Multiple Scattering of Waves in Discrete Random Media.
1987-12-31
expanding the two body correlation functions in Legendre polynomials. This permits us to consider the angular correlations that exist for non-spherical...a scat- of the translation matrix after the angular and radial parts have terer fixed at it. been absorbed in the integration. Expressions for them...Approach New York: Pergamon Press. 1980 ’" close to the actual values for FeO, in isolation since they 171 A R. Edmonds. Angular Momentum in Quantum . h(pa
NASA Astrophysics Data System (ADS)
Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.
2018-01-01
Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The treatment of the internal angular momentum transport has a strong impact on the evolutionary tracks in the Hertzsprung-Russell Diagram as well as on the changes of the surface abundances resulting from rotational mixing. Our modelling suggests that the presence of an undetected close companion might explain rapidly rotating stars with strong surface magnetic fields, having ages well above the magnetic braking timescale. Our models predict that the rotation of most stars of this type increases as a function of time, except for a first initial phase in spin-down systems. The measure of their surface abundances, together, when possible, with their mass-luminosity ratio, provide interesting constraints on the transport efficiencies of angular momentum and chemical species. Conclusions: Close binaries, when studied at phases predating any mass transfer, are key objects to probe the physics of rotation and magnetic fields in stars.
Analytic approach to photoelectron transport.
NASA Technical Reports Server (NTRS)
Stolarski, R. S.
1972-01-01
The equation governing the transport of photoelectrons in the ionosphere is shown to be equivalent to the equation of radiative transfer. In the single-energy approximation this equation is solved in closed form by the method of discrete ordinates for isotropic scattering and for a single-constituent atmosphere. The results include prediction of the angular distribution of photoelectrons at all altitudes and, in particular, the angular distribution of the escape flux. The implications of these solutions in real atmosphere calculations are discussed.
Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro
NASA Astrophysics Data System (ADS)
Jin, Jing; Tian, Hai-Ting; Pan, Xiong; Song, Ning-Fang
2010-03-01
The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.
Geodesics In A Spinning String Spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culetu, Hristu
2006-11-28
The geodesics equations for a rotating observer in a spinning string geometry are investigated using the Euler - Lagrange equations. For test particles with vanishing angular momentum, the radial equation of motion does not depend on the angular velocity {omega} but on the angular momentum of the string. A massless particle moves tachyonic but iteed tends asymptotically to unit velocity after a time of the order of few Planck time b. The spacetime has a horizon at r = 0, irrespective of the value of {omega} but its angular velocity is given by {omega} - 1/b. The Sagnac time delaymore » is computed proving to depend both on {omega} and the radius of the circular orbit. The velocity of an ingoing massive test particle approaches zero very close to the spinning string, as if it were rejected by it.« less
Rotation of the asymptotic giant branch star R Doradus
NASA Astrophysics Data System (ADS)
Vlemmings, W. H. T.; Khouri, T.; Beck, E. De; Olofsson, H.; García-Segura, G.; Villaver, E.; Baudry, A.; Humphreys, E. M. L.; Maercker, M.; Ramstedt, S.
2018-05-01
High-resolution observations of the extended atmospheres of asymptotic giant branch (AGB) stars can now directly be compared to the theories that describe stellar mass loss. Using Atacama Large Millimeter/submillimeter Array (ALMA) high angular resolution (30 × 42 mas) observations, we have for the first time resolved stellar rotation of an AGB star, R Dor. We measure an angular rotation velocity of ωR sin i = (3.5 ± 0.3) × 10-9 rad s-1, which indicates a rotational velocity of |υrot sin i| = 1.0 ± 0.1 km s-1 at the stellar surface (R* = 31.2 mas at 214 GHz). The rotation axis projected on the plane of the sky has a position angle Φ = 7 ± 6°. We find that the rotation of R Dor is two orders of magnitude faster than expected for a solitary AGB star that will have lost most of its angular momentum. Its rotational velocity is consistent with angular momentum transfer from a close companion. As a companion has not been directly detected, we suggest R Dor has a low-mass, close-in companion. The rotational velocity approaches the critical velocity, set by the local sound speed in the extended envelope, and is thus expected to affect the mass-loss characteristics of R Dor.
Angular approach combined to mechanical model for tool breakage detection by eddy current sensors
NASA Astrophysics Data System (ADS)
Ritou, M.; Garnier, S.; Furet, B.; Hascoet, J. Y.
2014-02-01
The paper presents a new complete approach for Tool Condition Monitoring (TCM) in milling. The aim is the early detection of small damages so that catastrophic tool failures are prevented. A versatile in-process monitoring system is introduced for reliability concerns. The tool condition is determined by estimates of the radial eccentricity of the teeth. An adequate criterion is proposed combining mechanical model of milling and angular approach.Then, a new solution is proposed for the estimate of cutting force using eddy current sensors implemented close to spindle nose. Signals are analysed in the angular domain, notably by synchronous averaging technique. Phase shifts induced by changes of machining direction are compensated. Results are compared with cutting forces measured with a dynamometer table.The proposed method is implemented in an industrial case of pocket machining operation. One of the cutting edges has been slightly damaged during the machining, as shown by a direct measurement of the tool. A control chart is established with the estimates of cutter eccentricity obtained during the machining from the eddy current sensors signals. Efficiency and reliability of the method is demonstrated by a successful detection of the damage.
Bounded extremum seeking for angular velocity actuated control of nonholonomic unicycle
Scheinker, Alexander
2016-08-17
Here, we study control of the angular-velocity actuated nonholonomic unicycle, via a simple, bounded extremum seeking controller which is robust to external disturbances and measurement noise. The vehicle performs source seeking despite not having any position information about itself or the source, able only to sense a noise corrupted scalar value whose extremum coincides with the unknown source location. In order to control the angular velocity, rather than the angular heading directly, a controller is developed such that the closed loop system exhibits multiple time scales and requires an analysis approach expanding the previous work of Kurzweil, Jarnik, Sussmann, andmore » Liu, utilizing weak limits. We provide analytic proof of stability and demonstrate how this simple scheme can be extended to include position-independent source seeking, tracking, and collision avoidance of groups on autonomous vehicles in GPS-denied environments, based only on a measure of distance to an obstacle, which is an especially important feature for an autonomous agent.« less
Self-focusing skyrmion racetracks in ferrimagnets
NASA Astrophysics Data System (ADS)
Kim, Se Kwon; Lee, Kyung-Jin; Tserkovnyak, Yaroslav
2017-04-01
We theoretically study the dynamics of ferrimagnetic skyrmions in inhomogeneous metallic films close to the angular momentum compensation point. In particular, it is shown that the line of the vanishing angular momentum can be utilized as a self-focusing racetrack for skyrmions. To that end, we begin by deriving the equations of motion for the dynamics of collinear ferrimagnets in the presence of a charge current. The obtained equations of motion reduce to those of ferromagnets and antiferromagnets at two special limits. In the collective coordinate approach, a skyrmion behaves as a massive charged particle moving in a viscous medium subjected to a magnetic field. Analogous to the snake orbits of electrons in a nonuniform magnetic field, we show that a ferrimagnet with nonuniform angular momentum density can exhibit the snake trajectories of skyrmions, which can be utilized as racetracks for skyrmions.
Protoplanetary disc response to distant tidal encounters in stellar clusters
NASA Astrophysics Data System (ADS)
Winter, A. J.; Clarke, C. J.; Rosotti, G.; Booth, R. A.
2018-04-01
The majority of stars form in a clustered environment. This has an impact on the evolution of surrounding protoplanetary discs (PPDs) due to either photoevaporation or tidal truncation. Consequently, the development of planets depends on formation environment. Here, we present the first thorough investigation of tidally induced angular momentum loss in PPDs in the distant regime, partly motivated by claims in the literature for the importance of distant encounters in disc evolution. We employ both theoretical predictions and dynamical/hydrodynamical simulations in 2D and 3D. Our theoretical analysis is based on that of Ostriker (1994) and leads us to conclude that in the limit that the closest approach distance xmin ≫ r, the radius of a particle ring, the fractional change in angular momentum scales as (xmin/r)-5. This asymptotic limit ensures that the cumulative effect of distant encounters is minor in terms of its influence on disc evolution. The angular momentum transfer is dominated by the m = 2 Lindblad resonance for closer encounters and by the m = 1, ω = 0 Lindblad resonance at large xmin/r. We contextualize these results by comparing expected angular momentum loss for the outer edge of a PPD due to distant and close encounters. Contrary to the suggestions of previous works, we do not find that distant encounters contribute significantly to angular momentum loss in PPDs. We define an upper limit for closest approach distance where interactions are significant as a function of arbitrary host to perturber mass ratio M2/M1.
Pilot estimates of glidepath and aim point during simulated landing approaches
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.
1981-01-01
Pilot perceptions of glidepath angle and aim point were measured during simulated landings. A fixed-base cockpit simulator was used with video recordings of simulated landing approaches shown on a video projector. Pilots estimated the magnitudes of approach errors during observation without attempting to make corrections. Pilots estimated glidepath angular errors well, but had difficulty estimating aim-point errors. The data make plausible the hypothesis that pilots are little concerned with aim point during most of an approach, concentrating instead on keeping close to the nominal glidepath and trusting this technique to guide them to the proper touchdown point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheinker, Alexander
Here, we study control of the angular-velocity actuated nonholonomic unicycle, via a simple, bounded extremum seeking controller which is robust to external disturbances and measurement noise. The vehicle performs source seeking despite not having any position information about itself or the source, able only to sense a noise corrupted scalar value whose extremum coincides with the unknown source location. In order to control the angular velocity, rather than the angular heading directly, a controller is developed such that the closed loop system exhibits multiple time scales and requires an analysis approach expanding the previous work of Kurzweil, Jarnik, Sussmann, andmore » Liu, utilizing weak limits. We provide analytic proof of stability and demonstrate how this simple scheme can be extended to include position-independent source seeking, tracking, and collision avoidance of groups on autonomous vehicles in GPS-denied environments, based only on a measure of distance to an obstacle, which is an especially important feature for an autonomous agent.« less
A New Approach to Attitude Stability and Control for Low Airspeed Vehicles
NASA Technical Reports Server (NTRS)
Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.
2004-01-01
This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.
Body frame close coupling wave packet approach to gas phase atom-rigid rotor inelastic collisions
NASA Technical Reports Server (NTRS)
Sun, Y.; Judson, R. S.; Kouri, D. J.
1989-01-01
The close coupling wave packet (CCWP) method is formulated in a body-fixed representation for atom-rigid rotor inelastic scattering. For J greater than j-max (where J is the total angular momentum and j is the rotational quantum number), the computational cost of propagating the coupled channel wave packets in the body frame is shown to scale approximately as N exp 3/2, where N is the total number of channels. For large numbers of channels, this will be much more efficient than the space frame CCWP method previously developed which scales approximately as N-squared under the same conditions.
Top squark with mass close to the top quark
NASA Astrophysics Data System (ADS)
Buckley, Matthew R.; Plehn, Tilman; Ramsey-Musolf, Michael J.
2014-07-01
The most natural supersymmetric solution to the hierarchy problem prefers the scalar top partner to be close in mass to the top quark. Experimental searches exclude top squarks across a wide range of masses, but a gap remains when the difference between the masses of the stop and the lightest supersymmetric particle is close to the top mass. We propose to search for stops in this regime by exploiting the azimuthal angular correlation of forward tagging jets in (s)top pair production. As shown in earlier work, this correlation is sensitive to the spin of the heavy states, allowing one to distinguish between top and stop pair production. Here, we demonstrate that this angular information can give a statistically significant stop pair production signal in the upcoming LHC run. While the appropriate simulation including parton showering and detector simulation requires some care, we find stable predictions for the angular correlation using multijet merging.
Analytic solution of the Spencer-Lewis angular-spatial moments equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippone, W.L.
A closed-form solution for the angular-spatial moments of the Spencer-Lewis equation is presented that is valid for infinite homogeneous media. From the moments, the electron density distribution as a function of position and path length (energy) is reconstructed for several sample problems involving plane isotropic sources of electrons in aluminium. The results are in excellent agreement with those determined numerically using the streaming ray method. The primary use of the closed form solution will most likely be to generate accurate electron transport benchmark solutions. In principle, the electron density as a function of space, path length, and direction can bemore » determined for planar sources of arbitrary angular distribution.« less
Dynamics of multiple bodies in a corotation resonance
NASA Astrophysics Data System (ADS)
A'Hearn, Joseph; Hedman, Matthew
2018-04-01
The orbital evolution of multiple massive bodies trapped in the same corotation resonance site has not yet been studied in depth, but could be relevant to the origins and history of small moons like Saturn's moon Aegaeon. We conduct numerical simulations of multiple bodies trapped within a corotation resonance and examine what happens to these bodies when they have close encounters. Compared to simulations with equal mass bodies, simulations with one body more massive than the others may be more likely to feature an asymmetry in the phase space of semi-major axis and mean longitude. That is, bodies on one side of phase space have a slightly greater tendency to lose angular momentum, while bodies on the other side gain angular momentum. With this asymmetry, the transfer of angular momentum during gravitational encounters makes it more likely for the most massive body rather than other bodies to approach the center of the corotation site. More work is needed to determine if this sort of process can significantly affect the orbital evolution of small moons like Aegaeon.
Potential for Non-Contact ACL Injury Between Step-Close-Jump and Hop-Jump Tasks.
Wang, Li-I; Gu, Chin-Yi; Chen, Wei-Ling; Chang, Mu-San
2010-01-01
This study aimed to compare the kinematics and kinetics during the landing of hop-jump and step-close-jump movements in order to provide further inferring that the potential risk of ACL injuries. Eleven elite male volleyball players were recruited to perform hop-jump and step-close-jump tasks. Lower extremity kinematics and ground reaction forces during landing in stop-jump tasks were recorded. Lower extremity kinetics was calculated by using an inverse dynamic process. Step-close-jump tasks demonstrated smaller peak proximal tibia anterior shear forces during the landing phase. In step-close-jump tasks, increasing hip joint angular velocity during initial foot-ground contact decreased peak posterior ground reaction force during the landing phase, which theoretically could reduce the risk of ACL injury. Key pointsThe different landing techniques required for these two stop-jump tasks do not necessarily affect the jump height.Hop-jump decreased the hip joint angular velocity at initial foot contact with ground, which could lead to an increasing peak posterior GRF during the landing phase.Hop-jump decreased hip and knee joint angular flexion displacement during the landing, which could increase the peak vertical loading rate during the landing phase.
Iwahashi, Toshihiko; Ogawa, Makoto; Hosokawa, Kiyohito; Kato, Chieri; Inohara, Hidenori
2016-11-01
To assess the angular velocity between the vocal folds just before the compression phase of throat clearing (TC) using high-speed digital imaging (HSDI) of the larynx. Twenty normal healthy adults (13 males and seven females) were enrolled in the study. Each participant underwent transnasal laryngo-fiberscopy, and was asked to perform weak/strong TC followed by a comfortable, sustained vowel phonation while recording an HSDI movie (4000 frames/s) of the larynx. Using a motion analysis, the changes in the vocal fold angle and angular velocity during vocal fold adduction were assessed. Subsequently, we calculated the average angular velocities in the ranges of 100-80%, 80-20%, and 20-0% from all of the angular changes. The motion analysis demonstrated that the changes in the angular velocity resulted in polynomial-like and sigmoid curves during TC and vowel phonation, respectively. The angular velocities during weak TC were significantly higher in the 20-0%, 80-20%, and 100-80% regions (in order); the 80-20% angular velocity in vocal fold adduction during phonation was highest. The 20-0% angular velocity during strong TC was more than twofold higher than 20-0% angular velocity during phonation. The present results confirmed that the closing motions of the vocal folds accelerate throughout the precompression closing phase of a TC episode, and decelerate just before the impact between the vocal folds at the onset of phonation, suggesting that the vocal fold velocity generated by TC is sufficient to damage the laryngeal tissues. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Zeng, Xiaozheng; McGough, Robert J.
2009-01-01
The angular spectrum approach is evaluated for the simulation of focused ultrasound fields produced by large thermal therapy arrays. For an input pressure or normal particle velocity distribution in a plane, the angular spectrum approach rapidly computes the output pressure field in a three dimensional volume. To determine the optimal combination of simulation parameters for angular spectrum calculations, the effect of the size, location, and the numerical accuracy of the input plane on the computed output pressure is evaluated. Simulation results demonstrate that angular spectrum calculations performed with an input pressure plane are more accurate than calculations with an input velocity plane. Results also indicate that when the input pressure plane is slightly larger than the array aperture and is located approximately one wavelength from the array, angular spectrum simulations have very small numerical errors for two dimensional planar arrays. Furthermore, the root mean squared error from angular spectrum simulations asymptotically approaches a nonzero lower limit as the error in the input plane decreases. Overall, the angular spectrum approach is an accurate and robust method for thermal therapy simulations of large ultrasound phased arrays when the input pressure plane is computed with the fast nearfield method and an optimal combination of input parameters. PMID:19425640
Vibration nullification of MEMS device using input shaping
NASA Astrophysics Data System (ADS)
Jordan, Scott; Lawrence, Eric M.
2003-07-01
The active silicon microstructures known as Micro-Electromechanical Systems (MEMS) are improving many existing technologies through simplification and cost reduction. Many industries have already capitalized on MEMS technology such as those in fields as diverse as telecommunications, computing, projection displays, automotive safety, defense and biotechnology. As they grow in sophistication and complexity, the familiar pressures to further reduce costs and increase performance grow for those who design and manufacture MEMS devices and the engineers who specify them for their end applications. One example is MEMS optical switches that have evolved from simple, bistable on/off elements to microscopic, freelypositionable beam steering optics. These can be actuated to discrete angular positions or to continuously-variable angular states through applied command signals. Unfortunately, elaborate closed-loop actuation schemes are often necessitated in order to stabilize the actuation. Furthermore, preventing one actuated micro-element from vibrationally cross-coupling with its neighbors is another reason costly closed-loop approaches are thought to be necessary. The Laser Doppler Vibrometer (LDV) is a valuable tool for MEMS characterization that provides non-contact, real-time measurements of velocity and/or displacement response. The LDV is a proven technology for production metrology to determine dynamical behaviors of MEMS elements, which can be a sensitive indicator of manufacturing variables such as film thickness, etch depth, feature tolerances, handling damage and particulate contamination. They are also important for characterizing the actuation dynamics of MEMS elements for implementation of a patented controls technique called Input Shaping«, which we show here can virtually eliminate the vibratory resonant response of MEMS elements even when subjected to the most severe actuation profiles. In this paper, we will demonstrate the use of the LDV to determine how the application of this compact, efficient algorithm can improve the performance of both open- and closed-loop MEMS devices, eliminating the need for costly closed-loop approaches. This can greatly reduce the complexity, cost and yield of MEMS design and manufacture.
Fast rotating neutron stars with realistic nuclear matter equation of state
NASA Astrophysics Data System (ADS)
Cipolletta, F.; Cherubini, C.; Filippi, S.; Rueda, J. A.; Ruffini, R.
2015-07-01
We construct equilibrium configurations of uniformly rotating neutron stars for selected relativistic mean-field nuclear matter equations of state (EOS). We compute, in particular, the gravitational mass (M ), equatorial (Req) and polar (Rpol) radii, eccentricity, angular momentum (J ), moment of inertia (I ) and quadrupole moment (M2) of neutron stars stable against mass shedding and secular axisymmetric instability. By constructing the constant frequency sequence f =716 Hz of the fastest observed pulsar, PSR J1748-2446ad, and constraining it to be within the stability region, we obtain a lower mass bound for the pulsar, Mmin=[1.2 - 1.4 ]M⊙ , for the EOS employed. Moreover, we give a fitting formula relating the baryonic mass (Mb) and gravitational mass of nonrotating neutron stars, Mb/M⊙=M /M⊙+(13 /200 )(M /M⊙)2 [or M /M⊙=Mb/M⊙-(1 /20 )(Mb/M⊙)2], which is independent of the EOS. We also obtain a fitting formula, although not EOS independent, relating the gravitational mass and the angular momentum of neutron stars along the secular axisymmetric instability line for each EOS. We compute the maximum value of the dimensionless angular momentum, a /M ≡c J /(G M2) (or "Kerr parameter"), (a /M )max≈0.7 , found to be also independent of the EOS. We then compare and contrast the quadrupole moment of rotating neutron stars with the one predicted by the Kerr exterior solution for the same values of mass and angular momentum. Finally, we show that, although the mass quadrupole moment of realistic neutron stars never reaches the Kerr value, the latter is closely approached from above at the maximum mass value, as physically expected from the no-hair theorem. In particular, the stiffer the EOS, the closer the mass quadrupole moment approaches the value of the Kerr solution.
Energy, momentum, and angular momentum of sound pulses.
Lekner, John
2017-12-01
Pulse solutions of the wave equation can be expressed as superpositions of scalar monochromatic beam wavefunctions (solutions of the Helmholtz equation). This formulation leads to causal (unidirectional) propagation, in contrast to all currently known closed-form solutions of the wave equation. Application is made to the evaluation of the energy, momentum, and angular momentum of acoustic pulses, as integrals over the beam and pulse weight functions. Equivalence is established between integration over space of the energy, momentum, and angular momentum densities, and integration over the wavevector weight function. The inequality linking the total energy and the total momentum is made explicit in terms of the weight function formulation. It is shown that a general pulse can be viewed as a superposition of phonons, each with energy ℏck, z component of momentum ℏq, and z component of angular momentum ℏm. A closed-form solution of the wave equation is found, which is localized and causal, and its energy and momentum are evaluated explicitly.
Mazinan, A H; Pasand, M; Soltani, B
2015-09-01
In the aspect of further development of investigations in the area of spacecraft modeling and analysis of the control scheme, a new hybrid finite-time robust three-axis cascade attitude control approach is proposed via pulse modulation synthesis. The full quaternion based control approach proposed here is organized in association with both the inner and the outer closed loops. It is shown that the inner closed loop, which consists of the sliding mode finite-time control approach, the pulse width pulse frequency modulator, the control allocation and finally the dynamics of the spacecraft is realized to track the three-axis referenced commands of the angular velocities. The pulse width pulse frequency modulators are in fact employed in the inner closed loop to accommodate the control signals to a number of on-off thrusters, while the control allocation algorithm provides the commanded firing times for the reaction control thrusters in the overactuated spacecraft. Hereinafter, the outer closed loop, which consists of the proportional linear control approach and the kinematics of the spacecraft is correspondingly designed to deal with the attitude angles that are presented by quaternion vector. It should be noted that the main motivation of the present research is to realize a hybrid control method by using linear and nonlinear terms and to provide a reliable and robust control structure, which is able to track time varying three-axis referenced commands. Subsequently, a stability analysis is presented to verify the performance of the overall proposed cascade attitude control approach. To prove the effectiveness of the presented approach, a thorough investigation is presented compared to a number of recent corresponding benchmarks. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Control of Angular Intervals for Angle-Multiplexed Holographic Memory
NASA Astrophysics Data System (ADS)
Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki
2009-03-01
In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.
Angular-velocity control approach for stance-control orthoses.
Lemaire, Edward D; Goudreau, Louis; Yakimovich, Terris; Kofman, Jonathan
2009-10-01
Currently, stance-control knee orthoses require external control mechanisms to control knee flexion during stance and allow free knee motion during the swing phase of gait. A new angular-velocity control approach that uses a rotary-hydraulic device to resist knee flexion when the knee angular velocity passes a preset threshold is presented. This angular-velocity approach for orthotic stance control is based on the premise that knee-flexion angular velocity during a knee-collapse event, such as a stumble or fall, is greater than that during walking. The new hydraulic knee-flexion control device does not require an external control mechanism to switch from free motion to stance control mode. Functional test results demonstrated that the hydraulic angular-velocity activated knee joint provided free knee motion during walking, engaged upon knee collapse, and supported body weight while the end-user recovered to a safe body position. The joint was tested to 51.6 Nm in single loading tests and passed 200,000 repeated loading cycles with a peak load of 88 Nm per cycle. The hydraulic, angular velocity activation approach has potential to improve safety and security for people with lower extremity weakness or when recovering from joint trauma.
Determination of the axial rotation rate using apsidal motion for early-type eclipsing binaries
NASA Astrophysics Data System (ADS)
Khaliullin, Kh. F.; Khaliullina, A. I.
2007-11-01
Because the modern theory of stellar structure and evolution has a sound observational basis, we can consider that the apsidal parameters k2 computed in terms of this theory correctly reflect the radial density distribution in stars of different masses and spectral types. This allows us to address the problem of apsidal motion in close binary systems in a new way. Unlike the traditional approach, in this paper we use the observed apsidal periods Uobs to estimate the angular axial velocities of components, ωr, at fixed model values of k2. We use this approach to analyse the observational data for 28 eclipsing systems with known Uobs and early-type primaries (M >= 1.6 Msolar or Te >= 6000 K). We measure the age of the system in units of the synchronization time, t/tsyn. Our analysis yielded the following results. (i) There is a clear correlation between ωr/ωsyn and t/tsyn: the younger a star, the higher the angular velocity of its axial rotation in units of ωsyn, the angular velocity at pseudo-synchronization. This correlation is more significant and obvious if the synchronization time, tsyn, is computed in terms of the Zahn theory. (ii) This observational fact implies that the synchronization of early-type components in close binary systems continues on the main sequence. The synchronization times for the inner layers of the components (i.e. those that are responsible for apsidal motion) are about 1.6 and 3.1 dex longer than those predicted by the theories of Zahn and Tassoul, respectively. The average initial angular velocities (for the zero-age main sequence) are equal to ω0/ωsyn ~ 2.0. The dependence of the parameter E2 on stellar mass probably needs to be refined in the Zahn theory. (iii) Some components of the eclipsing systems of the sample studied show radially differential axial rotation. This is consistent with the Zahn theory, which predicts that the synchronization starts at the surface, where radiative damping of dynamical tides occurs, and develops toward the interior. Therefore, one would expect the inner parts of young double early-type stars to rotate faster than the outer parts.
Novel method to form adaptive internal impedance profiles in walkers.
Escudero Morland, Maximilano F; Althoefer, Kaspar; Nanayakkara, Thrishantha
2015-01-01
This paper proposes a novel approach to improve walking in prosthetics, orthotics and robotics without closed loop controllers. The approach requires impedance profiles to be formed in a walker and uses state feedback to update the profiles in real-time via a simple policy. This approach is open loop and inherently copes with the challenge of uncertain environment. In application it could be used either online for a walker to adjust its impedance profiles in real-time to compensate for environmental changes, or offline to learn suitable profiles for specific environments. So far we have conducted simulations and experiments to investigate the transient and steady state gaits obtained using two simple update policies to form damping profiles in a passive dynamic walker known as the rimless wheel (RW). The damping profiles are formed in the motor that moves the RW vertically along a rail, analogous to a knee joint, and the two update equations were designed to a) control the angular velocity profile and b) minimise peak collision forces. Simulation results show that the velocity update equation works within limits and can cope with varying ground conditions. Experiment results show the angular velocity average reaching the target as well as the peak force update equation reducing peak collision forces in real-time.
On techniques for angle compensation in nonideal iris recognition.
Schuckers, Stephanie A C; Schmid, Natalia A; Abhyankar, Aditya; Dorairaj, Vivekanand; Boyce, Christopher K; Hornak, Lawrence A
2007-10-01
The popularity of the iris biometric has grown considerably over the past two to three years. Most research has been focused on the development of new iris processing and recognition algorithms for frontal view iris images. However, a few challenging directions in iris research have been identified, including processing of a nonideal iris and iris at a distance. In this paper, we describe two nonideal iris recognition systems and analyze their performance. The word "nonideal" is used in the sense of compensating for off-angle occluded iris images. The system is designed to process nonideal iris images in two steps: 1) compensation for off-angle gaze direction and 2) processing and encoding of the rotated iris image. Two approaches are presented to account for angular variations in the iris images. In the first approach, we use Daugman's integrodifferential operator as an objective function to estimate the gaze direction. After the angle is estimated, the off-angle iris image undergoes geometric transformations involving the estimated angle and is further processed as if it were a frontal view image. The encoding technique developed for a frontal image is based on the application of the global independent component analysis. The second approach uses an angular deformation calibration model. The angular deformations are modeled, and calibration parameters are calculated. The proposed method consists of a closed-form solution, followed by an iterative optimization procedure. The images are projected on the plane closest to the base calibrated plane. Biorthogonal wavelets are used for encoding to perform iris recognition. We use a special dataset of the off-angle iris images to quantify the performance of the designed systems. A series of receiver operating characteristics demonstrate various effects on the performance of the nonideal-iris-based recognition system.
NASA Astrophysics Data System (ADS)
Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.
2016-07-01
Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The approach developed for analysis of the effects is a suitable tool to get insight into the complete fusion-fission dynamics, in particular, to investigate the mechanism of the complete fusion and fission time scale.
Proximal metatarsal osteotomies: a comparative geometric analysis conducted on sawbone models.
Nyska, Meir; Trnka, Hans-Jörg; Parks, Brent G; Myerson, Mark S
2002-10-01
We evaluated the change in position of the first metatarsal head using a three-dimensional digitizer on sawbone models. Crescentic, closing wedge, oblique shaft (Ludloff 8 degrees and 16 degrees), reverse oblique shaft (Mau 8 degrees and 16 degrees), rotational "Z" (Scarf), and proximal chevron osteotomies were performed and secured using 3-mm screws. The 16 degrees Ludloff provided the most lateral shift (9.5 mm) and angular correction (14.5 degrees) but also produced the most elevation (1.4 mm) and shortening (2.9 mm). The 8 degrees Ludloff provided lateral and angular corrections similar to those of the crescentic and closing wedge osteotomies with less elevation and shortening. Because the displacement osteotomies (Scarf, proximal chevron) provided less angular correction, the same lateral displacement, and less shortening than the basilar angular osteotomies, based upon this model they can be more reliably used for a patient with a mild to moderate deformity, a short first metatarsal, or an intermediate deformity with a large distal metatarsal articular angle. These results can serve as recommendations for selecting the optimal osteotomy with which to correct a deformation.
NASA Astrophysics Data System (ADS)
Dashevskaya, E. I.; Litvin, I.; Nikitin, E. E.; Troe, J.
2016-12-01
Rate coefficients for capture of H2(j = 0,1) by H2+ are calculated in perturbed rotor approximation, i.e., at collision energies considerably lower than Bhc (where B denotes the rotational constant of H2). The results are compared with the results from an axially nonadiabatic channel (ANC) approach, the latter providing a very good approximation from the low-temperature Bethe-Wigner to the high temperature Langevin limit. The classical ANC approximation performs satisfactorily at temperatures above 0.1 K. At 0.1 K, the rate coefficient for j =1 is about 25% higher than that for j = 0 while the latter is close to the Langevin rate coefficient. The Bethe-Wigner limit of the rate coefficient for j = 1 is about twice that for j = 0. The analysis of the relocking of the intrinsic angular momentum of H2 during the course of the collision illustrates the significance of relocking in capture dynamics in general.
Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Čížek, P.; Semerák, O., E-mail: oldrich.semerak@mff.cuni.cz
Will, in 1974, treated the perturbation of a Schwarzschild black hole due to a slowly rotating, light, concentric thin ring by solving the perturbation equations in terms of a multipole expansion of the mass-and-rotation perturbation series. In the Schwarzschild background, his approach can be generalized to perturbation by a thin disk (which is more relevant astrophysically), but, due to rather bad convergence properties, the resulting expansions are not suitable for specific (numerical) computations. However, we show that Green’s functions, represented by Will’s result, can be expressed in closed form (without multipole expansion), which is more useful. In particular, they canmore » be integrated out over the source (a thin disk in our case) to yield good converging series both for the gravitational potential and for the dragging angular velocity. The procedure is demonstrated, in the first perturbation order, on the simplest case of a constant-density disk, including the physical interpretation of the results in terms of a one-component perfect fluid or a two-component dust in a circular orbit about the central black hole. Free parameters are chosen in such a way that the resulting black hole has zero angular momentum but non-zero angular velocity, as it is just carried along by the dragging effect of the disk.« less
Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Bin Aziz, Mohamed Fareez; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M; Sato, Hirotaka
2014-01-01
In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot).
2016-01-01
Training subjects to step in place on a rotating platform while maintaining a fixed body orientation in space produces a posteffect consisting in inadvertent turning around while stepping in place eyes closed (podokinetic after-rotation, PKAR). We tested the hypothesis that voluntary turning around while stepping in place also produces a posteffect similar to PKAR. Sixteen subjects performed 12 min of voluntary turning while stepping around their vertical axis eyes closed and 12 min of stepping in place eyes open on the center of a platform rotating at 60°/s (pretests). Then, subjects continued stepping in place eyes closed for at least 10 min (posteffect). We recorded the positions of markers fixed to head, shoulder, and feet. The posteffect of voluntary turning shared all features of PKAR. Time decay of angular velocity, stepping cadence, head acceleration, and ratio of angular velocity after to angular velocity before were similar between both protocols. Both postrotations took place inadvertently. The posteffects are possibly dependent on the repeated voluntary contraction of leg and foot intrarotating pelvic muscles that rotate the trunk over the stance foot, a synergy common to both protocols. We propose that stepping in place and voluntary turning can be a scheme ancillary to the rotating platform for training body segment coordination in patients with impairment of turning synergies of various origin. PMID:27635264
Aliasing Detection and Reduction Scheme on Angularly Undersampled Light Fields.
Xiao, Zhaolin; Wang, Qing; Zhou, Guoqing; Yu, Jingyi
2017-05-01
When using plenoptic camera for digital refocusing, angular undersampling can cause severe (angular) aliasing artifacts. Previous approaches have focused on avoiding aliasing by pre-processing the acquired light field via prefiltering, demosaicing, reparameterization, and so on. In this paper, we present a different solution that first detects and then removes angular aliasing at the light field refocusing stage. Different from previous frequency domain aliasing analysis, we carry out a spatial domain analysis to reveal whether the angular aliasing would occur and uncover where in the image it would occur. The spatial analysis also facilitates easy separation of the aliasing versus non-aliasing regions and angular aliasing removal. Experiments on both synthetic scene and real light field data sets (camera array and Lytro camera) demonstrate that our approach has a number of advantages over the classical prefiltering and depth-dependent light field rendering techniques.
Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Zhang, He
2016-11-20
Angular velocity information is a requisite for a spacecraft guidance, navigation, and control system. In this paper, an approach for angular velocity estimation based merely on star vector measurement with an improved current statistical model Kalman filter is proposed. High-precision angular velocity estimation can be achieved under dynamic conditions. The amount of calculation is also reduced compared to a Kalman filter. Different trajectories are simulated to test this approach, and experiments with real starry sky observation are implemented for further confirmation. The estimation accuracy is proved to be better than 10-4 rad/s under various conditions. Both the simulation and the experiment demonstrate that the described approach is effective and shows an excellent performance under both static and dynamic conditions.
NASA Technical Reports Server (NTRS)
Davis, D. R.; Greenberg, R.; Hebert, F.
1985-01-01
Models of lunar origin in which the Moon accretes in orbit about the Earth from material approaching the Earth from heliocentric orbits must overcome a fundamental problem: the approach orbits of such material would be, in the simplest approximation, equally likely to be prograde or retrograde about the Earth, with the result that accretion of such material adds mass but not angular momentum to circumterrestrial satellites. Satellite orbits would then decay due to the resulting drag, ultimately impacting onto the Earth. One possibility for adding both material and angular momentum to Earth orbit is investigated: imbalance in the delivered angular momentum between pro and retrograde Earth passing orbits which arises from the three body dynamics of planetesimals approaching the Earth from heliocentric space. In order to study angular momentum delivery to circumterrestrial satellites, the near Earth velocities were numerically computed as a function of distance from the Earth for a large array of orbits systematically spanning heliocentric phase space.
NASA Technical Reports Server (NTRS)
Hilker, Thomas; Hall, Forest G.; Tucker, J.; Coops, Nicholas C.; Black, T. Andrew; Nichol, Caroline J.; Sellers, Piers J.; Barr, Alan; Hollinger, David Y.; Munger, J. W.
2012-01-01
Spatially explicit and temporally continuous estimates of photosynthesis will be of great importance for increasing our understanding of and ultimately closing the terrestrial carbon cycle. Current capabilities to model photosynthesis, however, are limited by accurate enough representations of the complexity of the underlying biochemical processes and the numerous environmental constraints imposed upon plant primary production. A potentially powerful alternative to model photosynthesis through these indirect observations is the use of multi-angular satellite data to infer light-use efficiency (e) directly from spectral reflectance properties in connection with canopy shadow fractions. Hall et al. (this issue) introduced a new approach for predicting gross ecosystem production that would allow the use of such observations in a data assimilation mode to obtain spatially explicit variations in e from infrequent polar-orbiting satellite observations, while meteorological data are used to account for the more dynamic responses of e to variations in environmental conditions caused by changes in weather and illumination. In this second part of the study we implement and validate the approach of Hall et al. (this issue) across an ecologically diverse array of eight flux-tower sites in North America using data acquired from the Compact High Resolution Imaging Spectroradiometer (CHRIS) and eddy-flux observations. Our results show significantly enhanced estimates of e and therefore cumulative gross ecosystem production (GEP) over the course of one year at all examined sites. We also demonstrate that e is greatly heterogeneous even across small study areas. Data assimilation and direct inference of GEP from space using a new, proposed sensor could therefore be a significant step towards closing the terrestrial carbon cycle.
Kim, Jemin; Wilson, Margaret A; Singhal, Kunal; Gamblin, Sarah; Suh, Cha-Young; Kwon, Young-Hoo
2014-09-01
The purpose of this study was to investigate the vertical angular momentum generation strategies used by skilled ballet dancers in pirouette en dehors. Select kinematic parameters of the pirouette preparation (stance depth, vertical center-of-mass motion range, initial shoulder line position, shoulder line angular displacement, and maximum trunk twist angle) along with vertical angular momentum parameters during the turn (maximum momentums of the whole body and body parts, and duration and rate of generation) were obtained from nine skilled collegiate ballet dancers through a three-dimensional motion analysis and compared among three turn conditions (single, double, and triple). A one-way ('turn') multivariate analysis of variance of the kinematic parameters and angular momentum parameters of the whole body and a two-way analysis of variance ('turn' × 'body') of the maximum angular momentums of the body parts were conducted. Significant 'turn' effects were observed in the kinematic/angular momentum parameters (both the preparation and the turn) (p < 0.05). As the number of turns increased, skilled dancers generated larger vertical angular momentums by predominantly increasing the rate of momentum generation using rotation of the upper trunk and arms. The trail (closing) arm showed the largest contribution to whole-body angular momentum followed by the lead arm.
Towards multi-field D-brane inflation in a warped throat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Heng-Yu; Gong, Jinn-Ouk; Koyama, Kazuya
2010-11-01
We study the inflationary dynamics in a model of slow-roll inflation in warped throat. Inflation is realized by the motion of a D-brane along the radial direction of the throat, and at later stages instabilities develop in the angular directions. We closely investigate both the single field potential relevant for the slow-roll phase, and the full multi-field one including the angular modes which becomes important at later stages. We study the main features of the instability process, discussing its possible consequences and identifying the vacua towards which the angular modes are driven.
Influence of virtual reality on postural stability during movements of quiet stance.
Horlings, Corinne G C; Carpenter, Mark G; Küng, Ursula M; Honegger, Flurin; Wiederhold, Brenda; Allum, John H J
2009-02-27
Balance problems during virtual reality (VR) have been mentioned in the literature but seldom investigated despite the increased use of VR systems as a training or rehabilitation tool. We examined the influence of VR on body sway under different stance conditions. Seventeen young subjects performed four tasks (standing with feet close together or tandem stance on firm and foam surfaces for 60s) under three visual conditions: eyes open without VR, eyes closed, or while viewing a virtual reality scene which moved with body movements. Angular velocity transducers mounted on the shoulder provided measures of body sway in the roll and pitch plane. VR caused increased pitch and roll angles and angular velocities compared to EO. The effects of VR were, for the most part, indistinguishable from eyes closed conditions. Use of a foam surface increased sway compared to a firm surface under eyes closed and VR conditions. During the movements of quiet stance, VR causes an increase in postural sway in amplitude similar to that caused by closing the eyes. This increased sway was present irrespective of stance surface, but was greatest on foam.
NASA Technical Reports Server (NTRS)
Groom, N. J.
1979-01-01
The rim inertial measuring system (RIMS) is introduced and an approach for extracting angular rate and linear acceleration information from a RIMS unit is presented and discussed. The RIMS consists of one or more small annular momentum control devices (AMCDs), mounted in a strapped down configuration, which are used to measure angular rates and linear accelerations of a moving vehicle. An AMCD consists of a spinning rim, a set of noncontacting magnetic bearings for supporting the rim, and a noncontacting electromagnetic spin motor. The approach for extracting angular rate and linear acceleration information is for a single spacecraft mounted RIMS unit.
Wave field synthesis of moving virtual sound sources with complex radiation properties.
Ahrens, Jens; Spors, Sascha
2011-11-01
An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.
Angular velocity estimation from measurement vectors of star tracker.
Liu, Hai-bo; Yang, Jun-cai; Yi, Wen-jun; Wang, Jiong-qi; Yang, Jian-kun; Li, Xiu-jian; Tan, Ji-chun
2012-06-01
In most spacecraft, there is a need to know the craft's angular rate. Approaches with least squares and an adaptive Kalman filter are proposed for estimating the angular rate directly from the star tracker measurements. In these approaches, only knowledge of the vector measurements and sampling interval is required. The designed adaptive Kalman filter can filter out noise without information of the dynamic model and inertia dyadic. To verify the proposed estimation approaches, simulations based on the orbit data of the challenging minisatellite payload (CHAMP) satellite and experimental tests with night-sky observation are performed. Both the simulations and experimental testing results have demonstrated that the proposed approach performs well in terms of accuracy, robustness, and performance.
The angular momentum of cosmological coronae and the inside-out growth of spiral galaxies
NASA Astrophysics Data System (ADS)
Pezzulli, Gabriele; Fraternali, Filippo; Binney, James
2017-05-01
Massive and diffuse haloes of hot gas (coronae) are important intermediaries between cosmology and galaxy evolution, storing mass and angular momentum acquired from the cosmic web until eventual accretion on to star-forming discs. We introduce a method to reconstruct the rotation of a galactic corona, based on its angular momentum distribution (AMD). This allows us to investigate in what conditions the angular momentum acquired from tidal torques can be transferred to star-forming discs and explain observed galaxy-scale processes, such as inside-out growth and the build-up of abundance gradients. We find that a simple model of an isothermal corona with a temperature slightly smaller than virial and a cosmologically motivated AMD is in good agreement with galaxy evolution requirements, supporting hot-mode accretion as a viable driver for the evolution of spiral galaxies in a cosmological context. We predict moderately sub-centrifugal rotation close to the disc and slow rotation close to the virial radius. Motivated by the observation that the Milky Way has a relatively hot corona (T ≃ 2 × 106 K), we also explore models with a temperature larger than virial. To be able to drive inside-out growth, these models must be significantly affected by feedback, either mechanical (ejection of low angular momentum material) or thermal (heating of the central regions). However, the agreement with galaxy evolution constraints becomes, in these cases, only marginal, suggesting that our first and simpler model may apply to a larger fraction of galaxy evolution history.
Low intensity vibration of ankle muscles improves balance in elderly persons at high risk of falling
Toosizadeh, Nima; Mohler, Jane
2018-01-01
In our study we examined postural performance of young healthy persons (HY), elderly healthy persons (HE), and elderly persons at high risk of falling (FR). Anterio-posterior (AP) and medio-lateral (ML) ankle and hip angular deviations, as well as linear displacements of the center of mass (COM) were assessed in persons standing with eyes either open or closed, while none, and 40 and 30 Hz vibrations were applied bilaterally to the ankle muscle gastrocnemius. During quiet standing with eyes open, balance parameters in FR group differed from those in healthy groups. ML ankle and hip angular deviations, as well as COM linear displacements were noticeably larger in FR group. During quiet standing with eyes closed, all balance parameters in participants of all groups had a clear trend to increase. During standing with eyes open, 40 Hz vibration increased all but one balance parameter within HY group, ankle angular deviations in HE group, but none in FR group. In response to 30 Hz vibration, only ankle angular deviations and COM linear displacements increased in HY group. There were no changes in both elderly groups. During standing with eyes closed, 40 and 30 Hz vibrations did not produce consistent changes in balance parameters in HY and HE groups. In FR persons, 40 Hz vibration did not change balance parameters. However, in FR groups, 30 Hz vibration decreased ankle and hip angular deviations, and COM linear displacements. The major result of the study is a finding that low intensity vibration of ankle muscles makes balance better in elderly persons at high risk of falling. This result is clinically relevant because it suggests that applying mild vibration to ankle muscles while standing and walking might benefit elderly persons, improving their postural performance and reducing a risk of unexpected falls. PMID:29579098
Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Gul, M. Shahzeb Khan; Gunturk, Bahadir K.
2018-05-01
Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.
Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks.
Gul, M Shahzeb Khan; Gunturk, Bahadir K
2018-05-01
Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.
Stepping-Motion Motor-Control Subsystem For Testing Bearings
NASA Technical Reports Server (NTRS)
Powers, Charles E.
1992-01-01
Control subsystem closed-loop angular-position-control system causing motor and bearing under test to undergo any of variety of continuous or stepping motions. Also used to test bearing-and-motor assemblies, motors, angular-position sensors including rotating shafts, and like. Monitoring subsystem gathers data used to evaluate performance of bearing or other article under test. Monitoring subsystem described in article, "Monitoring Subsystem For Testing Bearings" (GSC-13432).
The formation of high-mass binary star systems
NASA Astrophysics Data System (ADS)
Lund, Kristin; Bonnell, Ian A.
2018-06-01
We develop a semi-analytic model to investigate how accretion onto wide low-mass binary stars can result in a close high-mass binary system. The key ingredient is to allow mass accretion while limiting the gain in angular momentum. We envision this process as being regulated by an external magnetic field during infall. Molecular clouds are made to collapse spherically with material either accreting onto the stars or settling in a disk. Our aim is to determine what initial conditions are needed for the resulting binary to be both massive and close. Whether material accretes, and what happens to the binary separation as a result, depends on the relative size of its specific angular momentum, compared to the specific angular momentum of the binary. When we add a magnetic field we are introducing a torque to the system which is capable of stripping the molecular cloud of some of its angular momentum, and consequently easing the formation of high-mass binaries. Our results suggest that clouds in excess of 1000 M⊙ and radii of 0.5 pc or larger, can easily form binary systems with masses in excess of 25 M⊙ and separations of order 10 R⊙ with magnetic fields of order 100 μG (mass-to-flux ratios of order 5).
Stern-Gerlach-like approach to electron orbital angular momentum measurement
Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.
2017-02-28
Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less
Stern-Gerlach-like approach to electron orbital angular momentum measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.
Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less
Effect of implant angulation and impression technique on impressions of NobelActive implants.
Alexander Hazboun, Gillian Brewer; Masri, Radi; Romberg, Elaine; Kempler, Joanna; Driscoll, Carl F
2015-05-01
How the configuration of the NobelActive internal conical connection affects implant impressions is uncertain. The purpose of this study was to measure the effect in vitro of closed and open tray impression techniques for NobelActive implants placed at various angulations. Six NobelActive implants were placed in a master maxillary cast as follows: 0 degrees of angulation to a line drawn perpendicular to the occlusal plane in the first molar area, 15 degrees of angulation to a line drawn perpendicular to the occlusal plane in the first premolar area, and 30 degrees of angulation to a line drawn perpendicular to the occlusal plane in the lateral incisor area. Twelve open tray and 12 closed tray impressions were made. Occlusal, lateral, and frontal view photographs of the resulting casts were used to measure the linear and angular displacement of implant analogs. Statistical analysis was performed with a factorial analysis of variance (ANOVA), followed by the Tukey HSD test (α=.05). No significant difference was found in the impressions made of NobelActive implants with the open or closed tray technique (linear displacement: F=0.93, P=.34; angular displacement: F=2.09, P=.15). In addition, implant angulation (0, 15, or 30 degrees) had no effect on the linear or angular displacement of impressions (linear displacement: F=2.72, P=.07; angular displacement: F=0.86, P=.43). Finally, no significant interaction was found between impression technique and implant angulation on NobelActive implants (F=0.25, P=.77; F=1.60, P=.20). Within the limitations of this study, impression technique (open vs closed tray) and implant angulation (0, 15, and 30 degrees) had no significant effect on in vitro impressions of NobelActive implants. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Krot, A. M.
2009-04-01
A statistical theory for a cosmological body forming based on the spheroidal body model has been proposed in the works [1]-[4]. This work studies a slowly evolving process of gravitational condensation of a spheroidal body from an infinitely distributed gas-dust substance in space. The equation for an initial evolution of mass density function of a gas-dust cloud is considered here. It is found this equation coincides completely with the analogous equation for a slowly gravitational compressed spheroidal body [5]. A conductive flow in dissipative systems was investigated by I. Prigogine in his works (see, for example, [6], [7]). As it has been found in [2], [5], there exists a conductive antidiffusion flow in a slowly compressible gravitating spheroidal body. Applying the equation of continuity to this conductive flow density we obtain a linear antidiffusion equation [5]. However, if an intensity of conductive flow density increases sharply then the linear antidiffusion equation becomes a nonlinear one. Really, it was pointed to [6] analogous linear equations of diffusion or thermal conductivity transform in nonlinear equations respectively. In this case, the equation of continuity describes a nonlinear mass flow being a source of instabilities into a gravitating spheroidal body because the gravitational compression factor G is a function of not only time but a mass density. Using integral substitution we can reduce a nonlinear antidiffusion equation to the linear antidiffusion equation relative to a new function. If the factor G can be considered as a specific angular momentum then the new function is an angular momentum density. Thus, a nonlinear momentum density flow induces a flow of angular momentum density because streamlines of moving continuous substance come close into a gravitating spheroidal body. Really, the streamline approach leads to more tight interactions of "liquid particles" that implies a superposition of their specific angular momentums. This superposition forms an antidiffusion flow of an angular momentum density into a gravitating spheroidal body. References: [1] Krot, A.M. The statistical model of gravitational interaction of particles. Achievement in Modern Radioelectronics (spec.issue"Cosmic Radiophysics", Moscow), 1996, no.8, pp. 66-81 (in Russian). [2] Krot, A.M. Statistical description of gravitational field: a new approach. Proc. SPIE's 14th Annual Intern.Symp. "AeroSense", Orlando, Florida, USA, 2000, vol.4038, pp.1318-1329. [3] Krot, A.M. The statistical model of rotating and gravitating spheroidal body with the point of view of general relativity. Proc.35th COSPAR Scientific Assembly, Paris, France, 2004, Abstract A-00162. [4] Krot, A. The statistical approach to exploring formation of Solar system. Proc.EGU General Assembly, Vienna, Austria, 2006, Geophys.Res.Abstracts, vol.8, A-00216; SRef-ID: 1607-7962/gra/. [5] Krot, A.M. A statistical approach to investigate the formation of the solar system. Chaos, Solitons and Fractals, 2008, doi:10.1016/j.chaos.2008.06.014. [6] Glansdorff, P. and Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations. London, 1971. [7] Nicolis, G. and Prigogine, I. Self-organization in Nonequilibrium Systems:From Dissipative Structures to Order through Fluctuation. John Willey and Sons, New York etc., 1977.
Attitude output feedback control for rigid spacecraft with finite-time convergence.
Hu, Qinglei; Niu, Guanglin
2017-09-01
The main problem addressed is the quaternion-based attitude stabilization control of rigid spacecraft without angular velocity measurements in the presence of external disturbances and reaction wheel friction as well. As a stepping stone, an angular velocity observer is proposed for the attitude control of a rigid body in the absence of angular velocity measurements. The observer design ensures finite-time convergence of angular velocity state estimation errors irrespective of the control torque or the initial attitude state of the spacecraft. Then, a novel finite-time control law is employed as the controller in which the estimate of the angular velocity is used directly. It is then shown that the observer and the controlled system form a cascaded structure, which allows the application of the finite-time stability theory of cascaded systems to prove the finite-time stability of the closed-loop system. A rigorous analysis of the proposed formulation is provided and numerical simulation studies are presented to help illustrate the effectiveness of the angular-velocity observer for rigid spacecraft attitude control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
The Galactic Isotropic γ-ray Background and Implications for Dark Matter
NASA Astrophysics Data System (ADS)
Campbell, Sheldon S.; Kwa, Anna; Kaplinghat, Manoj
2018-06-01
We present an analysis of the radial angular profile of the galacto-isotropic (GI) γ-ray flux-the statistically uniform flux in angular annuli centred on the Galactic centre. Two different approaches are used to measure the GI flux profile in 85 months of Fermi-LAT data: the BDS statistical method which identifies spatial correlations, and a new Poisson ordered-pixel method which identifies non-Poisson contributions. Both methods produce similar GI flux profiles. The GI flux profile is well-described by an existing model of bremsstrahlung, π0 production, inverse Compton scattering, and the isotropic background. Discrepancies with data in our full-sky model are not present in the GI component, and are therefore due to mis-modelling of the non-GI emission. Dark matter annihilation constraints based solely on the observed GI profile are close to the thermal WIMP cross section below 100 GeV, for fixed models of the dark matter density profile and astrophysical γ-ray foregrounds. Refined measurements of the GI profile are expected to improve these constraints by a factor of a few.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Yu; Scheeres, D. J.; Busch, Michael W.
The 4.5 km long near-Earth asteroid 4179 Toutatis has made close Earth flybys approximately every four years between 1992 and 2012, and has been observed with high-resolution radar imaging during each approach. Its most recent Earth flyby in 2012 December was observed extensively at the Goldstone and Very Large Array radar telescopes. In this paper, Toutatis' spin state dynamics are estimated from observations of five flybys between 1992 and 2008. Observations were used to fit Toutatis' spin state dynamics in a least-squares sense, with the solar and terrestrial tidal torques incorporated in the dynamical model. The estimated parameters are Toutatis'more » Euler angles, angular velocity, moments of inertia, and the center-of-mass-center-of-figure offset. The spin state dynamics as well as the uncertainties of the Euler angles and angular velocity of the converged solution are then propagated to 2012 December in order to compare the dynamical model to the most recent Toutatis observations. The same technique of rotational dynamics estimation can be applied to any other tumbling body, given sufficiently accurate observations.« less
A novel approach to piecewise analytic agricultural machinery path reconstruction
NASA Astrophysics Data System (ADS)
Wörz, Sascha; Mederle, Michael; Heizinger, Valentin; Bernhardt, Heinz
2017-12-01
Before analysing machinery operation in fields, it has to be coped with the problem that the GPS signals of GPS receivers located on the machines contain measurement noise, are time-discrete, and the underlying physical system describing the positions, axial and absolute velocities, angular rates and angular orientation of the operating machines during the whole working time are unknown. This research work presents a new three-dimensional mathematical approach using kinematic relations based on control variables as Euler angular velocities and angles and a discrete target control problem, such that the state control function is given by the sum of squared residuals involving the state and control variables to get such a physical system, which yields a noise-free and piecewise analytic representation of the positions, velocities, angular rates and angular orientation. It can be used for a further detailed study and analysis of the problem of why agricultural vehicles operate in practice as they do.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, K; Li, X; Liu, B
Purpose: To accurately measure CT bow-tie profiles from various manufacturers and to provide non-proprietary information for CT system modeling. Methods: A GOS-based linear detector (0.8 mm per pixel and 51.2 cm in length) with a fast data sampling speed (0.24 ms/sample) was used to measure the relative profiles of bow-tie filters from a collection of eight CT scanners by three different vendors, GE (LS Xtra, LS VCT, Discovery HD750), Siemens (Sensation 64, Edge, Flash, Force), and Philips (iBrilliance 256). The linear detector was first calibrated for its energy response within typical CT beam quality ranges and compared with an ionmore » chamber and analytical modeling (SPECTRA and TASMIP). A geometrical calibration process was developed to determine key parameters including the distance from the focal spot to the linear detector, the angular increment of the gantry at each data sampling, the location of the central x-ray on the linear detector, and the angular response of the detector pixel. Measurements were performed under axial-scan modes for most representative bow-tie filters and kV selections from each scanner. Bow-tie profiles were determined by re-binning the measured rotational data with an angular accuracy of 0.1 degree using the calibrated geometrical parameters. Results: The linear detector demonstrated an energy response as a solid state detector, which is close to the CT imaging detector. The geometrical calibration was proven to be sufficiently accurate (< 1mm in error for distances >550 mm) and the bow-tie profiles measured from rotational mode matched closely to those from the gantry-stationary mode. Accurate profiles were determined for a total of 21 bow-tie filters and 83 filter/kV combinations from the abovementioned scanner models. Conclusion: A new improved approach of CT bow-tie measurement was proposed and accurate bow-tie profiles were provided for a broad list of CT scanner models.« less
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Chr. Dudder, A.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koehler, N. M.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; López, J. A.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Meng, X.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganini, M.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; St. Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spannowsky, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, M.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration
2017-02-01
The W boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton-proton collisions at a centre-of-mass energy √{ s} = 8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb-1. The focus is on the contributions to W +jets processes from real W emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic W decay.
Angular relational signature-based chest radiograph image view classification.
Santosh, K C; Wendling, Laurent
2018-01-22
In a computer-aided diagnosis (CAD) system, especially for chest radiograph or chest X-ray (CXR) screening, CXR image view information is required. Automatically separating CXR image view, frontal and lateral can ease subsequent CXR screening process, since the techniques may not equally work for both views. We present a novel technique to classify frontal and lateral CXR images, where we introduce angular relational signature through force histogram to extract features and apply three different state-of-the-art classifiers: multi-layer perceptron, random forest, and support vector machine to make a decision. We validated our fully automatic technique on a set of 8100 images hosted by the U.S. National Library of Medicine (NLM), National Institutes of Health (NIH), and achieved an accuracy close to 100%. Our method outperforms the state-of-the-art methods in terms of processing time (less than or close to 2 s for the whole test data) while the accuracies can be compared, and therefore, it justifies its practicality. Graphical Abstract Interpreting chest X-ray (CXR) through the angular relational signature.
NASA Technical Reports Server (NTRS)
Miernecki, Maciej; Wigneron, Jean-Pierre; Lopez-Baeza, Ernesto; Kerr, Yann; DeJeu, Richard; DeLannoy, Gabielle J. M.; Jackson, Tom J.; O'Neill, Peggy E.; Shwank, Mike; Moran, Roberto Fernandez;
2014-01-01
The objective of this study was to compare several approaches to soil moisture (SM) retrieval using L-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30-60). Based on a three year data set (2010-2012), several SM retrieval approaches developed for spaceborne missions including AMSR-E (Advanced Microwave Scanning Radiometer for EOS), SMAP (Soil Moisture Active Passive) and SMOS were compared. The approaches include: the Single Channel Algorithm (SCA) for horizontal (SCA-H) and vertical (SCA-V) polarizations, the Dual Channel Algorithm (DCA), the Land Parameter Retrieval Model (LPRM) and two simplified approaches based on statistical regressions (referred to as 'Mattar' and 'Saleh'). Time series of vegetation indices required for three of the algorithms (SCA-H, SCA-V and Mattar) were obtained from MODIS observations. The SM retrievals were evaluated against reference SM values estimated from a multiangular 2-Parameter inversion approach. The results obtained with the current base line algorithms developed for SMAP (SCA-H and -V) are in very good agreement with the reference SM data set derived from the multi-angular observations (R2 around 0.90, RMSE varying between 0.035 and 0.056 m3m3 for several retrieval configurations). This result showed that, provided the relationship between vegetation optical depth and a remotely-sensed vegetation index can be calibrated, the SCA algorithms can provide results very close to those obtained from multi-angular observations in this study area. The approaches based on statistical regressions provided similar results and the best accuracy was obtained with the Saleh methods based on either bi-angular or bipolarization observations (R2 around 0.93, RMSE around 0.035 m3m3). The LPRM and DCA algorithms were found to be slightly less successful in retrieving the 'reference' SM time series (R2 around 0.75, RMSE around 0.055 m3m3). However, the two above approaches have the great advantage of not requiring any model calibrations previous to the SM retrievals.
Closed-form integrator for the quaternion (euler angle) kinematics equations
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor)
2000-01-01
The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.
Logarithmic Compression of Sensory Signals within the Dendritic Tree of a Collision-Sensitive Neuron
2012-01-01
Neurons in a variety of species, both vertebrate and invertebrate, encode the kinematics of objects approaching on a collision course through a time-varying firing rate profile that initially increases, then peaks, and eventually decays as collision becomes imminent. In this temporal profile, the peak firing rate signals when the approaching object's subtended size reaches an angular threshold, an event which has been related to the timing of escape behaviors. In a locust neuron called the lobula giant motion detector (LGMD), the biophysical basis of this angular threshold computation relies on a multiplicative combination of the object's angular size and speed, achieved through a logarithmic-exponential transform. To understand how this transform is implemented, we modeled the encoding of angular velocity along the pathway leading to the LGMD based on the experimentally determined activation pattern of its presynaptic neurons. These simulations show that the logarithmic transform of angular speed occurs between the synaptic conductances activated by the approaching object onto the LGMD's dendritic tree and its membrane potential at the spike initiation zone. Thus, we demonstrate an example of how a single neuron's dendritic tree implements a mathematical step in a neural computation important for natural behavior. PMID:22492048
Palumbo, Letizia; Ruta, Nicole; Bertamini, Marco
2015-01-01
Most people prefer smoothly curved shapes over more angular shapes. We investigated the origin of this effect using abstract shapes and implicit measures of semantic association and preference. In Experiment 1 we used a multidimensional Implicit Association Test (IAT) to verify the strength of the association of curved and angular polygons with danger (safe vs. danger words), valence (positive vs. negative words) and gender (female vs. male names). Results showed that curved polygons were associated with safe and positive concepts and with female names, whereas angular polygons were associated with danger and negative concepts and with male names. Experiment 2 used a different implicit measure, which avoided any need to categorise the stimuli. Using a revised version of the Stimulus Response Compatibility (SRC) task we tested with a stick figure (i.e., the manikin) approach and avoidance reactions to curved and angular polygons. We found that RTs for approaching vs. avoiding angular polygons did not differ, even in the condition where the angles were more pronounced. By contrast participants were faster and more accurate when moving the manikin towards curved shapes. Experiment 2 suggests that preference for curvature cannot derive entirely from an association of angles with threat. We conclude that smoothly curved contours make these abstract shapes more pleasant. Further studies are needed to clarify the nature of such a preference.
Palumbo, Letizia; Ruta, Nicole; Bertamini, Marco
2015-01-01
Most people prefer smoothly curved shapes over more angular shapes. We investigated the origin of this effect using abstract shapes and implicit measures of semantic association and preference. In Experiment 1 we used a multidimensional Implicit Association Test (IAT) to verify the strength of the association of curved and angular polygons with danger (safe vs. danger words), valence (positive vs. negative words) and gender (female vs. male names). Results showed that curved polygons were associated with safe and positive concepts and with female names, whereas angular polygons were associated with danger and negative concepts and with male names. Experiment 2 used a different implicit measure, which avoided any need to categorise the stimuli. Using a revised version of the Stimulus Response Compatibility (SRC) task we tested with a stick figure (i.e., the manikin) approach and avoidance reactions to curved and angular polygons. We found that RTs for approaching vs. avoiding angular polygons did not differ, even in the condition where the angles were more pronounced. By contrast participants were faster and more accurate when moving the manikin towards curved shapes. Experiment 2 suggests that preference for curvature cannot derive entirely from an association of angles with threat. We conclude that smoothly curved contours make these abstract shapes more pleasant. Further studies are needed to clarify the nature of such a preference. PMID:26460610
A new possible picture of the hadron structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokrovsky, Yury E.
A new chiral-scale invariant version of the bag model (CSB) is developed and applied to calculations of masses and radii for single bag states. The mass formula of the CSB model contains no free parameters and connects masses and radii of the bags with fundamental QCD scales, namely with {lambda}{sub QCD},
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
The W boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton–proton collisions at a centre-of-mass energy √s=8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb -1 . The focus is on the contributions to W+jets processes from real W emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data inmore » terms of the absolute cross-section and the angular distributions of the muon from the leptonic W decay.« less
Aaboud, M.; Aad, G.; Abbott, B.; ...
2016-12-06
The W boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton–proton collisions at a centre-of-mass energy √s=8 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb -1 . The focus is on the contributions to W+jets processes from real W emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data inmore » terms of the absolute cross-section and the angular distributions of the muon from the leptonic W decay.« less
Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam
NASA Astrophysics Data System (ADS)
Romero, J.; Giovannini, D.; McLaren, M. G.; Galvez, E. J.; Forbes, A.; Padgett, M. J.
2012-08-01
We report orbital angular momentum (OAM) and angle correlations between signal and idler photons observed when the nonlinear crystal used in spontaneous parametric down-conversion is illuminated by a non-fundamental Gaussian pump beam. We introduce a π-phase step to the transverse profile of the pump, before it impinges on the crystal to create a phase-flipped Gaussian mode, which is a close approximation to an HG10 Hermite-Gaussian-like beam. The correlations in OAM and angular position are then measured holographically using two separate spatial light modulators in the signal and idler arms. We show the transfer of the OAM spectrum of the pump to the down-converted fields, manifested as a redistribution in the OAM correlations consistent with OAM conservation. This corresponds to a modulation of the angular position correlations consistent with the Fourier relationship between the OAM and angle.
Optoelectronic simulation of GaAs solar cells with angularly selective filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, Tobias, E-mail: tobias.kraus@ise.fraunhofer.de; Höhn, Oliver; Hauser, Hubert
We discuss the influence of angularly selective filters on thin film gallium arsenide solar cells. For this reason, the detailed balance model was refined to fit our needs with respect to Auger recombination, reflection, transmission, and realistic absorption. For calculating real systems, an approach was made to include optical effects of angularly selective filters into electron-hole dynamic equations implemented in PC1D, a one dimensional solar cell calculation tool. With this approach, we find a relative V{sub oc} increase of 5% for an idealized 100 nm GaAs cell, including Auger recombination.
NASA Astrophysics Data System (ADS)
Tang, Tao; Cai, Huaxiang; Huang, Yongmei; Ren, Ge
2015-10-01
A feedforward control based on data fusion is proposed to enhance closed-loop performance. The target trajectory as the observed value of a Kalman filter is recovered by synthesizing line-of-sight error and angular position from the encoder. A Kalman filter based on a Singer acceleration model is employed to estimate the target velocity. In this control scheme, the control stability is influenced by the bandwidth of the Kalman filter and time misalignment. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability, which shows that the Kalman filter is the major factor that affects the control stability. The feedforward control proposed here is verified through simulations and experiments.
The azimuthal component of Poynting's vector and the angular momentum of light
NASA Astrophysics Data System (ADS)
Cameron, Robert P.; Speirits, Fiona C.; Gilson, Claire R.; Allen, L.; Barnett, Stephen M.
2015-12-01
The usual description in basic electromagnetic theory of the linear and angular momenta of light is centred upon the identification of Poynting's vector as the linear momentum density and its cross product with position, or azimuthal component, as the angular momentum density. This seemingly reasonable approach brings with it peculiarities, however, in particular with regards to the separation of angular momentum into orbital and spin contributions, which has sometimes been regarded as contrived. In the present paper, we observe that densities are not unique, which leads us to ask whether the usual description is, in fact, the most natural choice. To answer this, we adopt a fundamental rather than heuristic approach by first identifying appropriate symmetries of Maxwell's equations and subsequently applying Noether's theorem to obtain associated conservation laws. We do not arrive at the usual description. Rather, an equally acceptable one in which the relationship between linear and angular momenta is nevertheless more subtle and in which orbital and spin contributions emerge separately and with transparent forms.
NASA Astrophysics Data System (ADS)
Wright, Melissa J.
1998-04-01
There are estimated to be over 150,000 near-earth asteroids in our solar system that are large enough to pose a significant threat to Earth. In order to determine which of them may be a hazard in the future, their orbits must be propagated through time. The goal of this investigation was to see if using only Kepler's algorithm, which ignores the gravitational pull of other planets, our moon, and Jupiter, was sufficient to predict close encounters with Earth. The results were very rough, and about half of the closest approaches were near the dates of those predicted by more refined models. The distances were in general off by a magnitude often, showing that asteroid orbits must be very perturbed by other planets, particularly Jupiter, over time and these must be taken into account for a precise distance estimate. A noted correlation was that the difference in the angular distance from the I vector was very small when the asteroid and Earth were supposed to be closest. In conclusion, using Kepler's algorithm alone can narrow down intervals of time of nearest approaches, which can then be looked at using more accurate propagators.
Osma Rueda, Jose Luis; Oliveros Vargas, Alejandra; Sosa, Cristian David
2017-03-01
Haemophilia A is the cause of diverse musculoskeletal disorders such as ankylosis, arthritis and associated angular deformity. There are few reported cases in patients with haemophilia A in which simultaneous supracondylar femoral osteotomy and knee joint replacement has been performed to treat knee angular deformity and ankylosis. Here we present the case of an 18year old male patient, with an evolution of two years, who was unable to walk due to the presence of an untreated supracondylar fracture in the left femur and ipsilateral haemophilic arthropathy which led him to develop an ankylosis in flexion close to 70°. Supracondylar osteotomy of the femur and of the left knee joint was performed in the same surgical procedure. Bleeding control was achieved with a protocol of factor VIII supply. The patient was followed up for eight years, and recovered a 0 to 90° range of motion and regained his gait pattern. This case potentially provides a new alternative approach for haemophilia patients presenting with angular deformities and complex ankylosis. We suggest that mixed lesions of intra- and extra-articular deformity in haemophiliac patients can be corrected during the same surgical intervention. In addition, interdisciplinary management including haematology for operative and immediately postoperative control of intra-bleeding using factor VIII supply and control, combined with a controlled rehabilitation plan, can yield good functional outcomes in patients with haemophilic arthropathy. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hanson, Donald B.; Parzych, David J.
1993-01-01
This report presents the derivation of a frequency domain theory and working equations for radiation of propeller harmonic noise in the presence of angular inflow. In applying the acoustic analogy, integration over the tangential coordinate of the source region is performed numerically, permitting the equations to be solved without approximation for any degree of angular inflow. Inflow angle is specified in terms of yaw, pitch, and roll angles of the aircraft. Since these can be arbitrarily large, the analysis applies with equal accuracy to propellers and helicopter rotors. For thickness and loading, the derivation is given in complete detail with working equations for near and far field. However, the quadrupole derivation has been carried only far enough to show feasibility of the numerical approach. Explicit formulas are presented for computation of source elements, evaluation of Green's functions, and location of observer points in various visual and retarded coordinate systems. The resulting computer program, called WOBBLE has been written in FORTRAN and follows the notation of this report very closely. The new theory is explored to establish the effects of varying inflow angle on axial and circumferential directivity. Also, parametric studies were performed to evaluate various phenomena outside the capabilities of earlier theories, such as an unsteady thickness effect. Validity of the theory was established by comparison with test data from conventional propellers and Prop Fans in flight and in wind tunnels under a variety of operating conditions and inflow angles.
Area-angular-momentum inequality for axisymmetric black holes.
Dain, Sergio; Reiris, Martin
2011-07-29
We prove the local inequality A≥8π|J|, where A and J are the area and angular momentum of any axially symmetric closed stable minimal surface in an axially symmetric maximal initial data. From this theorem it is proved that the inequality is satisfied for any surface on complete asymptotically flat maximal axisymmetric data. In particular it holds for marginal or event horizons of black holes. Hence, we prove the validity of this inequality for all dynamical (not necessarily near equilibrium) axially symmetric black holes.
Guo, Zongyi; Chang, Jing; Guo, Jianguo; Zhou, Jun
2018-06-01
This paper focuses on the adaptive twisting sliding mode control for the Hypersonic Reentry Vehicles (HRVs) attitude tracking issue. The HRV attitude tracking model is transformed into the error dynamics in matched structure, whereas an unmeasurable state is redefined by lumping the existing unmatched disturbance with the angular rate. Hence, an adaptive finite-time observer is used to estimate the unknown state. Then, an adaptive twisting algorithm is proposed for systems subject to disturbances with unknown bounds. The stability of the proposed observer-based adaptive twisting approach is guaranteed, and the case of noisy measurement is analyzed. Also, the developed control law avoids the aggressive chattering phenomenon of the existing adaptive twisting approaches because the adaptive gains decrease close to the disturbance once the trajectories reach the sliding surface. Finally, numerical simulations on the attitude control of the HRV are conducted to verify the effectiveness and benefit of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Mode-sum regularization of ⟨ϕ2⟩ in the angular-splitting method
NASA Astrophysics Data System (ADS)
Levi, Adam; Ori, Amos
2016-08-01
The computation of the renormalized stress-energy tensor or ⟨ϕ2⟩ren in curved spacetime is a challenging task, at both the conceptual and technical levels. Recently we developed a new approach to compute such renormalized quantities in asymptotically flat curved spacetimes, based on the point-splitting procedure. Our approach requires the spacetime to admit some symmetry. We already implemented this approach to compute ⟨ϕ2⟩ren in a stationary spacetime using t splitting, namely splitting in the time-translation direction. Here we present the angular-splitting version of this approach, aimed for computing renormalized quantities in a general (possibly dynamical) spherically symmetric spacetime. To illustrate how the angular-splitting method works, we use it here to compute ⟨ϕ2⟩ren for a quantum massless scalar field in Schwarzschild background, in various quantum states (Boulware, Unruh, and Hartle-Hawking states). We find excellent agreement with the results obtained from the t -splitting variant and also with other methods. Our main goal in pursuing this new mode-sum approach was to enable the computation of the renormalized stress-energy tensor in a dynamical spherically symmetric background, e.g. an evaporating black hole. The angular-splitting variant presented here is most suitable to this purpose.
A Universal Angular Momentum Profile for Dark Matter Halos
NASA Astrophysics Data System (ADS)
Liao, Shihong; Chen, Jianxiong; Chu, M.-C.
2017-07-01
The angular momentum distribution in dark matter halos and galaxies is a key ingredient in understanding their formation. Specifically, the internal distribution of angular momenta is closely related to the formation of disk galaxies. In this article, we use halos identified from a high-resolution simulation, the Bolshoi simulation, to study the spatial distribution of specific angular momenta, j(r,θ ). We show that by stacking halos with similar masses to increase the signal-to-noise ratio, the profile can be fitted as a simple function, j{(r,θ )={j}s{\\sin }2{(θ /{θ }s)(r/{r}s)}2/(1+r/{r}s)}4, with three free parameters, {j}s,{r}s, and {θ }s. Specifically, j s correlates with the halo mass M vir as {j}s\\propto {M}{vir}2/3, r s has a weak dependence on the halo mass as {r}s\\propto {M}{vir}0.040, and {θ }s is independent of M vir. This profile agrees with that from a rigid shell model, though its origin is unclear. Our universal specific angular momentum profile j(r,θ ) is useful in modeling the angular momenta of halos. Furthermore, by using an empirical stellar mass-halo mass relation, we can infer the average angular momentum distribution of a dark matter halo. The specific angular momentum-stellar mass relation within a halo computed from our profile is shown to share a similar shape as that from the observed disk galaxies.
Smoothed dissipative particle dynamics with angular momentum conservation
NASA Astrophysics Data System (ADS)
Müller, Kathrin; Fedosov, Dmitry A.; Gompper, Gerhard
2015-01-01
Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier-Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor-Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.
NASA Astrophysics Data System (ADS)
Ly, Canh
2004-08-01
Scan-MUSIC algorithm, developed by the U.S. Army Research Laboratory (ARL), improves angular resolution for target detection with the use of a single rotatable radar scanning the angular region of interest. This algorithm has been adapted and extended from the MUSIC algorithm that has been used for a linear sensor array. Previously, it was shown that the SMUSIC algorithm and a Millimeter Wave radar can be used to resolve two closely spaced point targets that exhibited constructive interference, but not for the targets that exhibited destructive interference. Therefore, there were some limitations of the algorithm for the point targets. In this paper, the SMUSIC algorithm is applied to a problem of resolving real complex scatterer-type targets, which is more useful and of greater practical interest, particular for the future Army radar system. The paper presents results of the angular resolution of the targets, an M60 tank and an M113 Armored Personnel Carrier (APC), that are within the mainlobe of a Κα-band radar antenna. In particular, we applied the algorithm to resolve centroids of the targets that were placed within the beamwidth of the antenna. The collected coherent data using the stepped-frequency radar were compute magnitudely for the SMUSIC calculation. Even though there were significantly different signal returns for different orientations and offsets of the two targets, we resolved those two target centroids when they were as close as about 1/3 of the antenna beamwidth.
Tan, John F; Masani, Kei; Vette, Albert H; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing.
Tan, John F.; Masani, Kei; Vette, Albert H.; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R.
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing. PMID:27350992
Twisted molecular excitons as mediators for changing the angular momentum of light
NASA Astrophysics Data System (ADS)
Zang, Xiaoning; Lusk, Mark T.
2017-07-01
Molecules with CN or CN h symmetry can absorb quanta of optical angular momentum to generate twisted excitons with well-defined quasiangular momenta of their own. Angular momentum is conserved in such interactions at the level of a paraxial approximation for the light beam. A sequence of absorption events can thus be used to create a range of excitonic angular momenta. Subsequent decay can produce radiation with a single angular momentum equal to that accumulated. Such molecules can thus be viewed as mediators for changing the angular momentum of light. This sidesteps the need to exploit nonlinear light-matter interactions based on higher-order susceptibilities. A tight-binding paradigm is used to verify angular momentum conservation and demonstrate how it can be exploited to change the angular momentum of light. The approach is then extended to a time-dependent density functional theory setting where the key results are shown to hold in a many-body, multilevel setting.
Single-axis gyroscopic motion with uncertain angular velocity about spin axis
NASA Technical Reports Server (NTRS)
Singh, S. N.
1977-01-01
A differential game approach is presented for studying the response of a gyro by treating the controlled angular velocity about the input axis as the evader, and the bounded but uncertain angular velocity about the spin axis as the pursuer. When the uncertain angular velocity about the spin axis desires to force the gyro to saturation a differential game problem with two terminal surfaces results, whereas when the evader desires to attain the equilibrium state the usual game with single terminal manifold arises. A barrier, delineating the capture zone (CZ) in which the gyro can attain saturation and the escape zone (EZ) in which the evader avoids saturation is obtained. The CZ is further delineated into two subregions such that the states in each subregion can be forced on a definite target manifold. The application of the game theoretic approach to Control Moment Gyro is briefly discussed.
NASA Astrophysics Data System (ADS)
Zheng, Youqi; Choi, Sooyoung; Lee, Deokjung
2017-12-01
A new approach based on the method of characteristics (MOC) is proposed to solve the neutron transport equation. A new three-dimensional (3D) spatial discretization is applied to avoid the instability issue of the transverse leakage iteration of the traditional 2D/1D approach. In this new approach, the axial and radial variables are discretized in two different ways: the linear expansion is performed in the axial direction, then, the 3D solution of the angular flux is transformed to be the planar solution of 2D angular expansion moments, which are solved by the planar MOC sweeping. Based on the boundary and interface continuity conditions, the 2D expansion moment solution is equivalently transformed to be the solution of the axially averaged angular flux. Using the piecewise averaged angular flux at the top and bottom surfaces of 3D meshes, the planes are coupled to give the 3D angular flux distribution. The 3D CMFD linear system is established from the surface net current of every 3D pin-mesh to accelerate the convergence of power iteration. The STREAM code is extended to be capable of handling 3D problems based on the new approach. Several benchmarks are tested to verify its feasibility and accuracy, including the 3D homogeneous benchmarks and heterogeneous benchmarks. The computational sensitivity is discussed. The results show good accuracy in all tests. With the CMFD acceleration, the convergence is stable. In addition, a pin-cell problem with void gap is calculated. This shows the advantage compared to the traditional 2D/1D MOC methods.
The γ p →p η η reaction in an effective Lagrangian model
NASA Astrophysics Data System (ADS)
Liu, Bo-Chao; Chen, Shao-Fei
2017-11-01
In this paper, we investigate the γ p →p η η reaction within an effective Lagrangian approach and isobar model. We consider the contributions from the intermediate N*(1535 ) , N*(1650 ) , N*(1710 ) , and N*(1720 ) isobars which finally decay to the N η state. It is found that the excitation of the N*(1535 ) dominates this reaction close to threshold and ρ meson exchange plays the most important role for the excitation of nucleon resonances. Therefore, this reaction offers a potentially good place to study the properties of nucleon resonances and their couplings to the N ρ channel. Predictions for angular distributions and invariant mass spectra of final particles are also presented for future comparison with data.
Correction of eddy current distortions in high angular resolution diffusion imaging.
Zhuang, Jiancheng; Lu, Zhong-Lin; Vidal, Christine Bouteiller; Damasio, Hanna
2013-06-01
To correct distortions caused by eddy currents induced by large diffusion gradients during high angular resolution diffusion imaging without any auxiliary reference scans. Image distortion parameters were obtained by image coregistration, performed only between diffusion-weighted images with close diffusion gradient orientations. A linear model that describes distortion parameters (translation, scale, and shear) as a function of diffusion gradient directions was numerically computed to allow individualized distortion correction for every diffusion-weighted image. The assumptions of the algorithm were successfully verified in a series of experiments on phantom and human scans. Application of the proposed algorithm in high angular resolution diffusion images markedly reduced eddy current distortions when compared to results obtained with previously published methods. The method can correct eddy current artifacts in the high angular resolution diffusion images, and it avoids the problematic procedure of cross-correlating images with significantly different contrasts resulting from very different gradient orientations or strengths. Copyright © 2012 Wiley Periodicals, Inc.
Joint angle sensors for closed-loop control
NASA Astrophysics Data System (ADS)
Ko, Wen H.; Miao, Chih-Lei
In order to substitute braces that have built-in goniometers and to provide feedback signals for closed loop control of lower extremity Functional Neuromuscular System in paraplegics, a stretchable capacitive sensor was developed to accurately detect angular movement in joints. Promising clinical evaluations on the knee joints of a paraplegic and a volunteer were done. The evaluations show great promise for the possibility of implantation applications.
NASA Astrophysics Data System (ADS)
Krtička, J.; Kurfürst, P.; Krtičková, I.
2015-01-01
Context. Evolutionary models of fast-rotating stars show that the stellar rotational velocity may approach the critical speed. Critically rotating stars cannot spin up more, therefore they lose their excess angular momentum through an equatorial outflowing disk. The radial extension of such disks is unknown, partly because we lack information about the radial variations of the viscosity. Aims: We study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. Methods: We used analytic calculations to study the stability of outflowing disks submerged in the magnetic field. Results: The magnetorotational instability develops close to the star if the plasma parameter is large enough. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Conclusions: The magnetorotational instability is a plausible source of anomalous viscosity in outflowing disks. This is also true in the region where the disk radial velocity approaches the sound speed. The disk sonic radius can therefore be roughly considered as an effective outer disk radius, although disk material may escape from the star to the insterstellar medium. The radial profile of the angular momentum-loss rate already flattens there, consequently, the disk mass-loss rate can be calculated with the sonic radius as the effective disk outer radius. We discuss a possible observation determination of the outer disk radius by using Be and Be/X-ray binaries.
Low-cost precision rotary index calibration
NASA Astrophysics Data System (ADS)
Ng, T. W.; Lim, T. S.
2005-08-01
The traditional method for calibrating angular indexing repeatability of rotary axes on machine tools and measuring equipment is with a precision polygon (usually 12 sided) and an autocollimator or angular interferometer. Such a setup is typically expensive. Here, we propose a far more cost-effective approach that uses just a laser, diffractive optical element, and CCD camera. We show that significantly high accuracies can be achieved for angular index calibration.
NASA Astrophysics Data System (ADS)
Rogatko, Marek
2014-02-01
Mass, angular momentum, and charge inequalities for axisymmetric maximal time-symmetric initial data invariant under an action of U(1) group, in Einstein-Maxwell-axion-dilaton gravity being the low-energy limit of the heterotic string theory, is established. We assume that a data set with two asymptotically flat regions is given on a smooth simply connected manifold. We also pay attention to the area momentum charge inequalities for a closed orientable two-dimensional spacelike surface embedded in the spacetime of the considered theory.
MIPS - The Multiband Imaging Photometer for SIRTF. [Multiband Imaging Photometer for SIRTF
NASA Technical Reports Server (NTRS)
Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Arens, J.; Beichman, C.; Gautier, T. N.; Werner, M.
1986-01-01
The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 micron spectral region. It will use high performance photoconductive detectors from 3 to 200 micron with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.
MIPS - The Multiband Imaging Photometer for SIRTF
NASA Technical Reports Server (NTRS)
Rieke, G. H.; Lada, C.; Lebofsky, M.; Low, F.; Strittmatter, P.; Young, E.; Beichman, C.; Gautier, T. N.; Mould, J.; Werner, M.
1986-01-01
The Multiband Imaging Photometer System (MIPS) for SIRTF is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700 microns spectral region. It will use high performance photoconductive detectors from 3 to 200 microns with integrating JFET amplifiers. From 200 to 700 microns, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution.
Angular correlations in pair production at the LHC in the parton Reggeization approach
NASA Astrophysics Data System (ADS)
Karpishkov, Anton; Nefedov, Maxim; Saleev, Vladimir
2017-10-01
We calculate angular correlation spectra between beauty (B) and anti-beauty mesons in proton-proton collisions in the leading order approximation of the parton Reggeization approach consistently merged with the next-to-leading order corrections from the emission of additional hard gluon (NLO* approximation). To describe b-quark hadronization we use the universal scale-depended parton-to-meson fragmentation functions extracted from the combined e+e- annihilation data. The Kimber-Martin-Ryskin model for the unintegrated parton distribution functions in a proton is implied. We have obtained good agreement between our predictions and data from the CMS Collaboration at the energy TeV for angular correlations within uncertainties and without free parameters.
The complex phase gradient method applied to leaky Lamb waves.
Lenoir, O; Conoir, J M; Izbicki, J L
2002-10-01
The classical phase gradient method applied to the characterization of the angular resonances of an immersed elastic plate, i.e., the angular poles of its reflection coefficient R, was proved to be efficient when their real parts are close to the real zeros of R and their imaginary parts are not too large compared to their real parts. This method consists of plotting the partial reflection coefficient phase derivative with respect to the sine of the incidence angle, considered as real, versus incidence angle. In the vicinity of a resonance, this curve exhibits a Breit-Wigner shape, whose minimum is located at the pole real part and whose amplitude is the inverse of its imaginary part. However, when the imaginary part is large, this method is not sufficiently accurate compared to the exact calculation of the complex angular root. An improvement of this method consists of plotting, in 3D, in the complex angle plane and at a given frequency, the angular phase derivative with respect to the real part of the sine of the incidence angle, considered as complex. When the angular pole is reached, the 3D curve shows a clear-cut transition whose position is easily obtained.
Estimation of the center of rotation using wearable magneto-inertial sensors.
Crabolu, M; Pani, D; Raffo, L; Cereatti, A
2016-12-08
Determining the center of rotation (CoR) of joints is fundamental to the field of human movement analysis. CoR can be determined using a magneto-inertial measurement unit (MIMU) using a functional approach requiring a calibration exercise. We systematically investigated the influence of different experimental conditions that can affect precision and accuracy while estimating the CoR, such as (a) angular joint velocity, (b) distance between the MIMU and the CoR, (c) type of the joint motion implemented, (d) amplitude of the angular range of motion, (e) model of the MIMU used for data recording, (f) amplitude of additive noise on inertial signals, and (g) amplitude of the errors in the MIMU orientation. The evaluation process was articulated at three levels: assessment through experiments using a mechanical device, mathematical simulation, and an analytical propagation model of the noise. The results reveal that joint angular velocity significantly impacted CoR identification, and hence, slow joint movement should be avoided. An accurate estimation of the MIMU orientation is also fundamental for accurately subtracting the contribution owing to gravity to obtain the coordinate acceleration. The unit should be preferably attached close to the CoR, but both type and range of motion do not appear to be critical. When the proposed methodology is correctly implemented, error in the CoR estimates is expected to be <3mm (best estimates=2±0.5mm). The findings of the present study foster the need to further investigate this methodology for application in human subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.
New method for evaluation of cervical vertebral maturation based on angular measurements.
Alhadlaq, Adel M; Al-Shayea, Eman I
2013-04-01
To investigate the validity of a new approach to assess the cervical vertebral maturation based on angular measurements of the lower border concavity of cervical vertebral bodies. Hand-wrist and lateral cephalometric radiographs of 197 male subjects with age range of 10-15 years attending the orthodontic clinic at King Saud University, Riyadh, Kingdom of Saudi Arabia were utilized. The study was carried out between September 2009 and May 2011. The study sample was divided into 6 groups (group 1: 10 years to group 6: 15 years) based on the chronological age of the subject. The skeletal age of the subjects was determined using Greulich and Pyle's standard radiographic atlas, and skeletal maturation was assessed by Fishman's skeletal maturity indicators. The cervical vertebral maturation (CVM) of subjects was determined using angular measurements of the second, third, and fourth cervical vertebral bodies. The validity of the newly developed method was assessed by examining the correlation between CVM stages determined by the angular measurements and the skeletal maturation level as determined by the standard hand-wrist methods. A significant correlation (r=0.94) was found between the angular CVM stages and the skeletal age determined by Greulich and Pyle's atlas from hand-wrist radiographs. Also, a high correlation (r=0.94) was found between the angular CVM stages and the Fishman's hand-wrist skeletal maturity indicators. The new angular measurement approach to determine CVM is valid and has the potential to be applied in assessing skeletal maturity level in growing male children.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de
Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPDmore » formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.« less
Large-Angle Magnetic Suspension (LAMS)
NASA Technical Reports Server (NTRS)
Oglevie, Ronald E.; Eisenhaure, David B.; Downer, James R.
1988-01-01
Spherical LAMS is magnetic syspension that provides dual functions of magnetic bearing and rotorgimbal system. Provides two degrees of angular freedom within single magnetic suspension system. Approach employs spherically-shaped magnetic-gap surfaces to achieve much-larger angular freedom than available from previous suspensions.
NASA Astrophysics Data System (ADS)
Li, Hejie; Öchsner, Andreas; Yarlagadda, Prasad K. D. V.; Xiao, Yin; Furushima, Tsuyoshi; Wei, Dongbin; Jiang, Zhengyi; Manabe, Ken-ichi
2018-01-01
Most of hexagonal close-packed (HCP) metals are lightweight metals. With the increasing application of light metal products, the production of light metal is increasingly attracting the attentions of researchers worldwide. To obtain a better understanding of the deformation mechanism of HCP metals (especially for Mg and its alloys), a new constitutive analysis was carried out based on previous research. In this study, combining the theories of strain gradient and continuum mechanics, the equal channel angular pressing process is analyzed and a HCP crystal plasticity constitutive model is developed especially for Mg and its alloys. The influence of elevated temperature on the deformation mechanism of the Mg alloy (slip and twin) is novelly introduced into a crystal plasticity constitutive model. The solution for the new developed constitutive model is established on the basis of the Lagrangian iterations and Newton Raphson simplification.
Angular decay coefficients of J/ψ mesons at forward rapidity from p+p collisions at √s = 510 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adare, A.; Azmoun, B.; Aidala, C.
In this paper, we report the first measurement of the full angular distribution for inclusive J/ψ → μ +μ - decays in p+p collisions at √s = 510 GeV. The measurements are made for J/ψ transverse momentum 2 < p T < 10 GeV/c and rapidity 1.2 < y < 2.2 in the Helicity, Collins-Soper, and Gottfried-Jackson reference frames. In all frames the polar coefficient λ θ is strongly negative at low p T and becomes close to zero at high p T, while the azimuthal coefficient λ Φ is close to zero at low p T, and becomes slightlymore » negative at higher p T. The frame-independent coefficient λ ~ is strongly negative at all p T in all frames. Finally, the data are compared to the theoretical predictions provided by nonrelativistic quantum chromodynamics models.« less
Angular decay coefficients of J /ψ mesons at forward rapidity from p +p collisions at √{s }=510 GeV
NASA Astrophysics Data System (ADS)
Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Boer, M.; Bok, J. S.; Bownes, E. K.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butler, C.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Chujo, T.; Citron, Z.; Connors, M.; Cronin, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Dixit, D.; Do, J. H.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Dusing, J. P.; Elder, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukuda, Y.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Glenn, A.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; He, X.; Hemmick, T. K.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Ji, Z.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kang, J. H.; Kang, J. S.; Kapukchyan, D.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kihara, K.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, H.-J.; Kim, M.; Kim, M. H.; Kim, Y. K.; Kimball, M. L.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Koster, J.; Kotler, J. R.; Kotov, D.; Kudo, S.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, K. B.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Leung, Y. H.; Lewis, N. A.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Loggins, V.-R.; Lovasz, K.; Lynch, D.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendez, A. R.; Mendoza, M.; Meredith, B.; Miake, Y.; Mignerey, A. C.; Mihalik, D. E.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagai, K.; Nagamiya, S.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Press, C. J.; Pun, A.; Purschke, M. L.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richford, D.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Runchey, J.; Safonov, A. S.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shukla, P.; Sickles, A.; Silva, C. L.; Silva, J. A.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Smith, K. L.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stepanov, M.; Stien, H.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takahara, A.; Takeda, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vargyas, M.; Vazquez-Carson, S.; Velkovska, J.; Virius, M.; Vrba, V.; Vukman, N.; Vznuzdaev, E.; Wang, X. R.; Wang, Z.; Watanabe, D.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Wong, C. P.; Woody, C. L.; Wysocki, M.; Xia, B.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yoo, J. H.; Yoon, I.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zou, L.; Phenix Collaboration
2017-05-01
We report the first measurement of the full angular distribution for inclusive J /ψ →μ+μ- decays in p +p collisions at √{s }=510 GeV . The measurements are made for J /ψ transverse momentum 2
Silicon micromachined accelerometer/seismometer and method of making the same
NASA Technical Reports Server (NTRS)
Martin, Richard D. (Inventor); Pike, W. Thomas (Inventor)
2001-01-01
A silicon-based microaccelerometer for seismic application is provided using a low-resonant frequency (10 Hz), large proof mass (1 gram), and high Q suspension to achieve high sensitivity of less than 1 ng with a bandwidth a 0.05 to 50 Hz. The proof mass is cut away from a planar substrate in the form of a disk using abrasive cutting, which disk closely fits but does not touch a surrounding angular frame. The spring of the microaccelerometer between the angular frame and the proof mass is provided from two continuous, 3 microns thick membranes. The fixed capacitive electrodes are provided on separate, subsequently bonded substrates, and movable capacitive plates are provided on the membranes. By fabricating capacitive plates on the separate substrates, the gap between the fixed and movable capacitive plates in the differential capacitive sensor is closely controlled. The use of continuous membranes for the spring produces a shock resistant, robust sensor.
Angular decay coefficients of J/ψ mesons at forward rapidity from p+p collisions at √s = 510 GeV
Adare, A.; Azmoun, B.; Aidala, C.; ...
2017-04-13
In this paper, we report the first measurement of the full angular distribution for inclusive J/ψ → μ +μ - decays in p+p collisions at √s = 510 GeV. The measurements are made for J/ψ transverse momentum 2 < p T < 10 GeV/c and rapidity 1.2 < y < 2.2 in the Helicity, Collins-Soper, and Gottfried-Jackson reference frames. In all frames the polar coefficient λ θ is strongly negative at low p T and becomes close to zero at high p T, while the azimuthal coefficient λ Φ is close to zero at low p T, and becomes slightlymore » negative at higher p T. The frame-independent coefficient λ ~ is strongly negative at all p T in all frames. Finally, the data are compared to the theoretical predictions provided by nonrelativistic quantum chromodynamics models.« less
CCC calculated integrated cross sections of electron-H2 scattering
NASA Astrophysics Data System (ADS)
Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor
2016-09-01
Recently we applied the molecular convergent close-coupling (CCC) method to electron scattering from molecular hydrogen H2. Convergence of the major integrated cross sections has been explicitly demonstrated in the fixed-nuclei approximation by increasing the number of H2 target states in the close-coupling expansion from 9 to 491. The calculations have been performed using a projectile partial wave expansion with maximum orbital angular momentum Lmax = 8 and total orbital angular momentum projections | M | <= 8 . Coupling to the ionization continuum is modeled via a large pseudo state expansion, which we found is required to obtain reliable elastic and excitation cross sections. Here we present benchmark elastic, single-ionization, electronic excitation and total integrated cross sections over a broad energy range (0.1 to 300 eV) and compare with available experiment and previous calculations. Los Alamos National Laboratory and Curtin University.
NASA Astrophysics Data System (ADS)
Naderi, D.; Pahlavani, M. R.; Alavi, S. A.
2013-05-01
Using the Langevin dynamical approach, the neutron multiplicity and the anisotropy of angular distribution of fission fragments in heavy ion fusion-fission reactions were calculated. We applied one- and two-dimensional Langevin equations to study the decay of a hot excited compound nucleus. The influence of the level-density parameter on neutron multiplicity and anisotropy of angular distribution of fission fragments was investigated. We used the level-density parameter based on the liquid drop model with two different values of the Bartel approach and Pomorska approach. Our calculations show that the anisotropy and neutron multiplicity are affected by level-density parameter and neck thickness. The calculations were performed on the 16O+208Pb and 20Ne+209Bi reactions. Obtained results in the case of the two-dimensional Langevin with a level-density parameter based on Bartel and co-workers approach are in better agreement with experimental data.
Alikhasi, Marzieh; Siadat, Hakimeh; Kharazifard, Mohammad Javad
2015-01-01
Objectives: The purpose of this study was to compare the accuracy of implant position transfer and surface detail reproduction using two impression techniques and materials. Materials and Methods: A metal model with two implants and three grooves of 0.25, 0.50 and 0.75 mm in depth on the flat superior surface of a die was fabricated. Ten regular-body polyether (PE) and 10 regular-body polyvinyl siloxane (PVS) impressions with square and conical transfer copings using open tray and closed tray techniques were made for each group. Impressions were poured with type IV stone, and linear and angular displacements of the replica heads were evaluated using a coordinate measuring machine (CMM). Also, accurate reproduction of the grooves was evaluated by a video measuring machine (VMM). These measurements were compared with the measurements calculated on the reference model that served as control, and the data were analyzed with two-way ANOVA and t-test at P= 0.05. Results: There was less linear displacement for PVS and less angular displacement for PE in closed-tray technique, and less linear displacement for PE in open tray technique (P<0.001). Also, the open tray technique showed less angular displacement with the use of PVS impression material. Detail reproduction accuracy was the same in all the groups (P>0.05). Conclusion: The open tray technique was more accurate using PE, and also both closed tray and open tray techniques had acceptable results with the use of PVS. The choice of impression material and technique made no significant difference in surface detail reproduction. PMID:27252761
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Adam J., E-mail: adamhoff@umich.edu; Lee, John C., E-mail: jcl@umich.edu
2016-02-15
A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Sourcemore » Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.« less
NASA Astrophysics Data System (ADS)
Karpishkov, A. V.; Nefedov, M. A.; Saleev, V. A.
2017-11-01
We calculate the angular distribution spectra between beauty (B ) and antibeauty (B ¯) mesons in proton-proton collisions in the leading order approximation of the parton Reggeization approach consistently merged with the next-to-leading order corrections from the emission of an additional hard gluon. To describe b-quark hadronization we use the universal scale-dependent parton-to-meson fragmentation functions extracted from the world e+e- annihilation data. We have obtained good agreement between our predictions and data from the CMS Collaboration at the energy √{S }=7 TeV for B B ¯ angular correlations within uncertainties and without free parameters. Predictions for analogous correlation observables at √{S }=13 TeV are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, Manuel I. Martin
1996-10-07
The goal of this work was to study the behavior of the angular distribution of the electron form the decay of the W boson in a specific rest-frame of the W, the Collins-Soper frame. This thesis consists of four major divisions, each dealing with closely related themes: (a) Physics Background, (b) Description of the Hardware and General Software Tools, (c) Description of the Analysis and Specific Tools, and (d) Results and Conclusions. Each division is comprised of one or more chapters and each chapter is divided into sections and subsections.
Underwater optical communications using orbital angular momentum-based spatial division multiplexing
NASA Astrophysics Data System (ADS)
Willner, Alan E.; Zhao, Zhe; Ren, Yongxiong; Li, Long; Xie, Guodong; Song, Haoqian; Liu, Cong; Zhang, Runzhou; Bao, Changjing; Pang, Kai
2018-02-01
In this paper, we review high-capacity underwater optical communications using orbital angular momentum (OAM)-based spatial division multiplexing. We discuss methods to generate and detect blue-green optical data-carrying OAM beams as well as various underwater effects, including attenuation, scattering, current, and thermal gradients on OAM beams. Attention is also given to the system performance of high-capacity underwater optical communication links using OAM-based space division multiplexing. The paper closes with a discussion of a digital signal processing (DSP) algorithm to mitigate the inter-mode crosstalk caused by thermal gradients.
NASA Astrophysics Data System (ADS)
Kotov, V. M.; Averin, S. V.; Shkerdin, G. N.
2010-12-01
A method is proposed to measure the scattering angle of optical radiation, the method employing two Bragg diffraction processes in which divergent optical radiation propagates close to the optical axis of a uniaxial crystal, while the acoustic wave — orthogonally to this axis. The method does not require additional angular tuning of the acousto-optic cell. We suggest using a mask to measure the light divergence that is larger than the angle of Bragg scattering. The method can be used to measure the size of the polished glass plate inhomogeneities.
Angular-momentum--mass inequality for axisymmetric black holes.
Dain, Sergio
2006-03-17
The inequality square root J
The Angular Momentum of Baryons and Dark Matter Halos Revisited
NASA Technical Reports Server (NTRS)
Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan
2011-01-01
Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated by large-scale structure motions deep inside dark matter halos, redistributing it only in the vicinity of the disc.
Adaptive Control of a Transport Aircraft Using Differential Thrust
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan
2009-01-01
The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.
Perceptual scale expansion: an efficient angular coding strategy for locomotor space.
Durgin, Frank H; Li, Zhi
2011-08-01
Whereas most sensory information is coded on a logarithmic scale, linear expansion of a limited range may provide a more efficient coding for the angular variables important to precise motor control. In four experiments, we show that the perceived declination of gaze, like the perceived orientation of surfaces, is coded on a distorted scale. The distortion seems to arise from a nearly linear expansion of the angular range close to horizontal/straight ahead and is evident in explicit verbal and nonverbal measures (Experiments 1 and 2), as well as in implicit measures of perceived gaze direction (Experiment 4). The theory is advanced that this scale expansion (by a factor of about 1.5) may serve a functional goal of coding efficiency for angular perceptual variables. The scale expansion of perceived gaze declination is accompanied by a corresponding expansion of perceived optical slants in the same range (Experiments 3 and 4). These dual distortions can account for the explicit misperception of distance typically obtained by direct report and exocentric matching, while allowing for accurate spatial action to be understood as the result of calibration.
Singularities in Dromo formulation. Analysis of deep flybys
NASA Astrophysics Data System (ADS)
Roa, Javier; Sanjurjo-Rivo, Manuel; Peláez, Jesús
2015-08-01
The singularities in Dromo are characterized in this paper, both from an analytical and a numerical perspective. When the angular momentum vanishes, Dromo may encounter a singularity in the evolution equations. The cancellation of the angular momentum occurs in very specific situations and may be caused by the action of strong perturbations. The gravitational attraction of a perturbing planet may lead to rapid changes in the angular momentum of the particle. In practice, this situation may be encountered during deep planetocentric flybys. The performance of Dromo is evaluated in different scenarios. First, Dromo is validated for integrating the orbit of Near Earth Asteroids. Resulting errors are of the order of the diameter of the asteroid. Second, a set of theoretical flybys are designed for analyzing the performance of the formulation in the vicinity of the singularity. New sets of Dromo variables are proposed in order to minimize the dependency of Dromo on the angular momentum. A slower time scale is introduced, leading to a more stable description of the flyby phase. Improvements in the overall performance of the algorithm are observed when integrating orbits close to the singularity.
Perceptual Scale Expansion: An Efficient Angular Coding Strategy for Locomotor Space
Durgin, Frank H.; Li, Zhi
2011-01-01
Whereas most sensory information is coded in a logarithmic scale, linear expansion of a limited range may provide a more efficient coding for angular variables important to precise motor control. In four experiments it is shown that the perceived declination of gaze, like the perceived orientation of surfaces is coded on a distorted scale. The distortion seems to arise from a nearly linear expansion of the angular range close to horizontal/straight ahead and is evident in explicit verbal and non-verbal measures (Experiments 1 and 2) and in implicit measures of perceived gaze direction (Experiment 4). The theory is advanced that this scale expansion (by a factor of about 1.5) may serve a functional goal of coding efficiency for angular perceptual variables. The scale expansion of perceived gaze declination is accompanied by a corresponding expansion of perceived optical slants in the same range (Experiments 3 and 4). These dual distortions can account for the explicit misperception of distance typically obtained by direct report and exocentric matching while allowing accurate spatial action to be understood as the result of calibration. PMID:21594732
A contribution to calculation of the mathematical pendulum
NASA Astrophysics Data System (ADS)
Anakhaev, K. N.
2014-11-01
In this work, as a continuation of rigorous solutions of the mathematical pendulum theory, calculated dependences were obtained in elementary functions (with construction of plots) for a complete description of the oscillatory motion of the pendulum with determination of its parameters, such as the oscillation period, deviation angles, time of motion, angular velocity and acceleration, and strains in the pendulum rod (maximum, minimum, zero, and gravitational). The results of calculations according to the proposed dependences closely (≪1%) coincide with the exact tabulated data for individual points. The conditions of ascending at which the angular velocity, angular acceleration, and strains in the pendulum rod reach their limiting values equal to and 5 m 1 g, respectively, are shown. It was revealed that the angular acceleration does not depend on the pendulum oscillation amplitude; the pendulum rod strain equal to the gravitation force of the pendulum R s = m 1 g at the time instant is also independent on the amplitude. The dependences presented in this work can also be invoked for describing oscillations of a physical pendulum, mass on a spring, electric circuit, etc.
NASA Astrophysics Data System (ADS)
Penna, Vittorio; Richaud, Andrea
2017-11-01
We investigate the weak excitations of a system made up of two condensates trapped in a Bose-Hubbard ring and coupled by an interspecies repulsive interaction. Our approach, based on the Bogoliubov approximation scheme, shows that one can reduce the problem Hamiltonian to the sum of sub-Hamiltonians Ĥk, each one associated to momentum modes ±k . Each Ĥk is then recognized to be an element of a dynamical algebra. This uncommon and remarkable property allows us to present a straightforward diagonalization scheme, to find constants of motion, to highlight the significant microscopic processes, and to compute their time evolution. The proposed solution scheme is applied to a simple but nontrivial closed circuit, the trimer. The dynamics of low-energy excitations, corresponding to weakly populated vortices, is investigated considering different choices of the initial conditions and the angular-momentum transfer between the two condensates is evidenced. Finally, the condition for which the spectral collapse and dynamical instability are observed is derived analytically.
NASA Astrophysics Data System (ADS)
Yoo, Sung Jin
2016-11-01
This paper presents a theoretical design approach for output-feedback formation tracking of multiple mobile robots under wheel perturbations. It is assumed that these perturbations are unknown and the linear and angular velocities of the robots are unmeasurable. First, adaptive state observers for estimating unmeasurable velocities of the robots are developed under the robots' kinematics and dynamics including wheel perturbation effects. Then, we derive a virtual-structure-based formation tracker scheme according to the observer dynamic surface design procedure. The main difficulty of the output-feedback control design is to manage the coupling problems between unmeasurable velocities and unknown wheel perturbation effects. These problems are avoided by using the adaptive technique and the function approximation property based on fuzzy logic systems. From the Lyapunov stability analysis, it is shown that point tracking errors of each robot and synchronisation errors for the desired formation converge to an adjustable neighbourhood of the origin, while all signals in the controlled closed-loop system are semiglobally uniformly ultimately bounded.
High-resolution multi-band imaging for validation and characterization of small Kepler planets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everett, Mark E.; Silva, David R.; Barclay, Thomas
2015-02-01
High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting amore » total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including five newly validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the candidate host stars are determined by supplementing existing literature values with new spectroscopic characterizations. Close neighbors of seven of these stars are examined using multi-wavelength photometry to determine their nature and influence on the candidate planet properties. Most of the close neighbors appear to be gravitationally bound secondaries, while a few are best explained as closely co-aligned field stars. Revised planet properties are derived for each candidate and validated planet, including cases where the close neighbors are the potential host stars.« less
Approximate Solution to the Angular Speeds of a Nearly-Symmetric Mass-Varying Cylindrical Body
NASA Astrophysics Data System (ADS)
Nanjangud, Angadh; Eke, Fidelis
2017-06-01
This paper examines the rotational motion of a nearly axisymmetric rocket type system with uniform burn of its propellant. The asymmetry comes from a slight difference in the transverse principal moments of inertia of the system, which then results in a set of nonlinear equations of motion even when no external torque is applied to the system. It is often difficult, or even impossible, to generate analytic solutions for such equations; closed form solutions are even more difficult to obtain. In this paper, a perturbation-based approach is employed to linearize the equations of motion and generate analytic solutions. The solutions for the variables of transverse motion are analytic and a closed-form solution to the spin rate is suggested. The solutions are presented in a compact form that permits rapid computation. The approximate solutions are then applied to the torque-free motion of a typical solid rocket system and the results are found to agree with those obtained from the numerical solution of the full non-linear equations of motion of the mass varying system.
USDA-ARS?s Scientific Manuscript database
The focus of this article is to discuss some of the approaches we have tested for managing the bacterial pathogen Xanthomonas fragariae in infected strawberry nursery stock. X. fragariae causes angular leaf spot (ALS) in strawberry. The pathogen is transmitted to production fields almost exclusively...
Effect of Hoop Stress on Ball Bearing Life Prediction
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; August, Richard; Coe, Harold H.
1995-01-01
A finite-element analysis (FEA) of a generic, dimensionally normalized inner race of an angular-contact ball bearing was performed under varying conditions of speed and the press (or interference) fit of the inner-race bore on a journal. The FEA results at the ball-race contact were used to derive an equation from which was obtained the radius of an equivalent cylindrical bearing race with the same or similar hoop stress. The radius of the equivalent cylinder was used to obtain a generalized closed-form approximation of the hoop stresses at the ball-inner-race contact in an angular-contact ball bearing. A life analysis was performed on both a 45- and a 120-mm-bore, angular-contact ball bearing. The predicted lives with and without hoop stress were compared with experimental endurance results obtained at 12000 and 25000 rpm with the 120-mm-bore ball bearing. A life factor equation based on hoop stress is presented.
Uniaxial angular accelerometers
NASA Astrophysics Data System (ADS)
Seleznev, A. V.; Shvab, I. A.
1985-05-01
The basic mechanical components of an angular accelerometer are the sensor, the damper, and the transducer. Penumatic dampers are simplest in construction, but the viscosity of air is very low and, therefore, dampers with special purpose oils having a high temperature stability (synthetic silicon or organosilicon oils) are most widely used. The most common types of viscous dampers are lamellar with meshed opposed arrays of fixed and movable vanes in the dashpot, piston dampers regulated by an adjustable-length capillary tube, and dampers with paddle wheel in closed tank. Another type of damper is an impact-inertial one with large masses absorbing the rotational energy upon collision with the sensor. Conventional measuring elements are resistive, capacitive, electromagnetic, photoelectric, and penumatic or hydraulic. Novel types of angular accelerometers are based on inertia of gas jets, electron beams, and ion beams, the piezoelectric effect in p-n junctions of diode and transistors, the electrokinetic effect in fluids, and cryogenic suspension of the sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verschuur, G. L.; Schmelz, J. T., E-mail: gverschu@naic.edu
Small-scale features observed by Wilkinson Microwave Anisotropy Probe ( WMAP ) and PLANCK in the frequency range of 22–90 GHz show a nearly flat spectrum, which meets with expectations that they originate in the early universe. However, free–free emission from electrons in small angular scale galactic sources that suffer beam dilution very closely mimic the observed spectrum in this frequency range. Fitting such a model to the PLANCK and WMAP data shows that the angular size required to fit the data is comparable to the angular width of associated H i filaments found in the Galactic Arecibo L-Band Feed Array-Hmore » isurvey data. Also, the temperature of the electrons is found to be in the range of 100–300 K. The phenomenon revealed by these data may contribute to a more precise characterization of the foreground masks required to interpret the cosmological aspect of PLANCK and WMAP data.« less
DANCING IN THE DARK: NEW BROWN DWARF BINARIES FROM KERNEL PHASE INTERFEROMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Benjamin; Tuthill, Peter; Martinache, Frantz, E-mail: bjsp@physics.usyd.edu.au, E-mail: p.tuthill@physics.usyd.edu.au, E-mail: frantz@naoj.org
2013-04-20
This paper revisits a sample of ultracool dwarfs in the solar neighborhood previously observed with the Hubble Space Telescope's NICMOS NIC1 instrument. We have applied a novel high angular resolution data analysis technique based on the extraction and fitting of kernel phases to archival data. This was found to deliver a dramatic improvement over earlier analysis methods, permitting a search for companions down to projected separations of {approx}1 AU on NIC1 snapshot images. We reveal five new close binary candidates and present revised astrometry on previously known binaries, all of which were recovered with the technique. The new candidate binariesmore » have sufficiently close separation to determine dynamical masses in a short-term observing campaign. We also present four marginal detections of objects which may be very close binaries or high-contrast companions. Including only confident detections within 19 pc, we report a binary fraction of at least #Greek Lunate Epsilon Symbol#{sub b} = 17.2{sub -3.7}{sup +5.7}%. The results reported here provide new insights into the population of nearby ultracool binaries, while also offering an incisive case study of the benefits conferred by the kernel phase approach in the recovery of companions within a few resolution elements of the point-spread function core.« less
Photonic Interrogation and Control of Nano Processes
NASA Technical Reports Server (NTRS)
Jassemnejad, Baha
2003-01-01
My research activities for the summer of 2003 consisted of two projects: One project was concerned with determining a method for predicting the static and dynamic assembly properties of nano-structures using laser tweezers. The other project was to investigate the generation of Laguerre-Gaussian modes using a spatial light modulator incorporated into an optical tweezers system. Concerning the first project, I initially pursued the approach suggested by my NASA colleague Dr. Art Decker. This approach involved mimicking the model of the structure of atomic nucleus for the assembly of 1 to 100 atoms using allowed quadruple transitions induced by orbital angular momentums of a Laguerre- Gaussian (Doughnut) laser mode. After realizing the inaptness of the nuclear model with the nanostructure model as far as the binding forces and transitions were concerned, I focused on using quantum dot modei. This model was not attuned also for the host lattice influences the electronic structure of the quantum dot. Thus one other option that I decided to pursue was the approach of molecular quantum mechanics. In this approach the nanostructure is treated as a large (10-100 nm) molecule constructed from single element or multi-elements. Subsequent to consultation with Dr. Fred Morales, a chemical engineer at NASA GRC, and Dr. David Ball, a computational chemist at Cleveland State University, I acquired a molecular-quantum computation software, Hyperchem 7.0. This software allows simulation of different molecular structures as far as their static and dynamic behaviors are concerned. The time that I spent on this project was about eight weeks. Once this suitable approach was identified, I realized the need to collaborate with a computational quantum chemist to pursue searching for stable nanostructures in the range of 10-100 nm that we can be assembled using laser tweezers. The second project was about generating laser tweezers that possess orbital angular momentum. As shown, we were able to generate laser tweezers modes of different orbital angular momentum using a spatial light modulator incorporated into a laser tweezers system. The motivation for investigating these types of modes stems from being able to spin particles at high speeds and also to orient two particles in separate traps and then join them together. Also, there has been recent intense interest on fundamental physics research on orbital angular momentum of light. The fact that circularly polarized light may have associated with it angular momentum that relates to the spin of individual photons (spin 0 for the plane polarized light, spin +1 for the right-circularly polarized light and spin -1 for the left-circularly polarized light) was first demonstrated by Beth in 1936. Orbital angular momentum is, however, distinct from spin in that the spin angular momentum of light is intrinsically linked to the behavior of the electric field in the light whereas orbital angular momentum is a consequence of inclined wavefronts. In 1992 L. Allen, et al showed that the Laguerre-Gaussian (LG) modes could possess well-defined orbital angular momentum that can exceed 1 planck's constant, i.e. l plancks constant per photon, where l is the azimuthal index of the mode.
Shinamura, Shoji; Osaka, Itaru; Miyazaki, Eigo; Nakao, Akiko; Yamagishi, Masakazu; Takeya, Jun; Takimiya, Kazuo
2011-04-06
A straightforward synthetic approach that exploits linear- and angular-shaped naphthodithiophenes (NDTs) being potential as new core structures for organic semiconductors is described. The newly established synthetic procedure involves two important steps; one is the chemoselective Sonogashira coupling reaction on the trifluoromethanesulfonyloxy site over the bromine site enabling selective formation of o-bromoethynylbenzene substructures on the naphthalene core, and the other is a facile ring closing reaction of fused-thiophene rings from the o-bromoethynylbenzene substructures. As a result, three isomeric NDTs, naphtho[2,3-b:6,7-b']dithiophene, naphtho[2,3-b:7,6-b']dithiophenes, and naphtho[2,1-b:6,5-b']dithiophene, are selectively synthesized. Electrochemical and optical measurements of the parent NDTs indicated that the shape of the molecules plays an important role in determining the electronic structure of the compounds; the linear-shaped NDTs formally isoelectronic with naphthacene have lower oxidation potentials and more red-shifted absorption bands than those of the angular-shaped NDTs isoelectronic with chrysene. On the contrary, the performance of the thin-film-based field-effect transistors (FETs) using the dioctyl or diphenyl derivatives were much influenced by the symmetry of the molecules; centrosymmetric derivatives tend to give higher mobility (up to 1.5 cm(2) V(-1) s(-1)) than axisymmetric ones (∼0.06 cm(2) V(-1) s(-1)), implying that the intermolecular orbital overlap in the solid state is influenced by the symmetry of the molecules. These results indicate that the present NDT cores, in particular the linear-shaped, centrosymmetric naphtho[2,3-b:6,7-b']dithiophene, are promising building blocks for the development of organic semiconducting materials. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Mulders, Gijs D.; Pascucci, Ilaria; Manara, Carlo F.; Testi, Leonardo; Herczeg, Gregory J.; Henning, Thomas; Mohanty, Subhanjoy; Lodato, Giuseppe
2017-09-01
In this paper, we investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. We find a correlation between dust disk mass and mass accretion rate in Chamaeleon I with a slope that is close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit {M}{dust}-{M}\\star and {\\dot{M}}{acc}-{M}\\star relations is uncorrelated. We simulate synthetic observations of an ensemble of evolving disks using a Monte Carlo approach and find that disks with a constant α viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass but overpredict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. In the first one, the observed scatter in {M}{dust} and {\\dot{M}}{acc} is not primordial, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large timescales affects the mass accretion rates. In the second scenario, the observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I owing to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, through either direct observations of the gas or spatially resolved multiwavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.
Analysis of video-recorded images to determine linear and angular dimensions in the growing horse.
Hunt, W F; Thomas, V G; Stiefel, W
1999-09-01
Studies of growth and conformation require statistical methods that are not applicable to subjective conformation standards used by breeders and trainers. A new system was developed to provide an objective approach for both science and industry, based on analysis of video images to measure aspects of conformation that were represented by angles or lengths. A studio crush was developed in which video images of horses of different sizes were taken after bone protuberances, located by palpation, were marked with white paper stickers. Screen pixel coordinates of calibration marks, bone markers and points on horse outlines were digitised from captured images and corrected for aspect ratio and 'fish-eye' lens effects. Calculations from the corrected coordinates produced linear dimensions and angular dimensions useful for comparison of horses for conformation and experimental purposes. The precision achieved by the method in determining linear and angular dimensions was examined through systematically determining variance for isolated steps of the procedure. Angles of the front limbs viewed from in front were determined with a standard deviation of 2-5 degrees and effects of viewing angle were detectable statistically. The height of the rump and wither were determined with precision closely related to the limitations encountered in locating a point on a screen, which was greater for markers applied to the skin than for points at the edge of the image. Parameters determined from markers applied to the skin were, however, more variable (because their relation to bone position was affected by movement), but still provided a means by which a number of aspects of size and conformation can be determined objectively for many horses during growth. Sufficient precision was achieved to detect statistically relatively small effects on calculated parameters of camera height position.
Cosmic Vorticity and the Origin Halo Spins
NASA Astrophysics Data System (ADS)
Libeskind, Noam I.; Hoffman, Yehuda; Steinmetz, Matthias; Gottlöber, Stefan; Knebe, Alexander; Hess, Steffen
2013-04-01
In the standard model of cosmology, structure emerges out of a non-rotational flow and the angular momentum of collapsing halos is induced by tidal torques. The growth of angular momentum in the linear and quasi-linear phases is associated with a shear, curl-free, flow and it is well described within the linear framework of tidal torque theory (TTT). However, TTT ceases to be applicable as halos approach turnaround when their ambient flow field becomes rotational. Subsequently, halos become embedded in a vortical flow field and the growth of their angular momentum is affected by the vorticity of their ambient velocity field. Using a cosmological simulation, we have examined the importance of the curl of the velocity field in determining halo spin, finding a significant alignment between the two: the vorticity tends to be perpendicular to the axis of the fastest collapse of the velocity shear tensor (e 1). This is independent of halo masses and cosmic web environment. Our results agree with previous findings on the tendency of halo spin to be perpendicular to e 1, and of the spin of (simulated) halos and (observed) galaxies to be aligned with the large-scale structure. It follows that angular momentum growth proceeds in two distinct phases. First, the angular momentum emerges out of a shear, curl-free, potential flow, as described by TTT. In the second phase, in which halos approach virialization, the angular momentum emerges out of a vortical flow and halo spin becomes partially aligned with the vorticity of the ambient flow field.
Research on the water-entry attitude of a submersible aircraft.
Xu, BaoWei; Li, YongLi; Feng, JinFu; Hu, JunHua; Qi, Duo; Yang, Jian
2016-01-01
The water entry of a submersible aircraft, which is transient, highly coupled, and nonlinear, is complicated. After analyzing the mechanics of this process, the change rate of every variable is considered. A dynamic model is build and employed to study vehicle attitude and overturn phenomenon during water entry. Experiments are carried out and a method to organize experiment data is proposed. The accuracy of the method is confirmed by comparing the results of simulation of dynamic model and experiment under the same condition. Based on the analysis of the experiment and simulation, the initial attack angle and angular velocity largely influence the water entry of vehicle. Simulations of water entry with different initial and angular velocities are completed, followed by an analysis, and the motion law of vehicle is obtained. To solve the problem of vehicle stability and control during water entry, an approach is proposed by which the vehicle sails with a zero attack angle after entering water by controlling the initial angular velocity. With the dynamic model and optimization research algorithm, calculation is performed, and the optimal initial angular velocity of water-entry is obtained. The outcome of simulations confirms that the effectiveness of the propose approach by which the initial water-entry angular velocity is controlled.
Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers
Cheary, R. W.; Coelho, A. A.; Cline, J. P.
2004-01-01
The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile. PMID:27366594
Materials characterisation by angle-resolved scanning transmission electron microscopy.
Müller-Caspary, Knut; Oppermann, Oliver; Grieb, Tim; Krause, Florian F; Rosenauer, Andreas; Schowalter, Marco; Mehrtens, Thorsten; Beyer, Andreas; Volz, Kerstin; Potapov, Pavel
2016-11-16
Solid-state properties such as strain or chemical composition often leave characteristic fingerprints in the angular dependence of electron scattering. Scanning transmission electron microscopy (STEM) is dedicated to probe scattered intensity with atomic resolution, but it drastically lacks angular resolution. Here we report both a setup to exploit the explicit angular dependence of scattered intensity and applications of angle-resolved STEM to semiconductor nanostructures. Our method is applied to measure nitrogen content and specimen thickness in a GaN x As 1-x layer independently at atomic resolution by evaluating two dedicated angular intervals. We demonstrate contrast formation due to strain and composition in a Si- based metal-oxide semiconductor field effect transistor (MOSFET) with Ge x Si 1-x stressors as a function of the angles used for imaging. To shed light on the validity of current theoretical approaches this data is compared with theory, namely the Rutherford approach and contemporary multislice simulations. Inconsistency is found for the Rutherford model in the whole angular range of 16-255 mrad. Contrary, the multislice simulations are applicable for angles larger than 35 mrad whereas a significant mismatch is observed at lower angles. This limitation of established simulations is discussed particularly on the basis of inelastic scattering.
Yin, Anmin; Wang, Xiaochen; Glorieux, Christ; Yang, Quan; Dong, Feng; He, Fei; Wang, Yanlong; Sermeus, Jan; Van der Donck, Tom; Shu, Xuedao
2017-07-01
A photoacoustic, laser ultrasonics based approach in an Impulsive Stimulated Scattering (ISS) implementation was used to investigate the texture in polycrystalline metal plates. The angular dependence of the 'polycrystalline' surface acoustic wave (SAW) velocity measured along regions containing many grains was experimentally determined and compared with simulated results that were based on the angular dependence of the 'single grain' SAW velocity within single grains and the grain orientation distribution. The polycrystalline SAW velocities turn out to vary with texture. The SAW velocities and their angular variations for {110} texture were found to be larger than that the ones for {111} texture or the strong γ fiber texture. The SAW velocities for {001} texture were larger than for {111} texture, but with almost the same angular dependence. The results infer the feasibility to apply angular SAW angular dispersion measurements by laser ultrasonics for on-line texture monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.
Dumas, R; Cheze, L
2008-08-01
Joint power is commonly used in orthopaedics, ergonomics or sports analysis but its clinical interpretation remains controversial. Some basic principles on muscle actions and energy transfer have been proposed in 2D. The decomposition of power on 3 axes, although questionable, allows the same analysis in 3D. However, these basic principles have been widely criticized, mainly because bi-articular muscles must be considered. This requires a more complex computation in order to determine how the individual muscle force contributes to drive the joint. Conversely, with simple 3D inverse dynamics, the analysis of both joint moment and angular velocity directions is essential to clarify when the joint moment can contribute or not to drive the joint. The present study evaluates the 3D angle between the joint moment and the joint angular velocity and investigates when the hip, knee and ankle joints are predominantly driven (angle close to 0 degrees and 180 degrees ) or stabilized (angle close to 90 degrees ) during gait. The 3D angle curves show that the three joints are never fully but only partially driven and that the hip and knee joints are mainly stabilized during the stance phase. The notion of stabilization should be further investigated, especially for subjects with motion disorders or prostheses.
Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie; Schimel, Alexandre
2014-01-01
Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management. PMID:24824155
Obtaining the Electron Angular Momentum Coupling Spectroscopic Terms, jj
ERIC Educational Resources Information Center
Orofino, Hugo; Faria, Roberto B.
2010-01-01
A systematic procedure is developed to obtain the electron angular momentum coupling (jj) spectroscopic terms, which is based on building microstates in which each individual electron is placed in a different m[subscript j] "orbital". This approach is similar to that used to obtain the spectroscopic terms under the Russell-Saunders (LS) coupling…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer
Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfvén wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates andmore » that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-scale field. These effects might give rise to modulation of mass and angular momentum loss through stellar cycles, and present a problem for ab initio attempts to predict stellar spin-down based on wind models. For all the magnetogram cases considered here, from dipoles to various spotted distributions, we find that angular momentum loss is dominated by the mass loss at mid-latitudes. The spin-down torque applied by magnetized winds therefore acts at specific latitudes and is not evenly distributed over the stellar surface, though this aspect is unlikely to be important for understanding spin-down and surface flows on stars.« less
Elbow kinematics during sit-to-stand and stand-to-sit movements.
Packer, T L; Wyss, U P; Costigan, P A
1993-11-01
The sit-to-stand and stand-to-sit movements of 10 healthy women (mean age 52.4 years) were subjected to a descriptive analysis that yielded a definition of phases, determination of the peak angles reached, maximum angular velocity during each movement, and the sequencing of key events. While subjects showed little intrasubject variability, intersubject variability was evident. Subjects differed in the joint angles and angular velocity recorded, but the sequence of flexion/extension and rotation events were unchanged. Changes in direction of flexion/extension and rotation tended to occur very close in time, if not at the same time. Copyright © 1993. Published by Elsevier Ltd.
Supranova Events from Spun-up Neutron Stars: An Explosion in Search of an Observation
NASA Astrophysics Data System (ADS)
Vietri, Mario; Stella, Luigi
1999-12-01
We consider a formation scenario for supramassive neutron stars (SMNSs) that takes place through mass and angular momentum transfer from a close companion during a low-mass X-ray binary phase, with the ensuing suppression of the magnetic field. After the end of the mass transfer phase, SMNSs will lose, through magnetic dipole radiation, most of their angular momentum, triggering the star's collapse to a black hole. We discuss the rate of occurrence of these collapses and propose that these stars, because of the baryon-clear environment in which the implosion/explosion takes place, are the originators of gamma-ray bursts.
a Numerical Study of Close Approaches for a Cloud of Debris Considering Atmospheric Drag and Lift
NASA Astrophysics Data System (ADS)
Gomes, Vivian; Golebiewska, Justyna; Prado, Antonio
The present paper study close approaches between a group of debris and a planet. The dynamical model considers the atmosphere of the planet, both in terms of drag as well as lift. This cloud is created during the passage of the spacecraft by the atmosphere of the planet, which is the responsible by the explosion of the spacecraft. The dynamical system is compos by the planet, the Sun, and the spacecraft, which explodes and becomes a cloud of debris. The planet and the Sun are in circular planar orbits. The equations of motion are the ones of the circular planar restricted three-body problem with the addition of the forces given by the atmospheric: drag and lift. The planet Jupiter is used for the numerical simulations. The initial conditions of the spacecraft and the debris are specified at the periapsis, which is the point where the explosion occurs. The equations of motion are numerically integrated forward in time for each particle, until a point where the particle is at a distance that can be considered far enough from the planet and it is possible to disregard the effects of the planet and consider the Sun-particle as a two-body system. Then we compute the velocity, energy and angular momentum after the passage by the planet, for each particle, based in the two-body celestial mechanics. From those results, the eccentricity and the semi-major axis of each particle can be obtained. Then, the orbit of the spacecraft is integrated backwards in time, as a single body. The difference from the usual close approaches technique is the presence of the atmosphere of the planet, which generates a drag and a lift forces in the spacecraft, which causes the explosion and modifies the trajectories of the debris generated by the explosion. The primary objective of the present paper is to map the modifications of the orbits of the debris that compose the cloud due to the close approach with the planet. Emphasis is given to map the orbital parameters of the debris after the close approach with the planet. Then, the effects are compared with the same maneuvers performed without the inclusion of the atmosphere. This type of research is useful, because it helps to obtain the size and density of the cloud of debris after the passage, as a function of time. That information has impact on the evaluations of the risks that spacecrafts suffer when passing by shorter distances from this cloud.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that ismore » capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.« less
Radially dependent angular acceleration of twisted light.
Webster, Jason; Rosales-Guzmán, Carmelo; Forbes, Andrew
2017-02-15
While photons travel in a straight line at constant velocity in free space, the intensity profile of structured light may be tailored for acceleration in any degree of freedom. Here we propose a simple approach to control the angular acceleration of light. Using Laguerre-Gaussian modes as our twisted beams carrying orbital angular momentum, we show that superpositions of opposite handedness result in a radially dependent angular acceleration as they pass through a focus (waist plane). Due to conservation of orbital angular momentum, we find that propagation dynamics are complex despite the free-space medium: the outer part of the beam (rings) rotates in an opposite direction to the inner part (petals), and while the outer part accelerates, the inner part decelerates. We outline the concepts theoretically and confirm them experimentally. Such exotic structured light beams are topical due to their many applications, for instance in optical trapping and tweezing, metrology, and fundamental studies in optics.
Thermodynamics and Hawking radiation of five-dimensional rotating charged Goedel black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Shuangqing; Peng Junjin; College of Science, Wuhan Textile University, Wuhan, Hubei 430074
2011-02-15
We study the thermodynamics of Goedel-type rotating charged black holes in five-dimensional minimal supergravity. These black holes exhibit some peculiar features such as the presence of closed timelike curves and the absence of a globally spatial-like Cauchy surface. We explicitly compute their energies, angular momenta, and electric charges that are consistent with the first law of thermodynamics. Besides, we extend the covariant anomaly cancellation method, as well as the approach of the effective action, to derive their Hawking fluxes. Both the methods of the anomaly cancellation and the effective action give the same Hawking fluxes as those from the Planckmore » distribution for blackbody radiation in the background of the charged rotating Goedel black holes. Our results further support that Hawking radiation is a quantum phenomenon arising at the event horizon.« less
Parametric Modeling in Action: High Accuracy Seismology of Kepler DAV Stars
NASA Astrophysics Data System (ADS)
Giammichele, N.; Fontaine, G.; Charpinet, S.; Brassard, P.; Greiss, S.
2015-06-01
We summarize here the efforts made on the quantitative seismic analyses performed on two ZZ Ceti stars observed with the Kepler satellite. One of them, KIC 11911480, is located close to the blue edge of the instability strip, while the other, GD 1212, is found at the red edge. We emphasize the need for parameterized modeling and the forward approach to uniquely establish the fundamental parameters of the stars. We show how the internal structures as well as rotation profiles are unravelled to surprisingly large depths for degenerates such as ZZ Ceti stars, which further confirms the loss of stellar angular momentum before the white dwarf stage detected previously in GW Vir pulsating white dwarfs. This opens up interesting prospects for the new mission to come, Kepler-2, in the field of white dwarf asteroseismology.
Elastic robot control - Nonlinear inversion and linear stabilization
NASA Technical Reports Server (NTRS)
Singh, S. N.; Schy, A. A.
1986-01-01
An approach to the control of elastic robot systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law u(d) is derived such that in the closed-loop system independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law u(s) is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = u(d) + u(s).
NASA Astrophysics Data System (ADS)
Fridman, A. M.; Bisikalo, D. V.
2008-06-01
The current status of the physics of accretion disks in close binary stars is reviewed, with an emphasis on the hydrodynamic overreflection instability, which is a factor leading to the accretion disk turbulence. The estimated turbulent viscosity coefficients are in good agreement with observations and explain the high angular momentum transfer rate and the measured accretion rate. Based on the observations, a power-law spectrum for the developed turbulence is obtained.
Dangerous angular Kaluza-Klein/glueball relics in string theory cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufaux, J. F.; CITA, University of Toronto, 60 St. George st., Toronto, ON M5S 3H8; Kofman, L.
2008-07-15
The presence of Kaluza-Klein (KK) particles in the universe is a potential manifestation of string theory cosmology. In general, they can be present in the high temperature bath of the early universe. In particular examples, string theory inflation often ends with brane-antibrane annihilation followed by the energy cascading through massive closed string loops to KK modes which then decay into lighter standard model particles. However, massive KK modes in the early universe may become dangerous cosmological relics if the inner manifold contains warped throat(s) with approximate isometries. In the complimentary picture, in the AdS/CFT dual gauge theory with extra isometries,more » massive glueballs of various spins become the dangerous cosmological relics. The decay of these angular KK modes/glueballs, located around the tip of the throat, is caused by isometry breaking which results from gluing the throat to the compact Calabi-Yau (CY) manifold. We address the problem of these angular KK particles/glueballs, studying their interactions and decay channels, from the theory side, and the resulting cosmological constraints on the warped compactification parameters, from the phenomenology side. The abundance and decay time of the long-lived nonrelativistic angular KK modes depend strongly on the parameters of the warped geometry, so that observational constraints rule out a significant fraction of the parameter space. In particular, the coupling of the angular KK particles can be weaker than gravitational.« less
COSMIC VORTICITY AND THE ORIGIN HALO SPINS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libeskind, Noam I.; Steinmetz, Matthias; Gottloeber, Stefan
2013-04-01
In the standard model of cosmology, structure emerges out of a non-rotational flow and the angular momentum of collapsing halos is induced by tidal torques. The growth of angular momentum in the linear and quasi-linear phases is associated with a shear, curl-free, flow and it is well described within the linear framework of tidal torque theory (TTT). However, TTT ceases to be applicable as halos approach turnaround when their ambient flow field becomes rotational. Subsequently, halos become embedded in a vortical flow field and the growth of their angular momentum is affected by the vorticity of their ambient velocity field.more » Using a cosmological simulation, we have examined the importance of the curl of the velocity field in determining halo spin, finding a significant alignment between the two: the vorticity tends to be perpendicular to the axis of the fastest collapse of the velocity shear tensor (e{sub 1}). This is independent of halo masses and cosmic web environment. Our results agree with previous findings on the tendency of halo spin to be perpendicular to e{sub 1}, and of the spin of (simulated) halos and (observed) galaxies to be aligned with the large-scale structure. It follows that angular momentum growth proceeds in two distinct phases. First, the angular momentum emerges out of a shear, curl-free, potential flow, as described by TTT. In the second phase, in which halos approach virialization, the angular momentum emerges out of a vortical flow and halo spin becomes partially aligned with the vorticity of the ambient flow field.« less
Three-body Coulomb systems using generalized angular-momentum S states
NASA Technical Reports Server (NTRS)
Whitten, R. C.; Sims, J. S.
1974-01-01
An expansion of the three-body Coulomb potential in generalized angular-momentum eigenfunctions developed earlier by one of the authors is used to compute energy eigenvalues and eigenfunctions of bound S states of three-body Coulomb systems. The results for He, H(-), e(-)e(+)e(-), and pmu(-)p are compared with the results of other computational approaches.
Wind-driven angular momentum loss in binary systems. I - Ballistic case
NASA Technical Reports Server (NTRS)
Brookshaw, Leigh; Tavani, Marco
1993-01-01
We study numerically the average loss of specific angular momentum from binary systems due to mass outflow from one of the two stars for a variety of initial injection geometries and wind velocities. We present results of ballistic calculations in three dimensions for initial mass ratios q of the mass-losing star to primary star in the range q between 10 exp -5 and 10. We consider injection surfaces close to the Roche lobe equipotential surface of the mass-losing star, and also cases with the mass-losing star underfilling its Roche lobe. We obtain that the orbital period is expected to have a negative time derivative for wind-driven secular evolution of binaries with q greater than about 3 and with the mass-losing star near filling its Roche lobe. We also study the effect of the presence of an absorbing surface approximating an accretion disk on the average final value of the specific angular momentum loss. We find that the effect of an accretion disk is to increase the wind-driven angular momentum loss. Our results are relevant for evolutionary models of high-mass binaries and low-mass X-ray binaries.
NASA Astrophysics Data System (ADS)
Yoshino, Harukazu; Saito, Kazuya; Nishikawa, Hiroyuki; Kikuchi, Koichi; Kobayashi, Keiji; Ikemoto, Isao
1997-08-01
Comparative study is presented for the in-plane angular effect of magnetoresistance of quasi-one-dimensional organic conductors, (DMET)2AuBr2 and (TMTSF)2ClO4. The magnetoresistance for the magnetic and electrical fields parallel and perpendicular to the most conducting plane, respectively, was measured at 4.2 K and up to 7.0 T. (DMET)2AuBr2 shows an anomalous hump in the field-orientation dependence of the magnetoresistance for the magnetic field nearly parallel to the most conducting axis and this is very similar to what previously reported for (DMET)2I3. Weak anomaly was detected for the magnetoresistance of (TMTSF)2ClO4 in the Relaxed state, while no anomaly was observed in the SDW phase in the Quenched state. By comparing the numerical angular derivatives of the magnetoresistance, it is shown that the anomaly in the in-plane angular effect continuously develops from zero magnetic field and is closely related to the quasi-one-dimensional Fermi surface. A simple method is proposed to estimate the anisotropy of the transfer integral from the width of the hump anomaly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka
2015-11-10
We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwisemore » or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.« less
Tiger beetles pursue prey using a proportional control law with a delay of one half-stride.
Haselsteiner, Andreas F; Gilbert, Cole; Wang, Z Jane
2014-06-06
Tiger beetles are fast diurnal predators capable of chasing prey under closed-loop visual guidance. We investigated this control system using statistical analyses of high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Correlation analyses reveal that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The proportionality coefficient or system gain, 12 s(-1), is just below critical damping. Pursuit simulations using the derived control law predict angular orientation during pursuits with a residual error of about 7°. This is of the same order of magnitude as the oscillation imposed by the beetle's alternating tripod gait, which was not factored into the control law. The system delay of 28 ms equals a half-stride period, i.e. the time between the touch down of alternating tripods. Based on these results, we propose a physical interpretation of the observed control law: to turn towards its prey, the beetle on average exerts a sideways force proportional to the angular position of the prey measured a half-stride earlier.
NASA Astrophysics Data System (ADS)
Sokołowska, Aleksandra; Capelo, Pedro R.; Fall, S. Michael; Mayer, Lucio; Shen, Sijing; Bonoli, Silvia
2017-02-01
We investigate the angular momentum evolution of four disk galaxies residing in Milky-Way-sized halos formed in cosmological zoom-in simulations with various sub-grid physics and merging histories. We decompose these galaxies, kinematically and photometrically, into their disk and bulge components. The simulated galaxies and their components lie on the observed sequences in the j *-M * diagram, relating the specific angular momentum and mass of the stellar component. We find that galaxies in low-density environments follow the relation {j}* \\propto {M}* α past major mergers, with α ˜ 0.6 in the case of strong feedback, when bulge-to-disk ratios are relatively constant, and α ˜ 1.4 in the other cases, when secular processes operate on shorter timescales. We compute the retention factors (I.e., the ratio of the specific angular momenta of stars and dark matter) for both disks and bulges and show that they vary relatively slowly after averaging over numerous but brief fluctuations. For disks, the retention factors are usually close to unity, while for bulges, they are a few times smaller. Our simulations therefore indicate that galaxies and their halos grow in a quasi-homologous way.
Zero potential vorticity envelopes for the zonal-mean velocity of the Venus/Titan atmospheres
NASA Technical Reports Server (NTRS)
Allison, Michael; Del Genio, Anthony D.; Zhou, Wei
1994-01-01
The diagnostic analysis of numerical simulations of the Venus/Titan wind regime reveals an overlooked constraint upon the latitudinal structure of their zonal-mean angular momentum. The numerical experiments, as well as the limited planetary observations, are approximately consistent with the hypothesis that within the latitudes bounded by the wind maxima the total Ertel potential vorticity associated with the zonal-mean motion is approximately well mixed with respect to the neutral equatorial value for a stable circulation. The implied latitudinal profile of angular momentum is of the form M equal to or less than M(sub e)(cos lambda)(exp 2/Ri), where lambda is the latitude and Ri the local Richardson number, generally intermediate between the two extremes of uniform angular momentum (Ri approaches infinity) and uniform angular velocity (Ri = 1). The full range of angular momentum profile variation appears to be realized within the observed meridional - vertical structure of the Venus atmosphere, at least crudely approaching the implied relationship between stratification and zonal velocity there. While not itself indicative of a particular eddy mechanism or specific to atmospheric superrotation, the zero potential vorticity (ZPV) constraint represents a limiting bound for the eddy - mean flow adjustment of a neutrally stable baroclinic circulation and may be usefully applied to the diagnostic analysis of future remote sounding and in situ measurements from planetary spacecraft.
1989-11-14
9] V. A. Kondrat’ev. Boundary problems for parabolic equations in closed domains. Trans. Mosc . Math. Soc., 15:450-504, 1966. [10] V. A. Kondrat’ev...Boundary problems for elliptic equations in domains with conical or angular points. Trans. Mosc . Math. Soc., 16:227-313, 1967. [11] Y. Maday. Analysis
Development of closed loop roll control for magnetic balance systems
NASA Technical Reports Server (NTRS)
Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.
1982-01-01
This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.
Directional view interpolation for compensation of sparse angular sampling in cone-beam CT.
Bertram, Matthias; Wiegert, Jens; Schafer, Dirk; Aach, Til; Rose, Georg
2009-07-01
In flat detector cone-beam computed tomography and related applications, sparse angular sampling frequently leads to characteristic streak artifacts. To overcome this problem, it has been suggested to generate additional views by means of interpolation. The practicality of this approach is investigated in combination with a dedicated method for angular interpolation of 3-D sinogram data. For this purpose, a novel dedicated shape-driven directional interpolation algorithm based on a structure tensor approach is developed. Quantitative evaluation shows that this method clearly outperforms conventional scene-based interpolation schemes. Furthermore, the image quality trade-offs associated with the use of interpolated intermediate views are systematically evaluated for simulated and clinical cone-beam computed tomography data sets of the human head. It is found that utilization of directionally interpolated views significantly reduces streak artifacts and noise, at the expense of small introduced image blur.
Precise Selenodetic Coordinate System on Artificial Light Refers
NASA Astrophysics Data System (ADS)
Bagrov, Alexander; Pichkhadze, Konstantin M.; Sysoev, Valentin
Historically a coordinate system for the Moon was established on the base of telescopic observations from the Earth. As the angular resolution of Earth-to-Space telescopic observations is limited by Earth atmosphere, and is ordinary worse then 1 ang. second, the mean accuracy of selenodetic coordinates is some angular minutes, which corresponds to errors about 900 meters for positions of lunar objects near center of visible lunar disk, and at least twice more when objects are near lunar poles. As there are no Global Positioning System nor any astronomical observation instruments on the Moon, we proposed to use an autonomous light beacon on the Luna-Globe landing module to fix its position on the surface of the moon ant to use it as refer point for fixation of spherical coordinates system for the Moon. The light beacon is designed to be surely visible by orbiting probe TV-camera. As any space probe has its own stars-orientation system, there is not a problem to calculate a set of directions to the beacon and to the referent stars in probe-centered coordinate system during flight over the beacon. Large number of measured angular positions and time of each observation will be enough to calculate both orbital parameters of the probe and selenodetic coordinates of the beacon by methods of geodesy. All this will allow fixing angular coordinates of any feature of lunar surface in one global coordinate system, referred to the beacon. The satellite’s orbit plane contains ever the center mass of main body, so if the beacon will be placed closely to a lunar pole, we shall determine pole point position of the Moon with accuracy tens times better then it is known now. When angular accuracy of self-orientation by stars of the orbital module of Luna-Glob mission will be 6 angular seconds, then being in circular orbit with height of 200 km the on-board TV-camera will allow calculation of the beacon position as well as 6" corresponding to spatial resolution of the camera. It mean that coordinates of the beacon will be determined with accuracy not worse then 6 meters on the lunar surface. Much more accuracy can be achieved if orbital probe will use as precise angular measurer as optical interferometer. The limiting accuracy of proposed method is far above any reasonable level, because it may be sub-millimeter one. Theoretical analysis shows that for achievement of 1-meter accuracy of coordinate measuring over lunar globe it will be enough to disperse over it surface some 60 light beacons. Designed by Lavochkin Association light beacon is autonomous one, and it will work at least 10 years, so coordinate frame of any other lunar mission could use established selenodetic coordinates during this period. The same approach may be used for establishing Martial coordinates system.
Testing the cosmological principle of isotropy: local power-spectrum estimates of the WMAP data
NASA Astrophysics Data System (ADS)
Hansen, F. K.; Banday, A. J.; Górski, K. M.
2004-11-01
We apply the Gabor transform methodology proposed by Hansen et al. to the WMAP data in order to test the statistical properties of the cosmic microwave background (CMB) fluctuation field and specifically to evaluate the fundamental assumption of cosmological isotropy. In particular, we apply the transform with several apodization scales, thus allowing the determination of the positional dependence of the angular power spectrum with either high spatial localization or high angular resolution (i.e. narrow bins in multipole space). Practically, this implies that we estimate the angular power spectrum locally in discs of various sizes positioned in different directions: small discs allow the greatest sensitivity to positional dependence, whereas larger discs allow greater sensitivity to variations over different angular scales. In addition, we determine whether the spatial position of a few outliers in the angular power spectrum could suggest the presence of residual foregrounds or systematic effects. For multipoles close to the first peak, the most deviant local estimates from the best-fitting WMAP model are associated with a few particular areas close to the Galactic plane. Such deviations also include the `dent' in the spectrum just shortward of the first peak which was remarked upon by the WMAP team. Estimating the angular power spectrum excluding these areas gives a slightly higher first Doppler peak amplitude. Finally, we probe the isotropy of the largest angular scales by estimating the power spectrum on hemispheres and reconfirm strong indications of a north-south asymmetry previously reported by other authors. Indeed, there is a remarkable lack of power in a region associated with the North ecliptic Pole. With the greater fidelity in l-space allowed by this larger sky coverage, we find tentative evidence for residual foregrounds in the range l= 2-4, which could be associated with the low measured quadrupole amplitudes and other anomalies on these angular scales (e.g. planarity and alignment). However, over the range l= 5-40 the observed asymmetry is much harder to explain in terms of residual foregrounds and known systematic effects. By reorienting the coordinate axes, we partition the sky into different hemispheres and search for the reference frame which maximizes the asymmetric distribution of power. The North Pole for this coordinate frame is found to intersect the sphere at (80°, 57°) in Galactic colatitude and longitude over almost the entire multipole range l= 5-40. Furthermore, the strong negative outlier at l= 21 and the strong positive outlier at l= 39, as determined from the global power spectrum by the WMAP team, are found to be associated with the Northern and Southern hemispheres, respectively (in this frame of maximum asymmetry). Thus, these two outliers follow the general tendency of the multipoles l= 5-40 to be of systematically lower amplitude in the north and higher in the south. Such asymmetric distributions of power on the sky provide a serious test for the cosmological principle of isotropy.
NASA Astrophysics Data System (ADS)
Taubmann, O.; Haase, V.; Lauritsch, G.; Zheng, Y.; Krings, G.; Hornegger, J.; Maier, A.
2017-04-01
Time-resolved tomographic cardiac imaging using an angiographic C-arm device may support clinicians during minimally invasive therapy by enabling a thorough analysis of the heart function directly in the catheter laboratory. However, clinically feasible acquisition protocols entail a highly challenging reconstruction problem which suffers from sparse angular sampling of the trajectory. Compressed sensing theory promises that useful images can be recovered despite massive undersampling by means of sparsity-based regularization. For a multitude of reasons—most notably the desired reduction of scan time, dose and contrast agent required—it is of great interest to know just how little data is actually sufficient for a certain task. In this work, we apply a convex optimization approach based on primal-dual splitting to 4D cardiac C-arm computed tomography. We examine how the quality of spatially and temporally total-variation-regularized reconstruction degrades when using as few as 6.9+/- 1.2 projection views per heart phase. First, feasible regularization weights are determined in a numerical phantom study, demonstrating the individual benefits of both regularizers. Secondly, a task-based evaluation is performed in eight clinical patients. Semi-automatic segmentation-based volume measurements of the left ventricular blood pool performed on strongly undersampled images show a correlation of close to 99% with measurements obtained from less sparsely sampled data.
Plan-B - Do All Planetary Nebulae Derive From Binaries?
NASA Astrophysics Data System (ADS)
De Marco, Orsola; PLAN-B working Group
2007-12-01
The planetary nebula (PN) field is facing a paradigm problem. For the last thirty years the role of binarity in the formation and shaping of PNe has been hotly debated. The majority of the active research community favored a scenario in which the majority of PNe are formed by single asymptotic giant stars that impart elliptical and bipolar shapes to their ejected envelopes by means of rotation and magnetic fields. However it has recently come to light that magnetic fields and rotation would not survive in a single star for long enough to be dynamically important. What is needed is an angular momentum source which can resupply the star of rotation at the right time. This angular momentum reservoir is most likely in the form of a binary companion. Today we know of only a handful of binary central stars of PN which are close enough to have interacted. Detecting binary central stars has therefore become paramount to provide an observational confirmation of the binary hypothesis. This task has however proven to be difficult, since most of the traditional techniques are difficult to apply to these bright, windy, and pulsating stars. In June 2007 an international working group has therefore been forged to aggressively tackle this observational challenge with a diverse range of observational approaches. This This work is funded in part by NSF grant AST-0607111 (PI: De Marco)
D'Andrea, Giancarlo; Familiari, Pietro; Di Lauro, Antonio; Angelini, Albina; Sessa, Giovanni
2016-03-01
Language dysfunction, visual deficit, numeracy impairment, and Gerstmann syndrome often occur in the cortical area; furthermore, the subcortical white matter is the inviolable limit of "functional neurosurgery." Preoperative functional magnetic resonance imaging (fMRI) and tractography are capable of providing the data required for safe "surgical planning" at both the cortical and subcortical levels. We report our experience regarding high-grade gliomas affecting the dominant angular gyrus (AG), supramarginal gyrus (SMG), intraparietal sulcus (IPS), and their respective subcortical areas using intraoperative MRI and diffusion tensor imaging (DTI). Retrospectively, we reviewed a consecutive series of 27 patients operated in a BrainSuite for high-grade intraparenchymal tumors of the left posterior temporoparietal junction. We included tumors involving the dominant AG, SMG, and/or IPS and the subcortical course of arcuate fasciculus (AF) and all the patients who underwent preoperative fMRI and DTI to localize the AF and the eloquent cortical areas. Just after craniotomy, new volumetric MRI and DTI verified and corrected possible brain shift. After the gross total resection was carried out, and before approaching the residual mass close to the white matter tract, an intraoperative MRI was again performed. We operated on 27 patients, 15 males and 12 females, whose diagnosis was always high-grade glioma. During the preoperative neurologic examination, 6 patients were asymptomatic; 3 presented a Gerstmann syndrome; 16 showed dysphasic disturbances, 6 of which were associated with visual field deficits; and 2 showed weakness of the right limb. Our results suggest that this approach is completely safe and effective as an alternative to awake surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Angular motion estimation using dynamic models in a gyro-free inertial measurement unit.
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.
Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters. PMID:22778586
ERIC Educational Resources Information Center
Bostan Sarioglan, Ayberk; Kucukozer, Huseyin
2017-01-01
The aim of this study is to analyze the effect of meaning making based instruction regarding angular momentum conservation on the change of two 11th grade students' alternative ideas they have before instruction. Case study model is used in the research. Conceptual test (implemented before the instruction, right after the instruction and fifteen…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eiglsperger, Johannes; Piraux, Bernard; Madronero, Javier
2010-04-15
We investigate high-lying doubly excited nonautoionizing states of helium with total angular momentum L=1,2,...,9 with the help of a configuration interaction approach. We provide highly precise nonrelativistic energies of these states and discuss the properties of the wave functions with respect to the particle exchange operator.
Catching a Rolling Stone: Dynamics and Control of a Spacecraft and an Asteroid
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Shen, Haijun; Jesick, Mark C; Cornelius, David M
2013-01-01
In a recent report, a robotic spacecraft mission is proposed for the purpose of collecting a small asteroid, or a small part of a large one, and transporting it to an orbit in the Earth-Moon system. Such an undertaking will require solutions to many of the engineering problems associated with deflection of an asteroid that poses a danger to Earth. In both cases, it may be necessary for a spacecraft to approach an asteroid from a nearby position, hover for some amount of time, move with the same angular velocity as the asteroid, descend, perhaps ascend, and finally arrest the angular velocity of the asteroid. Dynamics and control in each of these activities is analyzed in order to determine the velocity increments and control torque that must be provided by a reaction control system, and the mass of the propellant that will be consumed. Two attitude control algorithms are developed, one to deal with synchronizing the spacecraft s angular velocity with that of the asteroid, and the other to arrest the asteroid s angular velocity. A novel approach is proposed for saving fuel in the latter case.
Applications of Cosmic Muon Tracking at Shallow Depth Underground
NASA Astrophysics Data System (ADS)
Oláh, L.; Barnaföldi, G. G.; Hamar, G.; Melegh, H. G.; Surányi, G.; Varga, D.
2014-06-01
A portable cosmic muon telescope has been developed for environmental and geophysical applications, as well as cosmic background measurements for nuclear research in underground labs by the REGARD group (Wigner RCP of the HAS and Eötvös Loránd University collaboration on gaseous detector R&D). The modular, low power consuming (5 W) Close Cathode Chamber-based tracking system has 10 mrad angular resolution with its sensitive area of 0.1 m2. The angular distribution of cosmic muons has been measured at shallow depth underground (< 70 meter-rock-equivalent) in four different remote locations. Application of cosmic muon detection for the reconstruction of underground caverns and building structures are demonstrated by the measurements.
Photons, phonons, and plasmons with orbital angular momentum in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qiang; Qin, Hong; Liu, Jian
Exact eigen modes with orbital angular momentum (OAM) in the complex media of unmagnetized homogeneous plasmas are studied. Three exact eigen modes with OAM are derived, i.e., photons, phonons, and plasmons. The OAM of different plasma components are closely related to the charge polarities. For photons, the OAM of electrons and ions are of the same magnitude but opposite direction, and the total OAM is carried by the field. For the phonons and plasmons, their OAM are carried by the electrons and ions. Lastly, the OAM modes in plasmas and their characteristics can be explored for potential applications in plasmamore » physics and accelerator physics.« less
Photons, phonons, and plasmons with orbital angular momentum in plasmas
Chen, Qiang; Qin, Hong; Liu, Jian
2017-02-06
Exact eigen modes with orbital angular momentum (OAM) in the complex media of unmagnetized homogeneous plasmas are studied. Three exact eigen modes with OAM are derived, i.e., photons, phonons, and plasmons. The OAM of different plasma components are closely related to the charge polarities. For photons, the OAM of electrons and ions are of the same magnitude but opposite direction, and the total OAM is carried by the field. For the phonons and plasmons, their OAM are carried by the electrons and ions. Lastly, the OAM modes in plasmas and their characteristics can be explored for potential applications in plasmamore » physics and accelerator physics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonks, James P., E-mail: james.tonks@awe.co.uk; AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR; Galloway, Ewan C., E-mail: ewan.galloway@awe.co.uk
2016-08-15
A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systemsmore » designed for only one of these techniques.« less
Angular and velocity distributions of tungsten sputtered by low energy argon ions
NASA Astrophysics Data System (ADS)
Marenkov, E.; Nordlund, K.; Sorokin, I.; Eksaeva, A.; Gutorov, K.; Jussila, J.; Granberg, F.; Borodin, D.
2017-12-01
Sputtering by ions with low near-threshold energies is investigated. Experiments and simulations are conducted for tungsten sputtering by low-energy, 85-200 eV Ar atoms. The angular distributions of sputtered particles are measured. A new method for molecular dynamics simulation of sputtering taking into account random crystallographic surface orientation is developed, and applied for the case under consideration. The simulations approximate experimental results well. At low energies the distributions acquire "butterfly-like" shape with lower sputtering yields for close to normal angles comparing to the cosine distribution. The energy distributions of sputtered particles were simulated. The Thompson distribution remains valid down to near-threshold 85 eV case.
Lee, Dong-Rour; Kim, Laurentius Jongsoon
2016-08-01
Many studies have explored closed kinetic chain (CKC) shoulder exercises (SEs) with a sling because they are safer and more effective than open-chain exercises, especially in early stages of treatment. However, the application of CKC SE in youth baseball players has rarely been attempted, although teenage baseball players also experience shoulder pain. To investigate the effects of CKC SE on the peak torque of shoulder internal rotation (IR) and external rotation (ER) in youth baseball players. Single-group pretest, posttest. Biomechanics laboratory. 23 Little League Baseball players with subacromial impingement syndrome. The CKC SE with a sling was CKC shoulder-flexion exercise, extension exercise, IR exercise, and ER exercise. This exercise regimen was conducted 2 or 3 times/wk for 8 wk. The peak torque of shoulder IR and ER was measured using an isokinetic dynamometer. Concentric shoulder rotation was performed, with 5 repetitions at an angular velocity of 60°/s and 15 at 180°/s. The IR and ER peak torque significantly increased at each angular velocity after the exercise program. In particular, the increase in IR and ER peak torque values was statistically significant at an angular velocity of 180°/s. CKC SE was effective in increasing shoulder IR and ER strength, demonstrating its potential benefits in the prevention and treatment of shoulder injury. In addition, increased IR peak torque appears to improve throwing velocity in baseball players.
U.S. Hail Frequency and the Global Wind Oscillation
NASA Astrophysics Data System (ADS)
Gensini, Vittorio A.; Allen, John T.
2018-02-01
Changes in Earth relative atmospheric angular momentum can be described by an index known as the Global Wind Oscillation. This global index accounts for changes in Earth's atmospheric budget of relative angular momentum through interactions of tropical convection anomalies, extratropical dynamics, and engagement of surface torques (e.g., friction and mountain). It is shown herein that U.S. hail events are more (less) likely to occur in low (high) atmospheric angular momentum base states when excluding weak Global Wind Oscillation days, with the strongest relationships found in the boreal spring and fall. Severe, significant severe, and giant hail events are more likely to occur during Global Wind Oscillation phases 8, 1, 2, and 3 during the peak of U.S. severe weather season. Lower frequencies of hail events are generally found in Global Wind Oscillation phases 4-7 but vary based on Global Wind Oscillation amplitude and month. In addition, probabilistic anomalies of atmospheric ingredients supportive of hail producing supercell thunderstorms closely mimic locations of reported hail frequency, helping to corroborate report results.
The photon gas formulation of thermal radiation
NASA Technical Reports Server (NTRS)
Ried, R. C., Jr.
1975-01-01
A statistical consideration of the energy, the linear momentum, and the angular momentum of the photons that make up a thermal radiation field was presented. A general nonequilibrium statistical thermodynamics approach toward a macroscopic description of thermal radiation transport was developed and then applied to the restricted equilibrium statistical thermostatics derivation of the energy, linear momentum, and intrinsic angular momentum equations for an isotropic photon gas. A brief treatment of a nonisotropic photon gas, as an example of the results produced by the nonequilibrium statistical thermodynamics approach, was given. The relativistic variation of temperature and the invariance of entropy were illustrated.
NASA Astrophysics Data System (ADS)
Li, Xuesong; Northrop, William F.
2016-04-01
This paper describes a quantitative approach to approximate multiple scattering through an isotropic turbid slab based on Markov Chain theorem. There is an increasing need to utilize multiple scattering for optical diagnostic purposes; however, existing methods are either inaccurate or computationally expensive. Here, we develop a novel Markov Chain approximation approach to solve multiple scattering angular distribution (AD) that can accurately calculate AD while significantly reducing computational cost compared to Monte Carlo simulation. We expect this work to stimulate ongoing multiple scattering research and deterministic reconstruction algorithm development with AD measurements.
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.
1995-01-01
A grazing angle objective on an infrared microspectrometer is studied for quantitative spectroscopy by considering the angular dependence of the incident intensity within the objective's angular aperture. The assumption that there is no angular dependence is tested by comparing the experimental reflectance of Si and KBr surfaces with the reflectance calculated by integrating the Fresnel reflection coefficient over the angular aperture under this assumption. Good agreement was found, indicating that the specular reflectance of surfaces can straight-forwardly be quantitatively integrated over the angular aperture without considering non-uniform incident intensity. This quantitative approach is applied to the thickness determination of dipcoated Krytox on gold. The infrared optical constants of both materials are known, allowing the integration to be carried out. The thickness obtained is in fair agreement with the value determined by ellipsometry in the visible. Therefore, this paper illustrates a method for more quantitative use of a grazing angle objective for infrared reflectance microspectroscopy.
Angular momentum transport with twisted exciton wave packets
NASA Astrophysics Data System (ADS)
Zang, Xiaoning; Lusk, Mark T.
2017-10-01
A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.
Couple stress fluid flow in a rotating channel with peristalsis
NASA Astrophysics Data System (ADS)
Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.
2018-04-01
This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.
NASA Astrophysics Data System (ADS)
Lowell, A.; Boggs, S.; Chiu, J. L.; Kierans, C.; McBride, S.; Tseng, C. H.; Zoglauer, A.; Amman, M.; Chang, H. K.; Jean, P.; Lin, C. H.; Sleator, C.; Tomsick, J.; von Ballmoos, P.; Yang, C. Y.
2016-08-01
The Compton Spectrometer and Imager (COSI) is a medium energy gamma ray (0.2 - 10 MeV) imager designed to observe high-energy processes in the universe from a high altitude balloon platform. At its core, COSI is comprised of twelve high purity germanium double sided strip detectors which measure particle interaction energies and locations with high precision. This manuscript focuses on the positional calibrations of the COSI detectors. The interaction depth in a detector is inferred from the charge collection time difference between the two sides of the detector. We outline our previous approach to this depth calibration and also describe a new approach we have recently developed. Two dimensional localization of interactions along the faces of the detector (x and y) is straightforward, as the location of the triggering strips is simply used. However, we describe a possible technique to improve the x/y position resolution beyond the detector strip pitch of 2 mm. With the current positional calibrations, COSI achieves an angular resolution of 5.6 +/- 0.1 degrees at 662 keV, close to our expectations from simulations.
Photogrammetry Of A Parabolic Antenna
NASA Technical Reports Server (NTRS)
Merrick, W. D.; Lansing, F. L.; Stoller, F. W.; Lobb, V. B.
1988-01-01
Surface measured with accuracy better than 10 to the negative fifth power times diameter. Report describes use of advanced close-range photogrammetry to determine deviations of 34-m-diameter antenna main reflector and subreflector from nominal paraboloidal shapes. Measurements enable removal of linear offsets and angular misalignments of subreflector, with consequent increase of 4 percent in aperture efficiency.
In vivo maximal fascicle-shortening velocity during plantar flexion in humans.
Hauraix, Hugo; Nordez, Antoine; Guilhem, Gaël; Rabita, Giuseppe; Dorel, Sylvain
2015-12-01
Interindividual variability in performance of fast movements is commonly explained by a difference in maximal muscle-shortening velocity due to differences in the proportion of fast-twitch fibers. To provide a better understanding of the capacity to generate fast motion, this study aimed to 1) measure for the first time in vivo the maximal fascicle-shortening velocity of human muscle; 2) evaluate the relationship between angular velocity and fascicle-shortening velocity from low to maximal angular velocities; and 3) investigate the influence of musculo-articular features (moment arm, tendinous tissues stiffness, and muscle architecture) on maximal angular velocity. Ultrafast ultrasound images of the gastrocnemius medialis were obtained from 31 participants during maximal isokinetic and light-loaded plantar flexions. A strong linear relationship between fascicle-shortening velocity and angular velocity was reported for all subjects (mean R(2) = 0.97). The maximal shortening velocity (V(Fmax)) obtained during the no-load condition (NLc) ranged between 18.8 and 43.3 cm/s. V(Fmax) values were very close to those of the maximal shortening velocity (V(max)), which was extrapolated from the F-V curve (the Hill model). Angular velocity reached during the NLc was significantly correlated with this V(Fmax) (r = 0.57; P < 0.001). This finding was in agreement with assumptions about the role of muscle fiber type, whereas interindividual comparisons clearly support the fact that other parameters may also contribute to performance during fast movements. Nevertheless, none of the biomechanical features considered in the present study were found to be directly related to the highest angular velocity, highlighting the complexity of the upstream mechanics that lead to maximal-velocity muscle contraction. Copyright © 2015 the American Physiological Society.
Overlapping inflow events as catalysts for supermassive black hole growth
NASA Astrophysics Data System (ADS)
Carmona-Loaiza, Juan M.; Colpi, Monica; Dotti, Massimo; Valdarnini, Riccardo
2014-02-01
One of the greatest issues in modelling black hole fuelling is our lack of understanding of the processes by which gas loses angular momentum and falls from galactic scales down to the nuclear region where an accretion disc forms, subsequently guiding the inflow of gas down to the black hole horizon. It is feared that gas at larger scales might still retain enough angular momentum and settle into a larger scale disc with very low or no inflow to form or replenish the inner accretion disc (on ˜0.01 pc scales). In this paper we report on hydrodynamical simulations of rotating infalling gas shells impacting at different angles on to a pre-existing, primitive large-scale (˜10 pc) disc around a supermassive black hole. The aim is to explore how the interaction between the shell and the disc redistributes the angular momentum on scales close to the black hole's sphere of influence. Angular momentum redistribution via hydrodynamical shocks leads to inflows of gas across the inner boundary, enhancing the inflow rate by more than 2-3 orders of magnitude. In all cases, the gas inflow rate across the inner parsec is higher than in the absence of the interaction, and the orientation of the angular momentum of the flow in the region changes with time due to gas mixing. Warped discs or nested misaligned rings form depending on the angular momentum content of the infalling shell relative to the disc. In the cases in which the shell falls in near counter-rotation, part of the resulting flows settle into an inner dense disc which becomes more susceptible to mass transfer.
The gyrotron - a natural source of high-power orbital angular momentum millimeter-wave beams
NASA Astrophysics Data System (ADS)
Thumm, M.; Sawant, A.; Choe, M. S.; Choi, E. M.
2017-08-01
Orbital angular momentum (OAM) of electromagnetic-wave beams provides further diversity to multiplexing in wireless communication. The present report shows that higher-order mode gyrotrons are natural sources of high-power OAM millimeter (mm) wave beams. The well-defined OAM of their rotating cavity modes operating at near cutoff frequency has been derived by photonic and electromagnetic wave approaches.
Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States.
Yue, Fuyong; Wen, Dandan; Zhang, Chunmei; Gerardot, Brian D; Wang, Wei; Zhang, Shuang; Chen, Xianzhong
2017-04-01
A facile metasurface approach is shown to realize polarization-controllable multichannel superpositions of orbital angular momentum (OAM) states with various topological charges. By manipulating the polarization state of the incident light, four kinds of superpositions of OAM states are realized using a single metasurface consisting of space-variant arrays of gold nanoantennas. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Explosive Joining for the Mars Sample Return Mission
NASA Technical Reports Server (NTRS)
Bement, Laurence J.; Sanok, Joseph T.
2000-01-01
A unique, small-scale, ribbon explosive joining process is being developed as an option for closing and sealing a metal canister to allow the return of a pristine sample of the Martian surface and atmosphere to Earth. This joining process is accomplished by an explosively driven, high-velocity, angular collision of the metal, which melts and effaces the oxide films from the surfaces to allow valence electron sharing to bond the interface. Significant progress has been made through more than 100 experimental tests to meet the goals of this ongoing developmental effort. The metal of choice, aluminum alloy 6061, has been joined in multiple interface configurations and in complete cylinders. This process can accommodate dust and debris on the surfaces to be joined. It can both create and sever a joint at its midpoint with one explosive input. Finally, an approach has been demonstrated that can capture the back blast from the explosive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulshani, P., E-mail: matlap@bell.net
We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy,more » cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.« less
Surface-induced dissociation of methanol cations: A non-ergodic process
Shukla, Anil K.
2017-09-01
Here, dissociation of methanol molecular cations, CH 3OH +, to CH 2OH + on collision with a self-assembled monolayer surface of fluorinated alkyl thiol on gold 111 crystal has been studied at 12.5 eV collision energy. Two energetically and spatially distinct processes contribute to the dissociation process: one involving loss of very large amount of energy approaching the initial kinetic energy of the primary ions with scattering of fragment ions over a broad angular range between surface normal and surface parallel while the second process results from small amount of energy loss with fragment ions scattered over a narrow angularmore » range close to the surface parallel. There is a third process with relatively small contribution to total dissociation whose characteristics are very similar to the low energy loss process. Finally, these results demonstrate that surface-induced dissociation of methanol cations via hydrogen loss is non-ergodic.« less
Surface-induced dissociation of methanol cations: A non-ergodic process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Anil K.
Here, dissociation of methanol molecular cations, CH 3OH +, to CH 2OH + on collision with a self-assembled monolayer surface of fluorinated alkyl thiol on gold 111 crystal has been studied at 12.5 eV collision energy. Two energetically and spatially distinct processes contribute to the dissociation process: one involving loss of very large amount of energy approaching the initial kinetic energy of the primary ions with scattering of fragment ions over a broad angular range between surface normal and surface parallel while the second process results from small amount of energy loss with fragment ions scattered over a narrow angularmore » range close to the surface parallel. There is a third process with relatively small contribution to total dissociation whose characteristics are very similar to the low energy loss process. Finally, these results demonstrate that surface-induced dissociation of methanol cations via hydrogen loss is non-ergodic.« less
The place of the Local Group in the cosmic web
NASA Astrophysics Data System (ADS)
Forero-Romero, Jaime E.; González, Roberto
2016-10-01
We use the Bolshoi Simulation to find the most probable location of the Local Group (LG) in the cosmic web. Our LG simulacra are pairs of halos with isolation and kinematic properties consistent with observations. The cosmic web is defined using a tidal tensor approach. We find that the LG's preferred location is regions with a dark matter overdensity close to the cosmic average. This makes filaments and sheets the preferred environment. We also find a strong alignment between the LG and the cosmic web. The orbital angular momentum is preferentially perpendicular to the smallest tidal eigenvector, while the vector connecting the two halos is strongly aligned along the the smallest tidal eigenvector and perpendicular to the largest tidal eigenvector; the pair lies and moves along filaments and sheets. We do not find any evidence for an alignment between the spin of each halo in the pair and the cosmic web.
Addition and subtraction operation of optical orbital angular momentum with dielectric metasurfaces
NASA Astrophysics Data System (ADS)
Yi, Xunong; Li, Ying; Ling, Xiaohui; Liu, Yachao; Ke, Yougang; Fan, Dianyuan
2015-12-01
In this work, we propose a simple approach to realize addition and subtraction operation of optical orbital angular momentum (OAM) based on dielectric metasurfaces. The spin-orbit interaction of light in spatially inhomogeneous and anisotropic metasurfaces results in the spin-to-orbital angular momentum conversion. The subtraction system of OAM consists of two cascaded metasurfaces, while the addition system of OAM is constituted by inserting a half waveplate (HWP) between the two metasurfaces. Our experimental results are in good agreement with the theoretical calculation. These results could be useful for OAM-carrying beams applied in optical communication, information processing, etc.
Tiger beetles pursue prey using a proportional control law with a delay of one half-stride
Haselsteiner, Andreas F.; Gilbert, Cole; Wang, Z. Jane
2014-01-01
Tiger beetles are fast diurnal predators capable of chasing prey under closed-loop visual guidance. We investigated this control system using statistical analyses of high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Correlation analyses reveal that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The proportionality coefficient or system gain, 12 s−1, is just below critical damping. Pursuit simulations using the derived control law predict angular orientation during pursuits with a residual error of about 7°. This is of the same order of magnitude as the oscillation imposed by the beetle's alternating tripod gait, which was not factored into the control law. The system delay of 28 ms equals a half-stride period, i.e. the time between the touch down of alternating tripods. Based on these results, we propose a physical interpretation of the observed control law: to turn towards its prey, the beetle on average exerts a sideways force proportional to the angular position of the prey measured a half-stride earlier. PMID:24718454
Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, John P.; Askari, Hesam A.; Hovanski, Yuri
2015-03-01
Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energymore » for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.« less
Probable Rotation States of Rocket Bodies in Low Earth Orbit
NASA Astrophysics Data System (ADS)
Ojakangas, G.; Anz-Meador, P.; Cowardin, H.
2012-09-01
In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies (RBs). However, rotational dynamics is non-intuitive and misconceptions are common. Determinations of rotation and precession rates from light curves have been published that are inconsistent with the theory presented here. In a state of free precession, the total angular momentum of the object is constant, while kinetic energy decreases due to internal friction, approaching rotation about the axis of maximum inertia. For solid internal friction the timescale is hundreds to thousands of years for quality factors of ~100 and assuming metallic rigidities, but for friction in partially-filled liquid fuel tanks we predict that the preferred rotational state is approached rapidly, within days to months. However, history has shown that theoretical predictions of the timescale have been notoriously inaccurate. In free precession, the 3-1-3 Euler angle rates dphi/dt (precession rate of long axis about fixed angular momentum with cone angle theta) and dpsi/dt (roll rate around long axis) have comparable magnitudes until very close to theta=pi/2, so that otherwise the true rotation period is not simply twice the primary light curve period. Furthermore dtheta/dt, nonzero due to friction, becomes asymptotically smaller as theta=pi/2 is approached, so that theta can linger within several degrees of flat spin for a relatively long time. Such a condition is likely common, and cannot be distinguished from the wobble of a cylinder with a skewed inertia tensor unless the RB has non-axisymmetric reflectivity characteristics. For an RB of known dimensions, a given value of theta fixes the relative values of dpsi/dt and dphi/dt. In forced precession, the angular momentum precesses about a symmetry axis defined by the relevant torque. However, in LEO, only gravity gradient and magnetic eddy current torques are dominant, and these cannot cause precession periods shorter than a week, or more likely, months. Thus forced precession is probably not observable over observation campaigns spanning a few days or less. Spin-orbit resonances are likely for low rotation rates approaching the mean motion, possibly causing large deviations between the symmetry axis and the geocentric direction. An expression for the eddy current torque on an arbitrarily rotating cylinder, hitherto not available in the literature, is presented here. Numerical integrations of the equations of motion for a cylindrical RB in LEO with arbitrary initial conditions and subject to eddy current and gravity gradient torques as well as prescribed internal dissipation are in progress. Acknowledgements: This work was produced under NASA contract NNJ05HI05.
Simplified Generation of High-Angular-Momentum Light Beams
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Strekalov, Dmitry; Grudinin, Ivan
2007-01-01
A simplified method of generating a beam of light having a relatively high value of angular momentum (see figure) involves the use of a compact apparatus consisting mainly of a laser, a whispering- gallery-mode (WGM) resonator, and optical fibers. The method also can be used to generate a Bessel beam. ( Bessel beam denotes a member of a class of non-diffracting beams, so named because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have high values of angular momentum.) High-angular-momentum light beams are used in some applications in biology and nanotechnology, wherein they are known for their ability to apply torque to make microscopic objects rotate. High-angular-momentum light beams could also be used to increase bandwidths of fiber-optic communication systems. The present simplified method of generating a high-angular-momentum light beam was conceived as an alternative to prior such methods, which are complicated and require optical setups that include, variously, holograms, modulating Fabry-Perot cavities, or special microstructures. The present simplified method exploits a combination of the complex structure of the electromagnetic field inside a WGM resonator, total internal reflection in the WGM resonator, and the electromagnetic modes supported by an optical fiber. The optical fiber used to extract light from the WGM resonator is made of fused quartz. The output end of this fiber is polished flat and perpendicular to the fiber axis. The input end of this fiber is cut on a slant and placed very close to the WGM resonator at an appropriate position and orientation. To excite the resonant whispering- gallery modes, light is introduced into the WGM resonator via another optical fiber that is part of a pigtailed fiber-optic coupler. Light extracted from the WGM resonator is transformed into a high-angular- momentum beam inside the extraction optical fiber and this beam is emitted from the polished flat output end. By adjusting the geometry of this apparatus, it is possible to generate a variety of optical beams characterized by a wide range of parameters. These beams generally have high angular momenta and can be of either Bessel or Bessel-related types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pack, R.T
1977-02-15
The effect of identification of the partial wave parameter of the J/sub z/ CCS and IOS approximations as an orbital angular momentum rather than the total angular momentum is studied. Comparison with accurate close coupling calculations for Ar--N/sub 2/ and He--CO/sub 2/ collisions is made, and it is found that this identification results in a marked improvement, both quantitative and qualitative, in calculated IOS opacity functions and integral cross sections for both elastic and inelastic collisions. Use of the correct energy in the cross section formula also makes a marked improvement even though T matrices are computed with an averagemore » energy. (AIP)« less
Coherent transfer of orbital angular momentum to excitons by optical four-wave mixing.
Ueno, Y; Toda, Y; Adachi, S; Morita, R; Tawara, T
2009-10-26
We demonstrate the coherent transfer of optical orbital angular momentum (OAM) to the center of mass momentum of excitons in semiconductor GaN using a four-wave mixing (FWM) process. When we apply the optical vortex (OV) as an excitation pulse, the diffracted FWM signal exhibits phase singularities that satisfy the OAM conservation law, which remain clear within the exciton dephasing time (approximately 1ps). We also demonstrate the arbitrary control of the topological charge in the output signal by changing the OAM of the input pulse. The results provide a way of controlling the optical OAM through carriers in solids. Moreover, the time evolution of the FWM with OAM leads to the study of the closed-loop carrier coherence in materials.
Tidal disruption of inviscid planetesimals
NASA Technical Reports Server (NTRS)
Boss, A. P.; Cameron, A. G. W.; Benz, W.
1991-01-01
In view of previous efforts' demonstration that strongly dissipative planetesimals are immune to tidal disruption, an examination is presently conducted of the complementary case of inviscid planetesimals arising from collisions that are sufficiently energetic to entirely melt the resulting planetesimal and debris. The tidal disruption is numerically simulated by means of the smoothed particle hydrodynamics (SPH) code of Cameron and Benz (1991), concentrating on the tidal disruption of 0.01 earth-mass planetesimals passing by the earth with variations in the impact parameter at perigee and velocity at infinity. The SPH models show that tidal forces during a close encounter can efficiently convert orbital angular momentum into spin angular momentum, thereby initiating equatorial mass-shedding to inviscid planetesimals that have been spun up beyond the limit of rotational stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavinto, Mikko; Räsänen, Syksy, E-mail: mikko.lavinto@helsinki.fi, E-mail: syksy.rasanen@iki.fi
We consider a Swiss Cheese model with a random arrangement of Lemaȋtre-Tolman-Bondi holes in ΛCDM cheese. We study two kinds of holes with radius r{sub b}=50 h{sup −1} Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB . We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude belowmore » the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% limit |Δ D{sub A}/ D-bar {sub A}|∼< 10{sup −4}. We consider the argument that areas of spherical surfaces are nearly unaffected by perturbations, which is often invoked in light propagation calculations. The closed case is consistent with this at 1σ, whereas in the open case the probability is only 1.4%.« less
CMB seen through random Swiss Cheese
NASA Astrophysics Data System (ADS)
Lavinto, Mikko; Räsänen, Syksy
2015-10-01
We consider a Swiss Cheese model with a random arrangement of Lemaȋtre-Tolman-Bondi holes in ΛCDM cheese. We study two kinds of holes with radius rb=50 h-1 Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB . We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude below the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% limit |Δ DA/bar DA|lesssim 10-4. We consider the argument that areas of spherical surfaces are nearly unaffected by perturbations, which is often invoked in light propagation calculations. The closed case is consistent with this at 1σ, whereas in the open case the probability is only 1.4%.
A swing driven by liquid crystals
NASA Astrophysics Data System (ADS)
Cheng, Cheng
Angular momentum in liquid crystals exists as flow, director reorientation, etc. However, it is hard to observe and measure angular momentum in liquid crystals by a direct mechanical approach. Torsion pendulum is a general tool to measure angular momentum by torque balance. Our torsion pendulum can harvest the angular momentum in liquid crystals to make it observable. The oscillation of the pendulum keeps increasing by constructively adding a small angular momentum of liquid crystals each period at the resonant frequency of the pendulum. Its similar to a swing driven by a force at its resonant frequency. For the torsion pendulum, a cage made of two aluminum discs, in which a liquid crystal cell is placed, is suspended between two thin tungsten wires. A gold mirror, which is a part of the optical lever system, is attached on one tungsten wire. As first demonstration, we fabricate a circular hybrid liquid crystal cell, which can induce concentric backflows to generate angular momentum. The alignment on the planar substrate is concentric and tangential. Due to the coupling between director rotation and flow, the induced backflow goes around the cell when we add electrical pulses between top and bottom substrates. The oscillation is observed by a position sensitive detector and analyzed on the basis of Eriksen-Leslie theory. With vacuum condition and synchronous driving system, the oscillation signal is improved. We demonstrate that this torsion pendulum can sensitively detect the angular momentum in liquid crystals.
Round and angular kyphosis in paediatric patients.
Miladi, L
2013-02-01
Structural kyphosis is a posterior convex deformity of the spine that may appear in childhood then worsen with growth, most notably during the pubertal growth spurt. The abnormal curvature may be smooth, defining round kyphosis, or may display a sharp angular pattern. Angular kyphosis is the more severe of the two forms. The main causes of round kyphosis are postural kyphosis and Scheuermann's disease. The spontaneous outcome is favourable, and round kyphosis is well tolerated in adulthood. The treatment relies on orthopaedic methods in the overwhelming majority of cases. Surgery is reserved for severe rigid kyphosis in older children and for kyphosis responsible for refractory pain or neurological deficits. Surgical treatment carries a non-negligible risk of neurological, gastrointestinal, mechanical, and septic complications, which should be explained clearly to the family. Advances in contemporary posterior instrumentation have considerably limited the indications for anterior approaches. Many conditions may cause angular kyphosis, whose greater severity is related to a greater potential for progression and neurological impairment. Clinical investigations are in order to identify the cause and to plan the surgical strategy. Early surgery may be indicated, via a combined anterior and posterior approach. Anterior strut grafting, anterior or posterior osteotomies, or even vertebral column resections may be necessary to correct a major deformity. Copyright © 2012. Published by Elsevier Masson SAS.
Angular-Rate Estimation Using Delayed Quaternion Measurements
NASA Technical Reports Server (NTRS)
Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.
1999-01-01
This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.
Speed-constrained three-axes attitude control using kinematic steering
NASA Astrophysics Data System (ADS)
Schaub, Hanspeter; Piggott, Scott
2018-06-01
Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.
Schwinger multichannel study of the 2Pi(g) shape resonance in N2
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Gibson, Thomas L.; Lima, Marco A. P.; Mckoy, Vincent
1987-01-01
The results of a study on electron-target correlations in the 2Pi(g) shape resonance of elastic e-N2 scattering, using the Schwinger multichannel formulation, are reported. The effects of basis set, orbital representation, and closed-channel-configurations are delineated. The different roles of radial and angular correlations are compared.
NASA Astrophysics Data System (ADS)
He, Shaoming; Wang, Jiang; Wang, Wei
2017-12-01
This paper proposes a new composite guidance law to intercept manoeuvring targets without line-of-sight (LOS) angular rate information in the presence of autopilot lag. The presented formulation is obtained via a combination of homogeneous theory and sliding mode control approach. Different from some existing observers, the proposed homogeneous observer can estimate the lumped uncertainty and the LOS angular rate in an integrated manner. To reject the mismatched lumped uncertainty in the integrated guidance and autopilot system, a sliding surface, which consists of the system states and the estimated states, is proposed and a robust guidance law is then synthesised. Stability analysis shows that the LOS angular rate can be stabilised in a small region around zero asymptotically and the upper bound can be lowered by appropriate parameter choice. Numerical simulations with some comparisons are carried out to demonstrate the superiority of the proposed method.
A new approach to the human muscle model.
Baildon, R W; Chapman, A E
1983-01-01
Hill's (1938) two component muscle model is used as basis for digital computer simulation of human muscular contraction by means of an iterative process. The contractile (CC) and series elastic (SEC) components are lumped components of structures which produce and transmit torque to the external environment. The CC is described in angular terms along four dimensions as a series of non-planar torque-angle-angular velocity surfaces stacked on top of each other, each surface being appropriate to a given level of muscular activation. The SEC is described similarly along dimensions of torque, angular stretch, overall muscle angular displacement and activation. The iterative process introduces negligible error and allows the mechanical outcome of a variety of normal muscular contractions to be evaluated parsimoniously. The model allows analysis of many aspects of muscle behaviour as well as optimization studies. Definition of relevant relations should also allow reproduction and prediction of the outcome of contractions in individuals.
A Model for Hydraulic Properties Based on Angular Pores with Lognormal Size Distribution
NASA Astrophysics Data System (ADS)
Durner, W.; Diamantopoulos, E.
2014-12-01
Soil water retention and unsaturated hydraulic conductivity curves are mandatory for modeling water flow in soils. It is a common approach to measure few points of the water retention curve and to calculate the hydraulic conductivity curve by assuming that the soil can be represented as a bundle of capillary tubes. Both curves are then used to predict water flow at larger spatial scales. However, the predictive power of these curves is often very limited. This can be very easily illustrated if we measure the soil hydraulic properties (SHPs) for a drainage experiment and then use these properties to predict the water flow in the case of imbibition. Further complications arise from the incomplete wetting of water at the solid matrix which results in finite values of the contact angles between the solid-water-air interfaces. To address these problems we present a physically-based model for hysteretic SHPs. This model is based on bundles of angular pores. Hysteresis for individual pores is caused by (i) different snap-off pressures during filling and emptying of single angular pores and (ii) by different advancing and receding contact angles for fluids that are not perfectly wettable. We derive a model of hydraulic conductivity as a function of contact angle by assuming flow perpendicular to pore cross sections and present closed-form expressions for both the sample scale water retention and hydraulic conductivity function by assuming a log-normal statistical distribution of pore size. We tested the new model against drainage and imbibition experiments for various sandy materials which were conducted with various liquids of differing wettability. The model described both imbibition and drainage experiments very well by assuming a unique pore size distribution of the sample and a zero contact angle for the perfectly wetting liquid. Eventually, we see the possibility to relate the particle size distribution with a model which describes the SHPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldoretta, E. J.; Gies, D. R.; Henry, T. J.
2015-01-01
We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additionalmore » targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.« less
Addition and Removal Energies via the In-Medium Similarity Renormalization Group Method
NASA Astrophysics Data System (ADS)
Yuan, Fei
The in-medium similarity renormalization group (IM-SRG) is an ab initio many-body method suitable for systems with moderate numbers of particles due to its polynomial scaling in computational cost. The formalism is highly flexible and admits a variety of modifications that extend its utility beyond the original goal of computing ground state energies of closed-shell systems. In this work, we present an extension of IM-SRG through quasidegenerate perturbation theory (QDPT) to compute addition and removal energies (single particle energies) near the Fermi level at low computational cost. This expands the range of systems that can be studied from closed-shell ones to nearby systems that differ by one particle. The method is applied to circular quantum dot systems and nuclei, and compared against other methods including equations-of-motion (EOM) IM-SRG and EOM coupled-cluster (CC) theory. The results are in good agreement for most cases. As part of this work, we present an open-source implementation of our flexible and easy-to-use J-scheme framework as well as the HF, IM-SRG, and QDPT codes built upon this framework. We include an overview of the overall structure, the implementation details, and strategies for maintaining high code quality and efficiency. Lastly, we also present a graphical application for manipulation of angular momentum coupling coefficients through a diagrammatic notation for angular momenta (Jucys diagrams). The tool enables rapid derivations of equations involving angular momentum coupling--such as in J-scheme--and significantly reduces the risk of human errors.
Angular Momentum and Galaxy Formation Revisited
NASA Astrophysics Data System (ADS)
Romanowsky, Aaron J.; Fall, S. Michael
2012-12-01
Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j sstarf and mass M sstarf (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j sstarf reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j sstarf in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of ~100 nearby bright galaxies of all types, placing them on a diagram of j sstarf versus M sstarf. The ellipticals and spirals form two parallel j sstarf-M sstarf tracks, with log-slopes of ~0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of ~3-4 if mass-to-light ratio variations are neglected for simplicity, and ~7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j sstarf-M sstarf trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j sstarf-M sstarf scaling relations. This provides a physical motivation for characterizing galaxies most basically with two parameters: mass and bulge-to-disk ratio. Next, in an approach complementary to numerical simulations, we construct idealized models of angular momentum content in a cosmological context, using estimates of dark matter halo spin and mass from theoretical and empirical studies. We find that the width of the halo spin distribution cannot account for the differences between spiral and elliptical j sstarf, but that the observations are reproduced well if these galaxies simply retained different fractions of their initial j complement (~60% and ~10%, respectively). We consider various physical mechanisms for the simultaneous evolution of j sstarf and M sstarf (including outflows, stripping, collapse bias, and merging), emphasizing that the vector sum of all such processes must produce the observed j sstarf-M sstarf relations. We suggest that a combination of early collapse and multiple mergers (major or minor) may account naturally for the trend for ellipticals. More generally, the observed variations in angular momentum represent simple but fundamental constraints for any model of galaxy formation.
ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanowsky, Aaron J.; Fall, S. Michael
2012-12-15
Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j{sub *} and mass M{sub *} (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii aremore » generally sufficient to estimate total j{sub *} reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j{sub *} in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of {approx}100 nearby bright galaxies of all types, placing them on a diagram of j{sub *} versus M{sub *}. The ellipticals and spirals form two parallel j{sub *}-M{sub *} tracks, with log-slopes of {approx}0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of {approx}3-4 if mass-to-light ratio variations are neglected for simplicity, and {approx}7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j{sub *}-M{sub *} trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j{sub *}-M{sub *} scaling relations. This provides a physical motivation for characterizing galaxies most basically with two parameters: mass and bulge-to-disk ratio. Next, in an approach complementary to numerical simulations, we construct idealized models of angular momentum content in a cosmological context, using estimates of dark matter halo spin and mass from theoretical and empirical studies. We find that the width of the halo spin distribution cannot account for the differences between spiral and elliptical j{sub *}, but that the observations are reproduced well if these galaxies simply retained different fractions of their initial j complement ({approx}60% and {approx}10%, respectively). We consider various physical mechanisms for the simultaneous evolution of j{sub *} and M{sub *} (including outflows, stripping, collapse bias, and merging), emphasizing that the vector sum of all such processes must produce the observed j{sub *}-M{sub *} relations. We suggest that a combination of early collapse and multiple mergers (major or minor) may account naturally for the trend for ellipticals. More generally, the observed variations in angular momentum represent simple but fundamental constraints for any model of galaxy formation.« less
Empirical single sample quantification of bias and variance in Q-ball imaging.
Hainline, Allison E; Nath, Vishwesh; Parvathaneni, Prasanna; Blaber, Justin A; Schilling, Kurt G; Anderson, Adam W; Kang, Hakmook; Landman, Bennett A
2018-02-06
The bias and variance of high angular resolution diffusion imaging methods have not been thoroughly explored in the literature and may benefit from the simulation extrapolation (SIMEX) and bootstrap techniques to estimate bias and variance of high angular resolution diffusion imaging metrics. The SIMEX approach is well established in the statistics literature and uses simulation of increasingly noisy data to extrapolate back to a hypothetical case with no noise. The bias of calculated metrics can then be computed by subtracting the SIMEX estimate from the original pointwise measurement. The SIMEX technique has been studied in the context of diffusion imaging to accurately capture the bias in fractional anisotropy measurements in DTI. Herein, we extend the application of SIMEX and bootstrap approaches to characterize bias and variance in metrics obtained from a Q-ball imaging reconstruction of high angular resolution diffusion imaging data. The results demonstrate that SIMEX and bootstrap approaches provide consistent estimates of the bias and variance of generalized fractional anisotropy, respectively. The RMSE for the generalized fractional anisotropy estimates shows a 7% decrease in white matter and an 8% decrease in gray matter when compared with the observed generalized fractional anisotropy estimates. On average, the bootstrap technique results in SD estimates that are approximately 97% of the true variation in white matter, and 86% in gray matter. Both SIMEX and bootstrap methods are flexible, estimate population characteristics based on single scans, and may be extended for bias and variance estimation on a variety of high angular resolution diffusion imaging metrics. © 2018 International Society for Magnetic Resonance in Medicine.
Canonical angular momentum compression near the Brillouin limit
NASA Astrophysics Data System (ADS)
Jeong, E.; Gilson, E.; Fajans, J.
2000-10-01
Near the Brillouin limit, the angular momentum of a trapped, T=0, pure-electron plasma approaches zero. If the plasma expands axially, its density would appear to drop. However, the plasma's canonical angular momentum is not changed by an axial expansion, so the plasma must stay near the Brillouin limit; thus the plasma's density cannot change when it is expanded. The only way for the plasma density to remain constant as the plasma length increases is for the plasma radius to decrease. Dynamically, this decrease is caused by the polarization drift induced by a small decrease in the density. In this poster we present preliminary experimental evidence demonstrating this radial compression. This work was supported by the ONR.
Symmetry and conservation laws in semiclassical wave packet dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohsawa, Tomoki, E-mail: tomoki@utdallas.edu
2015-03-15
We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum asmore » well as naturally corresponds to the quantum picture.« less
Photoelectron Diffraction from Valence States of Oriented Molecules
NASA Astrophysics Data System (ADS)
Krüger, Peter
2018-06-01
The angular distribution of photoelectrons emitted from valence states of oriented molecules is investigated. The principles underlying the angular pattern formation are explained in terms of photoelectron wave interference, caused by initial state delocalization and final state photoelectron scattering. Computational approaches to photoelectron spectroscopy from molecules are briefly reviewed. Here a combination of molecular orbital calculations for the initial state and multiple scattering theory for the photoelectron final state is used and applied to the 3σ and 4σ orbitals of nitrogen and the highest occupied molecular orbital of pentacene. Appreciable perpendicular emission and circular dichroism in angular distributions is found, two effects that cannot be described by the popular plane wave approximation to the photoelectron final state.
NASA Technical Reports Server (NTRS)
Bagri, Durgadas S.; Majid, Walid
2009-01-01
At present spacecraft angular position with Deep Space Network (DSN) is determined using group delay estimates from very long baseline interferometer (VLBI) phase measurements employing differential one way ranging (DOR) tones. As an alternative to this approach, we propose estimating position of a spacecraft to half a fringe cycle accuracy using time variations between measured and calculated phases as the Earth rotates using DSN VLBI baseline(s). Combining fringe location of the target with the phase allows high accuracy for spacecraft angular position estimate. This can be achieved using telemetry signals of at least 4-8 MSamples/sec data rate or DOR tones.
Gimbal-Angle Vectors of the Nonredundant CMG Cluster
NASA Astrophysics Data System (ADS)
Lee, Donghun; Bang, Hyochoong
2018-05-01
This paper deals with the method using the preferred gimbal angles of a control moment gyro (CMG) cluster for controlling spacecraft attitude. To apply the method to the nonredundant CMG cluster, analytical gimbal-angle solutions for the zero angular momentum state are derived, and the gimbal-angle vectors for the nonzero angular momentum states are studied by a numerical method. It will be shown that the number of the gimbal-angle vectors is determined from the given skew angle and the angular momentum state of the CMG cluster. Through numerical examples, it is shown that the method using the preferred gimbal-angle is an efficient approach to avoid internal singularities for the nonredundant CMG cluster.
Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud
2012-01-01
Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Controlled laboratory study. Controlled research laboratory. Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Angular work and angular velocity. The isotonic and isokinetic groups performed the same total amount of work (-185.2 ± 6.5 kJ and -184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury.
Sielaff, Hendrik; Martin, James; Singh, Dhirendra; Biuković, Goran; Grüber, Gerhard; Frasch, Wayne D.
2016-01-01
The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A3B3DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α3β3γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A3B3DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A3B3DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits. PMID:27729450
Young, Jesse W; Russo, Gabrielle A; Fellmann, Connie D; Thatikunta, Meena A; Chadwell, Brad A
2015-10-01
The need to maintain stability on narrow branches is often presented as a major selective force shaping primate morphology, with adaptations to facilitate grasping receiving particular attention. The functional importance of a long and mobile tail for maintaining arboreal stability has been comparatively understudied. Tails can facilitate arboreal balance by acting as either static counterbalances or dynamic inertial appendages able to modulate whole-body angular momentum. We investigate associations between tail use and inferred grasping ability in two closely related cebid platyrrhines-cotton-top tamarins (Saguinus oedipus) and black-capped squirrel monkeys (Saimiri boliviensis). Using high-speed videography of captive monkeys moving on 3.2 cm diameter poles, we specifically test the hypothesis that squirrel monkeys (characterized by grasping extremities with long digits) will be less dependent on the tail for balance than tamarins (characterized by claw-like nails, short digits, and a reduced hallux). Tamarins have relatively longer tails than squirrel monkeys, move their tails through greater angular amplitudes, at higher angular velocities, and with greater angular accelerations, suggesting dynamic use of tail to regulate whole-body angular momentum. By contrast, squirrel monkeys generally hold their tails in a comparatively stationary posture and at more depressed angles, suggesting a static counterbalancing mechanism. This study, the first empirical test of functional tradeoffs between grasping ability and tail use in arboreal primates, suggests a critical role for the tail in maintaining stability during arboreal quadrupedalism. Our findings have the potential to inform our functional understanding of tail loss during primate evolution. © 2015 Wiley Periodicals, Inc.
Kinetic Energy and Angular Distributions of He and Ar Atoms Evaporating from Liquid Dodecane.
Patel, Enamul-Hasan; Williams, Mark A; Koehler, Sven P K
2017-01-12
We report both kinetic energy and angular distributions for He and Ar atoms evaporating from C 12 H 26 . All results were obtained by performing molecular dynamics simulations of liquid C 12 H 26 with around 10-20 noble gas atoms dissolved in the liquid and by subsequently following the trajectories of the noble gas atoms after evaporation from the liquid. Whereas He evaporates with a kinetic energy distribution of (1.05 ± 0.03) × 2RT (corrected for the geometry used in experiments: (1.08 ± 0.03) × 2RT, experimentally obtained value: (1.14 ± 0.01) × 2RT), Ar displays a kinetic energy distribution that better matches a Maxwell-Boltzmann distribution at the temperature of the liquid ((0.99 ± 0.04) × 2RT). This behavior is also reflected in the angular distributions, which are close to a cosine distribution for Ar but slightly narrower, especially for faster atoms, in the case of He. This behavior of He is most likely due to the weak interaction potential between He and the liquid hydrocarbon.
NASA Astrophysics Data System (ADS)
Fitzpatrick, Richard
2017-12-01
An investigation is made into the interaction of a magnetic island chain, embedded in a tokamak plasma, with an externally generated magnetic perturbation of the same helicity whose helical phase is rapidly oscillating. The analysis is similar in form to the classic analysis used by Kapitza [Sov. Phys. JETP 21, 588 (1951)] to examine the angular motion of a rigid pendulum whose pivot point undergoes rapid vertical oscillations. The phase oscillations are found to modify the existing terms, and also to give rise to new terms, in the equations governing the secular evolution of the island chain's radial width and helical phase. An examination of the properties of the new secular evolution equation reveals that it is possible to phase-lock an island chain to an external magnetic perturbation with an oscillating helical phase in a stabilizing phase relation provided that the amplitude, ɛ, of the phase oscillations (in radians) is such that |J0(ɛ )|≪1 , and the mean angular frequency of the perturbation closely matches the natural angular frequency of the island chain.
REVIEWS OF TOPICAL PROBLEMS: The differential rotation of stars
NASA Astrophysics Data System (ADS)
Kitchatinov, Leonid L.
2005-05-01
Astronomical observations of recent years have substantially extended our knowledge of the rotation of stars. Helioseismology has found out that the equator-to-pole decline in the angular velocity observed on the solar surface traces down to the deep interior of the Sun. New information has been gained regarding the dependence of the rotational nonuniformities on the angular velocity and mass of the star. These achievements have prompted the development of the theory of differential rotation, which is the focal point of this review. Nonuniform rotation results from the interaction of turbulent convection with rotation. The investigation into the turbulent mechanisms of angular-momentum transport has reached a level at which the obtained results can serve as the basis for developing quantitative models of stellar rotation. Such models contain virtually no free parameters but closely reproduce the helioseismological data on the internal rotation of the Sun. The theoretical predictions on the differential rotation of the stars agree with observations. A brief discussion is held here on the relation between the magnetic activity of stars and the nonuniformity of their rotation and on prospects for further development of the theory.
35. VERTICAL AND TORSIONAL MOTION FROM EAST TOWER SHOWING ANGULAR ...
35. VERTICAL AND TORSIONAL MOTION FROM EAST TOWER SHOWING ANGULAR DISTORTION APPROACHING 45 DEGREES WITH LAMP POSTS APPEARING TO BE AT EIGHT ANGLES, 7 NOVEMBER 1940, FROM 16MN FILM SHOT BY PROFESSOR F.B. FARQUHARSON, UNIVERSITY OF WASHINGTON. (LABORATORY STUDIES ON THE TACOMA NARROWS BRIDGE, AT UNIVERSITY OF WASHINGTON SEATTLE: UNIVERSITY OF WASHINGTON, DEPARTMENT OF CIVIL ENGINEERING, 1941) - Tacoma Narrows Bridge, Spanning Narrows at State Route 16, Tacoma, Pierce County, WA
A novel DWDM method to design a 100-kW Laser
NASA Astrophysics Data System (ADS)
Basu, Santanu
2010-02-01
In this paper, I will present the design analysis of a novel concept that may be used to generate a diffraction-limited beam from an aperture so that as much as 450 kW of laser power can be efficiently deposited on a diffraction-limited spot at a range. The laser beam will be comprised of many closely spaced wavelength channels as in a DWDM. The technique relies on the ability of an angular dispersion amplifier to multiplex a large number of high power narrow frequency lasers, wavelengths of which may be as close as 0.4 nm.
Modeling of roll/pitch determination with horizon sensors - Oblate Earth
NASA Astrophysics Data System (ADS)
Hablani, Hari B.
Model calculations are presented of roll/pitch determinations for oblate Earth, with horizon sensors. Two arrangements of a pair of horizon sensors are considered: left and right of the velocity vactor (i.e., along the pitch axis), and aft and forward (along the roll axis). Two approaches are used to obtain the roll/pitch oblateness corrections: (1) the crossing point approach, where the two crossings of the horizon sensor's scan and the earth's horizon are determined, and (2) by decomposing the angular deviation of the geocentric normal from the geodetic normal into roll and pitch components. It is shown that the two approaches yield essentially the same corrections if two sensors are used simultaneously. However, if the spacecraft is outfitted with only one sensor, the oblateness correction about one axis is far different from that predicted by the geocentric/geodetic angular deviation approach. In this case, the corrections may be calculated on ground for the sensor location under consideration and stored in the flight computer, using the crossing point approach.
String solutions in spherically-symmetric f(R) gravity vacuum
NASA Astrophysics Data System (ADS)
Dil, Emre
Dynamical evolution of the cosmic string in a spherically symmetric f(R) gravity vacuum is studied for a closed and straight string. We first set the background spacetime metric for a constant curvature scalar R = R0, and obtain the Killing fields for it. Using the standard gauge coordinates and constraints for both closed and straight strings, we present the equation of motions and find the solutions of them. We then analyze the dynamics of the string by studying the behavior of the string radius and periastron radius, with respect to both proper time and azimuthal angle, for various values of f(R) functions. Consequently, we conclude that the value of f(R) dramatically affects the closed string collapse time and the straight string angular deviation.
[Closing wedge osteotomy of the tibial head in treatment of single compartment arthrosis].
Jakob, R P; Jacobi, M
2004-02-01
Closing wedge high tibial osteotomy is an efficient method for the treatment of medial osteoarthritis of the knee. Prerequisites of successful surgery are proper indication and planning as well as the understanding of biomechanics and pathophysiology. The technique of osteotomy to choose (opening or closing wedge) depends on the type of malalignment and on additional pathologies. The surgical technique demands high precision to realize the planned correction and to avoid complications. Implants with angular stability provide advantages compared to traditional implants. Correct indication and surgical technique results in a desirable follow-up, which often lasts for at least 10 years. The effect on the prognosis of the young patient with cartilage damage is still unclear.
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Inventor)
1991-01-01
A spiral vane bioreactor of a perfusion type is described in which a vertical chamber, intended for use in a microgravity condition, has a central rotating filter assembly and has flexible membranes disposed to rotate annularly about the filter assembly. The flexible members have end portions disposed angularly with respect to one another. A fluid replenishment medium is input from a closed loop liquid system to a completely liquid filled chamber containing microcarrier beads, cells and a fluid medium. Output of spent medium is to the closed loop. In the closed loop, the output and input parameters are sensed by sensors. A manifold permits recharging of the nutrients and pH adjustment. Oxygen is supplied and carbon dioxide and bubbles are removed and the system is monitored and controlled by a microprocessor.
Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques
NASA Astrophysics Data System (ADS)
Tang, Yujie; Li, Jian; Wang, Gangyi
2018-02-01
An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.
Draft Genome Sequence of the First Documented Clinical Siccibacter turicensis Isolate in Austria.
Lepuschitz, Sarah; Pekard-Amenitsch, Shiva; Haunold, Renée; Schill, Simone; Schriebl, Agnes; Mach, Robert; Allerberger, Franz; Ruppitsch, Werner; Forsythe, Stephen J
2018-05-03
The nonpathogenic species Siccibacter turicensis is closely related to members of the food-associated pathogenic genus Cronobacter and has been detected in fruit powders, formula, spices, and herbs. Here, we report on the first clinical isolate of S. turicensis , recovered from the labial angle of a patient with angular cheilitis. Copyright © 2018 Lepuschitz et al.
On Closed Shells in Nuclei. II
DOE R&D Accomplishments Database
Mayer, M. G.
1949-04-01
Discussion on the use of spins and magnetic moments of the even-odd nuclei by Feenberg and Nordheim to determine the angular momentum of the eigenfunction of the odd particle; discussion of prevalence of isomerism in certain regions of the isotope chart; tabulated data on levels of square well potential, spectroscopic levels, spin term, number of states, shells and known spins and orbital assignments.
NASA Astrophysics Data System (ADS)
Koksbang, S. M.
2017-03-01
Light propagation in two Swiss-cheese models based on anisotropic Szekeres structures is studied and compared with light propagation in Swiss-cheese models based on the Szekeres models' underlying Lemaitre-Tolman-Bondi models. The study shows that the anisotropy of the Szekeres models has only a small effect on quantities such as redshift-distance relations, projected shear and expansion rate along individual light rays. The average angular diameter distance to the last scattering surface is computed for each model. Contrary to earlier studies, the results obtained here are (mostly) in agreement with perturbative results. In particular, a small negative shift, δ DA≔D/A-DA ,b g DA ,b g , in the angular diameter distance is obtained upon line-of-sight averaging in three of the four models. The results are, however, not statistically significant. In the fourth model, there is a small positive shift which has an especially small statistical significance. The line-of-sight averaged inverse magnification at z =1100 is consistent with 1 to a high level of confidence for all models, indicating that the area of the surface corresponding to z =1100 is close to that of the background.
Unexpected angular or rotational deformity after corrective osteotomy
2014-01-01
Background Codman’s paradox reveals a misunderstanding of geometry in orthopedic practice. Physicians often encounter situations that cannot be understood intuitively during orthopedic interventions such as corrective osteotomy. Occasionally, unexpected angular or rotational deformity occurs during surgery. This study aimed to draw the attention of orthopedic surgeons toward the concepts of orientation and rotation and demonstrate the potential for unexpected deformity after orthopedic interventions. This study focused on three situations: shoulder arthrodesis, femoral varization derotational osteotomy, and femoral derotation osteotomy. Methods First, a shoulder model was generated to calculate unexpected rotational deformity to demonstrate Codman’s paradox. Second, femoral varization derotational osteotomy was simulated using a cylinder model. Third, a reconstructed femoral model was used to calculate unexpected angular or rotational deformity during femoral derotation osteotomy. Results Unexpected external rotation was found after forward elevation and abduction of the shoulder joint. In the varization and derotation model, closed-wedge osteotomy and additional derotation resulted in an unexpected extension and valgus deformity, namely, under-correction of coxa valga. After femoral derotational osteotomy, varization and extension of the distal fragment occurred, although the extension was negligible. Conclusions Surgeons should be aware of unexpected angular deformity after surgical procedure involving bony areas. The degree of deformity differs depending on the context of the surgical procedure. However, this study reveals that notable deformities can be expected during orthopedic procedures such as femoral varization derotational osteotomy. PMID:24886469
Velocity-free attitude coordinated tracking control for spacecraft formation flying.
Hu, Qinglei; Zhang, Jian; Zhang, Youmin
2018-02-01
This article investigates the velocity-free attitude coordinated tracking control scheme for a group of spacecraft with the assumption that the angular velocities of the formation members are not available in control feedback. Initially, an angular velocity observer is constructed based on each individual's attitude quarternion. Then, the distributed attitude coordinated control law is designed by using the observed states, in which adaptive control method is adopted to handle the external disturbances. Stability of the overall closed-loop system is analyzed theoretically, which shows the system trajectory converges to a small set around origin with fast convergence rate. Numerical simulations are performed to demonstrate fast convergence and improved tracking performance of the proposed control strategy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Observation of a novel stapler band in 75As
NASA Astrophysics Data System (ADS)
Li, C. G.; Chen, Q. B.; Zhang, S. Q.; Xu, C.; Hua, H.; Li, X. Q.; Wu, X. G.; Hu, S. P.; Meng, J.; Xu, F. R.; Liang, W. Y.; Li, Z. H.; Ye, Y. L.; Jiang, D. X.; Sun, J. J.; Han, R.; Niu, C. Y.; Chen, X. C.; Li, P. J.; Wang, C. G.; Wu, H. Y.; Li, G. S.; He, C. Y.; Zheng, Y.; Li, C. B.; Chen, Q. M.; Zhong, J.; Zhou, W. K.
2017-03-01
The heavy ion fusion-evaporation reaction study for the high-spin spectroscopy of 75As has been performed via the reaction channel 70Zn(9Be, 1p3n)75As at a beam energy of 42 MeV. The collective structure especially a dipole band in 75As is established for the first time. The properties of this dipole band are investigated in terms of the self-consistent tilted axis cranking covariant density functional theory. Based on the theoretical description and the examination of the angular momentum components, this dipole band can be interpreted as a novel stapler band, where the valence neutrons in (1g9/2) orbital rather than the collective core are responsible for the closing of the stapler of angular momentum.
Modelling and Closed-Loop System Identification of a Quadrotor-Based Aerial Manipulator
NASA Astrophysics Data System (ADS)
Dube, Chioniso; Pedro, Jimoh O.
2018-05-01
This paper presents the modelling and system identification of a quadrotor-based aerial manipulator. The aerial manipulator model is first derived analytically using the Newton-Euler formulation for the quadrotor and Recursive Newton-Euler formulation for the manipulator. The aerial manipulator is then simulated with the quadrotor under Proportional Derivative (PD) control, with the manipulator in motion. The simulation data is then used for system identification of the aerial manipulator. Auto Regressive with eXogenous inputs (ARX) models are obtained from the system identification for linear accelerations \\ddot{X} and \\ddot{Y} and yaw angular acceleration \\ddot{\\psi }. For linear acceleration \\ddot{Z}, and pitch and roll angular accelerations \\ddot{θ } and \\ddot{φ }, Auto Regressive Moving Average with eXogenous inputs (ARMAX) models are identified.
NASA Technical Reports Server (NTRS)
Edwards, C. D.
1990-01-01
Connected-element interferometry (CEI) has the potential to provide high-accuracy angular spacecraft tracking on short baselines by making use of the very precise phase delay observable. Within the Goldstone Deep Space Communications Complex (DSCC), one of three tracking complexes in the NASA Deep Space Network, baselines of up to 21 km in length are available. Analysis of data from a series of short-baseline phase-delay interferometry experiments are presented to demonstrate the potential tracking accuracy on these baselines. Repeated differential observations of pairs of angularly close extragalactic radio sources were made to simulate differential spacecraft-quasar measurements. Fiber-optic data links and a correlation processor are currently being developed and installed at Goldstone for a demonstration of real-time CEI in 1990.
iFAB Smart Manufacturing Adapting Rapidly to Product Variants (SMARTV)
2012-05-01
of all welds, only one of each can be reached as the angular approach of the robot in its current configuration, with the laser scanner (oriented at...the seam length, the exact trace of the seam can be computed form the intersection point ([X,Y]) of the two lines and their angular bisector ([Θ...php scripts is generated by using the data extracted from plan.xml, filling the appropriate language constructs with this data, and querying the
Simulation and optimization of faceted structure for illumination
NASA Astrophysics Data System (ADS)
Liu, Lihong; Engel, Thierry; Flury, Manuel
2016-04-01
The re-direction of incoherent light using a surface containing only facets with specific angular values is proposed. A new photometric approach is adopted since the size of each facet is large in comparison with the wavelength. A reflective configuration is employed to avoid the dispersion problems of materials. The irradiance distribution of the reflected beam is determined by the angular position of each facet. In order to obtain the specific irradiance distribution, the angular position of each facet is optimized using Zemax OpticStudio 15 software. A detector is placed in the direction which is perpendicular to the reflected beam. According to the incoherent irradiance distribution on the detector, a merit function needs to be defined to pilot the optimization process. The two dimensional angular position of each facet is defined as a variable which is optimized within a specified varying range. Because the merit function needs to be updated, a macro program is carried out to update this function within Zemax. In order to reduce the complexity of the manual operation, an automatic optimization approach is established. Zemax is in charge of performing the optimization task and sending back the irradiance data to Matlab for further analysis. Several simulation results are given for the verification of the optimization method. The simulation results are compared to those obtained with the LightTools software in order to verify our optimization method.
Angular-Rate Estimation Using Star Tracker Measurements
NASA Technical Reports Server (NTRS)
Azor, R.; Bar-Itzhack, I.; Deutschmann, Julie K.; Harman, Richard R.
1999-01-01
This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quatemion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quatemion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quatemion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.
Angular-Rate Estimation using Star Tracker Measurements
NASA Technical Reports Server (NTRS)
Azor, R.; Bar-Itzhack, Itzhack Y.; Deutschmann, Julie K.; Harman, Richard R.
1999-01-01
This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quaternion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.
Convergent Close-Coupling Approach to Electron-Atom Collisions
NASA Technical Reports Server (NTRS)
Bray, Igor; Stelbovics, Andris
2007-01-01
It was with great pleasure and honour to accept the invitation to make a presentation at the symposium celebrating the life-long work of Aaron Temkin and Richard Drachman. The work of Aaron Temkin was particularly influential on our own during the development of the CCC method for electron-atom collisions. There are a number of key problems that need to be dealt with when developing a general computational approach to such collisions. Traditionally, the electron energy range was subdivided into the low, intermediate, and high energies. At the low energies only a finite number of channels are open and variational or close-coupling techniques could be used to obtain accurate results. At high energies an infinite number of discrete channels and the target continuum are open, but perturbative techniques are able to yield accurate results. However, at the intermediate energies perturbative techniques fail and computational approaches need to be found for treating the infinite number of open channels. In addition, there are also problems associated with the identical nature of electrons and the difficulty of implementing the boundary conditions for ionization processes. The beauty of the Temkin-Poet model of electron-hydrogen scattering is that it simplifies the full computational problem by neglecting any non-zero orbital angular momenta in the partial-wave expansion, without loosing the complexity associated with the above-mentioned problems. The unique nature of the problem allowed for accurate solution leading to benchmark results which could then be used to test the much more general approaches to electron-atom collision problems. The immense value of the Temkin-Poet model is readily summarised by the fact that the initial papers of Temkin and Poet have been collectively cited around 250 times to date and are still being cited in present times. Many of the citations came from our own work during the course of the development of the CCC method, which we now describe.
Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud
2012-01-01
Context: Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. Objective: To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Design: Controlled laboratory study. Setting: Controlled research laboratory. Patients or Other Participants: Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Intervention(s): Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Main Outcome Measure(s): Angular work and angular velocity. Results: The isotonic and isokinetic groups performed the same total amount of work (−185.2 ± 6.5 kJ and −184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. Conclusions: The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury. PMID:22488276
Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.
Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth
2018-01-01
H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Potential scattering on a spherical surface
NASA Astrophysics Data System (ADS)
Zhang, Jian; Ho, Tin-Lun
2018-06-01
The advances in cold atom experiments have allowed construction of confining traps in the form of curved surfaces. This opens up the possibility of studying quantum gases in curved manifolds. On closed surfaces, many fundamental processes are affected by the local and global properties, i.e. the curvature and the topology of the surface. In this paper, we study the problem of potential scattering on a spherical surface and discuss its difference with that on a 2D plane. For bound states with angular momentum m, their energies (E m ) on a sphere are related to those on a 2D plane (-| {E}m,o| ) as {E}m=-| {E}m,o| +{E}R≤ft[\\tfrac{{m}2-1}{3}+O≤ft(\\tfrac{{r}o2}{{R}2}\\right)\\right], where {E}R={{{\\hslash }}}2/(2{{MR}}2), and R is the radius of the sphere. Due to the finite extent of the manifold, the phase shifts on a sphere at energies E∼ {E}R differ significantly from those on a 2D plane. As energy E approaches zero, the phase shift in the planar case approaches 0, whereas in the spherical case it reaches a constant that connects the microscopic length scale to the largest length scale R.
Topological ring currents in the "empty" ring of benzo-annelated perylenes.
Dickens, Timothy K; Mallion, Roger B
2011-01-27
Cyclic conjugation in benzo-annelated perylenes is examined by means of the topological π-electron ring currents calculated for each of their constituent rings, in a study that is an exact analogy of a recent investigation by Gutman et al. based on energy-effect values for the corresponding rings in each of these structures. "Classical" approaches, such as Kekulé structures, Clar "sextet" formulas, and circuits of conjugation, predict that the central ring in perylene is "empty" and thus contributes negligibly to cyclic conjugation. However, conclusions from the present calculations of topological ring currents agree remarkably with those arising from the earlier study involving energy-effect values in that, contrary to what would be predicted from the classical approaches, rings annelated in an angular fashion relative to the central ring of these perylene structures materially increase the extent of that ring's involvement in cyclic conjugation. It is suggested that such close quantitative agreement between the predictions of these two superficially very different indices (energy effect and topological ring current) might be due to the fact that, ultimately, both depend, albeit in ostensibly quite different ways, only on an adjacency matrix that contains information about the carbon-carbon connectivity of the conjugated system in question.
Photoelectron angular distributions from rotationally resolved autoionizing states of N 2
Chartrand, A. M.; McCormack, E. F.; Jacovella, U.; ...
2017-12-08
The single-photon, photoelectron-photoion coincidence spectrum of N 2 has been recorded at high (~1.5 cm -1) resolution in the region between the N 2 + X 2Σ g +, v + = 0 and 1 ionization thresholds by using a double imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N 2 + X 2Σ g +more » ground state, and electronically autoionizing states converging to the N 2 + A 2Π and B 2Σ u + states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. Here, a simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, β, and the results are in reasonably good agreement with experiment.« less
Error field optimization in DIII-D using extremum seeking control
NASA Astrophysics Data System (ADS)
Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; Humphreys, D. A.; Eidietis, N.; Hanson, J. M.; Paz-Soldan, C.; Strait, E. J.; Walker, M. L.
2016-07-01
DIII-D experiments have demonstrated a new real-time approach to tokamak error field control based on maximizing the toroidal angular momentum. This approach uses extremum seeking control theory to optimize the error field in real time without inducing instabilities. Slowly-rotating n = 1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coil currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.
Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing
2015-05-29
A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.
Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu
2016-06-25
A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.
The S-Web Model for the Sources of the Slow Solar Wind
NASA Technical Reports Server (NTRS)
Antiochos, Spiro K.; Karpen, Judith T.; DeVore, C. Richard
2012-01-01
Models for the origin of the slow solar wind must account for two seemingly contradictory observations: The slow wind has the composition of the closed-field corona, implying that it originates from the continuous opening and closing of flux at the boundary between open and closed field. On the other hand, the slow wind has large angular width, up to 60 degrees, suggesting that its source extends far from the open-closed boundary. We describe a model that can explain both observations. The key idea is that the source of the slow wind at the Sun is a network of narrow (possibly singular) open-field corridors that map to a web of separatrices (the S-Web) and quasi-separatrix layers in the heliosphere. We discuss the dynamics of the S-Web model and its implications for present observations and for the upcoming observations from Solar Orbiter and Solar Probe Plus.
Photonic polarization gears for ultra-sensitive angular measurements
D'Ambrosio, Vincenzo; Spagnolo, Nicolò; Del Re, Lorenzo; Slussarenko, Sergei; Li, Ying; Kwek, Leong Chuan; Marrucci, Lorenzo; Walborn, Stephen P.; Aolita, Leandro; Sciarrino, Fabio
2013-01-01
Quantum metrology bears a great promise in enhancing measurement precision, but is unlikely to become practical in the near future. Its concepts can nevertheless inspire classical or hybrid methods of immediate value. Here we demonstrate NOON-like photonic states of m quanta of angular momentum up to m=100, in a setup that acts as a ‘photonic gear’, converting, for each photon, a mechanical rotation of an angle θ into an amplified rotation of the optical polarization by mθ, corresponding to a ‘super-resolving’ Malus’ law. We show that this effect leads to single-photon angular measurements with the same precision of polarization-only quantum strategies with m photons, but robust to photon losses. Moreover, we combine the gear effect with the quantum enhancement due to entanglement, thus exploiting the advantages of both approaches. The high ‘gear ratio’ m boosts the current state of the art of optical non-contact angular measurements by almost two orders of magnitude. PMID:24045270
Angular Baryon Acoustic Oscillation measure at z=2.225 from the SDSS quasar survey
NASA Astrophysics Data System (ADS)
de Carvalho, E.; Bernui, A.; Carvalho, G. C.; Novaes, C. P.; Xavier, H. S.
2018-04-01
Following a quasi model-independent approach we measure the transversal BAO mode at high redshift using the two-point angular correlation function (2PACF). The analyses done here are only possible now with the quasar catalogue from the twelfth data release (DR12Q) from the Sloan Digital Sky Survey, because it is spatially dense enough to allow the measurement of the angular BAO signature with moderate statistical significance and acceptable precision. Our analyses with quasars in the redshift interval z in [2.20,2.25] produce the angular BAO scale θBAO = 1.77° ± 0.31° with a statistical significance of 2.12 σ (i.e., 97% confidence level), calculated through a likelihood analysis performed using the theoretical covariance matrix sourced by the analytical power spectra expected in the ΛCDM concordance model. Additionally, we show that the BAO signal is robust—although with less statistical significance—under diverse bin-size choices and under small displacements of the quasars' angular coordinates. Finally, we also performed cosmological parameter analyses comparing the θBAO predictions for wCDM and w(a)CDM models with angular BAO data available in the literature, including the measurement obtained here, jointly with CMB data. The constraints on the parameters ΩM, w0 and wa are in excellent agreement with the ΛCDM concordance model.
The Angular Three-Point Correlation Function in the Quasi-linear Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchalter, Ari; Kamionkowski, Marc; Jaffe, Andrew H.
2000-02-10
We calculate the normalized angular three-point correlation function (3PCF), q, as well as the normalized angular skewness, s{sub 3}, assuming the small-angle approximation, for a biased mass distribution in flat and open cold dark matter (CDM) models with Gaussian initial conditions. The leading-order perturbative results incorporate the explicit dependence on the cosmological parameters, the shape of the CDM transfer function, the linear evolution of the power spectrum, the form of the assumed redshift distribution function, and linear and nonlinear biasing, which may be evolving. Results are presented for different redshift distributions, including that appropriate for the APM Galaxy Survey, asmore » well as for a survey with a mean redshift of z{approx_equal}1 (such as the VLA FIRST Survey). Qualitatively, many of the results found for s{sub 3} and q are similar to those obtained in a related treatment of the spatial skewness and 3PCF, such as a leading-order correction to the standard result for s{sub 3} in the case of nonlinear bias (as defined for unsmoothed density fields), and the sensitivity of the configuration dependence of q to both cosmological and biasing models. We show that since angular correlation functions (CFs) are sensitive to clustering over a range of redshifts, the various evolutionary dependences included in our predictions imply that measurements of q in a deep survey might better discriminate between models with different histories, such as evolving versus nonevolving bias, that can have similar spatial CFs at low redshift. Our calculations employ a derived equation, valid for open, closed, and flat models, to obtain the angular bispectrum from the spatial bispectrum in the small-angle approximation. (c) (c) 2000. The American Astronomical Society.« less
NASA Astrophysics Data System (ADS)
Smetanin, Sergei; Jelínek, Michal; Kubeček, Václav
2017-05-01
Lasers based on stimulated-Raman-scattering process can be used for the frequency-conversion to the wavelengths that are not readily available from solid-state lasers. Parametric Raman lasers allow generation of not only Stokes, but also anti-Stokes components. However, practically all the known crystalline parametric Raman anti-Stokes lasers have very low conversion efficiencies of about 1 % at theoretically predicted values of up to 40 % because of relatively narrow angular tolerance of phase matching in comparison with angular divergence of the interacting beams. In our investigation, to widen the angular tolerance of four-wave mixing and to obtain high conversion efficiency into the antiStokes wave we propose and study a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phasematched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping. We use only one 532-nm laser source to pump the Raman-active calcite crystal oriented at the phase matched angle for orthogonally polarized Raman components four-wave mixing. Additionally, we split the 532-nm laser radiation into the orthogonally polarized components entering to the Raman-active calcite crystal at the certain incidence angles to fulfill the tangential phase matching compensating walk-off of extraordinary waves for collinear beam interaction in the crystal with the widest angular tolerance of four-wave mixing. For the first time the highest 503-nm anti-Stokes conversion efficiency of 30 % close to the theoretical limit of about 40 % at overall optical efficiency of the parametric Raman anti-Stokes generation of up to 3.5 % in calcite is obtained due to realization of tangential phase matching insensitive to the angular mismatch.
Sielaff, Hendrik; Martin, James; Singh, Dhirendra; Biuković, Goran; Grüber, Gerhard; Frasch, Wayne D
2016-12-02
The angular velocities of ATPase-dependent power strokes as a function of the rotational position for the A-type molecular motor A 3 B 3 DF, from the Methanosarcina mazei Gö1 A-ATP synthase, and the thermophilic motor α 3 β 3 γ, from Geobacillus stearothermophilus (formerly known as Bacillus PS3) F-ATP synthase, are resolved at 5 μs resolution for the first time. Unexpectedly, the angular velocity profile of the A-type was closely similar in the angular positions of accelerations and decelerations to the profiles of the evolutionarily distant F-type motors of thermophilic and mesophilic origins, and they differ only in the magnitude of their velocities. M. mazei A 3 B 3 DF power strokes occurred in 120° steps at saturating ATP concentrations like the F-type motors. However, because ATP-binding dwells did not interrupt the 120° steps at limiting ATP, ATP binding to A 3 B 3 DF must occur during the catalytic dwell. Elevated concentrations of ADP did not increase dwells occurring 40° after the catalytic dwell. In F-type motors, elevated ADP induces dwells 40° after the catalytic dwell and slows the overall velocity. The similarities in these power stroke profiles are consistent with a common rotational mechanism for A-type and F-type rotary motors, in which the angular velocity is limited by the rotary position at which ATP binding occurs and by the drag imposed on the axle as it rotates within the ring of stator subunits. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Angular momentum properties of haloes and their baryon content in the Illustris simulation
NASA Astrophysics Data System (ADS)
Zjupa, Jolanta; Springel, Volker
2017-04-01
The angular momentum properties of virialized dark matter haloes have been measured with good statistics in collisionless N-body simulations, but an equally accurate analysis of the baryonic spin is still missing. We employ the Illustris simulation suite, one of the first simulations of galaxy formation with full hydrodynamics that produces a realistic galaxy population in a sizeable volume, to quantify the baryonic spin properties for more than ˜320 000 haloes. We first compare the systematic differences between different spin parameter and halo definitions, and the impact of sample selection criteria on the derived properties. We confirm that dark-matter-only haloes exhibit a close to self-similar spin distribution in mass and redshift of lognormal form. However, the physics of galaxy formation radically changes the baryonic spin distribution. While the dark matter component remains largely unaffected, strong trends with mass and redshift appear for the spin of diffuse gas and the formed stellar component. With time, the baryons staying bound to the halo develop a misalignment of their spin vector with respect to dark matter, and increase their specific angular momentum by a factor of ˜1.3 in the non-radiative case and ˜1.8 in the full physics setup at z = 0. We show that this enhancement in baryonic spin can be explained by the combined effect of specific angular momentum transfer from dark matter on to gas during mergers and from feedback expelling low specific angular momentum gas from the halo. Our results challenge certain models for spin evolution and underline the significant changes induced by baryonic physics in the structure of haloes.
Online Mapping and Perception Algorithms for Multi-robot Teams Operating in Urban Environments
2015-01-01
each method on a 2.53 GHz Intel i5 laptop. All our algorithms are hand-optimized, implemented in Java and single threaded. To determine which algorithm...approach would be to label all the pixels in the image with an x, y, z point. However, the angular resolution of the camera is finer than that of the...edge criterion. That is, each edge is either present or absent. In [42], edge existence is further screened by a fixed threshold for angular
NASA Astrophysics Data System (ADS)
Su, Yun-Ting; Hu, Shuowen; Bethel, James S.
2017-05-01
Light detection and ranging (LIDAR) has become a widely used tool in remote sensing for mapping, surveying, modeling, and a host of other applications. The motivation behind this work is the modeling of piping systems in industrial sites, where cylinders are the most common primitive or shape. We focus on cylinder parameter estimation in three-dimensional point clouds, proposing a mathematical formulation based on angular distance to determine the cylinder orientation. We demonstrate the accuracy and robustness of the technique on synthetically generated cylinder point clouds (where the true axis orientation is known) as well as on real LIDAR data of piping systems. The proposed algorithm is compared with a discrete space Hough transform-based approach as well as a continuous space inlier approach, which iteratively discards outlier points to refine the cylinder parameter estimates. Results show that the proposed method is more computationally efficient than the Hough transform approach and is more accurate than both the Hough transform approach and the inlier method.
Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Queen, Steven Z.; VanEepoel, John M.; Sanner, Robert M.
2005-01-01
During the Hubble Robotic Servicing Mission, the Hubble Space Telescope (HST) attitude and rates are necessary to achieve the capture of HST by the Hubble Robotic Vehicle (HRV). The attitude and rates must be determined without the HST gyros or HST attitude estimates. The HRV will be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. Second, a linearized approach is developed. The linearized approach is based on more traditional Extended Kalman filter techniques. Simulation test results for both methods are given.
Limited sinus tarsi approach for intra-articular calcaneus fractures.
Kikuchi, Christian; Charlton, Timothy P; Thordarson, David B
2013-12-01
Operative treatment of calcaneal fractures has a historically high rate of wound complications, so the most optimal operative approach has been a topic of investigation. This study reviews the radiographic and clinical outcomes of the use of the sinus tarsi approach for operative fixation of these fractures with attention to the rate of infection and restoration of angular measurements. The radiographs and charts of 20 patients with 22 calcaneal fractures were reviewed to assess for restoration of angular and linear dimensions of the calcaneus as well as time to radiographic union. Secondary outcome measures included the rate of postoperative infection, osteomyelitis, revision surgeries, and nonunion. We found a statistically significant restoration of Böhler's angle and calcaneal width. Three of the 22 cases had a superficial wound infection. One patient had revision surgery for symptomatic hardware removal. There were no events of osteomyelitis, deep infection, malunion, or nonunion. We found that the sinus tarsi approach yielded similar outcomes to those reported in the literature. Level IV, retrospective case series.
Atomic Schroedinger cat-like states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enriquez-Flores, Marco; Rosas-Ortiz, Oscar; Departamento de Fisica, Cinvestav, A.P. 14-740, Mexico D.F. 07000
2010-10-11
After a short overview of the basic mathematical structure of quantum mechanics we analyze the Schroedinger's antinomic example of a living and dead cat mixed in equal parts. Superpositions of Glauber kets are shown to approximate such macroscopic states. Then, two-level atomic states are used to construct mesoscopic kittens as appropriate linear combinations of angular momentum eigenkets for j = 1/2. Some general comments close the present contribution.
Magnetic moments of excited states in nuclei far from stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, A.; Berant, Z.; Gill, R.L.
1985-01-01
Magnetic moments of excited states in nuclei far from stability have been measured by gamma-gamma angular correlation at the output of the fission product separators TRISTAN and JOSEF. The results obtained until now will be reviewed. They provide important nuclear structure information about nuclei around closed shells, and transitional nuclei in the A = 100 and 150 regions. 22 refs., 3 figs., 3 tabs.
NASA Astrophysics Data System (ADS)
Shen, Yizhu; Yang, Jiawei; Meng, Hongfu; Dou, Wenbin; Hu, Sanming
2018-04-01
Metasurfaces, orbital angular momenta (OAM), and non-diffractive Bessel beams have been attracting worldwide research. Combining the benefits of these three promising techniques, this paper proposes a metasurface-based reflective-type approach to generate a first-order Bessel beam carrying OAM. To validate this approach, a millimeter-wave metasurface is analyzed, designed, fabricated, and measured. Experimental results agree well with simulation. Moreover, this reflective-type metasurface, generating a Bessel beam with OAM, is inherently integrated with a planar feeding source in the same single-layer printed circuit board. Therefore, the proposed design features low profile, low cost, easy integration with front-end active circuits, and no alignment error between the feeding source and the metasurface.
Closedness of orbits in a space with SU(2) Poisson structure
NASA Astrophysics Data System (ADS)
Fatollahi, Amir H.; Shariati, Ahmad; Khorrami, Mohammad
2014-06-01
The closedness of orbits of central forces is addressed in a three-dimensional space in which the Poisson bracket among the coordinates is that of the SU(2) Lie algebra. In particular it is shown that among problems with spherically symmetric potential energies, it is only the Kepler problem for which all bounded orbits are closed. In analogy with the case of the ordinary space, a conserved vector (apart from the angular momentum) is explicitly constructed, which is responsible for the orbits being closed. This is the analog of the Laplace-Runge-Lenz vector. The algebra of the constants of the motion is also worked out.
Magnetic Inclination E Ects In Star-Planet Magnetic Interactions
NASA Astrophysics Data System (ADS)
Strugarek, Antoine
2017-10-01
A large fraction of the exoplanets discovered today are in a close-in orbit around their host star. This proximity allows them to be magnetically connected to their host, which lead to e cient energy and angular momentum exchanges between the star and the planet. We carry out three-dimensional magneto-hydrodynamic simulations of close-in star-planet systems to characterize the e ect of the inclination of the planetary magnetic eld on the star-planet magnetic interaction. We parametrize this e ect in scaling laws depending on the star, planet, and stellar wind properties that can be applied to any exoplanetary systems around cool stars.
An approach to ground based space surveillance of geostationary on-orbit servicing operations
NASA Astrophysics Data System (ADS)
Scott, Robert (Lauchie); Ellery, Alex
2015-07-01
On Orbit Servicing (OOS) is a class of dual-use robotic space missions that could potentially extend the life of orbiting satellites by fuel replenishment, repair, inspection, orbital maintenance or satellite repurposing, and possibly reduce the rate of space debris generation. OOS performed in geostationary orbit poses a unique challenge for the optical space surveillance community. Both satellites would be performing proximity operations in tight formation flight with separations less than 500 m making atmospheric seeing (turbulence) a challenge to resolving a geostationary satellite pair when viewed from the ground. The two objects would appear merged in an image as the resolving power of the telescope and detector, coupled with atmospheric seeing, limits the ability to resolve the two objects. This poses an issue for obtaining orbital data for conjunction flight safety or, in matters pertaining to space security, inferring the intent and trajectory of an unexpected object perched very close to one's satellite asset on orbit. In order to overcome this problem speckle interferometry using a cross spectrum approach is examined as a means to optically resolve the client and servicer's relative positions to enable a means to perform relative orbit determination of the two spacecraft. This paper explores cases where client and servicing satellites are in unforced relative motion flight and examines the observability of the objects. Tools are described that exploit cross-spectrum speckle interferometry to (1) determine the presence of a secondary in the vicinity of the client satellite and (2) estimate the servicing satellite's motion relative to the client. Experimental observations performed with the Mont Mégantic 1.6 m telescope on co-located geostationary satellites (acting as OOS proxy objects) are described. Apparent angular separations between Anik G1 and Anik F1R from 5 to 1 arcsec were observed as the two satellites appeared to graze one another. Data reduction using differential angular measurements derived from speckle images collected by the 1.6 m telescope produced relative orbit estimates with better than 90 m accuracy in the cross-track and in-track directions but exhibited highly variable behavior in the radial component from 50 to 1800 m. Simulations of synthetic tracking data indicated that the radial component requires approximately six hours of tracking data for an Extended Kalman Filter to converge on an relative orbit estimate with less than 100 m overall uncertainty. The cross-spectrum approach takes advantage of the Fast Fourier Transform (FFT) permitting near real-time estimation of the relative orbit of the two satellites. This also enables the use of relatively larger detector arrays (>106 pixels) helping to ease acquisition process to acquire optical angular data.
Neutral atom traps of rare isotopes
NASA Astrophysics Data System (ADS)
Mueller, Peter
2016-09-01
Laser cooling and trapping techniques offer exquisite control of an atom's external and internal degrees of freedom. The species of interest can be selectively captured, cooled close to absolute zero temperatures, and observed with high signal-to-noise ratio. Moreover, the atom's electronic and magnetic state populations can be precisely manipulated and interrogated. Applied in nuclear physics, these techniques are ideal for precision measurements in the fields of fundamental interactions and symmetries, nuclear structure studies, and isotopic trace analysis. In particular, they offer unique opportunities in the quest for physics beyond the standard model. I will shortly review the basics of this approach and the state of the field and then cover in more details recent results from two such efforts: the search for a permanent electric dipole moment in 225Ra and the beta-neutrino angular correlation measurement with laser trapped 6He. This work is supported by the U.S. DOE, Office of Science, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.
Gravitational waves from plunges into Gargantua
NASA Astrophysics Data System (ADS)
Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang
2018-05-01
We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.
Wireless infrared computer control
NASA Astrophysics Data System (ADS)
Chen, George C.; He, Xiaofei
2004-04-01
Wireless mouse is not restricted by cable"s length and has advantage over its wired counterpart. However, all the mice available in the market have detection range less than 2 meters and angular coverage less than 180 degrees. Furthermore, commercial infrared mice are based on track ball and rollers to detect movements. This restricts them to be used in those occasions where users want to have dynamic movement, such as presentations and meetings etc. This paper presents our newly developed infrared wireless mouse, which has a detection range of 6 meters and angular coverage of 180 degrees. This new mouse uses buttons instead of traditional track ball and is developed to be a hand-held device like remote controller. It enables users to control cursor with a distance closed to computer and the mouse to be free from computer operation.
Milliarcsecond Astronomy with the CHARA Array
NASA Astrophysics Data System (ADS)
Schaefer, Gail; ten Brummelaar, Theo; Gies, Douglas; Jones, Jeremy; Farrington, Christopher
2018-01-01
The Center for High Angular Resolution Astronomy offers 50 nights per year of open access time at the CHARA Array. The Array consists of six telescopes linked together as an interferometer, providing sub-milliarcsecond resolution in the optical and near-infrared. The Array enables a variety of scientific studies, including measuring stellar angular diameters, imaging stellar shapes and surface features, mapping the orbits of close binary companions, and resolving circumstellar environments. The open access time is part of an NSF/MSIP funded program to open the CHARA Array to the broader astronomical community. As part of the program, we will build a searchable database for the CHARA data archive and run a series of one-day community workshops at different locations across the country to expand the user base for stellar interferometry and encourage new scientific investigations with the CHARA Array.
Automatic 3D power line reconstruction of multi-angular imaging power line inspection system
NASA Astrophysics Data System (ADS)
Zhang, Wuming; Yan, Guangjian; Wang, Ning; Li, Qiaozhi; Zhao, Wei
2007-06-01
We develop a multi-angular imaging power line inspection system. Its main objective is to monitor the relative distance between high voltage power line and around objects, and alert if the warning threshold is exceeded. Our multi-angular imaging power line inspection system generates DSM of the power line passage, which comprises ground surface and ground objects, for example trees and houses, etc. For the purpose of revealing the dangerous regions, where ground objects are too close to the power line, 3D power line information should be extracted at the same time. In order to improve the automation level of extraction, reduce labour costs and human errors, an automatic 3D power line reconstruction method is proposed and implemented. It can be achieved by using epipolar constraint and prior knowledge of pole tower's height. After that, the proper 3D power line information can be obtained by space intersection using found homologous projections. The flight experiment result shows that the proposed method can successfully reconstruct 3D power line, and the measurement accuracy of the relative distance satisfies the user requirement of 0.5m.
Orbital-plane precessional resonances for binary black-hole systems
NASA Astrophysics Data System (ADS)
Kesden, Michael; Zhao, Xinyu; Gerosa, Davide
2016-03-01
We derive a new class of post-Newtonian precessional resonances for binary black holes (BBHs) with misaligned spins. According to the orbit-averaged spin-precession equations, the angle between the orbital angular momentum L and the total angular momentum J oscillates with a period τ during which time L precesses about J by an angle α. If α is a rational multiple of 2 π, the precession of L will be closed indicating a resonance between the polar and azimuthal evolution of L . If α is an integer multiple of 2 π, the misalignment between the angular momentum ΔL radiated over the period τ and J will be minimized, as will the opening angle of the cone about which J precesses in an inertial frame. However, the direction of ΔL will remain nearly fixed in an inertial frame over many precessional periods, causing the direction of J to tilt as inspiraling BBHs pass through such a resonance. Generic BBHs encounter many such resonances during an inspiral from large separations. We derive the evolution of J near a resonance and assess their detectability by gravitational-wave detectors and astrophysical implications.
Error field optimization in DIII-D using extremum seeking control
Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; ...
2016-06-03
A closed-loop error field control algorithm is implemented in the Plasma Control System of the DIII-D tokamak and used to identify optimal control currents during a single plasma discharge. The algorithm, based on established extremum seeking control theory, exploits the link in tokamaks between maximizing the toroidal angular momentum and minimizing deleterious non-axisymmetric magnetic fields. Slowly-rotating n = 1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coilmore » currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.« less
Determining Our Motion Through the Galaxy
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-12-01
Though we dont notice it from our point of view, were hurtling through space at breakneck speed and one of the contributors to our overall motion through the universe is the Suns revolutionaround the center of our galaxy. A recent study uses an unusual approach to measure the speed of this rotation.Moving While Sitting StillWe know that the Sun zips rapidly around the center of the Milky Way our orbitalspeed is somewhere around250 km/s, or 560,000 mph! Getting a precise measurement of this velocity is useful because we can combine it with the observed proper motion of Sgr A*, the black hole at the center of our galaxy, to determine the distance from us to the center of the Milky Way. This is an important baseline for lots of other measurements.Example particle orbits modeled within the galactic potential. The top panel represents a starwith zero angular momentum, which is scattered into a chaotic orbit after interacting with the galactic nucleus. [Hunt et al. 2016]But how can we measure the Suns revolutionspeed accurately? A team of scientists led by Jason Hunt (Dunlap Institute at University of Toronto, Canada) have suggested a unique approach to pin down this value: look for missing stars in the solar neighborhood.Missing StarsThe stars around us should exhibit a distribution of velocities describing their orbits about the galactic center but those stars with zero angular momentum should have plunged directly into the galactic center long ago. These stars would have been scattered onto chaotic halo orbits after their plunge, resulting in a dearth of stars with zero angular momentum around us today.By looking at the relative speeds of the stars moving around us, then, we should see a dip in the velocity distribution corresponding to the missing zero-angular-momentum stars. By noting the relative velocity at which that dip occurs, we cleverly reveal the negative of our motion around the galactic center.Velocity distribution for stars within 700 pc of the Sun. A dip in the distribution (marked with an arrow) is noticeable between 210 and 270 km/s. [Hunt et al. 2016]Where Are We and How Fast Are We Going?Hunt and collaborators use a combination of the first data release from ESAs Gaia mission and a star catalog from the Radial Velocity Experiment to examine the motions of a total of over 200,000 stars in the solar neighborhood. They find that there is indeed a lack of disk stars with velocities close to zero angular momentum. They then compare modeled stellar orbits to the data to estimate the relative speed at which the dip in the velocity distribution occurs.From this information, the authors obtain a measurement of 2399 km/s for the Suns revolutionvelocity around the galactic center. They combine this value with a proper motion measurement of Sgr A* to calculate the distance to the galactic center: 7.90.3 kpc (or about 26,000 light-years).Both of these measurements can be improved with future Gaia data releases, which will contain many orders of magnitude more stars. This clever technique, therefore, proves a useful way of better constraining our position and motion through the Milky Way.CitationJason A. S. Hunt et al 2016 ApJL 832 L25. doi:10.3847/2041-8205/832/2/L25
Measurements and Modelling of Sputtering Rates with Low Energy Ions
NASA Astrophysics Data System (ADS)
Ruzic, David N.; Smith, Preston C.; Turkot, Robert B., Jr.
1996-10-01
The angular-resolved sputtering yield of Be by D+, and Al by Ar+ was predicted and then measured. A 50 to 1000 eV ion beam from a Colutron was focused on to commercial grade and magnetron target grade samples. The S-65 C grade beryllium samples were supplied by Brush Wellman and the Al samples from TOSOH SMD. In our vacuum chamber the samples can be exposed to a dc D or Ar plasma to remove oxide, load the surface and more-nearly simulate steady state operating conditions in the plasma device. The angular distribution of the sputtered atoms was measured by collection on a single crystal graphite witness plate. The areal density of Be or Al (and BeO2 or Al2O3, after exposure to air) was then measured using a Scanning Auger Spectrometer. Total yield was also measured by deposition onto a quartz crystal oscillator simultaneously to deposition onto the witness plate. A three dimensional version of vectorized fractal TRIM (VFTRIM3D), a Monte-Carlo computer code which includes surface roughness characterized by fractal geometry, was used to predict the angular distribution of the sputtered particles and a global sputtering coefficient. Over a million trajectories were simulated for each incident angle to determine the azimuthal and polar angle distributions of the sputtered atoms. The experimental results match closely with the simulations for total yield, while the measured angular distributions depart somewhat from the predicted cosine curve.
THE HELIOCENTRIC DISTANCE WHERE THE DEFLECTIONS AND ROTATIONS OF SOLAR CORONAL MASS EJECTIONS OCCUR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, C.; Opher, M., E-mail: ckay@bu.edu
2015-10-01
Understanding the trajectory of a coronal mass ejection (CME), including any deflection from a radial path, and the orientation of its magnetic field is essential for space weather predictions. Kay et al. developed a model, Forecasting a CME’s Altered Trajectory (ForeCAT), of CME deflections and rotation due to magnetic forces, not including the effects of reconnection. ForeCAT is able to reproduce the deflection of observed CMEs. The deflecting CMEs tend to show a rapid increase of their angular momentum close to the Sun, followed by little to no increase at farther distances. Here we quantify the distance at which themore » CME deflection is “determined,” which we define as the distance after which the background solar wind has negligible influence on the total deflection. We consider a wide range in CME masses and radial speeds and determine that the deflection and rotation of these CMEs can be well-described by assuming they propagate with constant angular momentum beyond 10 R{sub ⊙}. The assumption of constant angular momentum beyond 10 R{sub ⊙} yields underestimates of the total deflection at 1 AU of only 1%–5% and underestimates of the rotation of 10%. Since the deflection from magnetic forces is determined by 10 R{sub ⊙}, non-magnetic forces must be responsible for any observed interplanetary deflections or rotations where the CME has increasing angular momentum.« less
High brightness diode lasers controlled by volume Bragg gratings
NASA Astrophysics Data System (ADS)
Glebov, Leonid
2017-02-01
Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.
NASA Astrophysics Data System (ADS)
Ward, R.; Cubric, D.; Bowring, N.; King, G. C.; Read, F. H.; Fursa, D. V.; Bray, I.
2013-02-01
Excitation function measurements for the decay of the 2s22p 2P and 2s2p2 2D triply excited negative ion resonances in helium to singly excited n = 2 states have been measured. These excitation functions have been determined across the complete angular range (0-180°) using a magnetic angle changer with a soft-iron core. The convergent close-coupling method has been used to calculate the cross sections, with the underlying complexity of the problem not yet being able to be fully resolved. Agreement between the present experimental data and previous experimental data is good, with these excitation functions confirming the presence of an unusual (2s22p)2P resonance behaviour in the 21S channel at 90°, where this would not usually be expected. Resonance energy and width values have been obtained, with a mean energy for the (2s22p)2P resonance of 57.20 ± 0.08 eV and a mean width of 73 ± 20 meV, and a mean energy of the (2s2p2)2D resonance of 58.30 ± 0.08 eV and a mean width of 59 ± 27 meV. Resonant cross section and ρ2 values have been calculated across the angular range for the first time, providing angular distribution data on decay propensities for both resonances.
On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars
NASA Astrophysics Data System (ADS)
Fleming, David P.; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.
2018-05-01
We outline a mechanism that explains the observed lack of circumbinary planets (CBPs) via coupled stellar–tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time, impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that, in some cases, the stability semimajor axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that, typically, at least one planet is ejected from the system. We apply our theory to the shortest-period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar–tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.
Periodic three-body orbits with vanishing angular momentum in the Jacobi-Poincaré ‘strong’ potential
NASA Astrophysics Data System (ADS)
Dmitrašinović, V.; Petrović, Luka V.; Šuvakov, Milovan
2017-10-01
Moore (1993 Phys. Rev. Lett. 70 3675) and Montgomery (2005 Ergod. Theor. Dynam. Syst. 25 921-947) have argued that planar periodic orbits of three bodies moving in the Jacobi-Poincaré, or the ‘strong’ pairwise potential \\sumi>j\\frac{-1}{rij^2} , can have all possible topologies. Here we search systematically for such orbits with vanishing angular momentum and find 24 topologically distinct orbits, 22 of which are new, in a small section of the allowed phase space, with a tendency to overcrowd, due to overlapping initial conditions. The topologies of these 24 orbits belong to three algebraic sequences defined as functions of integer n=0, 1, 2, \\ldots . Each sequence extends to n \\to ∞ , but the separation of initial conditions for orbits with n ≥slant 10 becomes practically impossible with a numerical precision of 16 decimal places. Nevertheless, even with a precision of 16 decimals, it is clear that in each sequence both the orbit’s initial angle φn and its period T n approach finite values in the asymptotic limit (n \\to ∞ ). Two of three sequences are overlapping in the sense that their initial angles ϕ occupy the same segment on the circle and their asymptotic values φ∞ are (very) close to each other. The actions of these orbits rise linearly with the index n that describes the orbit’s topology, which is in agreement with the Newtonian case. We show that this behaviour is consistent with the assumption of analyticity of the action as a function of period.
When and How Are Spatial Perceptions Scaled?
ERIC Educational Resources Information Center
Witt, Jessica K.; Proffitt, Dennis R.; Epstein, William
2010-01-01
This research was designed to test the predictions of 2 approaches to perception. By most traditional accounts, people are thought to derive general-purpose spatial perceptions that are scaled in arbitrary, unspecified units. In contrast, action-specific approaches propose that the angular information inherent in optic flow and ocular-motor…
Improved Time-Lapsed Angular Scattering Microscopy of Single Cells
NASA Astrophysics Data System (ADS)
Cannaday, Ashley E.
By measuring angular scattering patterns from biological samples and fitting them with a Mie theory model, one can estimate the organelle size distribution within many cells. Quantitative organelle sizing of ensembles of cells using this method has been well established. Our goal is to develop the methodology to extend this approach to the single cell level, measuring the angular scattering at multiple time points and estimating the non-nuclear organelle size distribution parameters. The diameters of individual organelle-size beads were successfully extracted using scattering measurements with a minimum deflection angle of 20 degrees. However, the accuracy of size estimates can be limited by the angular range detected. In particular, simulations by our group suggest that, for cell organelle populations with a broader size distribution, the accuracy of size prediction improves substantially if the minimum angle of detection angle is 15 degrees or less. The system was therefore modified to collect scattering angles down to 10 degrees. To confirm experimentally that size predictions will become more stable when lower scattering angles are detected, initial validations were performed on individual polystyrene beads ranging in diameter from 1 to 5 microns. We found that the lower minimum angle enabled the width of this delta-function size distribution to be predicted more accurately. Scattering patterns were then acquired and analyzed from single mouse squamous cell carcinoma cells at multiple time points. The scattering patterns exhibit angular dependencies that look unlike those of any single sphere size, but are well-fit by a broad distribution of sizes, as expected. To determine the fluctuation level in the estimated size distribution due to measurement imperfections alone, formaldehyde-fixed cells were measured. Subsequent measurements on live (non-fixed) cells revealed an order of magnitude greater fluctuation in the estimated sizes compared to fixed cells. With our improved and better-understood approach to single cell angular scattering, we are now capable of reliably detecting changes in organelle size predictions due to biological causes above our measurement error of 20 nm, which enables us to apply our system to future studies of the investigation of various single cell biological processes.
Lee, Zhong Ping; Du, Keping; Voss, Kenneth J; Zibordi, Giuseppe; Lubac, Bertrand; Arnone, Robert; Weidemann, Alan
2011-07-01
Remote-sensing reflectance (R(rs)), which is defined as the ratio of water-leaving radiance (L(w)) to downwelling irradiance just above the surface (E(d)(0⁺)), varies with both water constituents (including bottom properties of optically-shallow waters) and angular geometry. L(w) is commonly measured in the field or by satellite sensors at convenient angles, while E(d)(0⁺) can be measured in the field or estimated based on atmospheric properties. To isolate the variations of R(rs) (or L(w)) resulting from a change of water constituents, the angular effects of R(rs) (or L(w)) need to be removed. This is also a necessity for the calibration and validation of satellite ocean color measurements. To reach this objective, for optically-deep waters where bottom contribution is negligible, we present a system centered on water's inherent optical properties (IOPs). It can be used to derive IOPs from angular Rrs and offers an alternative to the system centered on the concentration of chlorophyll. This system is applicable to oceanic and coastal waters as well as to multiband and hyperspectral sensors. This IOP-centered system is applied to both numerically simulated data and in situ measurements to test and evaluate its performance. The good results obtained suggest that the system can be applied to angular R(rs) to retrieve IOPs and to remove the angular variation of R(rs).
Democratization of Nanoscale Imaging and Sensing Tools Using Photonics
2015-06-12
representative angular scattering pattern recorded on the cell phone. (b) Measured (black) and Mie theory fitted (red) angle-dependent scattering...sample onto the cell phone image sensor (Figure 3a). The one- dimensional radial scattering profile was then fitted with Mie theory to estimate the...quantitatively well-understood, as the experimental measure- ments closely match the predictions of our theory and simulations.69,84 Furthermore, the signal
1986-05-31
Nonlinear Feedback Control 8-16 for Spacecraft Attitude Maneuvers" 2. " Spacecraft Attitude Control Using 17-35... nonlinear state feedback control laws are developed for space- craft attitude control using the Euler parameters and conjugate angular momenta. Time... Nonlinear Feedback Control for Spacecraft Attitude Maneuvers," to appear in AIAA J. of Guidance, Control, and Dynamics, (AIAA Paper No. 83-2230-CP,
Characteristics of Sounds Emitted During High-Resolution Marine Geophysical Surveys
2016-03-24
In addition, the close proximity of side walls had the potential to reflect sound back into the well, thus contributing to the overall measurement... wall reflections. The reduced amplitude for sounds radiated near the side wall may have been the result of the greater angular displacement between...NUWC-NPT Technical Report 12,203 24 March 2016 Characteristics of Sounds Emitted During High-Resolution Marine Geophysical Surveys
Supertranslations and Superrotations at the Black Hole Horizon.
Donnay, Laura; Giribet, Gaston; González, Hernán A; Pino, Miguel
2016-03-04
We show that the asymptotic symmetries close to nonextremal black hole horizons are generated by an extension of supertranslations. This group is generated by a semidirect sum of Virasoro and Abelian currents. The charges associated with the asymptotic Killing symmetries satisfy the same algebra. When considering the special case of a stationary black hole, the zero mode charges correspond to the angular momentum and the entropy at the horizon.
NASA Astrophysics Data System (ADS)
Turcksin, Bruno; Ragusa, Jean C.; Morel, Jim E.
2012-01-01
It is well known that the diffusion synthetic acceleration (DSA) methods for the Sn equations become ineffective in the Fokker-Planck forward-peaked scattering limit. In response to this deficiency, Morel and Manteuffel (1991) developed an angular multigrid method for the 1-D Sn equations. This method is very effective, costing roughly twice as much as DSA per source iteration, and yielding a maximum spectral radius of approximately 0.6 in the Fokker-Planck limit. Pautz, Adams, and Morel (PAM) (1999) later generalized the angular multigrid to 2-D, but it was found that the method was unstable with sufficiently forward-peaked mappings between the angular grids. The method was stabilized via a filtering technique based on diffusion operators, but this filtering also degraded the effectiveness of the overall scheme. The spectral radius was not bounded away from unity in the Fokker-Planck limit, although the method remained more effective than DSA. The purpose of this article is to recast the multidimensional PAM angular multigrid method without the filtering as an Sn preconditioner and use it in conjunction with the Generalized Minimal RESidual (GMRES) Krylov method. The approach ensures stability and our computational results demonstrate that it is also significantly more efficient than an analogous DSA-preconditioned Krylov method.
Effects of ultrashort laser pulses on angular distributions of photoionization spectra.
Ooi, C H Raymond; Ho, W L; Bandrauk, A D
2017-07-27
We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks occur at multiples of 2ħω for linear polarization while odd-ordered peaks are suppressed in the direction perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to interference.
Kulesza, Joel A.; Solomon, Clell J.; Kiedrowski, Brian C.
2018-01-02
This paper presents a new method for performing angular biasing in Monte Carlo radiation transport codes using arbitrary convex polyhedra to define regions of interest toward which to project particles (DXTRAN regions). The method is derived and is implemented using axis-aligned right parallelepipeds (AARPPs) and arbitrary convex polyhedra. Attention is also paid to possible numerical complications and areas for future refinement. A series of test problems are executed with void, purely absorbing, purely scattering, and 50% absorbing/50% scattering materials. For all test problems tally results using AARPP and polyhedral DXTRAN regions agree with analog and/or spherical DXTRAN results within statisticalmore » uncertainties. In cases with significant scattering the figure of merit (FOM) using AARPP or polyhedral DXTRAN regions is lower than with spherical regions despite the ability to closely fit the tally region. This is because spherical DXTRAN processing is computationally less expensive than AARPP or polyhedral DXTRAN processing. Thus, it is recommended that the speed of spherical regions be considered versus the ability to closely fit the tally region with an AARPP or arbitrary polyhedral region. It is also recommended that short calculations be made prior to final calculations to compare the FOM for the various DXTRAN geometries because of the influence of the scattering behavior.« less
Meehan, John P; Khadder, Mohammad A; Jamali, Amir A; Trauner, Kenneth B
2009-05-01
Posttraumatic osteoarthritis of the knee can be associated with angular deformities and alterations in the joint line as a result of the initial trauma and subsequent surgical procedures. These deformities can be characterized as extra-articular or intra-articular or can involve aspects of both. Conversion to total knee arthroplasty (TKA) may require either a staged or a simultaneous corrective osteotomy to restore the limb alignment and proper knee function. This article describes a closing wedge retrotubercular tibia osteotomy performed concurrently with TKA in an effort to correct an extra-articular varus deformity and to improve the patella tendon height in relation to the reconstructed joint line. A 57-year-old man previously treated for a Schatzker type 6 tibia plateau fracture presented with symptoms of arthritis pain and instability as a result of a varus thrust with weight bearing. Radiographs revealed posttraumatic osteoarthritis, a 35 degrees varus deformity, and patella infera. Maintaining the tibia tubercle continuity with the distal tibia allowed for correction of the varus deformity and improvement in the patella tendon height relative to the joint line. At 5-year follow-up, the patient had osteotomy healing, clinically neutral limb alignment, and improvement in joint line biomechanics with resolution of symptoms of pain and instability.
Rotational MEMS mirror with latching arm for silicon photonics
NASA Astrophysics Data System (ADS)
Brière, Jonathan; Beaulieu, Philippe-Olivier; Saidani, Menouer; Nabki, Frederic; Menard, Michaël.
2015-02-01
We present an innovative rotational MEMS mirror that can control the direction of propagation of light beams inside of planar waveguides implemented in silicon photonics. Potential applications include but are not limited to optical telecommunications, medical imaging, scan and spectrometry. The mirror has a half-cylinder shape with a radius of 300 μm that provides low and constant optical losses over the full angular displacement range. A circular comb drive structure is anchored such that it allows free or latched rotation experimentally demonstrated over 8.5° (X-Y planar rotational movement) using 290V electrostatic actuation. The entire MEMS structure was implemented using the MEMSCAP SOIMUMPs process. The center of the anchor beam is designed to be the approximate rotation point of the circular comb drive to counter the rotation offset of the mirror displacement. A mechanical characterization of the MEMS mirror is presented. The latching mechanism provides up to 20 different angular locking positions allowing the mirror to counter any resonance or vibration effects and it is actuated with an electrostatic linear comb drive. An innovative gap closing structure was designed to reduce optical propagation losses due to beam divergence in the interstitial space between the mirror and the planar waveguide. The gap closing structure is also electrostatically actuated and includes two side stoppers to prevent stiction.
Dancing in the Dark: New Brown Dwarf Binaries from Kernel Phase Interferometry
NASA Astrophysics Data System (ADS)
Pope, Benjamin; Martinache, Frantz; Tuthill, Peter
2013-04-01
This paper revisits a sample of ultracool dwarfs in the solar neighborhood previously observed with the Hubble Space Telescope's NICMOS NIC1 instrument. We have applied a novel high angular resolution data analysis technique based on the extraction and fitting of kernel phases to archival data. This was found to deliver a dramatic improvement over earlier analysis methods, permitting a search for companions down to projected separations of ~1 AU on NIC1 snapshot images. We reveal five new close binary candidates and present revised astrometry on previously known binaries, all of which were recovered with the technique. The new candidate binaries have sufficiently close separation to determine dynamical masses in a short-term observing campaign. We also present four marginal detections of objects which may be very close binaries or high-contrast companions. Including only confident detections within 19 pc, we report a binary fraction of at least \\epsilon _b = 17.2^{+5.7}_{-3.7} %. The results reported here provide new insights into the population of nearby ultracool binaries, while also offering an incisive case study of the benefits conferred by the kernel phase approach in the recovery of companions within a few resolution elements of the point-spread function core. Based on observations performed with the NASA/ESA Hubble Space Telescope. The Hubble observations are associated with proposal ID 10143 and 10879 and were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Kwon, Sunku; Pfister, Robin; Hager, Ronald L.; Hunter, Iain; Seeley, Matthew K.
2017-01-01
Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV) and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1) ball TAV and (2) forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face), horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal) before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact). Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model) and forehand accuracy (between-subjects model; α = 0.05). We observed an average (1) racquet head impact angle, (2) racquet head trajectory before impact, relative to horizontal, (3) racquet head horizontal velocity before impact, (4) racquet head vertical velocity before impact, and (5) hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s-1, 6.6 ± 2.2 m·s-1, and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01). None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging from 70 to 85˚, relative to the ground) and increased racquet head vertical velocity before impact. Key points The study confirmed previous research that two key racquet kinematic variables, near impact, are significantly correlated to ball topspin angular velocity, during the forehand groundstroke: racquet head impact angle (i.e., open or closed racquet face) and racquet vertical velocity, before impact. The trajectory (direction of resultant velocity) and horizontal velocity of the racquet head before impact, and length of hitting zone were not significantly correlated to ball topspin angular velocity, or shot placement accuracy, during the tennis forehand groundstroke, for skilled male players. Hitting zone length was smaller than expected for skilled tennis players performing the forehand groundstroke. PMID:29238250
NASA Astrophysics Data System (ADS)
Rameau, J.; Chauvin, G.; Lagrange, A.-M.; Thébault, P.; Milli, J.; Girard, J. H.; Bonnefoy, M.
2012-10-01
Context. It has long been suggested that circumstellar disks surrounding young stars may be the signposts of planets, and even more so since the recent discoveries of embedded substellar companions. According to models, the planet-disk interaction may create large structures, gaps, rings, or spirals in the disk. In that sense, the Herbig star HD 142527 is particularly compelling, as its massive disk displays intriguing asymmetries that suggest the existence of a dynamical peturber of unknown nature. Aims: Our goal was to obtain deep thermal images of the close circumstellar environment of HD 142527 to re-image the reported close-in structures (cavity, spiral arms) of the disk and to search for stellar and substellar companions that could be connected to their presence. Methods: We obtained high-contrast images with the NaCo adaptive optics system at the Very Large Telescope in L'-band. We applied different analysis strategies using both classical PSF-subtraction and angular differential imaging to probe for any extended structures or point-like sources. Results: The circumstellar environment of HD 142527 is revealed at an unprecedented spatial resolution down to the subarcsecond level for the first time at 3.8 μm. Our images reveal important radial and azimuthal asymmetries that invalidate an elliptical shape for the disk. It instead suggests a bright inhomogeneous spiral arm plus various fainter spiral arms. We also confirm an inner cavity down to 30 AU and two important dips at position angles of 0 and 135 deg. The detection performance in angular differential imaging enables exploration of the planetary mass regime for projected physical separations as close as 40 AU. Use of our detection map together with Monte Carlo simulations sets stringent constraints on the presence of planetary mass, brown dwarf or stellar companions as a function of the semi-major axis. They severely limit any presence of massive giant planets with semi-major axis beyond 50 AU, i.e. probably within the large disk's cavity which extends radially up to 145 AU or even farther outside. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, ESO: run 087.C-0299A.Reduced images are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/A24
Runway Exit Designs for Capacity Improvement Demonstrations. Phase 1. Algorithm Development
1990-06-01
Dynamic Module 39 Table 3.1 Aircraft Approach Category Classification (FAA, 1988). Category Landing Speed (1.3 Vst ,,,) A less than 91 Knots B From 91 to...inertia about the vertical axis, in Kg-m-m, a is the angular acceleration (rad/sec,) of the aircraft fuselage as it executes the turning maneuver, wb is the...breakdown of the angular acceleration yields for Eq. 3.13 the following, I/ (V R 2 / g"= m g wb Im/100 (1- Im100) (3.16) where, R represents the rate of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuve, C.; Albergo, S.; Boemi, D.
Neutrons produced in the {sup 40}Ca+H reaction at E{sub lab}=357A and 565A MeV have been detected using a three-module version of the multifunctional neutron spectrometer MUFFINS. The detector covered a narrow angular range around the beam in the forward direction (0{degree}{minus}3.2{degree}). Semi-inclusive neutron production cross sections, at the two energies, are reported together with neutron energy spectra, angular, rapidity, and transverse momentum distributions. Comparison with a Boltzmann-Nordheim-Vlasov approach + phase space coalescence model is discussed. {copyright} {ital 1997} {ital The American Physical Society}
A new model-independent approach for finding the arrival direction of an extensive air shower
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedayati, H. Kh., E-mail: hedayati@kntu.ac.ir
2016-11-01
A new accurate method for reconstructing the arrival direction of an extensive air shower (EAS) is described. Compared to existing methods, it is not subject to minimization of a function and, therefore, is fast and stable. This method also does not need to know detailed curvature or thickness structure of an EAS. It can have angular resolution of about 1 degree for a typical surface array in central regions. Also, it has better angular resolution than other methods in the marginal area of arrays.
Black hole shadow in an expanding universe with a cosmological constant
NASA Astrophysics Data System (ADS)
Perlick, Volker; Tsupko, Oleg Yu.; Bisnovatyi-Kogan, Gennady S.
2018-05-01
We analytically investigate the influence of a cosmic expansion on the shadow of the Schwarzschild black hole. We suppose that the expansion is driven by a cosmological constant only and use the Kottler (or Schwarzschild-de Sitter) spacetime as a model for a Schwarzschild black hole embedded in a de Sitter universe. We calculate the angular radius of the shadow for an observer who is comoving with the cosmic expansion. It is found that the angular radius of the shadow shrinks to a nonzero finite value if the comoving observer approaches infinity.
Angular Speed of a Compact Disc
NASA Astrophysics Data System (ADS)
Sawicki, Mikolaj ``Mik''
2006-09-01
A spinning motion of a compact disc in a CD player offers an interesting and challenging problem in rotational kinematics with a nonconstant angular acceleration that can be incorporated into a typical introductory physics class for engineers and scientists. It can be used either as an example presented during the lecture, emphasizing application of calculus, or as a homework assignment that could be handled easily with the help of a spreadsheet, thus eliminating the calculus aspect altogether. I tried both approaches, and the spreadsheet study was favored by my students.
Yang, Liang; Lv, Zhicheng; Jiaojiao, Yuan; Liu, Sheng
2013-08-01
Phosphor-free dispensing is the most widely used LED packaging method, but this method results in poor quality in angular CCT uniformity. This study proposes a diffuser-loaded encapsulation to solve the problem; the effects of melamine formaldehyde (MF) resin and CaCO3 loaded encapsulation on correlated color temperature (CCT) uniformity and luminous efficiency reduction of the phosphor-converted LEDs are investigated. Results reveal that MF resin loaded encapsulation has better light diffusion performance compared to MF resin loaded encapsulation at the same diffuser concentration, but CaCO3 loaded encapsulation has better luminous efficiency maintenance. The improvements in angular color uniformity for the LEDs emitting with MF resin and CaCO3 loaded encapsulation can be explained by the increase in photon scattering. The utility of this low cost and controllable mineral diffuser packaging method provides a practical approach for enhancing the angular color uniformity of LEDs. The diffuser mass ratio of 1% MF resin or 10% CaCO3 is the optimum condition to obtain low angular CCT variance and high luminous efficiency.
Oh, Seungtaik; Jeong, Il Kwon
2015-11-16
We will introduce a new simple analytic formula of the Fourier coefficient of the 3D field distribution of a point light source to generate a cylindrical angular spectrum which captures the object wave in 360° in the 3D Fourier space. Conceptually, the cylindrical angular spectrum can be understood as a cylindrical version of the omnidirectional spectral approach of Sando et al. Our Fourier coefficient formula is based on an intuitive observation that a point light radiates uniformly in all directions. Our formula is defined over all frequency vectors lying on the entire sphere in the 3D Fourier space and is more natural and computationally more efficient for all around recording of the object wave than that of the previous omnidirectional spectral method. A generalized frequency-based occlusion culling method for an arbitrary complex object is also proposed to enhance the 3D quality of a hologram. As a practical application of the cylindrical angular spectrum, an interactive hologram example is presented together with implementation details.
Bio-Inspired Micro-Fluidic Angular-Rate Sensor for Vestibular Prostheses
Andreou, Charalambos M.; Pahitas, Yiannis; Georgiou, Julius
2014-01-01
This paper presents an alternative approach for angular-rate sensing based on the way that the natural vestibular semicircular canals operate, whereby the inertial mass of a fluid is used to deform a sensing structure upon rotation. The presented gyro has been fabricated in a commercially available MEMS process, which allows for microfluidic channels to be implemented in etched glass layers, which sandwich a bulk-micromachined silicon substrate, containing the sensing structures. Measured results obtained from a proof-of-concept device indicate an angular rate sensitivity of less than 1 °/s, which is similar to that of the natural vestibular system. By avoiding the use of a continually-excited vibrating mass, as is practiced in today's state-of-the-art gyroscopes, an ultra-low power consumption of 300 μW is obtained, thus making it suitable for implantation. PMID:25054631
Bio-inspired micro-fluidic angular-rate sensor for vestibular prostheses.
Andreou, Charalambos M; Pahitas, Yiannis; Georgiou, Julius
2014-07-22
This paper presents an alternative approach for angular-rate sensing based on the way that the natural vestibular semicircular canals operate, whereby the inertial mass of a fluid is used to deform a sensing structure upon rotation. The presented gyro has been fabricated in a commercially available MEMS process, which allows for microfluidic channels to be implemented in etched glass layers, which sandwich a bulk-micromachined silicon substrate, containing the sensing structures. Measured results obtained from a proof-of-concept device indicate an angular rate sensitivity of less than 1 °/s, which is similar to that of the natural vestibular system. By avoiding the use of a continually-excited vibrating mass, as is practiced in today's state-of-the-art gyroscopes, an ultra-low power consumption of 300 μW is obtained, thus making it suitable for implantation.
Toroidal high-spin isomers in the nucleus 304120
NASA Astrophysics Data System (ADS)
Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.
2017-05-01
Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from multiparticle-multihole excitations in the toroidal system of 120304184 can lead to high-spin isomeric states, even though the toroidal shape of 120304184 without spin is unstable. Toroidal energy minima without spin may be possible for superheavy nuclei with higher atomic numbers, Z ≳122 , as reported previously [7 A. Staszczak and C. Y. Wong, Acta Phys. Pol. B 40, 753 (2008)].
Toroidal high-spin isomers in the nucleus 120 304
Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.
2017-05-22
Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis withmore » $$I=I_{z}$$. The toroidal high-$K$ isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus $$^{304}{120}_{184}$$. This method consists of three steps: first, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations we apply an additional cranking constraint of a large angular momentum $$I=I_{z}$$ about the symmetry $z$-axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with $$I=I_{z}$$ is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Furthemore, we have theoretically located two toroidal high-spin isomeric states of $$^{304}{120}_{184}$$ with an angular momentum $I$=$$I_z$$=81$$\\hbar$$ (proton 2p-2h, neutron 4p-4h excitation) and $I$=$$I_z$$=208$$\\hbar$$ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations $$Q_{20}=-297.7$$~b and $$Q_{20}=-300.8$$~b with energies 79.2 MeV and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers $$^{304}{120}_{184}(I_z$$=81$$\\hbar$$ and 208$$\\hbar$$) have the maximum density close to the nuclear matter density, 0.16 fm$$^{-3}$$, and a torus major to minor radius aspect ratio $R/d=3.25$. Here, we demonstrate that aligned angular momenta of $$I_z$$=81$$\\hbar$$ and 208$$\\hbar$$ arising from multi-particle-multi-hole excitations in the toroidal system of $$^{304}{120}_{184}$$ can lead to high-spin isomeric states, even though the toroidal shape of $$^{304}120_{184}$$ without spin is unstable. Toroidal energy minima without spin may be possible for superheavy nuclei with higher atomic numbers, $$Z\\gtrsim$$122, as reported previously [A. Staszczak and C. Y. Wong,Acta Phys. Pol. B 40 , 753 (2008)].« less
Large angle solid state position sensitive x-ray detector system
Kurtz, David S.; Ruud, Clay O.
1998-01-01
A method and apparatus for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided.
Chiral Modes at Exceptional Points in Exciton-Polariton Quantum Fluids
NASA Astrophysics Data System (ADS)
Gao, T.; Li, G.; Estrecho, E.; Liew, T. C. H.; Comber-Todd, D.; Nalitov, A.; Steger, M.; West, K.; Pfeiffer, L.; Snoke, D. W.; Kavokin, A. V.; Truscott, A. G.; Ostrovskaya, E. A.
2018-02-01
We demonstrate the generation of chiral modes-vortex flows with fixed handedness in exciton-polariton quantum fluids. The chiral modes arise in the vicinity of exceptional points (non-Hermitian spectral degeneracies) in an optically induced resonator for exciton polaritons. In particular, a vortex is generated by driving two dipole modes of the non-Hermitian ring resonator into degeneracy. Transition through the exceptional point in the space of the system's parameters is enabled by precise manipulation of real and imaginary parts of the closed-wall potential forming the resonator. As the system is driven to the vicinity of the exceptional point, we observe the formation of a vortex state with a fixed orbital angular momentum (topological charge). This method can be extended to generate higher-order orbital angular momentum states through coalescence of multiple non-Hermitian spectral degeneracies. Our Letter demonstrates the possibility of exploiting nontrivial and counterintuitive properties of waves near exceptional points in macroscopic quantum systems.
NASA Astrophysics Data System (ADS)
Tsai, Nan-Chyuan; Sue, Chung-Yang
2010-02-01
Owing to the imposed but undesired accelerations such as quadrature error and cross-axis perturbation, the micro-machined gyroscope would not be unconditionally retained at resonant mode. Once the preset resonance is not sustained, the performance of the micro-gyroscope is accordingly degraded. In this article, a direct model reference adaptive control loop which is integrated with a modified disturbance estimating observer (MDEO) is proposed to guarantee the resonant oscillations at drive mode and counterbalance the undesired disturbance mainly caused by quadrature error and cross-axis perturbation. The parameters of controller are on-line innovated by the dynamic error between the MDEO output and expected response. In addition, Lyapunov stability theory is employed to examine the stability of the closed-loop control system. Finally, the efficacy of numerical evaluation on the exerted time-varying angular rate, which is to be detected and measured by the gyroscope, is verified by intensive simulations.
Pereira, S. Anefalos; Mirazita, M.; Rossi, P.; ...
2010-05-01
Differential cross sections of the reaction γd → K +Σ –(p) have been measured with the CLAS detector at Jefferson Lab using incident photons with energies between 1.1 and 3.6 GeV. This is the first complete set of strangeness photoproduction data on the neutron covering a broad angular range. At energies close to threshold and up to E γ ~ 1.8 GeV, the shape of the angular distribution is suggestive of the presence of s -channel production mechanisms. For E γ > 1.8 GeV, a clear forward peak appears and becomes more prominent as the photon energy increases, suggesting contributionsmore » from t-channel production mechanisms. Furthermore, these data can be used to constrain future analysis of this reaction.« less
Statistical theory of correlations in random packings of hard particles.
Jin, Yuliang; Puckett, James G; Makse, Hernán A
2014-05-01
A random packing of hard particles represents a fundamental model for granular matter. Despite its importance, analytical modeling of random packings remains difficult due to the existence of strong correlations which preclude the development of a simple theory. Here, we take inspiration from liquid theories for the n-particle angular correlation function to develop a formalism of random packings of hard particles from the bottom up. A progressive expansion into a shell of particles converges in the large layer limit under a Kirkwood-like approximation of higher-order correlations. We apply the formalism to hard disks and predict the density of two-dimensional random close packing (RCP), ϕ(rcp) = 0.85 ± 0.01, and random loose packing (RLP), ϕ(rlp) = 0.67 ± 0.01. Our theory also predicts a phase diagram and angular correlation functions that are in good agreement with experimental and numerical data.
The dynamics of spin stabilized spacecraft with movable appendages, part 1
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Sellappan, R.
1975-01-01
The motion and stability of spin stabilized spacecraft with movable external appendages are treated both analytically and numerically. The two basic types of appendages considered are: (1) a telescoping type of varying length and (2) a hinged type of fixed length whose orientation with respect to the main part of the spacecraft can vary. Two classes of telescoping appendages are considered: (a) where an end mass is mounted at the end of an (assumed) massless boom; and (b) where the appendage is assumed to consist of a uniformly distributed homogeneous mass throughout its length. For the telescoping system Eulerian equations of motion are developed. During all deployment sequences it is assumed that the transverse component of angular momentum is much smaller than the component along the major spin axis. Closed form analytical solutions for the time response of the transverse components of angular velocities are obtained when the spacecraft hub has a nearly spherical mass distribution.
Design and Application of Automatic Falling Device for Different Brands of Goods
NASA Astrophysics Data System (ADS)
Yang, Xudong; Ge, Qingkuan; Zuo, Ping; Peng, Tao; Dong, Weifu
2017-12-01
The Goods-Falling device is an important device in the intelligent sorting goods sorting system, which is responsible for the temporary storage and counting of the goods, and the function of putting the goods on the conveyor belt according to certain precision requirements. According to the present situation analysis and actual demand of the domestic goods sorting equipment, a vertical type Goods - Falling Device is designed and the simulation model of the device is established. The dynamic characteristics such as the angular error of the opening and closing mechanism are carried out by ADAMS software. The simulation results show that the maximum angular error is 0.016rad. Through the test of the device, the goods falling speed is 7031/hour, the good of the falling position error within 2mm, meet the crawl accuracy requirements of the palletizing robot.
Black hole solutions in d = 5 Chern-Simons gravity
NASA Astrophysics Data System (ADS)
Brihaye, Yves; Radu, Eugen
2013-11-01
The five dimensional Einstein-Gauss-Bonnet gravity with a negative cosmological constant becomes, for a special value of the Gauss-Bonnet coupling constant, a Chern-Simons (CS) theory of gravity. In this work we discuss the properties of several different types of black object solutions of this model. Special attention is paid to the case of spinning black holes with equal-magnitude angular momenta which posses a regular horizon of spherical topology. Closed form solutions are obtained in the small angular momentum limit. Nonperturbative solutions are constructed by solving numerically the equations of the model. Apart from that, new exact solutions describing static squashed black holes and black strings are also discussed. The action and global charges of all configurations studied in this work are obtained by using the quasilocal formalism with boundary counterterms generalized for the case of a d = 5 CS theory.
Hubble Space Telescope Fine Guidance Sensor interferometric observations of the core of 30 doradus
NASA Technical Reports Server (NTRS)
Lattanzi, M. G.; Hershey, J. L.; Burg, R.; Taff, L. G.; Holfeltz, S. T.; Bucciarelli, B.; Evans, I. N.; Gilmozzi, R.; Pringle, J.; Walborn, N. R.
1994-01-01
We present the results of the first high angular resolution observations taken with a Fine Guidance Sensor (FGS) aboard the Hubble Space Telescope (HST) of a star cluster embedded in very bright background. The strong and complex background around the R136 cluster in the 30 Dor nebula does not prevent the FGS from achieving performance close to its angular resolution limit of approximately 0.015 sec per axis with reliable photometry. These FGS observations establish that the central object in R136a is a triple star with the third component delta V = 1.1 mag fainter than the primary star al approximately 0.08 sec way. We estimate from the grid of models of Maeder (1990) that the present mass of al is between 30 and 80 solar masses, with the main-sequence progenitor between 60 and 120 solar masses.
Four-parameter model for polarization-resolved rough-surface BRDF.
Renhorn, Ingmar G E; Hallberg, Tomas; Bergström, David; Boreman, Glenn D
2011-01-17
A modeling procedure is demonstrated, which allows representation of polarization-resolved BRDF data using only four parameters: the real and imaginary parts of an effective refractive index with an added parameter taking grazing incidence absorption into account and an angular-scattering parameter determined from the BRDF measurement of a chosen angle of incidence, preferably close to normal incidence. These parameters allow accurate predictions of s- and p-polarized BRDF for a painted rough surface, over three decades of variation in BRDF magnitude. To characterize any particular surface of interest, the measurements required to determine these four parameters are the directional hemispherical reflectance (DHR) for s- and p-polarized input radiation and the BRDF at a selected angle of incidence. The DHR data describes the angular and polarization dependence, as well as providing the overall normalization constraint. The resulting model conserves energy and fulfills the reciprocity criteria.
The Rolling Can Investigation: Towards an Explanation
ERIC Educational Resources Information Center
Ireson, Gren; Twidle, John
2005-01-01
This paper presents a context lead approach to rotational dynamics. By using nothing more than two cans of cola the basic notions of linear velocity, angular velocity, moments of inertia and conservation of energy can be explored. The approach can be used equally well as both a demonstration or an investigative assignment. The same starting point…
Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing
NASA Astrophysics Data System (ADS)
Tang, Grace; Earl, Matthew A.; Yu, Cedric X.
2009-11-01
Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc™ deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to <=± 5°. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered with a different dose rate, extra mode-up time (xMOT) was needed between the transitions of the successive sectors during delivery. On average, the delivery times of the CDR plans were approximately less than 1 min longer than the treatment times of the VDR plans, with an average of about 0.33 min of xMOT per sector transition. The results have shown that VDR may not be necessary for single-arc IMAT. Using variable angular spacing, VDR RapidArc plans can be implemented into the clinics that are not equipped with the new VDR-enabled machines without compromising the plan quality or treatment efficiency. With a prospective optimization approach using variable angular spacing, CDR delivery times can be further minimized while maintaining the high delivery efficiency of single-arc IMAT treatment.
MANDIBULAR MORPHOMETRY APPLIED TO ANESTHETIC BLOCKAGE IN THE MANED WOLF (CHRYSOCYON BRACHYURUS).
de Souza Junior, Paulo; de Moraes, Flavio Machado; de Carvalho, Natan da Cruz; Canelo, Evandro Alves; Thiesen, Roberto; Santos, André Luiz Quagliatto
2016-03-01
Chrysocyon brachyurus (maned wolf) is the biggest South American canid and has a high frequency of dental injuries, both in the wild and in captivity. Thus, veterinary procedures are necessary to preserve the feeding capacity of hundreds of captive specimens worldwide. The aim of this study was to investigate the mandibular morphometry of the maned wolf with emphasis on the establishment of anatomic references for anesthetic block of the inferior alveolar and mental nerves. Therefore, 16 measurements in 22 mandibles of C. brachyurus adults were taken. For extraoral block of the inferior alveolar nerve at the level of the mandibular foramen, the needle should be advanced close to the medial face of the mandibular ramus for 11.4 mm perpendicular to the palpable concavity. In another extraoral approach, the needle may be introduced for 30.4 mm from the angular process at a 20-25° angle to the ventral margin. For blocking only the mental nerve, the needle should be inserted for 10 mm from ventral border, close to the labial surface of the mandibular body, at the level of the lower first premolar. The mandibular foramen showed similar position, size, and symmetry in the maned wolf specimens examined. Comparison of the data observed here with those available for other carnivores indicates the need to determine these anatomic references specifically for each species.
Cassini at Saturn Proximal Orbits - Attitude Control Challenges
NASA Technical Reports Server (NTRS)
Burk, Thomas A.
2013-01-01
The Cassini mission at Saturn will come to an end in the spring and summer of 2017 with a series of 22 orbits that will dip inside the rings of Saturn. These are called proximal orbits and will conclude with spacecraft disposal into the atmosphere of the ringed world on September 15, 2017. These unique orbits that cross the ring plane only a few thousand kilometers above the cloud tops of the planet present new attitude control challenges for the Cassini operations team. Crossing the ring plane so close to the inner edge of the rings means that the Cassini orientation during the crossing will be tailored to protect the sensitive electronics bus of the spacecraft. This orientation will put the sun sensors at some extra risk so this paper discusses how the team prepares for dust hazards. Periapsis is so close to the planet that spacecraft controllability with RCS thrusters needs to be evaluated because of the predicted atmospheric torque near closest approach to Saturn. Radiation during the ring plane crossings will likely trigger single event transients in some attitude control sensors. This paper discusses how the attitude control team deals with radiation hazards. The angular size and unique geometry of the rings and Saturn near periapsis means that star identification will be interrupted and this paper discusses how the safe mode attitude is selected to best deal with these large bright bodies during the proximal orbits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wenkun; Zhang, Hanming; Li, Lei
2016-08-15
X-ray computed tomography (CT) is a powerful and common inspection technique used for the industrial non-destructive testing. However, large-sized and heavily absorbing objects cause the formation of artifacts because of either the lack of specimen penetration in specific directions or the acquisition of data from only a limited angular range of views. Although the sparse optimization-based methods, such as the total variation (TV) minimization method, can suppress artifacts to some extent, reconstructing the images such that they converge to accurate values remains difficult because of the deficiency in continuous angular data and inconsistency in the projections. To address this problem,more » we use the idea of regional enhancement of the true values and suppression of the illusory artifacts outside the region to develop an efficient iterative algorithm. This algorithm is based on the combination of regional enhancement of the true values and TV minimization for the limited angular reconstruction. In this algorithm, the segmentation approach is introduced to distinguish the regions of different image knowledge and generate the support mask of the image. A new regularization term, which contains the support knowledge to enhance the true values of the image, is incorporated into the objective function. Then, the proposed optimization model is solved by variable splitting and the alternating direction method efficiently. A compensation approach is also designed to extract useful information from the initial projections and thus reduce false segmentation result and correct the segmentation support and the segmented image. The results obtained from comparing both simulation studies and real CT data set reconstructions indicate that the proposed algorithm generates a more accurate image than do the other reconstruction methods. The experimental results show that this algorithm can produce high-quality reconstructed images for the limited angular reconstruction and suppress the illusory artifacts caused by the deficiency in valid data.« less
NASA Astrophysics Data System (ADS)
Zhang, Wenkun; Zhang, Hanming; Li, Lei; Wang, Linyuan; Cai, Ailong; Li, Zhongguo; Yan, Bin
2016-08-01
X-ray computed tomography (CT) is a powerful and common inspection technique used for the industrial non-destructive testing. However, large-sized and heavily absorbing objects cause the formation of artifacts because of either the lack of specimen penetration in specific directions or the acquisition of data from only a limited angular range of views. Although the sparse optimization-based methods, such as the total variation (TV) minimization method, can suppress artifacts to some extent, reconstructing the images such that they converge to accurate values remains difficult because of the deficiency in continuous angular data and inconsistency in the projections. To address this problem, we use the idea of regional enhancement of the true values and suppression of the illusory artifacts outside the region to develop an efficient iterative algorithm. This algorithm is based on the combination of regional enhancement of the true values and TV minimization for the limited angular reconstruction. In this algorithm, the segmentation approach is introduced to distinguish the regions of different image knowledge and generate the support mask of the image. A new regularization term, which contains the support knowledge to enhance the true values of the image, is incorporated into the objective function. Then, the proposed optimization model is solved by variable splitting and the alternating direction method efficiently. A compensation approach is also designed to extract useful information from the initial projections and thus reduce false segmentation result and correct the segmentation support and the segmented image. The results obtained from comparing both simulation studies and real CT data set reconstructions indicate that the proposed algorithm generates a more accurate image than do the other reconstruction methods. The experimental results show that this algorithm can produce high-quality reconstructed images for the limited angular reconstruction and suppress the illusory artifacts caused by the deficiency in valid data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geltman, S.
Recent measurements on CO{sub 2}-laser-assisted electron-atom collisions have shown large inconsistencies with the Kroll-Watson formula for small-angle scattering. We have carried out a detailed study to compare the predictions of Kroll-Watson theory (for both single and multimode fields) with those of conventional perturbation theory for stimulated free-free transitions. It is found that for {ital E}{sub 0}/2{omega}{sup 2}{lt}1, where perturbation theory is valid, there are large differences with the Kroll-Watson theory. Comparisons of experimental variations with respect to scattering angle and electron energy show much better agreement with perturbation theory than with Kroll-Watson theory. A study of the angular variations inmore » perturbation theory shows that use of the {open_quote}{open_quote}outgoing{close_quote}{close_quote} wave final state gives much better agreement with experiment than does the {open_quote}{open_quote}ingoing{close_quote}{close_quote} wave final state, which is different from the choice made in early bremsstrahlung theory. {copyright} {ital 1996 The American Physical Society.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stacey, Weston M.; Schumann, Matthew T.
A more detailed calculation strategy for the evaluation of ion orbit loss of thermalized plasma ions in the edge of tokamaks is presented. In both this and previous papers, the direct loss of particles from internal flux surfaces is calculated from the conservation of canonical angular momentum, energy, and magnetic moment. The previous result that almost all of the ion energy and particle fluxes crossing the last closed flux surface are in the form of ion orbit fluxes is confirmed, and the new result that the distributions of these fluxes crossing the last closed flux surface into the scrape-off layermore » are very strongly peaked about the outboard midplane is demonstrated. Previous results of a preferential loss of counter current particles leading to a co-current intrinsic rotation peaking just inside of the last closed flux surface are confirmed. Various physical details are discussed.« less
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
1995-09-01
We propose a model of gamma-ray bursts (GRBs) based on close Galactic neutron stars with accretion disks. We outline a simple mechanism of unsteady plasma ejections during episodic accretion events. The relative kinetic energy of ejected blobs can be converted into gamma-rays by internal shocks. The beaming of gamma-ray emission can be responsible for the observed isotropic angular distribution of GRBs.
Cooperative Security in the Pacific Basin. The 1988 Pacific Symposium,
1990-01-01
show the same pattern which Taiwan established and Singapore is following closely. Among the four Asian NICs Hong Kong led the pattern early, followed...government, have become a driving force for the tri- angular trade pattern among the United States, Japan, and the East Asian countries. JAPANESE DIRECT...Division of roles between the United States and Japan in East Asia has unintentionally effected a triangular trade pattern among the United States, Japan
Deformation dependence of proton decay rates and angular distributions in a time-dependent approach
NASA Astrophysics Data System (ADS)
Carjan, N.; Talou, P.; Strottman, D.
1998-12-01
A new, time-dependent, approach to proton decay from axially symmetric deformed nuclei is presented. The two-dimensional time-dependent Schrödinger equation for the interaction between the emitted proton and the rest of the nucleus is solved numerically for well defined initial quasi-stationary proton states. Applied to the hypothetical proton emission from excited states in deformed nuclei of 208Pb, this approach shows that the problem cannot be reduced to one dimension. There are in general more than one directions of emission with wide distributions around them, determined mainly by the quantum numbers of the initial wave function rather than by the potential landscape. The distribution of the "residual" angular momentum and its variation in time play a major role in the determination of the decay rate. In a couple of cases, no exponential decay was found during the calculated time evolution (2×10-21 sec) although more than half of the wave function escaped during that time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golub, R.; Rohm, Ryan M.; Swank, C. M.
2011-02-15
There is an extensive literature on magnetic-gradient-induced spin relaxation. Cates, Schaefer, and Happer, in a seminal publication, have solved the problem in the regime where diffusion theory (the Torrey equation) is applicable using an expansion of the density matrix in diffusion equation eigenfunctions and angular momentum tensors. McGregor has solved the problem in the same regime using a slightly more general formulation using the Redfield theory formulated in terms of the autocorrelation function of the fluctuating field seen by the spins and calculating the correlation functions using the diffusion-theory Green's function. The results of both calculations were shown to agreemore » for a special case. In the present work, we show that the eigenfunction expansion of the Torrey equation yields the expansion of the Green's function for the diffusion equation, thus showing the identity of this approach with that of the Redfield theory. The general solution can also be obtained directly from the Torrey equation for the density matrix. Thus, the physical content of the Redfield and Torrey approaches are identical. We then introduce a more general expression for the position autocorrelation function of particles moving in a closed cell, extending the range of applicability of the theory.« less
NASA Astrophysics Data System (ADS)
Hapka, Michał; Chałasiński, Grzegorz; Kłos, Jacek; Żuchowski, Piotr S.
2013-07-01
We present new interaction potential curves, calculated from first-principles, for the He(3S, 1s12s1)⋯H2 and He(3S)⋯Ar systems, relevant in recent Penning ionization experiments of Henson et al. [Science 338, 234 (2012), 10.1126/science.1229141]. Two different approaches were applied: supermolecular using coupled cluster (CC) theory and perturbational within symmetry-adapted perturbation theory (SAPT). Both methods gave consistent results, and the potentials were used to study the elastic scattering and determine the positions of shape resonances for low kinetic energy (up to 1 meV). We found a good agreement with the experiment. In addition, we investigated two other dimers composed of metastable Ne (3P, 2p53s1) and ground state He and Ar atoms. For the Ne(3P)⋯He system, a good agreement between CC and SAPT approaches was obtained. The Ne(3P)⋯Ar dimer was described only with SAPT, as CC gave divergent results. Ne* systems exhibit extremely small electronic orbital angular momentum anisotropy of the potentials. We attribute this effect to screening of an open 2p shell by a singly occupied 3s shell.
Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation
NASA Astrophysics Data System (ADS)
Alton, G. D.; Bilheux, H.
2004-05-01
Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j+ext, and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j+ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects.
Beller, Ebba; Klopp, David; Göttler, Jens; Kaesmacher, Johannes; Zimmer, Claus; Kirschke, Jan S; Prothmann, Sascha
2016-01-01
Stent-assisted coil embolization (SACE) plays an important role in the treatment of intracranial aneurysms. The purpose of this study was to investigate geometrical changes caused by closed-cell design stents in bifurcation and sidewall aneurysms. 31 patients with 34 aneurysms underwent SACE with closed-cell design stents. Inflow angle α, determined by aneurysm neck and afferent vessel, and angle between afferent and efferent vessel close to (δ1), respectively, more remote from the aneurysm neck (δ2) were graphically determined in 2D angiography projections. Stent assisted coiling resulted in a significant increase of all three angles from a mean value (±SEM) of α = 119° (±6.5°) pretreatment to 130° (±6.6°) posttreatment (P ≤ .001), δ1 = 129° (±6.4°) to 139° (±6.1°), (P ≤ .001) and δ2 = 115° (±8.4°) to 126° (±7.5°), (P ≤ .01). Angular change of δ1 in AcomA aneurysms was significant greater compared to sidewall aneurysms (26°±4.9° versus 8°± 2.3°, P ≤ .05). The initial angle of δ1 and δ2 revealed a significantly inverse relationship to the angle increase (δ1: r = -0.41, P ≤ .05 and δ2: r = -0.47, P ≤ .01). Moreover, angle δ1 was significantly higher in unruptured compared to ruptured aneurysms (135°±7.1° versus 103°±10.8°, P ≤ .05). Stent deployment modulates the geometry of the aneurysm-vessel complex, which may lead to favorable hemodynamic changes more similar to unruptured than to ruptured aneurysms. Our findings also suggest that the more acute-angled aneurysm-vessel anatomy, the larger the angular change. Further studies are needed to investigate whether these changes improve the clinical outcome.
Beller, Ebba; Klopp, David; Göttler, Jens; Kaesmacher, Johannes; Zimmer, Claus; Kirschke, Jan S.; Prothmann, Sascha
2016-01-01
Background Stent-assisted coil embolization (SACE) plays an important role in the treatment of intracranial aneurysms. The purpose of this study was to investigate geometrical changes caused by closed-cell design stents in bifurcation and sidewall aneurysms. Methods 31 patients with 34 aneurysms underwent SACE with closed-cell design stents. Inflow angle α, determined by aneurysm neck and afferent vessel, and angle between afferent and efferent vessel close to (δ1), respectively, more remote from the aneurysm neck (δ2) were graphically determined in 2D angiography projections. Results Stent assisted coiling resulted in a significant increase of all three angles from a mean value (±SEM) of α = 119° (±6.5°) pretreatment to 130° (±6.6°) posttreatment (P ≤ .001), δ1 = 129° (±6.4°) to 139° (±6.1°), (P ≤ .001) and δ2 = 115° (±8.4°) to 126° (±7.5°), (P ≤ .01). Angular change of δ1 in AcomA aneurysms was significant greater compared to sidewall aneurysms (26°±4.9° versus 8°± 2.3°, P ≤ .05). The initial angle of δ1 and δ2 revealed a significantly inverse relationship to the angle increase (δ1: r = -0.41, P ≤ .05 and δ2: r = -0.47, P ≤ .01). Moreover, angle δ1 was significantly higher in unruptured compared to ruptured aneurysms (135°±7.1° versus 103°±10.8°, P ≤ .05). Conclusion Stent deployment modulates the geometry of the aneurysm-vessel complex, which may lead to favorable hemodynamic changes more similar to unruptured than to ruptured aneurysms. Our findings also suggest that the more acute-angled aneurysm-vessel anatomy, the larger the angular change. Further studies are needed to investigate whether these changes improve the clinical outcome. PMID:27073908
SOFIA Observations of S106: Dynamics of the Warm Gas
NASA Technical Reports Server (NTRS)
Simon, R.; Schneider, N.; Stutzki, J.; Gusten, R.; Graf, U. U.; Hartogh, P.; Guan, X.; Staguhn, J. G.; Benford, D. J.
2012-01-01
Context The H II region/PDR/molecular cloud complex S106 is excited by a single O-star. The full extent of the warm and dense gas close to the star has not been mapped in spectrally resolved high-J CO or [C II] lines, so the kinematics of the warm. partially ionized gas, are unknown. Whether the prominent dark lane bisecting the hourglass-shaped nebula is due solely to the shadow cast by a small disk around the exciting star or also to extinction in high column foreground gas was an open question until now. Aims. To disentangle the morphology and kinematics of warm neutral and ionized gas close to the star, study their relation to the bulk of the molecular gas. and to investigate the nature of the dark lane. Methods. We use the heterodyne receiver GREAT on board SOFIA to observe velocity resolved spectral lines of [C II] and CO 11 yields 10 in comparison with so far unpublished submm continuum data at 350 micron (8HARC-Il) and complementary molecular line data. Results. The high angular and spectral resolution observations show a very complex morphology and kinematics of the inner S106 region, with many different components at different excitation conditions contributing to the observed emission. The [C II] lines are found to be bright and very broad. tracing high velocity gas close to the interface of molecular cloud and H II region. CO 11 yields 10 emission is more confined.. both spatially and in velocity, to the immediate surroundings of S 106 IR showing the presence of warm, high density (clumpy) gas. Our high angular resolution submm continuum observations rule out the scenario where the dark lane separating the two lobes is due solely to the shadow cast by a small disk close to the star. The lane is clearly seen also as warm, high column density gas at the boundary of the molecular cloud and H II region.
LY Aurigua: A mass-transferring O-type contact binary with a tertiary stellar companion
NASA Astrophysics Data System (ADS)
Zhao, Ergang; Qian, Shengbang; Li, Linjia; He, Jiajia; Liu, Liang; Wang, Jingjing; Zhang, Jia
2014-01-01
LY Aur is a contact massive close binary with a period of a little more than four days. The first O-C analysis of this early-type binary presented in this paper suggests that the period of the system is increasing continuously at a rate of dP/dt=+7.2×10-7 days/year, while a cyclic oscillation with the period of 12.5 years is obvious. The long-term increasing can be explained by mass transfer from the less massive companion to the more one on the nuclear time-scale of less massive body, which suggests that the contact configuration will be broken and this binary will evolve into a semi-detached system. The periodic oscillation may be the consequence of the light-travel time effect of the third body, whose mass is no less than 3.4 M⊙. It is expected that the third body may play an important role for the origin and evolution of the system by removing angular momentum from the central system, making the eclipsing pairs to have a low angular momentum, while initially it may have had a longer orbital period, with larger angular momentum. The original system may have evolved into the present contact configuration via a case A mass transfer.
Angular momentum budget of the radiational S1 ocean tide
NASA Astrophysics Data System (ADS)
Schindelegger, Michael; Dobslaw, Henryk; Poropat, Lea; Salstein, David; Böhm, Johannes
2016-04-01
The balance of diurnal S1 oceanic angular momentum (OAM) variations through torques at the sea surface and the bottom topography is validated using both a barotropic and a baroclinic numerical tide model. This analysis discloses the extent to which atmosphere-driven S1 forward simulations are reliable for use in studies of high-frequency polar motion and changes in length-of-day. Viscous and dissipative torques associated with wind stress, bottom friction, as well as internal tidal energy conversion are shown to be small, and they are overshadowed by gravitational and pressure-related interaction forces. In particular, the zonal OAM variability of S1 is almost completely balanced by the water pressure torque on the local bathymetry, whereas in the prograde equatorial case also the air pressure torque on the seafloor as well as ellipsoidal contributions from the non-spherical atmosphere and solid Earth must be taken into account. Overall, the OAM budget is well closed in both the axial and the equatorial directions, thus allowing for an identification of the main diurnal angular momentum sinks in the ocean. The physical interaction forces are found to be largest at shelf breaks and continental slopes in low latitudes, with the most dominant contribution coming from the Indonesian archipelago.
Angular momentum transfer in primordial discs and the rotation of the first stars
NASA Astrophysics Data System (ADS)
Hirano, Shingo; Bromm, Volker
2018-05-01
We investigate the rotation velocity of the first stars by modelling the angular momentum transfer in the primordial accretion disc. Assessing the impact of magnetic braking, we consider the transition in angular momentum transport mode at the Alfvén radius, from the dynamically dominated free-fall accretion to the magnetically dominated solid-body one. The accreting protostar at the centre of the primordial star-forming cloud rotates with close to breakup speed in the case without magnetic fields. Considering a physically motivated model for small-scale turbulent dynamo amplification, we find that stellar rotation speed quickly declines if a large fraction of the initial turbulent energy is converted to magnetic energy (≳ 0.14). Alternatively, if the dynamo process were inefficient, for amplification due to flux freezing, stars would become slow rotators if the pre-galactic magnetic field strength is above a critical value, ≃10-8.2 G, evaluated at a scale of nH = 1 cm-3, which is significantly higher than plausible cosmological seed values (˜10-15 G). Because of the rapid decline of the stellar rotational speed over a narrow range in model parameters, the first stars encounter a bimodal fate: rapid rotation at almost the breakup level, or the near absence of any rotation.
Capture of planetesimals into a circumterrestrial swarm
NASA Technical Reports Server (NTRS)
Weidenschilling, S. J.
1984-01-01
The lunar origin model considered involves processing of protolunar material through a circumterrestrial swarm of particles. Once such a swarm has formed, it can gain mass by capturing infalling planetesimals and ejecta from giant impacts on the Earth, although the angular momentum supply from these sources remains a problem. Examined is the first stage of formation of a geocentric swarm by capture of planetesimals from initialy heliocentric orbits. The only plausible capture mechanism that is not dependent on very low approach velocities is the mutual collision of planetesimals passing within Earth's sphere of influence. This capture scenario was tested directly by many body numerical integration of planetesimal orbits in near Earth space. Results agree that the systematic contribution of angular momentum is insufficient to maintain an orbiting swarm under heavy bombardment. Thus, a circumterrestrial swarm can be formed rather easily, but is hard to sustain because the mean net angular momentum of a many body swarm is small.
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Pratiwi, B. N.
2016-04-01
D-dimensional Dirac equation of q-deformed modified Poschl-Teller plus Manning Rosen non-central potential was solved using supersymmetric quantum mechanics (SUSY QM). The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial part of D dimensional Dirac equation and the angular quantum numbers were obtained from angular part of D dimensional Dirac equation. The SUSY operators was used to generate the D dimensional relativistic wave functions both for radial and angular parts. In the non-relativistic limit, the relativistic energy equation was reduced to the non-relativistic energy. In the classical limit, the partition function of vibrational, the specific heat of vibrational, and the mean energy of vibrational of some diatomic molecules were calculated from the equation of non-relativistic energy with the help of error function and Mat-lab 2011.
Design and Fabrication of Full Wheatstone-Bridge-Based Angular GMR Sensors.
Yan, Shaohua; Cao, Zhiqiang; Guo, Zongxia; Zheng, Zhenyi; Cao, Anni; Qi, Yue; Leng, Qunwen; Zhao, Weisheng
2018-06-05
Since the discovery of the giant magnetoresistive (GMR) effect, GMR sensors have gained much attention in last decades due to their high sensitivity, small size, and low cost. The full Wheatstone-bridge-based GMR sensor is most useful in terms of the application point of view. However, its manufacturing process is usually complex. In this paper, we present an efficient and concise approach to fabricate a full Wheatstone-bridge-based angular GMR sensor by depositing one GMR film stack, utilizing simple patterned processes, and a concise post-annealing procedure based on a special layout. The angular GMR sensor is of good linear performance and achieves a sensitivity of 0.112 mV/V/Oe at the annealing temperature of 260 °C in the magnetic field range from -50 to +50 Oe. This work provides a design and method for GMR-sensor manufacturing that is easy for implementation and suitable for mass production.
Method for spinning up a three-axis controlled spacecraft
NASA Technical Reports Server (NTRS)
Vorlicek, Preston L. (Inventor)
1988-01-01
A three-axis controlled spacecraft (1), typically a satellite, is spun up about its roll axis (20) prior to firing a motor (2), i.e., a perigee kick motor, to achieve the requisite degree of angular momentum stiffness. Thrusters (21) for imparting rotation about the roll axis (20) are activated in open-loop fashion, typically at less than full duty cycle. Cross-axis torques induced by this rotational motion are compensated for by means of closed control loops for each of the pitch and yaw axes (30, 40, respectively). Each closed control loop combines a prebias torque (72) with torques (75, 74) representative of position and rate feedback information, respectively. A deadband (52) within each closed control loop can be widened during the spinup, to conserve fuel. Position feedback information (75) in each of the control loops is disabled upon saturation of the gyroscope associated with the roll axis (20).
Observation of the Topological Change Associated with the Dynamical Monodromy
NASA Astrophysics Data System (ADS)
Salmon, Daniel; Nerem, Matthew; Aubin, Seth; Delos, John
2017-04-01
Classical mechanics is an old theory and new phenomena do not often appear. A recently predicted phenomenon is called ``Dynamical Monodromy.'' Monodromy is the study of the behavior of a system as it evolves ``once around a closed circuit''. Systems that do not return to their original state after forming a closed circuit in some space are said to exhibit ``nontrivial monodromy.'' One such system is a collection of non-interacting particles moving in a ``champagne bottle'' potential. A loop of trajectories of this system exhibits a topological change when each of the particles traverse a monodromy circuit in Energy-Angular Momentum space (any closed path that encloses the singular point at the origin). This system has been realized using a rigid spherical pendulum, with a permanent magnet at its end. Magnetic fields generated by coils are used to create the champagne-bottle potential, as well as drive the pendulum through the monodromy circuit.
Stellar Angular Momentum Distributions and Preferential Radial Migration
NASA Astrophysics Data System (ADS)
Wyse, Rosemary; Daniel, Kathryne J.
2018-04-01
I will present some results from our recent investigations into the efficiency of radial migration in stellar disks of differing angular momentum distributions, within a given adopted 2D spiral disk potential. We apply to our models an analytic criterion that determines whether or not individual stars are in orbits that could lead to radial migration around the corotation resonance. We couch our results in terms of the local stellar velocity dispersion and find that the fraction of stars that could migrate radially decreases as the velocity dispersion increases. I will discuss implications and comparisons with the results of other approaches.
Electromagnetic wave propagating along a space curve
NASA Astrophysics Data System (ADS)
Lai, Meng-Yun; Wang, Yong-Long; Liang, Guo-Hua; Wang, Fan; Zong, Hong-Shi
2018-03-01
By using the thin-layer approach, we derive the effective equation for the electromagnetic wave propagating along a space curve. We find intrinsic spin-orbit, extrinsic spin-orbit, and extrinsic orbital angular-momentum and intrinsic orbital angular-momentum couplings induced by torsion, which can lead to geometric phase, spin, and orbital Hall effects. And we show the helicity inversion induced by curvature that can convert a right-handed circularly polarized electromagnetic wave into a left-handed polarized one, vice versa. Finally, we demonstrate that the gauge invariance of the effective dynamics is protected by the geometrically induced gauge potential.
The angular difference function and its application to image registration.
Keller, Yosi; Shkolnisky, Yoel; Averbuch, Amir
2005-06-01
The estimation of large motions without prior knowledge is an important problem in image registration. In this paper, we present the angular difference function (ADF) and demonstrate its applicability to rotation estimation. The ADF of two functions is defined as the integral of their spectral difference along the radial direction. It is efficiently computed using the pseudopolar Fourier transform, which computes the discrete Fourier transform of an image on a near spherical grid. Unlike other Fourier-based registration schemes, the suggested approach does not require any interpolation. Thus, it is more accurate and significantly faster.
Neutron production at 0° from the 40Ca+H reaction at Elab=357A and 565A MeV
NASA Astrophysics Data System (ADS)
Tuvè, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T. G.; Insolia, A.; Knott, C. N.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Reito, S.; Romanski, J.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.
1997-08-01
Neutrons produced in the 40Ca+H reaction at Elab=357A and 565A MeV have been detected using a three-module version of the multifunctional neutron spectrometer MUFFINS. The detector covered a narrow angular range around the beam in the forward direction (0°-3.2°). Semi-inclusive neutron production cross sections, at the two energies, are reported together with neutron energy spectra, angular, rapidity, and transverse momentum distributions. Comparison with a Boltzmann-Nordheim-Vlasov approach + phase space coalescence model is discussed.
Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints
NASA Astrophysics Data System (ADS)
Shahrooei, Abolfazl; Kazemi, Mohammad Hosein
2018-04-01
In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.
NASA Technical Reports Server (NTRS)
Ji, H.; Burin, M.; Schartman, E.; Goodman, J.; Liu, W.
2006-01-01
Two plausible mechanisms have been proposed to explain rapid angular momentum transport during accretion processes in astrophysical disks: nonlinear hydrodynamic instabilities and magnetorotational instability (MRI). A laboratory experiment in a short Taylor-Couette flow geometry has been constructed in Princeton to study both mechanisms, with novel features for better controls of the boundary-driven secondary flows (Ekman circulation). Initial results on hydrodynamic stability have shown negligible angular momentum transport in Keplerian-like flows with Reynolds numbers approaching one million, casting strong doubt on the viability of nonlinear hydrodynamic instability as a source for accretion disk turbulence.
Nearly extremal apparent horizons in simulations of merging black holes
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey; Scheel, Mark A.; Owen, Robert; Giesler, Matthew; Katebi, Reza; Szilágyi, Béla; Chu, Tony; Demos, Nicholas; Hemberger, Daniel A.; Kidder, Lawrence E.; Pfeiffer, Harald P.; Afshari, Nousha
2015-03-01
The spin angular momentum S of an isolated Kerr black hole is bounded by the surface area A of its apparent horizon: 8π S≤slant A, with equality for extremal black holes. In this paper, we explore the extremality of individual and common apparent horizons for merging, rapidly spinning binary black holes. We consider simulations of merging black holes with equal masses M and initial spin angular momenta aligned with the orbital angular momentum, including new simulations with spin magnitudes up to S/{{M}2}=0.994. We measure the area and (using approximate Killing vectors) the spin on the individual and common apparent horizons, finding that the inequality 8π S\\lt A is satisfied in all cases but is very close to equality on the common apparent horizon at the instant it first appears. We also evaluate the Booth-Fairhurst extremality, whose value for a given apparent horizon depends on the scaling of the horizon’s null normal vectors. In particular, we introduce a gauge-invariant lower bound on the extremality by computing the smallest value that Booth and Fairhurst’s extremality parameter can take for any scaling. Using this lower bound, we conclude that the common horizons are at least moderately close to extremal just after they appear. Finally, following Lovelace et al (2008 Phys. Rev. D 78 084017), we construct quasiequilibrium binary-black hole initial data with ‘overspun’ marginally trapped surfaces with 8π S\\gt A. We show that the overspun surfaces are indeed superextremal: our lower bound on their Booth-Fairhurst extremality exceeds unity. However, we confirm that these superextremal surfaces are always surrounded by marginally outer trapped surfaces (i.e., by apparent horizons) with 8π S\\lt A. The extremality lower bound on the enclosing apparent horizon is always less than unity but can exceed the value for an extremal Kerr black hole.
How did the rings of Uranus form?
NASA Astrophysics Data System (ADS)
Griv, E.
2007-08-01
Uranus is encircled by at least ten narrow, dense, and widely separated rings with a typical optical depth ∼ 0.3, the first nine of which (6, 5, 4, ?, ?, ?, , ?, and ? rings as seen going outward from Uranus) were discovered from the ground during observations of the planet's atmosphere in 1977. In this work, a fairly uniform, rapidly and differentially rotating disk of rarely colliding particles (when the frequency of interparticle collisions is much smaller than the local orbital frequency) in a planet- moon system is considered. A moon causes a number of orbital resonant effects in this continuous viscous (through ordinary collisions) disk. In the frame of hydrodynamical theory, the gravitational torques exerted by an exterior moon on particles at an inner Lindblad horizontal resonance and corresponding vertical resonance are estimated. It is shown that the torques are negative at these resonances, so gaps in the disk near each resonance may be created. The latter result can be used to provide a viable clue to solving of the puzzle of narrow, dense, and widely separated rings of Uranus. The model is advocated which suggests that the Uranian ring orbits have a close connection with small moons of the planet interior to the orbit of Miranda, from Cordelia to Mab discovered by VOYAGER 2 imaging observations in 1986. As angular momentum is transferred outward to the moon, material in the close vicinity of the resonances falls to the inner part of the system under study. On the other hand, in a collision disk the angular momentum is steadily concentrated onto a fraction of the mass which is spiraling away. In Uranus' system, this viscous radial spreading of the disk (and associated outward flow of angular momentum) may be terminated by the torque exerted by the moon via the low-order orbital resonance. This work was jointly supported by the Israel Science Foundation, the Binational U.S.-Israel Science Foundation, and the Israeli Ministry of Immigrant Absorption in the framework of the program "KAMEA."
Medical imaging feasibility in body fluids using Markov chains
NASA Astrophysics Data System (ADS)
Kavehrad, M.; Armstrong, A. D.
2017-02-01
A relatively wide field-of-view and high resolution imaging is necessary for navigating the scope within the body, inspecting tissue, diagnosing disease, and guiding surgical interventions. As the large number of modes available in the multimode fibers (MMF) provides higher resolution, MMFs could replace the millimeters-thick bundles of fibers and lenses currently used in endoscopes. However, attributes of body fluids and obscurants such as blood, impose perennial limitations on resolution and reliability of optical imaging inside human body. To design and evaluate optimum imaging techniques that operate under realistic body fluids conditions, a good understanding of the channel (medium) behavior is necessary. In most prior works, Monte-Carlo Ray Tracing (MCRT) algorithm has been used to analyze the channel behavior. This task is quite numerically intensive. The focus of this paper is on investigating the possibility of simplifying this task by a direct extraction of state transition matrices associated with standard Markov modeling from the MCRT computer simulations programs. We show that by tracing a photon's trajectory in the body fluids via a Markov chain model, the angular distribution can be calculated by simple matrix multiplications. We also demonstrate that the new approach produces result that are close to those obtained by MCRT and other known methods. Furthermore, considering the fact that angular, spatial, and temporal distributions of energy are inter-related, mixing time of Monte- Carlo Markov Chain (MCMC) for different types of liquid concentrations is calculated based on Eigen-analysis of the state transition matrix and possibility of imaging in scattering media are investigated. To this end, we have started to characterize the body fluids that reduce the resolution of imaging [1].
Strong disk winds traced throughout outbursts in black-hole X-ray binaries
NASA Astrophysics Data System (ADS)
Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.
2018-02-01
Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.
Strong disk winds traced throughout outbursts in black-hole X-ray binaries.
Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R
2018-02-01
Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.
The geometry of the close environment of SV Piscium as probed by VLTI/MIDI
NASA Astrophysics Data System (ADS)
Klotz, D.; Sacuto, S.; Kerschbaum, F.; Paladini, C.; Olofsson, H.; Hron, J.
2012-05-01
Context. SV Psc is an asymptotic giant branch (AGB) star surrounded by an oxygen-rich dust envelope. The mm-CO line profile of the object's outflow shows a clear double-component structure. Because of the high angular resolution, mid-IR interferometry may give strong constraints on the origin of this composite profile. Aims: The aim of this work is to investigate the morphology of the environment around SV Psc using high-angular resolution interferometry observations in the mid-IR with the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI). Methods: Interferometric data in the N-band taken at different baseline lengths (ranging from 32-64 m) and position angles (73-142°) allow a study of the morphology of the circumstellar environment close to the star. The data are interpreted on the basis of 2-dimensional, chromatic geometrical models using the fitting software tool GEM-FIND developed for this purpose. Results: The results favor two scenarios: (i) the presence of a highly inclined, optically thin, dusty disk surrounding the central star; (ii) the presence of an unresolved binary companion at a separation of 13.7+4.2-4.8 AU and a position angle of 121.8°+15.4°-24.5° NE. The derived orbital period of the binary is 38.1+20.4-22.6 yr. This detection is in good agreement with hydrodynamic simulations showing that a close companion could be responsible for the entrainment of the gas and dust into a circumbinary structure. Based on observations made with ESO telescopes at La Silla Paranal Observatory under program IDs 082.D-0389 and 086.D-0069.
Modeling and Analysis of Micro-Spacecraft Attitude Sensing with Gyrowheel.
Liu, Xiaokun; Zhao, Hui; Yao, Yu; He, Fenghua
2016-08-19
This paper proposes two kinds of approaches of angular rate sensing for micro-spacecraft with a gyrowheel (GW), which can combine attitude sensing with attitude control into one single device to achieve a compact micro-spacecraft design. In this implementation, during the three-dimensional attitude control torques being produced, two-dimensional spacecraft angular rates can be sensed from the signals of the GW sensors, such as the currents of the torque coils, the tilt angles of the rotor, the motor rotation, etc. This paper focuses on the problems of the angular rate sensing with the GW at large tilt angles of the rotor. For this purpose, a novel real-time linearization approach based on Lyapunov's linearization theory is proposed, and a GW linearized measurement model at arbitrary tilt angles of the rotor is derived. Furthermore, by representing the two-dimensional rotor tilt angles and tilt control torques as complex quantities and separating the twice periodic terms about the motor spin speed, the linearized measurement model at smaller tilt angles of the rotor is given and simplified. According to the respective characteristics, the application schemes of the two measurement models are analyzed from the engineering perspective. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed strategy.
Modeling and Analysis of Micro-Spacecraft Attitude Sensing with Gyrowheel
Liu, Xiaokun; Zhao, Hui; Yao, Yu; He, Fenghua
2016-01-01
This paper proposes two kinds of approaches of angular rate sensing for micro-spacecraft with a gyrowheel (GW), which can combine attitude sensing with attitude control into one single device to achieve a compact micro-spacecraft design. In this implementation, during the three-dimensional attitude control torques being produced, two-dimensional spacecraft angular rates can be sensed from the signals of the GW sensors, such as the currents of the torque coils, the tilt angles of the rotor, the motor rotation, etc. This paper focuses on the problems of the angular rate sensing with the GW at large tilt angles of the rotor. For this purpose, a novel real-time linearization approach based on Lyapunov’s linearization theory is proposed, and a GW linearized measurement model at arbitrary tilt angles of the rotor is derived. Furthermore, by representing the two-dimensional rotor tilt angles and tilt control torques as complex quantities and separating the twice periodic terms about the motor spin speed, the linearized measurement model at smaller tilt angles of the rotor is given and simplified. According to the respective characteristics, the application schemes of the two measurement models are analyzed from the engineering perspective. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed strategy. PMID:27548178
Pragmatic mode-sum regularization method for semiclassical black-hole spacetimes
NASA Astrophysics Data System (ADS)
Levi, Adam; Ori, Amos
2015-05-01
Computation of the renormalized stress-energy tensor is the most serious obstacle in studying the dynamical, self-consistent, semiclassical evaporation of a black hole in 4D. The difficulty arises from the delicate regularization procedure for the stress-energy tensor, combined with the fact that in practice the modes of the field need to be computed numerically. We have developed a new method for numerical implementation of the point-splitting regularization in 4D, applicable to the renormalized stress-energy tensor as well as to ⟨ϕ2⟩ren , namely the renormalized ⟨ϕ2⟩. So far we have formulated two variants of this method: t -splitting (aimed for stationary backgrounds) and angular splitting (for spherically symmetric backgrounds). In this paper we introduce our basic approach, and then focus on the t -splitting variant, which is the simplest of the two (deferring the angular-splitting variant to a forthcoming paper). We then use this variant, as a first stage, to calculate ⟨ϕ2⟩ren in Schwarzschild spacetime, for a massless scalar field in the Boulware state. We compare our results to previous ones, obtained by a different method, and find full agreement. We discuss how this approach can be applied (using the angular-splitting variant) to analyze the dynamical self-consistent evaporation of black holes.
Exact wave functions of two-electron quantum rings.
Loos, Pierre-François; Gill, Peter M W
2012-02-24
We demonstrate that the Schrödinger equation for two electrons on a ring, which is the usual paradigm to model quantum rings, is solvable in closed form for particular values of the radius. We show that both polynomial and irrational solutions can be found for any value of the angular momentum and that the singlet and triplet manifolds, which are degenerate, have distinct geometric phases. We also study the nodal structure associated with these two-electron states.
Closed Timelike Curves in (2+1)-AdS Gravity
NASA Astrophysics Data System (ADS)
Valtancoli, P.
We build the (2+1)-AdS gravity generalization of the Gott time machine using a first-order formalism for solving the scattering of point sources. The two-body dynamics is solved by two invariant masses, whose difference is simply related to the total angular momentum of the system. We show how to build a time machine when at least one of the two invariant masses is no more real but acquires an imaginary part.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Michael; Penev, Kaloyan
2014-06-01
Exoplanet searches have discovered a large number of {sup h}ot Jupiters{sup —}high-mass planets orbiting very close to their parent stars in nearly circular orbits. A number of these planets are sufficiently massive and close-in to be significantly affected by tidal dissipation in the parent star, to a degree parameterized by the tidal quality factor Q {sub *}. This process speeds up their star's rotation rate while reducing the planet's semimajor axis. In this paper, we investigate the tidal destruction of hot Jupiters. Because the orbital angular momenta of these planets are a significant fraction of their star's rotational angular momenta,more » they spin up their stars significantly while spiraling to their deaths. Using the Monte Carlo simulation, we predict that for Q {sub *} = 10{sup 6}, 3.9 × 10{sup –6} of stars with the Kepler Target Catalog's mass distribution should have a rotation period shorter than 1/3 day (8 hr) due to accreting a planet. Exoplanet surveys such as SuperWASP, HATnet, HATsouth, and KELT have already produced light curves of millions of stars. These two facts suggest that it may be possible to search for tidally destroyed planets by looking for stars with extremely short rotational periods, then looking for remnant planet cores around those candidates, anomalies in the metal distribution, or other signatures of the recent accretion of the planet.« less
Current Sheets in the Corona and the Complexity of Slow Wind
NASA Technical Reports Server (NTRS)
Antiochos, Spiro
2010-01-01
The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of cycle 23 affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at solar minimum and describe further observational and theoretical tests.
Enhanced angular overlap model for nonmetallic f -electron systems
NASA Astrophysics Data System (ADS)
Gajek, Z.
2005-07-01
An efficient method of interpretation of the crystal field effect in nonmetallic f -electron systems, the enhanced angular overlap model (EAOM), is presented. The method is established on the ground of perturbation expansion of the effective Hamiltonian for localized electrons and first-principles calculations related to available experimental data. The series of actinide compounds AO2 , oxychalcogenides AOX , and dichalcogenides UX2 where X=S ,Se,Te and A=U ,Np serve as probes of the effectiveness of the proposed method. An idea is to enhance the usual angular overlap model with ab initio calculations of those contributions to the crystal field potential, which cannot be represented by the usual angular overlap model (AOM). The enhancement leads to an improved fitting and makes the approach intrinsically coherent. In addition, the ab initio calculations of the main, AOM-consistent part of the crystal field potential allows one to fix the material-specific relations for the EAOM parameters in the effective Hamiltonian. Consequently, the electronic structure interpretation based on EAOM can be extended to systems of the lowest point symmetries or/and deficient experimental data. Several examples illustrating the promising capabilities of EAOM are given.
Nakagawa, Hideki; Nishida, Yuuya
2012-01-01
Summary In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r2 = 0.5741, P<0.05). A similar mechanism of velocity control has been known in head movements of the owl and in human saccades. By analogy, this suggests that the frog planned its escape velocity in advance of executing the turn, to make the duration of the escape behavior relatively constant. For escape turns less than 60°, the positive correlation was very strong (r2 = 0.7097, P<0.05). Thus, the frog controlled the angular velocity of small escape turns very accurately and completed the behavior within a constant time. On the other hand, for escape turns greater than 60°, the same correlation was not significant (r2 = 0.065, P>0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r2 = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r2 = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning. PMID:23213389
ERIC Educational Resources Information Center
Barrow, Gordon M.
1970-01-01
Presents the basic ideas of modern spectroscopy. Both the angular momenta and wave-nature approaches to the determination of energy level patterns for atomic and molecular systems are discussed. The interpretation of spectra, based on atomic and molecular models, is considered. (LC)
Where Should the Nuclei Be Located?
ERIC Educational Resources Information Center
Ying Liu; Yue Liu; Drew, Michael G. B.
2005-01-01
The approach of determining the nature of the electron wave function via orbital representations qualitatively and via numerical calculations quantitatively is demonstrated. The angular part of the wave function provides suitable representation of the positions of the nuclei.
Duarte-Carvajalino, Julio M.; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe
2013-01-01
Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis. PMID:23596381
Duarte-Carvajalino, Julio M; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe
2013-01-01
Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis.
Position, spin, and orbital angular momentum of a relativistic electron
NASA Astrophysics Data System (ADS)
Bliokh, Konstantin Y.; Dennis, Mark R.; Nori, Franco
2017-08-01
Motivated by recent interest in relativistic electron vortex states, we revisit the spin and orbital angular momentum properties of Dirac electrons. These are uniquely determined by the choice of the position operator for a relativistic electron. We consider two main approaches discussed in the literature: (i) the projection of operators onto the positive-energy subspace, which removes the Zitterbewegung effects and correctly describes spin-orbit interaction effects, and (ii) the use of Newton-Wigner-Foldy-Wouthuysen operators based on the inverse Foldy-Wouthuysen transformation. We argue that the first approach [previously described in application to Dirac vortex beams in K. Y. Bliokh et al., Phys. Rev. Lett. 107, 174802 (2011), 10.1103/PhysRevLett.107.174802] has a more natural physical interpretation, including spin-orbit interactions and a nonsingular zero-mass limit, than the second one [S. M. Barnett, Phys. Rev. Lett. 118, 114802 (2017), 10.1103/PhysRevLett.118.114802].
Fine-structure-resolution for Rovibrational Excitation of CN Due to H2
NASA Astrophysics Data System (ADS)
Byrd, Nat; Yang, Benhui H.; Stancil, Phillip C.
2018-06-01
Diatomic molecules can be readily excited in interstellar environments exposed to intense UV radiation, such as the inner rim of a protoplanetary disk. Non-thermal populations of excited rovibrational levels can result, for example, following decay from electronically excited states to the electronic ground state. Competition between radiative decay and collisional processes, mostly due to H2, determine the resulting rovibrational emission spectrum. For CN, and other open-shell molecules, the resulting spectrum will be complicated due to fine-structure splitting of the rotational levels. In some cases, fine-structure resolution has been previously computed for rotational transitions in atom- or diatom-diatom collisional processes. Here we present the first fine-structure resolution for vibrational deexcitation for CN colliding with H2. The collisional cross sections were computed using a 6D potential energy surface with a full close-coupling approach. Fine-structure resolution is obtained by adopting an angular momentum recoupling scheme to transform the scattering matrices to a recoupled basis. Here we present low-energy calculations for the v=1 to 0 transition.This work was supported by NASA Grant NNX16AF09G.
The Moon's orbit history and inferences on its origin
NASA Technical Reports Server (NTRS)
Conway, B. A.
1984-01-01
A frequency dependent model of tidal friction was used to determine the evolution of the Earth-Moon system. The analysis considers the lunar orbit eccentricity and inclination, the solar tide on the Earth, Earth oblateness, and higher order terms in the tidal potential. A solution of the equations governing the precession of the Earth's rotational angular momentum and the lunar ascending node is found. The history is consistent with a capture origin for the Moon. It rules out the origin of the Moon by fission. Results are shown for a range of assumed values for the lunar tidal dissipation. Tidal dissipation within the Moon, during what would be the immediate postcapture period, is shown to be capable of significantly heating the Moon. The immediate postcapture orbit has a periapsis within the Earth's Roche limit. Capture into resonance with the Earth's gravitational field as this orbit tidally evolves is suggested to be a mechanism to prevent so close, an approach. It is shown that the probability of such capture is negligibly small and alternative hypotheses for the survival of the Roche limit passage is offered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don; Stuver, Amber
In a deep and dark corner of space, a cataclysm loomed. Two cosmic nemeses circled one another, locked in a macabre dance of death. Unfolding over millennia, the deadly waltz began leisurely enough. But with the dance came radiation and the energy loss that it implies. Orbit after orbit, the distance between the two protagonists shrank as their grip on each other tightened. Radiation carried away energy, but not angular momentum, so the orbital velocity grew to incomprehensible levels—well into the realm where Einstein's theory of special relativity reigns supreme. With the closing distances, the inevitable occurred as the twomore » twisted knots of spacetime approached each other and merged in a spasm that shook the universe so violently that the energy output briefly outshone the electromagnetic energy output of the entire universe. The two adversaries become one, finally merged together for all eternity. The traces of their ordeal died away, leaving only a fading death scream that spread throughout the cosmos, growing ever fainter. That is, until they passed through Earth. Furthermore, that was the moment that changed everything.« less
Lincoln, Don; Stuver, Amber
2016-10-01
In a deep and dark corner of space, a cataclysm loomed. Two cosmic nemeses circled one another, locked in a macabre dance of death. Unfolding over millennia, the deadly waltz began leisurely enough. But with the dance came radiation and the energy loss that it implies. Orbit after orbit, the distance between the two protagonists shrank as their grip on each other tightened. Radiation carried away energy, but not angular momentum, so the orbital velocity grew to incomprehensible levels—well into the realm where Einstein's theory of special relativity reigns supreme. With the closing distances, the inevitable occurred as the twomore » twisted knots of spacetime approached each other and merged in a spasm that shook the universe so violently that the energy output briefly outshone the electromagnetic energy output of the entire universe. The two adversaries become one, finally merged together for all eternity. The traces of their ordeal died away, leaving only a fading death scream that spread throughout the cosmos, growing ever fainter. That is, until they passed through Earth. Furthermore, that was the moment that changed everything.« less
Clemente-Juan, J M; Borrás-Almenar, J J; Coronado, E; Palii, A V; Tsukerblat, B S
2009-05-18
A general approach to the problem of electron delocalization in the high-nuclearity mixed-valence (MV) clusters containing an arbitrary number of localized spins and itinerant electrons is developed. Along with the double exchange, we consider the isotropic magnetic exchange between the localized electrons as well as the Coulomb intercenter repulsion. As distinguished from the previous approaches dealing with the MV systems in which itinerant electrons are delocalized over all constituent metal sites, here, we consider a more common case of systems exhibiting partial delocalization and containing several delocalized domains. Taking full advantage of the powerful angular momentum technique, we were able to derive closed form analytical expressions for the matrix elements of the full Hamiltonian. These expressions provide an efficient tool for treating complex mixed-valence systems, because they contain only products of 6j-symbols (that appear while treating the delocalized parts) and 9j-symbols (exchange interactions in localized parts) and do not contain high-order recoupling coefficients and 3j-symbols that essentially constrained all previous theories of mixed valency. The approach developed here is accompanied by an efficient computational procedure that allows us to calculate the bulk thermodynamic properties (magnetic susceptibility, magnetization, and magnetic specific heat) of high-nuclearity MV clusters. Finally, this approach has been used to discuss the magnetic properties of the octanuclear MV cluster [Fe(8)(mu(4)-O)(4)(4-Cl-pz)(12)Cl(4)](-) and the diphthalocyanine chains [YPc(2)].CH(2)Cl(2) and [ScPc(2)].CH(2)Cl(2) composed of MV dimers interacting through the magnetic exchange and Coulomb repulsion.
Associated Υ+γ production at the LHC in the kt-factorization approach
NASA Astrophysics Data System (ADS)
Baranov, S. P.
2010-09-01
In the framework of the kt-factorization approach, the photon-associated production of Υ mesons at the present-day LHC conditions is studied. The differential cross sections and polarization parameters are calculated in the “helicity” and Collins-Soper systems. Special attention is paid to the effect of experimental cuts that can dramatically change the visible lepton angular distributions.
Associated ϒ + γ production at the LHC in the k-factorization approach
NASA Astrophysics Data System (ADS)
Baranov, S. P.
2011-05-01
In the framework of k-factorization approach, the photon-associated production of ϒ mesons at the present-day LHC conditions is studied. The differential cross sections and polarization parameters are calculated in the 'helicity' and Collins-Soper systems. Special attention is paid to the effect of experimental cuts that can dramatically change the visible lepton angular distributions.
Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Queen, Steven Z.; VanEepoel, John M.; Sanner, Robert M.
2005-01-01
In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a non-linear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.
Angular Momentum in Disk Wind Revealed in the Young Star MWC 349A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qizhou; Claus, Brian; Watson, Linda
Disk winds are thought to play a critical role in star birth. As winds extract excess angular momentum from accretion disks, matter in the disk can be transported inward to the star to fuel mass growth. However, observational evidence of wind carrying angular momentum has been very limited. We present Submillimeter Array (SMA) observations of the young star MWC 349A in the H26 α and H30 α recombination lines. The high signal-to-noise ratios made possible by the maser emission process allow us to constrain the relative astrometry of the maser spots to milli-arcsecond precision. Previous observations of the H30 αmore » line with the SMA and the Plateau de Bure interferometer (PdBI) showed that masers are distributed in the disk and wind. Our new high-resolution observations of the H26 α line reveal differences in spatial distribution from that of the H30 α line. H26 α line masers in the disk are excited in a thin annulus with a radius of about 25 au, while the H30 α line masers are formed in a slightly larger annulus with a radius of 30 au. This is consistent with expectations for maser excitation in the presence of an electron density variation of approximately R {sup −4}. In addition, the H30 α and H26 α line masers arise from different parts in the wind. This difference is also expected from maser theory. The wind component of both masers exhibits line-of-sight velocities that closely follow a Keplerian law. This result provides strong evidence that the disk wind extracts significant angular momentum, thereby facilitating mass accretion in the young star.« less
Quantum primary rainbows in transmission of positrons through very short carbon nanotubes
NASA Astrophysics Data System (ADS)
Ćosić, M.; Petrović, S.; Nešković, N.
2016-04-01
This paper is devoted to a quantum mechanical consideration of the transmission of positrons of a kinetic energy of 1 MeV through very short (11, 9) single-wall chiral carbon nanotubes. The nanotube lengths are between 50 and 320 nm. The transmission process is determined by the rainbow effects. The interaction potential of a positron and the nanotube is deduced from the Molire's interaction potential of the positron and a nanotube atom using the continuum approximation. We solve numerically the time-dependent Schrödinger equation, and calculate the spatial and angular distributions of transmitted positrons. The initial positron beam is assumed to be an ensemble of non-interacting Gaussian wave packets. We generate the spatial and angular distributions using the computer simulation method. The examination is focused on the spatial and angular primary rainbows. It begins with an analysis of the corresponding classical rainbows, and continues with a detailed investigation of the amplitudes and phases of the wave functions of transmitted positrons. These analyses enable one to identify the principal and supernumerary primary rainbows appearing in the spatial and angular distributions. They also result in a detailed explanation of the way of their generation, which includes the effects of wrinkling of each wave packet during its deflection from the nanotube wall, and of its concentration just before a virtual barrier lying close to the corresponding classical rainbow. The wrinkling of the wave packets occurs due to their internal focusing. In addition, the wave packets wrinkle in a mutually coordinated way. This explanation may induce new theoretical and experimental investigations of quantum rainbows occurring in various atomic collision processes.
Feedforward ankle strategy of balance during quiet stance in adults
Gatev, Plamen; Thomas, Sherry; Kepple, Thomas; Hallett, Mark
1999-01-01
We studied quiet stance investigating strategies for maintaining balance. Normal subjects stood with natural stance and with feet together, with eyes open or closed. Kinematic, kinetic and EMG data were evaluated and cross-correlated.Cross-correlation analysis revealed a high, positive, zero-phased correlation between anteroposterior motions of the centre of gravity (COG) and centre of pressure (COP), head and COG, and between linear motions of the shoulder and knee in both sagittal and frontal planes. There was a moderate, negative, zero-phased correlation between the anteroposterior motion of COP and ankle angular motion.Narrow stance width increased ankle angular motion, hip angular motion, mediolateral sway of the COG, and the correlation between linear motions of the shoulder and knee in the frontal plane. Correlations between COG and COP and linear motions of the shoulder and knee in the sagittal plane were decreased. The correlation between the hip angular sway in the sagittal and frontal planes was dependent on interaction between support and vision.Low, significant positive correlations with time lags of the maximum of cross-correlation of 250-300 ms were found between the EMG activity of the lateral gastrocnemius muscle and anteroposterior motions of the COG and COP during normal stance. Narrow stance width decreased both correlations whereas absence of vision increased the correlation with COP.Ankle mechanisms dominate during normal stance especially in the sagittal plane. Narrow stance width decreased the role of the ankle and increased the role of hip mechanisms in the sagittal plane, while in the frontal plane both increased.The modulation pattern of the lateral gastrocnemius muscle suggests a central program of control of the ankle joint stiffness working to predict the loading pattern. PMID:9882761
NASA Technical Reports Server (NTRS)
Zhou, Y. H.; Salstein, D. A.; Chen, J. L.
2006-01-01
The atmospheric angular momentum is closely related to variations in the Earth rotation. The atmospheric excitation function (AEF), or namely atmospheric effective angular momentum function, is introduced in studying the atmospheric excitation of the Earth's variable rotation. It may be separated into two portions, i.e, the "wind" terms due to the atmospheric motion relative to the mantle and the "pressure" terms due to the variations of atmospheric mass distribution evident through surface pressure changes. The AEF wind terms during the period of 1948-2004 are re-processed from the NCEP/NCAR (National Centers for Environmental Prediction-National Center for Atmospheric Research) reanalysis 6-hourly wind and pressure fields. Some previous calculations were approximate, in that the wind terms were integrated from an isobaric lower boundary of 1000 hPa. To consider the surface topography effect, however, the AEF is computed by integration using the winds from the Earth's surface to 10 hPa, the top atmospheric model level, instead of from 1000 hPa. For these two cases, only a minor difference, equivalent to approx. 0.004 milliseconds in length-of-day variation, exists with respect to the axial wind term. However, considerable differences, equivalent to 5-6 milliarcseconds in polar motion, are found regarding equatorial wind terms. We further compare the total equatorial AEF (with and without the topographic effect) with the polar motion excitation function (PMEF) during the period of 1980-2003. The equatorial AEF gets generally closer to the PMEF, and improved coherences are found between them when the topography effect is included. Keywords: Atmospheric angular momentum, Atmospheric excitation function, Earth rotation, Topography, Wind, Pressure.
Church, Jessica A.; Balota, David A.; Petersen, Steven E.; Schlaggar, Bradley L.
2010-01-01
In a previous study of single word reading, regions in the left supramarginal gyrus and left angular gyrus showed positive BOLD activity in children but significantly less activity in adults for high-frequency words. This developmental decrease may reflect decreased reliance on phonological processing for familiar stimuli in adults. Therefore, in the present study, variables thought to influence phonological demand (string length and lexicality) were manipulated. Length and lexicality effects in the brain were explored using both ROI and whole-brain approaches. In the ROI analysis, the supramarginal and angular regions from the previous study were applied to this study. The supramarginal region showed a significant positive effect of length, consistent with a role in phonological processing, whereas the angular region showed only negative deflections from baseline with a strong effect of lexicality and other weaker effects. At the whole-brain level, varying effects of length and lexicality and their interactions were observed in 85 regions throughout the brain. The application of hierarchical clustering analysis to the BOLD time course data derived from these regions revealed seven clusters, with potentially revealing anatomical locations. Of note, a left angular gyrus region was the sole constituent of one cluster. Taken together, these findings in adult readers (1) provide support for a widespread set of brain regions affected by lexical variables, (2) corroborate a role for phonological processing in the left supramarginal gyrus, and (3) do not support a strong role for phonological processing in the left angular gyrus. PMID:20433237
PCA-based approach for subtracting thermal background emission in high-contrast imaging data
NASA Astrophysics Data System (ADS)
Hunziker, S.; Quanz, S. P.; Amara, A.; Meyer, M. R.
2018-03-01
Aims.Ground-based observations at thermal infrared wavelengths suffer from large background radiation due to the sky, telescope and warm surfaces in the instrument. This significantly limits the sensitivity of ground-based observations at wavelengths longer than 3 μm. The main purpose of this work is to analyse this background emission in infrared high-contrast imaging data as illustrative of the problem, show how it can be modelled and subtracted and demonstrate that it can improve the detection of faint sources, such as exoplanets. Methods: We used principal component analysis (PCA) to model and subtract the thermal background emission in three archival high-contrast angular differential imaging datasets in the M' and L' filter. We used an M' dataset of β Pic to describe in detail how the algorithm works and explain how it can be applied. The results of the background subtraction are compared to the results from a conventional mean background subtraction scheme applied to the same dataset. Finally, both methods for background subtraction are compared by performing complete data reductions. We analysed the results from the M' dataset of HD 100546 only qualitatively. For the M' band dataset of β Pic and the L' band dataset of HD 169142, which was obtained with an angular groove phase mask vortex vector coronagraph, we also calculated and analysed the achieved signal-to-noise ratio (S/N). Results: We show that applying PCA is an effective way to remove spatially and temporarily varying thermal background emission down to close to the background limit. The procedure also proves to be very successful at reconstructing the background that is hidden behind the point spread function. In the complete data reductions, we find at least qualitative improvements for HD 100546 and HD 169142, however, we fail to find a significant increase in S/N of β Pic b. We discuss these findings and argue that in particular datasets with strongly varying observing conditions or infrequently sampled sky background will benefit from the new approach.
NASA Astrophysics Data System (ADS)
Surdin, M.
A closed universe obeying the Hubble equation v = Hu·r, where Hu is the Hubble constant, is considered. It is shown that such a universe is equivalent to a universe rotating around one of its diameters at an angular velocity Ωu = Hu. If one revives Blackett's conjecture, viz., a rotating body creates at its center a magnetic dipole, one computes the value of the magnetic field as B ≅ 2.5×10-5G. Intergalactic magnetic fields of the order of 10-6G were deduced from observations.
Velocity Spread Reduction for Axis-encircling Electron Beam Generated by Single Magnetic Cusp
NASA Astrophysics Data System (ADS)
Jeon, S. G.; Baik, C. W.; Kim, D. H.; Park, G. S.; Sato, N.; Yokoo, K.
2001-10-01
Physical characteristics of an annular Pierce-type electron gun are investigated analytically. An annular electron gun is used in conjunction with a non-adiabatic magnetic reversal and an adiabatic compression to produce an axis-encircling electron beam. Velocity spread close to zero is realized with an initial canonical angular momentum spread at the cathode when the beam trajectory does not coincide with the magnetic flux line. Both the analytical calculation and the EGUN code simulation confirm this phenomenon.
Experimental Observation of Classical Dynamical Monodromy
NASA Astrophysics Data System (ADS)
Nerem, M. P.; Salmon, D.; Aubin, S.; Delos, J. B.
2018-03-01
A Hamiltonian system is said to have nontrivial monodromy if its fundamental action-angle loops do not return to their initial topological state at the end of a closed circuit in angular momentum-energy space. This process has been predicted to have consequences which can be seen in dynamical systems, called dynamical monodromy. Using an apparatus consisting of a spherical pendulum subject to magnetic potentials and torques, we observe nontrivial monodromy by the associated topological change in the evolution of a loop of trajectories.
Photoionization cross sections for atomic chlorine using an open-shell random phase approximation
NASA Technical Reports Server (NTRS)
Starace, A. F.; Armstrong, L., Jr.
1975-01-01
The use of the Random Phase Approximation with Exchange (RPAE) for calculating partial and total photoionization cross sections and photoelectron angular distributions for open shell atoms is examined for atomic chlorine. Whereas the RPAE corrections in argon (Z=18) are large, it is found that those in chlorine (Z=17) are much smaller due to geometric factors. Hartree-Fock calculations with and without core relaxation are also presented. Sizable deviations from the close coupling results of Conneely are also found.
Characterizing optical chirality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bliokh, Konstantin Y.; Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198; Nori, Franco
We examine the recently introduced measure of chirality of a monochromatic optical field [Y. Tang and A. E. Cohen, Phys. Rev. Lett. 104, 163901 (2010)] using the momentum (plane-wave) representation and helicity basis. Our analysis clarifies the physical meaning of the measure of chirality and unveils its close relation to the polarization helicity, spin angular momentum, energy density, and Poynting energy flow. We derive the operators of the optical chirality and of the corresponding chiral momentum, which acquire remarkably simple forms in the helicity representation.
Green’s functions for a volume source in an elastic half-space
Zabolotskaya, Evgenia A.; Ilinskii, Yurii A.; Hay, Todd A.; Hamilton, Mark F.
2012-01-01
Green’s functions are derived for elastic waves generated by a volume source in a homogeneous isotropic half-space. The context is sources at shallow burial depths, for which surface (Rayleigh) and bulk waves, both longitudinal and transverse, can be generated with comparable magnitudes. Two approaches are followed. First, the Green’s function is expanded with respect to eigenmodes that correspond to Rayleigh waves. While bulk waves are thus ignored, this approximation is valid on the surface far from the source, where the Rayleigh wave modes dominate. The second approach employs an angular spectrum that accounts for the bulk waves and yields a solution that may be separated into two terms. One is associated with bulk waves, the other with Rayleigh waves. The latter is proved to be identical to the Green’s function obtained following the first approach. The Green’s function obtained via angular spectrum decomposition is analyzed numerically in the time domain for different burial depths and distances to the receiver, and for parameters relevant to seismo-acoustic detection of land mines and other buried objects. PMID:22423682
Global and local approaches to population analysis: Bonding patterns in superheavy element compounds
NASA Astrophysics Data System (ADS)
Oleynichenko, Alexander; Zaitsevskii, Andréi; Romanov, Stepan; Skripnikov, Leonid V.; Titov, Anatoly V.
2018-03-01
Relativistic effective atomic configurations of superheavy elements Cn, Nh and Fl and their lighter homologues (Hg, Tl and Pb) in their simple compounds with fluorine and oxygen are determined using the analysis of local properties of molecular Kohn-Sham density matrices in the vicinity of heavy nuclei. The difference in populations of atomic spinors with the same orbital angular momentum and different total angular momenta is demonstrated to be essential for understanding the peculiarities of chemical bonding in superheavy element compounds. The results are fully compatible with those obtained by the relativistic iterative version of conventional projection analysis of global density matrices.
Next Generation X-Ray Optics: High-Resolution, Light-Weight, and Low-Cost
NASA Technical Reports Server (NTRS)
Zhang, William W.
2012-01-01
X-ray telescopes are essential to the future of x-ray astronomy. In this talk I will describe a comprehensive program to advance the technology for x-ray telescopes well beyond the state of the art represented by the three currently operating missions: Chandra, XMM-Newton, and Suzaku. This program will address the three key issues in making an x-ray telescope: (1) angular resolution, (2) effective area per unit mass, and (3) cost per unit effective area. The objectives of this technology program are (1) in the near term, to enable Explorer-class x-ray missions and an IXO-type mission, and (2) in the long term, to enable a flagship x-ray mission with sub-arcsecond angular resolution and multi-square-meter effective area, at an affordable cost. We pursue two approaches concurrently, emphasizing the first approach in the near term (2-5 years) and the second in the long term (4-10 years). The first approach is precision slumping of borosilicate glass sheets. By design and choice at the outset, this technique makes lightweight and low-cost mirrors. The development program will continue to improve angular resolution, to enable the production of 5-arcsecond x-ray telescopes, to support Explorer-class missions and one or more missions to supersede the original IXO mission. The second approach is precision polishing and light-weighting of single-crystal silicon mirrors. This approach benefits from two recent commercial developments: (1) the inexpensive and abundant availability of large blocks of monocrystalline silicon, and (2) revolutionary advances in deterministic, precision polishing of mirrors. By design and choice at the outset, this technique is capable of producing lightweight mirrors with sub-arcsecond angular resolution. The development program will increase the efficiency and reduce the cost of the polishing and the light-weighting processes, to enable the production of lightweight sub-arcsecond x-ray telescopes. Concurrent with the fabrication of lightweight mirror segments is the continued development and perfection of alignment and integration techniques, for incorporating individual mirror segments into a precision mirror assembly. Recently, we have been developing a technique called edge-bonding, which has achieved an accuracy to enable 10-arcsecond x-ray telescopes. Currently, we are investigating and improving the long-term alignment stability of so-bonded mirrors. Next, we shall refine this process to enable 5-arsecond x-ray telescopes. This technology development program includes all elements to demonstrate progress toward TRL-6: metrology; x-ray performance tests; coupled structural, thermal, and optical performance analysis, and environmental testing.
Next Generation X-Ray Optics: High-Resolution, Light-Weight, and Low-Cost
NASA Technical Reports Server (NTRS)
Zhang, William W.
2011-01-01
X-ray telescopes are essential to the future of x-ray astronomy. This paper describes a comprehensive program to advance the technology for x-ray telescopes well beyond the state of the art represented by the three currently operating missions: Chandra, XMM-Newton , and Suzaku . This program will address the three key issues in making an x-ray telescope: (I) angular resolution, (2) effective area per unit mass, and (3) cost per unit effective area. The objectives of this technology program are (1) in the near term, to enable Explorer-class x-ray missions and an IXO type mission, and (2) in the long term, to enable a flagship x-ray mission with sub-arcsecond angular resolution and multi-square-meter effective area, at an affordable cost. We pursue two approaches concurrently, emphasizing the first approach in the near term (2-5 years) and the second in the long term (4-10 years). The first approach is precision slumping of borosilicate glass sheets. By design and choice at the outset, this technique makes lightweight and low-cost mirrors. The development program will continue to improve angular resolution, to enable the production of 5-arcsecond x-ray telescopes, to support Explorer-class missions and one or more missions to supersede the original IXO mission. The second approach is precision polishing and light-weighting of single-crystal silicon mirrors. This approach benefits from two recent commercial developments: (1) the inexpensive and abundant availability of large blocks of mono crystalline silicon, and (2) revolutionary advances in deterministic, precision polishing of mirrors. By design and choice at the outset, this technique is capable of producing lightweight mirrors with sub-arcsecond angular resolution. The development program will increase the efficiency and reduce the cost of the polishing and the lightweighting processes, to enable the production of lightweight sub-arcsecond x-ray telescopes. Concurrent with the fabrication of lightweight mirror segments is the continued development and perfection of alignment and integration techniques, for incorporating individual mirror segments into a precision mirror assembly. Recently, we have been developing a technique called edge-bonding, which has achieved an accuracy to enable 10- arcsecond x-ray telescopes. Currently, we are investigating and improving the long-term alignment stability of so-bonded mirrors. Next, we shall refine this process to enable 5-arsecond x-ray telescopes. This technology development program includes all elements to demonstrate progress toward TRL-6: metrology; x-ray performance tests; coupled structural, thermal, and optical performance analysis, and environmental testing.
Don't Panic! Closed String Tachyons in ALE Spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverstein, Eva M
2001-08-20
We consider closed string tachyons localized at the fixed points of noncompact nonsupersymmetric orbifolds. We argue that tachyon condensation drives these orbifolds to flat space or supersymmetric ALE spaces. The decay proceeds via an expanding shell of dilaton gradients and curvature which interpolates between two regions of distinct angular geometry. The string coupling remains weak throughout. For small tachyon VEVs, evidence comes from quiver theories on D-branes probes, in which deformations by twisted couplings smoothly connect non-supersymmetric orbifolds to supersymmetric orbifolds of reduced order. For large tachyon VEVs, evidence comes from worldsheet RG flow and spacetime gravity. For C{sup 2}/Z{submore » n}, we exhibit infinite sequences of transitions producing SUSY ALE spaces via twisted closed string condensation from non-supersymmetric ALE spaces. In a T-dual description this provides a mechanism for creating NS5-branes via closed string tachyon condensation similar to the creation of D-branes via open string tachyon condensation. We also apply our results to recent duality conjectures involving fluxbranes and the type 0 string.« less
Large angle solid state position sensitive x-ray detector system
Kurtz, D.S.; Ruud, C.O.
1998-03-03
A method and apparatus for x-ray measurement of certain properties of a solid material are disclosed. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.
Large angle solid state position sensitive x-ray detector system
Kurtz, D.S.; Ruud, C.O.
1998-07-21
A method and apparatus are disclosed for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.
Tang, Tao; Chen, Sisi; Huang, Xuanlin; Yang, Tao; Qi, Bo
2018-01-01
High-performance position control can be improved by the compensation of disturbances for a gear-driven control system. This paper presents a mode-free disturbance observer (DOB) based on sensor-fusion to reduce some errors related disturbances for a gear-driven gimbal. This DOB uses the rate deviation to detect disturbances for implementation of a high-gain compensator. In comparison with the angular position signal the rate deviation between load and motor can exhibits the disturbances exiting in the gear-driven gimbal quickly. Due to high bandwidth of the motor rate closed loop, the inverse model of the plant is not necessary to implement DOB. Besides, this DOB requires neither complex modeling of plant nor the use of additive sensors. Without rate sensors providing angular rate, the rate deviation is easily detected by encoders mounted on the side of motor and load, respectively. Extensive experiments are provided to demonstrate the benefits of the proposed algorithm. PMID:29498643
Tang, Tao; Chen, Sisi; Huang, Xuanlin; Yang, Tao; Qi, Bo
2018-03-02
High-performance position control can be improved by the compensation of disturbances for a gear-driven control system. This paper presents a mode-free disturbance observer (DOB) based on sensor-fusion to reduce some errors related disturbances for a gear-driven gimbal. This DOB uses the rate deviation to detect disturbances for implementation of a high-gain compensator. In comparison with the angular position signal the rate deviation between load and motor can exhibits the disturbances exiting in the gear-driven gimbal quickly. Due to high bandwidth of the motor rate closed loop, the inverse model of the plant is not necessary to implement DOB. Besides, this DOB requires neither complex modeling of plant nor the use of additive sensors. Without rate sensors providing angular rate, the rate deviation is easily detected by encoders mounted on the side of motor and load, respectively. Extensive experiments are provided to demonstrate the benefits of the proposed algorithm.
Universal relations for differentially rotating relativistic stars at the threshold to collapse
NASA Astrophysics Data System (ADS)
Bozzola, Gabriele; Stergioulas, Nikolaos; Bauswein, Andreas
2018-03-01
A binary neutron star merger produces a rapidly and differentially rotating compact remnant whose lifespan heavily affects the electromagnetic and gravitational emissions. Its stability depends on both the equation of state (EOS) and the rotation law and it is usually investigated through numerical simulations. Nevertheless, by means of a sufficient criterion for secular instability, equilibrium sequences can be used as a computational inexpensive way to estimate the onset of dynamical instability, which, in general, is close to the secular one. This method works well for uniform rotation and relies on the location of turning points: stellar models that are stationary points in a sequence of equilibrium solutions with constant rest mass or angular momentum. Here, we investigate differentially rotating models (using a large number of EOSs and different rotation laws) and find that several universal relations between properly scaled gravitational mass, rest mass and angular momentum of the turning-point models that are valid for uniform rotation are insensitive to the degree of differential rotation, to high accuracy.
Dong, Bo -Wen; Cramer, Joel; Ganzhorn, Kathrin; ...
2017-12-14
We investigate the spin Hall magnetoresistance (SMR) in a gadolinium iron garnet (GdIG)/platinum (Pt) heterostructure by angular dependent magnetoresistance measurements. The magnetic structure of the ferromagnetic insulator GdIG is non-collinear near the compensation temperature, while it is collinear far from the compensation temperature. In the collinear regime, the SMR signal in GdIG is consistent with the usualmore » $${\\rm si}{{{\\rm n}}^{2}}\\theta $$ relation well established in the collinear magnet yttrium iron garnet, with $$\\theta $$ the angle between magnetization and spin Hall spin polarization direction. In the non-collinear regime, both an SMR signal with inverted sign and a more complex angular dependence with four maxima are observed within one sweep cycle. The number of maxima as well as the relative strength of different maxima depend strongly on temperature and field strength. Lastly, our results evidence a complex SMR behavior in the non-collinear magnetic regime that goes beyond the conventional formalism developed for collinear magnetic structures.« less
A determination of the mass of Sagittarius A* from its radio spectral and source size measurements
NASA Technical Reports Server (NTRS)
Melia, Fulvio; Jokipii, J. R.; Narayanan, Ajay
1992-01-01
There is growing evidence that Sgr A* may be a million solar mass black hole accreting from the Galactic center wind. A consideration of the spectral and source size characteristics associated with this process can offer at least two distinct means of inferring the mass M, complementing the more traditional dynamical arguments. We show that M is unmistakably correlated with both the radio spectral index and the critical wavelength below which the intrinsic source size dominates over the angular broadening due to scattering in the interstellar medium. Current observations can already rule out a mass much in excess of 2 x 10 exp 6 solar masses and suggest a likely value close to 1 x 10 exp 6 solar masses, in agreement with an earlier study matching the radio and high-energy spectral components. We anticipate that such a mass may be confirmed with the next generation of source-size observations using milliarcsecond angular resolution at 0.5 - 1 cm wavelengths.
NASA Astrophysics Data System (ADS)
Pustynski, V.-V.; Pustylnik, I.
2006-03-01
It has been shown quite recently (Maxted etal 2001, Morales-Rueda etal 2003) that dB stars, extreme horizontal branch (EHB) objects, likely all belong to binary systems. We study in detail the mass and angular momentum loss in the giant progenitors of sdB stars in an attempt to clarify why binarity must be a crucial factor in producing EHB objects. Assuming that the progenitors of EHB objects belong to the binaries with initial separations of 100-150 R_odot and fill in their critical Roche lobes while being close to the RGB tip we have found that considerable shrinkage of the orbit can be achieved due to the combined effect of angular momentum loss from the red giant and appreciable accretion on its low mass companion on the hydrodynamical time scale of the donor resulting in formation of helium white dwarfs with masses about 0.5 M_odot and thus evading the common envelope stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Bo -Wen; Cramer, Joel; Ganzhorn, Kathrin
We investigate the spin Hall magnetoresistance (SMR) in a gadolinium iron garnet (GdIG)/platinum (Pt) heterostructure by angular dependent magnetoresistance measurements. The magnetic structure of the ferromagnetic insulator GdIG is non-collinear near the compensation temperature, while it is collinear far from the compensation temperature. In the collinear regime, the SMR signal in GdIG is consistent with the usualmore » $${\\rm si}{{{\\rm n}}^{2}}\\theta $$ relation well established in the collinear magnet yttrium iron garnet, with $$\\theta $$ the angle between magnetization and spin Hall spin polarization direction. In the non-collinear regime, both an SMR signal with inverted sign and a more complex angular dependence with four maxima are observed within one sweep cycle. The number of maxima as well as the relative strength of different maxima depend strongly on temperature and field strength. Lastly, our results evidence a complex SMR behavior in the non-collinear magnetic regime that goes beyond the conventional formalism developed for collinear magnetic structures.« less
Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes
NASA Astrophysics Data System (ADS)
Stuchlík, Z.; Slaný, P.; Hledík, S.
2000-11-01
The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.
Revolution evolution: tracing angular momentum during star and planetary system formation
NASA Astrophysics Data System (ADS)
Davies, Claire Louise
2015-04-01
Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 - 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the disc to expand. I used spatially resolved submillimetre detections of the dust and gas components of protoplanetary discs, gathered from the literature, to measure the radial extent of discs around low-mass pre-main sequence stars of ∼ 1-10 Myr and probe their viscous evolution. I find no clear observational evidence for the radial expansion of the dust component. However, I find tentative evidence for the expansion ofthe gas component. This suggests that the evolution of the gas and dust components of protoplanetary discs are likely governed by different astrophysical processes. Observations of jets and outflows emanating from protostars and pre-main sequence stars highlight that it may also be possible to remove angular momentum from the circumstellar material. Using the sample of spatially resolved protoplanetary discs, I find no evidence for angular momentum removal during disc evolution. I also use the spatially resolved debris discs from the Submillimetre Common-User Bolometer Array-2 Observations of Nearby Stars survey to constrain the amount of angular momentum retained within planetary systems. This sample is compared to the protoplanetary disc angular momenta and to the angular momentum contained within pre-stellar cores. I find that significant quantities of angular momentum must be removed during disc formation and disc dispersal. This likely occurs via magnetic braking during the formation of the disc, via the launching of a disc or photo-evaporative wind, and/or via ejection of planetary material following dynamical interactions.
NASA Astrophysics Data System (ADS)
Scott, R.
On-Orbit-Servicing (OOS) in Geostationary Equatorial Orbit (GEO) is likely to become a space mission reality provoking new problems for the optical space surveillance community. OOS’ close-proximity flight of servicer and client satellites with separations less than 1 kilometer in GEO challenge the metric measurement capabilities of medium and small aperture space surveillance instruments. This paper describes an OOS monitoring technique based on Cross-Spectrum speckle interferometry to compensate for atmospheric turbulence and measure the OOS satellites’ differential relative position. Cross-Spectrum speckle interferometry, an astronomical technique developed to measure the astrometric positions of binary stars, was adapted to the geostationary OOS problem and was tested using Sloan i’ observations of co-located geostationary satellites. Medium (1.6m) and small (0.35m) aperture telescopes were used to observe these satellites undergoing optical conjunctions where their apparent line-of-sight separation narrowed within 5 arcseconds. During the initial development of the Cross-Spectrum approach some weaknesses were identified where particle strikes, faint background stars, anomalous fringe orientation angles and high relative angular rates corrupt the relative position measurement process. In this paper, newly adjusted compensation techniques to remedy these issues are described and the data is reprocessed. The Cross-Spectrum’s performance is shown to work well on closely-spaced GEO satellites with separations less than 3 arcseconds and evidence is shown suggesting the technique can measure satellite separations within 1.8 arcseconds.
Normal modes and mode transformation of pure electron vortex beams
Thirunavukkarasu, G.; Mousley, M.; Babiker, M.
2017-01-01
Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre–Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite–Gaussian beams. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069769
Normal modes and mode transformation of pure electron vortex beams.
Thirunavukkarasu, G; Mousley, M; Babiker, M; Yuan, J
2017-02-28
Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre-Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite-Gaussian beams.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2018-04-01
Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary disks, and inclined binary companions may tilt the stellar spin axis with respect to the disk's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disk evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disk photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disk-binary systems. We take into account planet-disk interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disk via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with "cold" Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.
Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors
Liu, Du-Xin; Wu, Xinyu; Du, Wenbin; Wang, Can; Xu, Tiantian
2016-01-01
Gait phase is widely used for gait trajectory generation, gait control and gait evaluation on lower-limb exoskeletons. So far, a variety of methods have been developed to identify the gait phase for lower-limb exoskeletons. Angular sensors on lower-limb exoskeletons are essential for joint closed-loop controlling; however, other types of sensors, such as plantar pressure, attitude or inertial measurement unit, are not indispensable.Therefore, to make full use of existing sensors, we propose a novel gait phase recognition method for lower-limb exoskeletons using only joint angular sensors. The method consists of two procedures. Firstly, the gait deviation distances during walking are calculated and classified by Fisher’s linear discriminant method, and one gait cycle is divided into eight gait phases. The validity of the classification results is also verified based on large gait samples. Secondly, we build a gait phase recognition model based on multilayer perceptron and train it with the phase-labeled gait data. The experimental result of cross-validation shows that the model has a 94.45% average correct rate of set (CRS) and an 87.22% average correct rate of phase (CRP) on the testing set, and it can predict the gait phase accurately. The novel method avoids installing additional sensors on the exoskeleton or human body and simplifies the sensory system of the lower-limb exoskeleton. PMID:27690023
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2018-07-01
Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary discs, and inclined binary companions may tilt the stellar spin axis with respect to the disc's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disc evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disc photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disc-binary systems. We take into account planet-disc interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disc via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with `cold' Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.
Repulsive nature of optical potentials for high-energy heavy-ion scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.
2010-10-15
The recent works by the present authors predicted that the real part of heavy-ion optical potentials changes its character from attraction to repulsion around the incident energy per nucleon E/A=200-300 MeV on the basis of the complex G-matrix interaction and the double-folding model (DFM) and revealed that the three-body force plays an important role there. In the present paper, we have precisely analyzed the energy dependence of the calculated DFM potentials and its relation to the elastic-scattering angular distributions in detail in the case of the {sup 12}C+{sup 12}C system in the energy range of E/A=100-400 MeV. The tensor forcemore » contributes substantially to the energy dependence of the real part of the DFM potentials and plays an important role to lower the attractive-to-repulsive transition energy. The nearside and farside (N/F) decompositions of the elastic-scattering amplitudes clarify the close relation between the attractive-to-repulsive transition of the potentials and the characteristic evolution of the calculated angular distributions with the increase of the incident energy. Based on the present analysis, we propose experimental measurements for the predicted strong diffraction phenomena of the elastic-scattering angular distribution caused by the N/F interference around the attractive-to-repulsive transition energy together with the reduced diffractions below and above the transition energy.« less
Energy and angular momentum balance in wall-bounded quantum turbulence at very low temperatures.
Hosio, J J; Eltsov, V B; Heikkinen, P J; Hänninen, R; Krusius, M; L'vov, V S
2013-01-01
A superfluid in the absence of a viscous normal component should be the best realization of an ideal inviscid Euler fluid. As expressed by d'Alembert's famous paradox, an ideal fluid does not drag on bodies past which it flows, or in other words it does not exchange momentum with them. In addition, the flow of an ideal fluid does not dissipate kinetic energy. Here we study experimentally whether these properties apply to the flow of superfluid (3)He-B in a rotating cylinder at low temperatures. It is found that ideal behaviour is broken by quantum turbulence, which leads to substantial energy dissipation, as was also observed earlier. Remarkably, the angular momentum exchange between the superfluid and its container approaches nearly ideal behaviour, as the drag almost disappears in the zero-temperature limit. Here the mismatch between energy and angular momentum transfer results in a new physical situation, with severe implications on the flow dynamics.
Soft Ionic Electroactive Polymer Actuators with Tunable Non-Linear Angular Deformation
Hong, Wangyujue; Almomani, Abdallah; Chen, Yuanfen; Jamshidi, Reihaneh; Montazami, Reza
2017-01-01
The most rational approach to fabricate soft robotics is the implementation of soft actuators. Conventional soft electromechanical actuators exhibit linear or circular deformation, based on their design. This study presents the use of conjugated polymers, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to locally vary ion permeability of the ionic electroactive polymer actuators and manipulate ion motion through means of structural design to realize intrinsic angular deformation. Such angular deformations are closer to biomimetic systems and have potential applications in bio-robotics. Electrochemical studies reveal that the mechanism of actuation is mainly associated with the charging of electric double layer (EDL) capacitors by ion accumulation and the PEDOT:PSS layer’s expansion by ion interchange and penetration. Dependence of actuator deformation on structural design is studied experimentally and conclusions are verified by analytical and finite element method modeling. The results suggest that the ion-material interactions are considerably dominated by the design of the drop-cast PEDOT:PSS on Nafion. PMID:28773036
Soft Ionic Electroactive Polymer Actuators with Tunable Non-Linear Angular Deformation.
Hong, Wangyujue; Almomani, Abdallah; Chen, Yuanfen; Jamshidi, Reihaneh; Montazami, Reza
2017-06-21
The most rational approach to fabricate soft robotics is the implementation of soft actuators. Conventional soft electromechanical actuators exhibit linear or circular deformation, based on their design. This study presents the use of conjugated polymers, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to locally vary ion permeability of the ionic electroactive polymer actuators and manipulate ion motion through means of structural design to realize intrinsic angular deformation. Such angular deformations are closer to biomimetic systems and have potential applications in bio-robotics. Electrochemical studies reveal that the mechanism of actuation is mainly associated with the charging of electric double layer (EDL) capacitors by ion accumulation and the PEDOT:PSS layer's expansion by ion interchange and penetration. Dependence of actuator deformation on structural design is studied experimentally and conclusions are verified by analytical and finite element method modeling. The results suggest that the ion-material interactions are considerably dominated by the design of the drop-cast PEDOT:PSS on Nafion.
Associated {Upsilon}+{gamma} production at the LHC in the k{sub t}-factorization approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baranov, S. P.
In the framework of the k{sub t}-factorization approach, the photon-associated production of {Upsilon} mesons at the present-day LHC conditions is studied. The differential cross sections and polarization parameters are calculated in the ''helicity'' and Collins-Soper systems. Special attention is paid to the effect of experimental cuts that can dramatically change the visible lepton angular distributions.
Sayseng, Vincent; Grondin, Julien; Konofagou, Elisa E
2018-05-01
Coherent compounding methods using the full or partial transmit aperture have been investigated as a possible means of increasing strain measurement accuracy in cardiac strain imaging; however, the optimal transmit parameters in either compounding approach have yet to be determined. The relationship between strain estimation accuracy and transmit parameters-specifically the subaperture, angular aperture, tilt angle, number of virtual sources, and frame rate-in partial aperture (subaperture compounding) and full aperture (steered compounding) fundamental mode cardiac imaging was thus investigated and compared. Field II simulation of a 3-D cylindrical annulus undergoing deformation and twist was developed to evaluate accuracy of 2-D strain estimation in cross-sectional views. The tradeoff between frame rate and number of virtual sources was then investigated via transthoracic imaging in the parasternal short-axis view of five healthy human subjects, using the strain filter to quantify estimation precision. Finally, the optimized subaperture compounding sequence (25-element subperture, 90° angular aperture, 10 virtual sources, 300-Hz frame rate) was compared to the optimized steered compounding sequence (60° angular aperture, 15° tilt, 10 virtual sources, 300-Hz frame rate) via transthoracic imaging of five healthy subjects. Both approaches were determined to estimate cumulative radial strain with statistically equivalent precision (subaperture compounding E(SNRe %) = 3.56, and steered compounding E(SNRe %) = 4.26).
The Hydrogen Epoch of Reionization Array Dish. I. Beam Pattern Measurements and Science Implications
NASA Astrophysics Data System (ADS)
Neben, Abraham R.; Bradley, Richard F.; Hewitt, Jacqueline N.; DeBoer, David R.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Cheng, Carina; Ewall-Wice, Aaron; Patra, Nipanjana; Thyagarajan, Nithyanandan; Bowman, Judd; Dickenson, Roger; Dillon, Joshua S.; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Jacobs, Daniel C.; Kohn, Saul A.; Klima, Patricia J.; Moodley, Kavilan; Saliwanchik, Benjamin R. B.; Schaffner, Patrick; Shelton, John; Taylor, H. A.; Taylor, Rusty; Tegmark, Max; Wirt, Butch; Zheng, Haoxuan
2016-08-01
The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. In this paper, we focus on the angular response (I.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m2 in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ˜ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.
THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neben, Abraham R.; Hewitt, Jacqueline N.; Ewall-Wice, Aaron
2016-08-01
The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish withmore » simulations and measurements. In this paper, we focus on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m{sup 2} in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ∼ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.« less
Haldar, Justin P.; Leahy, Richard M.
2013-01-01
This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. PMID:23353603
Bunster, Claudio; Henneaux, Marc
2007-01-01
A striking property of an electric charge near a magnetic pole is that the system possesses angular momentum even when both the electric and the magnetic charges are at rest. The angular momentum is proportional to the product of the charges and independent of their distance. We analyze the effect of bringing gravitation into this remarkable system. To this end, we study an electric charge held at rest outside a magnetically charged black hole. We find that even if the electric charge is treated as a perturbation on a spherically symmetric magnetic Reissner–Nordstrom hole, the geometry at large distances is that of a magnetic Kerr–Newman black hole. When the charge approaches the horizon and crosses it, the exterior geometry becomes that of a Kerr–Newman hole, with electric and magnetic charges and with total angular momentum given by the standard value for a charged monopole pair. Thus, in accordance with the “no-hair theorem,” once the charge is captured by the black hole, the angular momentum associated with the charge monopole system loses all traces of its exotic origin and is perceived from the outside as common rotation. It is argued that a similar analysis performed on Taub–NUT space should give the same result. PMID:17626789
Protein Structure Classification and Loop Modeling Using Multiple Ramachandran Distributions.
Najibi, Seyed Morteza; Maadooliat, Mehdi; Zhou, Lan; Huang, Jianhua Z; Gao, Xin
2017-01-01
Recently, the study of protein structures using angular representations has attracted much attention among structural biologists. The main challenge is how to efficiently model the continuous conformational space of the protein structures based on the differences and similarities between different Ramachandran plots. Despite the presence of statistical methods for modeling angular data of proteins, there is still a substantial need for more sophisticated and faster statistical tools to model the large-scale circular datasets. To address this need, we have developed a nonparametric method for collective estimation of multiple bivariate density functions for a collection of populations of protein backbone angles. The proposed method takes into account the circular nature of the angular data using trigonometric spline which is more efficient compared to existing methods. This collective density estimation approach is widely applicable when there is a need to estimate multiple density functions from different populations with common features. Moreover, the coefficients of adaptive basis expansion for the fitted densities provide a low-dimensional representation that is useful for visualization, clustering, and classification of the densities. The proposed method provides a novel and unique perspective to two important and challenging problems in protein structure research: structure-based protein classification and angular-sampling-based protein loop structure prediction.
Electromagnetic pulses, localized and causal
NASA Astrophysics Data System (ADS)
Lekner, John
2018-01-01
We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.
NASA Technical Reports Server (NTRS)
Kolb, Edward W.
1989-01-01
A Friedmann-Robertson-Walker cosmology with energy density decreasing in expansion as 1/R-squared, where R is the Robertson-Walker scale factor, is studied. In such a model the universe expands with constant velocity; hence the term coasting cosmology. Observational consequences of such a model include the age of the universe, the luminosity distance-redshift relation (the Hubble diagram), the angular diameter distance-redshift relation, and the galaxy number count as a function of redshift. These observations are used to limit the parameters of the model. Among the interesting consequences of the model are the possibility of an ever-expanding closed universe, a model universe with multiple images at different redshifts of the same object, a universe with Omega - 1 not equal to 0 stable in expansion, and a closed universe with radius smaller than 1/H(0).
Twist-induced guidance in coreless photonic crystal fiber: A helical channel for light.
Beravat, Ramin; Wong, Gordon K L; Frosz, Michael H; Xi, Xiao Ming; Russell, Philip St J
2016-11-01
A century ago, Einstein proposed that gravitational forces were the result of the curvature of space-time and predicted that light rays would deflect when passing a massive celestial object. We report that twisting the periodically structured "space" within a coreless photonic crystal fiber creates a helical channel where guided modes can form despite the absence of any discernible core structure. Using a Hamiltonian optics analysis, we show that the light rays follow closed spiral or oscillatory paths within the helical channel, in close analogy with the geodesics of motion in a two-dimensional gravitational field. The mode diameter shrinks, and its refractive index rises, as the twist rate increases. The birefringence, orbital angular momentum, and dispersion of these unusual modes are explored.
NASA Technical Reports Server (NTRS)
Choi, B. H.; Poe, R. T.
1977-01-01
A detailed vibrational-rotational (V-R) close-coupling formulation of electron-diatomic-molecule scattering is developed in which the target molecular axis is chosen to be the z-axis and the resulting coupled differential equation is solved in the moving body-fixed frame throughout the entire interaction region. The coupled differential equation and asymptotic boundary conditions in the body-fixed frame are given for each parity, and procedures are outlined for evaluating V-R transition cross sections on the basis of the body-fixed transition and reactance matrix elements. Conditions are discussed for obtaining identical results from the space-fixed and body-fixed formulations in the case where a finite truncated basis set is used. The hybrid theory of Chandra and Temkin (1976) is then reformulated, relevant expressions and formulas for the simultaneous V-R transitions of the hybrid theory are obtained in the same forms as those of the V-R close-coupling theory, and distorted-wave Born-approximation expressions for the cross sections of the hybrid theory are presented. A close-coupling approximation that conserves the internuclear axis component of the incident electronic angular momentum (l subscript z-prime) is derived from the V-R close-coupling formulation in the moving body-fixed frame.
Imaging of particles with 3D full parallax mode with two-color digital off-axis holography
NASA Astrophysics Data System (ADS)
Kara-Mohammed, Soumaya; Bouamama, Larbi; Picart, Pascal
2018-05-01
This paper proposes an approach based on two orthogonal views and two wavelengths for recording off-axis two-color holograms. The approach permits to discriminate particles aligned along the sight-view axis. The experimental set-up is based on a double Mach-Zehnder architecture in which two different wavelengths provides the reference and the object beams. The digital processing to get images from the particles is based on convolution so as to obtain images with no wavelength dependence. The spatial bandwidth of the angular spectrum transfer function is adapted in order to increase the maximum reconstruction distance which is generally limited to a few tens of millimeters. In order to get the images of particles in the 3D volume, a calibration process is proposed and is based on the modulation theorem to perfectly superimpose the two views in a common XYZ axis. The experimental set-up is applied to two-color hologram recording of moving non-calibrated opaque particles with average diameter at about 150 μm. After processing the two-color holograms with image reconstruction and view calibration, the location of particles in the 3D volume can be obtained. Particularly, ambiguity about close particles, generating hidden particles in a single-view scheme, can be removed to determine the exact number of particles in the region of interest.
Asteroid (367943) 2012 DA14 Flyby Spin State Analysis
NASA Astrophysics Data System (ADS)
Benson, Conor; Scheeres, Daniel J.; Moskovitz, Nicholas
2017-10-01
On February 15, 2013 asteroid 2012 DA14 experienced an extremely close Earth encounter, passing within 27700 km altitude. This flyby gave observers the chance to directly detect flyby-induced changes to the asteroid’s spin state and physical properties. The strongest shape and spin state constraints were provided by Goldstone delay-Doppler radar and visible-wavelength photometry taken after closest approach. These data indicated a roughly 40 m x 20 m object in non-principal axis rotation. NPA states are described by two fundamental periods. Pφ is the average precession period of the long/short axis about the angular momentum vector and Pψ is the rotation period about the long/short axis.WindowCLEAN (Belton & Gandhi 1988) power spectrum analysis of the post flyby light curve showed three prominent frequencies, two of which were 1:2 multiples of each other. Mueller et al. (2002) suggest peaks with this relationship are 1/Pφ and 2/Pφ, implying that Pφ = 6.35 hr. Likely values for Pψ were then 8.72, 13.95, or 23.39 hr. These Pφ,Pψ pairs yielded six candidate spin states in total, one LAM and one SAM per pair.Second to fourth order, two-dimensional Fourier series fits to the light curve were best for periods of 6.359 and 8.724 hr. The two other candidate pairs were also in the top ten fits. Inertia constraints of a roughly 2:1 uniform density ellipsoid eliminated two of the three SAM states. Using JPL Horizons ephemerides and Lambertian ellipsoids, simulated light curves were generated. The simulated and observed power spectra were then compared for all angular momentum poles and reasonable ellipsoid elongations. Only the Pφ = 6.359 hr and Pψ = 8.724 hr LAM state produced light curves consistent with the observed frequency structure. All other states were clearly incompatible. With two well-fitting poles found, phasing the initial attitude and angular velocity yielded plausible matches to the observed light curve. Neglecting gravitational torques, neither pole agreed with the observed pre-flyby light curve, suggesting that the asteroid’s spin state changed during the encounter, consistent with numerical simulation predictions. The consistency between the pre-flyby observations and simulated states will be discussed.
Implications of the Deep Minimum for Slow Solar Wind Origin
NASA Astrophysics Data System (ADS)
Antiochos, S. K.; Mikic, Z.; Lionello, R.; Titov, V. S.; Linker, J. A.
2009-12-01
The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of the Deep Minimum, affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at the Deep Minimum and describe further observational and theoretical tests. This work has been supported by the NASA HTP, SR&T, and LWS programs.
CLOSE BINARIES WITH INFRARED EXCESS: DESTROYERS OF WORLDS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matranga, M.; Drake, J. J.; Kashyap, V. L.
2010-09-10
We present the results of a Spitzer photometric investigation into the IR excesses of close binary systems. In a sample of 10 objects, excesses in Infrared Array Camera and MIPS24 bands implying the presence of warm dust are found for 3. For two objects, we do not find excesses reported in earlier IRAS studies. We discuss the results in the context of the scenario suggested by Rhee and co-workers, in which warm dust is continuously created by destructive collisions between planetary bodies. A simple numerical model for the steady-state distribution of dust in one IR excess system shows a centralmore » clearing of radius 0.22 AU caused by dynamical perturbations from the binary star. This is consistent with the size of the central clearing derived from the Spitzer spectral energy distribution. We conclude that close binaries could be efficient 'destroyers of worlds' and lead to destabilization of the orbits of their planetary progeny by magnetically driven angular momentum loss and secular shrinkage of the binary separation.« less
NASA Astrophysics Data System (ADS)
Samlan, C. T.; Naik, Dinesh N.; Viswanathan, Nirmal K.
2016-09-01
Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena.
Samlan, C T; Naik, Dinesh N; Viswanathan, Nirmal K
2016-09-14
Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena.
Tidal Interaction among Red Giants Close Binary Systems in APOGEE Database
NASA Astrophysics Data System (ADS)
Sun, Meng; Arras, Phil; Majewski, Steven R.; Troup, Nicholas William; Weinberg, Nevin N.
2017-01-01
Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), the tidal evolution of binaries containing a red giant branch (RGB) star with a stellar or substellar companion was investigated. The tide raised by the companion in the RGB star leads to exchange of angular momentum between the orbit and the stellar spin, causing the orbit to contract. The tidal dissipation rate is computed using turbulent viscosity acting on the equilibrium tidal flow, where careful attention is paid to the effects of reduced viscosity for close-in companions. Evolutionary models for the RGB stars, from the zero-age main sequence to the present, were acquired from the MESA code. "Standard" turbulent viscosity gives rise to such a large orbital decay that many observed systems have decay times much shorter than the RGB evolution time. Several theories for "reduced" turbulent viscosity are investigated, and reduce the number of systems with uncomfortably short decay times.
NASA Technical Reports Server (NTRS)
Moore, Ron; Falconer, David; Sterling, Alphonse
2008-01-01
We present evidence supporting the view that, while many flares are produced by a confined magnetic explosion that does not produce a CME, every CME is produced by an ejective magnetic explosion that also produces a flare. The evidence is that the observed heliocentric angular width of the full-blown CME plasmoid in the outer corona (at 3 to 20 solar radii) is about that predicted by the standard model for CME production, from the amount of magnetic flux covered by the co-produced flare arcade. In the standard model, sheared and twisted sigmoidal field in the core of an initially closed magnetic arcade erupts. As it erupts, tether-cutting reconnection, starting between the legs of the erupting sigmoid and continuing between the merging stretched legs of the enveloping arcade, simultaneously produces a growing flare arcade and unleashes the erupting sigmoid and arcade to become the low-beta plasmoid (magnetic bubble) that becomes the CME. The flare arcade is the downward product of the reconnection and the CME plasmoid is the upward product. The unleashed, expanding CME plasmoid is propelled into the outer corona and solar wind by its own magnetic field pushing on the surrounding field in the inner and outer corona. This tether-cutting scenario predicts that the amount of magnetic flux in the full-blown CME plasmoid nearly equals that covered by the full-grown flare arcade. This equality predicts (1) the field strength in the flare region from the ratio of the angular width of the CME in the outer corona to angular width of the full-grown flare arcade, and (2) an upper bound on the angular width of the CME in the outer corona from the total magnetic flux in the active region from which the CME explodes. We show that these predictions are fulfilled by observed CMEs. This agreement validates the standard model. The model explains (1) why most CMEs have much greater angular widths than their co-produced flares, and (2) why the radial path of a CME in the outer corona can be laterally far offset from the co-produced flare.
What confines the rings of Saturn?
NASA Astrophysics Data System (ADS)
Tajeddine, Radwan; Nicholson, Philip D.; El Moutamid, Maryame; Longaretti, Pierre-Yves; Burns, Joseph A.
2017-10-01
The viscous spreading of planetary rings is believed to be counteracted by satellite torques, either through an individual resonance or through overlapping resonances (when the satellite is close to the ring edge). For the A ring of Saturn, it has been commonly believed that the satellite Janus alone can prevent the ring from spreading via its 7:6 Lindblad resonance. We discuss this common misconception and show that, in reality, the A ring is confined by the contributions from the group of satellites Pan, Atlas, Prometheus, Pandora, Janus, Epimetheus, and Mimas, whose resonances gradually decrease the angular momentum flux transported outward through the ring via density and bending waves. We further argue that this decrease in angular momentum flux occurs through the mechanism of ‘flux reversal’.We find that the Janus 7:6 torque is relatively feeble, as is the comparable torque of the nearby small satellite Atlas, each amounting to less than one-tenth of the angular momentum transport carried by the A ring. But the cumulative torques of the many other satellite resonances in the A ring sufficiently reduce the angular momentum flux through the rings so that the torques due to Janus and Atlas are effective in confining the outer edge of the ring.Furthermore, we use the magnitude of the satellites’ resonance torques to estimate the effective viscosity profile across the A ring, showing that it decreases from ~50 cm2 s-1 at the inner edge to less than ~11 cm2 s-1 at the outer edge. The gradual estimated decrease of the angular momentum flux and effective viscosity are roughly consistent with results obtained by balancing the shepherding torques from Pan and Daphnis with the viscous torque at the edges of the Encke and Keeler gaps, as well as the edge of the A ring.On the other hand, the Mimas 2:1 Lindblad resonance alone seems to be capable of confining the edge of the B ring, and contrary to the situation in the A ring, we show that the effective viscosity across the B ring is relatively constant at ~24-30 cm2 s-1.
Evidence for Cluster to Cluster Variations in Low-mass Stellar Rotational Evolution
NASA Astrophysics Data System (ADS)
Coker, Carl T.; Pinsonneault, Marc; Terndrup, Donald M.
2016-12-01
The concordance model for angular momentum evolution postulates that star-forming regions and clusters are an evolutionary sequence that can be modeled with assumptions about protostar-disk coupling, angular momentum loss from magnetized winds that saturates in a mass-dependent fashion at high rotation rates, and core-envelope decoupling for solar analogs. We test this approach by combining established data with the large h Per data set from the MONITOR project and new low-mass Pleiades data. We confirm prior results that young low-mass stars can be used to test star-disk coupling and angular momentum loss independent of the treatment of internal angular momentum transport. For slow rotators, we confirm the need for star-disk interactions to evolve the ONC to older systems, using h Per (age 13 Myr) as our natural post-disk case. There is no evidence for extremely long-lived disks as an alternative to core-envelope decoupling. However, our wind models cannot evolve rapid rotators from h Per to older systems consistently, and we find that this result is robust with respect to the choice of angular momentum loss prescription. We outline two possible solutions: either there is cosmic variance in the distribution of stellar rotation rates in different clusters or there are substantially enhanced torques in low-mass rapid rotators. We favor the former explanation and discuss observational tests that could be used to distinguish them. If the distribution of initial conditions depends on environment, models that test parameters by assuming a universal underlying distribution of initial conditions will need to be re-evaluated.
Designing single- and multiple-shell sampling schemes for diffusion MRI using spherical code.
Cheng, Jian; Shen, Dinggang; Yap, Pew-Thian
2014-01-01
In diffusion MRI (dMRI), determining an appropriate sampling scheme is crucial for acquiring the maximal amount of information for data reconstruction and analysis using the minimal amount of time. For single-shell acquisition, uniform sampling without directional preference is usually favored. To achieve this, a commonly used approach is the Electrostatic Energy Minimization (EEM) method introduced in dMRI by Jones et al. However, the electrostatic energy formulation in EEM is not directly related to the goal of optimal sampling-scheme design, i.e., achieving large angular separation between sampling points. A mathematically more natural approach is to consider the Spherical Code (SC) formulation, which aims to achieve uniform sampling by maximizing the minimal angular difference between sampling points on the unit sphere. Although SC is well studied in the mathematical literature, its current formulation is limited to a single shell and is not applicable to multiple shells. Moreover, SC, or more precisely continuous SC (CSC), currently can only be applied on the continuous unit sphere and hence cannot be used in situations where one or several subsets of sampling points need to be determined from an existing sampling scheme. In this case, discrete SC (DSC) is required. In this paper, we propose novel DSC and CSC methods for designing uniform single-/multi-shell sampling schemes. The DSC and CSC formulations are solved respectively by Mixed Integer Linear Programming (MILP) and a gradient descent approach. A fast greedy incremental solution is also provided for both DSC and CSC. To our knowledge, this is the first work to use SC formulation for designing sampling schemes in dMRI. Experimental results indicate that our methods obtain larger angular separation and better rotational invariance than the generalized EEM (gEEM) method currently used in the Human Connectome Project (HCP).
Köhn, Andreas
2010-11-07
The coupled-cluster singles and doubles method augmented with single Slater-type correlation factors (CCSD-F12) determined by the cusp conditions (also denoted as SP ansatz) yields results close to the basis set limit with only small overhead compared to conventional CCSD. Quantitative calculations on many-electron systems, however, require to include the effect of connected triple excitations at least. In this contribution, the recently proposed [A. Köhn, J. Chem. Phys. 130, 131101 (2009)] extended SP ansatz and its application to the noniterative triples correction CCSD(T) is reviewed. The approach allows to include explicit correlation into connected triple excitations without introducing additional unknown parameters. The explicit expressions are presented and analyzed, and possible simplifications to arrive at a computationally efficient scheme are suggested. Numerical tests based on an implementation obtained by an automated approach are presented. Using a partial wave expansion for the neon atom, we can show that the proposed ansatz indeed leads to the expected (L(max)+1)(-7) convergence of the noniterative triples correction, where L(max) is the maximum angular momentum in the orbital expansion. Further results are reported for a test set of 29 molecules, employing Peterson's F12-optimized basis sets. We find that the customary approach of using the conventional noniterative triples correction on top of a CCSD-F12 calculation leads to significant basis set errors. This, however, is not always directly visible for total CCSD(T) energies due to fortuitous error compensation. The new approach offers a thoroughly explicitly correlated CCSD(T)-F12 method with improved basis set convergence of the triples contributions to both total and relative energies.
NASA Astrophysics Data System (ADS)
Estrada, P. R.; Mosqueira, I.
2003-05-01
Mosqueira and Estrada (2003a) argue that following giant planet accretion a largely quiescent circumplanetary disk may form with most of the mass inside a radius located outside, but perhaps close to, the centrifugal radius rc = RH/48, where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, and extending as far as the irregular satellites at RH/5 due to the high specific angular momentum of parcels of gas accreted from distances several times RH during the final stages of planetary growth (Lubow et al. 1999). Provided that allowances are made for the capture of Triton from heliocentric orbit, this picture fits well with the primordial satellite systems of all four giant planets. Because strong gas turbulence would smooth out the gas surface density of the disk, this description can only apply if the turbulence subsides as planetary accretion ceases. Although the viability of a hydrodynamic shear instability in Keplerian disks that can sustain significant post-accretion turbulence and drive evolution of the gas disk is in serious doubt (see Mosqueira et al. this conference), the possibility has not yet been totally ruled out. This leads us to consider gas-poor scenarios that might produce a close-in regular satellite system. To this end, we re-examine the ideas of Safronov et al. (1986) to see whether a gas-free (or nearly gas-free) model can be made consistent with the extent of the regular satellites of the giant planets. In this model, planetesimals containing most of the mass of solids (Mizuno et al. 1978; Weidenschilling 1997) that are de-coupled from the gas and whose dynamics must be followed independently are collisionally captured and form a swarm of circumplanetary objects lasting for perhaps ˜ 106 years. While such a swarm might occupy a significant fraction of the Hill radius of the planet, the small net angular momentum of the swarm might lead to the formation of close-in prograde satellites as observed. A key point that this model must contend with is how to capture sufficient mass to form the Galilean satellites while still making Callisto partially differentiated. Other points of comparison with the model of Mosqueira and Estrada (2003a, b) may be briefly discussed (such as the concentration of mass in Titan, the apparent lack of objects between the regular and irregular satellites, the low density of the small Saturnian satellites, and the compositional gradient of the Galilean satellites).
Characterization of the nanoDot OSLD dosimeter in CT.
Scarboro, Sarah B; Cody, Dianna; Alvarez, Paola; Followill, David; Court, Laurence; Stingo, Francesco C; Zhang, Di; McNitt-Gray, Michael; Kry, Stephen F
2015-04-01
The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80-140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD.
Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Sanner, Robert M.
2005-01-01
In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. The development includes an analysis of the estimator stability given errors in the measured attitude. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given, including scenarios with erroneous measured attitudes. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.
2013-03-01
alerts 0.00011 3.26E-06 alternative 0.000161 0.000426 amp 5.25E-05 0.003127 amplifier 0.001501 0.000277 angular 0.000103 3.26E-06 anticipate 0.000755...0.000217 0.00056 amp 4.07E-05 0.004884 amplifier 0.002158 0.00043 angular 0.000109 4.48E-06 anticipation 0.000136 0.000453 aperture 0.000624...0.000215 instructed 0.00057 4.93E-05 java 0.000258 4.48E-05 refactoring 0.00019 2.69E-05 strike 0.000271 5.83E-05 touches 1.36E-05 9.86E-05
Optical communication beyond orbital angular momentum
Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew
2016-01-01
Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks. PMID:27283799
NASA Astrophysics Data System (ADS)
Bugaychuk, Svitlana A.; Gnatovskyy, Vladimir O.; Sidorenko, Andrey V.; Pryadko, Igor I.; Negriyko, Anatoliy M.
2015-11-01
New approach for the correlation technique, which is based on multiple periodic structures to create a controllable angular spectrum, is proposed and investigated both theoretically and experimentally. The transformation of an initial laser beam occurs due to the actions of consecutive phase periodic structures, which may differ by their parameters. Then, after the Fourier transformation of a complex diffraction field, the output diffraction orders will be changed both by their intensities and by their spatial position. The controllable change of output angular spectrum is carried out by a simple control of the parameters of the periodic structures. We investigate several simple examples of such management.
Mapping GRACE Accelerometer Error
NASA Astrophysics Data System (ADS)
Sakumura, C.; Harvey, N.; McCullough, C. M.; Bandikova, T.; Kruizinga, G. L. H.
2017-12-01
After more than fifteen years in orbit, instrument noise, and accelerometer noise in particular, remains one of the limiting error sources for the NASA/DLR Gravity Recovery and Climate Experiment mission. The recent V03 Level-1 reprocessing campaign used a Kalman filter approach to produce a high fidelity, smooth attitude solution fusing star camera and angular acceleration data. This process provided an unprecedented method for analysis and error estimation of each instrument. The accelerometer exhibited signal aliasing, differential scale factors between electrode plates, and magnetic effects. By applying the noise model developed for the angular acceleration data to the linear measurements, we explore the magnitude and geophysical pattern of gravity field error due to the electrostatic accelerometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meichner, Christoph, E-mail: christoph.meichner@uni-bayreuth.de; Kador, Lothar, E-mail: lothar.kador@uni-bayreuth.de; Schedl, Andreas E.
2015-08-15
We present two approaches for measuring the refractive index of transparent solids in the visible spectral range based on diffraction gratings. Both require a small spot with a periodic pattern on the surface of the solid, collimated monochromatic light, and a rotation stage. We demonstrate the methods on a polydimethylsiloxane film (Sylgard{sup ®} 184) and compare our data to those obtained with a standard Abbe refractometer at several wavelengths between 489 and 688 nm. The results of our approaches show good agreement with the refractometer data. Possible error sources are analyzed and discussed in detail; they include mainly the linewidthmore » of the laser and/or the angular resolution of the rotation stage. With narrow-band light sources, an angular accuracy of ±0.025{sup ∘} results in an error of the refractive index of typically ±5 ⋅ 10{sup −4}. Information on the sample thickness is not required.« less
Mental chronometry with simple linear regression.
Chen, J Y
1997-10-01
Typically, mental chronometry is performed by means of introducing an independent variable postulated to affect selectively some stage of a presumed multistage process. However, the effect could be a global one that spreads proportionally over all stages of the process. Currently, there is no method to test this possibility although simple linear regression might serve the purpose. In the present study, the regression approach was tested with tasks (memory scanning and mental rotation) that involved a selective effect and with a task (word superiority effect) that involved a global effect, by the dominant theories. The results indicate (1) the manipulation of the size of a memory set or of angular disparity affects the intercept of the regression function that relates the times for memory scanning with different set sizes or for mental rotation with different angular disparities and (2) the manipulation of context affects the slope of the regression function that relates the times for detecting a target character under word and nonword conditions. These ratify the regression approach as a useful method for doing mental chronometry.
Phase-space finite elements in a least-squares solution of the transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumm, C.; Fan, W.; Pautz, S.
2013-07-01
The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less
Servo Driven Corotation: Development of AN Inertial Clock.
NASA Astrophysics Data System (ADS)
Cheung, Wah-Kwan Stephen
An inertial clock to test non-metricity of gravity is proposed here. A first, room-temperature, servo corotation -protected, double magnetically suspended precision rotor system is developed for this purpose. The specific goal was to exhibit the properties of such a clock in its entirety at whatever level of precision was achievable. A monolithic system has been completed for these preliminary studies. It includes particular development of individual experimental sub-systems (a hybrid double magnetic suspension; a diffusion pumping system; a microcomputer -controlled eddy-current drive system; and the angular period measuring schemes for the doubly suspended rotors). Double magnetic suspension had been investigated by Beams for other purposes. The upper transducer is optical but parametrized and the lower transducer employs the frequency modulation characteristic of a LC tank circuit. The doubly suspended rotors corotate so that the upper rotor is servoed to rotate at the same angular velocity as that of the lower rotor. This creates a "drag free" environment for the lower rotor and effectively eliminates the gas drag on the lower rotor. Consequently, the decay time constant of the lower rotor increases. With other means of protection, the lower rotor will then, with perfect system operation, suffer no drag and therefore become the inertial time keeper. A commercial microcomputer is introduced to execute the servo-corotation. The tests thus far are, with one exception, run at atmospheric pressure. An idealized analysis for open and closed loop corotation is shown. Such analysis includes only the viscous drag acting on the corotating rotors. The analysis suggests that angular position control be added to the present feedback drive which is of derivative nature only. Open and closed corotation runs show that a strong torsional coupling besides that of the gas drag exists between the rotors. When misalignment of the support pole pieces is deliberately made significant, a stronger coupling between the rotors results. The coupling is suspected to be magnetic in nature. The complicated geometry of the double magnetic suspension scheme makes it difficult to evaluate the known mechanical cranking effect applied to this situation.
SCExAO: First Results and On-Sky Performance
NASA Astrophysics Data System (ADS)
Currie, Thayne; Guyon, Olivier; Martinache, Frantz; Clergeon, Christophe; McElwain, Michael; Thalmann, Christian; Jovanovic, Nemanja; Singh, Garima; Kudo, Tomoyuki
2014-01-01
We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plane wavefront control (``speckle nulling''). SCExAO will soon be coupled with a high-order, Pyramid wavefront sensor which will yield > 90% Strehl ratio and enable 106-107 contrast at small angular separations allowing us to image gas giant planets at solar system scales. Upcoming instruments like VAMPIRES, FIRST, and CHARIS will expand SCExAO's science capabilities.
Killing-Yano tensors of order n - 1
NASA Astrophysics Data System (ADS)
Batista, Carlos
2014-08-01
The properties of a Killing-Yano tensor of order n-1 in an n-dimensional manifold are investigated. The integrability conditions are worked out and all metrics admitting a Killing-Yano tensor of order n-1 are found. A connection between such tensors and a generalization of the concept of angular momentum is pointed out. A theorem on how to generate closed conformal Killing vectors using the symmetries of a manifold is proved and used to find all Killing-Yano tensors of order n-1 of a maximally symmetric space.
Optical memory effect from polarized Laguerre-Gaussian light beam in light-scattering turbid media
NASA Astrophysics Data System (ADS)
Shumyatsky, Pavel; Milione, Giovanni; Alfano, Robert R.
2014-06-01
Propagation effects of polarized Laguerre-Gaussian light with different orbital angular momentum (L) in turbid media are described. The optical memory effect in scattering media consisting of small and large size (compared to the wavelength) scatterers is investigated for scattered polarized light. Imaging using polarized laser modes with a varying orbital strength L-parameter was performed. The backscattered image quality (contrast) was enhanced by more than an order of magnitude using circularly polarized light when the concentration of scatterers was close to invisibility of the object.
[Vestibular compensation studies]. [Vestibular Compensation and Morphological Studies
NASA Technical Reports Server (NTRS)
Perachio, Adrian A. (Principal Investigator)
1996-01-01
The following topics are reported: neurophysiological studies on MVN neurons during vestibular compensation; effects of spinal cord lesions on VNC neurons during compensation; a closed-loop vestibular compensation model for horizontally canal-related MVN neurons; spatiotemporal convergence in VNC neurons; contributions of irregularly firing vestibular afferents to linear and angular VOR's; application to flight studies; metabolic measures in vestibular neurons; immediate early gene expression following vestibular stimulation; morphological studies on primary afferents, central vestibular pathways, vestibular efferent projection to the vestibular end organs, and three-dimensional morphometry and imaging.
YORP: Influence on Rotation Rate
NASA Astrophysics Data System (ADS)
Golubov, A. A.; Krugly, Yu. N.
2010-06-01
We have developed a semi-analytical model for calculating angular acceleration of asteroids due to Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The calculation of the YORP effect has been generalized for the case of elliptic orbits. It has been shown that the acceleration does not depend on thermal inertia of the asteroid's surface. The model was applied to the asteroid 1620 Geographos and led to acceleration 2×10^{-18}s^{-2}. This value is close to the acceleration obtained from photometric observations of Geographos by Durech et al. [1].
European Workshop on Planetary Sciences, Rome, Italy, April 23-27, 1979, Proceedings. Part 1
NASA Astrophysics Data System (ADS)
1980-02-01
Papers are presented on the dynamics and evolution of the solar system and its components. Specific topics include the dynamic stability of the solar system, the tidal friction theory of the earth moon system, the stability and irregularity of extrasolar planetary systems, angular momentum and magnetic braking during star formation, the collisional growth of planetesimals, the dynamics, interrelations and evolution of the asteroids and comets, the formation and stability of Saturn's rings, and the importance of nearly tangent orbits in planetary close encounters.
Maslov indices, Poisson brackets, and singular differential forms
NASA Astrophysics Data System (ADS)
Esterlis, I.; Haggard, H. M.; Hedeman, A.; Littlejohn, R. G.
2014-06-01
Maslov indices are integers that appear in semiclassical wave functions and quantization conditions. They are often notoriously difficult to compute. We present methods of computing the Maslov index that rely only on typically elementary Poisson brackets and simple linear algebra. We also present a singular differential form, whose integral along a curve gives the Maslov index of that curve. The form is closed but not exact, and transforms by an exact differential under canonical transformations. We illustrate the method with the 6j-symbol, which is important in angular-momentum theory and in quantum gravity.
Scattering of Dirac waves off Kerr black holes
NASA Astrophysics Data System (ADS)
Chakrabarti, Sandip K.; Mukhopadhyay, Banibrata
2000-10-01
Chandrasekhar separated the Dirac equation for spinning and massive particles in Kerr geometry into radial and angular parts. Here we solve the complete wave equation and find out how the Dirac wave scatters off Kerr black holes. The eigenfunctions, eigenvalues and reflection and transmission co-efficients are computed. We compare the solutions with several parameters to show how a spinning black hole recognizes the mass and energy of incoming waves. Very close to the horizon the solutions become independent of the particle parameters, indicating the universality of the behaviour.
Goertz, R.C.; Lindberg, J.F.
1962-01-30
A reeling device is designed for an electrical cable supplying power to the slave slde of a remote control manipulator mounted on a movable vehicle. As the vehicle carries the slave side about in a closed room, the device reels the cable in and out to maintain a variable length of the cable between the vehicle and a cable inlet in the wall of the room. The device also handles a fixed length of cable between the slave side and the vehicle, in spite of angular movement of the slave side with respect to the vehicle. (AEC)
Survival of extrasolar giant planet moons in planet-planet scattering
NASA Astrophysics Data System (ADS)
CIAN HONG, YU; Lunine, Jonathan; Nicholson, Phillip; Raymond, Sean
2015-12-01
Planet-planet scattering is the best candidate mechanism for explaining the eccentricity distribution of exoplanets. Here we study the survival and dynamics of exomoons under strong perturbations during giant planet scattering. During close encounters, planets and moons exchange orbital angular momentum and energy. The most common outcomes are the destruction of moons by ejection from the system, collision with the planets and the star, and scattering of moons onto perturbed but still planet-bound orbits. A small percentage of interesting moons can remain bound to ejected (free-floating) planets or be captured by a different planet. Moons' survival rate is correlated with planet observables such as mass, semi-major axis, eccentricity and inclination, as well as the close encounter distance and the number of close encounters. In addition, moons' survival rate and dynamical outcomes are predetermined by the moons' initial semi-major axes. The survival rate drops quickly as moons' distances increase, but simulations predict a good chance of survival for the Galilean moons. Moons with different dynamical outcomes occupy different regions of orbital parameter space, which may enable the study of moons' past evolution. Potential effects of planet obliquity evolution caused by close encounters on the satellites’ stability and dynamics will be reported, as well as detailed and systematic studies of individual close encounter events.
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhong, Z.; Ruiz, H. S.; Geng, J.; Coombs, T. A.
2017-02-01
The physical understanding and numerical modelling of superconducting devices which exploit the high performance of second generation high temperature superconducting tapes (2G-HTS), is commonly hindered by the lack of accurate functions which allow the consideration of the in-field dependence of the critical current. This is true regardless of the manufacturer of the superconducting tape. In this paper, we present a general approach for determining a unified function I c(B, θ), ultimately capable of describing the magneto-angular dependence of the in-field critical current of commercial 2G-HTS tapes in the Lorentz configuration. Five widely different superconducting tapes, provided by three different manufacturers, have been tested in a liquid nitrogen bath and external magnetic fields of up to 400 mT. The critical current was recorded at 90 different orientations of the magnetic field ranging from θ = 0°, i.e., with B aligned with the crystallographic ab-planes of the YBCO layer, towards ±90°, i.e., with B perpendicular to the wider surfaces of the 2G-HTS tape. The whole set of experimental data has been analysed using a novel multi-objective model capable of predicting a sole function I c(B, θ). This allows an accurate validation of the experimental data regardless of the fabrication differences and widths of the superconducting tapes. It is shown that, in spite of the wide set of differences between the fabrication and composition of the considered tapes, at liquid nitrogen temperature the magneto-angular dependence of the in-field critical current of YBCO-based 2G-HTS tapes, can be described by a universal function I c(f(B), θ), with a power law field dependence dominated by the Kim’s factor B/B 0, and an angular dependence moderated by the electron mass anisotropy ratio of the YBCO layer.
Hewett, Timothy E; Myer, Gregory D; Zazulak, Bohdanna T
2008-09-01
Our purpose was to determine if females demonstrate decreased hamstrings to quadriceps peak torque (H/Q) ratios compared to males and if H/Q ratios increase with increased isokinetic velocity in both sexes. Maturation disproportionately increases hamstrings peak torque at high velocity in males, but not females. Therefore, we hypothesised that mature females would demonstrate decreased H/Q ratios compared to males and the difference in H/Q ratio between sexes would increase as isokinetic velocity increased. Studies that analysed the H/Q ratio with gravity corrected isokinetic strength testing reported between 1967 and 2004 were included in our review and analysis. Keywords were hamstrings/quadriceps, isokinetics, peak torque and gravity corrected. Medline and Smart databases were searched combined with cross-checked bibliographic reference lists of the publications to determine studies to be included. Twenty-two studies were included with a total of 1568 subjects (1145 male, 423 female). Males demonstrated a significant correlation between H/Q ratio and isokinetic velocity (R=0.634, p<0.0001), and a significant difference in the isokinetic H/Q ratio at the lowest angular velocity (47.8+/-2.2% at 30 degrees /s) compared to the highest velocity (81.4+/-1.1% at 360 degrees /s, p<0.001). In contrast, females did not demonstrate a significant relationship between H/Q ratio and isokinetic velocity (R=0.065, p=0.77) or a change in relative hamstrings strength as the speed increased (49.5+/-8.8% at 30 degrees /s; 51.0+/-5.7% at 360 degrees /s, p=0.84). Gender differences in isokinetic H/Q ratios were not observed at slower angular velocities. However, at high knee flexion/extension angular velocities, approaching those that occur during sports activities, significant gender differences were observed in the H/Q ratio. Females, unlike males, do not increase hamstrings to quadriceps torque ratios at velocities that approach those of functional activities.
First on-sky demonstration of the piezoelectric adaptive secondary mirror.
Guo, Youming; Zhang, Ang; Fan, Xinlong; Rao, Changhui; Wei, Ling; Xian, Hao; Wei, Kai; Zhang, Xiaojun; Guan, Chunlin; Li, Min; Zhou, Luchun; Jin, Kai; Zhang, Junbo; Deng, Jijiang; Zhou, Longfeng; Chen, Hao; Zhang, Xuejun; Zhang, Yudong
2016-12-15
We propose using a piezoelectric adaptive secondary mirror (PASM) in the medium-sized adaptive telescopes with a 2-4 m aperture for structure and control simplification by utilizing the piezoelectric actuators in contrast with the voice-coil adaptive secondary mirror. A closed-loop experimental setup was built for on-sky demonstration of the 73-element PASM developed by our laboratory. In this Letter, the PASM and the closed-loop adaptive optics system are introduced. High-resolution stellar images were obtained by using the PASM to correct high-order wavefront errors in May 2016. To the best of our knowledge, this is the first successful on-sky demonstration of the PASM. The results show that with the PASM as the deformable mirror, the angular resolution of the 1.8 m telescope can be effectively improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, T.M.C.; et al.
We present angular diameter distance measurements obtained by locating the BAO scale in the distribution of galaxies selected from the first year of Dark Energy Survey data. We consider a sample of over 1.3 million galaxies distributed over a footprint of 1318 degmore » $^2$ with $$0.6 < z_{\\rm photo} < 1$$ and a typical redshift uncertainty of $0.03(1+z)$. This sample was selected, as fully described in a companion paper, using a color/magnitude selection that optimizes trade-offs between number density and redshift uncertainty. We investigate the BAO signal in the projected clustering using three conventions, the angular separation, the co-moving transverse separation, and spherical harmonics. Further, we compare results obtained from template based and machine learning photometric redshift determinations. We use 1800 simulations that approximate our sample in order to produce covariance matrices and allow us to validate our distance scale measurement methodology. We measure the angular diameter distance, $$D_A$$, at the effective redshift of our sample divided by the true physical scale of the BAO feature, $$r_{\\rm d}$$. We obtain close to a 4 per cent distance measurement of $$D_A(z_{\\rm eff}=0.81)/r_{\\rm d} = 10.75\\pm 0.43 $$. These results are consistent with the flat $$\\Lambda$$CDM concordance cosmological model supported by numerous other recent experimental results.« less
Rouis, M; Coudrat, L; Jaafar, H; Filliard, J-R; Vandewalle, H; Barthelemy, Y; Driss, T
2015-12-01
To explore the isokinetic concentric strength of the knee muscle groups, and the relationship between the isokinetic knee extensors strength and the vertical jump performance in young elite female basketball players. Eighteen elite female basketball players performed a countermovement jump, and an isokinetic knee test using a Biodex dynamometer. The maximal isokinetic peak torque of the knee extensor and flexor muscles was recorded at four angular velocities (90°/s, 180°/s, 240°/s and 300°/s) for the dominant and non-dominant legs. The conventional hamstring/quadriceps ratio (H/Q) was assessed at each angular velocity for both legs. There was no significant difference between dominant and non-dominant leg whatever the angular velocity (all P>0.05). However, the H/Q ratio enhanced as the velocity increased from 180°/s to 300°/s (P<0.05). Furthermore, low to high significant positive correlations were detected between the isokinetic measures of the knee extensors and the vertical jump height. The highest one was found for the knee extensors peak torque at a velocity of 240°/s (r=0.88, P<0.001). The results accounted for an optimal velocity at which a strong relationship could be obtained between isokinetic knee extensors strength and vertical jump height. Interestingly, the H/Q ratio of the young elite female basketball players in the present study was unusual as it was close to that generally observed in regular sportsmen.
On the estimation and detection of the Rees-Sciama effect
NASA Astrophysics Data System (ADS)
Fullana, M. J.; Arnau, J. V.; Thacker, R. J.; Couchman, H. M. P.; Sáez, D.
2017-02-01
Maps of the Rees-Sciama (RS) effect are simulated using the parallel N-body code, HYDRA, and a run-time ray-tracing procedure. A method designed for the analysis of small, square cosmic microwave background (CMB) maps is applied to our RS maps. Each of these techniques has been tested and successfully applied in previous papers. Within a range of angular scales, our estimate of the RS angular power spectrum due to variations in the peculiar gravitational potential on scales smaller than 42/h megaparsecs is shown to be robust. An exhaustive study of the redshifts and spatial scales relevant for the production of RS anisotropy is developed for the first time. Results from this study demonstrate that (I) to estimate the full integrated RS effect, the initial redshift for the calculations (integration) must be greater than 25, (II) the effect produced by strongly non-linear structures is very small and peaks at angular scales close to 4.3 arcmin, and (III) the RS anisotropy cannot be detected either directly-in temperature CMB maps-or by looking for cross-correlations between these maps and tracers of the dark matter distribution. To estimate the RS effect produced by scales larger than 42/h megaparsecs, where the density contrast is not strongly non-linear, high accuracy N-body simulations appear unnecessary. Simulations based on approximations such as the Zel'dovich approximation and adhesion prescriptions, for example, may be adequate. These results can be used to guide the design of future RS simulations.
Intermode light diffusion in multimode optical waveguides with rough surfaces.
Stepanov, S; Chaikina, E I; Leskova, T A; Méndez, E R
2005-06-01
A theoretical analysis of incoherent intermode light power diffusion in multimode dielectric waveguides with rough (corrugated) surfaces is presented. The correlation length a of the surface-profile variations is assumed to be sufficiently large (a less less than lambda/2pi) to permit light scattering into the outer space only from the modes close to the critical angles of propagation and yet sufficiently small (a less less than d, where d is the average width of the waveguide) to permit direct interaction between a given mode and a large number of neighboring ones. The cases of a one-dimensional (1D) slab waveguide and a two-dimensional cylindrical waveguide (optical fiber) are analyzed, and we find that in both cases the partial differential equations that govern the evolution of the angular light power profile propagating along the waveguide are 1D and of the diffusion type. However, whereas in the former case the effective conductivity coefficient proves to be linearly dependent on the transverse-mode wave number, in the latter one the linear dependence is for the effective diffusion coefficient. The theoretical predictions are in reasonable agreement with experimental results for the intermode power diffusion in multimode (700 x 700) optical fibers with etched surfaces. The characteristic length of dispersion of a narrow angular power profile evaluated from the correlation length and standard deviation of heights of the surface profile proved to be in good agreement with the experimentally observed changes in the output angular power profiles.
A method for optimizing the cosine response of solar UV diffusers
NASA Astrophysics Data System (ADS)
Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki
2013-07-01
Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.
A new approach to correct yaw misalignment in the spinning ultrasonic anemometer
NASA Astrophysics Data System (ADS)
Ghaemi-Nasab, M.; Davari, Ali R.; Franchini, S.
2018-01-01
Single-axis ultrasonic anemometers are the modern instruments for accurate wind speed measurements. Despite their widespread and ever increasing applications, little attention has been paid up to now to spinning ultrasonic anemometers that can accurately measure both the wind speed and its direction in a single and robust apparatus. In this study, intensive wind-tunnel tests were conducted on a spinning single-axis ultrasonic anemometer to investigate the yaw misalignment in ultrasonic wind speed measurements during the yaw rotation. The anemometer was rotating inside the test section with various angular velocities, and the experiments were performed at several combinations of wind speed and anemometer angular velocity. The instantaneous angular position of the ultrasonic signal path with wind direction was measured using an angular position sensor. For a spinning anemometer, the circulatory wake and the associated flow distortion, along with the Doppler effect, impart a phase shift in the signals measured by the anemometer, which should be added to the position data for correcting the yaw misalignment. In this paper, the experimental data are used to construct a theoretical model, based on a response surface method, to correct the phase shift for various wind speeds and anemometer rotational velocities. This model is shown to successfully correct the velocity indicated by the spinning anemometer for the phase shift due to the rotation, and can easily be used in the calibration process for such anemometers.
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Li, Cheng-Bin; Sahoo, B. K.
2018-03-01
Dependencies of electron correlation effects with the rank and radial behavior of spectroscopic properties are analyzed in the singly charged calcium ion (Ca+). To demonstrate these trends, we have determined field shift constants, magnetic dipole and electric quadrupole hyperfine structure constants, Landé g J factors, and electric quadrupole moments that are described by electronic operators with different radial and angular factors. Radial dependencies are investigated by comparing correlation trends among the properties that have similar angular factors and vice versa. To highlight these observations, we present results from the mean-field approach to all-orders along with intermediate contributions. Contributions from higher relativistic corrections are also given. These findings suggest that sometime lower-order approximations can give results agreeing with the experimental results, but inclusion of some of higher-order correlation effects can cause large disagreement with the experimental values. Therefore, validity of a method for accurate evaluation of atomic properties can be tested by performing calculations of several properties simultaneously that have diverse dependencies on the angular and radial factors and comparing with the available experimental results. Nevertheless, it is imperative to include full triple and quadrupole excitations in the all-order many-body methods for high-precision calculations that are yet to be developed adopting spherical coordinate system for atomic studies.
Chang, Yin-Jung
2014-01-13
The investigation of optimum optical designs of interlayers and antireflection (AR) coating for achieving maximum average transmittance (T(ave)) into the CuIn(1-x)Ga(x)Se2 (CIGS) absorber of a typical CIGS solar cell through the suppression of lossy-film-induced angular mismatches is described. Simulated-annealing algorithm incorporated with rigorous electromagnetic transmission-line network approach is applied with criteria of minimum average reflectance (R(ave)) from the cell surface or maximum T(ave) into the CIGS absorber. In the presence of one MgF2 coating, difference in R(ave) associated with optimum designs based upon the two distinct criteria is only 0.3% under broadband and nearly omnidirectional incidence; however, their corresponding T(ave) values could be up to 14.34% apart. Significant T(ave) improvements associated with the maximum-T(ave)-based design are found mainly in the mid to longer wavelengths and are attributed to the largest suppression of lossy-film-induced angular mismatches over the entire CIGS absorption spectrum. Maximum-T(ave)-based designs with a MgF2 coating optimized under extreme deficiency of angular information is shown, as opposed to their minimum-R(ave)-based counterparts, to be highly robust to omnidirectional incidence.
NASA Astrophysics Data System (ADS)
Yu, Hua-Gen
2016-08-01
We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH4 and H2CO are given, together with a comparison with previous results.
Development of a new model for short period ocean tidal variations of Earth rotation
NASA Astrophysics Data System (ADS)
Schuh, Harald
2015-08-01
Within project SPOT (Short Period Ocean Tidal variations in Earth rotation) we develop a new high frequency Earth rotation model based on empirical ocean tide models. The main purpose of the SPOT model is its application to space geodetic observations such as GNSS and VLBI.We consider an empirical ocean tide model, which does not require hydrodynamic ocean modeling to determine ocean tidal angular momentum. We use here the EOT11a model of Savcenko & Bosch (2012), which is extended for some additional minor tides (e.g. M1, J1, T2). As empirical tidal models do not provide ocean tidal currents, which are re- quired for the computation of oceanic relative angular momentum, we implement an approach first published by Ray (2001) to estimate ocean tidal current veloci- ties for all tides considered in the extended EOT11a model. The approach itself is tested by application to tidal heights from hydrodynamic ocean tide models, which also provide tidal current velocities. Based on the tidal heights and the associated current velocities the oceanic tidal angular momentum (OTAM) is calculated.For the computation of the related short period variation of Earth rotation, we have re-examined the Euler-Liouville equation for an elastic Earth model with a liquid core. The focus here is on the consistent calculation of the elastic Love num- bers and associated Earth model parameters, which are considered in the Euler- Liouville equation for diurnal and sub-diurnal periods in the frequency domain.
Human action recognition based on kinematic similarity in real time
Chen, Longting; Luo, Ailing; Zhang, Sicong
2017-01-01
Human action recognition using 3D pose data has gained a growing interest in the field of computer robotic interfaces and pattern recognition since the availability of hardware to capture human pose. In this paper, we propose a fast, simple, and powerful method of human action recognition based on human kinematic similarity. The key to this method is that the action descriptor consists of joints position, angular velocity and angular acceleration, which can meet the different individual sizes and eliminate the complex normalization. The angular parameters of joints within a short sliding time window (approximately 5 frames) around the current frame are used to express each pose frame of human action sequence. Moreover, three modified KNN (k-nearest-neighbors algorithm) classifiers are employed in our method: one for achieving the confidence of every frame in the training step, one for estimating the frame label of each descriptor, and one for classifying actions. Additional estimating of the frame’s time label makes it possible to address single input frames. This approach can be used on difficult, unsegmented sequences. The proposed method is efficient and can be run in real time. The research shows that many public datasets are irregularly segmented, and a simple method is provided to regularize the datasets. The approach is tested on some challenging datasets such as MSR-Action3D, MSRDailyActivity3D, and UTD-MHAD. The results indicate our method achieves a higher accuracy. PMID:29073131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hua-Gen, E-mail: hgy@bnl.gov
We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using amore » multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH{sub 4} and H{sub 2}CO are given, together with a comparison with previous results.« less
Haldar, Justin P; Leahy, Richard M
2013-05-01
This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. Copyright © 2013 Elsevier Inc. All rights reserved.
Church, Jessica A; Balota, David A; Petersen, Steven E; Schlaggar, Bradley L
2011-06-01
In a previous study of single word reading, regions in the left supramarginal gyrus and left angular gyrus showed positive BOLD activity in children but significantly less activity in adults for high-frequency words [Church, J. A., Coalson, R. S., Lugar, H. M., Petersen, S. E., & Schlaggar, B. L. A developmental fMRI study of reading and repetition reveals changes in phonological and visual mechanisms over age. Cerebral Cortex, 18, 2054-2065, 2008]. This developmental decrease may reflect decreased reliance on phonological processing for familiar stimuli in adults. Therefore, in the present study, variables thought to influence phonological demand (string length and lexicality) were manipulated. Length and lexicality effects in the brain were explored using both ROI and whole-brain approaches. In the ROI analysis, the supramarginal and angular regions from the previous study were applied to this study. The supramarginal region showed a significant positive effect of length, consistent with a role in phonological processing, whereas the angular region showed only negative deflections from baseline with a strong effect of lexicality and other weaker effects. At the whole-brain level, varying effects of length and lexicality and their interactions were observed in 85 regions throughout the brain. The application of hierarchical clustering analysis to the BOLD time course data derived from these regions revealed seven clusters, with potentially revealing anatomical locations. Of note, a left angular gyrus region was the sole constituent of one cluster. Taken together, these findings in adult readers (1) provide support for a widespread set of brain regions affected by lexical variables, (2) corroborate a role for phonological processing in the left supramarginal gyrus, and (3) do not support a strong role for phonological processing in the left angular gyrus.
EVIDENCE FOR CLUSTER TO CLUSTER VARIATIONS IN LOW-MASS STELLAR ROTATIONAL EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coker, Carl T.; Pinsonneault, Marc; Terndrup, Donald M., E-mail: coker@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu, E-mail: terndrup@astronomy.ohio-state.edu
2016-12-10
The concordance model for angular momentum evolution postulates that star-forming regions and clusters are an evolutionary sequence that can be modeled with assumptions about protostar–disk coupling, angular momentum loss from magnetized winds that saturates in a mass-dependent fashion at high rotation rates, and core-envelope decoupling for solar analogs. We test this approach by combining established data with the large h Per data set from the MONITOR project and new low-mass Pleiades data. We confirm prior results that young low-mass stars can be used to test star–disk coupling and angular momentum loss independent of the treatment of internal angular momentum transport.more » For slow rotators, we confirm the need for star–disk interactions to evolve the ONC to older systems, using h Per (age 13 Myr) as our natural post-disk case. There is no evidence for extremely long-lived disks as an alternative to core-envelope decoupling. However, our wind models cannot evolve rapid rotators from h Per to older systems consistently, and we find that this result is robust with respect to the choice of angular momentum loss prescription. We outline two possible solutions: either there is cosmic variance in the distribution of stellar rotation rates in different clusters or there are substantially enhanced torques in low-mass rapid rotators. We favor the former explanation and discuss observational tests that could be used to distinguish them. If the distribution of initial conditions depends on environment, models that test parameters by assuming a universal underlying distribution of initial conditions will need to be re-evaluated.« less
Network representations of angular regions for electromagnetic scattering
2017-01-01
Network modeling in electromagnetics is an effective technique in treating scattering problems by canonical and complex structures. Geometries constituted of angular regions (wedges) together with planar layers can now be approached with the Generalized Wiener-Hopf Technique supported by network representation in spectral domain. Even if the network representations in spectral planes are of great importance by themselves, the aim of this paper is to present a theoretical base and a general procedure for the formulation of complex scattering problems using network representation for the Generalized Wiener Hopf Technique starting basically from the wave equation. In particular while the spectral network representations are relatively well known for planar layers, the network modelling for an angular region requires a new theory that will be developed in this paper. With this theory we complete the formulation of a network methodology whose effectiveness is demonstrated by the application to a complex scattering problem with practical solutions given in terms of GTD/UTD diffraction coefficients and total far fields for engineering applications. The methodology can be applied to other physics fields. PMID:28817573
Sun, Xu; Zhu, Ze-Zhang; Chen, Xi; Liu, Zhen; Wang, Bin; Qiu, Yong
2016-08-01
This paper presents a highly challenging technique involving posterior double vertebral column resections (VCRs) and satellite rods placement. This was a young adult case with severe angular thoracolumbar kyphosis of 101 degrees, secondary to anterior segmentation failure from T11 to L1 . There were hemivertebrae at T11 and T12 , and a wedged vertebra at L1 . He received double VCRs at T12 and T11 and instrumented fusion from T6 to L4 via a posterior only approach. Autologous grafts and a cage were placed between the bony surfaces of the osteotomy gap. Once closure of osteotomy was achieved, bilateral permanent CoCr rods were placed with addition of satellite rods. Postoperative X-ray demonstrated marked correction of kyphosis. On the 10(th) days after surgery, the patient was able to walk without assistance. In conclusion, double VCRs are effective to correct severe angular kyphosis, and addition of satellite rods may be imperative to enhance instrumentation strength and thus prevent correction loss. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
NASA Astrophysics Data System (ADS)
Repin, Vladislav A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.
2017-06-01
For many applied problems it is necessary to obtain information about the situation in a wide angular field in order to measure various parameters of objects: their spatial coordinates, instantaneous velocities, and so on. In this case, one interesting bionic approach can be used - a mosaic (or discrete, otherwise, facet) angular field. Such electro-optical system constructively imitates the visual apparatus of insects: many photodetectors like ommatidia (elements of the facet eye structure) are located on a non-planar surface. Such devices can be used in photogrammetry and aerial photography systems (if the space is sufficient), in the transport sector as vehicle orientation organs, as systems for monitoring in unmanned aerial vehicles, in endoscopy for obtaining comprehensive information on the state of various cavities, in intelligent robotic systems. In this manuscript discusses the advantages and disadvantages of multi-channeled optoelectronic systems with a mosaic angular field, presents possible options for their use, and discusses some of the design procedures performed when developing a layout of a coordinate measuring device.
Balankin, Alexander S; Elizarraraz, Benjamin Espinoza
2013-11-01
The aim of this Reply is to elucidate the difference between the fractal continuum models used in the preceding Comment and the models of fractal continuum flow which were put forward in our previous articles [Phys. Rev. E 85, 025302(R) (2012); 85, 056314 (2012)]. In this way, some drawbacks of the former models are highlighted. Specifically, inconsistencies in the definitions of the fractal derivative, the Jacobian of transformation, the displacement vector, and angular momentum are revealed. The proper forms of the Reynolds' transport theorem and angular momentum principle for the fractal continuum are reaffirmed in a more illustrative manner. Consequently, we emphasize that in the absence of any internal angular momentum, body couples, and couple stresses, the Cauchy stress tensor in the fractal continuum should be symmetric. Furthermore, we stress that the approach based on the Cartesian product measured and used in the preceding Comment cannot be employed to study the path-connected fractals, such as a flow in a fractally permeable medium. Thus, all statements of our previous works remain unchallenged.
NASA Astrophysics Data System (ADS)
Riley, M. A.; Simpson, J.; Paul, E. S.
2016-12-01
In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.
Sun, Ting; Xing, Fei; You, Zheng; Wang, Xiaochu; Li, Bin
2014-03-10
The star tracker is one of the most promising attitude measurement devices widely used in spacecraft for its high accuracy. High dynamic performance is becoming its major restriction, and requires immediate focus and promotion. A star image restoration approach based on the motion degradation model of variable angular velocity is proposed in this paper. This method can overcome the problem of energy dispersion and signal to noise ratio (SNR) decrease resulting from the smearing of the star spot, thus preventing failed extraction and decreased star centroid accuracy. Simulations and laboratory experiments are conducted to verify the proposed methods. The restoration results demonstrate that the described method can recover the star spot from a long motion trail to the shape of Gaussian distribution under the conditions of variable angular velocity and long exposure time. The energy of the star spot can be concentrated to ensure high SNR and high position accuracy. These features are crucial to the subsequent star extraction and the whole performance of the star tracker.
NASA Astrophysics Data System (ADS)
Wei, Linyang; Qi, Hong; Sun, Jianping; Ren, Yatao; Ruan, Liming
2017-05-01
The spectral collocation method (SCM) is employed to solve the radiative transfer in multi-layer semitransparent medium with graded index. A new flexible angular discretization scheme is employed to discretize the solid angle domain freely to overcome the limit of the number of discrete radiative direction when adopting traditional SN discrete ordinate scheme. Three radial basis function interpolation approaches, named as multi-quadric (MQ), inverse multi-quadric (IMQ) and inverse quadratic (IQ) interpolation, are employed to couple the radiative intensity at the interface between two adjacent layers and numerical experiments show that MQ interpolation has the highest accuracy and best stability. Variable radiative transfer problems in double-layer semitransparent media with different thermophysical properties are investigated and the influence of these thermophysical properties on the radiative transfer procedure in double-layer semitransparent media is also analyzed. All the simulated results show that the present SCM with the new angular discretization scheme can predict the radiative transfer in multi-layer semitransparent medium with graded index efficiently and accurately.
NASA Astrophysics Data System (ADS)
Kokka, Alexander; Pulli, Tomi; Poikonen, Tuomas; Askola, Janne; Ikonen, Erkki
2017-08-01
This paper presents a fisheye camera method for determining spatial non-uniformity corrections in luminous flux measurements with integrating spheres. Using a fisheye camera installed into a port of an integrating sphere, the relative angular intensity distribution of the lamp under test is determined. This angular distribution is used for calculating the spatial non-uniformity correction for the lamp when combined with the spatial responsivity data of the sphere. The method was validated by comparing it to a traditional goniophotometric approach when determining spatial correction factors for 13 LED lamps with different angular spreads. The deviations between the spatial correction factors obtained using the two methods ranged from -0.15 % to 0.15%. The mean magnitude of the deviations was 0.06%. For a typical LED lamp, the expanded uncertainty (k = 2 ) for the spatial non-uniformity correction factor was evaluated to be 0.28%. The fisheye camera method removes the need for goniophotometric measurements in determining spatial non-uniformity corrections, thus resulting in considerable system simplification. Generally, no permanent modifications to existing integrating spheres are required.
Zaher, Ashraf A
2008-03-01
The dynamic behavior of a permanent magnet synchronous machine (PMSM) is analyzed. Nominal and special operating conditions are explored to show that the PMSM can experience chaos. A nonlinear controller is introduced to control these unwanted chaotic oscillations and to bring the PMSM to a stable steady state. The designed controller uses a pole-placement approach to force the closed-loop system to follow the performance of a simple first-order linear system with zero steady-state error to a desired set point. The similarity between the mathematical model of the PMSM and the famous chaotic Lorenz system is utilized to design a synchronization-based state observer using only the angular speed for feedback. Simulation results verify the effectiveness of the proposed controller in eliminating the chaotic oscillations while using a single feedback signal. The superiority of the proposed controller is further demonstrated by comparing it with a conventional PID controller. Finally, a laboratory-based experiment was conducted using the MCK2812 C Pro-MS(BL) motion control kit to confirm the theoretical results and to verify both the causality and versatility of the proposed controller.
Results of including geometric nonlinearities in an aeroelastic model of an F/A-18
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.
1989-01-01
An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft has been developed. While the author realizes that the subject of modeling rotating, elastic structures is not closed, it is believed that the equations of motion developed and applied herein are correct to second order and are suitable for use with typical aircraft structures. The equations are not suitable for large elastic deformation. In addition, the modeling framework generalizes both the methods and terminology of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must be approached with care. In keeping with the same engineering judgment that guided the development of the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is expected to be small. A parameter does not tell the whole story, however, and modes flagged by the parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e., the inertially affected modes can influence other modes.
Light weight optics made by glass thermal forming for future x-ray telescopes
NASA Astrophysics Data System (ADS)
Winter, Anita; Vongehr, Monika; Friedrich, Peter
2010-07-01
Future X-ray observatory missions, such as IXO or Gen-X, require grazing incidence optics of large collecting area in combination with a very good angular resolution. Wolter type I X-ray telescopes made of slumped glass segments could be a possible alternative to silicon pore optics. To achieve these requirements we develop slumping methods for high accuracy segments by experimental means. In particular, we follow the approach of indirect slumping and aim to produce parabola and hyperbola in one piece. In order to avoid internal stress in the glass segments the thermal expansion coefficient of the glass should closely match the thermal expansion of the mould material. Currently we focus on a combination of the alloy KOVAR for the mould and D263 for the glass; additionally a platinum-coated silica as mould material is studied. We investigate the behaviour of both materials during slumping in order to obtain the ideal environment for the slumping process. Additionally we report on the design of different metrology methods to measure the figure and thickness variations of the glass segments in visual light, e.g. interference, and on bearings used for shape measurements and integration.
NASA Astrophysics Data System (ADS)
Magnusson, Robert; Yoon, Jae Woong; Amin, Mohammad Shyiq; Khaleque, Tanzina; Uddin, Mohammad Jalal
2014-03-01
For selected device concepts that are members of an evolving class of photonic devices enabled by guided-mode resonance (GMR) effects, we review physics of operation, design, fabrication, and characterization. We summarize the application potential of this field and provide new and emerging aspects. Our chosen examples include resonance elements with extremely wide reflection bands. Thus, in a multilevel structure with conformal germanium (Ge) films, reflectance exceeds 99% for spectral widths approaching 1100 nm. A simpler design, incorporating a partially etched single Ge layer on a glass substrate, exhibits a high-reflectance bandwidth close to 900 nm. We present a couple of interesting new device concepts enabled by GMRs coexisting with the Rayleigh anomaly. Our example Rayleigh reflector exhibits a wideband high-efficiency flattop spectrum and extremely rapid angular transitions. Moreover, we show that it is possible to fashion transmission filters by excitation of leaky resonant modes at the Rayleigh anomaly in a subwavelength nanograting. A unique transmission spectrum results, which is tightly delimited in angle and wavelength as experimentally demonstrated. We update our application list with new developments including GMR-based coherent perfect absorbers, multiparametric biosensors, and omnidirectional wideband absorbers.
Collisional super-Penrose process and Wald inequalities
NASA Astrophysics Data System (ADS)
Tanatarov, Igor V.; Zaslavskii, Oleg B.
2017-09-01
We consider collision of two massive particles in the equatorial plane of an axially symmetric stationary spacetime that produces two massless particles afterwards. It is implied that the horizon is absent but there is a naked singularity or another potential barrier that makes possible the head-on collision. The relationship between the energy in the center of mass frame E_{c.m.} and the Killing energy E measured at infinity is analyzed. It follows immediately from the Wald inequalities that unbounded E is possible for unbounded E_{c.m.} only. This can be realized if the spacetime is close to the threshold of the horizon formation. Different types of spacetimes (black holes, naked singularities, wormholes) correspond to different possible relations between E_{c.m.} and E. We develop a general approach that enables us to describe the collision process in the frames of the stationary observer and zero angular momentum observer. The escape cone and escape fraction are derived. A simple explanation of the existence of the bright spot is given. For the particular case of the Kerr metric, our results agree with the previous ones found in Patil et al. (Phys Rev D 93:104015, 2016).
Reexamination of the interaction of atoms with a LiF(001) surface
NASA Astrophysics Data System (ADS)
Miraglia, J. E.; Gravielle, M. S.
2017-02-01
Pairwise additive potentials for multielectronic atoms interacting with a LiF(001) surface are revisited by including an improved description of the electron density associated with the different lattice sites, as well as nonlocal electron density contributions. Within this model, the electron distribution around each ionic site of the crystal is described by means of a so-called "onion" approach that accounts for the influence of the Madelung potential. From such densities, binary interatomic potentials are then derived by using well-known nonlocal functionals. Rumpling and long-range contributions due to projectile polarization and van der Waals forces are also included. We apply this pairwise additive approximation to evaluate the interaction potential between closed-shell (He, Ne, Ar, Kr, and Xe) and open-shell (N, S, and Cl) atoms and the LiF surface, analyzing the relative importance of the different contributions. The performance of the proposed potentials is assessed by contrasting angular positions of rainbow and supernumerary rainbow maxima produced by fast grazing incidence with available experimental data. One important result of our model is that both van der Waals contributions and thermal lattice vibrations play a negligible role for normal energies in the eV range.
NASA Astrophysics Data System (ADS)
Ávila, Jesús; Ramírez, Pedro F.; Ruipérez, Alejandro
2018-01-01
We propose a novel strategy that permits the construction of completely general five-dimensional microstate geometries on a Gibbons-Hawking space. Our scheme is based on two steps. First, we rewrite the bubble equations as a system of linear equations that can be easily solved. Second, we conjecture that the presence or absence of closed timelike curves in the solution can be detected through the evaluation of an algebraic relation. The construction we propose is systematic and covers the whole space of parameters, so it can be applied to find all five-dimensional BPS microstate geometries on a Gibbons-Hawking base. As a first result of this approach, we find that the spectrum of scaling solutions becomes much larger when non-Abelian fields are present. We use our method to describe several smooth horizonless multicenter solutions with the asymptotic charges of three-charge (Abelian and non-Abelian) black holes. In particular, we describe solutions with the centers lying on lines and circles that can be specified with exact precision. We show the power of our method by explicitly constructing a 50-center solution. Moreover, we use it to find the first smooth five-dimensional microstate geometries with arbitrarily small angular momentum.