increased. Furthermore, CsVDE is quickly induced by cold and drought stress, reaching maximum levels at the 2nd hour and the 9th day, respectively. The ratio of (A+Z)/(V+A+Z) and non-photochemical quenching (NPQ) is reduced in transgenic Arabidopsis down-regulated by the antisense fragment of CsVDE, compared to wild type (WT) Arabidopsis under high light stress. This indicates decreased functionality of the xanthophyll cycle and increased sensitivity to photoinhibition of photosystem II (PSII) in transgenic Arabidopsis under high light stress. PMID:23717606

  12. Molecular characterization of a nuclear topoisomerase II from Nicotiana tabacum that functionally complements a temperature-sensitive topoisomerase II yeast mutant.

    PubMed

    Singh, B N; Mudgil, Yashwanti; Sopory, S K; Reddy, M K

    2003-07-01

    We have successfully expressed enzymatically active plant topoisomerase II in Escherichia coli for the first time, which has enabled its biochemical characterization. Using a PCR-based strategy, we obtained a full-length cDNA and the corresponding genomic clone of tobacco topoisomerase II. The genomic clone has 18 exons interrupted by 17 introns. Most of the 5' and 3' splice junctions follow the typical canonical consensus dinucleotide sequence GU-AG present in other plant introns. The position of introns and phasing with respect to primary amino acid sequence in tobacco TopII and Arabidopsis TopII are highly conserved, suggesting that the two genes are evolved from the common ancestral type II topoisomerase gene. The cDNA encodes a polypeptide of 1482 amino acids. The primary amino acid sequence shows a striking sequence similarity, preserving all the structural domains that are conserved among eukaryotic type II topoisomerases in an identical spatial order. We have expressed the full-length polypeptide in E. coli and purified the recombinant protein to homogeneity. The full-length polypeptide relaxed supercoiled DNA and decatenated the catenated DNA in a Mg(2+)- and ATP-dependent manner, and this activity was inhibited by 4'-(9-acridinylamino)-3'-methoxymethanesulfonanilide (m-AMSA). The immunofluorescence and confocal microscopic studies, with antibodies developed against the N-terminal region of tobacco recombinant topoisomerase II, established the nuclear localization of topoisomerase II in tobacco BY2 cells. The regulated expression of tobacco topoisomerase II gene under the GAL1 promoter functionally complemented a temperature-sensitive TopII(ts) yeast mutant.

  13. Molecular cloning, polyclonal antibody preparation, and characterization of a functional iron-related transcription factor IRO2 from Malus xiaojinensis.

    PubMed

    Yin, Lili; Wang, Yi; Yan, Mudan; Zhang, Xinzhong; Pan, Haifa; Xu, Xuefeng; Han, Zhenhai

    2013-06-01

    Transcription factors play important roles in plant growth and responses to environmental stresses. In this study, a novel basic helix-loop-helix iron-related transcription factor, IRO2, containing a 762-bp open reading frame and encoding 253 amino acids, was cloned from the iron-efficient genotype of Malus xiaojinensis. Localization analyses in onion showed that the MxIRO2 protein was targeted to the nucleus and activation studies in yeast indicated MxIRO2-BD had weak transcriptional activation activity. Prokaryotic expression of MxIRO2 in Escherichia coli BL21 (DE3) pLysS cells resulted in high expression levels of the protein when induced with isopropyl-β-d-thiogalactoside. The fusion protein was purified using Ni-NTA His-bind resin, and the purified MxIRO2-His fusion protein was used as the antigen to immunize a New Zealand rabbit. The resulting antiserum was purified by precipitation with 50% saturated ammonium sulfate and DEAE Sephadex A-50 chromatography to obtain the immunoglobulin G fraction. The expression of MxIRO2 in roots and leaves of M. xiaojinensis seedlings under iron deficiency was determined. The results indicated that MxIRO2 was induced in both roots and leaves under iron deficiency. In these experimental conditions, the transcription and translation levels first increased and then decreased under iron deficiency. This work offers an important basis for further investigating the mechanisms of fruit tree adaptation to iron deficiency. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Cloning, expression, and crystallization of Cpn60 proteins from Thermococcus litoralis.

    PubMed

    Osipiuk, J; Sriram, M; Mai, X; Adams, M W; Joachimiak, A

    2000-01-01

    Two genes of the extreme thermophilic archaeon Thermococcus litoralis homologous to those that code for Cpn60 chaperonins were cloned and expressed in Escherichia coli. Each of the Cpn60 subunits as well as the entire Cpn60 complex crystallize in a variety of morphological forms. The best crystals diffract to 3.6 A resolution at room temperature and belong to the space group 1422 with unit cell parameters a = b = 193.5 A, c = 204.2 A.

  15. Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora

    PubMed Central

    Marraccini, Pierre; Vinecky, Felipe; Alves, Gabriel S.C.; Ramos, Humberto J.O.; Elbelt, Sonia; Vieira, Natalia G.; Carneiro, Fernanda A.; Sujii, Patricia S.; Alekcevetch, Jean C.; Silva, Vânia A.; DaMatta, Fábio M.; Ferrão, Maria A.G.; Leroy, Thierry; Pot, David; Vieira, Luiz G.E.; da Silva, Felipe R.; Andrade, Alan C.

    2012-01-01

    The aim of this study was to investigate the molecular mechanisms underlying drought acclimation in coffee plants by the identification of candidate genes (CGs) using different approaches. The first approach used the data generated during the Brazilian Coffee expressed sequence tag (EST) project to select 13 CGs by an in silico analysis (electronic northern). The second approach was based on screening macroarrays spotted with plasmid DNA (coffee ESTs) with separate hybridizations using leaf cDNA probes from drought-tolerant and susceptible clones of Coffea canephora var. Conilon, grown under different water regimes. This allowed the isolation of seven additional CGs. The third approach used two-dimensional gel electrophoresis to identify proteins displaying differential accumulation in leaves of drought-tolerant and susceptible clones of C. canephora. Six of them were characterized by MALDI-TOF-MS/MS (matrix-assisted laser desorption-time of flight-tandem mass spectrometry) and the corresponding proteins were identified. Finally, additional CGs were selected from the literature, and quantitative real-time polymerase chain reaction (qPCR) was performed to analyse the expression of all identified CGs. Altogether, >40 genes presenting differential gene expression during drought acclimation were identified, some of them showing different expression profiles between drought-tolerant and susceptible clones. Based on the obtained results, it can be concluded that factors involved a complex network of responses probably involving the abscisic signalling pathway and nitric oxide are major molecular determinants that might explain the better efficiency in controlling stomata closure and transpiration displayed by drought-tolerant clones of C. canephora. PMID:22511801

  16. Cloning, Codon Optimization, and Expression of Yersinia intermedia Phytase Gene in E. coli.

    PubMed

    Mirzaei, Maryam; Saffar, Behnaz; Shareghi, Behzad

    2016-06-01

    Phytate is an anti-nutritional factor in plants, which catches the most phosphorus contents and some vital minerals. Therefore, Phytase is added mainly as an additive to the monogastric animals' foods to hydrolyze phytate and increase absorption of phosphorus. Y. intermedia phytase is a new phytase with special characteristics such as high specific activity, pH stability, and thermostability. Our aim was to clone, express, and characterizea codon optimized Y. intermedia phytase gene in E. coli . The Y. intermedia phytase gene was optimized according to the codon usage in E. coli . The sequence was synthesized and sub-cloned in pET-22b (+) vector and transformed into E. coli Bl21 (DE3). The protein was expressed in the presence of IPTG at a final concentration of 1 mM at 30°C. The purification of recombinant protein was performed by Ni 2+ affinity chromatography. Phytase activity and stability were determined in various pH and temperatures. The codon optimized Y. intermedia phytase gene was sub-cloned successfully.The expression was confirmed by SDS-PAGE and Western blot analysis. The recombinant enzyme (approximately 45 kDa) was purified. Specific activity of enzyme was 3849 (U.mg -1 ) with optimal pH 5 and optimal temperature of 55°C. Thermostability (80°C for 15 min) and pH stability (3-6) of the enzyme were 56 and more than 80%, respectively. The results of the expression and enzyme characterization revealed that the optimized Y. intermedia phytase gene has a good potential to be produced commercially andto be applied in animals' foodsindustry.

  17. Molecular cloning, structure, and chromosomal localization of the mouse LIM/homeobox gene Lhx5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertuzzi, S.; Sheng, Hui Z.; Westphal, H.

    1996-09-01

    Lhx5, the mouse ortholog of the Xenopus Xlim-5, is a LIM/homeobox gene expressed in the central nervous system during both embryonic development and adulthood. During development its domain of expression is mainly localized at the most anterior portion of the neural tube, and it precedes the morphological differentiation of the forebrain; for this reason we believe that Lhx5 could play an important role in forebrain patterning. Here we present the structural organization and the chromosomal localization of the Lhx5 gene. The gene is composed of five exons spanning more than 10 kb of genomic sequence. The first and second LIMmore » domains are encoded by the first and second exon, while the codons of the homeobox are split between the third and the fourth exons. The structure of Lhx5 is similar to that of other LIM/homeodomain proteins, Lxh1/lim1 and Lhx3/lim3, but differs from that of other LIM genes, such as mec3 and LMO1/Rbtn1, in which the codons for the LIM domains are interrupted by introns. We have mapped Lhx5 to the central region of mouse chromosome 5. 38 refs., 4 figs.« less

  18. Cloning, Developmental, and Tissue-Specific Expression of Sucrose:Sucrose 1-Fructosyl Transferase from Taraxacum officinale. Fructan Localization in Roots1

    PubMed Central

    Van den Ende, Wim; Michiels, An; Van Wonterghem, Dominik; Vergauwen, Rudy; Van Laere, André

    2000-01-01

    Sucrose:sucrose 1-fructosyl transferase (1-SST) is the key enzyme initiating fructan synthesis in Asteraceae. Using reverse transcriptase-PCR, we isolated the cDNA for 1-SST from Taraxacum officinale. The cDNA-derived amino acid sequence showed very high homology to other Asteracean 1-SSTs (Cichorium intybus 86%, Cynara scolymus 82%, Helianthus tuberosus 80%), but homology to 1-SST from Allium cepa (46%) and Aspergillus foetidus (18%) was much lower. Fructan concentrations, 1-SST activities, 1-SST protein, and mRNA concentrations were compared in different organs during vegetative and generative development of T. officinale plants. Expression of 1-SST was abundant in young roots but very low in leaves. 1-SST was also expressed at the flowering stages in roots, stalks, and receptacles. A good correlation was found between northern and western blots showing transcriptional regulation of 1-SST. At the pre-flowering stage, 1-SST mRNA concentrations and 1-SST activities were higher in the root phloem than in the xylem, resulting in the higher fructan concentrations in the phloem. Fructan localization studies indicated that fructan is preferentially stored in phloem parenchyma cells in the vicinity of the secondary sieve tube elements. However, inulin-like crystals occasionally appeared in xylem vessels. PMID:10806226

  19. Cloning and Expression of cDNA for Rat Heme Oxygenase

    NASA Astrophysics Data System (ADS)

    Shibahara, Shigeki; Muller, Rita; Taguchi, Hayao; Yoshida, Tadashi

    1985-12-01

    Two cDNA clones for rat heme oxygenase have been isolated from a rat spleen cDNA library in λ gt11 by immunological screening using a specific polyclonal antibody. One of these clones has an insert of 1530 nucleotides that contains the entire protein-coding region. To confirm that the isolated cDNA encodes heme oxygenase, we transfected monkey kidney cells (COS-7) with the cDNA carried in a simian virus 40 vector. The heme oxygenase was highly expressed in endoplasmic reticulum of transfected cells. The nucleotide sequence of the cloned cDNA was determined and the primary structure of heme oxygenase was deduced. Heme oxygenase is composed of 289 amino acids and has one hydrophobic segment at its carboxyl terminus, which is probably important for the insertion of heme oxygenase into endoplasmic reticulum. The cloned cDNA was used to analyze the induction of heme oxygenase in rat liver by treatment with CoCl2 or with hemin. RNA blot analysis showed that both CoCl2 and hemin increased the amount of hybridizable mRNA, suggesting that these substances may act at the transcriptional level to increase the amount of heme oxygenase.

  20. Cloning of endangered mammalian species: any progress?

    PubMed

    Loi, Pasqualino; Galli, Cesare; Ptak, Grazyna

    2007-05-01

    Attempts through somatic cell nuclear transfer to expand wild populations that have shrunk to critical numbers is a logical extension of the successful cloning of mammals. However, although the first mammal was cloned 10 years ago, nuclear reprogramming remains phenomenological, with abnormal gene expression and epigenetic deregulation being associated with the cloning process. In addition, although cloning of wild animals using host oocytes from different species has been successful, little is known about the implication of partial or total mitochondrial DNA heteroplasmy in cloned embryos, fetuses and offspring. Finally, there is a need for suitable foster mothers for inter-intra specific cloned embryos. Considering these issues, the limited success achieved in cloning endangered animals is not surprising. However, optimism comes from the rapid gain in the understanding of the molecular clues underlying nuclear reprogramming. If it is possible to achieve a controlled reversal of the differentiated state of a cell then it is probable that other issues that impair the cloning of endangered animals, such as the inter-intra species oocyte or womb donor, will be overcome in the medium term.

Top