Science.gov

Sample records for close galaxy pairs

  1. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    PubMed

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-09-22

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution. PMID:21881560

  2. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    PubMed

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution.

  3. DISCOVERY OF A CLOSE PAIR OF FAINT DWARF GALAXIES IN THE HALO OF CENTAURUS A

    SciTech Connect

    Crnojević, D.; Sand, D. J.; Caldwell, N.; McLeod, B.; Guhathakurta, P.; Toloba, E.; Simon, J. D.; Strader, J.

    2014-11-10

    As part of the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS), we report the discovery of a pair of faint dwarf galaxies (CenA-MM-Dw1 and CenA-MM-Dw2) at a projected distance of ∼90 kpc from the nearby elliptical galaxy NGC 5128 (CenA). We measure a tip of the red giant branch distance to each dwarf, finding D = 3.63 ± 0.41 Mpc for CenA-MM-Dw1 and D = 3.60 ± 0.41 Mpc for CenA-MM-Dw2, both of which are consistent with the distance to NGC 5128. A qualitative analysis of the color-magnitude diagrams indicates stellar populations consisting of an old, metal-poor red giant branch (≳12 Gyr, [Fe/H] ∼ –1.7 to –1.9). In addition, CenA-MM-Dw1 seems to host an intermediate-age population as indicated by its candidate asymptotic giant branch stars. The derived luminosities (M{sub V} = –10.9 ± 0.3 for CenA-MM-Dw1 and –8.4 ± 0.6 for CenA-MM-Dw2) and half-light radii (r{sub h} = 1.4 ± 0.04 kpc for CenA-MM-Dw1 and 0.36 ± 0.08 kpc for CenA-MM-Dw2) are consistent with those of Local Group dwarfs. CenA-MM-Dw1's low central surface brightness (μ {sub V,} {sub 0} = 27.3 ± 0.1 mag arcsec{sup –2}) places it among the faintest and most extended M31 satellites. Most intriguingly, CenA-MM-Dw1 and CenA-MM-Dw2 have a projected separation of only 3 arcmin (∼3 kpc): we are possibly observing the first, faint satellite of a satellite in an external group of galaxies.

  4. Dynamical interactions of galaxy pairs

    NASA Technical Reports Server (NTRS)

    Athanassoula, E.

    1990-01-01

    Here the author briefly reviews the dynamics of sinking satellites and the effect of companions on elliptical galaxies. The author then discusses recent work on interacting disk systems, and finally focuses on a favorite interacting pair, NGC 5194/5195.

  5. A Curious Pair of Galaxies

    NASA Astrophysics Data System (ADS)

    2009-03-01

    The ESO Very Large Telescope has taken the best image ever of a strange and chaotic duo of interwoven galaxies. The images also contain some surprises -- interlopers both far and near. ESO PR Photo 11a/09 A Curious Pair of Galaxies ESO PR Video 11a/09 Arp 261 zoom in ESO PR Video 11b/09 Pan over Arp 261 Sometimes objects in the sky that appear strange, or different from normal, have a story to tell and prove scientifically very rewarding. This was the idea behind Halton Arp's catalogue of Peculiar Galaxies that appeared in the 1960s. One of the oddballs listed there is Arp 261, which has now been imaged in more detail than ever before using the FORS2 instrument on ESO's Very Large Telescope. The image proves to contain several surprises. Arp 261 lies about 70 million light-years distant in the constellation of Libra, the Scales. Its chaotic and very unusual structure is created by the interaction of two galaxies that are engaged in a slow motion, but highly disruptive close encounter. Although individual stars are very unlikely to collide in such an event, the huge clouds of gas and dust certainly do crash into each other at high speed, leading to the formation of bright new clusters of very hot stars that are clearly seen in the picture. The paths of the existing stars in the galaxies are also dramatically disrupted, creating the faint swirls extending to the upper left and lower right of the image. Both interacting galaxies were probably dwarfs not unlike the Magellanic Clouds orbiting our own galaxy. The images used to create this picture were not actually taken to study the interacting galaxies at all, but to investigate the properties of the inconspicuous object just to the right of the brightest part of Arp 261 and close to the centre of the image. This is an unusual exploding star, called SN 1995N, that is thought to be the result of the final collapse of a massive star at the end of its life, a so-called core collapse supernova. SN 1995N is unusual because

  6. FIR statistics of paired galaxies

    NASA Technical Reports Server (NTRS)

    Sulentic, Jack W.

    1990-01-01

    Much progress has been made in understanding the effects of interaction on galaxies (see reviews in this volume by Heckman and Kennicutt). Evidence for enhanced emission from galaxies in pairs first emerged in the radio (Sulentic 1976) and optical (Larson and Tinsley 1978) domains. Results in the far infrared (FIR) lagged behind until the advent of the Infrared Astronomy Satellite (IRAS). The last five years have seen numerous FIR studies of optical and IR selected samples of interacting galaxies (e.g., Cutri and McAlary 1985; Joseph and Wright 1985; Kennicutt et al. 1987; Haynes and Herter 1988). Despite all of this work, there are still contradictory ideas about the level and, even, the reality of an FIR enhancement in interacting galaxies. Much of the confusion originates in differences between the galaxy samples that were studied (i.e., optical morphology and redshift coverage). Here, the authors report on a study of the FIR detection properties for a large sample of interacting galaxies and a matching control sample. They focus on the distance independent detection fraction (DF) statistics of the sample. The results prove useful in interpreting the previously published work. A clarification of the phenomenology provides valuable clues about the physics of the FIR enhancement in galaxies.

  7. Probing the tides in interacting galaxy pairs

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1990-01-01

    Detailed spectroscopic and imaging observations of colliding elliptical galaxies revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The 'personalized' modeling of galaxy pairs also permits the derivation of each binary's orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally stimulated phenomena (e.g., starbursts and maybe quasi steller objects), and (3) the identification of long-lived signatures of interaction/merger events.

  8. Older Galaxy Pair Has Surprisingly Youthful Glow

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Poster Version

    A pair of interacting galaxies might be experiencing the galactic equivalent of a mid-life crisis. For some reason, the pair, called Arp 82, didn't make their stars early on as is typical of most galaxies. Instead, they got a second wind later in life -- about 2 billion years ago -- and started pumping out waves of new stars as if they were young again.

    Arp 82 is an interacting pair of galaxies with a strong bridge and a long tail. NGC 2535 is the big galaxy and NGC 2536 is its smaller companion. The disk of the main galaxy looks like an eye, with a bright 'pupil' in the center and oval-shaped 'eyelids.' Dramatic 'beads on a string' features are visible as chains of evenly spaced star-formation complexes along the eyelids. These are presumably the result of large-scale gaseous shocks from a grazing encounter. The colors of this galaxy indicate that the observed stars are young to intermediate in age, around 2 million to 2 billion years old, much less than the age of the universe (13.7 billion years).

    The puzzle is: why didn't Arp 82 form many stars earlier, like most galaxies of that mass range? Scientifically, it is an oddball and provides a relatively nearby lab for studying the age of intermediate-mass galaxies.

    This picture is a composite captured by Spitzer's infrared array camera with light at wavelength 8 microns shown in red, NASA's Galaxy Evolution Explorer combined 1530 and 2310 Angstroms shown in blue, and the Southeastern Association for Research in Astronomy Observatory light at 6940 Angstroms shown in green.

  9. Dynamical friction in pairs of elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Prugniel, Philippe; Combes, Francoise

    1990-01-01

    The authors present numerical experiments on dynamical friction in pairs of elliptical galaxies of unequal mass. They confirm that the self-gravity of the response is not important and show the drastic effect of the deformability of the companion which reduces the decay time by more than a factor of 2. Almost the same amount of orbital energy is dissipated within the satellite as within the large galaxy. Finally, the authors discuss the importance of distant encounters for the dynamical evolution of systems of galaxies.

  10. Stellar kinematics of elliptical galaxies in pairs

    NASA Technical Reports Server (NTRS)

    Madejsky, Rainer; Bender, Ralf

    1990-01-01

    In both galaxy pairs Arp 166 and 3C 278 the authors find radially increasing velocity dispersions indicating a perturbed, non-equilibrium state of the galaxies after the tidal interaction. In all galaxies, the increase is most pronounced in the regions which correspond to the centers of the outer isophotes. The authors suggest a scenario in which the galaxies are strongly decelerated on their orbits during the encounter. The deceleration depends on the radial position in the perturbed galaxy and vanishes in the center of the perturbed galaxy (Spitzer, 1958). In addition, the crossing time of the stars near the center is very short, implying that the tidal perturbations can be averaged over several orbital periods (e.g., Binney and Tremaine, 1987). In consequence, the central parts are not affected by the tidal interaction while the outer parts are strongly decelerated. This leads to a displacement of the central parts of the galaxies with respect to their envelopes in an anti-symmetrical way for the two components of each galaxy pair. The motions of the central parts subsequently are opposed by dynamical friction with the surrounding envelopes. Due to dynamical friction, the density of the stars increases in the wakes of the moving central parts (Mulder, 1983). The overdensity of stars in the wakes of the moving central parts efficiently decelerates the motions of the central parts. The reaction of the stars in the overdensity regions leads to an increase of the velocity dispersion mainly along the orbits of the moving central parts. The presented observations, especially the asymmetrical luminosity profiles and the radially increasing velocity dispersions support consistently the above scenario of tidal interaction between galaxies. Further spectroscopic observations are necessary in order to investigate the degree of anisotropy in the kinematically perturbed regions.

  11. Paired and interacting galaxies: Conference summary

    NASA Technical Reports Server (NTRS)

    Norman, Colin A.

    1990-01-01

    The author gives a summary of the conference proceedings. The conference began with the presentation of the basic data sets on pairs, groups, and interacting galaxies with the latter being further discussed with respect to both global properties and properties of the galactic nuclei. Then followed the theory, modelling and interpretation using analytic techniques, simulations and general modelling for spirals and ellipticals, starbursts and active galactic nuclei. Before the conference the author wrote down the three questions concerning pairs, groups and interacting galaxies that he hoped would be answered at the meeting: (1) How do they form, including the role of initial conditions, the importance of subclustering, the evolution of groups to compact groups, and the fate of compact groups; (2) How do they evolve, including issues such as relevant timescales, the role of halos and the problem of overmerging, the triggering and enhancement of star formation and activity in the galactic nuclei, and the relative importance of dwarf versus giant encounters; and (3) Are they important, including the frequency of pairs and interactions, whether merging and interactions are very important aspects of the life of a normal galaxy at formation, during its evolution, in forming bars, shells, rings, bulges, etc., and in the formation and evolution of active galaxies? Where possible he focuses on these three central issues in the summary.

  12. A catalog of isolated galaxy pairs with accurate radial velocities

    NASA Astrophysics Data System (ADS)

    Chamaraux, P.; Nottale, L.

    2016-07-01

    The present paper is devoted to the construction of a catalog of isolated galaxy pairs from the Uppsala Galaxy Catalog (UGC), using accurate radial velocities. The UGC lists 12 921 galaxies to δ > -2°30' and is complete to an apparent diameter of 1'. The criteria used to define the isolated galaxy pairs are based on velocity, interdistance, reciprocity and isolation information. A peculiar investigation has allowed to gather very accurate radial velocities for pair members, from high quality HI and optical measurements (median uncertainty on velocity differences 10 kms-1). Our final catalog contains 1005 galaxy pairs with ρ > 2.5, of which 509 have ρ > 5 (50% of the pairs, i.e. 8%of the UGC galaxies) and 273 are highly isolated with ρ > 10 (27% of the pairs, i.e. 4% of the UGC galaxies). Some global properties of the pair catalog are given.

  13. Galaxy And Mass Assembly (GAMA) blended spectra catalogue: strong galaxy-galaxy lens and occulting galaxy pair candidates

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Baldry, I. K.; Alpaslan, M.; Bauer, A.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cluver, M. E.; Conselice, C.; Driver, S. P.; Hopkins, A. M.; Jones, D. H.; López-Sánchez, Á. R.; Loveday, J.; Meyer, M. J.; Moffett, A.

    2015-06-01

    We present the catalogue of blended galaxy spectra from the Galaxy And Mass Assembly (GAMA) survey. These are cases where light from two galaxies are significantly detected in a single GAMA fibre. Galaxy pairs identified from their blended spectrum fall into two principal classes: they are either strong lenses, a passive galaxy lensing an emission-line galaxy; or occulting galaxies, serendipitous overlaps of two galaxies, of any type. Blended spectra can thus be used to reliably identify strong lenses for follow-up observations (high-resolution imaging) and occulting pairs, especially those that are a late-type partly obscuring an early-type galaxy which are of interest for the study of dust content of spiral and irregular galaxies. The GAMA survey setup and its AUTOZ automated redshift determination were used to identify candidate blended galaxy spectra from the cross-correlation peaks. We identify 280 blended spectra with a minimum velocity separation of 600 km s-1, of which 104 are lens pair candidates, 71 emission-line-passive pairs, 78 are pairs of emission-line galaxies and 27 are pairs of galaxies with passive spectra. We have visually inspected the candidates in the Sloan Digital Sky Survey (SDSS) and Kilo Degree Survey (KiDS) images. Many blended objects are ellipticals with blue fuzz (Ef in our classification). These latter `Ef' classifications are candidates for possible strong lenses, massive ellipticals with an emission-line galaxy in one or more lensed images. The GAMA lens and occulting galaxy candidate samples are similar in size to those identified in the entire SDSS. This blended spectrum sample stands as a testament of the power of this highly complete, second-largest spectroscopic survey in existence and offers the possibility to expand e.g. strong gravitational lens surveys.

  14. Quantization of redshift differences in isolated galaxy pairs

    SciTech Connect

    Tifft, W.G.; Cocke, W.J.

    1989-01-01

    Improved 21 cm data on isolated galaxy pairs are presented which eliminate questions of inhomogeneity in the data on such pairs and reduce observational error to below 5 km/s. Quantization is sharpened, and the zero peak is shown to be displaced from zero to a location near 24 km/s. An exclusion principle is suggested whereby identical redshifts are forbidden in limited volumes. The radio data and data from Schweizer (1987) are combined with the best optical data on close Karachentsev pairs to provide a cumulative sample of 84 of the best differentials now available. New 21 cm observations are used to test for the presence of small differentials in very wide pairs, and the deficiency near zero is found to continue to very wide spacings. A loss of wide pairs by selection bias cannot produce the observed zero deficiency. A new test using pairs selected from the Fisher-Tully catalog is used to demonstrate quantization properties of third components associated with possible pairs. 27 references.

  15. Pair Cascades in Blazars and Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Roustazadeh Sheikhyousefi, Parisa

    2012-05-01

    Recently some intermediate BL Lac objects (IBL), low frequency peak BL Lac objects (LBL) and flat spectrum radio quasars (FSRQs) were detected as very high energy gamma-ray sources (VHE; E > 100 GeV) by the Major Atmospheric Gamma-ray Imaging Cherenkov Telescope (MAGIC), the High Energy Stereoscopic System (H.E.S.S) and the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These discoveries suggest that VHE gamma-rays may be produced in all types of active galactic nuclei (AGN) and that this is not only a common property of high frequency peaked BL Lac objects (HBL). The detection of the radio galaxies M87, Cen A and NGC 1275 supports this idea. In those AGN, VHE photons may interact with low energy photons from the broadline region (BLR), accretion disk around the black hole or thermal infrared photons form a dust torus by photon-photon pair production if the total center-of-momentum frame energy is above threshold to produce an electron-positron pair. These particles can produce new high energy photons by Compton up-scattering, and again these high energy photons can interact with soft photons to produce a pair of particles. This process will continue, leading to a shower (cascade) of particles and radiation. As the shower develops, it will expand laterally. This may explain the detection of the radio galaxies as VHE gamma-ray sources. The central part of my Ph.D. research work deals with the theoretical simulation of very high energy gamma-ray induced pair cascades in blazars and radio galaxies. Gamma-rays from the core of the AGN interact with low energy photons from the AGN environment and produce pairs of electrons and positrons resulting in Compton supported pair cascades. I developed a Monte Carlo code which treats the processes of gamma-gamma absorption and pair production, gamma-ray and electron/positron propagation, and Compton scattering, tracking particle trajectories in full 3-dimensional geometry. I showed that even for a very weak

  16. Pair Cascades in Blazars and Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Roustazadeh Sheikhyousefi, Parisa

    2012-05-01

    Recently some intermediate BL Lac objects (IBL), low frequency peak BL Lac objects (LBL) and flat spectrum radio quasars (FSRQs) were detected as very high energy gamma-ray sources (VHE; E > 100 GeV) by the Major Atmospheric Gamma-ray Imaging Cherenkov Telescope (MAGIC), the High Energy Stereoscopic System (H.E.S.S) and the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These discoveries suggest that VHE gamma-rays may be produced in all types of active galactic nuclei (AGN) and that this is not only a common property of high frequency peaked BL Lac objects (HBL). The detection of the radio galaxies M87, Cen A and NGC 1275 supports this idea. In those AGN, VHE photons may interact with low energy photons from the broadline region (BLR), accretion disk around the black hole or thermal infrared photons form a dust torus by photon-photon pair production if the total center-of-momentum frame energy is above threshold to produce an electron-positron pair. These particles can produce new high energy photons by Compton up-scattering, and again these high energy photons can interact with soft photons to produce a pair of particles. This process will continue, leading to a shower (cascade) of particles and radiation. As the shower develops, it will expand laterally. This may explain the detection of the radio galaxies as VHE gamma-ray sources. The central part of my Ph.D. research work deals with the theoretical simulation of very high energy gamma-ray induced pair cascades in blazars and radio galaxies. Gamma-rays from the core of the AGN interact with low energy photons from the AGN environment and produce pairs of electrons and positrons resulting in Compton supported pair cascades. I developed a Monte Carlo code which treats the processes of gamma-gamma absorption and pair production, gamma-ray and electron/positron propagation, and Compton scattering, tracking particle trajectories in full 3-dimensional geometry. I showed that even for a very weak

  17. The 1.0 Megaparsec Galaxy Pair Sample in Low-Density Regions

    NASA Astrophysics Data System (ADS)

    Nordgren, Tyler E.; Chengalur, Jayaram N.; Salpeter, E. E.; Terzian, Yervant

    2000-11-01

    Using complete redshift catalogs, we have compiled a list of galaxy pairs based solely on a pair's projected separation, rp, and velocity difference, ΔV. We have made high-velocity precision H I observations of each galaxy in the sample and have reported these in the literature. Due to the nature of the redshift catalogs, we are able to quantitatively evaluate the effects of isolation and number density of surrounding galaxies on each pair in the sample. For the close galaxy pairs (rp<100 kpc), the degree of isolation (a measure of the number of near neighbors) has little effect on the median ΔV. This median is about 55 km s-1 for the 25 close pairs (if medium-density close pairs are omitted ΔV is even smaller, but the difference is not statistically significant). The effect of isolation is strong for the entire sample of galaxy pairs with separations as large as 1.0 Mpc. For these larger separation pairs, relaxation of strict isolation requirements introduces small groups into the sample, which dramatically increases the median ΔV. We find little evidence of an increase in the median ΔV with decreasing rp, nor with increasing total luminosity. For our isolated pairs in low-density regions, the overall median ΔV is only 30 km s-1. For similar separations and isolation criteria, galaxy satellites with larger luminosity ratios (i.e., less dynamical friction) in higher density regions have ΔV approximately twice as large. We conjecture that our orbits are highly eccentric, so that the indirect effect of dynamical friction leads to predominantly small ΔV. However, the halos of our galaxies may also be of low density (although highly extended).

  18. The role of close pair interactions in triggering stellar bars and rings

    NASA Astrophysics Data System (ADS)

    Nair, Preethi; Ellison, Sara; Patton, David

    2015-03-01

    Recent works which have looked at bars in clusters versus the field have found no significant difference in bar fraction. However, other works (Nair & Abraham 2010, Lee et al. 2012) have found that bar fractions depend sensitively on the mass, morphology and color of the galaxy. In addition, simulations suggest that bar formation may depend on the merger ratio of close pair interactions as well as on the separation between the pairs. In this work, we analyze the bar fractions in a complete sample of ~23,000 close pairs derived from the Sloan Digital Sky Survey Data Release 7. We will present results illustrating the dependence of bar and ring fractions as a function of merger mass ratio, pair separation, galaxy morphology, and stellar mass. I will further compare the role of bars and close pairs in triggering central star formation and AGN.

  19. Emission line galaxy pairs up to z=1.5 from the WISP survey

    NASA Astrophysics Data System (ADS)

    Teplitz, Harry I.; Dai, Yu Sophia; Malkan, Matthew Arnold; Scarlata, Claudia; Colbert, James W.; Atek, Hakim; Bagley, Micaela B.; Baronchelli, Ivano; Bedregal, Alejandro; Beck, Melanie; Bunker, Andrew; Dominguez, Alberto; Hathi, Nimish P.; Henry, Alaina L.; Mehta, Vihang; Pahl, Anthony; Rafelski, Marc; Ross, Nathaniel; Rutkowski, Michael J.; Siana, Brian D.; WISPs Team

    2016-01-01

    We present a sample of spectroscopically identified emission line galaxy pairs up to z=1.5 from WISPs (WFC3 Infrared Spectroscopic Parallel survey) using high resolution direct and grism images from HST. We searched ~150 fields with a covered area of ~600 arcmin^2, and a comoving volume of > 400 Gpc^3 at z=1-2, and found ~80 very close physical pairs (projected separation Dp < 50 h^{-1}kpc, relative velocity d_v < 500 kms^{-1}), and ~100 close physical pairs (50 < Dp < 100 h^{-1}kpc, d_v < 1000 kms^{-1}) of emission line galaxies, including two dozen triplets and quadruples. In this poster we present the multi-wavelength data, star formation rate (SFR), mass ratio, and study the merger rate evolution with this special galaxy pair sample.

  20. Paired and Interacting Galaxies: International Astronomical Union Colloquium No. 124

    NASA Technical Reports Server (NTRS)

    Sulentic, Jack W. (Editor); Keel, William C. (Editor); Telesco, C. M. (Editor)

    1990-01-01

    The proceedings of the International Astronomical Union Colloquium No. 124, held at the University of Alabama at Tuscaloosa, on December 4 to 7, are given. The purpose of the conference was to describe the current state of theoretical and observational knowledge of interacting galaxies, with particular emphasis on galaxies in pairs.

  1. Galaxy pairs in the Sloan Digital Sky Survey - III. Evidence of induced star formation from optical colours

    NASA Astrophysics Data System (ADS)

    Patton, David R.; Ellison, Sara L.; Simard, Luc; McConnachie, Alan W.; Mendel, J. Trevor

    2011-03-01

    We have assembled a large, high-quality catalogue of galaxy colours from the Sloan Digital Sky Survey Data Release 7 and have identified 21 347 galaxies in pairs spanning a range of projected separations (rp < 80 h-170 kpc), relative velocities (Δv < 10 000 km s-1, which includes projected pairs that are essential for quality control) and stellar mass ratios (from 1:10 to 10:1). We find that the red fraction of galaxies in pairs is higher than that of a control sample matched in stellar mass and redshift, and demonstrate that this difference is likely due to the fact that galaxy pairs reside in higher density environments than non-paired galaxies. We detect clear signs of interaction-induced star formation within the blue galaxies in pairs, as evidenced by a higher fraction of extremely blue galaxies, along with blueward offsets between the colours of paired versus control galaxies. These signs are strongest in close pairs (rp < 30 h-170 kpc and Δv < 200 km s-1), diminish for more widely separated pairs (rp > 60 h-170 kpc and Δv < 200 km s-1) and disappear for close projected pairs (rp < 30 h-170 kpc and Δv > 3000 km s-1). These effects are also stronger in central (fibre) colours than in global colours and are found primarily in low- to medium-density environments. Conversely, no such trends are seen in red galaxies, apart from a small reddening at small separations, which may result from residual errors with photometry in crowded fields. When interpreted in conjunction with a simple model of induced starbursts, these results are consistent with a scenario in which close pericentre passages trigger induced star formation in the centres of galaxies which are sufficiently gas rich, after which time the galaxies gradually redden as they separate and their starbursts age.

  2. STUDYING INTERCLUSTER GALAXY FILAMENTS THROUGH STACKING gmBCG GALAXY CLUSTER PAIRS

    SciTech Connect

    Zhang Yuanyuan; Dietrich, Joerg P.; McKay, Timothy A.; Nguyen, Alex T. Q.; Sheldon, Erin S.

    2013-08-20

    We present a method to study the photometric properties of galaxies in filaments by stacking the galaxy populations between pairs of galaxy clusters. Using Sloan Digital Sky Survey data, this method can detect the intercluster filament galaxy overdensity with a significance of {approx}5{sigma} out to z = 0.40. Using this approach, we study the g - r color and luminosity distribution of filament galaxies as a function of redshift. Consistent with expectation, filament galaxies are bimodal in their color distribution and contain a larger blue galaxy population than clusters. Filament galaxies are also generally fainter than cluster galaxies. More interestingly, the observed filament population seems to show redshift evolution at 0.12 < z < 0.40: the blue galaxy fraction has a trend to increase at higher redshift; such evolution is parallel to the ''Butcher-Oemler effect'' of galaxy clusters. We test the dependence of the observed filament density on the richness of the cluster pair: richer clusters are connected by higher density filaments. We also test the spatial dependence of filament galaxy overdensity: this quantity decreases when moving away from the intercluster axis between a cluster pair. This method provides an economical way to probe the photometric properties of filament galaxies and should prove useful for upcoming projects like the Dark Energy Survey.

  3. Studying Intercluster Galaxy Filaments through Stacking gmBCG Galaxy Cluster Pairs

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanyuan; Dietrich, Jörg P.; McKay, Timothy A.; Sheldon, Erin S.; Nguyen, Alex T. Q.

    2013-08-01

    We present a method to study the photometric properties of galaxies in filaments by stacking the galaxy populations between pairs of galaxy clusters. Using Sloan Digital Sky Survey data, this method can detect the intercluster filament galaxy overdensity with a significance of ~5σ out to z = 0.40. Using this approach, we study the g - r color and luminosity distribution of filament galaxies as a function of redshift. Consistent with expectation, filament galaxies are bimodal in their color distribution and contain a larger blue galaxy population than clusters. Filament galaxies are also generally fainter than cluster galaxies. More interestingly, the observed filament population seems to show redshift evolution at 0.12 < z < 0.40: the blue galaxy fraction has a trend to increase at higher redshift; such evolution is parallel to the "Butcher-Oemler effect" of galaxy clusters. We test the dependence of the observed filament density on the richness of the cluster pair: richer clusters are connected by higher density filaments. We also test the spatial dependence of filament galaxy overdensity: this quantity decreases when moving away from the intercluster axis between a cluster pair. This method provides an economical way to probe the photometric properties of filament galaxies and should prove useful for upcoming projects like the Dark Energy Survey.

  4. Mapping IR Enhancements in Closely Interacting Spiral-Spiral Pairs: I. ISO CAM and ISO SWS Observations

    NASA Technical Reports Server (NTRS)

    Xu, C.; Gao, Y.; Mazzarella, J.; Lu, N.; Sulentic, J.; Domingue, D.

    2000-01-01

    Mid-infrared (MIR) imaging and spectroscopic observations are presented for a well defined sample of eight closely interacting (CLO) pairs of spiral galaxies that have overlapping disks and show enhanced far-infrared (FIR) emission.

  5. Major-Merger Galaxy Pairs at Z = 0: Dust Properties and Companion Morphology

    NASA Astrophysics Data System (ADS)

    Domingue, Donovan L.; Cao, Chen; Xu, C. Kevin; Jarrett, Thomas H.; Ronca, Joseph; Hill, Emily; Jacques, Allison

    2016-10-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K s magnitude and redshift. The pairs represent the two populations of spiral-spiral (S+S) and mixed morphology spiral-elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer, and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.

  6. Galaxy pairs in deep HST images: Evidence for evolution in the galaxy merger rate

    NASA Technical Reports Server (NTRS)

    Burkey, Jordan M.; Keel, William C.; Windhorst, Rogier A.; Franklin, Barbara E.

    1994-01-01

    We use four deep serendipitous fields observed with the Hubble Space Telescope (HST) Wide-Field Camera to constrain the rate of galaxy merging between the current epoch and z approximately equals 0.7. Since most mergers occur between members of bound pairs, the merger rate is given to a good approximation by (half) the rate of disappearance of galaxies in pairs. An objective criterion for pair membership shows that 34% +/- 9% of our HST galaxies with I = 18-22 belong to pairs, compared to 7% locally. This means that about 13% of the galaxy population has disappeared due to merging in the cosmic epoch corresponding to this magnitude interval (or 0.1 approximately less than z approximately less than 0.7). Our pair fraction is a lower limit: correction for pair members falling below our detection threshold might raise the fraction to approximately 50%. Since we address only two-galaxy merging, these values do not include physical systems of higher multiplicity. Incorporating I-band field-galaxy redshift distributions, the pair fraction grows with redshift as alpha(1 + z)(exp 3.5 +/- 0.5) and the merger rate as (1 + z)(exp 2.5 +/- 0.5). This may have significant implications for the interpretation of galaxy counts (disappearance of faint blue galaxies), the cosmological evolution of faint radio sources and quasars (which evolve approximately as (1 + z)(exp 3), the similarity in the power law is necessary but not sufficient evidence for a causal relation), statistics of QSO companions, the galaxy content in distant clusters, and the merging history of a 'typical' galaxy.

  7. Evolution of the major merger galaxy pair fraction at z < 1

    SciTech Connect

    Keenan, R. C.; Hsieh, B. C.; Lin, L.; Chou, R. C. Y.; Huang, S.; Lin, J. H.; Chang, K. H.; Foucaud, S.; De Propris, R.

    2014-11-10

    We present a study of the largest available sample of near-infrared selected (i.e., stellar mass selected) dynamically close pairs of galaxies at low redshifts (z < 0.3). We combine this sample with new estimates of the major merger pair fraction for stellar mass selected galaxies at z < 0.8, from the Red Sequence Cluster Survey (RCS1). We construct our low-redshift K-band selected sample using photometry from the UKIRT Infrared Deep Sky Survey and the Two Micron All Sky Survey (2MASS) in the K band (∼2.2 μm). Combined with all available spectroscopy, our K-band selected sample contains ∼250, 000 galaxies and is >90% spectroscopically complete. The depth and large volume of this sample allow us to investigate the low-redshift pair fraction and merger rate of galaxies over a wide range in K-band luminosity. We find the major merger pair fraction to be flat at ∼2% as a function of K-band luminosity for galaxies in the range 10{sup 8}-10{sup 12} L {sub ☉}, in contrast to recent results from studies in the local group that find a substantially higher low-mass pair fraction. This low-redshift major merger pair fraction is ∼40%-50% higher than previous estimates drawn from K-band samples, which were based on 2MASS photometry alone. Combining with the RCS1 sample, we find a much flatter evolution (m = 0.7 ± 0.1) in the relation f {sub pair}∝(1 + z) {sup m} than indicated in many previous studies. These results indicate that a typical L ∼ L* galaxy has undergone ∼0.2-0.8 major mergers since z = 1 (depending on the assumptions of merger timescale and percentage of pairs that actually merge).

  8. Submillimeter Imaging of the Luminous Infrared Galaxy Pair VV114

    NASA Technical Reports Server (NTRS)

    Frayer, D.; Ivison, R. J.; Smail, I.; Yun, M. S.; Armus, L.

    1999-01-01

    We report on 450 and 850 mue observations of the interacting galaxy pair, VV114E+W (IC 1623), taken with the SCUBA camera on the James Clerk Maxwell Telescope, and near-infrared observations taken with UFTI on the UK Infrared Telescope.

  9. Interaction effects on galaxy pairs with Gemini/GMOS - II: oxygen abundance gradients

    NASA Astrophysics Data System (ADS)

    Rosa, D. A.; Dors, O. L.; Krabbe, A. C.; Hägele, G. F.; Cardaci, M. V.; Pastoriza, M. G.; Rodrigues, I.; Winge, C.

    2014-11-01

    In this paper, we derive oxygen abundance gradients from H II regions located in 11 galaxies in eight systems of close pairs. Long-slit spectra in the range 4400-7300 Å were obtained with the Gemini Multi-Object Spectrograph at Gemini South (GMOS-S). Spatial profiles of oxygen abundance in the gaseous phase along galaxy discs were obtained using calibrations based on strong emission lines (N2 and O3N2). We found oxygen gradients to be significantly flatter for all the studied galaxies than those in typical isolated spiral galaxies. Four objects in our sample, AM 1219A, AM 1256B, AM 2030A and AM 2030B, show a clear break in the oxygen abundance at galactocentric radius R/R25 between 0.2 and 0.5. For AM 1219A and AM 1256B, we found negative slopes for the inner gradients, and for AM 2030B, we found a positive slope. All three cases show a flatter behaviour to the outskirts of the galaxies. For AM 2030A, we found a positive slope for the outer gradient, while the inner gradient is almost compatible with a flat behaviour. We found a decrease of star formation efficiency in the zone that corresponds to the oxygen abundance gradient break for AM 1219A and AM 2030B. For the former, a minimum in the estimated metallicities was found very close to the break zone, which could be associated with a corotation radius. However, AM 1256B and AM 2030A, present a star formation rate maximum but not an extreme oxygen abundance value. All four interacting systems that show oxygen gradient breaks have extreme SFR values located very close to break zones.The H II regions located in close pairs of galaxies follow the same relation between the ionization parameter and the oxygen abundance as those regions in isolated galaxies.

  10. The Interacting Galaxy Pair KPG 390: Hα Kinematics

    NASA Astrophysics Data System (ADS)

    Repetto, P.; Rosado, M.; Gabbasov, R.; Fuentes-Carrera, I.

    2010-04-01

    In this work, we present scanning Fabry-Perot (FP) Hα observations of the isolated interacting galaxy pair NGC 5278/79 obtained with the PUMA FP interferometer. We derived velocity fields and rotation curves for both galaxies. For NGC 5278 we also obtained the residual velocity map to investigate the non-circular motions, and estimated its mass by fitting the rotation curve with disk+halo components. We test three different types of halos (pseudo-isothermal, Hernquist, and Navarro-Frenk-White) and obtain satisfactory fits to the rotation curve for all profiles. The amount of dark matter required by the pseudo-isothermal profile is about 10 times smaller than that for the other two halo distributions. Finally, our kinematical results together with the analysis of dust lane distribution and of surface brightness profiles along the minor axis allowed us to determine univocally that both components of the interacting pair are trailing spirals.

  11. THE INTERACTING GALAXY PAIR KPG 390: H{alpha} KINEMATICS

    SciTech Connect

    Repetto, P.; Rosado, M.; Gabbasov, R.; Fuentes-Carrera, I.

    2010-04-15

    In this work, we present scanning Fabry-Perot (FP) H{alpha} observations of the isolated interacting galaxy pair NGC 5278/79 obtained with the PUMA FP interferometer. We derived velocity fields and rotation curves for both galaxies. For NGC 5278 we also obtained the residual velocity map to investigate the non-circular motions, and estimated its mass by fitting the rotation curve with disk+halo components. We test three different types of halos (pseudo-isothermal, Hernquist, and Navarro-Frenk-White) and obtain satisfactory fits to the rotation curve for all profiles. The amount of dark matter required by the pseudo-isothermal profile is about 10 times smaller than that for the other two halo distributions. Finally, our kinematical results together with the analysis of dust lane distribution and of surface brightness profiles along the minor axis allowed us to determine univocally that both components of the interacting pair are trailing spirals.

  12. Byurakan-IRAS Galaxy Pairs as Indicators of Starburst and Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Sargsyan, L. A.; Mikayelyan, G. A.

    2010-05-01

    The Byurakan-IRAS galaxies (BIG objects; Mickaelian 1995) are the result of a project of optical identifications of IRAS Point Source Catalog (PSC; IRAS 1988) in a 1500 square degree high-galactic latitude (|b|>15°) area based on the Digitized Sky Survey (DSS) images and the Digitized First Byurakan Survey (DFBS, or digitized Markarian survey) low-dispersion spectra. As a result, 1278 galaxies have been identified (as well as galactic objects, Byurakan-IRAS Stars [BIS]), including 42 PSC sources identified with 103 galaxies that make up 30 physical pairs and 12 multiples.

  13. Uncovering Binary Supermassive Black Holes in Merging Galaxy Pairs

    NASA Astrophysics Data System (ADS)

    McNulty, Paul; Satyapal, Shobita; Ellison, Sara L.; Secrest, Nathan; Gliozzi, Mario; Rothberg, Barry

    2016-01-01

    It is now well known that virtually all galaxies host a central supermassive black hole (SMBH) and that galaxy interactions are ubiquitous. Theory predicts these interactions would funnel gas toward the central regions of galaxies, potentially triggering gas accretion onto the SMBH, causing them to appear as binary active galactic nuclei (AGN). However, despite decades of searching and strong theoretical reasons that they should exist, observationally confirmed cases of binary AGNs are extremely rare, and most have been discovered serendipitously. Since galaxy mergers are likely to be characterized by dusty environments, it is possible that the optical signatures of a significant number of binary AGNs are obscured. Observations from the Wide-field Infrared Survey Explorer (WISE) may hold the key for increasing the rate of discovery of binary AGN in late-stage mergers. Starting with a sample of ~4,000 galaxy pairs, we searched for mid-IR signatures of binary AGNs. In this poster, we report on the detection frequency of binary AGNs identified through mid-infrared observations and explore its dependence on merger stage.

  14. The ALHAMBRA survey: accurate merger fractions derived by PDF analysis of photometrically close pairs

    NASA Astrophysics Data System (ADS)

    López-Sanjuan, C.; Cenarro, A. J.; Varela, J.; Viironen, K.; Molino, A.; Benítez, N.; Arnalte-Mur, P.; Ascaso, B.; Díaz-García, L. A.; Fernández-Soto, A.; Jiménez-Teja, Y.; Márquez, I.; Masegosa, J.; Moles, M.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Aims: Our goal is to develop and test a novel methodology to compute accurate close-pair fractions with photometric redshifts. Methods: We improved the currently used methodologies to estimate the merger fraction fm from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space; (ii) including the variation in the luminosity of the sources with z in both the sample selection and the luminosity ratio constrain; and (iii) splitting individual PDFs into red and blue spectral templates to reliably work with colour selections. We tested the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. Results: The merger fractions and rates from the ALHAMBRA survey agree excellently well with those from spectroscopic work for both the general population and red and blue galaxies. With the merger rate of bright (MB ≤ -20-1.1z) galaxies evolving as (1 + z)n, the power-law index n is higher for blue galaxies (n = 2.7 ± 0.5) than for red galaxies (n = 1.3 ± 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is Nmred = 0.57 ± 0.05 for red galaxies and Nmblue = 0.26 ± 0.02 for blue galaxies. Conclusions: Our new methodology statistically exploits all the available information provided by photometric redshift codes and yields accurate measurements of the merger fraction by close pairs from using photometric redshifts alone. Current and future photometric surveys will benefit from this new methodology. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).The catalogues, probabilities, and figures of the ALHAMBRA close pairs detected in Sect. 5.1 are available at http://https://cloud.iaa.csic.es/alhambra/catalogues/ClosePairs

  15. Stellar dynamics in E+E pairs of galaxies. 2: Simulations and interpretation

    NASA Astrophysics Data System (ADS)

    Combes, F.; Rampazzo, R.; Bonfanti, P. P.; Prugniel, P.; Sulentic, J. W.

    1995-05-01

    We have presented in a companion article a kinematic study of three E+E galaxy pairs, NGC741/742, 1587/1588 (CPG 99) and 2672/2673 (CPG 175). We find some evidence for perturbed velocity dispersion profiles. These perturbation features are now reported for 14 galaxies in the literature. They occur, or require observations for detection, at large radii where the S/N in the data is low. While observations of individual galaxies are sometimes uncertain, the large number of objects where such features are suspected gives confidence that they are real. These perturbations can be attributed to projection effects contamination along the line of sight, or directly to the tidal interaction. We report the results of several self-gravitating simulations of unbound pairs in an effort to better understand these perturbations another generic features of close E+E pairs reported in the literature. The models frequently show off-center envelopes created by the asymmetry of tidal forces during interpenetrating encounters. The envelopes last for a few 108 yrs, which explains the frequency of such features in observed pairs. This phenomenon is stronger in the self-gravitating simulations than in the MTBA runs. U-shaped (and an equal number of inverse U shaped velocity profiles are seen in the simulations, a result of ablation in the outer envelopes. Simulations including inner galaxy rotation also preserve this feature, irrespective of the spin vector direction in each galaxy. U-shape velocity structure is found to be a robust indicator of the ongoing interaction. All simulations show evidence for enhanced velocity dispersion between the galaxies even in the case of simple superposition of two non interacting objects. We therefore conclude that this cannot be considered an unambiguous indicator of the interaction.

  16. VizieR Online Data Catalog: New sample of bright galaxy pairs in UZC (Focardi+, 2006)

    NASA Astrophysics Data System (ADS)

    Focardi, P.; Zitelli, V.; Marinoni, S.; Kelm, B.

    2006-06-01

    We present a new sample of bright galaxy pairs extracted applying an objective selection code to the UZC catalog. The sample is volume-limited to Mzw=-18.9+5logh and contains 89 galaxy pairs. We analyze the kinematical, morphological, and photometrical properties of galaxies belonging to this sample. (1 data file).

  17. Galaxy pairs in the Sloan Digital Sky Survey - XI. A new method for measuring the influence of the closest companion out to wide separations

    NASA Astrophysics Data System (ADS)

    Patton, David R.; Qamar, Farid D.; Ellison, Sara L.; Bluck, Asa F. L.; Simard, Luc; Mendel, J. Trevor; Moreno, Jorge; Torrey, Paul

    2016-09-01

    We describe a statistical approach for measuring the influence that a galaxy's closest companion has on the galaxy's properties out to arbitrarily wide separations. We begin by identifying the closest companion for every galaxy in a large spectroscopic sample of Sloan Digital Sky Survey galaxies. We then characterize the local environment of each galaxy by using the number of galaxies within 2 Mpc and by determining the isolation of the galaxy pair from other neighbouring galaxies. We introduce a sophisticated algorithm for creating a statistical control sample for each galaxy, matching on stellar mass, redshift, local density and isolation. Unlike traditional studies of close galaxy pairs, this approach is effective in a wide range of environments, regardless of how faraway the closest companion is (although a very distant closest companion is unlikely to have a measurable influence on the galaxy in question). We apply this methodology to measurements of galaxy asymmetry, and find that the presence of nearby companions drives a clear enhancement in galaxy asymmetries. The asymmetry excess peaks at the smallest projected separations (<10 kpc), where the mean asymmetry is enhanced by a factor of 2.0 ± 0.2. Enhancements in mean asymmetry decline as pair separation increases, but remain statistically significant (1σ-2σ) out to projected separations of at least 50 kpc.

  18. A CLOSE-PAIR ANALYSIS OF DAMP MERGERS AT INTERMEDIATE REDSHIFTS

    SciTech Connect

    Chou, Richard C. Y.; Abraham, Roberto G.; Bridge, Carrie R. E-mail: abraham@astro.utoronto.ca

    2012-12-01

    We have studied the kinematics of {approx}2800 candidate close-pair galaxies at 0.1 < z < 1.2 identified from the Canada-France-Hawaii Telescope Legacy Survey fields. Spectra of these systems were obtained using spectrometers on the 6.5 m Magellan and 5 m Hale telescopes. These data allow us to constrain the rate of dry mergers at intermediate redshifts and to test the 'hot halo' model for quenching of star formation. Using virial radii estimated from the correlation between dynamical and stellar masses published by Leauthaud et al., we find that around 1/5 of our candidate pairs are likely to share a common dark matter halo (our metric for close physical association). These pairs are divided into red-red, blue-red, and blue-blue systems using the rest-frame colors classification method introduced in Chou et al.. Galaxies classified as red in our sample have very low star formation rates, but they need not be totally quiescent, and hence we refer to them as 'damp', rather than 'dry', systems. After correcting for known selection effects, the fraction of blue-blue pairs is significantly greater than that of red-red and blue-red pairs. Red-red pairs are almost entirely absent from our sample, suggesting that damp mergers are rare at z {approx} 0.5. Our data support models with a short merging timescale (<0.5 Gyr) in which star formation is enhanced in the early phase of mergers, but quenched in the late phase. Hot halo models may explain this behavior, but only if virial shocks that heat gas are inefficient until major mergers are nearly complete.

  19. Underwater acoustic source localization using closely spaced hydrophone pairs

    NASA Astrophysics Data System (ADS)

    Sim, Min Seop; Choi, Bok-Kyoung; Kim, Byoung-Nam; Lee, Kyun Kyung

    2016-07-01

    Underwater sound source position is determined using a line array. However, performance degradation occurs owing to a multipath environment, which generates incoherent signals. In this paper, a hydrophone array is proposed for underwater source position estimation robust to a multipath environment. The array is composed of three pairs of sensors placed on the same line. The source position is estimated by performing generalized cross-correlation (GCC). The proposed system is not affected by a multipath time delay because of the close distance between closely spaced sensors. The validity of the array is confirmed by simulation using acoustic signals synthesized by eigenrays.

  20. Constraining the Major Merger History of Massive Galaxies from z~0 to z~3 using Pairs from CANDELS & SDSS

    NASA Astrophysics Data System (ADS)

    Mantha, Kameswara Bharadwaj; McIntosh, Daniel H.; Brennan, Ryan; Cook, Joshua; Conselice, Christopher; Lotz, Jennifer; Hathi, Nimish P.; CANDELS Collaboration

    2016-01-01

    Major merging may play an important role in the morphological transformation and mass assembly at play in the evolution of massive galaxies. An important way to measure the impact of merging is to study close pairs of nearly equal-mass galaxies. We do this by using data from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) and the SDSS to measure the evolution between redshifts 0≤z≤3 of massive (stellar masses Mhost>2E10 Msun) galaxies that are involved in major (1≤Mhost/Mcomp≤4), close (≤50 kpc separation) pairs. Our preliminary results are based on data from two of the legacy fields: UDS and GOODS-S. If we simply define major pairs based on H-Band flux ratios and corrected for line-of-sight contamination, we find that the fraction of massive galaxies in such pairs increases from 2-5% (z~0) to 20-45% (z~3), in agreement with a broad range of previous studies. In contrast, when we consider stellar mass ratios and attempt to account for close redshift proximity using the best available redshifts (either spectroscopic or photometric), the pair fraction and fraction of galaxies in pairs each follow a broken redshift dependence where there is an increase (~(1+z)2 ) from z~0 to z~1, followed by a decreasing (~(1+z)-1.1) redshift dependence to z~3. Thus, our results point towards diminishing importance of major merging at z≥1, consistent with recent findings by Man et al.

  1. The VIMOS VLT Deep Survey. Evolution of the major merger rate since z ~ 1 from spectroscopically confirmed galaxy pairs

    NASA Astrophysics Data System (ADS)

    de Ravel, L.; Le Fèvre, O.; Tresse, L.; Bottini, D.; Garilli, B.; Le Brun, V.; Maccagni, D.; Scaramella, R.; Scodeggio, M.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; Iovino, A.; Lamareille, F.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Meneux, B.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Vergani, D.; Zamorani, G.; Zucca, E.; Bondi, M.; Bongiorno, A.; Brinchmann, J.; Cucciati, O.; de La Torre, S.; Gregorini, L.; Memeo, P.; Perez-Montero, E.; Mellier, Y.; Merluzzi, P.; Temporin, S.

    2009-05-01

    Context: The rate at which galaxies grow via successive mergers is a key element in understanding the main phases of galaxy evolution. Aims: We measure the evolution of the fraction of galaxies in pairs and the merging rate since redshift z 1 assuming a (H0 = 70 km s-1 Mpc-1, ΩM = 0.3 and ΩΛ = 0.7) cosmology. Methods: From the VIMOS VLT Deep Survey we use a sample of 6464 galaxies with I_AB ≤ 24 to identify 314 pairs of galaxies, each member with a secure spectroscopic redshift, which are close in both projected separation and in velocity. Results: We estimate that at z 0.9, 10.9 ± 3.2% of galaxies with MB(z) ≤ -18-Qz (Q = 1.11) are in pairs with separations Δ rp ≤ 20 h-1 kpc, Δ v≤ 500 km s-1, and with Δ MB ≤ 1.5, significantly larger than 3.8 ± 1.7% at z 0.5; thus, the pair fraction evolves as (1 + z)m with m = 4.73 ± 2.01. For bright galaxies with MB(z = 0) ≤ -18.77, the pair fraction is higher and its evolution with redshift is flatter with m = 1.50 ± 0.76, a property also observed for galaxies with increasing stellar masses. Early-type pairs (dry mergers) increase their relative fraction from 3% at z 0.9 to 12% at z 0.5. The star formation rate traced by the rest-frame [OII] EW increases by 26 ± 4% for pairs with the smallest separation rp ≤ 20 h-1 kpc. Following published prescriptions to derive merger timescales, we find that the merger rate of MB(z) ≤ -18-Qz galaxies evolves as N_mg = (4.96 ± 2.07)×10-4×(1 + z)2.20 ± 0.77 mergers Mpc-3 Gyr-1. Conclusions: The merger rate of galaxies with MB(z) ≤ -18-Qz has significantly evolved since z 1 and is strongly dependent on the luminosity or stellar mass of galaxies. The major merger rate increases more rapidly with redshift for galaxies with fainter luminosities or stellar mass, while the evolution of the merger rate for bright or massive galaxies is slower, indicating that the slow evolution reported for the brightest galaxies is not universal. The merger rate is also strongly

  2. Electrons in a closed galaxy model of cosmic rays

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Westergaard, N. J.

    1976-01-01

    The consistency of positrons and electrons was studied using a propagation model in which the cosmic rays are stopped by nuclear collisions or energy losses before they can escape from the galaxy (the closed-galaxy model). The fact that no inconsistency was found between the predictions and the data implies that the protons which produce the positrons by nuclear reactions could have their origin in a large number of distant sources, as opposed to the heavier nuclei which in this model come from a more limited set of sources. The closed-galaxy model predicts steep electron and positron spectra at high energies. None of these are inconsistent with present measurements; but future measurements of the spectrum of high-energy positrons could provide a definite test for the model. The closed-galaxy model also predicts that the interstellar electron intensity below a few GeV is larger than that implied by other models. The consequence of this result is that electron bremsstrahlung is responsible for about 50% of the galactic gamma-ray emission at photon energies greater than 100 MeV.

  3. Peek-a-boo: Mapping Dust in Galaxies with Spitzer IRAC Imaging of Back-lit Galaxy Pairs

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha; Higdon, Sarah; Higdon, James

    2010-06-01

    Interstellar dust affects the chemistry and energy budget of galaxies, and can profoundly affect studies of the distant universe. However, very little is known about the nature of interstellar dust in normal galaxies beyond the Milky Way and the Magellanic Clouds. A direct way to probe dust in galaxies is by using partially overlapping (backlit) pairs of galaxies. While this technique has been applied to a few galaxy pairs, it has been used primarily with optical data in B and I bands (and occasionally K band), which are all subject to substantial amounts of dust extinction. Here we propose to observe 15 backlit pairs/polar ring galaxies in IRAC 3.6 and 4.5 micron bands which are much less affected by dust. Our goals are: (1) to obtain essentially un-extinguished reference images for comparison with the existing optical images and thus to determine dust extinction more accurately across different parts of the foreground galaxies; (2) to determine the opacity of some nearby spiral disks and examine whether dust grain sizes decrease in outer parts of disks; (3) to probe large-scale dust structure in some elliptical galaxies; (4) to examine whether dust exhibits fractal structure; and (5) to map star formation rate across the galaxies using the 3.6/4.5 micron flux ratio. The very local nature of our sample allows a detailed look at dust properties at different positions within the galaxies, and examine what galaxy properties drive the variation in dust properties. Our study will provide new implications for observations of the distant universe that are necessarily affected by the presence of dust in foreground galaxies.

  4. Binary pairs of supermassive black holes - Formation in merging galaxies

    NASA Astrophysics Data System (ADS)

    Valtaoja, L.; Valtonen, M. J.; Byrd, G. G.

    1989-08-01

    A process in which supermassive binary blackholes are formed in nuclei of supergiant galaxies due to galaxy mergers is examined. There is growing evidence that mergers of galaxies are common and that supermassive black holes in center of galaxies are also common. Consequently, it is expected that binary black holes should arise in connection with galaxy mergers. The merger process in a galaxy modeled after M87 is considered. The capture probability of a companion is derived as a function of its mass. Assuming a correlation between the galaxy mass and the blackholes mass, the expected mass ratio in binary black holes is calculated. The binary black holes formed in this process are long lived, surviving longer than the Hubble time unless they are perturbed by black holes from successive mergers. The properties of these binaries agree with Gaskell's (1988) observational work on quasars and its interpretation in terms of binary black holes.

  5. Isolated Galaxies versus Interacting Pairs with MaNGA

    NASA Astrophysics Data System (ADS)

    Fernández, María; Yuan, Fangting; Shen, Shiyin; Yin, Jun; Chang, Ruixiang; Feng, Shuai

    2015-10-01

    We present preliminary results of the spectral analysis on the radial distributions of the star formation history in both, a galaxy merger and a spiral isolated galaxy observed with MaNGA. We find that the central part of the isolated galaxy is composed by older stellar population ($\\sim$2 Gyr) than in the outskirts ($\\sim$7 Gyr). Also, the time-scale is gradually larger from 1 Gyr in the inner part to 3 Gyr in the outer regions of the galaxy. In the case of the merger, the stellar population in the central region is older than in the tails, presenting a longer time-scale in comparison to central part in the isolated galaxy. Our results are in agreement with a scenario where spiral galaxies are built from inside-out. In the case of the merger, we find evidence that interactions enhance star formation in the central part of the galaxy.

  6. What can the occult do for you? Understanding dust geometry in other galaxies from overlapping galaxy pairs.

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne Willem

    2015-08-01

    Interstellar dust is still the dominant uncertainty in Astronomy, limiting precision in e.g., cosmological distance estimates and models of how light is re-processed within a galaxy. When a foreground galaxy serendipitously overlaps a more distant one, the latter backlights the dusty structures in the nearer foreground galaxy. Such an overlapping or occulting galaxy pair can be used to measure the distribution of dust in the closest galaxy with great accuracy. My STARSMOG program uses HST observation of occulting galaxy pairs to accurately map the distribution of dust in foreground galaxies in fine (<100 pc) detail.The primary motivation is threefold: first, almost half of the light from stars in spiral galaxies is absorbed by the interstellar dust grains and re-emitted at longer wavelengths. To model this accurately, one needs to know the distribution and detailed geometry of dust in galaxies. The travel of light through an inhomogeneous medium is radically different from the smooth one and depends strongly on the medium’s inner structure. Secondly, the model for our Universe today includes dark energy, inferred from the distances to supernova, which themselves may be dimmed by intervening dust. An accurate model for the dust extinction in supernova host galaxies is critical to evolve this technique to the next level of accuracy needed to map dark energy. And finally, the fine-scale maps of dust extinction in occuling galaxies can be used to trace the molecular cloud sizes and the role of turbulence in the ISM of these disks. Furthermore, Integral Field Unit observations of such pairs will map the effective extinction curve in these occulting galaxies, disentangling the role of fine-scale geometry and grain composition on these curves.The overlapping galaxy technique promises to deliver a clear understanding of the dust in galaxies: the dust geometry, a probability function of the amount of dimming as a function of galaxy type, its dependence on wavelength and

  7. Close up view of the pair of Rudder Pedals in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the pair of Rudder Pedals in the Commander's Satiation on the Flight Deck of the Orbiter Discovery. The rudder pedals command orbiter acceleration in yaw by positioning the rudder during atmospheric flight. However, because the flight control software automatically performs turn coordination during banking maneuvers, the rudder pedals are not operationally used during glided flight. It is not until after touchdown that the crew uses them for nose wheel steering during rollout. Depressing the upper portion of the rudder pedals provides braking. Differential braking may also be used for directional control during rollout. This view was take at Johnson Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. Close Pairings of Galilean Satellites Observed Using Speckle Interferometry

    NASA Astrophysics Data System (ADS)

    Mason, B. D.; Kaplan, G. H.; Douglass, G. G.; Pascu, D.; Aksnes, K.

    1999-09-01

    During November-December 1998, a series of events occurred involving the Galilean satellites of Jupiter, where two satellites (usually Io and Europa, but sometimes Europa and Ganymede) passed within 5 arcsec of each other. Depending on the orbital geometry and closest separation (as close as 2.9 arcsec) the events lasted anywhere from 20 minutes to several hours. Since 5 arcsec roughly defines the atmospheric isoplanatic patch, attempts were made to observe these events using the speckle interferometry camera attached to the U.S. Naval Observatory (USNO) 26-inch refractor. The camera and associated software are normally used for precise measurements of the distance and position angle of binary star components. For the satellite events, the goal was to obtain very precise relative positions of the satellite pairs at specific times, as well as the time of apparent closest separation. Speckle observations of binary stars made from USNO typically yield positional accuracy of about 1 We successfully observed 4 out of a possible 8 events visible from USNO. Reduction of these observations is in progress. Despite the fact that the Galileans are resolved, not point sources, autocorrelations of the speckle patterns appear fairly strong. However, because of the relative motion of the satellites, only short integration times can be used, and it remains to be seen whether the signal-to-noise ratio will permit relative position measurements of useful precision. Close pairings of the Galilean satellites occur in series that are determined by the mutual resonances, within a geometric envelope defined by the apparent inclination of the orbital planes (i.e., Jupiter's equator) and distance. There is another series of events in May-June 1999, then again in January 2000. This technique may also be applicable to some of the Saturnian satellites near the time of ring-plane crossing. We invite other speckle interferometry groups to attempt observations of these events so that the

  9. A dynamical proximity analysis of interacting galaxy pairs

    NASA Technical Reports Server (NTRS)

    Chatterjee, Tapan K.

    1990-01-01

    Using the impulsive approximation to study the velocity changes of stars during disk-sphere collisions and a method due to Bottlinger to study the post collision orbits of stars, the formation of various types of interacting galaxies is studied as a function of the distance of closest approach between the two galaxies.

  10. VLA Reveals a Close Pair of Potential Planetary Systems

    NASA Astrophysics Data System (ADS)

    1998-09-01

    Planets apparently can form in many more binary-star systems than previously thought, according to astronomers who used the National Science Foundation's Very Large Array (VLA) radio telescope to image protoplanetary disks around a close pair of stars. "Most stars in the universe are not alone, like our Sun, but are part of double or triple systems, so this means that the number of potential planets is greater than we realized," said Luis Rodriguez, of the National Autonomous University in Mexico City, who led an international observing team that made the discovery. The astronomers announced their results in the Sept. 24 issue of the scientific journal Nature. The researchers used the VLA to study a stellar nursery - a giant cloud of gas and dust - some 450 light-years distant in the constellation Taurus, where stars the size of the Sun or smaller are being formed. They aimed at one particular object, that, based on previous infrared and radio observations, was believed to be a very young star. The VLA observations showed that the object was not a single young star but a pair of young stars, separated only slightly more than the Sun and Pluto. The VLA images show that each star in the pair is surrounded by an orbiting disk of dust, extending out about as far as the orbit of Saturn. Such dusty disks are believed to be the material from which planets form. Similar disks are seen around single stars, but the newly-discovered disks around the stars in the binary system are about ten times smaller, their size limited by the gravitational effect of the other, nearby star. Their existence indicates, however, that such protoplanetary disks, though truncated in size, still can survive in such a close double-star system. "It was surprising to see these disks in a binary system with the stars so close together," said Rodriguez. "Each of these disks contains enough mass to form a solar system like our own," said David Wilner, of the Harvard-Smithsonian Center for Astrophysics

  11. Pairs of galaxies in low density regions of a combined redshift catalog

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Salpeter, Edwin E.

    1990-01-01

    The distributions of projected separations and radial velocity differences of pairs of galaxies in the CfA and Southern Sky Redshift Survey (SSRS) redshift catalogs are examined. The authors focus on pairs that fall in low density environments rather than in clusters or large groups. The projected separation distribution is nearly flat, while uncorrelated galaxies would have given one linearly rising with r sub p. There is no break in this curve even below 50 kpc, the minimum halo size consistent with measured galaxy rotation curves. The significant number of pairs at small separations is inconsistent with the N-body result that galaxies with overlapping halos will rapidly merge, unless there are significant amounts of matter distributed out to a few hundred kpc of the galaxies. This dark matter may either be in distinct halos or more loosely distributed. Large halos would allow pairs at initially large separations to head toward merger, replenishing the distribution at small separations. In the context of this model, the authors estimate that roughly 10 to 25 percent of these low density galaxies are the product of a merger, compared with the elliptical/SO fraction of 18 percent, observed in low density regions of the sample.

  12. Nuclear activity in galaxy pairs: a spectroscopic analysis of 48 UZC-BGPs

    NASA Astrophysics Data System (ADS)

    Focardi, P.; Zitelli, V.; Marinoni, S.

    2008-06-01

    Context: The role played by interaction on galaxy formation and evolution continues to be debated. Several questions remain open, among them whether, and to what extent, galaxy interaction induce nuclear activity, as theoretical predictions, so far, have not been adequately supported by observations. Part of the uncertainty affecting the observational results is likely to be due to the limited sizes and the inhomogeneity of the samples. Aims: Galaxy pairs are ideal sites in which to investigate the role of interaction on nuclear activity, since the proximity, in redshift and in projected separation, between members make interaction and encounters highly probable. For this reason we have undertaken a spectroscopic survey of a large homogeneous sample of galaxy pairs (UZC-BGP) selected applying an objective neighbour search algorithm to a 3D galaxy catalog (UZC). Methods: We present the results of the nuclear spectral classification, performed using standard diagnostic diagrams, of 48 UZC-BGPs, which represents more than half of the whole sample and has an excellent morphological match with it. Results: The fraction of emission line galaxies in our pair sample is large, especially among spirals where it reaches 84% and 95%, for early and late spirals. Star Burst (SB) is the most frequent type of nuclear activity encountered (30% of galaxies), while AGNs (Active Galactic Nuclei) make only 19%. The fractions increase to 45% and 22% when considering only spirals. Late spirals are characterized by both an unusual increase (35%) of AGN activity and high luminosity (44% have MB < -20.0 + 5 log h). LLAGNs (Low Luminosity AGNs) are only 8% of the total number of galaxies, but this kind of activity could be present in another 10% of the galaxies (LLAGN candidates). If confirmed, these candidates would make LLAGNs constitute a significant fraction of the whole AGN (LLAGN + AGN) population, and raise the AGN population as a whole to 37%. Absorption line galaxies reside mostly

  13. Catalogues of isolated galaxies, isolated pairs, and isolated triplets in the local Universe

    NASA Astrophysics Data System (ADS)

    Argudo-Fernández, M.; Verley, S.; Bergond, G.; Duarte Puertas, S.; Ramos Carmona, E.; Sabater, J.; Fernández Lorenzo, M.; Espada, D.; Sulentic, J.; Ruiz, J. E.; Leon, S.

    2015-06-01

    Context. The construction of catalogues of galaxies and the a posteriori study of galaxy properties in relation to their environment have been hampered by scarce redshift information. The new 3-dimensional (3D) surveys permit small, faint, physically bound satellites to be distinguished from a background-projected galaxy population, giving a more comprehensive 3D picture of the surroundings. Aims: We aim to provide representative samples of isolated galaxies, isolated pairs, and isolated triplets for testing galaxy evolution and secular processes in low density regions of the local Universe, as well as to characterise their local and large-scale environments. Methods: We used spectroscopic data from the tenth data release of the Sloan Digital Sky Survey (SDSS-DR10) to automatically and homogeneously compile catalogues of 3702 isolated galaxies, 1240 isolated pairs, and 315 isolated triplets in the local Universe (z ≤ 0.080). To quantify the effects of their local and large-scale environments, we computed the projected density and the tidal strength for the brightest galaxy in each sample. Results: We find evidence of isolated pairs and isolated triplets that are physically bound at projected separations up to d ≤ 450 kpc with radial velocity difference Δν ≤ 160 km s-1, where the effect of the companion typically accounts for more than 98% of the total tidal strength affecting the central galaxy. For galaxies in the catalogues, we provide their positions, redshifts, and degrees of relation with their physical and large-scale environments. The catalogues are publicly available to the scientific community. Conclusions: For isolated galaxies, isolated pairs, and isolated triplets, there is no difference in their degree of interaction with the large-scale structure (up to 5 Mpc), which may suggest that they have a common origin in their formation and evolution. We find that most of them belong to the outer parts of filaments, walls, and clusters, and generally

  14. Kiloparsec Mass/Light Offsets in the Galaxy Pair-Lyα Emitter Lens System SDSS J1011+0143

    NASA Astrophysics Data System (ADS)

    Shu, Yiping; Bolton, Adam S.; Moustakas, Leonidas A.; Stern, Daniel; Dey, Arjun; Brownstein, Joel R.; Burles, Scott; Spinrad, Hyron

    2016-03-01

    We report the discovery of significant mass/light offsets in the strong gravitational lensing system SDSS J1011+0143. We use the high-resolution Hubble Space Telescope (HST) F555W- and F814W-band imaging and Sloan Digital Sky Survey (SDSS) spectroscopy of this system, which consists of a close galaxy pair with a projected separation of ≈ 4.2 {{kpc}} at zlens ˜ 0.331 lensing an Lyα emitter (LAE) at zsource = 2.701. Comparisons between the mass peaks inferred from lens models and light peaks from HST imaging data reveal significant spatial mass/light offsets as large as 1.72 ± 0.24 ± 0.34 kpc in both filter bands. Such large mass/light offsets, not seen in isolated field lens galaxies and relaxed galaxy groups, may be related to the interactions between the two lens galaxies. The detected mass/light offsets can potentially serve as an important test for the self-interacting dark matter model. However, other mechanisms such as dynamical friction on spatially differently distributed dark matter and stars could produce similar offsets. Detailed hydrodynamical simulations of galaxy-galaxy interactions with self-interacting dark matter could accurately quantify the effects of different mechanisms. The background LAE is found to contain three distinct star-forming knots with characteristic sizes from 116 to 438 pc. It highlights the power of strong gravitational lensing in probing the otherwise too faint and unresolved structures of distance objects below subkiloparsec or even 100 pc scales through its magnification effect. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with program #10831.

  15. A Structural NIR Analysis of the Interacting Pair of Galaxies KPG 404 (NGC 5394/95)

    NASA Astrophysics Data System (ADS)

    Valdez-Gutiérrez, M.; Puerari, I.; Hernández-López, I.

    2004-06-01

    We present near infrared observations in J, H and K' passbands of the interacting pair of galaxies KPG 404 (NGC 5394/95). We calculate total magnitudes, surface brightnesses and colour profiles. We present the growth curve to compare our photometry against earlier works in which circular aperture estimations were published. We also perform a structural (disk + bulge) analysis to get insight on the morphology of the pair. The disk+bulge fit shows that NGC 5394 (KPG 404A) is more compact than normal galaxies, while NGC 5395 (KPG 404B) is less concentrated. This suggests an interacting scenario in which NGC 5394 passes through the disk of NGC 5395 (a Cartwheel-type collision), rather than a passage as M51-type pairs.

  16. A close-pair binary in a distant triple supermassive black hole system.

    PubMed

    Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C

    2014-07-01

    Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments. PMID:24990745

  17. A close-pair binary in a distant triple supermassive black hole system.

    PubMed

    Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C

    2014-07-01

    Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.

  18. Radio continuum observations of the quasar-galaxy pair 3C 232-NGC 3067

    NASA Technical Reports Server (NTRS)

    Haxthausen, Eric; Carilli, Chris; Vangorkom, Jacqueline H.

    1990-01-01

    The quasar-galaxy pair 3C 232-NGC 3067 is well known to show absorption by gas associated with the foreground galaxy against the background quasar (see Stocke et al. this volume). Observations by Carilli, van Gorkom, and Stocke (Nature 338, 134, 1989) found that the absorbing gas is located in a long tail of gas which extends from the galaxy toward the quasar and beyond (in projection). Though the HI observations of NGC 3067 indicate that the galaxy has been severely disturbed, there is no obvious candidate in the field which could cause such a disturbance, leading to the conclusion that the system has undergone a recent merger. The radio continuum observations of this system were designed to study the nature of this highly disturbed galaxy. New continuum observations confirm the notion that NGC 3067 is a highly disturbed system, and, in particular, the notion that the western half of the galaxy extends only 1/2 as far in radius as the eastern half. This disturbance must have occurred recently, since the galactic rotation would smooth out the observed asymmetry in about 10(exp 8) years. Researchers are left with the problem that there are no obvious candidates which could have caused such a disturbance.

  19. Hyperon and Charged Kaon Pair Production Close to Threshold

    SciTech Connect

    Wolke, M.; Adam, H.H.; Balewski, J.T.; Budzanowski, A.; Goodman, C.; Grzonka, D. Jarczyk, L.; Jochmann, M.; Khoukaz, A.; Kilian, K.; Koehler, M.; Kowina, P.; Lister, T.; Moskal, P.; Lang, N.; Oelert, W.; Quentmeier, C.; Santo, R.; Schepers, G.; Seddik, U.; Sefzick, T.; Sewerin, S.; Siemaszko, M.; Smyrski, J.; Strzalkowski, A.; Wuestner, P.; Zipper, W.

    2000-12-31

    Close-to-threshold data on the elementary kaon and antikaon production channels in the proton{endash}proton interaction have been taken using the COSY-11 installation at the cooler synchrotron COSY Juelich. The experimental technique applied at the internal COSY-11 facility{emdash}designed for meson production studies at small excess energy{emdash}is outlined. The threshold excitation functions for the kaon{endash}hyperon production via the reactions pp {yields} pK{sup +}{Lambda} and pp {yields} pK{sup +}{Sigma}{sup 0} are presented. The magnitude of the production amplitudes is compared at equal excess energies, and physical implications of the observed {Sigma}{sup 0} suppression in the threshold region are discussed. In addition, within a Dalitz plot analysis the spin-averaged S-wave scattering parameters could be extracted for the {Lambda}{endash}p channel. With the possibility of detecting all final state particles the elementary antikaon production in the reaction pp {yields} ppK{sup +}k{sup {minus}} has been investigated. Results on the exclusive total cross section fix the scale of the strangeness dissociation into two kaons.

  20. Probing the magnetic field of the nearby galaxy pair Arp 269

    NASA Astrophysics Data System (ADS)

    Nikiel-Wroczyński, B.; Jamrozy, M.; Soida, M.; Urbanik, M.; Knapik, J.

    2016-06-01

    We present a multiwavelength radio study of the nearby galaxy pair Arp 269 (NGC 4490/85). High sensitivity to extended structures gained by using the merged interferometric and single-dish maps allowed us to reveal a previously undiscovered extension of the radio continuum emission. Its direction is significantly different from that of the neutral gas tail, suggesting that different physical processes might be involved in their creation. The population of radio-emitting electrons is generally young, signifying an ongoing, vigorous star formation - this claim is supported by strong magnetic fields (over 20 μG), similar to the ones found in much larger spiral galaxies. From the study of the spectral energy distribution, we conclude that the electron population in the intergalactic bridge between member galaxies originates from the disc areas, and therefore its age (approximately 3.7-16.9 Myr, depending on the model used) reflects the time-scale of the interaction. We have also discovered an angularly near compact steep source - which is a member of a different galaxy pair - at a redshift of approximately 0.125.

  1. The Interacting Galaxy Pair NGC 5394/95: Near-Infrared Photometry, Structure, and Morphology

    NASA Astrophysics Data System (ADS)

    Puerari, Ivânio; Valdez-Gutiérrez, Margarita; Hernández-López, Izbeth

    2005-10-01

    We present near-infrared observations in the J, H, and K' passbands of the interacting pair of galaxies NGC 5394/95 (KPG 404). The total magnitudes, colors, surface brightnesses, and color profiles are calculated. In addition, aperture magnitudes are compared against previous determinations. We also perform a structural (disk + bulge) analysis, as well as a two-dimensional Fourier analysis, to gain insight into the morphology of the pair. The disk + bulge fit shows that NGC 5394 (KPG 404A) is more compact than normal galaxies, while NGC 5395 (KPG 404B) is less concentrated. The two-dimensional Fourier analysis shows that NGC 5394 is an H2β galaxy in the dust-penetrated (DP) classification by Block & Puerari. NGC 5395, in contrast, displays a very complex structure that needs a number of Fourier coefficients to be explained. A tightly wound m=1 coefficient (DP class H1α) is the main structure, but other m=1 and m=2 coefficients (suggesting modulation) are also present in the Fourier spectra. The m=1 coefficients represent a pseudo-ring-type structure, indicative of a collision rather than a passage. Based on our results we are able to assert that the scenario of the interaction between the galaxy members of KPG 404 should take into account a crossing of NGC 5394 through the disk of NGC 5395 in a Cartwheel-like encounter rather than a passage as in M51-type pairs. Numerical simulations could help to unravel the structural and morphological evolution of this interacting pair.

  2. Gas-rich galaxy pair unveiled in the lensed quasar 0957+561

    PubMed

    Planesas; Martin-Pintado; Neri; Colina

    1999-12-24

    Molecular gas in the host galaxy of the lensed quasar 0957+561 (QSO 0957+561) at the redshift of 1.41 has been detected in the carbon monoxide (CO) line. This detection shows the extended nature of the molecular gas distribution in the host galaxy and the pronounced lensing effects due to the differentially magnified CO luminosity at different velocities. The estimated mass of molecular gas is about 4 x 10(9) solar masses, a molecular gas mass typical of a spiral galaxy like the Milky Way. A second, weaker component of CO is interpreted as arising from a close companion galaxy that is rich in molecular gas and has remained undetected so far. Its estimated molecular gas mass is 1.4 x 10(9) solar masses, and its velocity relative to the main galaxy is 660 kilometers per second. The ability to probe the molecular gas distribution and kinematics of galaxies associated with high-redshift lensed quasars can be used to improve the determination of the Hubble constant H(0).

  3. A Candidate Massive Black Hole in the Low-metallicity Dwarf Galaxy Pair Mrk 709

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Plotkin, Richard M.; Russell, Thomas D.; Mezcua, Mar; Condon, James J.; Sivakoff, Gregory R.; Johnson, Kelsey E.

    2014-06-01

    The incidence and properties of present-day dwarf galaxies hosting massive black holes (BHs) can provide important constraints on the origin of high-redshift BH seeds. Here we present high-resolution X-ray and radio observations of the low-metallicity, star-forming, dwarf-galaxy system Mrk 709 with the Chandra X-ray Observatory and the Karl G. Jansky Very Large Array. These data reveal spatially coincident hard X-ray and radio point sources with luminosities suggesting the presence of an accreting massive BH (M BH ~ 105-7 M ⊙). Based on imaging from the Sloan Digital Sky Survey (SDSS), we find that Mrk 709 consists of a pair of compact dwarf galaxies that appear to be interacting with one another. The position of the candidate massive BH is consistent with the optical center of the southern galaxy (Mrk 709 S), while no evidence for an active BH is seen in the northern galaxy (Mrk 709 N). We derive stellar masses of M sstarf ~ 2.5 × 109 M ⊙ and M sstarf ~ 1.1 × 109 M ⊙ for Mrk 709 S and Mrk 709 N, respectively, and present an analysis of the SDSS spectrum of the BH host Mrk 709 S. At a metallicity of just ~10% solar, Mrk 709 is among the most metal-poor galaxies with evidence for an active galactic nucleus. Moreover, this discovery adds to the growing body of evidence that massive BHs can form in dwarf galaxies and that deep, high-resolution X-ray and radio observations are ideally suited to reveal accreting massive BHs hidden at optical wavelengths.

  4. A CANDIDATE MASSIVE BLACK HOLE IN THE LOW-METALLICITY DWARF GALAXY PAIR MRK 709

    SciTech Connect

    Reines, Amy E.; Condon, James J.; Plotkin, Richard M.; Russell, Thomas D.; Mezcua, Mar; Sivakoff, Gregory R.; Johnson, Kelsey E.

    2014-06-01

    The incidence and properties of present-day dwarf galaxies hosting massive black holes (BHs) can provide important constraints on the origin of high-redshift BH seeds. Here we present high-resolution X-ray and radio observations of the low-metallicity, star-forming, dwarf-galaxy system Mrk 709 with the Chandra X-ray Observatory and the Karl G. Jansky Very Large Array. These data reveal spatially coincident hard X-ray and radio point sources with luminosities suggesting the presence of an accreting massive BH (M {sub BH} ∼ 10{sup 5-7} M {sub ☉}). Based on imaging from the Sloan Digital Sky Survey (SDSS), we find that Mrk 709 consists of a pair of compact dwarf galaxies that appear to be interacting with one another. The position of the candidate massive BH is consistent with the optical center of the southern galaxy (Mrk 709 S), while no evidence for an active BH is seen in the northern galaxy (Mrk 709 N). We derive stellar masses of M {sub *} ∼ 2.5 × 10{sup 9} M {sub ☉} and M {sub *} ∼ 1.1 × 10{sup 9} M {sub ☉} for Mrk 709 S and Mrk 709 N, respectively, and present an analysis of the SDSS spectrum of the BH host Mrk 709 S. At a metallicity of just ∼10% solar, Mrk 709 is among the most metal-poor galaxies with evidence for an active galactic nucleus. Moreover, this discovery adds to the growing body of evidence that massive BHs can form in dwarf galaxies and that deep, high-resolution X-ray and radio observations are ideally suited to reveal accreting massive BHs hidden at optical wavelengths.

  5. The ALHAMBRA survey: An empirical estimation of the cosmic variance for merger fraction studies based on close pairs

    NASA Astrophysics Data System (ADS)

    López-Sanjuan, C.; Cenarro, A. J.; Hernández-Monteagudo, C.; Varela, J.; Molino, A.; Arnalte-Mur, P.; Ascaso, B.; Castander, F. J.; Fernández-Soto, A.; Huertas-Company, M.; Márquez, I.; Martínez, V. J.; Masegosa, J.; Moles, M.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Perea, J.; Prada, F.; Quintana, J. M.

    2014-04-01

    Aims: Our goal is to estimate empirically the cosmic variance that affects merger fraction studies based on close pairs for the first time. Methods: We compute the merger fraction from photometric redshift close pairs with 10 h-1 kpc ≤ rp ≤ 50 h-1 kpc and Δv ≤ 500 km s-1 and measure it in the 48 sub-fields of the ALHAMBRA survey. We study the distribution of the measured merger fractions that follow a log-normal function and estimate the cosmic variance σv as the intrinsic dispersion of the observed distribution. We develop a maximum likelihood estimator to measure a reliable σv and avoid the dispersion due to the observational errors (including the Poisson shot noise term). Results: The cosmic variance σv of the merger fraction depends mainly on (i) the number density of the populations under study for both the principal (n1) and the companion (n2) galaxy in the close pair and (ii) the probed cosmic volume Vc. We do not find a significant dependence on either the search radius used to define close companions, the redshift, or the physical selection (luminosity or stellar mass) of the samples. Conclusions: We have estimated the cosmic variance that affects the measurement of the merger fraction by close pairs from observations. We provide a parametrisation of the cosmic variance with n1, n2, and Vc, σv ∝ n1-0.54Vc-0.48 (n_2/n_1)-0.37 . Thanks to this prescription, future merger fraction studies based on close pairs could properly account for the cosmic variance on their results. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (IAA-CSIC).Appendix is available in electronic form at http://www.aanda.org

  6. A sample of galaxy pairs identified from the LAMOST spectral survey and the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Shen, Shi-Yin; Argudo-Fernández, Maria; Chen, Li; Chen, Xiao-Yan; Feng, Shuai; Hou, Jin-Liang; Hou, Yong-Hui; Jiang, Peng; Jing, Yi-Peng; Kong, Xu; Luo, A.-Li; Luo, Zhi-Jian; Shao, Zheng-Yi; Wang, Ting-Gui; Wang, Wen-Ting; Wang, Yue-Fei; Wu, Hong; Wu, Xue-Bing; Yang, Hai-Feng; Yang, Ming; Yuan, Fang-Ting; Yuan, Hai-Long; Zhang, Hao-Tong; Zhang, Jian-Nan; Zhang, Yong

    2016-03-01

    A small fraction (< 10%) of the SDSS main galaxy (MG) sample has not been targeted with spectroscopy due to the effect of fiber collisions. These galaxies have been compiled into the input catalog of the LAMOST ExtraGAlactic Surveys and named the complementary galaxy sample. In this paper, we introduce this project and status of the spectroscopies associated with the complementary galaxies in the first two years of the LAMOST spectral survey (till Sep. of 2014). Moreover, we present a sample of 1102 galaxy pairs identified from the LAMOST complementary galaxies and SDSS MGs, which are defined as two members that have a projected distance smaller than 100 h‑170kpc and a recessional velocity difference smaller than 500 km s‑1. Compared with galaxy pairs that are only selected from SDSS, the LAMOST-SDSS pairs have the advantages of not being biased toward large separations and therefore act as a useful supplement in statistical studies of galaxy interaction and galaxy merging.

  7. INDECENT EXPOSURE IN SEYFERT 2 GALAXIES: A CLOSE LOOK

    SciTech Connect

    Tran, Hien D.; Lyke, J. E.; Mader, Jeff A.

    2011-01-10

    NGC 3147, NGC 4698, and 1ES 1927+654 are active galaxies that are classified as Seyfert 2s, based on the line ratios of strong narrow emission lines in their optical spectra. However, they exhibit rapid X-ray spectral variability and/or little indication of obscuration in X-ray spectral fitting, contrary to expectation from the active galactic nucleus (AGN) unification model. Using optical spectropolarimetry with LRIS and near-infrared spectroscopy with NIRSPEC at the W. M. Keck Observatory, we conducted a deep search for hidden polarized broad H{alpha} and direct broad Pa{beta} or Br{gamma} emission lines in these objects. We found no evidence for any broad emission lines from the active nuclei of these galaxies, suggesting that they are unobscured, completely 'naked' AGNs that intrinsically lack broad-line regions.

  8. Changing Ionization Conditions in SDSS Galaxies with Active Galactic Nuclei as a Function of Environment from Pairs to Clusters

    NASA Astrophysics Data System (ADS)

    Khabiboulline, Emil T.; Steinhardt, Charles L.; Silverman, John D.; Ellison, Sara L.; Mendel, J. Trevor; Patton, David R.

    2014-11-01

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  9. Changing ionization conditions in SDSS galaxies with active galactic nuclei as a function of environment from pairs to clusters

    SciTech Connect

    Khabiboulline, Emil T.; Steinhardt, Charles L.; Silverman, John D.; Ellison, Sara L.; Mendel, J. Trevor; Patton, David R.

    2014-11-01

    We study how active galactic nucleus (AGN) activity changes across environments from galaxy pairs to clusters using 143,843 galaxies with z < 0.2 from the Sloan Digital Sky Survey. Using a refined technique, we apply a continuous measure of AGN activity, characteristic of the ionization state of the narrow-line emitting gas. Changes in key emission-line ratios ([N II] λ6548/Hα, [O III] λ5007/Hβ) between different samples allow us to disentangle different environmental effects while removing contamination. We confirm that galaxy interactions enhance AGN activity. However, conditions in the central regions of clusters are inhospitable for AGN activity even if galaxies are in pairs. These results can be explained through models of gas dynamics in which pair interactions stimulate the transfer of gas to the nucleus and clusters suppress gas availability for accretion onto the central black hole.

  10. Radio line and continuum observations of quasar-galaxy pairs and the origin of low reshift quasar absorption line systems

    NASA Technical Reports Server (NTRS)

    Carilli, C. L.; Vangorkom, J. H.; Hauxthausen, E. M.; Stocke, J. T.; Salzer, J.

    1990-01-01

    There are a number of known quasars for which our line of sight to the high redshift quasar passes within a few Holmberg radii of a low redshift galaxy. In a few of these cases, spectra of the quasar reveal absorption by gas associated with the low redshift galaxy. A number of these pairs imply absorption by gas which lies well outside the optical disk of the associated galaxy, leading to models of galaxies with 'halos' or 'disks' of gas extending to large radii. The authors present observations of 4 such pairs. In three of the four cases, they find that the associated galaxy is highly disturbed, typically due to a gravitational interaction with a companion galaxy, while in the fourth case the absorption can be explained by clouds in the optical disk of the associated galaxy. They are led to an alternative hypothesis concerning the origin of the low redshift absorption line systems: the absorption is by gas clouds which have been gravitationally stripped from the associated galaxy. These galaxies are rapidly evolving, and should not be used as examples of absorption by clouds in halos of field spirals. The authors conclude by considering the role extended gas in interacting systems plays in the origin of higher redshift quasar absorption line systems.

  11. Using Close White Dwarf + M Dwarf Stellar Pairs to Constrain the Flare Rates in Close Stellar Binaries

    NASA Astrophysics Data System (ADS)

    Morgan, Dylan P.; West, Andrew A.; Becker, Andrew C.

    2016-05-01

    We present a study of the statistical flare rates of M dwarfs (dMs) with close white dwarf (WD) companions (WD+dM; typical separations <1 au). Our previous analysis demonstrated that dMs with close WD companions are more magnetically active than their field counterparts. One likely implication of having a close binary companion is increased stellar rotation through disk-disruption, tidal effects, and/or angular momentum exchange; increased stellar rotation has long been associated with an increase in stellar activity. Previous studies show a strong correlation between dMs that are magnetically active (showing Hα in emission) and the frequency of stellar flare rates. We examine the difference between the flare rates observed in close WD+dM binary systems and field dMs. Our sample consists of a subset of 181 close WD+dM pairs from Morgan et al. observed in the Sloan Digital Sky Survey Stripe 82, where we obtain multi-epoch observations in the Sloan ugriz-bands. We find an increase in the overall flaring fraction in the close WD+dM pairs (0.09 ± 0.03%) compared to the field dMs (0.0108 ± 0.0007%) and a lower flaring fraction for active WD+dMs (0.05 ± 0.03%) compared to active dMs (0.28 ± 0.05%). We discuss how our results constrain both the single and binary dM flare rates. Our results also constrain dM multiplicity, our knowledge of the Galactic transient background, and may be important for the habitability of attending planets around dMs with close companions.

  12. Tunneling spectroscopy of close-spaced dangling-bond pairs in Si(001):H

    PubMed Central

    Engelund, Mads; Zuzak, Rafał; Godlewski, Szymon; Kolmer, Marek; Frederiksen, Thomas; García-Lekue, Aran; Sánchez-Portal, Daniel; Szymonski, Marek

    2015-01-01

    We present a combined experimental and theoretical study of the electronic properties of close-spaced dangling-bond (DB) pairs in a hydrogen-passivated Si(001):H p-doped surface. Two types of DB pairs are considered, called “cross” and “line” structures. Our scanning tunneling spectroscopy (STS) data show that, although the spectra taken over different DBs in each pair exhibit a remarkable resemblance, they appear shifted by a constant energy that depends on the DB-pair type. This spontaneous asymmetry persists after repeated STS measurements. By comparison with density functional theory (DFT) calculations, we demonstrate that the magnitude of this shift and the relative position of the STS peaks can be explained by distinct charge states for each DB in the pair. We also explain how the charge state is modified by the presence of the scanning tunneling microscopy (STM) tip and the applied bias. Our results indicate that, using the STM tip, it is possible to control the charge state of individual DBs in complex structures, even if they are in close proximity. This observation might have important consequences for the design of electronic circuits and logic gates based on DBs in passivated silicon surfaces. PMID:26404520

  13. Low-redshift quasars in the SDSS Stripe 82. Host galaxy colours and close environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Falomo, R.; Kotilainen, J. K.; Karhunen, K.; Uslenghi, M.

    2015-12-01

    We present a photometrical and morphological multicolour study of the properties of low-redshift (z < 0.3) quasar hosts based on a large and homogeneous data set of quasars derived from the Sloan Digital Sky Survey (DR7). We used quasars that were imaged in the SDSS Stripe82 that is up to 2 mag deeper than standard Sloan images. This sample is part of a larger data set of ˜400 quasars at z < 0.5 for which both the host galaxies and their galaxy environments were studied. For 52 quasars, we undertake a study of the colour of the host galaxies and of their close environments in the u, g, r, i and z bands. We are able to resolve almost all the quasars in the sample in the filters g, r, i and z and also in u for about 50 per cent of the targets. We found that the mean colours of the QSO host galaxy (g - i = 0.82 ± 0.26; r - i = 0.26 ± 0.16 and u - g = 1.32 ± 0.25) are very similar to the values of a sample of inactive galaxies matched in terms of redshift and galaxy luminosity with the quasar sample. There is a suggestion that the most massive QSO hosts have bluer colours. Both quasar hosts and the comparison sample of inactive galaxies have candidates of close (<50 kpc) companion galaxies for ˜30 per cent of the sources with no significant difference between active and inactive galaxies. We do not find significant correlation between the central black hole (BH) mass and the quasar host luminosity that appears to be extra luminous at a given BH mass with respect to the local relation (MBH - Mhost) for inactive galaxies. This confirms previous suggestion that a substantial disc component, not correlated with the BH mass, is present in the galaxies hosting low-z quasars. These results support a scenario where the activation of the nucleus has negligible effects on the global structural and photometrical properties of the hosting galaxies.

  14. Tutorial guide to the tau lepton and close-mass lepton pairs

    SciTech Connect

    Perl, M.L.

    1988-10-01

    This is a tutorial guide to present knowledge of the tau lepton, to the tau decay mode puzzle, and to present searches for close-mass lepton pairs. The test is minimal; the emphasis is on figures, tables and literature references. It is based on a lecture given at the 1988 International School of Subnuclear Physics: The Super World III. 54 refs., 9 figs., 7 tabs.

  15. An interaction scenario of the galaxy pair NGC 3893/96 (KPG 302): A single passage?

    SciTech Connect

    Gabbasov, R. F.; Rosado, M.; Klapp, J.

    2014-05-20

    Using the data obtained previously from Fabry-Perot interferometry, we study the orbital characteristics of the interacting pair of galaxies KPG 302 with the aim to estimate a possible interaction history, the conditions necessary for the spiral arm formation, and initial satellite mass. We found by performing N-body/smoothed particle hydrodynamics simulations of the interaction that a single passage can produce a grand design spiral pattern in less than 1 Gyr. Although we reproduce most of the features with the single passage, the required satellite to host mass ratio should be ∼1:5, which is not confirmed by the dynamical mass estimate made from the measured rotation curve. We conclude that a more realistic interaction scenario would require several passages in order to explain the mass ratio discrepancy.

  16. An efficient positive potential-density pair expansion for modelling galaxies

    NASA Astrophysics Data System (ADS)

    Rojas-Niño, A.; Read, J. I.; Aguilar, L.; Delorme, M.

    2016-07-01

    We present a novel positive potential-density pair expansion for modelling galaxies, based on the Miyamoto-Nagai disc. By using three sets of such discs, each one of them aligned along each symmetry axis, we are able to reconstruct a broad range of potentials that correspond to density profiles from exponential discs to 3D power-law models with varying triaxiality (henceforth simply `twisted' models). We increase the efficiency of our expansion by allowing the scalelength parameter of each disc to be negative. We show that, for suitable priors on the scalelength and scaleheight parameters, these `MNn discs' (Miyamoto-Nagai negative) have just one negative density minimum. This allows us to ensure global positivity by demanding that the total density at the global minimum is positive. We find that at better than 10 per cent accuracy in our density reconstruction, we can represent a radial and vertical exponential disc over 0.1-10 scalelengths/scaleheights with four MNn discs; a Navarro, Frenk and White (NFW) profile over 0.1-10 scalelengths with four MNn discs; and a twisted triaxial NFW profile with three MNn discs per symmetry axis. Our expansion is efficient, fully analytic, and well suited to reproducing the density distribution and gravitational potential of galaxies from discs to ellipsoids.

  17. IRAS high resolution studies and modeling of closely interacting galaxies. Galaxy collisions: Infrared observations and analysis of numerical models. UV spectroscopy of massive young stellar populations in interacting galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.

    1993-01-01

    The Final Technical Report covering the period from 15 Aug. 1989 to 14 Aug. 1991 is presented. Areas of research included Infrared Astronomy Satellite (IRAS) high resolution studies and modeling of closely interacting galaxies; galaxy collisions: infrared observations and analysis of numerical models; and UV spectroscopy of massive young stellar populations in interacting galaxies. Both observational studies and theoretical modelling of interacting galaxies are covered. As a consequence the report is divided into two parts, one on each aspect of the overall project.

  18. VizieR Online Data Catalog: Dynamics in E+E pairs of galaxies (Bonfanti+, 1995)

    NASA Astrophysics Data System (ADS)

    Bonfanti, P.; Rampazzo, R.; Combes, F.; Prugniel, P.; Sulentic, J. W.

    1994-10-01

    NGC 741/742, 1587/1588 (CPG 99) and 2672/2673 (CPG 175). All three pairs show a similar morphological distortion (i.e. the off-centering of inner versus outer isophotes; Davoust & Prugniel 1988) which is ascribed to the ongoing interaction. The data was obtained at the CFHT equipped with the Herzberg Spectrograph at a resolution of 0.88 Apx-1. NGC 741 and 2673 show significant rotation along the apparent minor axis. Both components of CPG 99 rotate very fast (with no evidence for rotation along the minor axis of either component). None of the galaxies show abnormally high central velocity dispersion. We report some of the first clear detections of well defined velocity dispersion curves for interacting pairs. They show a systematic decrease with distance from the center, as expected for normal ellipticals. They do not show obvious heating in the outer parts as was previously reported. NGC 741 and 2672 show, respectively, possible U and inverse U-shaped structure in their velocity profiles. (1 data file).

  19. Kinematic Modeling of Separation Compression for Paired Approaches to Closely-Spaced Parallel Runways

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2014-01-01

    In a simultaneous paired approach to closely-spaced parallel runways, a pair of aircraft flies in close proximity on parallel approach paths. The longitudinal separation between the aircraft must be maintained within a range that avoids wake encounters and, if one of the aircraft blunders, avoids collision. To increase operational availability, the approach procedure must accommodate a mixture of aircraft sizes and, consequently, approach speeds. In these procedures, the slower aircraft is placed in the lead position. The faster aircraft maintains separation from the slow aircraft in a dependent operation until final approach and flies independently afterward. Due to the higher approach speed of the fast aircraft, longitudinal separation will decrease during final approach. Therefore, the fast aircraft must position itself before the final approach so that it will remain within the safe range of separation as separation decreases. Given the approach geometry and speed schedule for each aircraft, one can use kinematics to estimate the separation loss between a pair of aircraft. A kinematic model can complement fast-time Monte-Carlo simulations of the approach by enabling a tailored reduction in the variation of starting position for the fast aircraft. One could also implement the kinematic model in ground-based or on-board decision support tools to compute the optimal initial separation for a given pair of aircraft. To better match the auto-coupled flight of real aircraft, the paper derives a kinematic model where the speed schedule is flown using equivalent airspeed. The predicted time of flight using the equivalent airspeed kinematic model compares well against a high-fidelity aircraft simulation performing the same approach. This model also demonstrates a modest increase in the predicted loss of separation when contrasted against a kinematic model that assumes the scheduled speed is true airspeed.

  20. A COMPREHENSIVE X-RAY AND MULTIWAVELENGTH STUDY OF THE COLLIDING GALAXY PAIR NGC 2207/IC 2163

    SciTech Connect

    Mineo, S.; Rappaport, S.; Levine, A.; Homan, J.; Pooley, D.; Steinhorn, B. E-mail: sar@mit.edu E-mail: jeroen@space.mit.edu E-mail: bsteinho@mit.edu

    2014-12-20

    We present a comprehensive study of the total X-ray emission from the colliding galaxy pair NGC 2207/IC 2163, based on Chandra, Spitzer, and GALEX data. We detect 28 ultraluminous X-ray sources (ULXs), 7 of which were not detected previously because of X-ray variability. Twelve sources show significant long-term variability, with no correlated spectral changes. Seven sources are transient candidates. One ULX coincides with an extremely blue star cluster (B – V = –0.7). We confirm that the global relation between the number and luminosity of ULXs and the integrated star-formation rate (SFR) of the host galaxy also holds on local scales. We investigate the effects of dust extinction and age on the X-ray binary (XRB) population on subgalactic scales. The distributions of N {sub X} and L {sub X} are peaked at L {sub IR}/L {sub NUV} ∼ 1, which may be associated with an age of ∼10 Myr for the underlying stellar population. We find that approximately one-third of the XRBs are located in close proximity to young star complexes. The luminosity function of the XRBs is consistent with that typical for high-mass XRBs and appears unaffected by variability. We disentangle and compare the X-ray diffuse spectrum with that of the bright XRBs. The hot interstellar medium dominates the diffuse X-ray emission at E ≲ 1 keV and has a temperature kT=0.28{sub −0.04}{sup +0.05} keV and intrinsic 0.5-2 keV luminosity of 7.9×10{sup 40} erg s{sup −1}, a factor of ∼2.3 higher than the average thermal luminosity produced per unit SFR in local star-forming galaxies. The total X-ray output of NGC 2207/IC 2163 is 1.5×10{sup 41} erg s{sup −1}, and the corresponding total integrated SFR is 23.7 M {sub ☉} yr{sup –1}.

  1. Brain State-Dependent Closed-Loop Modulation of Paired Associative Stimulation Controlled by Sensorimotor Desynchronization

    PubMed Central

    Royter, Vladislav; Gharabaghi, Alireza

    2016-01-01

    Background: Pairing peripheral electrical stimulation (ES) and transcranial magnetic stimulation (TMS) increases corticospinal excitability when applied with a specific temporal pattern. When the two stimulation techniques are applied separately, motor imagery (MI)-related oscillatory modulation amplifies both ES-related cortical effects—sensorimotor event-related desynchronization (ERD), and TMS-induced peripheral responses—motor-evoked potentials (MEP). However, the influence of brain self-regulation on the associative pairing of these stimulation techniques is still unclear. Objective: The aim of this pilot study was to investigate the effects of MI-related ERD during associative ES and TMS on subsequent corticospinal excitability. Method: The paired application of functional electrical stimulation (FES) of the extensor digitorum communis (EDC) muscle and subsequent single-pulse TMS (110% resting motor threshold (RMT)) of the contralateral primary motor cortex (M1) was controlled by beta-band (16–22 Hz) ERD during MI of finger extension and applied within a brain-machine interface environment in six healthy subjects. Neural correlates were probed by acquiring the stimulus-response curve (SRC) of both MEP peak-to-peak amplitude and area under the curve (AUC) before and after the intervention. Result: The application of approximately 150 pairs of associative FES and TMS resulted in a significant increase of MEP amplitudes and AUC, indicating that the induced increase of corticospinal excitability was mediated by the recruitment of additional neuronal pools. MEP increases were brain state-dependent and correlated with beta-band ERD, but not with the background EDC muscle activity; this finding was independent of the FES intensity applied. Conclusion: These results could be relevant for developing closed-loop therapeutic approaches such as the application of brain state-dependent, paired associative stimulation (PAS) in the context of neurorehabilitation. PMID

  2. Examining Flare Rates in Close M dwarf + White Dwarf binary pairs

    NASA Astrophysics Data System (ADS)

    Morgan, Dylan P.; West, Andrew A.; Becker, Andrew C.

    2015-01-01

    We present a preliminary study to examine the statistical flare rates for M dwarfs with close white dwarf companions (WD+dM; typical separations < 1 AU). Previous studies have shown a strong correlation between M dwarfs that are active (showing Hα in emission) and their stellar flare rates. Our analysis of M dwarfs with close WD companions demonstrated that the M dwarfs are more active than their field counterparts. One implication of having a close binary companion is presumed to be increased stellar rotation through disk-disruption, tidal effects, and/or angular momentum exchange; increased stellar activity has long been attributed to an increase in stellar rotation. We examine the difference between the flare rates observed in close WD+dM binary systems and field M dwarfs. Our sample consists of a subset of 202 (70 of which are magnetically active) close WD+dM pairs from Morgan et al. that were observed in the Sloan Digital Sky Survey Stripe 82, a transient observing mode where multi-epoch observations in the Sloan ugriz bands were obtained. We present results that will assist in identifying and categorizing transient phenomena and limiting expensive follow-up observations for future time-domain studies, such as LSST.

  3. Examining Flare Rates in Close M Dwarf + White Dwarf Binary Pairs

    NASA Astrophysics Data System (ADS)

    Morgan, Dylan P.; West, Andrew A.

    2014-06-01

    We present a preliminary study to examine the statistical flare rates for M dwarfs with a close white dwarf companion (WD+dM; typical separations < 1 AU). Previous studies show a strong correlation between M dwarfs that are active (showing Hα in emission) and their stellar flare rates. Our previous analysis of M dwarfs with close WD companions demonstrated that the M dwarfs are more active than their field counterparts. One implication of having a close binary companion is presumed to be increased stellar rotation through disk-disruption, tidal effects, and/or angular momentum exchange; increased stellar rotation has long been attributed to an increase in stellar activity for stars. We examine the difference between the flare rates observed in close WD+dM binary systems and field M dwarfs. Our sample consists of a subset of 202 (70 of which are magnetically active) close WD+dM pairs from Morgan et al. that were observed in the Sloan Digital Sky Survey Stripe 82, a transient observing mode where multi-epoch observations in the Sloan ugriz bands were obtained.

  4. A NEW METHOD TO DIRECTLY MEASURE THE JEANS SCALE OF THE INTERGALACTIC MEDIUM USING CLOSE QUASAR PAIRS

    SciTech Connect

    Rorai, Alberto; Hennawi, Joseph F.; White, Martin

    2013-10-01

    Although the baryons in the intergalactic medium (IGM) trace dark matter fluctuations on megaparsec scales, on smaller scales ∼100 kpc, fluctuations are suppressed because the finite temperature gas is pressure supported against gravity, analogous to the classical Jeans argument. This Jeans filtering scale, which quantifies the small-scale structure of the IGM, has fundamental cosmological implications. First, it provides a thermal record of heat injected by ultraviolet photons during cosmic reionization events, and thus constrains the thermal and reionization history of the universe. Second, the Jeans scale determines the clumpiness of the IGM, a critical ingredient in models of cosmic reionization. Third, it sets the minimum mass scale for gravitational collapse from the IGM, and hence plays a pivotal role in galaxy formation. Unfortunately, it is extremely challenging to measure the Jeans scale via the standard technique of analyzing purely longitudinal Lyα forest spectra, because the thermal Doppler broadening of absorption lines along the line-of-sight, is highly degenerate with Jeans smoothing. In this work, we show that the Jeans filtering scale can be directly measured by characterizing the coherence of correlated Lyα forest absorption in close quasar pairs, with separations small enough ∼100 kpc to resolve it. We present a novel technique for this purpose, based on the probability density function (PDF) of phase angle differences of homologous longitudinal Fourier modes in close quasar pair spectra. A Bayesian formalism is introduced based on the phase angle PDF, and Markov Chain Monte Carlo techniques are used to characterize the precision of a hypothetical Jeans scale measurement, and explore degeneracies with other thermal parameters governing the IGM. A semi-analytical model of the Lyα forest is used to generate a large grid (500) of thermal models from a dark matter only simulation. Our full parameter study indicates that a realistic sample of

  5. Wake Encounter Analysis for a Closely Spaced Parallel Runway Paired Approach Simulation

    NASA Technical Reports Server (NTRS)

    Mckissick,Burnell T.; Rico-Cusi, Fernando J.; Murdoch, Jennifer; Oseguera-Lohr, Rosa M.; Stough, Harry P, III; O'Connor, Cornelius J.; Syed, Hazari I.

    2009-01-01

    A Monte Carlo simulation of simultaneous approaches performed by two transport category aircraft from the final approach fix to a pair of closely spaced parallel runways was conducted to explore the aft boundary of the safe zone in which separation assurance and wake avoidance are provided. The simulation included variations in runway centerline separation, initial longitudinal spacing of the aircraft, crosswind speed, and aircraft speed during the approach. The data from the simulation showed that the majority of the wake encounters occurred near or over the runway and the aft boundaries of the safe zones were identified for all simulation conditions.

  6. VizieR Online Data Catalog: QSO-galaxy pairs from SDSS (Straka+, 2015)

    NASA Astrophysics Data System (ADS)

    Straka, L. A.; Noterdaeme, P.; Srianand, R.; Nutalaya, S.; Kulkarni, V. P.; Khare, P.; Bowen, D.; Bishof, M.; York, D. G.

    2016-04-01

    Here, we report 103 galaxies intervening with background QSOs detected in imaging, spectral emission, and absorption. The advantage of this sample is that it is entirely random with respect to the foreground galaxies. (6 data files).

  7. Role of the Closing Base Pair for d(GCA) Hairpin Stability: Free Energy Analysis and Folding Simulations

    SciTech Connect

    Kannan, Srinivasaraghavan; Zacharias, Martin W.

    2011-06-30

    Hairpin loops belong to the most important structural motifs in folded nucleic acids. The d(GNA) sequence in DNA can form very stable trinucleotide hairpin loops depending, however, strongly on the closing base pair. Replica-exchange molecular dynamics (REMD) were employed to study hairpin folding of two DNA sequences, d(gcGCAgc) and d(cgGCAcg), with the same central loop motif but different closing base pairs starting from singlestranded structures. In both cases, conformations of the most populated conformational cluster at the lowest temperature showed close agreement with available experimental structures. For the loop sequence with the less stable G:C closing base pair, an alternative loop topology accumulated as second most populated conformational state indicating a possible loop structural heterogeneity. Comparative-free energy simulations on induced loop unfolding indicated higher stability of the loop with a C:G closing base pair by 3 kcal mol1 (compared to a G:C closing base pair) in very good agreement with experiment. The comparative energetic analysis of sampled unfolded, intermediate and folded conformational states identified electrostatic and packing interactions as the main contributions to the closing base pair dependence of the d(GCA) loop stability.

  8. Open-Closed Homotopy Algebras and Strong Homotopy Leibniz Pairs Through Koszul Operad Theory

    NASA Astrophysics Data System (ADS)

    Hoefel, Eduardo; Livernet, Muriel

    2012-08-01

    Open-closed homotopy algebras (OCHA) and strong homotopy Leibniz pairs (SHLP) were introduced by Kajiura and Stasheff in 2004. In an appendix to their paper, Markl observed that an SHLP is equivalent to an algebra over the minimal model of a certain operad, without showing that the operad is Koszul. In the present paper, we show that both OCHA and SHLP are algebras over the minimal model of the zeroth homology of two versions of the Swiss-cheese operad and prove that these two operads are Koszul. As an application, we show that the OCHA operad is non-formal as a 2-colored operad but is formal as an algebra in the category of 2-collections.

  9. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  10. The spiral-compact galaxy pair AM 2208-251: Computer simulations versus observations

    NASA Astrophysics Data System (ADS)

    Klaric, Mario; Byrd, Gene G.

    1990-11-01

    The system AM2208-251 is a roughly edge-on spiral extending east-west with a smaller round compact E system about 60 arcsec east of the spiral nucleus along the major axis of the spiral. Bertola, Huchtmeier, and Zeilinger (1990) have presented optical spectroscopic as well as single dish 21 cm observations of this system. Their spectroscopic data show, via emission lines lambda lambda 3727-29A, a rising rotation curve near the nucleus. These spectroscopic observations may indicate a tidal interaction in the system. In order to learn more about such pairs, the authors simulated the interaction using the computer model developed by Miller (1976 a,b, 1978) and modified by the authors (Byrd 1986, 1987, 1988). To do the simulation they need an idea of the mutual orbits of the two galaxies. Their computer model is a two-dimensional polar N-body program. It consists of a self-gravitating disk of particles, within an inert axially symmetric stabilizing halo potential. The particles are distributed in a 24(radial) by 36(azimuthal) polar grid. Self consistent calculations can be done only within the grid area. The disk is modeled with a finite Mestel disk, where all the particles initially move in circular orbits with constant tangential velocities (Mestel 1963), resulting in a flat rotation curve. The gas particles in the spiral's disk, which make up 30 percent of its mass, collide in the following manner. The number of particles in each bin of the polar grid is counted every time step. If it is greater than a given critical density, all the particles in the bin collide, obtaining in the result the same velocities, equal to the average for the bin. This process produces clumps of gas particles-the star formation sites. The authors suppress the collision in the inner part of the disk (within the circle r = 6) to represent the hole seen in the gas in the nuclear bulge of spirals. They thus avoid spurious effects due to collisions in that region. They also varied the size of

  11. The spiral-compact galaxy pair AM 2208-251: Computer simulations versus observations

    NASA Technical Reports Server (NTRS)

    Klaric, Mario; Byrd, Gene G.

    1990-01-01

    The system AM2208-251 is a roughly edge-on spiral extending east-west with a smaller round compact E system about 60 arcsec east of the spiral nucleus along the major axis of the spiral. Bertola, Huchtmeier, and Zeilinger (1990) have presented optical spectroscopic as well as single dish 21 cm observations of this system. Their spectroscopic data show, via emission lines lambda lambda 3727-29A, a rising rotation curve near the nucleus. These spectroscopic observations may indicate a tidal interaction in the system. In order to learn more about such pairs, the authors simulated the interaction using the computer model developed by Miller (1976 a,b, 1978) and modified by the authors (Byrd 1986, 1987, 1988). To do the simulation they need an idea of the mutual orbits of the two galaxies. Their computer model is a two-dimensional polar N-body program. It consists of a self-gravitating disk of particles, within an inert axially symmetric stabilizing halo potential. The particles are distributed in a 24(radial) by 36(azimuthal) polar grid. Self consistent calculations can be done only within the grid area. The disk is modeled with a finite Mestel disk, where all the particles initially move in circular orbits with constant tangential velocities (Mestel 1963), resulting in a flat rotation curve. The gas particles in the spiral's disk, which make up 30 percent of its mass, collide in the following manner. The number of particles in each bin of the polar grid is counted every time step. If it is greater than a given critical density, all the particles in the bin collide, obtaining in the result the same velocities, equal to the average for the bin. This process produces clumps of gas particles-the star formation sites. The authors suppress the collision in the inner part of the disk (within the circle r = 6) to represent the hole seen in the gas in the nuclear bulge of spirals. They thus avoid spurious effects due to collisions in that region. They also varied the size of

  12. Role of imagery and verbal labeling in the performance of paired associates tasks by persons with closed head injury.

    PubMed

    Twum, M; Parenté, R

    1994-08-01

    The facilitating effects of visual imagery and verbal labeling strategies on learning and retention were examined with 60 survivors of closed-head injury. Because individuals without known neurological deficits use cognitive strategies when learning new materials, we expected that head-injured subjects could also be taught to use these strategies. Subjects were asked to memorize the verbal and visual paired associates stimulus items from the revised Wechsler Memory Scale-Revised (WMS-R). One group of subjects received mental imagery instructions to help them learn the verbal paired associates. Another group received verbal labeling training to help them learn the visual paired associates. Subjects who received imagery but not verbal labeling instructions were able to recall more paired associations than those who did not receive imagery. Those subjects who received verbal labeling but not imagery instructions recalled more visual paired associations than those who did not. Subjects who received learning instructions also showed better retention of the learned information.

  13. Exploring galaxy environments on large and small scales

    NASA Astrophysics Data System (ADS)

    Berrier, Heather Danae

    I examine galaxy environments and galaxy interactions using LCDM N-body simulations, redshift surveys, and a sample of 77 galaxies in close pairs and groups. I show that some simulations and models for assigning luminosities to dark matter halos reproduce the observed counts-in-cylinders statistic distribution quite well, except for very isolated galaxies. I also find that the close-pair fraction from a LCDM simulation matches both the observed close- pair count at z=0 and the pair fraction evolution. Finally, I use U and V photometry of a sample of previously-studied galaxies to support results suggesting a relationship between galaxy separation and starburst strength, and confirm that U-B colors are a sensitive indicator of burst strength. This will be useful in studies of high redshift galaxies.

  14. Phase space matching and finite lifetime effects for top-pair production close to threshold

    SciTech Connect

    Hoang, Andre H.; Reisser, Christoph J.; Ruiz-Femenia, Pedro

    2010-07-01

    The top-pair tt production cross section close to threshold in e{sup +}e{sup -} collisions is strongly affected by the small lifetime of the top quark. Since the cross section is defined through final states containing the top decay products, a consistent definition of the cross section depends on prescriptions of how these final states are accounted for the cross section. Experimentally, these prescriptions are implemented, for example, through cuts on kinematic quantities such as the reconstructed top quark invariant masses. As long as these cuts do not reject final states that can arise from the decay of a top and an antitop quark with a small off-shellness compatible with the nonrelativistic power counting, they can be implemented through imaginary phase space matching conditions in nonrelativistic QCD. The prescription-dependent cross section can then be determined from the optical theorem using the e{sup +}e{sup -} forward scattering amplitude. We compute the phase space matching conditions associated to cuts on the top and antitop invariant masses at next-to-next-to-leading logarithmic order and partially at next-to-next-to-next-to-leading logarithmic order in the nonrelativistic expansion accounting also for higher order QCD effects. Together with finite lifetime and electroweak effects known from previous work, we analyze their numerical impact on the tt cross section. We show that the phase space matching contributions are essential to make reliable nonrelativistic QCD predictions, particularly for energies below the peak region, where the cross section is small. We find that irreducible background contributions associated to final states that do not come from top decays are strongly suppressed and can be neglected for the theoretical predictions.

  15. Supermassive black hole pairs in clumpy galaxies at high redshift: delayed binary formation and concurrent mass growth

    NASA Astrophysics Data System (ADS)

    Tamburello, Valentina; Capelo, Pedro R.; Mayer, Lucio; Bellovary, Jillian M.; Wadsley, James W.

    2016-10-01

    Massive gas-rich galaxy discs at z ˜ 1 - 3 host massive star-forming clumps with typical baryonic masses in the range 107 - 108 M⊙ which can affect the orbital decay and concurrent growth of supermassive black hole (BH) pairs. Using a set of high-resolution simulations of isolated clumpy galaxies hosting a pair of unequal-mass BHs, we study the interaction between massive clumps and a BH pair at kpc scales, during the early phase of the orbital decay. We find that both the interaction with massive clumps and the heating of the cold gas layer of the disc by BH feedback tend to delay significantly the orbital decay of the secondary, which in many cases is ejected and then hovers for a whole Gyr around a separation of 1-2 kpc. In the envelope, dynamical friction is weak and there is no contribution of disc torques: these lead to the fastest decay once the orbit of the secondary BH has circularised in the disc midplane. In runs with larger eccentricities the delay is stronger, although there are some exceptions. We also show that, even in discs with very sporadic transient clump formation, a strong spiral pattern affects the decay time-scale for BHs on eccentric orbits. We conclude that, contrary to previous belief, a gas-rich background is not necessarily conducive to a fast BH decay and binary formation, which prompts more extensive investigations aimed at calibrating event-rate forecasts for ongoing and future gravitational-wave searches, such as with Pulsar Timing Arrays and the future evolved Laser Interferometer Space Antenna.

  16. Galaxy and Mass Assembly (GAMA): merging galaxies and their properties

    NASA Astrophysics Data System (ADS)

    De Propris, Roberto; Baldry, Ivan K.; Bland-Hawthorn, Joss; Brough, Sarah; Driver, Simon P.; Hopkins, Andrew M.; Kelvin, Lee; Loveday, Jon; Phillipps, Steve; Robotham, Aaron S. G.

    2014-11-01

    We derive the close pair fractions and volume merger rates for galaxies in the Galaxy and Mass Assembly (GAMA) survey with -23 < Mr < -17 (ΩM = 0.27, ΩΛ = 0.73, H0 = 100 km s-1 Mpc-1) at 0.01 < z < 0.22 (look-back time of <2 Gyr). The merger fraction is approximately 1.5 per cent Gyr-1 at all luminosities (assuming 50 per cent of pairs merge) and the volume merger rate is ≈3.5 × 10-4 Mpc-3 Gyr-1. We examine how the merger rate varies by luminosity and morphology. Dry mergers (between red/spheroidal galaxies) are found to be uncommon and to decrease with decreasing luminosity. Fainter mergers are wet, between blue/discy galaxies. Damp mergers (one of each type) follow the average of dry and wet mergers. In the brighter luminosity bin (-23 < Mr < -20), the merger rate evolution is flat, irrespective of colour or morphology, out to z ˜ 0.2. The makeup of the merging population does not appear to change over this redshift range. Galaxy growth by major mergers appears comparatively unimportant and dry mergers are unlikely to be significant in the buildup of the red sequence over the past 2 Gyr. We compare the colour, morphology, environmental density and degree of activity (BPT class, Baldwin, Phillips & Terlevich) of galaxies in pairs to those of more isolated objects in the same volume. Galaxies in close pairs tend to be both redder and slightly more spheroid dominated than the comparison sample. We suggest that this may be due to `harassment' in multiple previous passes prior to the current close interaction. Galaxy pairs do not appear to prefer significantly denser environments. There is no evidence of an enhancement in the AGN fraction in pairs, compared to other galaxies in the same volume.

  17. Evolution of hydraulic traits in closely related species pairs from Mediterranean and nonMediterranean environments of North America.

    PubMed

    Bhaskar, Radika; Valiente-Banuet, Alfonso; Ackerly, David D

    2007-01-01

    Chaparral shrubs in California experience cool, wet winters and hot, dry summers characteristic of mediterranean-type climates; by contrast, morphologically similar close relatives in central Mexico experience summer rainfall. A comparison of closely related species pairs was conducted to examine whether evolutionary divergences in plant hydraulic conductivity were associated with contrasting seasonality of precipitation. Six species pairs in Santa Barbara, California and Tehuacan, Mexico were chosen to test for repeated directional divergences across the habitat contrast. Additionally, evolutionary correlations were examined using phylogenetically independent contrasts (PICs) among a suite of hydraulic traits, including stem- and leaf-specific conductivity, resistance to embolism, wood density, inverse Huber value, and minimum seasonal water potential. Leaf-specific conductivity was generally higher in California, but for most hydraulic traits the species pairs exhibited varied evolutionary trajectories across the climate contrast. A significant correlation was found between divergences in xylem resistance to embolism and minimum seasonal water potential, but no evolutionary trade-off was found between resistance and stem conductivity. Higher leaf-specific conductivity may be adaptive in California, where soil and atmospheric droughts coincide during summer months. This response is consistent with a hydraulic strategy of high leaf water supply under high evaporative demand to prevent excessive drops in water potential.

  18. Star-formation rates, molecular clouds, and the origin of the far-infrared luminosity of isolated and interacting galaxies

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; Sage, L. J.

    1988-01-01

    The CO luminosities of 93 galaxies have been determined and are compared with their IRAS FIR luminosities. Strongly interacting/merging galaxies have L(FIR)/L(CO) substantially higher than that of isolated galaxies or galactic giant molecular clouds (GMCs). Galaxies with tidal tails/bridges are the most extreme type with L(FIR)/L(CO) nine times as high as isolated galaxies. Interactions between close pairs of galaxies do not have much effect on the molecular content and global star-formation rate. If the high ratio L(FIR)/L(CO) in strongly interacting galaxies is due to star formation then the efficiency of this process is higher than that of any galactic GMC. Isolated galaxies, distant pairs, and close pairs have an FIR/CO luminosity ratio which is within a factor of two of galactic GMCs with H II regions. The CO luminosities of FIR-luminous galaxies are among the highest observed for any spiral galaxies.

  19. Formation of Small-Scale Vortex Rings from Vortex Pairs Close to the Ground

    NASA Astrophysics Data System (ADS)

    Asselin, Daniel; Williamson, Charles

    2013-11-01

    In this research, we examine the effect of a solid boundary on the dynamics and instabilities of a pair of counter-rotating vortices. An isolated vortex pair is subject to a short-wave elliptic instability and a long-wave Crow (1970) instability. Near a wall, the boundary layer between the primary vortices and the wall can separate, leading to the generation of secondary vorticity. These secondary vortices can be subject to small-scale instabilities (Harris & Williamson, 2012) as they come under the influence of the primary vortices. In contrast, in the present study we are interested in the long-wave Crow instability interrupted by interaction with a wall. This can cause significant axial flow, resulting in a periodic concentration of fluid containing vorticity at the peaks of each wavy vortex tube and a corresponding evacuation of fluid containing vorticity from the troughs. It appears that this axial flow is driven at least in part by the formation of vortex ring-like structures in the secondary vortex as it is deformed by the primary vortex. Furthermore, additional small scale-vortex rings evolve from the secondary vorticity and from the concentrated vortical regions in the primary vorticity. In both cases, these rings cause vorticity to rebound away from the ground.

  20. Tomography of the intergalactic medium with Lyα forests in close QSO pairs

    NASA Astrophysics Data System (ADS)

    D'Odorico, V.; Viel, M.; Saitta, F.; Cristiani, S.; Bianchi, S.; Boyle, B.; Lopez, S.; Maza, J.; Outram, P.

    2006-11-01

    We study the three-dimensional distribution of non-virialized matter at z ~ 2 using high-resolution spectra of quasi-stellar object (QSO) pairs and simulated spectra drawn from cosmological hydrodynamical simulations. We have collected the largest sample of QSO pairs ever observed with Ultraviolet and Visual Echelle Spectrograph (UVES) at the European Southern Observatory-Very Large Telescope (ESO-VLT), with angular separations between ~1 and 14arcmin. The observed correlation functions of the transmitted flux in the HI Lyman α forest along and transverse to the lines of sight are in good agreement implying that the distortions in redshift space due to peculiar velocities are small. The clustering signal is significant up to velocity separations of ~200kms-1, or about 3h-1 comoving Mpc. The regions at lower overdensity are still clustered but on smaller scales (Δv <~ 100kms-1). The observed and simulated correlation functions are compatible at the 3σ level. A better concordance is obtained when only the low overdensity regions are selected for the analysis or when the effective optical depth of the simulated spectra is increased artificially, suggesting a deficiency of strong lines in the simulated spectra. We found that also a lower value of the power-law index of the temperature-density relation for the Lyman α forest gas improves the agreement between observed and simulated results. If confirmed, this would be consistent with other observations favouring a late HeII reionization epoch (at z ~ 3). We remark the detection of a significant clustering signal in the cross-correlation coefficient at a transverse velocity separation Δv⊥ ~ 500kms-1 whose origin needs further investigation. Based on observations collected at the European Southern Observatory Very Large Telescope, Cerro Paranal, Chile - Programs 65.O-0299(A), 68.A-0216(A), 69.A-0204(A), 69.A-0586(A), 70.A-0031(A), 166.A-0106(A). E-mail: dodorico@oats.inaf.it

  1. Closed timelike curves produced by pairs of moving cosmic strings - Exact solutions

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1991-01-01

    Exact solutions of Einstein's field equations are presented for the general case of two moving straight cosmic strings that do not intersect. The solutions for parallel cosmic strings moving in opposite directions show closed timelike curves (CTCs) that circle the two strings as they pass, allowing observers to visit their own past. Similar results occur for nonparallel strings, and for masses in (2+1)-dimensional spacetime. For finite string loops the possibility that black-hole formation may prevent the formation of CTCs is discussed.

  2. Frequency Shift and Sub-band Effect in Pair-Production Process Under Adiabatic Closing the External Field

    NASA Astrophysics Data System (ADS)

    Song, Xinfang; Wang, Wenyuan; Fu, Libin

    2016-09-01

    Oscillating electric field is chosen to investigate the electron-positron pair production process by using a quantum kinetic theory and the effective mass model [Phys. Rev. Lett. 112, 050402 (2014)]. The particle yield exhibits a characteristic oscillatory structure which is related to the multi-photon thresholds. The true peak positions are typically slightly above the naive threshold estimate, which is defined as frequency shift. During the numerical calculations, we find the frequency shift can be affected by the system parameters under adiabatic closing the external field, it is worthwhile to study in detail. In this paper, we investigate the frequency shift and the sub-band effect in electron-positron pair production with oscillating electric field. First, a quantum kinetic theory and the effective mass are presented to obtain the frequency shift, the results are fitted very well. And we find the frequency shift and the sub-band effect can be influenced by pulse duration, photon number, and strength of the external field. The frequency shift becomes evident as increases of photon number and the external field strength. The sub-band width is relatively lower at longer pulse duration, higher photon number region, and weaker external field. The results shown in the paper are helpful for understanding multi-photon pair production process in the strong field.

  3. A Tale of Two Narrow-line Regions: Ionization, Kinematics, and Spectral Energy Distributions for a Local Pair of Merging Obscured Active Galaxies

    NASA Astrophysics Data System (ADS)

    Hainline, Kevin N.; Hickox, Ryan C.; Chen, Chien-Ting; Carroll, Christopher M.; Jones, Mackenzie L.; Zervos, Alexandros S.; Goulding, Andrew D.

    2016-05-01

    We explore the gas ionization and kinematics, as well as the optical-IR spectral energy distributions for UGC 11185, a nearby pair of merging galaxies hosting obscured active galactic nuclei (AGNs), also known as SDSS J181611.72+423941.6 and J181609.37+423923.0 (J1816NE and J1816SW, z ≈ 0.04). Due to the wide separation between these interacting galaxies (˜23 kpc), observations of these objects provide a rare glimpse of the concurrent growth of supermassive black holes at an early merger stage. We use BPT line diagnostics to show that the full extent of the narrow-line emission in both galaxies is photoionized by an AGN, and confirm the existence of a 10 kpc-scale ionization cone in J1816NE, while in J1816SW the AGN narrow-line region is much more compact (1–2 kpc) and relatively undisturbed. Our observations also reveal the presence of ionized gas that nearly spans the entire distance between the galaxies, which is likely in a merger-induced tidal stream. In addition, we carry out a spectral analysis of the X-ray emission using data from XMM-Newton. These galaxies represent a useful pair to explore how the [O iii] luminosity of an AGN is dependent on the size of the region used to explore the extended emission. Given the growing evidence for AGN “flickering” over short timescales, we speculate that the appearances and impacts of these AGNs may change multiple times over the course of the galaxy merger, which is especially important given that these objects are likely the progenitors of the types of systems commonly classified as “dual AGNs.”

  4. A XMM-Newton observation of a sample of four close dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Manni, L.; Nucita, A. A.; De Paolis, F.; Testa, V.; Ingrosso, G.

    2015-08-01

    We present the results of the analysis of deep archival XMM-Newton observations towards the dwarf spheroidal galaxies Draco, Leo I, Ursa Major II (UMa II) and Ursa Minor (UMi) in the Milky Way neighbourhood. The X-ray source population is characterized and cross-correlated with available databases to infer their nature. We also investigate if intermediate-mass black holes are hosted in the centre of these galaxies. For Draco, we detect 96 high-energy sources, two of them possibly being local stars, while no evidence for any X-ray emitting central compact object is found. Towards the Leo I and UMa II fields of view, we reveal 116 and 49 X-ray sources, respectively. None of them correlates with the putative central black holes and only one is likely associated with a UMa II local source. The study of the UMi dwarf galaxy found 54 high-energy sources and a possible association with a source at the dwarf spheroidal galaxy centre. We put an upper limit on the luminosity of the central compact object of 4.02 × 1033 erg s-1. Furthermore, via the correlation with a radio source near the galactic centre, the putative black hole should have a mass of (2.76^{+32.00}_{-2.54})× 10^6 M_{{{⊙}}} and be radiatively inefficient. This confirms a previous result obtained using Chandra data alone.

  5. Interacting galaxies resolved by IRAS

    NASA Technical Reports Server (NTRS)

    Mazzarella, Joseph M.; Surace, Jason A.

    1994-01-01

    We discuss procedures, limitations and results of high resolution processing of interacting galaxies observed by the Infrared Astronomical Satellite (IRAS). Among 56 potentially resolvable interacting groups selected from the IRAS Bright Galaxy Sample, 22 systems have been resolved yielding fluxes for a total of 51 galaxies. In about 2/3 of the resolved pairs, both galaxies were detected in the far-infrared. A set of isolated non-interacting galaxies was chosen from the Bright Galaxy Sample for comparison with the interacting galaxies. For the current sample, which naturally excludes close pairs and ultraluminous merging systems, the primary conclusions are: (1) It is not possible to distinguish individual interacting galaxies from isolated galaxies of similar luminosity on the basis of infrared properties alone. (2) No direct correlation was found between measures of interaction strength and indicators of enhanced star formation within the resolved systems. (3) Comparison of the interacting and isolated samples indicates statistically significant differences between their distributions of far-infrared color ratios, luminosities, and surface brightnesses. Even during the early stages of interaction spanned by these systems, in a statistical sense, tidal perturbations substantially boost far-infrared indicators of star formation compared to non-interacting systems. We also briefly discuss future prospects for pushing the IRAS data to its limits for additional interacting systems.

  6. WITNESSING THE KEY EARLY PHASE OF QUASAR EVOLUTION: AN OBSCURED ACTIVE GALACTIC NUCLEUS PAIR IN THE INTERACTING GALAXY IRAS 20210+1121

    SciTech Connect

    Piconcelli, Enrico; Fiore, Fabrizio; Maiolino, Roberto; Nicastro, Fabrizio; Vignali, Cristian; Bianchi, Stefano; Mathur, Smita; Guainazzi, Matteo; Lanzuisi, Giorgio

    2010-10-20

    We report the discovery of an active galactic nucleus (AGN) pair in the interacting galaxy system IRAS 20210+1121 at z = 0.056. An XMM-Newton observation reveals the presence of an obscured (N {sub H} {approx} 5 x 10{sup 23} cm{sup -2}), Seyfert-like (L {sub 2-10keV} = 4.7 x 10{sup 42} erg s{sup -1}) nucleus in the northern galaxy, which lacks unambiguous optical AGN signatures. Our spectral analysis also provides strong evidence that the IR-luminous southern galaxy hosts a Type 2 quasar embedded in a bright starburst emission. In particular, the X-ray primary continuum from the nucleus appears totally depressed in the XMM-Newton band as expected in the case of a Compton-thick absorber, and only the emission produced by Compton scattering ('reflection') of the continuum from circumnuclear matter is seen. As such, IRAS 20210+1121 seems to provide an excellent opportunity to witness a key, early phase in the quasar evolution predicted by the theoretical models of quasar activation by galaxy collisions.

  7. Stellar dynamics in E+E pairs of galaxies. 1: NGC 741/742, 1587/88 and 2672/73. The data

    NASA Astrophysics Data System (ADS)

    Bonfanti, P.; Rampazzo, R.; Combes, F.; Prugniel, P.; Sulentic, J. W.

    1995-05-01

    We present a kinematic study ofthree E+E galaxy pairs, NGC, 741/642, 1587/1588 (CPG 99) and 2672/2673 (CPG 175) All three pairs show a similar morpological distortion (i.e. the off-centering of inner versus outer isphototes; Davoust & Prungniel 1988) which is ascribed to the ongoing interaction. The data was obtained at the CFHT equipped with the Herzberg Spectrograph at a resolution of 0.88 A px-1 NGC741 and 2673 show significant rotation along the apparent minor axis. Both components of CPG 99 rotate very fast (with no evidence for rotation along the mirror axis of either component). None of the galaxies show abnormally high central velocity dispersion. We report some of the first clear detections of well defined velocity dispersions curves for interacting pairs. They show a systematic decrease with distance from the center, as expected for normal ellipticals. They do not show obvious heating in the outer parts as was previously reported. NGC 741 and 2672 show, respectively, possible U and inverse U-shaped structure in their velocity profiles.

  8. First Connection between Cold Gas in Emission and Absorption: CO Emission from a Galaxy-Quasar Pair

    NASA Astrophysics Data System (ADS)

    Neeleman, Marcel; Prochaska, J. Xavier; Zwaan, Martin A.; Kanekar, Nissim; Christensen, Lise; Dessauges-Zavadsky, Miroslava; Fynbo, Johan P. U.; van Kampen, Eelco; Møller, Palle; Zafar, Tayyaba

    2016-04-01

    We present the first detection of molecular emission from a galaxy selected to be near a projected background quasar using the Atacama Large Millimeter/submillimeter Array (ALMA). The ALMA detection of CO(1-0) emission from the z = 0.101 galaxy toward quasar PKS 0439-433 is coincident with its stellar disk and yields a molecular gas mass of Mmol ≈ 4.2 × 109 M⊙ (for a Galactic CO-to-H2 conversion factor), larger than the upper limit on its atomic gas mass. We resolve the CO velocity field, obtaining a rotational velocity of 134 ± 11 km s-1 and a resultant dynamical mass of ≥4 × 1010 M⊙. Despite its high metallicity and large molecular mass, the z = 0.101 galaxy has a low star formation rate, implying a large gas consumption timescale, larger than that typical of late-type galaxies. Most of the molecular gas is hence likely to be in a diffuse extended phase, rather than in dense molecular clouds. By combining the results of emission and absorption studies, we find that the strongest molecular absorption component toward the quasar cannot arise from the molecular disk, but is likely to arise from diffuse gas in the galaxy’s circumgalactic medium. Our results emphasize the potential of combining molecular and stellar emission line studies with optical absorption line studies to achieve a more complete picture of the gas within and surrounding high-redshift galaxies.

  9. Interacting binary galaxies. V - NGC 4782/4783 (3C 278): Unbound colliders, not a supermassive pair

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.; Balcells, Marc; Hoessel, John G.

    1988-01-01

    CCD imaging data of the elliptical galaxies NGC 4782 and NGC 4783 have been analyzed along with published spectroscopic measurements in order to develop a viable interaction model for this system. The best-fit model suggests that the binary orbit was hyperbolic before the encounter, but that the energy loss during the collision has led to a loosely bound system. The total system mass in the region occupied by the luminous matter is shown to be 1.4 x 10 to the 12th solar masses. The results support the previous theory that the internal velocity dispersions of colliding galaxies tend to increase just past closest approach.

  10. A massive dense gas cloud close to the nucleus of the Seyfert galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Furuya, Ray S.; Taniguchi, Yoshiaki

    2016-10-01

    Using the ALMA archival data of both 12CO (6-5) line and 689-GHz continuum emission towards the archetypical Seyfert galaxy, NGC 1068, we identified a distinct continuum peak separated by 15 pc from the nuclear radio component S1 in projection. The continuum flux gives a gas mass of ˜2 × 105 M⊙ and bolometric luminosity of ˜108 L⊙, leading to a star formation rate of ˜0.1 M⊙ yr-1. Subsequent analysis on the line data suggest that the gas cloud has a size of ˜10 pc, yielding to a mean H2 number density of ˜105 cm-3. We therefore refer to the gas as a "massive dense gas cloud": the gas density is high enough to form a "protostar cluster" with a stellar mass of ˜104 M⊙. We found that the gas stands at a unique position between galactic and extraglactic clouds in the diagrams of start formation rate (SFR) vs. gas mass proposed by Lada et al. (2012, ApJ, 745, 190) and surface density of gas vs. SFR density by Krumholz and McKee (2005, ApJ, 630, 250). All the gaseous and star-formation properties may be understood in terms of the turbulence-regulated star formation scenario. Since there are two stellar populations with ages of 300 Myr and 30 Myr in the 100 pc scale circumnulear region, we discuss that NGC 1068 has experienced at least three episodic star-formation events with the likelihood that the inner star-forming region is the younger. Together with several lines of evidence that the dynamics of the nuclear region is decoupled from that of the entire galactic disk, we discuss that the gas inflow towards the nuclear region of NGC 1068 may be driven by a past minor merger.

  11. A VERY CLOSE BINARY BLACK HOLE IN A GIANT ELLIPTICAL GALAXY 3C 66B AND ITS BLACK HOLE MERGER

    SciTech Connect

    Iguchi, Satoru; Okuda, Takeshi; Sudou, Hiroshi E-mail: okuda@a.phys.nagoya-u.ac.j

    2010-12-01

    Recent observational results provide possible evidence that binary black holes (BBHs) exist in the center of giant galaxies and may merge to form a supermassive black hole in the process of their evolution. We first detected a periodic flux variation on a cycle of 93 {+-} 1 days from the 3 mm monitor observations of a giant elliptical galaxy 3C 66B for which an orbital motion with a period of 1.05 {+-} 0.03 yr had been already observed. The detected signal period being shorter than the orbital period can be explained by taking into consideration the Doppler-shifted modulation due to the orbital motion of a BBH. Assuming that the BBH has a circular orbit and that the jet axis is parallel to the binary angular momentum, our observational results demonstrate the presence of a very close BBH that has a binary orbit with an orbital period of 1.05 {+-} 0.03 yr, an orbital radius of (3.9 {+-} 1.0) x 10{sup -3} pc, an orbital separation of (6.1{sup +1.0} {sub -0.9}) x 10{sup -3} pc, a larger black hole mass of (1.2{sup +0.5} {sub -0.2}) x 10{sup 9} M {sub sun}, and a smaller black hole mass of (7.0{sup +4.7} {sub -6.4}) x 10{sup 8} M {sub sun}. The BBH decay time of (5.1{sup +60.5} {sub -2.5}) x 10{sup 2} yr provides evidence for the occurrence of black hole mergers. This Letter will demonstrate the interesting possibility of black hole collisions to form a supermassive black hole in the process of evolution, one of the most spectacular natural phenomena in the universe.

  12. IRAS 14348-1447, an Ultraluminous Pair of Colliding, Gas-Rich Galaxies: The Birth of a Quasar?

    PubMed

    Sanders, D B; Scoville, N Z; Soifer, B T

    1988-02-01

    Ground-based observations of the object IRAS 14348-1447, which was discovered with the Infrared Astronomical Satellite, show that it is an extremely luminous colliding galaxy system that emits more than 95 percent of its energy at far-infrared wavelengths. IRAS 14348-1447, which is receeding from the sun at 8 percent of the speed of light, has a bolometric luminosity more than 100 times larger than that of our galaxy, and is therefore as luminous as optical quasars. New optical, infrared, and spectroscopic measurements suggest that the dominant luminosity source is a dustenshrouded quasar. The fuel for the intense activity is an enormous supply of molecular gas. Carbon monoxide emission has been detected at a wavelength of 2.6 millimeters by means of a new, more sensitive receiver recently installed on the 12-meter telescope of the National Radio Astronomy Observatory. IRAS 14348-1447 is the most distant and luminous source of carbon monoxide line emission yet detected. The derived mass of interstellar molecular hydrogen is 6 x 10(10) solar masses. This value is approximately 20 times that of the molecular gas content of the Milky Way and is similar to the largest masses of atomic hydrogen found in galaxies. A large mass of molecular gas may be a prerequisite for the formation of quasars during strong galactic collisions.

  13. Single cell and neural process experimentation using laterally applied electrical fields between pairs of closely apposed microelectrodes with vertical sidewalls.

    PubMed

    Chang, Wesley C; Sretavan, David W

    2009-08-15

    As biomedical research has moved increasingly towards experimentation on single cells and subcellular structures, there has been a need for microscale devices that can perform manipulation and stimulation at a correspondingly small scale. We propose a microelectrode array (MEA) featuring thickened microelectrodes with vertical sidewalls (VSW) to focus electrical fields horizontally on targets positioned in between paired electrodes. These microelectrodes were fabricated using gold electroplating that was molded by photolithographically patterned SU-8 photoresist. Finite element modeling showed that paired VSW electrodes produce more uniform electrical fields compared to conventional planar microelectrodes. Using paired microelectrodes, 3 microm thick and spaced 10 microm apart, we were able to perform local electroporation of individual axonal processes, as demonstrated by entry of EGTA to locally chelate intra-axonal calcium, quenching the fluorescence of a pre-loaded calcium indicator dye. The same electrode configuration was used to electroporate individual cells, resulting in the targeted transfection of a transgene expressing a cytoplasmically soluble green fluorescent protein (GFP). In addition to electroporation, our electrode configuration was also capable of precisely targeted field stimulation on individual neurons, resulting in action potentials that could be tracked by optical means. With its ability to deliver well-characterized electrical fields and its versatility, our configuration of paired VSW electrodes may provide the basis for a new tool for high-throughput and high-content experimentation in broad areas of neuroscience and biomedical research.

  14. Build/couple/pair strategy combining the Petasis 3-component reaction with Ru-catalyzed ring-closing metathesis and isomerization.

    PubMed

    Ascic, Erhad; Le Quement, Sebastian T; Ishoey, Mette; Daugaard, Mathilde; Nielsen, Thomas E

    2012-04-01

    A "build/couple/pair" pathway for the systematic synthesis of structurally diverse small molecules is presented. The Petasis 3-component reaction was used to synthesize anti-amino alcohols displaying pairwise reactive combinations of alkene moieties. Upon treatment with a ruthenium alkylidene-catalyst, these dienes selectively underwent ring-closing metathesis reactions to form 5- and 7-membered heterocycles and cyclic aminals via a tandem isomerization/N-alkyliminium cyclization sequence.

  15. IRAS 14348-1447, an ultraluminous pair of colliding, gas-rich galaxies - The birth of a quasar?

    NASA Technical Reports Server (NTRS)

    Sanders, D. B.; Soifer, B. T.; Scoville, N. Z.

    1988-01-01

    Ground-baed observations of the object IRAS 14348-1447, which was discovered with the Infrared Astronomical Satellite, show that it is an extremely luminous colliding galaxy system that emits more than 95 percent of its energy at FIR wavelengths. IRAS 14348-1447, which is receeding from the sun at 8 percent of the speed of light, has a bolometric luminosity more than 100 times larger than that of the Galaxy, and is therefore as luminous as optical quasars. New optical, infrared, and spectroscopic measurements suggest that the dominant luminosity source is a dust-enshrouded quasar. The fuel for the intense activity is an enormous supply of molecular gas. Carbon monoxide emission has been detected at a wavelength of 2.6 millimeters by means of a new, more sensitive receiver recently installed on the 12-meter telescope of the National Radio Astronomy Observatory. IRAS 14348-1447 is the most distant and luminous source of carbon monoxide line emission yet detected.

  16. A LACK OF SHORT-PERIOD MULTIPLANET SYSTEMS WITH CLOSE-PROXIMITY PAIRS AND THE CURIOUS CASE OF KEPLER-42

    SciTech Connect

    Steffen, Jason H.; Farr, Will M.

    2013-09-01

    Many Kepler multiplanet systems have planet pairs near low-order, mean-motion resonances. In addition, many Kepler multiplanet systems have planets with orbital periods less than a few days. With the exception of Kepler-42, however, there are no examples of systems with both short orbital periods and nearby companion planets while our statistical analysis predicts {approx}17 such pairs. For orbital periods of the inner planet that are less than three days, the minimum period ratio of adjacent planet pairs follows the rough constraint P{identical_to}P{sub 2}/P{sub 1}{approx}>2.3 (P{sub 1}/day){sup -2/3}. This absence is not due to a lack of planets with short orbital periods. We also show a statistically significant excess of small, single-candidate systems with orbital periods below three days over the number of multiple candidate systems with similar periods-perhaps a small-planet counterpart to the hot Jupiters.

  17. GALAXY GROWTH BY MERGING IN THE NEARBY UNIVERSE

    SciTech Connect

    Jiang Tao; Hogg, David W.; Blanton, Michael R.

    2012-11-10

    We measure the mass growth rate by merging for a wide range of galaxy types. We present the small-scale (0.014 h {sup -1} {sub 70} Mpc < r < 11 h {sub 70} {sup -1} Mpc) projected cross-correlation functions w(r {sub p}) of galaxy subsamples from the spectroscopic sample of the NYU Value-Added Galaxy Catalog (5 Multiplication-Sign 10{sup 5} galaxies of redshifts 0.03 < z < 0.15) with galaxy subsamples from the Sloan Digital Sky Survey imaging (4 Multiplication-Sign 10{sup 7} galaxies). We use smooth fits to de-project the two-dimensional functions w(r {sub p}) to obtain smooth three-dimensional real-space cross-correlation functions {xi}(r) for each of several spectroscopic subsamples with each of several imaging subsamples. Because close pairs are expected to merge, the three-space functions and dynamical evolution time estimates provide galaxy accretion rates. We find that the accretion onto massive blue galaxies and onto red galaxies is dominated by red companions, and that onto small-mass blue galaxies, red and blue galaxies make comparable contributions. We integrate over all types of companions and find that at fixed stellar mass, the total fractional accretion rates onto red galaxies ({approx}3 h {sub 70} percent per Gyr) are greater than that onto blue galaxies ({approx}1 h {sub 70} percent per Gyr). These rates are almost certainly overestimates because we have assumed that all close pairs merge as quickly as the merger time that we used. One conclusion of this work is that if the total growth of red galaxies from z = 1 to z = 0 is mainly due to merging, the merger rates must have been higher in the past.

  18. The CARMA Paired Antenna Calibration System: Atmospheric Phase Correction for Millimeter Wave Interferometry and Its Application to Mapping the Ultraluminous Galaxy Arp 193

    NASA Astrophysics Data System (ADS)

    Zauderer, B. Ashley; Bolatto, Alberto D.; Vogel, Stuart N.; Carpenter, John M.; Peréz, Laura M.; Lamb, James W.; Woody, David P.; Bock, Douglas C.-J.; Carlstrom, John E.; Culverhouse, Thomas L.; Curley, Roger; Leitch, Erik M.; Plambeck, Richard L.; Pound, Marc W.; Marrone, Daniel P.; Muchovej, Stephen J.; Mundy, Lee G.; Teng, Stacy H.; Teuben, Peter J.; Volgenau, Nikolaus H.; Wright, Melvyn C. H.; Wu, Dalton

    2016-01-01

    Phase fluctuations introduced by the atmosphere are the main limiting factor in attaining diffraction limited performance in extended interferometric arrays at millimeter and submillimeter wavelengths. We report the results of C-PACS, the Combined Array for Research in Millimeter-Wave Astronomy Paired Antenna Calibration System. We present a systematic study of several hundred test observations taken during the 2009–2010 winter observing season where we utilize CARMA's eight 3.5 m antennas to monitor an atmospheric calibrator while simultaneously acquiring science observations with 6.1 and 10.4 m antennas on baselines ranging from a few hundred meters to ∼2 km. We find that C-PACS is systematically successful at improving coherence on long baselines under a variety of atmospheric conditions. We find that the angular separation between the atmospheric calibrator and target source is the most important consideration, with consistently successful phase correction at CARMA requiring a suitable calibrator located ≲6° away from the science target. We show that cloud cover does not affect the success of C-PACS. We demonstrate C-PACS in typical use by applying it to the observations of the nearby very luminous infrared galaxy Arp 193 in 12CO(2-1) at a linear resolution of ≈70 pc (0.″12 × 0.″18), 3 times better than previously published molecular maps of this galaxy. We resolve the molecular disk rotation kinematics and the molecular gas distribution and measure the gas surface densities and masses on 90 pc scales. We find that molecular gas constitutes ∼30% of the dynamical mass in the inner 700 pc of this object with a surface density ∼104 M⊙ pc‑2 we compare these properties to those of the starburst region of NGC 253.

  19. Probing AGN Unification with galaxy neighbours: pitfalls and prospects

    NASA Astrophysics Data System (ADS)

    Villarroel, B.

    2015-09-01

    Statistical tests of AGN unification harbour many caveats. One way of constraining the validity of the AGN unification is through studies of close neighbours to Type-1 and Type-2 AGN. Examining thousands of AGN- galaxy pairs from the Sloan Digital Sky Survey Data Release 7 and the Galaxy Zoo project, we found that Type-2 AGN appear to reside in more star-forming environments than Type-1 AGN.

  20. Probing the large and massive circumgalactic medium of a galaxy at z ∼ 0.2 using a pair of quasars

    SciTech Connect

    Muzahid, Sowgat

    2014-03-20

    We present an analysis of two O VI absorbers at redshift z {sub abs} = 0.227, which were detected in the spectra of two closely spaced QSO sightlines (Q 0107–025A and B) and observed with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope. At the same redshift, the presence of a single bright (∼1.2L {sub *}) galaxy at an impact parameter of ∼200 kpc (proper) from both the sightlines was reported by Crighton et al. Using detailed photoionization models, we show that the high ionization phases of both the O VI absorbers have similar ionization conditions (e.g., log U ∼ –1.1 to –0.9), chemical enrichment (e.g., log Z ∼ –1.4 to –1.0), total hydrogen column density (e.g., log N {sub H}(cm{sup –2}) ∼ 19.6 – 19.7), and line of sight thickness (e.g., l {sub los} ∼ 600-800 kpc). Therefore we speculate that the O VI absorbers are tracing different parts of same large-scale structure, presumably the circumgalactic medium (CGM) of the identified galaxy. Using sizes along and transverse to the line of sight, we estimate the size of the CGM to be R ∼ 330 kpc. The baryonic mass associated with this large CGM as traced by O VI absorption is ∼1.2 × 10{sup 11} M {sub ☉}. A low ionization phase is detected in one of the O VI systems with near-solar metallicity (log Z = 0.20 ± 0.20) and parsec scale size (l {sub los} ∼ 6 pc), possibly tracing the neutral phase of a high-velocity cloud embedded within the CGM.

  1. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations

    USGS Publications Warehouse

    Gregory, R.T.; Criss, R.E.; Taylor, H.P.

    1989-01-01

    The systematics of stable-isotope exchange between minerals and fluids are examined in the context of modal mineralogical variations and mass-balance considerations, both in closed and in open systems. On mineral-pair ??18O plots, samples from terranes that have exchanged with large amounts of fluid typically map out steep positively-sloped non-equilibrium arrays. Analytical models are derived to explain these effects; these models allow for different exchange rates between the various minerals and the external fluids, as well as different fluid fluxes. The steep arrays are adequately modelled by calculated isochron lines that involve the whole family of possible exchange trajectories. These isochrons have initially-steep near-vertical positive slopes that rotate toward a 45?? equilibrium slope as the exchange process proceeds to completion. The actual data-point array is thus analogous to the hand of an "isotopic clock" that measures the duration of the hydrothermal episode. The dimensionless ratio of the volumetric fluid flux to the kinetic rate parameter ( u k) determines the shape of each individual exchange trajectory. In a fluid-buffered system ( u k ??? 1), the solutions to the equations: (1) are independent of the mole fractions of the solid phases; (2) correspond to Taylor's open-system water/rock equation; and (3) yield straight-line isochrons that have slopes that approach 1 f, where f is the fraction reacted of the more sluggishly exchanging mineral. The isochrons for this simple exchange model are closely congruent with the isochrons calculated for all of the more complex models, thereby simplifying the application of theory to actual hydrothermal systems in nature. In all of the models an order of magnitude of time (in units of kt) separates steep non-equilibrium arrays (e.g., slope ??? 10) from arrays approaching an equilibrium slope of unity on a ??-?? diagram. Because we know the approximate lifetimes of many hydrothermal systems from geologic and

  2. The AMIGA sample of isolated galaxies. X. A first look at isolated galaxy colors

    NASA Astrophysics Data System (ADS)

    Fernández Lorenzo, M.; Sulentic, J.; Verdes-Montenegro, L.; Ruiz, J. E.; Sabater, J.; Sánchez, S.

    2012-04-01

    Context. The basic properties of galaxies can be affected by both nature (internal processes) or nurture (interactions and effects of environment). Deconvolving the two effects is an important current effort in astrophysics. Observed properties of a sample of isolated galaxies should be mainly the result of internal (natural) evolution. It follows that nurture-induced galaxy evolution can only be understood through a comparative study of galaxies in different environments. Aims: We take a first look at SDSS (g - r) colors of galaxies in the AMIGA sample, which consists of many of the most isolated galaxies in the local Universe. This alerted us at the same time to the pitfalls of using automated SDSS colors. Methods: We focused on median values for the principal morphological subtypes found in the AMIGA sample (E/S0 and Sb-Sc) and compared them with equivalent measures obtained for galaxies in denser environments. Results: We find a weak tendency for AMIGA spiral galaxies to be redder than objects in close pairs. We find no clear difference when we compared this with galaxies in other (e.g. group) environments. However, the (g - r) color of isolated galaxies shows a Gaussian distribution, as might be expected assuming nurture-free evolution. We find a smaller median absolute deviation in colors for isolated galaxies compared to both wide and close pairs. The majority of the deviation on median colors for spiral subtypes is caused by a color-luminosity correlation. Surprisingly, isolated and non-isolated early-type galaxies show similar (g - r). We see little evidence for a green valley in our sample because most spirals redder than (g - r) = 0.7 have spurious colors. Conclusions: The redder colors of AMIGA spirals and lower color dispersions for AMIGA subtypes - compared with close pairs - are likely caused by a more passive star formation in very isolated galaxies. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130

  3. HIGH-RESOLUTION SIMULATIONS OF THE REIONIZATION OF AN ISOLATED MILKY WAY-M31 GALAXY PAIR

    SciTech Connect

    Ocvirk, P.; Aubert, D.; Chardin, J.; Knebe, A.; Yepes, G.; Libeskind, N.; Gottlöber, S.; Hoffman, Y.

    2013-11-01

    We present the results of a set of numerical simulations aimed at studying reionization at the galactic scale. We use a high-resolution realization of the formation of the Milky Way (MW)-M31 system to simulate the reionization of the Local Group. The reionization calculation was performed with the post-processing radiative transfer code ATON and the underlying cosmological simulation was performed as part of the CLUES project (http://www.clues-project.org). We vary the source models to bracket the range of source properties used in the literature. We investigate the structure and propagation of the galactic ionization fronts by a visual examination of our reionization maps. Within the progenitors, we find that reionization is patchy and proceeds locally inside-out. The process becomes patchier with decreasing source photon output. It is generally dominated by one major H II region and one to four additional isolated smaller bubbles, which eventually overlap. Higher emissivity results in faster and earlier local reionization. In all models, the reionization of the MW and M31 are similar in duration, i.e., between 203 Myr and 22 Myr depending on the source model, placing their z{sub reion} between 8.4 and 13.7. In all models except the most extreme, the MW and M31 progenitors reionize internally, ignoring each other despite being relatively close to each other, even during the epoch of reionization. Only in the case of strong supernova feedback suppressing star formation in halos less massive than 10{sup 9} M{sub ☉}, and using our highest emissivity, do we find that the MW is reionized by M31.

  4. Active galactic nuclei and galaxy interactions

    NASA Astrophysics Data System (ADS)

    Alonso, M. Sol; Lambas, Diego G.; Tissera, Patricia; Coldwell, Georgina

    2007-03-01

    We perform a statistical analysis of active galactic nucleus (AGN) host characteristics and nuclear activity for AGNs in pairs and without companions. Our study concerns a sample of AGNs derived from the Sloan Digital Sky Survey Data Release 4 data by Kauffmann et al. and pair galaxies obtained from the same data set by Alonso et al. An eye-ball classification of images of 1607 close pairs (rp < 25 kpc h-1,ΔV < 350 km s-1) according to the evidence of interaction through distorted morphologies and tidal features provides us with a more confident assessment of galaxy interactions from this sample. We notice that, at a given luminosity or stellar mass content, the fraction of AGNs is larger for pair galaxies exhibiting evidence for strong interaction and tidal features which also show signs of strong star formation activity. Nevertheless, this process accounts only for a ~10per cent increase of the fraction of AGNs. As in previous works, we find AGN hosts to be redder and with a larger concentration morphological index than non-AGN galaxies. This effect does not depend on whether AGN hosts are in pairs or in isolation. The OIII luminosity of AGNs with strong interaction features is found to be significantly larger than that of other AGNs, either in pairs or in isolation. Estimations of the accretion rate, L[OIII]/MBH, show that AGNs in merging pairs are actively feeding their black holes, regardless of their stellar masses. We also find that the luminosity of the companion galaxy seems to be a key parameter in the determination of the black hole activity. At a given host luminosity, both the OIII luminosity and the L[ OIII]/MBH are significantly larger in AGNs with a bright companion (Mr < -20) than otherwise.

  5. Galaxies Collide to Create Hot, Huge Galaxy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy.

    A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process.

    This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  6. The statistical investigation of the First and Second Byurakan survey galaxies and their neighbors

    NASA Astrophysics Data System (ADS)

    Nazaryan, Tigran A.

    2014-05-01

    In the thesis we study close pairs of galaxies with the aim of understanding the influence of gravitational interaction on nuclear activity and star formation of paired galaxies. For this purpose we investigate dependences of integral parameters of galaxies, their star formation and properties of nuclei on kinematic parameters of systems and their large-scale environment. The thesis has an introduction, three main chapters, a summary, lists of abbreviations and references, and three appendices. In the first chapter, the methods of selection of sample of pairs of galaxies and measurements of physical parameters of the First Byurakan Survey (Markarian) galaxies and their neighbors are presented, and the databases in appendices A and B are described, which contain parameters of neighbors of Markarian galaxies measured by us, and the parameters of pairs having Markarian galaxies, based on the Sloan Digital Sky Survey (SDSS) data. The selection effects of sample of pairs are discussed, and the statistical comparison of Markarian galaxies and their neighbors is done. The results of statistical study of star formation and activity of nuclei in pairs having Markarian galaxies are presented, as well as the correlations between properties of galaxies in pairs and the physical mechanisms behind them. In the second chapter, the results of statistical study of the Second Byurakan Survey (SBS) galaxies and their neighbors, and star formation and activity of nuclei in those pairs are presented and discussed. In the third chapter, possibilities of using supernovae as indicators of star formation are discussed, the sample of supernovae in pairs of galaxies is presented, and study of star formation in pairs of interacting galaxies by means of that sample of supernovae is done. Also а conclusion about the nature of progenitors of different types of supernovae is made. The short summary of main results of the study concludes the thesis. The thesis has 158 pages. The main results

  7. DISTANT CLUSTER OF GALAXIES [left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    constellation Serpens. Based on the colors and the statistical distribution of the galaxies in 3C 324's vicinity, astronomers conclude a remote cluster is at the same distance as a radio galaxy. [center right] This pair of elliptical galaxies, seen together with a few fainter companions, is remarkably similar in shape, light distribution, and color to their present day descendants. This Hubble image provides evidence that ellipticals formed remarkably early in the universe. [top right] Some of the objects in this compact tangled group resemble today's spiral galaxies. However, they have irregular shapes and appear disrupted and asymmetric. This might be due to a high frequency of galaxy collisions and close encounters in the early universe. Credit: Mark Dickinson (STScI) and NASA

  8. The Luminosity Dependence of the Galaxy Merger Rate

    NASA Astrophysics Data System (ADS)

    Patton, D. R.; Atfield, J. E.

    2008-09-01

    We measure the number of companions per galaxy (Nc) as a function of r-band absolute magnitude for both the Sloan Digital Sky Survey and the Croton and coworkers semianalytic catalog applied to the Millennium Run simulation. For close pairs with projected separations of 5-20 h-1 kpc, velocity differences less than 500 km s-1, and luminosity ratios between 1:2 and 2:1, we find good agreement between the observations and simulations, with Nc consistently close to 0.02 over the range -22 < Mr < - 18. For larger pair separations, Nc(Mr) instead becomes increasingly steep toward the faint end, implying that luminosity-dependent clustering plays an important role on small scales. Using the simulations to assess and correct for projection effects, we infer that the real-space Nc(Mr) for close pairs peaks at about M* and declines by at least a factor of 2 as Mr becomes fainter. Conversely, by measuring the number density of close companions, we estimate that at least 90% of all major mergers occur between galaxies which are fainter than L*. Finally, measurements of the luminosity density of close companions indicate that L* galaxies likely dominate in terms of the overall importance of major mergers in the evolution of galaxy populations at low redshift.

  9. Precision measurement of cosmic magnification from 21 cm emitting galaxies

    SciTech Connect

    Zhang, Pengjie; Pen, Ue-Li; /Canadian Inst. Theor. Astrophys.

    2005-04-01

    We show how precision lensing measurements can be obtained through the lensing magnification effect in high redshift 21cm emission from galaxies. Normally, cosmic magnification measurements have been seriously complicated by galaxy clustering. With precise redshifts obtained from 21cm emission line wavelength, one can correlate galaxies at different source planes, or exclude close pairs to eliminate such contaminations. We provide forecasts for future surveys, specifically the SKA and CLAR. SKA can achieve percent precision on the dark matter power spectrum and the galaxy dark matter cross correlation power spectrum, while CLAR can measure an accurate cross correlation power spectrum. The neutral hydrogen fraction was most likely significantly higher at high redshifts, which improves the number of observed galaxies significantly, such that also CLAR can measure the dark matter lensing power spectrum. SKA can also allow precise measurement of lensing bispectrum.

  10. Merging Galaxies Create a Binary Quasar

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  11. Evidence for major mergers of galaxies at 2 ≲ z < 4 in the VVDS and VUDS surveys

    NASA Astrophysics Data System (ADS)

    Tasca, L. A. M.; Le Fèvre, O.; López-Sanjuan, C.; Wang, P.-W.; Cassata, P.; Garilli, B.; Ilbert, O.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Tresse, L.; Bardelli, S.; Contini, T.; Charlot, S.; Cucciati, O.; Fontana, A.; Giavalisco, M.; Kneib, J.-P.; Salvato, M.; Taniguchi, Y.; Vergani, D.; Zamorani, G.; Zucca, E.

    2014-05-01

    Context. The mass assembly of galaxies can proceed through different physical processes. Here we report on the spectroscopic identification of close physical pairs of galaxies at redshifts 2 ≲ z< 4 and discuss the impact of major mergers in building galaxies at these early cosmological times. Aims: We aim to identify and characterize close physical pairs of galaxies destined to merge and use their properties to infer the contribution of merging processes to the early mass assembly of galaxies. Methods: We searched for galaxy pairs with a transverse separation rp ≤ 25h-1 kpc and a velocity difference Δv ≤ 500 km s-1 using early data from the VIMOS Ultra Deep Survey (VUDS) that comprise a sample of 1111 galaxies with spectroscopic redshifts measurements at redshifts 1.8 ≤ z ≤ 4 in the COSMOS, ECDFS, and VVDS-02h fields, combined with VVDS data. We analysed their spectra and associated visible and near-infrared photometry to assess the main properties of merging galaxies that have an average stellar mass M⋆ = 2.3 × 1010 M⊙ at these redshifts. Results: Using the 12 physical pairs found in our sample we obtain a first robust measurement of the major merger fraction at these redshifts, fMM = 19.4-6+9%. These pairs are expected to merge within 1 Gyr on average each producing a more massive galaxy by the time the cosmic star formation peaks at z ~ 1 - 2. Using the pairs' merging time scales, we derive a merging rate of RMM = 0.17-0.05+0.08 Gyr-1. From the average mass ratio between galaxies in the pairs, the stellar mass of the resulting galaxy after merging will be ~60% higher than the most massive galaxy in the pair before merging. We conclude that major merging of galaxy pairs is on-going at 2 ≲ z< 4 and is significantly contributing to the major mass assembly phase of galaxies at this early epoch. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Programmes 070.A-9007, 177.A-0837, and 185.A

  12. The Hooked Galaxy

    NASA Astrophysics Data System (ADS)

    2006-06-01

    Life is not easy, even for galaxies. Some indeed get so close to their neighbours that they get rather distorted. But such encounters between galaxies have another effect: they spawn new generations of stars, some of which explode. ESO's VLT has obtained a unique vista of a pair of entangled galaxies, in which a star exploded. Because of the importance of exploding stars, and particularly of supernovae of Type Ia [1], for cosmological studies (e.g. relating to claims of an accelerated cosmic expansion and the existence of a new, unknown, constituent of the universe - the so called 'Dark Energy'), they are a preferred target of study for astronomers. Thus, on several occasions, they pointed ESO's Very Large Telescope (VLT) towards a region of the sky that portrays a trio of amazing galaxies. MCG-01-39-003 (bottom right) is a peculiar spiral galaxy, with a telephone number name, that presents a hook at one side, most probably due to the interaction with its neighbour, the spiral galaxy NGC 5917 (upper right). In fact, further enhancement of the image reveals that matter is pulled off MCG-01-39-003 by NGC 5917. Both these galaxies are located at similar distances, about 87 million light-years away, towards the constellation of Libra (The Balance). ESO PR Photo 22/06 ESO PR Photo 22/06 The Hooked Galaxy and its Companion NGC 5917 (also known as Arp 254 and MCG-01-39-002) is about 750 times fainter than can be seen by the unaided eye and is about 40,000 light-years across. It was discovered in 1835 by William Herschel, who strangely enough, seems to have missed its hooked companion, only 2.5 times fainter. As seen at the bottom left of this exceptional VLT image, a still fainter and nameless, but intricately beautiful, barred spiral galaxy looks from a distance the entangled pair, while many 'island universes' perform a cosmic dance in the background. But this is not the reason why astronomers look at this region. Last year, a star exploded in the vicinity of the hook

  13. The role of interactions in triggering bars, spiral arms and AGN in disk galaxies

    NASA Astrophysics Data System (ADS)

    Nair, Preethi; Ellison, Sara L.; Patton, David R.

    2016-01-01

    The role of secular structures like bars, rings and spiral arms in triggering star formation and AGN activity in disk galaxies are not well understood. In addition, the mechanisms which create and destroy these structures are not well characterized. Mergers are considered to be one of the main mechanisms which can trigger bars in massive disk galaxies. Using a sample of ~8000 close pair galaxies at 0.02 < z < 0.06 from the Sloan Digital Sky Survey, I will present results illustrating the role of mergers in triggering bars, rings, spiral arms and AGN as a function of close pair separation and merger ratios as well as their dependence on morphology and other physical properties of the galaxies. Time permitting, I will show how resolved IFU observations from SDSS MaNGA will help to place stronger constraints on the role of these structures in triggering star formation and AGN.

  14. Closing in on a Short-Hard Burst Progenitor: Constraints From Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b

    SciTech Connect

    Bloom, Joshua S.; Prochaska, J.X.; Pooley, D.; Blake, C.W.; Foley, R.J.; Jha, S.; Ramirez-Ruiz, E.; Granot, J.; Filippenko, A.V.; Sigurdsson, S.; Barth, A.J.; Chen, H.-W.; Cooper, M.C.; Falco, E.E.; Gal, R.R.; Gerke, B.F.; Gladders, M.D.; Greene, J.E.; Hennanwi, J.; Ho, L.C.; Hurley, K.; /UC, Berkeley, Astron. Dept. /Lick Observ. /Harvard-Smithsonian Ctr. Astrophys. /Princeton, Inst. Advanced Study /KIPAC, Menlo Park /Penn State U., Astron. Astrophys. /UC, Irvine /MIT, MKI /UC, Davis /UC, Berkeley /Carnegie Inst. Observ. /UC, Berkeley, Space Sci. Dept. /Michigan U. /LBL, Berkeley /Spitzer Space Telescope

    2005-06-07

    The localization of the short-duration, hard-spectrum gamma-ray burst GRB050509b by the Swift satellite was a watershed event. Never before had a member of this mysterious subclass of classic GRBs been rapidly and precisely positioned in a sky accessible to the bevy of ground-based follow-up facilities. Thanks to the nearly immediate relay of the GRB position by Swift, we began imaging the GRB field 8 minutes after the burst and have continued during the 8 days since. Though the Swift X-ray Telescope (XRT) discovered an X-ray afterglow of GRB050509b, the first ever of a short-hard burst, thus far no convincing optical/infrared candidate afterglow or supernova has been found for the object. We present a re-analysis of the XRT afterglow and find an absolute position of R.A. = 12h36m13.59s, Decl. = +28{sup o}59'04.9'' (J2000), with a 1{sigma} uncertainty of 3.68'' in R.A., 3.52'' in Decl.; this is about 4'' to the west of the XRT position reported previously. Close to this position is a bright elliptical galaxy with redshift z = 0.2248 {+-} 0.0002, about 1' from the center of a rich cluster of galaxies. This cluster has detectable diffuse emission, with a temperature of kT = 5.25{sub -1.68}{sup +3.36} keV. We also find several ({approx}11) much fainter galaxies consistent with the XRT position from deep Keck imaging and have obtained Gemini spectra of several of these sources. Nevertheless we argue, based on positional coincidences, that the GRB and the bright elliptical are likely to be physically related. We thus have discovered reasonable evidence that at least some short-duration, hard-spectra GRBs are at cosmological distances. We also explore the connection of the properties of the burst and the afterglow, finding that GRB050509b was underluminous in both of these relative to long-duration GRBs. However, we also demonstrate that the ratio of the blast-wave energy to the {gamma}-ray energy is consistent with that of long-duration GRBs. We thus find plausible

  15. A pair of O VI and broad Ly α absorbers probing warm gas in a galaxy group environment at z ˜ 0.4

    NASA Astrophysics Data System (ADS)

    Pachat, Sachin; Narayanan, Anand; Muzahid, Sowgat; Khaire, Vikram; Srianand, Raghunathan; Wakker, Bart P.; Savage, Blair D.

    2016-05-01

    We report the detection of two O VI absorbers at z = 0.416 14 and 0.419 50 (|Δv| = 710 km s-1), towards SBS 0957+599. Both absorbers are multiphase systems tracing substantial reservoirs of warm baryons. The low- and intermediate-ionization metals in the z = 0.416 14 absorber are consistent with an origin in photoionized gas. O VI has a velocity structure different from other metal species. Ly α shows the presence of a broad feature. The linewidths for O VI and the broad Ly α suggest T = 7.1 × 105 K. This warm medium is probing a baryonic column, which is an order of magnitude more than the total hydrogen in the cooler photoionized gas. The second absorber is detected only in H I and O VI. Here a temperature of 4.6 × 104 K supports O VI originating in a low-density photoionized gas. A broad component is seen in Ly α, offset from O VI. The temperature in the broad Ly α is T ≲ 2.1 × 105 K. The absorbers reside in a galaxy overdensity region with seven spectroscopically identified galaxies within ˜10 Mpc and Δv ˜ 1000 km s-1 of the z = 0.416 14 absorber, and two galaxies inside a similar separation from the z = 0.419 50 absorber. The distribution of galaxies relative to the absorbers suggests that the line of sight could be intercepting a large-scale filament connecting galaxy groups, or the extended halo of a sub-L* galaxy. Though kinematically proximate, the two absorbers reaffirm the diversity in the physical conditions of low red-shift O VI systems and the galactic environments they inhabit.

  16. CAUGHT IN THE ACT: THE ASSEMBLY OF MASSIVE CLUSTER GALAXIES AT z = 1.62

    SciTech Connect

    Lotz, Jennifer M.; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton M.; Papovich, Casey; Tran, Kim-Vy; Faber, S. M.; Guo Yicheng; Lee, Kyoung-Soo; McIntosh, Daniel; Momcheva, Ivelina; Rudnick, Gregory; Saintonge, Amelie; Van der Wel, Arjen; Willmer, Christopher

    2013-08-20

    We present the recent merger history of massive galaxies in a spectroscopically confirmed proto-cluster at z = 1.62. Using Hubble Space Telescope WFC3 near-infrared imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we select cluster and z {approx} 1.6 field galaxies with M{sub star} {>=} 3 Multiplication-Sign 10{sup 10} M{sub Sun }, to determine the frequency of double nuclei or close companions within projected separations less than 20 kpc co-moving. We find that four out of five spectroscopically confirmed massive proto-cluster galaxies have double nuclei, and 57 {sup +13}{sub -14}% of all M{sub star} {>=} 3 Multiplication-Sign 10{sup 10} M{sub Sun} cluster candidates are observed in either close pair systems or have double nuclei. In contrast, only 11% {+-} 3% of the field galaxies are observed in close pair/double nuclei systems. After correcting for the contribution from random projections, the implied merger rate per massive galaxy in the proto-cluster is {approx}3-10 times higher than the merger rate of massive field galaxies at z {approx} 1.6. Close pairs in the cluster have minor merger stellar mass ratios (M{sub primary}: M{sub satellite} {>=} 4), while the field pairs consist of both major and minor mergers. At least half of the cluster mergers are gas-poor, as indicated by their red colors and low 24 {mu}m fluxes. Two of the double-nucleated cluster members have X-ray detected active galactic nuclei with L{sub x} > 10{sup 43} erg s{sup -1}, and are strong candidates for dual or offset super-massive black holes. We conclude that the massive z = 1.62 proto-cluster galaxies are undergoing accelerated assembly via minor mergers, and discuss the implications for galaxy evolution in proto-cluster environments.

  17. THE MERGER-DRIVEN EVOLUTION OF MASSIVE GALAXIES

    SciTech Connect

    Robaina, Aday R.; Van der Wel, Arjen; Skelton, Rosalind E.; Meisenheimer, Klaus; Bell, Eric F.; Somerville, Rachel S.; McIntosh, Daniel H.; Wolf, Christian

    2010-08-10

    We explore the rate and impact of galaxy mergers on the massive galaxy population using the amplitude of the two-point correlation function on small scales for M {sub *} > 5 x 10{sup 10} M {sub sun} galaxies from the COSMOS and COMBO-17 surveys. Using a pair fraction derived from the Sloan Digital Sky Survey as a low-redshift benchmark, the large survey area at intermediate redshifts allows us to determine the evolution of the close-pair fraction with unprecedented accuracy for a mass-selected sample: we find that the fraction of galaxies more massive than 5 x 10{sup 10} M {sub sun} in pairs separated by less than 30 kpc in three-dimensional space evolves as F(z) = (0.0130 {+-} 0.0019) x (1 + z){sup 1.21{+-}0.25} between z = 0 and z = 1.2. Assuming a merger timescale of 0.5 Gyr, the inferred merger rate is such that galaxies with mass in excess of 10{sup 11} M {sub sun} have undergone, on average, 0.5 (0.7) mergers involving progenitor galaxies both more massive than 5 x 10{sup 10} M {sub sun} since z = 0.6 (1.2). We also study the number density evolution of massive red sequence galaxies using published luminosity functions and constraints on the M/L {sub B} evolution from the fundamental plane. Moreover, we demonstrate that the measured merger rate of massive galaxies is sufficient to explain this observed number density evolution in massive red sequence galaxies since z = 1.

  18. Galaxies as gravitational lenses.

    PubMed

    Sadeh, D

    1967-12-01

    The probability that a galaxy gathers light from another remote galaxy, and deflects and focuses it toward an observer on Earth, is calculated according to various cosmologic models. I pose the question of whether an object called a quasar is a single, intrinsically luminous entity or the result of accidental alignment, along the line of sight, of two normal galaxies, the more distant of which has its light amplified by the gravitational-lens effect of the nearer galaxy. If galaxies are distributed at random in the universe, the former alternative is true. But, if we assume that most galaxies exist in pairs, we can find about 30 galaxies occurring exactly one behind the other in such a way as to enable amplification of the order of 50. This model explains also the variations in intensity in quasars, but fails to explain others of their observed properties. PMID:17734305

  19. Possible Signatures of a Cold-flow Disk from MUSE Using a z ˜ 1 Galaxy-Quasar Pair toward SDSS J1422-0001

    NASA Astrophysics Data System (ADS)

    Bouché, N.; Finley, H.; Schroetter, I.; Murphy, M. T.; Richter, P.; Bacon, R.; Contini, T.; Richard, J.; Wendt, M.; Kamann, S.; Epinat, B.; Cantalupo, S.; Straka, L. A.; Schaye, J.; Martin, C. L.; Péroux, C.; Wisotzki, L.; Soto, K.; Lilly, S.; Carollo, C. M.; Brinchmann, J.; Kollatschny, W.

    2016-04-01

    We use a background quasar to detect the presence of circumgalactic gas around a z=0.91 low-mass star-forming galaxy. Data from the new Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope show that the galaxy has a dust-corrected star formation rate (SFR) of 4.7 ± 2.0 M⊙ yr-1, with no companion down to 0.22 M⊙ yr-1 (5σ) within 240 {h}-1 kpc (“30”). Using a high-resolution spectrum of the background quasar, which is fortuitously aligned with the galaxy major axis (with an azimuth angle α of only 15°), we find, in the gas kinematics traced by low-ionization lines, distinct signatures consistent with those expected for a “cold-flow disk” extending at least 12 kpc (3× {R}1/2). We estimate the mass accretion rate {\\dot{M}}{{in}} to be at least two to three times larger than the SFR, using the geometric constraints from the IFU data and the H i column density of log {N}{{H}{{I}}}/{{cm}}-2 ≃ 20.4 obtained from a Hubble Space Telescope/COS near-UV spectrum. From a detailed analysis of the low-ionization lines (e.g., Zn ii, Cr ii, Ti ii, Mn ii, Si ii), the accreting material appears to be enriched to about 0.4 {Z}⊙ (albeit with large uncertainties: {log} Z/{Z}⊙ =-0.4\\quad +/- \\quad 0.4), which is comparable to the galaxy metallicity (12 + log O/H = 8.7 ± 0.2), implying a large recycling fraction from past outflows. Blueshifted Mg ii and Fe ii absorptions in the galaxy spectrum from the MUSE data reveal the presence of an outflow. The Mg ii and Fe ii absorption line ratios indicate emission infilling due to scattering processes, but the MUSE data do not show any signs of fluorescent Fe ii* emission. Based on observations made at the ESO telescopes under program 080.A-0364 (SINFONI), 079.A-0600 (UVES), and as part of MUSE commissioning (ESO program 060.A-9100). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities

  20. Effects of secular evolution on the star formation history of galaxies

    NASA Astrophysics Data System (ADS)

    Lorenzo, M. Fernández; Sulentic, J.; Verdes-Montenegro, L.; Argudo-Fernández, M.; Ruiz, J. E.; Sabater, J.; Sánchez-Expósito, S.

    2015-03-01

    We report the study performed as part of the AMIGA (Analysis of the interstellar Medium of Isolated GAlaxies; http://www.amiga.iaa.es) project, focused on the SDSS (g-r) colors of the sample. Assuming that color is an indicator of star formation history, this work better records the signature of passive star formation via pure secular evolution. Median values for each morphological type in AMIGA were compared with equivalent measures for galaxies in denser environments. We found a tendency for AMIGA spiral galaxies to be redder than galaxies in close pairs, but no clear difference when we compare with galaxies in other (e.g. group) environments. The (g-r) color of isolated galaxies presents a Gaussian distribution, as indicative of pure secular evolution, and a smaller median absolute deviation (almost half) compared to both wide and close pairs. This redder color and lower color dispersion of AMIGA spirals compared with close pairs is likely due to a more passive star formation in very isolated galaxies. In Fig. 1, we represent the size versus stellar mass for early and late-type galaxies of our sample, compared with the local relations of Shen et al. (2003). The late-type isolated galaxies are ~1.2 times larger or have less stellar mass than local spirals in other environments. The latter would be in agreement with the passive star formation found in the previous part. We acknowledge Grant AYA2011-30491-C02-01, P08-FQM-4205 and TIC-114.

  1. Vortex pairs on surfaces

    SciTech Connect

    Koiller, Jair

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  2. The Penrose photoproduction scenario for NGC 4151: A black hole gamma-ray emission mechanism for active galactic nuclei and Seyfert galaxies. [Compton scattering and pair production

    NASA Technical Reports Server (NTRS)

    Leiter, D.

    1979-01-01

    A consistent theoretical interpretation is given for the suggestion that a steepening of the spectrum between X-ray and gamma ray energies may be a general, gamma-ray characteristic of Seyfert galaxies, if the diffuse gamma ray spectrum is considered to be a superposition of unresolved contributions, from one or more classes of extragalactic objects. In the case of NGC 4151, the dominant process is shown to be Penrose Compton scattering in the ergosphere of a Kerr black hole, assumed to exist in the Seyfert's active galactic nucleus.

  3. Close contacts between carbonyl oxygen atoms and aromatic centers in protein structures: pi...pi or lone-pair...pi interactions?

    PubMed

    Jain, Alok; Purohit, Chandra Shekhar; Verma, Sandeep; Sankararamakrishnan, Ramasubbu

    2007-08-01

    Lone-pair...pi and, more recently, pi...pi interactions have been studied in small molecule crystal structures, and they are the focus of attention in some biomolecules. In this study, we have systematically analyzed 500 high-resolution protein structures (resolution < or =1.8 A) and identified 286 examples in which carbonyl oxygen atoms approach the aromatic centers within a distance of 3.5 A. Contacts involving backbone carbonyl oxygens are frequently observed in helices and, to some extent, in strands. Geometrical characterization indicates that these contacts have geometry in between that of an ideal pi...pi and a lone-pair...pi interaction. Quantum mechanical calculations using 6-311++G** basis sets reveal that these contacts give rise to energetically favorable interactions and, along with MD simulations, indicate that such interactions could stabilize secondary structures.

  4. Innovations in adaptive optics imaging and spectroscopy: OSIRIS, galaxy surveys, and galaxy mergers

    NASA Astrophysics Data System (ADS)

    Barczys, Matthew Michael

    This thesis presents the design, construction, and installation of two instruments designed for use with the Keck Telescopes' Adaptive Optics (AO) Systems. It also presents the results of a near-infrared AO survey to measure the pair fraction in faint field galaxies. The instrumentation portion of the thesis concentrates on two main projects, OSIRIS, a near-infrared integral- field spectrograph, and SHARC, a near-infrared camera. OSIRIS is a facility- class instrument at the Keck Observatory, and offers a relatively new spectroscopic capability of simultaneously acquiring infrared spectra ( R ~ 3900) at up to 3000 contiguous locations in an AO-corrected focal plane. SHARC is a camera developed for the Keck AO Team to use with AO-related engineering tasks, including testing and commissioning of the Next-Generation Wavefront Controller. SHARC images a field of up to [Special characters omitted.] on a side, at a spatial resolution of [Special characters omitted.] per pixel throughout the near-infrared (1-2.5 mm). Both instruments were developed in the Infrared Laboratory of the UCLA Department of Physics and Astronomy. The remainder of the thesis describes two near-infrared AO galaxy surveys carried out during the construction of OSIRIS using another instrument partially developed by UCLA. The Keck Observatory Near-Infrared AO Camera (NIRC2) was used to image nearly 700 faint field galaxies (mostly at z ~ 0.5-1.5), with the goal of measuring the near-infrared galaxy pair fraction. This is the first time that AO has been used to measure the pair fraction in field galaxies, and provides a unique opportunity to probe close companions (less than 1 '' ) in the near-infrared. Our measured pair fraction is 0.13 ± 0.04 in both the H - and K ' -bands (1.63mm and 2.12mm) and provides an independent check of optical pair fraction measurements made using the Hubble Space Telescope (HST). While most pairs are observed to have comparable brightness in optical imaging ( dm < 2 mag

  5. Whirlpool Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists are seeing unprecedented detail of the spiral arms and dust clouds in the nearby Whirlpool galaxy, thanks to a new Hubble Space Telescope image, available at http://www.jpl.nasa.gov/pictures/wfpc/wfpc.html. The image uses data collected January 15 and 24, 1995, and July 21, 1999, by Hubble's Wide Field and Planetary Camera 2, designed and built by JPL. Using the image, a research group led by Dr. Nick Scoville of the California Institute of Technology, Pasadena, clearly defined the structure of the galaxy's cold dust clouds and hot hydrogen, and they linked star clusters within the galaxy to their parent dust clouds.

    The Whirlpool galaxy is one of the most photogenic galaxies. This celestial beauty is easily seen and photographed with smaller telescopes and studied extensively from large ground- and space-based observatories. The new composite image shows visible starlight and light from the emission of glowing hydrogen, which is associated with the most luminous young stars in the spiral arms.

    The galaxy is having a close encounter with a nearby companion galaxy, NGC 5195, just off the upper edge of the image. The companion's gravitational pull is triggering star formation in the main galaxy, lit up by numerous clusters of young and energetic stars in brilliant detail. Luminous clusters are highlighted in red by their associated emission from glowing hydrogen gas.

    This image was composed by the Hubble Heritage Team from Hubble archive data and was superimposed onto data taken by Dr. Travis Rector of the National Optical Astronomy Observatory at the .9-meter (35-inch) telescope at the National Science Foundation's Kitt Peak National Observatory, Tucson, Ariz. Scoville's team includes M. Polletta of the University of Geneva, Switzerland; S. Ewald and S. Stolovy of Caltech; and R. Thompson and M. Rieke of the University of Arizona, Tucson.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space

  6. How Do Galaxies Grow?

    NASA Astrophysics Data System (ADS)

    2008-08-01

    to the most massive galaxies belonging to clusters. "Most surprising is that in three of the four groups, the brightest galaxy also has a bright companion galaxy. These galaxy pairs are merging systems," says Tran. The brightest galaxy in each group can be ordered in a time sequence that shows how luminous galaxies continue to grow by merging until recently, that is, in the last 5 billion years. It appears that due to the most recent episode of this 'galactic cannibalism', the brightest galaxies became at least 50% more massive. This discovery provides unique and powerful validation of hierarchical formation as manifested in both galaxy and cluster assembly. "The stars in these galaxies are already old and so we must conclude that the recent merging did not produce a new generation of stars," concludes Tran. "Most of the stars in these galaxies were born at least 7 billion years ago." The team is composed of Kim-Vy H. Tran (Institute for Theoretical Physics, University of Zürich, Switzerland), John Moustakas (New York University, USA), Anthony H. Gonzalez and Stefan J. Kautsch (University of Florida, Gainesville, USA), and Lei Bai and Dennis Zaritsky (Steward Observatory, University of Arizona, USA). The results presented here are published in the Astrophysical Journal Letters: "The Late Stellar Assembly Of Massive Cluster Galaxies Via Major Merging", by Tran et al.

  7. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  8. ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. II. EVIDENCE FOR TIDALLY ENHANCED STAR FORMATION AND BLACK HOLE ACCRETION

    SciTech Connect

    Liu Xin; Shen Yue; Strauss, Michael A.

    2012-01-20

    Active galactic nuclei (AGNs) are occasionally seen in pairs, suggesting that tidal encounters are responsible for the accretion of material by both central supermassive black holes (BHs). In Paper I of this series, we selected a sample of AGN pairs with projected separations r{sub p} < 100 h{sup -1}{sub 70} kpc and velocity offsets <600 km s{sup -1} from the Seventh Data Release of the Sloan Digital Sky Survey and quantified their frequency. In this paper, we address the BH accretion and recent star formation properties in their host galaxies. AGN pairs experience stronger BH accretion, as measured by their [O III] {lambda}5007 luminosities (corrected for contribution from star formation) and Eddington ratios, than do control samples of single AGNs matched in redshift and host-galaxy stellar mass. Their host galaxies have stronger post-starburst activity and younger mean stellar ages, as indicated by stronger H{delta} absorption and smaller 4000 A break in their spectra. The BH accretion and recent star formation in the host galaxies both increase with decreasing projected separation in AGN pairs, for r{sub p} {approx}< 10-30 h{sup -1}{sub 70} kpc. The intensity of BH accretion, the post-starburst strength, and the mean stellar ages are correlated between the two AGNs in a pair. The luminosities and Eddington ratios of AGN pairs are correlated with recent star formation in their host galaxies, with a scaling relation consistent with that observed in single AGNs. Our results suggest that galaxy tidal interactions enhance both BH accretion and host-galaxy star formation in close AGN pairs, even though the majority of low-redshift AGNs are not coincident with on-going interactions.

  9. MCG+00-32-16: An Irregular Galaxy Close to the Lowest Redshift Absorber on the 3C 273 Line of Sight

    NASA Technical Reports Server (NTRS)

    Hoffman, G. L.; Lu, N. Y.; Salpeter, E. E.; Connell, B. M.; Fromhold-Treu, R.

    1998-01-01

    We present H I synthesis array mapping and CCD photometry in B and R for MCG+00-32-16. The H I disk is rotating in such a way that the side of the galaxy closer to the sight-line to the quasar has the larger velocity difference from the absorber.

  10. A COMPACT GROUP OF GALAXIES AT Z = 2.48 HOSTING AN AGN-DRIVEN OUTFLOW

    SciTech Connect

    Shih, Hsin-Yi; Stockton, Alan E-mail: stockton@ifa.hawaii.edu

    2015-12-10

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 10{sup 11}M{sub ⊙} and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass–metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow.

  11. Understanding the size growth of massive galaxies through stellar populations

    NASA Astrophysics Data System (ADS)

    Ferreras, Ignacio

    2015-08-01

    The growth of massive galaxies remains an open problem. The observational evidence seems to converge on a two-stage scenario, where a compact massive core is formed during an early, intense burst, followed by a more extended process of mass and size growth at intermediate redshift (z<2). This talk focuses on the latter, exploring the growth of massive galaxies through a detailed analysis of the stellar populations in close pairs, to study their formation history. Two surveys are explored (SHARDS and GAMA), probing the stellar populations of pre-merging systems out to z~1.3, and down to a mass ratio ~1:100. We will compare the results between medium band spectral fitting (SHARDS) and those from a more targeted analysis of line strengths in the GAMA data. The combination of the two datasets provide a unique insight of the growth channel of massive galaxies via mergers.

  12. Massive Black Holes in Water Maser Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Darling, Jeremy

    2014-09-01

    We propose to observe the massive black holes (MBHs) in two merging galaxies identified by water masers. Both galaxies offer the opportunity to study the mass and accretion rate of MBHs in the early (IC 750) and late (IIZw40) stages of merging, crucial times for black hole growth and feedback. IIZw40, an advanced merger of two gas-rich dwarf galaxies, is a crucial window on the growth of black holes in the early universe. IC 750 is a spiral in a close pair with interaction-induced morphology, possibly activating the AGN, and a valuable case study of the initial conditions for major mergers and the growth of MBHs. Chandra observations will identify central black holes (perhaps two in IIZw40), constrain the maser excitation, and measure the accretion rate, key for feedback studies.

  13. Peculiar galaxies and radio sources.

    PubMed

    Arp, H

    1966-03-11

    Pairs of radio sources which are separated by from 2 degrees to 6 degrees on the sky have been investigated. In a number of cases peculiar galaxies have been found approximately midway along a line joining the two radio sources. The central peculiar galaxies belong mainly to a certain class in the recently compiled Atlas of Peculiar Galaxies. Among the radio sources so far associated with the peculiar galaxies are at least five known quasars. These quasars are indicated to be not at cosmological distances (that is, red shifts not caused by expansion of the universe) because the central peculiar galaxies are only at distances of 10 to 100 megaparsecs. The absolute magnitudes of these quasars are indicated to be in the range of brightness of normal galaxies and downward. Some of the radio sources which have been found to be associated with peculiar galaxies are galaxies themselves. It is therefore implied that ejection of material took place within or near the parent peculiar galaxies with speeds between 10(2) and 10(4) kilometers per second. After traveling for times of the order of 10(7) to 10(9) years, the luminous matter (galaxies) and radio sources (plasma) have reached their observed separations from the central peculiar galaxy. The large red shifts measured for the quasars would seem to be either (i) gravitational, (ii) collapse velocities of clouds of material falling toward the center of these compact galaxies, or (iii) some as yet unknown cause.

  14. PKS 2349-014: A Luminous Quasar With Thin Wisps, A Large Off-Center Nebulosity, and A Close Companion Galaxy

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1995-01-01

    Hubble Space Telescope (HST) images (WFC2) of PKS 2349-014 show that this luminous nearby quasar is interacting with diffuse (presumably galactic) material. Two thin wisps that have a total extent of about 20 kpc (for H0 = 100 km s(exp -1) and Omega0 = 1.0) are observed to approximately surround the quasar. One of the wisps appears to pass through a companion galaxy that is located at a projected distance of 3 kpc from the center of the quasar light. The companion galaxy, if located at the distance of PKS 2349-014, has an intrinsic size and luminosity similar to the Large Magellanic Cloud. A faint extended nebulosity, which is detected over a region of 35 kpc x 50 kpc and is centered about 5 kpc from the quasar nucleus, overlaps the wisps. The immediate environment of PKS 2349-014 is different from the environments of the other eight luminous quasars that we have studied previously with the HST. If the multiple light components of the HST images are fit to a single de Vaucouleurs profile, as was done in previous analyses of ground-based data, then the results obtained for the total luminosity of the model galaxy is in agreement with the earlier ground-based studies.

  15. THE ACS NEARBY GALAXY SURVEY TREASURY

    SciTech Connect

    Dalcanton, Julianne J.; Williams, Benjamin F.; Rosema, Keith; Gogarten, Stephanie M.; Christensen, Charlotte; Gilbert, Karoline; Hodge, Paul; Seth, Anil C.; Dolphin, Andrew; Holtzman, Jon; Skillman, Evan D.; Weisz, Daniel; Cole, Andrew; Girardi, Leo; Karachentsev, Igor D.; Olsen, Knut; Freeman, Ken; Gallart, Carme; De Jong, Roelof S. E-mail: ben@astro.washington.edu E-mail: stephanie@astro.washington.edu E-mail: fabio@astro.washington.edu E-mail: aseth@cfa.harvard.edu

    2009-07-15

    The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D < 4 Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small and large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of {approx}10{sup 4} in luminosity and star formation rate. The survey data consist of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), supplemented with archival data and new Wide Field Planetary Camera 2 (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m {sub F475W} = 28.0 mag, m {sub F606W} = 27.3 mag, and m {sub F814W} = 27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump. The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.

  16. Critical Schwinger Pair Production.

    PubMed

    Gies, Holger; Torgrimsson, Greger

    2016-03-01

    We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential Berezinskii-Kosterlitz-Thouless-type scaling, and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting criticality. PMID:26991162

  17. Backwards Spiral Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Astronomers using NASA's Hubble Space Telescope have found a spiral galaxy that may rotate in the opposite direction from what was expected.

    A picture of the oddball galaxy is available at http://heritage.stsci.edu or http://oposite.stsci.edu/pubinfo/pr/2002/03 or http://www.jpl.nasa.gov/images/wfpc . It was taken in May 2001 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The picture showed which side of galaxy NGC 4622 is closer to Earth; that information helped astronomers determine that the galaxy may be spinning clockwise. The image shows NGC 4622 and its outer pair of winding arms full of new stars, shown in blue.

    Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise.

    NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. Astronomers suspect this oddity was caused by the interaction of NGC 4622 with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a smaller companion galaxy.

    Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 lies 111 million light-years away in the direction of the constellation Centaurus.

    The science team, consisting of Drs. Ron Buta and Gene Byrd from the University of Alabama, Tuscaloosa, and Tarsh Freeman of Bevill State

  18. STUDYING LARGE- AND SMALL-SCALE ENVIRONMENTS OF ULTRAVIOLET LUMINOUS GALAXIES

    SciTech Connect

    Basu-Zych, Antara R.; Schiminovich, David; Heinis, Sebastien; Heckman, Tim; Bianchi, Luciana; Overzier, Roderik; Zamojski, Michel; Barlow, Tom A.; Conrow, Tim; Forster, Karl G.; Friedman, Peter G.; Martin, D. Christopher; Morrissey, Patrick; Ilbert, Olivier; Koekemoer, Anton M.; Donas, Jose; Milliard, Bruno; Lee, Young-Wook; Madore, Barry F.; Neff, Susan G.

    2009-07-10

    Studying the environments of 0.4 < z < 1.2 ultraviolet (UV)-selected galaxies, as examples of extreme star-forming galaxies (with star formation rates (SFRs) in the range of 3-30 M{sub sun} yr{sup -1}), we explore the relationship between high rates of star formation, host halo mass, and pair fractions. We study the large- and small-scale environments of local ultraviolet luminous galaxies (UVLGs) by measuring angular correlation functions. We cross-correlate these systems with other galaxy samples: a volume-limited sample (ALL), a blue luminous galaxy sample, and a luminous red galaxy (LRG) sample. We determine the UVLG comoving correlation length to be r{sub 0} = 4.8{sup +11.6}{sub -2.4} h {sup -1} Mpc at (z) = 1.0, which is unable to constrain the halo mass for this sample. However, we find that UVLGs form close (separation <30 kpc) pairs with the ALL sample, but do not frequently form pairs with LRGs. A rare subset of UVLGs, those with the highest FUV surface brightnesses, are believed to be local analogs of high-redshift Lyman break galaxies (LBGs) and are called Lyman break analogs (LBAs). LBGs and LBAs share similar characteristics (i.e., color, size, surface brightness, specific SFRs, metallicities, and dust content). Recent Hubble Space Telescope images of z {approx} 0.2 LBAs show disturbed morphologies, signs of mergers and interactions. UVLGs may be influenced by interactions with other galaxies and we discuss this result in terms of other high star-forming, merging systems.

  19. Pick a Pair. Pancake Pairs

    ERIC Educational Resources Information Center

    Miller, Pat

    2005-01-01

    Cold February weather and pancakes are a traditional pairing. Pancake Day began as a way to eat up the foods that were abstained from in Lent--traditionally meat, fat, eggs and dairy products. The best-known pancake event is The Pancake Day Race in Buckinghamshire, England, which has been run since 1445. This column describes pairs of books that…

  20. Gas in void galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn Joyce

    . We find that the void galaxies are ! generally gas rich, low luminosity, blue disk galaxies, but identify three as early type galaxies. The void galaxy optical and H I properties are not unusual for their luminosity and morphology. The small scale clustering in the void is similar to that in higher density regions, and we identify 18 H I rich neighboring galaxies in the voids. Two of these are systems of three galaxies linearly aligned and joined by a H I bridge, suggestive of filamentary formation within the void. We find no population of H I rich low luminosity galaxies within the observed voids that are not close companions of the targeted sample. Finally, to put these observations in a theoretical context, we analyze a (120 h^-1 Mpc)^3 adaptive mesh refinement hydrodynamic simulation that contains a high resolution subvolume centered on a ~30 Mpc diameter void. We construct mock observations with ~1 kpc resolution of the stellar and gas properties of these systems which reproduce the range of colors and luminosities observed in the SDSS for nearby galaxies, however we find no strong trends with density. We also make predictions for a significant population of low luminosity (M_r = -14) dwarf galaxies that is preferentially located in low density regions and specifically in the void center.

  1. The Lopsided Distribution of Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Libeskind, Noam I.; Guo, Quan; Tempel, Elmo; Ibata, Rodrigo

    2016-10-01

    The distribution of smaller satellite galaxies around large central galaxies has attracted attention because peculiar spatial and kinematic configurations have been detected in some systems. A particularly striking example of such behavior is seen in the satellite system of the Andromeda galaxy, where around 80% are on the near side of that galaxy, facing the Milky Way. Motivated by this departure from anisotropy, we examined the spatial distribution of satellites around pairs of galaxies in the Sloan Digital Sky Survey. By stacking tens of thousands of satellites around galaxy pairs, we found that satellites tend to bulge toward the other central galaxy, preferably occupying the space between the pair, rather than being spherically or axis-symmetrically distributed around each host. The bulging is a function of the opening angle examined and is fairly strong—there are up to ∼10% more satellites in the space between the pair than expected from uniform. Consequently, it is a statistically very strong signal, being inconsistent with a uniform distribution at the 5σ level. The possibility that the observed signal is the result of the overlap of two halos with extended satellite distributions is ruled out by testing this hypothesis by performing the same tests on isolated galaxies (and their satellites) artificially placed at similar separations. These findings highlight the unrelaxed and interacting nature of galaxies in pairs.

  2. The cosmic evolution of halo pairs - I. Global trends

    NASA Astrophysics Data System (ADS)

    Moreno, Jorge

    2012-01-01

    Accumulating evidence suggests that galaxy interactions play an important role in shaping the properties of galaxies. For this reason, cosmological studies focused on the evolution of halo/subhalo pairs are vital. In this paper I describe a large catalogue of halo pairs extracted from the publicly available Millennium Simulation, the largest of its kind to date. (Throughout this work I use the term 'halo' to refer both to individual haloes in the field and to subhaloes embedded in larger structures.) Pairs are selected according to whether or not they come within a given critical (comoving) distance dcrit, without the pre-requisite that they must merge. Moreover, a condition requiring haloes to surpass a critical mass Mcrit during their history is imposed. The primary catalogue, consisting of 502 705 pairs, is selected by setting dcrit= 1 Mpc h-1 and Mcrit= 8.6 × 1010 M⊙ h-1 (equivalent to 100 simulation particles). One of the central goals of this paper is to evaluate the effects of modifying these criteria. For this purpose, additional subcatalogues with more stringent proximity and mass conditions are constructed (i.e. dcrit= 200 kpc h-1 or/and Mcrit= 8.6 × 1011 M⊙ h-1= 1000 simulation particles - see Table 1 for a summary). I use a simple five-stage picture to perform statistical analyses of their separations, redshifts, masses, mass ratios and relevant lifetimes. The fraction of pairs that never merge (because one of the members in the pair is absorbed by a third halo or both members survive until the present time) is accounted for. These results provide a broad picture that captures the essential characteristics behind the evolution of these halo pairs. This is the first of a series of papers aimed to explore the huge wealth of information encoded in this catalogue. Such investigations will play a fundamental role in future cosmological studies of interacting galaxies and binary (and multiple) quasars.1 Halo pair sets shown in the panels of all figures

  3. HETDEX: Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Drory, Niv; Gebhardt, K.; Jogee, S.; Fabricius, M.; Greene, J.; HETDEX Collaboration

    2012-01-01

    The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is a blind spectroscopic survey using the VIRUS instrument. VIRUS consists of 75 IFUs distributed across the 22-arcmin field of the upgraded 9.2-m HET. Each 50x50 arcsec IFU is made up of 448 1.5-arcsec fibers, and feeds a pair of spectrographs with a fixed bandpass of 350-550 nm and resolving power R 700. The IFUs have a fill-factor of 1/3 which will be filled-in by dithering. We cover 1/4.5 of our 300-square-degree main survey area with fibers. We reach m_AB 22.6 (21.5,20.7) at S/N 3 (5,10) per resolution element. With these limits, g 17 spiral galaxies will have S/N>3 per resolution element per fiber in the continuum to 2 effective radii, and emission line spectra to at least their optical radius. HETDEX will spatially resolve 4000 local galaxies to that limit without any pre-selection; an additional 9000 local galaxies will have spatially resolved spectroscopy beyond that limit. At g 19 we still obtain integrated galaxy spectra at S/N 10 per resolution element in the continuum. These spatially resolved absorption and emission spectra provide information on star formation, the state of the IGM, and stellar populations, as well as rotation curves for an unbiased galaxy sample unprecedented in size. Since a wealth of information about a galaxy's formation history is encoded in gradients across the galaxy, moving from single-fiber (SDSS-like) spectra to large samples of spatially resolved galaxy spectroscopy opens a new parameter space for future studies of galaxy formation.

  4. Star formation rates in isolated galaxies selected from the Two-Micron All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Melnyk, O.; Karachentseva, V.; Karachentsev, I.

    2015-08-01

    We have considered the star formation properties of 1616 isolated galaxies from the 2MASS XSC (Extended Source Catalog) selected sample (2MIG) with the far-ultraviolet GALEX magnitudes. This sample was then compared with corresponding properties of isolated galaxies from the Local Orphan Galaxies (LOG) catalogue and paired galaxies. We found that different selection algorithms define different populations of isolated galaxies. The population of the LOG catalogue, selected from non-clustered galaxies in the Local Supercluster volume, mostly consists of low-mass spiral and late-type galaxies. The specific star formation rate (SSFR) upper limit in isolated and paired galaxies does not exceed the value of ˜dex(-9.4). This is probably common for galaxies of differing activity and environment (at least at z < 0.06). The fractions of quenched galaxies are nearly twice as high in the paired galaxy sample as in the 2MIG isolated galaxy sample. From the behaviour of (S)SFR versus M* relations we deduced that the characteristic value influencing evolutionary processes is the galaxy mass. However, the environmental influence is notable: paired massive galaxies with logM* > 11.5 have higher (S)SFR than isolated galaxies. Our results suggest that the environment helps to trigger the star formation in the highest mass galaxies. We found that the fraction of AGN in the paired sample is only a little higher than in our isolated galaxy sample. We assume that AGN phenomenon is probably defined by secular galaxy evolution.

  5. HUBBLE REVEALS 'BACKWARDS' SPIRAL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have found a spiral galaxy that may be spinning to the beat of a different cosmic drummer. To the surprise of astronomers, the galaxy, called NGC 4622, appears to be rotating in the opposite direction to what they expected. Pictures by NASA's Hubble Space Telescope helped astronomers determine that the galaxy may be spinning clockwise by showing which side of the galaxy is closer to Earth. A Hubble telescope photo of the oddball galaxy is this month's Hubble Heritage offering. The image shows NGC 4622 and its outer pair of winding arms full of new stars [shown in blue]. Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. To add to the conundrum, NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction it is rotating. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise. NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. What caused this galaxy to behave differently from most galaxies? Astronomers suspect that NGC 4622 interacted with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a small companion galaxy. The galaxy's core provides new evidence for a merger between NGC 4622 and a smaller galaxy. This information could be the key to understanding the unusual leading arms. Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way Galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 resides 111 million light-years away in the constellation Centaurus. The pictures were taken in May 2001 with Hubble

  6. The ultraviolet attenuation law in backlit spiral galaxies

    SciTech Connect

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Lintott, Chris J.; Schawinski, Kevin E-mail: ammanning@bama.ua.edu E-mail: Twitter@BenneHolwerda E-mail: Twitter@chrislintott E-mail: Twitter@kevinschawinski

    2014-02-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that widespread

  7. JSPAM: Interacting galaxies modeller

    NASA Astrophysics Data System (ADS)

    Wallin, John F.; Holincheck, Anthony; Harvey, Allen

    2015-11-01

    JSPAM models galaxy collisions using a restricted n-body approach to speed up computation. Instead of using a softened point-mass potential, the software supports a modified version of the three component potential created by Hernquist (1994, ApJS 86, 389). Although spherically symmetric gravitationally potentials and a Gaussian model for the bulge are used to increase computational efficiency, the potential mimics that of a fully consistent n-body model of a galaxy. Dynamical friction has been implemented in the code to improve the accuracy of close approaches between galaxies. Simulations using this code using thousands of particles over the typical interaction times of a galaxy interaction take a few seconds on modern desktop workstations, making it ideal for rapidly prototyping the dynamics of colliding galaxies. Extensive testing of the code has shown that it produces nearly identical tidal features to those from hierarchical tree codes such as Gadget but using a fraction of the computational resources. This code was used in the Galaxy Zoo: Mergers project and is very well suited for automated fitting of galaxy mergers with automated pattern fitting approaches such as genetic algorithms. Java and Fortran versions of the code are available.

  8. Closing the loop: a self-consistent model of optical, X-ray and Sunyaev-Zel'dovich scaling relations for clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Rozo, E.; Bartlett, J. G.; Evrard, A. E.; Rykoff, E. S.

    2014-02-01

    We demonstrate that optical data from Sloan Digital Sky Survey, X-ray data from ROSAT and Chandra, and Sunyaev-Zel'dovich (SZ) data from Planck can be modelled in a fully self-consistent manner. After accounting for systematic errors and allowing for property covariance, we find that scaling relations derived from optical and X-ray selected cluster samples are consistent with one another. Moreover, these cluster scaling relations satisfy several non-trivial spatial abundance constraints and closure relations. Given the good agreement between optical and X-ray samples, we combine the two and derive a joint set of LX-M and YSZ-M relations. Our best-fitting YSZ-M relation is in good agreement with the observed amplitude of the thermal SZ power spectrum for a Wilkinson Microwave Anisotropy Probe 7 cosmology, and is consistent with the masses for the two CLASH galaxy clusters published thus far. We predict the halo masses of the remaining z ≤ 0.4 CLASH clusters, and use our scaling relations to compare our results with a variety of X-ray and weak lensing cluster masses from the literature.

  9. Percolation and galaxies.

    PubMed

    Schulman, L S; Seiden, P E

    1986-07-25

    A theory is presented in which much of the structure of spiral galaxies arises from a percolation phase transition that underlies the phenomenon of propagating star formation. According to this view, the appearance of spiral arms is a consequence of the differential rotation of the galaxy and the characteristic divergence of correlation lengths for continuous phase transitions. Other structural properties of spiral galaxies, such as the distribution of the gaseous components and the luminosity, arise directly from a feedback mechanism that pins the star formation rate close to the critical point of the phase transition. The approach taken in this article differs from traditional dynamical views. The argument is presented that, at least for some galaxies, morphological and other features are already fixed by general properties of phase transitions, irrespective of detailed dynamic or other considerations. PMID:17794566

  10. Lopsidedness of cluster galaxies in modified gravity

    SciTech Connect

    Wu, Xufen; Zhao, HongSheng; Famaey, Benoit E-mail: hz4@st-andrews.ac.uk

    2010-06-01

    We point out an interesting theoretical prediction for elliptical galaxies residing inside galaxy clusters in the framework of modified Newtonian dynamics (MOND), that could be used to test this paradigm. Apart from the central brightest cluster galaxy, other galaxies close enough to the centre experience a strong gravitational influence from the other galaxies of the cluster. This influence manifests itself only as tides in standard Newtonian gravity, meaning that the systematic acceleration of the centre of mass of the galaxy has no consequence. However, in the context of MOND, a consequence of the breaking of the strong equivalence principle is that the systematic acceleration changes the own self-gravity of the galaxy. We show here that, in this framework, initially axisymmetric elliptical galaxies become lopsided along the external field's direction, and that the centroid of the galaxy, defined by the outer density contours, is shifted by a few hundreds parsecs with respect to the densest point.

  11. A BRIGHT RING OF STAR BIRTH AROUND A GALAXY'S CORE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    n image from NASA's Hubble Space Telescope reveals clusters of infant stars that formed in a ring around the core of the barred-spiral galaxy NGC 4314. This stellar nursery, whose inhabitants were created within the past 5 million years, is the only place in the entire galaxy where new stars are being born. The Hubble image is being presented today (June 11) at the American Astronomical Society meeting in San Diego, Calif. This close-up view by Hubble also shows other interesting details in the galaxy's core: dust lanes, a smaller bar of stars, dust and gas embedded in the stellar ring, and an extra pair of spiral arms packed with young stars. These details make the center resemble a miniature version of a spiral galaxy. While it is not unusual to have dust lanes and rings of gas in the centers of galaxies, it is uncommon to have spiral arms full of young stars in the cores. NGC 4314 is one of the nearest (only 40 million light-years away in the constellation Coma Berenices) examples of a galaxy with a ring of infant stars close to the core. This stellar ring - whose radius is 1,000 light-years - is a great laboratory to study star formation in galaxies. The left-hand image, taken in February 1996 by the 30-inch telescope Prime Focus Camera at the McDonald Observatory in Texas, shows the entire galaxy, including the bar of stars bisecting the core and the outer spiral arms, which begin near the ends of this bar. The box around the galaxy's core pinpoints the focus of the Hubble image. The right-hand image shows Hubble's close-up view of the galaxy's core, taken in December 1995 by the Wide Field and Planetary Camera 2. The bluish-purple clumps that form the ring are the clusters of infant stars. Two dark, wispy lanes of dust and a pair of blue spiral arms are just outside the star-forming ring. The lanes of dust are being shepherded into the ring by the longer, primary stellar bar seen in the ground-based (left-hand) image. The gas is trapped inside the ring

  12. Prospective very young asteroid pairs

    NASA Astrophysics Data System (ADS)

    Galád, A.; Vokrouhlický, D.; Zizka, J.

    2014-07-01

    Several tens of asteroid pairs can be discerned from the background main-belt asteroids. The majority of them are thought to have formed within only the last few 10^6 yr. The youngest recognized pairs have formed more than ≈ 10 kyr ago. As some details of pair formation are still not understood well, the study of young pairs is of great importance. It is mainly because the conditions at the time of the pair formation could be deduced much more reliably for young pairs. For example, space weathering on the surfaces of the components, or changes in their rotational properties (in spin rates, tumbling, coordinates of rotational pole) could be negligible since the formation of young pairs. Also, possible strong perturbations by main-belt bodies on pair formation can be reliably studied only for extremely young pairs. Some pairs can quickly blend in with the background asteroids, so even the frequency of asteroid pair formation could be determined more reliably based on young pairs (though only after a statistically significant sample is at disposal). In our regular search for young pairs in the growing asteroid database, only multiopposition asteroids with very similar orbital and proper elements are investigated. Every pair component is represented by a number of clones within orbital uncertainties and drifting in semimajor axis due to the Yarkovsky effect. We found that, if the previously unrecognized pairs (87887) 2000 SS_{286} - 2002 AT_{49} and (355258) 2007 LY_{4} - 2013AF_{40} formed at the recent very close approach of their components, they could become the youngest known pairs. In both cases, the relative encounter velocities of the components were only ˜ 0.1 m s^{-1}. However, the minimum distances between some clones are too large and a few clones of the latter pair did not encounter recently (within ≈ 10 kyr). The age of some prospective young pairs cannot be determined reliably without improved orbital properties (e.g., the second component of a pair

  13. VLBA Reveals Closest Pair of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    2006-05-01

    black holes," Taylor said. The VLBA is a continent-wide system of ten radio-telescope antennas. It provides the greatest ability to see fine detail, called resolving power, of any telescope in astronomy. "Astronomers have thought for a long time that close pairs of black holes should result from galaxy collisions," Rodriguez said. Still, finding them has proven difficult. Until now, the closest confirmed pairs of supermassive black holes were at least 4,500 light-years apart. Pairs of smaller black holes, each only a few times the mass of the Sun, have been found in our own Milky Way Galaxy, but 0402+379 harbors the pair of supermassive black holes that are the closest to each other yet found. Galactic collisions are common throughout the Universe, and astronomers think that the binary pairs of supermassive black holes that result can have important effects on the subsequent evolution of the galaxies. In a number of predicted scenarios, such giant pairs of black holes will themselves collide, sending gravitational waves out through the Universe. Such gravitational waves could be detected with a proposed joint space mission between NASA and the European Space Agency, the Laser Interferometer Space Antenna. "Such black-hole collisions undoubtedly are important processes, and we need to understand them. Finding ever-closer pairs of supermassive black holes is the first step in that process. Even finding one such system has dramatically changed our expectations, and informed us about what to look for," Taylor said. Taylor and his collaborators are currently using the VLBA to carry out the largest survey of compact radio-emitting objects ever undertaken, in the hope of finding more such pairs. Rodriguez and Taylor worked with Robert Zavala of the U.S. Naval Observatory, Allison Peck of the SubMillimeter Array of the Harvard- Smithsonian Center for Astrophysics, Lindsey Pollack of the University of California at Santa Cruz, and Roger Romani of Stanford University. Their

  14. Spectroscopic Observations of Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Donzelli, C. J.; Pastoriza, M. G.

    2000-07-01

    In this paper we describe the spectroscopic and infrared properties of a sample of 25 merging galaxy pairs, selected from the catalog of Arp & Madore, and we compare them with those observed in a similar sample of interacting galaxies (Donzelli & Pastoriza). It is noted that mergers as well as interacting systems comprise a wide range of spectral types, going from those corresponding to well-evolved stellar populations (older than 200 Myr) to those that show clear signatures of H II regions with stellar populations younger than 8 Myr. However, merger galaxies show on average more excited spectra than interacting pairs, which could be attributed to lower gas metallicity. From the emission lines we also found that merging systems show on average higher (about a factor of 2) star formation rates than interacting galaxies. Classical diagnostic diagrams show that only three of 50 of the galaxies (6%) present some form of nuclear activity: two Seyfert galaxies and one LINER. However, through a detailed analysis of the pure emission-line spectra, we conclude that this fraction may raise up to 23% of the mergers if we consider that some galaxies host a low-luminosity active nucleus surrounded by strong star-forming regions. This latter assumption is also supported by the infrared colors of the galaxies. Regarding to the total infrared luminosities, the merging galaxies show on average an IR luminosity, log(Lir)=10.7, lower than that of interacting systems, log(Lir)=10.9. We find that only three mergers of the sample (12%) can be classified as luminous infrared galaxies, while this fraction increases to 24% in the interacting sample. Based on observations made at CASLEO. Complejo Astronómico El Leoncito is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan.

  15. Star Formation and Dense Gas in Galaxy Mergers from the VIXENS Survey

    NASA Astrophysics Data System (ADS)

    Heiderman, Amanda L.; VIXENS Team

    2016-01-01

    We present our λ= 3 mm IRAM and NRO single dish line survey for a sample of 15 interacting galaxies in the VIRUS-P Investigation of the eXtreme ENvironments of Starbursts (VIXENS) survey. Our sample of merging galaxies range from early to late interaction stages (close pairs to merger remnants, respectively). A variety of molecular lines are detected including dense gas tracers HCN, HCO+, HNC, CS, CN (and others) as well as 12CO and 13CO. We compare the dense gas fractions with 12CO and 13CO as well as star formation efficiencies defined by infrared-to-dense gas tracer luminosity ratio and discuss trends with interaction stage. We also investigate relations between star formation and dense gas content in our merger sample and compare them to non-interacting star forming galaxies and Galactic star forming regions in the Milky Way.

  16. Triple Scoop from Galaxy Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Silver Dollar Galaxy: NGC 253 (figure 1) Located 10 million light-years away in the southern constellation Sculptor, the Silver Dollar galaxy, or NGC 253, is one of the brightest spiral galaxies in the night sky. In this edge-on view from NASA's Galaxy Evolution Explorer, the wisps of blue represent relatively dustless areas of the galaxy that are actively forming stars. Areas of the galaxy with a soft golden glow indicate regions where the far-ultraviolet is heavily obscured by dust particles.

    Gravitational Dance: NGC 1512 and NGC 1510 (figure 2) In this image, the wide ultraviolet eyes of NASA's Galaxy Evolution Explorer show spiral galaxy NGC 1512 sitting slightly northwest of elliptical galaxy NGC 1510. The two galaxies are currently separated by a mere 68,000 light-years, leading many astronomers to suspect that a close encounter is currently in progress.

    The overlapping of two tightly wound spiral arm segments makes up the light blue inner ring of NGC 1512. Meanwhile, the galaxy's outer spiral arm is being distorted by strong gravitational interactions with NGC 1510.

    Galaxy Trio: NGC 5566, NGC 5560, and NGC 5569 (figure 3) NASA's Galaxy Evolution Explorer shows a triplet of galaxies in the Virgo cluster: NGC 5560 (top galaxy), NGC 5566 (middle galaxy), and NGC 5569 (bottom galaxy).

    The inner ring in NGC 5566 is formed by two nearly overlapping bright arms, which themselves spring from the ends of a central bar. The bar is not visible in ultraviolet because it consists of older stars or low mass stars that do not emit energy at ultraviolet wavelengths. The outer disk of NGC 5566 appears warped, and the disk of NGC 5560 is clearly disturbed. Unlike its galactic neighbors, the disk of NGC 5569 does not appear to have been distorted by any passing

  17. A COMPARISON OF THE CLUSTERING PROPERTIES BETWEEN GALAXIES AND GROUPS OF GALAXIES

    SciTech Connect

    Deng Xinfa

    2013-03-01

    In this study, I apply cluster analysis and perform comparative studies of clustering properties between galaxies and groups of galaxies. It is found that the number of objects N{sub max} of the richest system and the maximal length D{sub max} of the largest system for groups in all samples are apparently larger than ones for galaxies, and that galaxies preferentially form isolated, paired, and small systems, while groups preferentially form grouped and clustered systems. These results show that groups are more strongly clustered than galaxies, which is consistent with statistical results of the correlation function.

  18. Growing Galaxies Gently

    NASA Astrophysics Data System (ADS)

    2010-10-01

    of the flow of pristine gas from the surrounding space and the associated formation of new stars. They were very careful to make sure that their specimen galaxies had not been disturbed by interactions with other galaxies. The selected galaxies were very regular, smoothly rotating discs, similar to the Milky Way, and they were seen about two billion years after the Big Bang (at a redshift of around three). In galaxies in the modern Universe the heavy elements [1] are more abundant close to the centre. But when Cresci's team mapped their selected distant galaxies with the SINFONI spectrograph on the VLT [2] they were excited to see that in all three cases there was a patch of the galaxy, close to the centre, with fewer heavy elements, but hosting vigorously forming stars, suggesting that the material to fuel the star formation was coming from the surrounding pristine gas that is low in heavy elements. This was the smoking gun that provided the best evidence yet of young galaxies accreting primitive gas and using it to form new generations of stars. As Cresci concludes: "This study has only been possible because of the outstanding performance of the SINFONI instrument on the VLT. It has opened a new window for studying the chemical properties of very distant galaxies. SINFONI provides information not only in two spatial dimensions, but also in a third, spectral dimension, which allows us to see the internal motions inside galaxies and study the chemical composition of the interstellar gas." Notes [1] The gas filling the early Universe was almost all hydrogen and helium. The first generations of stars processed this primitive material to create heavier elements such as oxygen, nitrogen and carbon by nuclear fusion. When this material was subsequently spewed back into space by intense particle winds from massive young stars and supernova explosions the amounts of heavy elements in the galaxy gradually increased. Astronomers refer to elements other than hydrogen and

  19. ASSOCIATIONS OF HIGH-REDSHIFT QUASI-STELLAR OBJECTS WITH ACTIVE, LOW-REDSHIFT SPIRAL GALAXIES

    SciTech Connect

    Burbidge, G.; Napier, W. M. E-mail: smawmn@cardiff.ac.u

    2009-11-20

    Following the discovery in the 1960s of radio and optical QSOs it was found that some of them lie very close to low-redshift (z <= 0.01) spiral galaxies with separations of approx<2 arcmin. These were discovered both serendipitously by many observers, and systematically by Arp. They are some of the brightest QSOs in radio and optical wavelengths and are very rare. We have carried out a new statistical analysis of most of those galaxy-QSO pairs and find that the configurations have high statistical significance. We show that gravitational microlensing due to stars or other dark objects in the halos of the galaxies apparently cannot account for the excess. Sampling or identification bias likewise seems unable to explain it. Following this up we selected all approx4000 QSOs with g <= 18 from a catalog of confirmed QSOs in the Sloan Digital Sky Survey, and compared them with various subsets of galaxies from the RC 3 galaxy catalog. In contrast to the earlier results, no significant excess of such QSOs was found around these galaxies. Possible reasons for the discrepancy are discussed.

  20. The orbital evolution of binary galaxies

    NASA Astrophysics Data System (ADS)

    Chan, R.; Junqueira, S.

    2001-02-01

    We present the results of self-consistent numerical simulations performed to study the orbital circularization of binary galaxies. We have generalized a previous model (Junqueira & de Freitas Pacheco 1994) and confirmed partially their results. The orbital evolution of pairs of galaxies is faster when we consider interacting pairs with contacting ``live'' galaxy halos but the circularization time remains larger than the Hubble time. Besides, the time behavior of the orbits has changed in comparison with previous work because of tidal forces and dynamical friction acting on the halos.

  1. Ring Around a Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Telescope Science Institute astronomers are giving the public chances to decide where to aim NASA's Hubble Space Telescope. Guided by 8,000 Internet voters, Hubble has already been used to take a close-up, multi-color picture of the most popular object from a list of candidates, the extraordinary 'polar-ring' galaxy NGC 4650A. Located about 130 million light-years away, NGC 4650A is one of only 100 known polar-ring galaxies. Their unusual disk-ring structure is not yet understood fully. One possibility is that polar rings are the remnants of colossal collisions between two galaxies sometime in the distant past, probably at least 1 billion years ago. What is left of one galaxy has become the rotating inner disk of old red stars in the center. Meanwhile, another smaller galaxy which ventured too close was probably severely damaged or destroyed. The bright bluish clumps, which are especially prominent in the outer parts of the ring, are regions containing luminous young stars, examples of stellar rebirth from the remnants of an ancient galactic disaster. The polar ring appears to be highly distorted. No regular spiral pattern stands out in the main part of the ring, and the presence of young stars below the main ring on one side and above on the other shows that the ring is warped and does not lie in one plane. Determining the typical ages of the stars in the polar ring is an initial goal of our Polar Ring Science Team that can provide a clue to the evolution of this unusual galaxy. The HST exposures were acquired by the Hubble Heritage Team, consisting of Keith Noll, Howard Bond, Carol Christian, Jayanne English, Lisa Frattare, Forrest Hamilton, Anne Kinney and Zolt Levay, and guest collaborators Jay Gallagher (University of Wisconsin-Madison), Lynn Matthews (National Radio Astronomy Observatory-Charlottesville), and Linda Sparke (University of Wisconsin-Madison).

  2. A CLUSTER PAIR: A3532 AND A3530

    SciTech Connect

    Lakhchaura, Kiran; Singh, K. P.; Saikia, D. J.; Hunstead, R. W.

    2013-04-10

    We present a detailed study of a close pair of clusters of galaxies, A3532 and A3530, and their environments. The Chandra X-ray image of A3532 reveals the presence of substructures on scales of {approx}20'' in its core. XMM-Newton maps of the clusters show excess X-ray emission from an overlapping region between them. Spectrally determined projected temperature and entropy maps do not show any signs of cluster scale mergers either in the overlapping region or in any of the clusters. In A3532, however, some signs of the presence of galaxy scale mergers are visible, e.g., anisotropic temperature variations in the projected thermodynamic maps, a wide-angle-tailed (WAT) radio source in the brighter nucleus of its dumbbell brightest cluster galaxy, and a candidate X-ray cavity coincident with the northwestern extension of the WAT source in the low-frequency radio observations. The northwestern extension in A3532 seems either a part of the WAT or an unrelated diffuse source in A3532 or in the background. There is an indication that the cool core in A3532 has been disrupted by the central activity of the galactic nucleus. A reanalysis of the redshift data reinforces the close proximity of the clusters. The excess emission in the overlapping region appears to be a result of tidal interactions as the two clusters approach each other for the first time. However, we cannot rule out the possibility of the excess being due to the chance superposition of their X-ray halos.

  3. On the Dynamics of Galaxy Clustering.

    NASA Astrophysics Data System (ADS)

    Rivolo, Arthur Rex

    The galaxies of the Revised Shapley-Ames (RSA) redshift catalog, which is complete to B(TURN)13 are used to conduct a statistical search for binary galaxies, and to determine the dynamical parameters of galaxy pairs. By analyzing the velocity differences of neighboring pairs of galaxies, the velocity dispersion per galaxy is determined as a function of isolation. This velocity dispersion is found to be constant in pairs of galaxies irrespective of how isolated they are, and whether or not they are each other's nearest neighbors. The interpretation of isolated galaxy pairs as binaries, whose dynamics is dominated by the two-body force, is therefore questioned. The velocity dispersion of the general galaxy field within 4000 kms(' -1)/H(,0) of the Sun is also determined. Various implications of the derived velocity dispersion are discussed, with particular attention given to its significance in the virialization process occurring in the cores of the great clusters of galaxies. A model for the evolutionary dynamics of superclusters is presented incorporating the velocity dispersion of galaxies as boundary conditions in time and space. The model is evolved numerically using an N-body spherically symmetric algorithm, from the epoch at which density perturbations were of order unity to the present. It is shown that the effects of velocity dispersion during adiabatic collapse are: (1) to halt the collapse by virialization of a core, through orbital phase mixing, (2) to give rise to power -law density profiles with indices between -2 and -3, and (3) to generate one-dimensional velocity dispersion of (TURN)1000 kms('-1) in the cores of great clusters. In the context of Virial theorem analyses, projection factors at various stages of cluster evolution are discussed as a function of cylindrical sampling. It is shown that projection factors may be routinely over-estimated by factors of 1.5-2, resulting in a proportionate over-estimate for virial mass/light in the great clusters.

  4. Pairing Learners in Pair Work Activity

    ERIC Educational Resources Information Center

    Storch, Neomy; Aldosari, Ali

    2013-01-01

    Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…

  5. Spatially resolved velocity maps of halo gas around two intermediate-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen; Gauthier, Jean-René; Sharon, Keren; Johnson, Sean D.; Nair, Preethi; Liang, Cameron J.

    2014-02-01

    Absorption-line spectroscopy of multiply-lensed QSOs near a known foreground galaxy provides a unique opportunity to go beyond the traditional one-dimensional application of QSO probes and establish a crude three-dimensional map of halo gas around the galaxy that records the line-of-sight velocity field at different locations in the gaseous halo. Two intermediate-redshift galaxies are targeted in the field around the quadruply-lensed QSO HE 0435-1223 at redshift z = 1.689, and absorption spectroscopy along each of the lensed QSOs is carried out in the vicinities of these galaxies. One galaxy is a typical, star-forming L* galaxy at z = 0.4188 and projected distance of ρ = 50 kpc from the lensing galaxy. The other is a super-L* barred spiral at z = 0.7818 and ρ = 33 kpc. Combining known orientations of the quadruply-lensed QSO to the two foreground galaxies with the observed Mg II λλ2796, 2803 absorption profiles along individual QSO sightlines has for the first time led to spatially resolved kinematics of tenuous halo gas on scales of 5-10 kpc at z > 0.2. A Mg II absorber is detected in every sightline observed through the haloes of the two galaxies, and the recorded absorber strength is typical of what is seen in previous close QSO-galaxy pair studies. While the multisightline study confirms the unity covering fraction of Mg II absorbing gas at ρ < 50 kpc from star-forming discs, the galaxies also present two contrasting examples of complex halo gas kinematics. Different models, including a rotating disc, collimated outflows and gaseous streams from either accretion or tidal/ram-pressure stripping, are considered for comparisons with the absorption-line observations, and infalling streams/stripped gas of width ≳10 kpc are found to best describe the observed gas kinematics across multiple sightlines. In addition, the observed velocity dispersion between different sightlines offers a crude estimate of turbulence in the Mg II absorbing halo gas. The

  6. Geometrical parameters of E+S pairs

    NASA Technical Reports Server (NTRS)

    Rampazzo, Roberto; Sulentic, Jack W.

    1990-01-01

    Local environmental conditions (i.e., density and angular momentum properties of protogalactic clouds) are thought to be factors affecting the ultimate morphology of a galaxy. The existence of significant numbers of mixed morphology (E/SO+S) pairs of galaxies would represent a direct challenge to this idea unless all early-type components are formed by mergers. The authors wished to isolate candidate E+S pairs for detailed study. The authors have observed 22 pairs of mixed morphology galaxies (containing at least one early-type component) selected from a catalog of Sulentic (1988: unpublished) based upon the ESO sky survey. The observed sample and relevant morphological and interaction characteristics are summarized in tabular form. The authors report the relevant geometrical properties of the galaxies in another table. They list the maximum values measured for the ellipticity and the a(4)/a shape parameter together with the total measured twisting along the profile beyond the seeing disk (they set an inner limit of 3 arcsed). An asterisk indicates objects in which a(4)/a is neither predominantly boxy nor disky. They found a large number of true mixed pairs with 13/22 E+S pairs in the present sample. The remaining objects include 5 disk pairs (composed of SO and S members) and 3 early-type pairs comprising E and SO members. They estimate that between 25 and 50 percent of the pairs in any complete sample will be of the E+S type. This suggests that 100 to 200 such pairs exist on the sky brighter than m sub pg = 16.0. They found no global evidence for a difference between E members of this sample and those in more general samples (e.g., Bender et al. 1989). In particular, they found that about 30 percent of the early-type galaxies cannot be classified either predominantly boxy or disky because the a(4)/a profile shows both of these features at a comparable level or does not show any significant trend. Isophotal twisting is observed with a range and distribution

  7. The Environment of Barred Galaxies Revisited

    NASA Astrophysics Data System (ADS)

    Cervantes Sodi, B.; Li, C.; Park, C.; Wang, L.

    We present a study of the environment of barred galaxies using galaxies drawn from the SDSS. We use several different statistics to quantify the environment: the projected two-point cross-correlation function, the background-subtracted number counts of neighbor galaxies, the overdensity of the local environment, the membership of our galaxies to galaxy groups to segregate central and satellite systems, and, for central galaxies, the stellar to halo mass ratio (M∗/Mh). When we split our sample into early- and late-type galaxies, we see a weak but significant trend for early-type galaxies with a bar to be more strongly clustered on scales from a few 100 kpc to 1 Mpc when compared to unbarred early-type galaxies. This indicates that the presence of a bar in early-type galaxies depends on the location within their host dark matter halos. This is confirmed by the group catalog in the sense that for early-types, the fraction of central galaxies is smaller if they have a bar. For late-type galaxies, we find fewer neighbors within ˜ 50 kpc around the barred galaxies when compared to unbarred galaxies from the control sample, suggesting that tidal forces from close companions suppress the formation/growth of bars. For central late-type galaxies, bars are more common on galaxies with high M∗/Mh values, as expected from early theoretical works which showed that systems with massive dark matter halos are more stable against bar instabilities. Finally, we find no obvious correlation between overdensity and the bars in our sample, showing that galactic bars are not obviously linked to the large-scale structure of the universe.

  8. Galaxy Zoo: Mergers - Dynamical models of interacting galaxies

    NASA Astrophysics Data System (ADS)

    Holincheck, Anthony J.; Wallin, John F.; Borne, Kirk; Fortson, Lucy; Lintott, Chris; Smith, Arfon M.; Bamford, Steven; Keel, William C.; Parrish, Michael

    2016-06-01

    The dynamical history of most merging galaxies is not well understood. Correlations between galaxy interaction and star formation have been found in previous studies, but require the context of the physical history of merging systems for full insight into the processes that lead to enhanced star formation. We present the results of simulations that reconstruct the orbit trajectories and disturbed morphologies of pairs of interacting galaxies. With the use of a restricted three-body simulation code and the help of citizen scientists, we sample 105 points in parameter space for each system. We demonstrate a successful recreation of the morphologies of 62 pairs of interacting galaxies through the review of more than 3 million simulations. We examine the level of convergence and uniqueness of the dynamical properties of each system. These simulations represent the largest collection of models of interacting galaxies to date, providing a valuable resource for the investigation of mergers. This paper presents the simulation parameters generated by the project. They are now publicly available in electronic format at http://data.galaxyzoo.org/mergers.html. Though our best-fitting model parameters are not an exact match to previously published models, our method for determining uncertainty measurements will aid future comparisons between models. The dynamical clocks from our models agree with previous results of the time since the onset of star formation from starburst models in interacting systems and suggest that tidally induced star formation is triggered very soon after closest approach.

  9. Galaxy Evolution Traced by Multiple Galaxies from the BIG Sample

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.

    2007-05-01

    The Byurakan-IRAS Galaxies (BIG objects) are a rich source for new AGN, high-luminosity IR galaxies (hence, starburst activity), and interacting/ merging systems. All these phenomena (AGN/starburst/interactions) are crucial for understanding the galaxy evolution and their interrelation, as well as the triggering of the powerful IR radiation. In frame of the redshift survey of these galaxies, spectroscopic observations have been carried out for the BIG objects (including the pairs and multiples) by means of the Byurakan Astrophysical Observatory (BAO, Armenia) 2.6m, Special Astrophysical Observatory (SAO, Russia) 6m, and Observatoire de Haute Provence (OHP, France) 1.93m telescopes. It is shown that, without an exception, all double/multiple BIG systems are physical pairs or groups, and they are mostly interacting and/ or merging systems. From the high IR luminosities derived from the observations, one can conclude that perhaps the ULIG/HLIG phenomenon is connected with galaxy interactions/merging. We find an evolution in luminosity function of these objects with respect of their redshift distribution.

  10. Deficiency of "Thin" Stellar Bars in Seyfert Host Galaxies.

    PubMed

    Shlosman; Peletier; Knapen

    2000-06-01

    Using all available major samples of Seyfert galaxies and their corresponding closely matched control samples of nonactive galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in nonactive galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., "thin" or "strong" bars) in Seyfert galaxies compared to nonactive galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their nonactive counterparts on scales of a few kiloparsecs.

  11. A MINUET OF GALAXIES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This troupe of four galaxies, known as Hickson Compact Group 87 (HCG 87), is performing an intricate dance orchestrated by the mutual gravitational forces acting between them. The dance is a slow, graceful minuet, occurring over a time span of hundreds of millions of years. The Wide Field and Planetary Camera 2 on NASA's Hubble Space Telescope (HST) provides a striking improvement in resolution over previous ground-based imaging. In particular, this image reveals complex details in the dust lanes of the group's largest galaxy member (HCG 87a), which is actually disk-shaped, but tilted so that we see it nearly edge-on. Both 87a and its elliptically shaped nearest neighbor (87b) have active galactic nuclei which are believed to harbor black holes that are consuming gas. A third group member, the nearby spiral galaxy 87c, may be undergoing a burst of active star formation. Gas flows within galaxies can be intensified by the gravitational tidal forces between interacting galaxies. So interactions can provide fresh fuel for both active nuclei and starburst phenomena. These three galaxies are so close to each other that gravitational forces disrupt their structure and alter their evolution. From the analysis of its spectra, the small spiral near the center of the group could either be a fourth member or perhaps an unrelated background object. The HST image was made by combining images taken in four different color filters in order to create a three-color picture. Regions of active star formation are blue (hot stars) and also pinkish if hot hydrogen gas is present. The complex dark bands across the large edge-on disk galaxy are due to interstellar dust silhouetted against the galaxy's background starlight. A faint tidal bridge of stars can be seen between the edge-on and elliptical galaxies. HCG 87 was selected for Hubble imaging by members of the public who visited the Hubble Heritage website (http://heritage.stsci.edu) during the month of May and registered their votes

  12. Les galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2016-08-01

    Considerable progress has been made on galaxy formation and evolution in recent years, and new issues. The old Hubble classification according to the tuning fork of spirals, lenticulars and ellipticals, is still useful but has given place to the red sequence, the blue cloud and the green valley, showing a real bimodality of types between star forming galaxies (blue) and quenched ones (red). Large surveys have shown that stellar mass and environment density are the two main factors of the evolution from blue to red sequences. Evolution is followed directly with redshift through a look-back time of more than 12 billion years. The most distant galaxy at z=11. has already a stellar mass of a billion suns. In an apparent anti-hierarchical scenario, the most massive galaxies form stars early on, while essentially dwarf galaxies are actively star-formers now. This downsizing feature also applies to the growth of super-massive black holes at the heart of each bulgy galaxy. The feedback from active nuclei is essential to explain the distribution of mass in galaxies, and in particular to explain why the fraction of baryonic matter is so low, lower by more than a factor 5 than the baryonic fraction of the Universe. New instruments just entering in operation, like MUSE and ALMA, provide a new and rich data flow, which is developed in this series of articles.

  13. The Assembly of Galaxy Clusters

    SciTech Connect

    Berrier, Joel C.; Stewart, Kyle R.; Bullock, James S.; Purcell, Chris W.; Barton, Elizabeth J.; Wechsler, Risa H.

    2008-05-16

    We study the formation of fifty-three galaxy cluster-size dark matter halos (M = 10{sup 14.0-14.76} M{sub {circle_dot}}) formed within a pair of cosmological {Lambda}CDM N-body simulations, and track the accretion histories of cluster subhalos with masses large enough to host {approx} 0.1L{sub *} galaxies. By associating subhalos with cluster galaxies, we find the majority of galaxies in clusters experience no 'pre-processing' in the group environment prior to their accretion into the cluster. On average, {approx} 70% of cluster galaxies fall into the cluster potential directly from the field, with no luminous companions in their host halos at the time of accretion; and less than {approx} 12% are accreted as members of groups with five or more galaxies. Moreover, we find that cluster galaxies are significantly less likely to have experienced a merger in the recent past ({approx}< 6 Gyr) than a field halo of the same mass. These results suggest that local, cluster processes like ram-pressure stripping, galaxy harassment, or strangulation play the dominant role in explaining the difference between cluster and field populations at a fixed stellar mass; and that pre-evolution or past merging in the group environment is of secondary importance for setting cluster galaxy properties for most clusters. The accretion times for z = 0 cluster members are quite extended, with {approx} 20% incorporated into the cluster halo more than 7 Gyr ago and {approx} 20% within the last 2 Gyr. By comparing the observed morphological fractions in cluster and field populations, we estimate an approximate time-scale for late-type to early-type transformation within the cluster environment to be {approx} 6 Gyr.

  14. Disrupted Stars in Unusual Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    Tidal disruption events (TDEs) occur when a star passes a little too close to a supermassive black hole at the center of a galaxy. Tidal forces from the black hole cause the passing star to be torn apart, resulting in a brief flare of radiation as the stars material accretes onto the black hole. A recent study asks the following question: do TDEs occur most frequently in an unusual type of galaxy?A Trend in DisruptionsSo far, we have data from eight candidate TDEs that peaked in optical and ultraviolet wavelengths. The spectra from these observations have shown an intriguing trend: many of these TDEs host galaxies exhibit weak line emission (indicating little or no current star-formation activity), and yet they show strong Balmer absorption lines (indicating star formation activity occurred within the last Gyr). These quiescent, Balmer-strong galaxies likely underwent a period of intense star formation that recently ended.To determine if TDEs are overrepresented in such galaxies, a team of scientists led by Decker French (Steward Observatory, University of Arizona) has quantified the fraction of galaxies in the Sloan Digital Sky Survey (SDSS) that exhibit similar properties to those of TDE hosts.Quantifying OverrepresentationSpectral characteristics of SDSS galaxies (gray) and TDE candidate host galaxies (colored points): line emission vs. Balmer absorption. The lower right-hand box identifies thequiescent, Balmer-strong galaxies which contain most TDE events, yet are uncommon among the galaxy sample as a whole. Click for a better look! [French et al. 2016]French and collaborators compare the optical spectra of the TDE host galaxies to those of nearly 600,000 SDSS galaxies, using two different cutoffs for the Balmer absorption the indicator of past star formation. Their strictest cut, filtering for very high Balmer absorption, selected only 0.2% of the SDSS galaxies, yet 38% of the TDEs are hosted in such galaxies. Using a more relaxed cutoff selects 2.3% of

  15. DECISION TREE CLASSIFIERS FOR STAR/GALAXY SEPARATION

    SciTech Connect

    Vasconcellos, E. C.; Ruiz, R. S. R.; De Carvalho, R. R.; Capelato, H. V.; Gal, R. R.; LaBarbera, F. L.; Frago Campos Velho, H.; Trevisan, M.

    2011-06-15

    We study the star/galaxy classification efficiency of 13 different decision tree algorithms applied to photometric objects in the Sloan Digital Sky Survey Data Release Seven (SDSS-DR7). Each algorithm is defined by a set of parameters which, when varied, produce different final classification trees. We extensively explore the parameter space of each algorithm, using the set of 884,126 SDSS objects with spectroscopic data as the training set. The efficiency of star-galaxy separation is measured using the completeness function. We find that the Functional Tree algorithm (FT) yields the best results as measured by the mean completeness in two magnitude intervals: 14 {<=} r {<=} 21 (85.2%) and r {>=} 19 (82.1%). We compare the performance of the tree generated with the optimal FT configuration to the classifications provided by the SDSS parametric classifier, 2DPHOT, and Ball et al. We find that our FT classifier is comparable to or better in completeness over the full magnitude range 15 {<=} r {<=} 21, with much lower contamination than all but the Ball et al. classifier. At the faintest magnitudes (r > 19), our classifier is the only one that maintains high completeness (>80%) while simultaneously achieving low contamination ({approx}2.5%). We also examine the SDSS parametric classifier (psfMag - modelMag) to see if the dividing line between stars and galaxies can be adjusted to improve the classifier. We find that currently stars in close pairs are often misclassified as galaxies, and suggest a new cut to improve the classifier. Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,326 SDSS photometric objects in the magnitude range 14 {<=} r {<=} 21.

  16. JET-POWERED MOLECULAR HYDROGEN EMISSION FROM RADIO GALAXIES

    SciTech Connect

    Ogle, Patrick; Guillard, Pierre; Boulanger, Francois; Nesvadba, Nicole; Evans, Daniel A.; Antonucci, Robert; Appleton, P. N.; Leipski, Christian

    2010-12-01

    H{sub 2} pure-rotational emission lines are detected from warm (100-1500 K) molecular gas in 17/55 (31% of) radio galaxies at redshift z < 0.22 observed with the Spitzer IR Spectrograph. The summed H{sub 2} 0-0 S(0)-S(3) line luminosities are L(H{sub 2}) = 7 x 10{sup 38}-2 x 10{sup 42} erg s{sup -1}, yielding warm H{sub 2} masses up to 2 x 10{sup 10} M{sub sun}. These radio galaxies, of both FR radio morphological types, help to firmly establish the new class of radio-selected molecular hydrogen emission galaxies (radio MOHEGs). MOHEGs have extremely large H{sub 2} to 7.7 {mu}m polycyclic aromatic hydrocarbon (PAH) emission ratios: L(H{sub 2})/L(PAH7.7) = 0.04-4, up to a factor 300 greater than the median value for normal star-forming galaxies. In spite of large H{sub 2} masses, MOHEGs appear to be inefficient at forming stars, perhaps because the molecular gas is kinematically unsettled and turbulent. Low-luminosity mid-IR continuum emission together with low-ionization emission line spectra indicates low-luminosity active galactic nuclei (AGNs) in all but three radio MOHEGs. The AGN X-ray emission measured with Chandra is not luminous enough to power the H{sub 2} emission from MOHEGs. Nearly all radio MOHEGs belong to clusters or close pairs, including four cool-core clusters (Perseus, Hydra, A2052, and A2199). We suggest that the H{sub 2} in radio MOHEGs is delivered in galaxy collisions or cooling flows, then heated by radio-jet feedback in the form of kinetic energy dissipation by shocks or cosmic rays.

  17. First Observational Support for Overlapping Reionized Bubbles Generated by a Galaxy Overdensity

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Dayal, P.; Pentericci, L.; Fontana, A.; Hutter, A.; Brammer, G.; Merlin, E.; Grazian, A.; Pilo, S.; Amorin, R.; Cristiani, S.; Dickinson, M.; Ferrara, A.; Gallerani, S.; Giallongo, E.; Giavalisco, M.; Guaita, L.; Koekemoer, A.; Maiolino, R.; Paris, D.; Santini, P.; Vallini, L.; Vanzella, E.; Wagg, J.

    2016-02-01

    We present an analysis of deep Hubble Space Telescope (HST) multi-band imaging of the BDF field specifically designed to identify faint companions around two of the few Lyα emitting galaxies spectroscopically confirmed at z ∼ 7. Although separated by only 4.4 proper Mpc these galaxies cannot generate H ii regions large enough to explain the visibility of their Lyα lines, thus requiring a population of fainter ionizing sources in their vicinity. We use deep HST and VLT-Hawk-I data to select z ∼ 7 Lyman break galaxies around the emitters. We select six new robust z ∼ 7 LBGs at Y ∼ 26.5–27.5 whose average spectral energy distribution is consistent with the objects being at the redshift of the close-by Lyα emitters. The resulting number density of z ∼ 7 LBGs in the BDF field is a factor of approximately three to four higher than expected in random pointings of the same size. We compare these findings with cosmological hydrodynamic plus radiative transfer simulations of a universe with a half neutral IGM: we find that indeed Lyα emitter pairs are only found in completely ionized regions characterized by significant LBG overdensities. Our findings match the theoretical prediction that the first ionization fronts are generated within significant galaxy overdensities and support a scenario where faint, “normal” star-forming galaxies are responsible for reionization.

  18. Midsummer's Dream Galaxies

    NASA Astrophysics Data System (ADS)

    2005-08-01

    -years away in the constellation Coma Berenices (Berenice's Hair). It displays a bright yellowish central bulge that juts out above most impressive dust lanes. Because it is relatively close (it is only 12 times farther away than Messier 31, the Andromeda galaxy, which is the major galaxy closest to us) and relatively large (roughly one third larger than the Milky Way), it does not fit entirely into the field of view of the FORS instrument (about 7 x 7 arcmin2). Many background galaxies are also visible in this FORS image, giving full meaning to their nickname of "island universes". Messier 83 If our Milky Way were to resemble this one, we certainly would be proud of our home! The beautiful spiral galaxy Messier 83 [4] is located in the southern constellation Hydra (the Water Snake) and is also known as NGC 5236 and as the Southern Pinwheel galaxy. Its distance is about 15 million light-years. Being about twice as small as the Milky Way, its size on the sky is 11x10 arcmin2. The image show clumpy, well-defined spiral arms that are rich in young stars, while the disc reveals a complex system of intricate dust lanes. This galaxy is known to be a site of vigorous star formation.

  19. Orbital dynamics in galaxy mergers

    NASA Astrophysics Data System (ADS)

    Hoffman, Loren

    In the favored vacuum energy + cold dark matter (ACDM) cosmology, galaxies form through a hierarchical merging process. Mergers between comparable-mass sys tems are qualitatively different from the ongoing accretion of small objects by much larger ones, in that they can radically transform the nature of the merging objects, e.g. through violent relaxation of the stars and dark matter, triggered starbursts, and quasar activity. This thesis covers two phenomena unique to major galaxy mergers: the formation of supermassive black hole (SMBH) binary and triple systems, and the transformation of the stellar orbit structure through violent relaxation, triggered gas inflow, and star formation. In a major merger, the SMBHs can spiral in and form a bound binary in less than a Hubble time. If the binary lifetime exceeds the typical time between mergers, then triple black hole (BH) systems may form. We study the statistics of close triple-SMBH encounters in galactic nuclei by computing a series of three-body orbits with physically-motivated initial conditions appropriate for giant elliptical galaxies. Our simulations include a smooth background potential consisting of a stellar bulge plus a dark matter halo, drag forces due to gravitational radiation and dynamical friction on the stars and dark matter, and a simple model of the time evolution of the inner density profile under heating and mass ejection by the SMBHs. We find that the binary pair coalesces as a result of repeated close encounters in ~85% of our runs. In about 40% of the runs the lightest BH is left wandering through the galactic halo or escapes the galaxy altogether. The triple systems typically scour out cores with mass deficits ~1-2 times their total mass. The high coalescence rate and prevalence of very high-eccentricity orbits could provide interesting signals for the future Laser Interferometer Space Antenna (LISA). Our study of remnant orbit structure involved 42 disk-disk mergers at various gas fractions

  20. Very Small Scale Clustering and Merger Rate of Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Masjedi, Morad; Hogg, David W.; Cool, Richard J.; Eisenstein, Daniel J.; Blanton, Michael R.; Zehavi, Idit; Berlind, Andreas A.; Bell, Eric F.; Schneider, Donald P.; Warren, Michael S.; Brinkmann, Jon

    2006-06-01

    We present the small-scale (0.01 Mpcgalaxies from the Sloan Digital Sky Survey (SDSS) Luminous Red Galaxy (LRG) sample (0.16close galaxy pairs. We find that the correlation function ξ(r) is surprisingly close to a r-2 power law over more than 4 orders of magnitude in separation r. This result is too steep at small scales to be explained in current versions of the halo model for galaxy clustering. We infer an LRG-LRG merger rate of <~0.6×104 Gyr-1 Gpc-3 for this sample. This result suggests that the LRG-LRG mergers are not the main mode of mass growth for LRGs at z<0.36.

  1. Gas dynamics in interacting and merging galaxies

    SciTech Connect

    Olson, K.M.

    1990-01-01

    A three dimensional model of the dynamics of gas clouds in interacting galaxies is developed. The gas clouds move under the combined gravitational influence of two galaxies passing close to each other. By performing a multipole expansion of the gravitational field the effects of self-gravity within a galaxy are included. This allows the case to be modeled in which the two galaxies merge. The gas clouds are allowed to interact with one another by colliding. They either coalesce to form a larger cloud or are disrupted, depending on their relative kinetic energy as compared to the total gravitational binding energy of the two-cloud system. Various cases are considered by varying such parameters as impact parameter, inclination of the gaseous disk of a galaxy to the orbital plane of the two, interacting galaxies, relative velocity of the galaxies, the mass ratio of the galaxies, and the presence of gas in the second galaxy. As the strength of the interaction increases the more disturbed the interstellar medium becomes. The clouds collide at an increased rate and with larger velocities so that the fraction of collisions which disrupt the clouds rises as the strength of the interaction increases. Since interacting galaxies are observed to have elevated star formation rates, it is concluded that the star formation induced by the interaction of two galaxies is related to the high velocity, disruptive cloud-cloud collisions.

  2. Galaxy Clustering Around Nearby Luminous Quasars

    NASA Technical Reports Server (NTRS)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  3. Local Group dwarf galaxies: nature and nurture

    NASA Astrophysics Data System (ADS)

    Sawala, Till; Scannapieco, Cecilia; White, Simon

    2012-02-01

    We investigate the formation and evolution of dwarf galaxies in a high-resolution, hydrodynamical cosmological simulation of a Milky Way sized halo and its environment. Our simulation includes gas cooling, star formation, supernova feedback, metal enrichment and ultraviolet heating. In total, 90 satellites and more than 400 isolated dwarf galaxies are formed in the simulation, allowing a systematic study of the internal and environmental processes that determine their evolution. We find that 95 per cent of satellite galaxies are gas free at z= 0, and identify three mechanisms for gas loss: supernova feedback, tidal stripping and photoevaporation due to re-ionization. Gas-rich satellite galaxies are only found with total masses above ˜5 × 109 M⊙. In contrast, for isolated dwarf galaxies, a total mass of ˜109 M⊙ constitutes a sharp transition; less massive galaxies are predominantly gas free at z= 0, more massive, isolated dwarf galaxies are often able to retain their gas. In general, we find that the total mass of a dwarf galaxy is the main factor which determines its star formation, metal enrichment and its gas content, but that stripping may explain the observed difference in gas content between field dwarf galaxies and satellites with total masses close to 109 M⊙. We also find that a morphological transformation via tidal stripping of infalling, luminous dwarf galaxies whose dark matter is less concentrated than their stars cannot explain the high total mass-to-light ratios of the faint dwarf spheroidal galaxies.

  4. HUBBLE'S INFRARED GALAXY GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have used the NASA Hubble Space Telescope to produce an infrared 'photo essay' of spiral galaxies. By penetrating the dust clouds swirling around the centers of these galaxies, the telescope's infrared vision is offering fresh views of star birth. These six images, taken with the Near Infrared Camera and Multi-Object Spectrometer, showcase different views of spiral galaxies, from a face-on image of an entire galaxy to a close-up of a core. The top row shows spirals at diverse angles, from face-on, (left); to slightly tilted, (center); to edge-on, (right). The bottom row shows close-ups of the hubs of three galaxies. In these images, red corresponds to glowing hydrogen, the raw material for star birth. The red knots outlining the curving spiral arms in NGC 5653 and NGC 3593, for example, pinpoint rich star-forming regions where the surrounding hydrogen gas is heated by intense ultraviolet radiation from young, massive stars. In visible light, many of these regions can be hidden from view by the clouds of gas and dust in which they were born. The glowing hydrogen found inside the cores of these galaxies, as in NGC 6946, may be due to star birth; radiation from active galactic nuclei (AGN), which are powered by massive black holes; or a combination of both. White is light from middle-age stars. Clusters of stars appear as white dots, as in NGC 2903. The galaxy cores are mostly white because of their dense concentration of stars. The dark material seen in these images is dust. These galaxies are part of a Hubble census of about 100 spiral galaxies. Astronomers at Space Telescope Science Institute took these images to fill gaps in the scheduling of a campaign using the NICMOS-3 camera. The data were non-proprietary, and were made available to the entire astronomical community. Filters: Three filters were used: red, blue, and green. Red represents emission at the Paschen Alpha line (light from glowing hydrogen) at a wavelength of 1.87 microns. Blue shows the

  5. Opaque Matter in Spiral Galaxies. Cosmological Consequences

    NASA Astrophysics Data System (ADS)

    Faria, Peter Leroy

    1996-10-01

    The luminosity function plays a direct role in several points of cosmological interest, like the magnitud and redshift galaxy number counts, the determination of the mean luminosity density in a given volume and the determination of the spatial two point correlation function from the knowledge of the angular correlation function. In this work, we have related the optical thickness of the galactic disk with some cosmological observations. We assume that the absorbing material appears in a epoch z_d and obtain the absolute luminosity function corrected for the dust effects and study some cosmological consequences of this correction. Our main results are: 1.Luminosity function: As an effect of the opacity, an inclination i different from zero modifies the apparent luminosity of the galaxies and leads to a wrong estimation of the absolute luminosity. The corrections that must be applied depend on how the luminosities vary with inclination and therefore, in how to assign the corrected distribution function for the variable associated to the galaxy inclination. We have used a distribution function for the variable tau = |cos i|, assuming that the galaxies are uniformly distributed in a region of space, with the variable i (inclination) uniformly distributed. We have checked out that this hypothesis is reasonable for a pair of samples but further work must be done with larger and more complete samples in order to comfirm or to choose a more suitable distribution function to the variable mu and get more conclusions about the modifications in the luminosity function due to the opacity effects. We have found that the opacity modifies the luminosity function in the sense of increasing the number of more bright galaxies and keeping almost the same the number of faint galaxies. 2.Magnitude and redshift number counts: The modifications in the luminosity function affects directly the galaxy counts N(m) and N(z). We have found for N(m) in the B band (blue) that moderate opacities

  6. Galaxy Mergers and Dark Matter Halo Mergers in LCDM: Mass, Redshift, and Mass-Ratio Dependence

    SciTech Connect

    Stewart, Kyle R.; Bullock, James S.; Barton, Elizabeth J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2009-08-03

    We employ a high-resolution LCDM N-body simulation to present merger rate predictions for dark matter halos and investigate how common merger-related observables for galaxies - such as close pair counts, starburst counts, and the morphologically disturbed fraction - likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We provide a simple 'universal' fitting formula that describes our derived merger rates for dark matter halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density-matching to associate halos with galaxies. For example, we find that the instantaneous merger rate of m/M > 0.3 mass ratio events into typical L {approx}> fL{sub *} galaxies follows the simple relation dN/dt {approx_equal} 0.03(1+f)Gyr{sup -1} (1+z){sup 2.1}. Despite the rapid increase in merger rate with redshift, only a small fraction of > 0.4L{sub *} high-redshift galaxies ({approx} 3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t < 100 Myr). This suggests that short-lived, merger-induced bursts of star formation should not contribute significantly to the global star formation rate at early times, in agreement with observational indications. In contrast, a fairly high fraction ({approx} 20%) of those z = 2 galaxies should have experienced a morphologically transformative merger within a virial dynamical time. We compare our results to observational merger rate estimates from both morphological indicators and pair-fraction based determinations between z = 0-2 and show that they are consistent with our predictions. However, we emphasize that great care must be made in these comparisons because the predicted observables depend very sensitively on galaxy luminosity, redshift, overall mass ratio, and uncertain relaxation timescales for merger remnants. We show that the majority of bright galaxies at z = 3 should have undergone a major

  7. CS (5-4) survey towards nearby infrared bright galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Junzhi; Zhang, Zhiyu; Shi, Yong

    2011-09-01

    With the observations of the CS (5-4) line towards a sample of 24 infrared bright galaxies using Heinrich Hertz Submillimeter Telescope (HHSMT), we detected CS (5-4) emission in 14 galaxies, including 12 ultraluminous infrared galaxies (ULIRGs)/luminous infrared galaxies (LIRGs) and two nearby normal galaxies. As a good dense gas tracer, which has been well used for studying star formation in the Milky Way, CS (5-4) can trace the active star-forming gas in galaxies. The correlation between CS (5-4) luminosity, which is estimated with detected CS (5-4) line emission, and the infrared luminosity in these 14 galaxies, is fitted with a correlation coefficient of 0.939 and a slope close to unity. This correlation confirms that dense gas, which is closely linked to star formation, is very important for understanding star formation in galaxies.

  8. Active galaxies and the diffuse gamma-ray background

    NASA Technical Reports Server (NTRS)

    Kazanas, D.; Protheroe, R. J.

    1983-01-01

    Active galaxies are shown to account for the observed gamma ray background radiation if a steepening of the spectra above about 100 keV is present. An analytical model is discussed in which protons undergo Fermi acceleration at a shock in a spherical accretion flow onto a massive black hole. Relativistic protons with power law spectra, nuclear interactions producing gamma rays from neutal pion decay and electrons from pion-mu meson-electron decay, with a power law spectrum above several hundred MeV, synchrotron and inverse Compton losses steepening the electron spectrum, a photon spectrum close to the pion gamma spectrum and a high-energy gamma ray spectrum steepened by photon-photon pair production interactions with X rays are covered in the model. Comparisons are made with HEAO 2 data on active galaxies, which have estimated luminosities and radii consistent with the compactness necessary for producing the steepening predicted by the model. The active galaxies spectra would be described by a spherical accretion-shock model.

  9. Study of Interacting/Merging IRAS Galaxies

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2003-07-01

    A new sample of 1178 faint IRAS galaxies (Byurakan-IRAS Galaxy sample, BIG) has been constructed by means of optical identifications of IRAS point sources from PSC in the region +61° <δ<+90° at high galactic latitudes with a surface of 1487 deg^{2}. Compact galaxies, interacting pairs and groups, mergers, radio, and X-ray sources are among the identified objects. Spectral observations in Byurakan (Armenia), SAO (Russia) and OHP (France) revealed new AGNs and high-luminosity infrared galaxies. 50 optical counterparts are interacting/merging pairs and multiple systems. 15 of them have been observed at SAO 6m telescope with Multi-Pupil Fibre Spectrograph (MPFS) to study their velocity fields and dynamics to reveal physical mergers. These objects are of special interest due to star-formation, nuclear activity and interaction phenomena occuring there, giving possibility to study connections between these phenomena and their interrelationship.

  10. THE ZURICH ENVIRONMENTAL STUDY (ZENS) OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. V. PROPERTIES AND FREQUENCY OF MERGING SATELLITES AND CENTRALS IN DIFFERENT ENVIRONMENTS

    SciTech Connect

    Pipino, A.; Cibinel, A.; Tacchella, S.; Carollo, C. M.; Lilly, S. J.; Miniati, F.; Silverman, J. D.; Van Gorkom, J. H.; Finoguenov, A.

    2014-12-20

    We use the Zurich Environmental Study database to investigate the environmental dependence of the merger fraction Γ and merging galaxy properties in a sample of ∼1300 group galaxies with M > 10{sup 9.2} M {sub ☉} and 0.05 < z < 0.0585. In all galaxy mass bins investigated in our study, we find that Γ decreases by a factor of ∼2-3 in groups with halo masses M {sub HALO} > 10{sup 13.5} M {sub ☉} relative to less massive systems, indicating a suppression of merger activity in large potential wells. In the fiducial case of relaxed groups only, we measure a variation of ΔΓ/Δlog (M {sub HALO}) ∼ –0.07 dex{sup –1}, which is almost independent of galaxy mass and merger stage. At galaxy masses >10{sup 10.2} M {sub ☉}, most mergers are dry accretions of quenched satellites onto quenched centrals, leading to a strong increase of Γ with decreasing group-centric distance at these mass scales. Both satellite and central galaxies in these high-mass mergers do not differ in color and structural properties from a control sample of nonmerging galaxies of equal mass and rank. At galaxy masses of <10{sup 10.2} M {sub ☉} where we mostly probe satellite-satellite pairs and mergers between star-forming systems close pairs (projected distance <10-20 kpc) show instead ∼2 × enhanced (specific) star formation rates and ∼1.5 × larger sizes than similar mass, nonmerging satellites. The increase in both size and star formation rate leads to similar surface star formation densities in the merging and control-sample satellite populations.

  11. Slowly fading super-luminous supernovae that are not pair-instability explosions.

    PubMed

    Nicholl, M; Smartt, S J; Jerkstrand, A; Inserra, C; McCrum, M; Kotak, R; Fraser, M; Wright, D; Chen, T-W; Smith, K; Young, D R; Sim, S A; Valenti, S; Howell, D A; Bresolin, F; Kudritzki, R P; Tonry, J L; Huber, M E; Rest, A; Pastorello, A; Tomasella, L; Cappellaro, E; Benetti, S; Mattila, S; Kankare, E; Kangas, T; Leloudas, G; Sollerman, J; Taddia, F; Berger, E; Chornock, R; Narayan, G; Stubbs, C W; Foley, R J; Lunnan, R; Soderberg, A; Sanders, N; Milisavljevic, D; Margutti, R; Kirshner, R P; Elias-Rosa, N; Morales-Garoffolo, A; Taubenberger, S; Botticella, M T; Gezari, S; Urata, Y; Rodney, S; Riess, A G; Scolnic, D; Wood-Vasey, W M; Burgett, W S; Chambers, K; Flewelling, H A; Magnier, E A; Kaiser, N; Metcalfe, N; Morgan, J; Price, P A; Sweeney, W; Waters, C

    2013-10-17

    Super-luminous supernovae that radiate more than 10(44) ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of (56)Ni are synthesized; this isotope decays to (56)Fe via (56)Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10(-6) times that of the core-collapse rate. PMID:24132291

  12. Slowly fading super-luminous supernovae that are not pair-instability explosions

    NASA Astrophysics Data System (ADS)

    Nicholl, M.; Smartt, S. J.; Jerkstrand, A.; Inserra, C.; McCrum, M.; Kotak, R.; Fraser, M.; Wright, D.; Chen, T.-W.; Smith, K.; Young, D. R.; Sim, S. A.; Valenti, S.; Howell, D. A.; Bresolin, F.; Kudritzki, R. P.; Tonry, J. L.; Huber, M. E.; Rest, A.; Pastorello, A.; Tomasella, L.; Cappellaro, E.; Benetti, S.; Mattila, S.; Kankare, E.; Kangas, T.; Leloudas, G.; Sollerman, J.; Taddia, F.; Berger, E.; Chornock, R.; Narayan, G.; Stubbs, C. W.; Foley, R. J.; Lunnan, R.; Soderberg, A.; Sanders, N.; Milisavljevic, D.; Margutti, R.; Kirshner, R. P.; Elias-Rosa, N.; Morales-Garoffolo, A.; Taubenberger, S.; Botticella, M. T.; Gezari, S.; Urata, Y.; Rodney, S.; Riess, A. G.; Scolnic, D.; Wood-Vasey, W. M.; Burgett, W. S.; Chambers, K.; Flewelling, H. A.; Magnier, E. A.; Kaiser, N.; Metcalfe, N.; Morgan, J.; Price, P. A.; Sweeney, W.; Waters, C.

    2013-10-01

    Super-luminous supernovae that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of `pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10-6 times that of the core-collapse rate.

  13. Slowly fading super-luminous supernovae that are not pair-instability explosions.

    PubMed

    Nicholl, M; Smartt, S J; Jerkstrand, A; Inserra, C; McCrum, M; Kotak, R; Fraser, M; Wright, D; Chen, T-W; Smith, K; Young, D R; Sim, S A; Valenti, S; Howell, D A; Bresolin, F; Kudritzki, R P; Tonry, J L; Huber, M E; Rest, A; Pastorello, A; Tomasella, L; Cappellaro, E; Benetti, S; Mattila, S; Kankare, E; Kangas, T; Leloudas, G; Sollerman, J; Taddia, F; Berger, E; Chornock, R; Narayan, G; Stubbs, C W; Foley, R J; Lunnan, R; Soderberg, A; Sanders, N; Milisavljevic, D; Margutti, R; Kirshner, R P; Elias-Rosa, N; Morales-Garoffolo, A; Taubenberger, S; Botticella, M T; Gezari, S; Urata, Y; Rodney, S; Riess, A G; Scolnic, D; Wood-Vasey, W M; Burgett, W S; Chambers, K; Flewelling, H A; Magnier, E A; Kaiser, N; Metcalfe, N; Morgan, J; Price, P A; Sweeney, W; Waters, C

    2013-10-17

    Super-luminous supernovae that radiate more than 10(44) ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of (56)Ni are synthesized; this isotope decays to (56)Fe via (56)Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10(-6) times that of the core-collapse rate.

  14. On Galaxies with UV Excess from Kazarian Lists

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, A. A.

    2016-09-01

    Presented are the results of a statistical study of galaxies with UV excess from six Kazarian lists. Morphology, activity, heliocentric redshift and the magnitude of 502 out of 702 galaxies from Kazarian lists were considered. It is shown that these galaxies have different morphological types, different degrees of activity, and often contain condensations and double nuclei. It is also shown that most of the closely located Kazarian galaxies form physical systems.

  15. Global effects of interactions on galaxy evolution

    NASA Technical Reports Server (NTRS)

    Kennicutt, Robert C., Jr.

    1990-01-01

    Recent observations of the evolutionary properties of paired and interacting galaxies are reviewed, with special emphasis on their global emission properties and star formation rates. Data at several wavelengths provide strong confirmation of the hypothesis, proposed originally by Larson and Tinsley, that interactions trigger global bursts of star formation in galaxies. The nature and properties of the starbursts, and their overall role in galactic evolution are also discussed.

  16. Pair production and escape in accretion disks.

    NASA Astrophysics Data System (ADS)

    Meirelles Filho, C.; Liang, E. P.

    It is shown that, in the absence of confining mechanisms, there will be a non-negligible amount of pairs escaping from the inner region of a Comptonized soft photon two-temperature accretion disk, when pair production is not balanced by annihilation. Assuming conditions such that the photons and particles in the disk can be regarded as close to a Wien plasma (Svensson, 1984), the authors calculate the rate of pair escape from the disk for both a situation close to pair balance and a situation with the rate of escape exceeding annihilation. The pairs are assumed to be created by photon-photon processes. Within this model one can account for the 511 keV γ-ray luminosity due to pair annihilation in the ISM, as recently observed in the Einstein source.

  17. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  18. Pseudo Algebraically Closed Extensions

    NASA Astrophysics Data System (ADS)

    Bary-Soroker, Lior

    2009-07-01

    This PhD deals with the notion of pseudo algebraically closed (PAC) extensions of fields. It develops a group-theoretic machinery, based on a generalization of embedding problems, to study these extensions. Perhaps the main result is that although there are many PAC extensions, the Galois closure of a proper PAC extension is separably closed. The dissertation also contains the following subjects. The group theoretical counterpart of pseudo algebraically closed extensions, the so-called projective pairs. Applications to seemingly unrelated subjects, e.g., an analog of Dirichlet's theorem about primes in arithmetic progression for polynomial rings in one variable over infinite fields.

  19. Spectroscopic Study of Multiple IRAS Galaxies

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Hovhannisyan, L. R.; Sargsyan, L. A.

    2003-04-01

    Spectroscopic observations by the 2.6 m BAO telescope of IRAS galaxies identified on the basis of the First Byurakan Survey (BIG objects) are reported. Slit spectra were obtained for 16 objects, including components of 7 multiple systems and 2 individual galaxies. The red shifts were measured, and the radial velocities, distances, absolute stellar magnitudes, and infrared and far infrared luminosities were calculated. A diagnostic diagram has been constructed based on the intensity ratios of emission lines and the activity types of the objects have been determined. Two LINERs, five galaxies with composite spectra (Comp, one of which has Sy2 features) and seven HII regions were found. Two objects are ultraluminous IR galaxies (ULIG). It is shown that all the multiple systems are physical pairs or groups. The observed high IR luminosity confirms the view that ULIG/HLIGs may be associated with interactions of galaxies.

  20. Nature of multiple-nucleus cluster galaxies

    SciTech Connect

    Merritt, D.

    1984-05-01

    In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent with the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.

  1. Extended Source/Galaxy All Sky 2

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This panoramic view encompasses the entire sky and reveals the distribution of galaxies beyond the Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is assembled from a database of over 1.6 million galaxies listed in the survey's All-Sky Survey Extended Source Catalog,; more than half of the galaxies have never before been catalogued. The colors represent how the many galaxies appear at three distinct wavelengths of infrared light (blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns). Quite evident are the many galactic clusters and superclusters, as well as some streamers composing the large-scale structure of the nearby universe. The blue overlay represents the very close and bright stars from our own Milky Way galaxy. In this projection, the bluish Milky Way lies predominantly toward the upper middle and edges of the image.

  2. Towards a complete history of galaxy assembly: Major merger fractions at 2 ≤ z ≤ 6 in the CANDELS fields

    NASA Astrophysics Data System (ADS)

    Duncan, Kenneth James; Conselice, Chris; Mundy, Carl Joseph; CANDELS Collaboration

    2015-08-01

    In recent years, remarkable progress has been made in studying the growth of the first galaxies through studies of the luminosity functions, star-formation rates and stellar masses. However, there are still very few observational constraints on the merger rates of galaxies during this formative period. Such measurements are vital in understanding the importance of mergers in the early lives of today’s most massive galaxies and what role they played (if any) in the creation of the first quiescent galaxies already seen at z ˜ 4. We present new results on the major merger rates (mass ratios from 1:1 to 1:4) of galaxies at 2 ≤ z ≤ 6 in the CANDELS HST survey. By using PDF analysis of photometric close pairs we are able to compute accurate merger fractions for both mass and number density selected samples over the first few billion years of galaxy formation. We present the evolution of the merger fraction as well as the estimated merger rates, exploring their evolution with respect to semi-analytic models and hydrodynamical simulations. In conjunction with similar analysis being applied to wide-area surveys at z ≤ 3 (Mundy et al. in prep), this work represents the first consistent study of major mergers over the bulk of cosmic history. In addition to the evolution of the merger rate itself, we explore the effect of mergers on star-formation rates at high redshift through comparison of the properties of galaxies in merging systems to similar galaxies in isolated environments.

  3. Luminosities of Barred and Unbarred S0 Galaxies

    NASA Astrophysics Data System (ADS)

    van den Bergh, Sidney

    2012-07-01

    Lenticular galaxies with MB < -21.5 are almost exclusively unbarred, whereas both barred and unbarred objects occur at fainter luminosity levels. This effect is observed both for objects classified in blue light, and for those that were classified in the infrared. This result suggests that the most luminous (massive) S0 galaxies find it difficult to form bars. As a result, the mean luminosity of unbarred lenticular galaxies in both B and IR light is observed to be ~0.4 mag brighter than that of barred lenticulars. A small contribution to the observed luminosity difference that is found between SA0 and SB0 galaxies may also be due to the fact that there is an asymmetry between the effects of small classification errors on SA0 and SB0 galaxies. An elliptical (E) galaxy might be misclassified as a lenticular (S0) or an S0 as an E. However, an E will never be misclassified as an SB0, nor will an SB0 ever be called an E. This asymmetry is important because E galaxies are typically twice as luminous as S0 galaxies. The present results suggest that the evolution of luminous lenticular galaxies may be closely linked to that of elliptical galaxies, whereas fainter lenticulars might be more closely associated with ram-pressure stripped spiral galaxies. Finally, it is pointed out that fine details of the galaxy formation process might account for some of the differences between the classifications of the same galaxy by individual competent morphologists.

  4. Baby Galaxies in the Adult Universe

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    This artist's conception illustrates the decline in our universe's 'birth-rate' over time. When the universe was young, massive galaxies were forming regularly, like baby bees in a bustling hive. In time, the universe bore fewer and fewer 'offspring,' and newborn galaxies (white circles) matured into older ones more like our own Milky Way (spirals).

    Previously, astronomers thought that the universe had ceased to give rise to massive, young galaxies, but findings from NASA's Galaxy Evolution Explorer suggest that may not be the case. Surveying thousands of nearby galaxies with its highly sensitive ultraviolet eyes, the telescope spotted three dozen that greatly resemble youthful galaxies from billions of years ago. In this illustration, those galaxies are represented as white circles on the right, or 'today' side of the timeline.

    The discovery not only suggests that our universe may still be alive with youth, but also offers astronomers their first close-up look at what appear to be baby galaxies. Prior to the new result, astronomers had to peer about 11 billion light-years into the distant universe to see newborn galaxies. The newfound galaxies are only about 2 to 4 billion light-years away.

  5. First Results from the ISO-IRAS Faint Galaxy Survey

    NASA Technical Reports Server (NTRS)

    Wolstencroft, R. D.; Wehrle, A. E.; Levine, D. A.

    1997-01-01

    We present the first result from the ISO-IRAS Faint Galaxy Survey (IIFGS), a program designed to obtain ISO observations of the most distant and luminous galaxies in the IRAS Faint Source Survey by filling short gaps in the ISO observing schedule with pairs of 12um ISOCAM AND 90um ISOPHOT observation.

  6. Photometric study of the peculiar galaxy NGC 2685

    SciTech Connect

    Gagen-Torn, V.A.; Popov, I.I.; Iakovleva, V.A.

    1984-04-01

    The results are given of detailed UBV photometry of the peculiar galaxy NGC 2685 based on 10 negatives obtained with the 2.6-m telescope of the Biurakan Observatory. Consideration of all the available observational data (photometric, spectroscopic, and polarization) suggests that NGC 2685 is a pair of colliding galaxies. 18 references.

  7. Powered Tate Pairing Computation

    NASA Astrophysics Data System (ADS)

    Kang, Bo Gyeong; Park, Je Hong

    In this letter, we provide a simple proof of bilinearity for the eta pairing. Based on it, we show an efficient method to compute the powered Tate pairing as well. Although efficiency of our method is equivalent to that of the Tate pairing on the eta pairing approach, but ours is more general in principle.

  8. Bar Formation from Galaxy Flybys

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Lang, Meagan; Sinha, Manodeep

    2016-05-01

    Both simulations and observations reveal that flybys—fast, one-time interactions between two galaxy halos—are surprisingly common, comparable to galaxy mergers. Since these are rapid, transient events with the closest approach well outside the galaxy disk, it is unclear if flybys can transform the galaxy in a lasting way. We conduct collisionless N-body simulations of three coplanar flyby interactions between pure-disk galaxies to take a first look at the effects flybys have on disk structure, with particular focus on stellar bar formation. We find that some flybys are capable of inciting a bar; bars form in both galaxies during our 1:1 interaction and in the secondary during our 10:1 interaction. The bars formed have ellipticities >0.5, sizes on the order of the scale length of the disk, and persist to the end of our simulations, ~5 Gyr after pericenter. The ability of flybys to incite bar formation implies that many processes associated with secular bar evolution may be more closely tied with flyby interactions than previously thought.

  9. BAR FORMATION FROM GALAXY FLYBYS

    SciTech Connect

    Lang, Meagan; Holley-Bockelmann, Kelly; Sinha, Manodeep E-mail: k.holley@vanderbilt.edu

    2014-08-01

    Recently, both simulations and observations have revealed that flybys—fast, one-time interactions between two galaxy halos—are surprisingly common, nearing/comparable to galaxy mergers. Since these are rapid, transient events with the closest approach well outside the galaxy disk, it is unclear if flybys can transform the galaxy in a lasting way. We conduct collisionless N-body simulations of three coplanar flyby interactions between pure-disk galaxies to take a first look at the effects flybys have on disk structure, with particular focus on stellar bar formation. We find that some flybys are capable of inciting a bar with bars forming in both galaxies during our 1:1 interaction and in the secondary during our 10:1 interaction. The bars formed have ellipticities ≳ 0.5, sizes on the order of the host disk's scale length, and persist to the end of our simulations, ∼5 Gyr after pericenter. The ability of flybys to incite bar formation implies that many processes associated with secular bar evolution may be more closely tied with interactions than previously thought.

  10. Discovering Teenage Galaxies

    NASA Astrophysics Data System (ADS)

    2007-11-01

    Staring for the equivalent of every night for two weeks at the same little patch of sky with ESO's Very Large Telescope, an international team of astronomers has found the extremely faint light from teenage galaxies billions of light years away. These galaxies, which the research team believes are the building blocks of normal galaxies like our Milky Way, had eluded detection for three decades, despite intensive searches. ESO PR Photo 52/07 ESO PR Photo 52/07 A 92-hour long spectrum Two-dimensional spectrum obtained in 92 hours of exposure time, showing the line emitter candidates. The quasar absorption lines are visible close to the centre of the image. The team, led by Martin Haehnelt of the University of Cambridge, UK, Michael Rauch and George Becker of the Observatories of the Carnegie Institution, USA, and Andy Bunker of the Anglo-Australian Observatory, reports their results in the 1 March 2008 issue of the Astrophysical Journal. "This is the first time that the sky has been searched to this depth and the unrivalled sensitivity of the picture taken with the VLT was key to succeeding," says Haehnelt. Experts have long speculated that galaxies like ours were created by the amalgamation of proto-galaxies early in the history of the Universe, but the light from these fragments was so faint that astronomers had struggled to prove they were there at all. Astronomers thought that the teenage galaxies must be out there because they were blocking part of the light from objects even further away in space. "Previous attempts have usually been frustrated by the difficulty of detecting extremely faint objects: the amount of time required even with an 8-metre class telescope like the VLT considerably exceeds typical observing time awards. We have thus exploited the periods of less good weather with the FORS2 spectrograph at the VLT, taking advantage of the service observing mode," says Becker. In service mode, ESO staff astronomers at Paranal are responsible for carrying

  11. "Galaxy," Defined

    NASA Astrophysics Data System (ADS)

    Willman, B.; Strader, J.

    2012-09-01

    A growing number of low luminosity and low surface brightness astronomical objects challenge traditional notions of both galaxies and star clusters. To address this challenge, we propose a definition of galaxy that does not depend on a cold dark matter model of the universe: a galaxy is a gravitationally bound collection of stars whose properties cannot be explained by a combination of baryons and Newton's laws of gravity. After exploring several possible observational diagnostics of this definition, we critically examine the classification of ultra-faint dwarfs, globular clusters, ultra-compact dwarfs, and tidal dwarfs. While kinematic studies provide an effective diagnostic of the definition in many regimes, they can be less useful for compact or very faint systems. To explore the utility of using the [Fe/H] spread as a complementary diagnostic, we use published spectroscopic [Fe/H] measurements of 16 Milky Way dwarfs and 24 globular clusters to uniformly calculate their [Fe/H] spreads and associated uncertainties. Our principal results are (1) no known, old star cluster less luminous than MV = -10 has a significant (gsim0.1 dex) spread in its iron abundance; (2) known ultra-faint dwarf galaxies can be unambiguously classified with a combination of kinematic and [Fe/H] observations; (3) the observed [Fe/H] spreads in massive (gsim 106 M ⊙) globular clusters do not necessarily imply that they are the stripped nuclei of dwarfs, nor a need for dark matter; and (4) if ultra-compact dwarf galaxies reside in dark matter halos akin to those of ultra-faint dwarfs of the same half-light radii, then they will show no clear dynamical signature of dark matter. We suggest several measurements that may assist the future classification of massive globular clusters, ultra-compact dwarfs, and ultra-faint galaxies. Our galaxy definition is designed to be independent of the details of current observations and models, while our proposed diagnostics can be refined or replaced as

  12. Late-stage galaxy mergers in cosmos to z ∼ 1

    SciTech Connect

    Lackner, C. N.; Silverman, J. D.; Salvato, M.; Kampczyk, P.; Kartaltepe, J. S.; Sanders, D.; Lee, N.; Capak, P.; Scoville, N.; Civano, F.; Halliday, C.; Ilbert, O.; Le Fèvre, O.; Jahnke, K.; Koekemoer, A. M.; Liu, C. T.; Sheth, K.

    2014-12-01

    The role of major mergers in galaxy and black hole formation is not well-constrained. To help address this, we develop an automated method to identify late-stage galaxy mergers before coalescence of the galactic cores. The resulting sample of mergers is distinct from those obtained using pair-finding and morphological indicators. Our method relies on median-filtering of high-resolution images to distinguish two concentrated galaxy nuclei at small separations. This method does not rely on low surface brightness features to identify mergers, and is therefore reliable to high redshift. Using mock images, we derive statistical contamination and incompleteness corrections for the fraction of late-stage mergers. The mock images show that our method returns an uncontaminated (<10%) sample of mergers with projected separations between 2.2 and 8 kpc out to z∼1. We apply our new method to a magnitude-limited (m{sub FW} {sub 814}<23) sample of 44,164 galaxies from the COSMOS HST/ACS catalog. Using a mass-complete sample with logM{sub ∗}/M{sub ⊙}>10.6 and 0.25galaxies shows that the merger rate for star-forming galaxies increases strongly with redshift, (1+z){sup 4.5±1.3}, while the merger rate for quiescent galaxies is consistent with no evolution, (1+z){sup 1.1±1.2}. The merger rate also becomes steeper with decreasing stellar mass. Limiting our sample to galaxies with spectroscopic redshifts from zCOSMOS, we find that the star formation rates and X-ray selected active galactic nucleus (AGN) activity in likely late-stage mergers are higher by factors of ∼2 relative to those of a control sample. Combining our sample with more

  13. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias; Seljak, Uroš; Hirata, Christopher M.; Nakajima, Reiko; Reyes, Reinabelle; Smith, Robert E.

    2013-06-01

    Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h-1 Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ8 and Ωm (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ8(Ωm/0.25)0.57 = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed ns = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ8, Ωm, H0, wde and ∑mν become 30-80 per cent tighter than with CMB data alone, since our data break several parameter

  14. Extragalatic zoo. I. [New galaxies

    SciTech Connect

    Schorn, R.A.

    1988-01-01

    The characteristics of various types of extragalactic objects are described. Consideration is given to cD galaxies, D galaxies, N galaxies, Markarian galaxies, liners, starburst galaxies, and megamasers. Emphasis is also placed on the isolated extragalatic H I region; the isolated extragalatic H II region; primeval galaxies or photogalaxies; peculiar galaxies; Arp galaxies; interacting galaxies; ring galaxies; and polar-ring galaxies. Diagrams of these objects are provided.

  15. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  16. Crashing galaxies, cosmic fireworks

    SciTech Connect

    Keel, W.C.

    1989-01-01

    The study of binary systems is reviewed. The history of the study of interacting galaxies, the behavior of gas in binary systems, studies to identify the processes that occur when galaxies interact, and the relationship of Seyfert galaxies and quasars to binary systems are discussed. The development of an atlas of peculiar galaxies (Arp, 1966) and methods for modeling galaxy interactions are examined.

  17. Sombrero Galaxy (M104) in Infrared Light

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The razor sharp eye of the Hubble Space Telescope (HST) easily resolves the Sombrero galaxy, Messier 104 (M104). 50,000 light-years across, the galaxy is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. This rich system of globular clusters is estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. Similar to the clusters in the Milky Way, the ages range from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. The HST paired with the Spitzer infrared telescope, offers this striking composite capturing the magnificence of the Sombrero galaxy. In the Hubble view, the galaxy resembles a broad-rimmed Mexican hat, whereas in the Spitzer striking infrared view, the galaxy looks more like a bulls eye. The full view provided by Spitzer shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star forming regions. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy as well, where there is a huge black hole believed to be a billion times more massive than our Sun. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  18. Evidence for Evolution in the Galaxy Merger Rate

    NASA Astrophysics Data System (ADS)

    Franklin, Barbara E.; Windhorst, Rogier A.; Burkey, Jordan M.; Keel, William C.

    1993-12-01

    We use a set of four deep Cycle 1+2 fields with the HST Wide-Field Camera to constrain the rate of galaxy merging between the current epoch and approximately z=0.7. These fields were selected around weak radio sources not in rich or poor clusters so as to not bias these studies. Since most mergers occur between members of bound pairs, the merger rate is given by (half) the rate of disappearance of galaxy pairs. Using an objective criterion for pair membership, we find that more than 34% of galaxies in the magnitude range I=18-22 mag belong to pairs, while careful study of nearby comparison samples shows that only 7% of local galaxies belong to pairs. Hence, about 13% of the galaxy population has disappeared to merging in the cosmic epoch corresponding to this magnitude interval (or 0.1<= z<=0.7). This pair fraction is a lower limit, since correction for pairs in which one member falls below our detection threshold would raise the fraction of pair members with I=18---22 mag to about 50%. (we do not include physical system of higher multiplicity in these values). Hence, the number of galaxy pairs has dropped significantly between z ~ 0.7 and the current epoch. When using the best available I-band field galaxy redshift distributions, the HST pair-fraction grows with redshift as ~ (1+z)(3.0-3.5) , quite consistent with the expected evolution in the merger-rate from the decrease in comoving volume (~ (1+z)(3) ). This result has very significant implications for the interpretation of the ground-based galaxy counts (it explains the disappearance of faint blue galaxies), the cosmological evolution of faint radio sources and quasars (explains why these should indeed evolve as ~ (1+z)(3) ), the statistics of QSO companions, the galaxy content in distant clusters, and the merging history of a ``typical" galaxy. This work was supported by STScI grants GO-2405.*-87A and GO-3545.*-91A (to WCK and RAW) and in part through EPSCoR grant EHR-9108761 (to WCK).

  19. A catalog of low surface brightness galaxies - List II

    NASA Technical Reports Server (NTRS)

    Schombert, James M.; Bothun, Gregory D.; Schneider, Stephen E.; Mcgaugh, Stacy S.

    1992-01-01

    A list of galaxies characterized by low surface brightness (LSB) is presented which facilitates the recognition of galaxies with brightnesses close to that of the sky. A total of 198 objects and 140 objects are listed in the primary and secondary catalogs respectively, and LSB galaxies are examined by means of H I redshift distributions. LSB disk galaxies are shown to have similar sizes and masses as the high-surface-brightness counterparts, and ellipticals and SOs are rarely encountered. Many LSB spirals have stellarlike nuclei, and most of the galaxies in the present catalog are late-type galaxies in the Sc, Sm, and Im classes. The LSB region of observational parameter space is shown to encompass a spectrum of types as full as that of the Hubble sequence. It is suggested that studies of LSB galaxies can provide important data regarding the formation and star-formation history of all galaxies.

  20. Measuring ultraviolet extinction with GALEX in overlapping galaxies

    NASA Astrophysics Data System (ADS)

    Manning, Anna M.

    2011-01-01

    Dust in spiral galaxies is an all encompassing factor in star formation history, measurements of luminosity, and galaxy dynamics. To learn more about galaxy formation and the influence of dust, White & Keel 1992 formulated a direct method to estimate optical depth. In the past few years, with the aid of the Galaxy Zoo forum and its members, known as zooites, a scientifically acceptable number of galaxy pairs have been identified to create a full catalog for this particular research. The White & Keel 1992 method uses differential photometry which eliminates many of the errors that plague statistical techniques that rely on the internal structure of a galaxy to estimate optical depth. The method relies heavily on the symmetry of the galaxies that make up the pair. To fulfill the symmetry requirement of the ideal geometry, the most suitable pair consists of a foreground spiral backlit by an elliptical galaxy. As evidenced here, non-interacting visually symmetric galaxies pairs yield the best results. Observations at the WIYN telescope combined with exposures downloaded from the GALEX archive are used to estimate the optical depth in these pairs as outlined by White & Keel 1992 and additionally, to trace the star formation in UV detections. Two examples of extended dust far beyond the optical radius were observed and analyzed for extinction. In this sample of galaxies, the optical depth of each wavelength scaled to the B filter was generally constant across the wavelengths observed. The effects of clumpy dust structure in the spiral arms dominated the reddening law which likely resulted in an overestimate of the optical depth measurements.

  1. Galaxy-galaxy(-galaxy) lensing as a sensitive probe of galaxy evolution

    NASA Astrophysics Data System (ADS)

    Saghiha, H.; Hilbert, S.; Schneider, P.; Simon, P.

    2012-11-01

    Context. The gravitational lensing effect provides various ways to study the mass environment of galaxies. Aims: We investigate how galaxy-galaxy(-galaxy) lensing can be used to test models of galaxy formation and evolution. Methods: We consider two semi-analytic galaxy formation models based on the Millennium Run N-body simulation: the Durham model by Bower et al. (2006, MNRAS, 370, 645) and the Garching model by Guo et al. (2011, MNRAS, 413, 101). We generate mock lensing observations for the two models, and then employ Fast Fourier Transform methods to compute second- and third-order aperture statistics in the simulated fields for various galaxy samples. Results: We find that both models predict qualitatively similar aperture signals, but there are large quantitative differences. The Durham model predicts larger amplitudes in general. In both models, red galaxies exhibit stronger aperture signals than blue galaxies. Using these aperture measurements and assuming a linear deterministic bias model, we measure relative bias ratios of red and blue galaxy samples. We find that a linear deterministic bias is insufficient to describe the relative clustering of model galaxies below ten arcmin angular scales. Dividing galaxies into luminosity bins, the aperture signals decrease with decreasing luminosity for brighter galaxies, but increase again for fainter galaxies. This increase is likely an artifact due to too many faint satellite galaxies in massive group and cluster halos predicted by the models. Conclusions: Our study shows that galaxy-galaxy(-galaxy) lensing is a sensitive probe of galaxy evolution.

  2. Galaxy formation.

    PubMed

    Peebles, P J

    1998-01-01

    It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z approximately 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure formation, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure formation.

  3. Galaxy formation

    PubMed Central

    Peebles, P. J. E.

    1998-01-01

    It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z ∼ 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure formation, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure formation. PMID:9419326

  4. Shaping galaxy evolution with galaxy structure

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond

    A fundamental pursuit of astronomy is to understand galaxy evolution. The enormous scales and complex physics involved in this endeavor guarantees a never-ending journey that has enamored both astronomers and laymen alike. But despite the difficulty of this task, astronomers have still attempted to further this goal. Among of these astronomers is Edwin Hubble. His work, which includes the famous Hubble sequence, has immeasurably influenced our understanding of galaxy evolution. In this thesis, we present three works that continues Hubble's line of study by using galaxy structure to learn about galaxy evolution. First, we examine the dependence of galaxy quiescence on inner galactic structure with the AEGIS/ DEEP2 survey at 0.5In this thesis, we present three works that continues Hubble's line of study by using galaxy structure to learn about galaxy evolution. First, we examine the dependence of galaxy quiescence on inner galactic structure with the AEGIS/ DEEP2 survey at 0.5galaxies from quiescent galaxies. Our method indicates that the inner stellar mass is the most correlated parameter of quenching, implying that the process that quenches galaxies must also buildup their inner structure. Second, we explore the relationship between galactic bars and their host galaxies with Galaxy Zoo 2 at z˜0. The correlations of bar properties and galaxy properties are consistent with simulations of bar formation and evolution, indicating that bars affect their host galaxies. Finally, we investigate whether bars can drive supermassive black hole growth with data from Chandra and Galaxy Zoo: Hubble at 0.2galaxies to a matched sample of inactive, control galaxies shows that there is no statistically significant excess of bars in active hosts. Our result shows that bars are not the primary fueling mechanism of supermassive black hole

  5. A statistical study of merging galaxies: Theory and observations

    NASA Technical Reports Server (NTRS)

    Chatterjee, Tapan K.

    1990-01-01

    A study of the expected frequency of merging galaxies is conducted, using the impulsive approximation. Results indicate that if we consider mergers involving galaxy pairs without halos in a single crossing time or orbital period, the expected frequency of mergers is two orders of magnitude below the observed value for the present epoch. If we consider mergers involving several orbital periods or crossing times, the expected frequency goes up by an order of magnitude. Preliminary calculation indicate that if we consider galaxy mergers between pairs with massive halos, the merger is very much hastened.

  6. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  7. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Pérez-Fournon, I.; Balcells, M.; Moreno-Insertis, F.; Sánchez, F.

    2010-08-01

    Participants; Group photograph; Preface; Acknowledgements; 1. Galaxy formation and evolution: recent progress R. Ellis; 2. Galaxies at high redshift M. Dickinson; 3. High-redshift galaxies: the far-infrared and sub-millimeter view A. Franceschini; 4. Quasar absorption lines J. Bechtold; 5. Stellar population synthesis models at low and high redshift G. Bruzual A.; 6. Elliptical galaxies K. C. Freeman; 7. Disk galaxies K. C. Freeman; 8. Dark matter in disk galaxies K. C. Freeman.

  8. From Enigma to Tool: Gamma-Ray Burst Reveals Secrets of Host Galaxy

    NASA Astrophysics Data System (ADS)

    2001-05-01

    , astronomers debated whether the explosions were close, in our own Milky Way Galaxy, or far, in distant galaxies. In addition, a plethora of theories attempted to explain the bursts, but a lack of observational data prevented scientists from choosing among the theories. Optical and radio telescopes first spotted the "afterglows" from gamma- ray bursts in 1997. It was quickly determined that the explosions are occurring in very distant galaxies. Subsequent observations, most astronomers believe, have narrowed the theories down to two: either the explosions are the result of pairs of old, superdense neutron stars colliding with each other or are the death throes of young, very massive stars. "This burst in 1998 came from a region near the center of its host galaxy, where star birth is occuring at a rapid rate. This supports the theory that gamma-ray bursts come from the death explosions of very young, massive stars," said Kulkarni. The burst, known as GRB 980703, was detected by a satellite on July 3, 1998, and the VLA first observed it a day later. The astronomers continued to observe the object with the VLA at intervals over the next 1,000 days. This is the longest period over which a gamma-ray-burst afterglow ever has been observed; the previous record-holder was a burst in 1997 that was followed with the VLA for a period of 445 days. "The afterglow of the burst kept getting fainter with time, but we then noticed that the intensity of radio emission was leveling off. We realized that the burst afterglow was still fading, but what was remaining steady was radio emission from the galaxy itself," Berger said. This allowed the scientists to study the characteristics of the galaxy, and of the region within the galaxy where the burst occurred. They concluded that the gamma-ray burst occurred near the center of the galaxy in a region where the galaxy is experiencing its maximum amount of star formation. "If, as we believe, gamma-ray bursts come from the super-explosions of massive

  9. The FourStar Galaxy Evolution Survey (ZFOURGE): Ultraviolet to Far-infrared Catalogs, Medium-bandwidth Photometric Redshifts with Improved Accuracy, Stellar Masses, and Confirmation of Quiescent Galaxies to z ∼ 3.5

    NASA Astrophysics Data System (ADS)

    Straatman, Caroline M. S.; Spitler, Lee R.; Quadri, Ryan F.; Labbé, Ivo; Glazebrook, Karl; Persson, S. Eric; Papovich, Casey; Tran, Kim-Vy H.; Brammer, Gabriel B.; Cowley, Michael; Tomczak, Adam; Nanayakkara, Themiya; Alcorn, Leo; Allen, Rebecca; Broussard, Adam; van Dokkum, Pieter; Forrest, Ben; van Houdt, Josha; Kacprzak, Glenn G.; Kawinwanichakij, Lalitwadee; Kelson, Daniel D.; Lee, Janice; McCarthy, Patrick J.; Mehrtens, Nicola; Monson, Andrew; Murphy, David; Rees, Glen; Tilvi, Vithal; Whitaker, Katherine E.

    2016-10-01

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of 400 arcmin2 in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising >70,000 galaxies, selected from ultradeep K s -band detection images (25.5–26.5 AB mag, 5σ, total), and >80% complete to K s < 25.3–25.9 AB. We use 5 near-IR medium-bandwidth filters (J 1, J 2, J 3, H s , H l ) as well as broad-band K s at 1.05–2.16 μm to 25–26 AB at a seeing of ∼0.″5. Each field has ancillary imaging in 26–40 filters at 0.3–8 μm. We derive photometric redshifts and stellar population properties. Comparing with spectroscopic redshifts indicates a photometric redshift uncertainty σ z = 0.010, 0.009, and 0.011 in CDFS, COSMOS, and UDS. As spectroscopic samples are often biased toward bright and blue sources, we also inspect the photometric redshift differences between close pairs of galaxies, finding σ z,pairs = 0.01–0.02 at 1 < z < 2.5. We quantify how σ z,pairs depends on redshift, magnitude, spectral energy distribution type, and the inclusion of FourStar medium bands. σ z,pairs is smallest for bright, blue star-forming samples, while red star-forming galaxies have the worst σ z,pairs. Including FourStar medium bands reduces σ z,pairs by 50% at 1.5 < z < 2.5. We calculate star formation rates (SFRs) based on ultraviolet and ultradeep far-IR Spitzer/MIPS and Herschel/PACS data. We derive rest-frame U ‑ V and V ‑ J colors, and illustrate how these correlate with specific SFR and dust emission to z = 3.5. We confirm the existence of quiescent galaxies at z ∼ 3, demonstrating their SFRs are suppressed by > ×15. This paper contains data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas observatory, Chile

  10. THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z {approx_equal} 2-3 GALAXIES

    SciTech Connect

    Steidel, Charles C.; Bogosavljevic, Milan; Rudie, Gwen C.; Erb, Dawn K.; Shapley, Alice E.; Pettini, Max; Reddy, Naveen; Rakic, Olivera

    2010-07-01

    We present new results on the kinematics and spatial distribution of metal-enriched gas within {approx}125 kpc of star-forming ('Lyman break') galaxies at redshifts 2 {approx_lt} z {approx_lt} 3. In particular, we focus on constraints provided by the rest-frame far-ultraviolet (far-UV) spectra of faint galaxies, and demonstrate how galaxy spectra can be used to obtain key spatial and spectral information more efficiently than possible with QSO sightlines. Using a sample of 89 galaxies with (z) = 2.3 {+-} 0.3 and with both rest-frame far-UV and H{alpha} spectra, we re-calibrate the measurement of accurate galaxy systemic redshifts using only survey-quality rest-UV spectra. We use the velocity-calibrated sample to investigate the kinematics of the galaxy-scale outflows via the strong interstellar (IS) absorption lines and Ly{alpha} emission (when present), as well as their dependence on other physical properties of the galaxies. We construct a sample of 512 close (1''-15'') angular pairs of z {approx} 2-3 galaxies with redshift differences indicating a lack of physical association. Sightlines to the background galaxies provide new information on the spatial distribution of circumgalactic gas surrounding the foreground galaxies. The close pairs sample galactocentric impact parameters 3-125 kpc (physical) at (z) = 2.2, providing for the first time a robust map of cool gas as a function of galactocentric distance for a well-characterized population of galaxies. We propose a simple model of circumgalactic gas that simultaneously matches the kinematics, depth, and profile shape of IS absorption and Ly{alpha} emission lines, as well as the observed variation of absorption line strength (H I and several metallic species) versus galactocentric impact parameter. Within the model, cool gas is distributed symmetrically around every galaxy, accelerating radially outward with v{sub out}(r) increasing with r (i.e., the highest velocities are located at the largest galactocentric

  11. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  12. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  13. A Compact Group of Galaxies at z = 2.48 Hosting an AGN-driven Outflow

    NASA Astrophysics Data System (ADS)

    Shih, Hsin-Yi; Stockton, Alan

    2015-12-01

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 1011M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The work is also based, in part, on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  14. Galaxy interactions and strength of nuclear activity

    NASA Technical Reports Server (NTRS)

    Simkin, S. M.

    1990-01-01

    Analysis of data in the literature for differential velocities and projected separations of nearby Seyfert galaxies with possible companions shows a clear difference in projected separations between type 1's and type 2's. This kinematic difference between the two activity classes reinforces other independent evidence that their different nuclear characteristics are related to a non-nuclear physical distinction between the two classes. The differential velocities and projected separations of the galaxy pairs in this sample yield mean galaxy masses, sizes, and mass to light ratios which are consistent with those found by the statistical methods of Karachentsev. Although the galaxy sample discussed here is too small and too poorly defined to provide robust support for these conclusions, the results strongly suggest that nuclear activity in Seyfert galaxies is associated with gravitational perturbations from companion galaxies, and that there are physical distinctions between the host companions of Seyfert 1 and Seyfert 2 nuclei which may depend both on the environment and the structure of the host galaxy itself.

  15. The role of interactions in galaxy evolution: A new perspective from the CALIFA and MaNGA Integral Field Spectroscopic surveys.

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; Sanchez, S. F.; Califa Collaboration

    2016-06-01

    Interactions and mergers have been playing a paramount role to understand how galaxies evolve. In recent years integral field spectroscopic (IFS) observations have become routinely allowing researchers to conduct large IFS surveys. In this context, these surveys are providing a new observational scenario to probe the properties of galaxies at different stages of the interaction —from close pairs to post-merger galaxies. Even more, these surveys also include homogeneous observations of non-interacting galaxies which in turns allows to distinguish the processes induce by secular evolution from those driven by interactions. In this talk, We review the studies of interacting studies from the CALIFA survey. They consider from the thorough analysis of a single interactive systems (e.g., the Mice, Wild et al. 2014) to the the statistical study of physical properties of a large sample of interacting/merging galaxies such as their internal structure via their stellar and gas line-of-sight kinematic maps (Barrera-Ballesteros et al. 2015a) or the spatial distribution of the star-forming gas in these galaxies (Barrera-Ballesteros et al. 2015b). Then we present some of the on-going studies within the MaNGA survey. Due to its statistical power (sample size ~10000 objects), this survey will allow us to probe the properties of galaxies in a wide range of the interaction-parameter space. This in turn provides a unique view on the key parameters that affect the internal structure and properties of galaxies during the interaction and subsequent merger.

  16. Oxygen abundance maps of CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Zinchenko, I. A.; Pilyugin, L. S.; Grebel, E. K.; Sánchez, S. F.; Vílchez, J. M.

    2016-11-01

    We construct maps of the oxygen abundance distribution across the discs of 88 galaxies using Calar Alto Legacy Integral Field Area survey (CALIFA) Data Release 2 (DR2) spectra. The position of the centre of a galaxy (coordinates on the plate) was also taken from the CALIFA DR2. The galaxy inclination, the position angle of the major axis, and the optical radius were determined from the analysis of the surface brightnesses in the Sloan Digital Sky Survey (SDSS) g and r bands of the photometric maps of SDSS Data Release 9. We explore the global azimuthal abundance asymmetry in the discs of the CALIFA galaxies and the presence of a break in the radial oxygen abundance distribution. We found that there is no significant global azimuthal asymmetry for our sample of galaxies, i.e. the asymmetry is small, usually lower than 0.05 dex. The scatter in oxygen abundances around the abundance gradient has a comparable value, ≲0.05 dex. A significant (possibly dominant) fraction of the asymmetry can be attributed to the uncertainties in the geometrical parameters of these galaxies. There is evidence for a flattening of the radial abundance gradient in the central part of 18 galaxies. We also estimated the geometric parameters (coordinates of the centre, the galaxy inclination and the position angle of the major axis) of our galaxies from the analysis of the abundance map. The photometry-map-based and the abundance-map-based geometrical parameters are relatively close to each other for the majority of the galaxies but the discrepancy is large for a few galaxies with a flat radial abundance gradient.

  17. Multicolor surface photometry of powerful radio galaxies

    SciTech Connect

    Smith, E.P.

    1988-01-01

    CCD images of 72 powerful radio galaxies have been obtained with the KPNO 2.1m, 4m and CTIO 4m telescopes utilizing B, V, and R filters to study the colors and other photometric properties of these large systems. The GASP software package was used for the data reduction and detailed 2-d surface photometry. In addition, image modeling techniques were employed to investigate the contributions to galaxy properties by point-like nuclear sources seen in some of these galaxies. It was found that powerful radio galaxies show a much higher frequency than normal bright ellipticals of having optical morphologies which deviate from elliptical symmetry. Approximately 50% of the sample exhibit non-elliptically symmetric isophotes. These prominent distortions are present at surface brightness levels of {le} 25 V mag/(arc sec){sup 2}. In addition, a large fraction ({approximately}50%) of the remaining radio galaxies without the aforementioned morphological peculiarities have large isophotal twists ({Delta}P.A. {ge} 10{degree}) or ellipticity gradients. Significantly {approximately}50% of the galaxies with strong optical emission lines in their spectra display optically peculiar structures very similar to those found by Toomre and Toomre (1972) in their simulations of interacting disk galaxies. The galaxies with weak emission lines in their spectra are less frequently ({approximately}10%) distorted from elliptical shape. Those that are exhibit features like isophote twists, double nuclei and close companion galaxies embedded in the radio galaxy optical isophotes. The (B-V) colors of many of the powerful radio galaxies with strong emission lines are blue relative to normal giant ellipticals at the same redshift.

  18. Galaxy And Mass Assembly (GAMA): growing up in a bad neighbourhood - how do low-mass galaxies become passive?

    NASA Astrophysics Data System (ADS)

    Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Alpaslan, M.; Baldry, I. K.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cluver, M. E.; Holwerda, B. W.; Hopkins, A. M.; Lara-López, M. A.; Mahajan, S.; Moffett, A. J.; Owers, M. S.; Phillipps, S.

    2016-02-01

    Both theoretical predictions and observations of the very nearby Universe suggest that low-mass galaxies(log10[M*/M⊙] < 9.5) are likely to remain star-forming unless they are affected by their local environment. To test this premise, we compare and contrast the local environment of both passive and star-forming galaxies as a function of stellar mass, using the Galaxy and Mass Assembly survey. We find that passive fractions are higher in both interacting pair and group galaxies than the field at all stellar masses, and that this effect is most apparent in the lowest mass galaxies. We also find that essentially all passive log10[M*/M⊙] < 8.5 galaxies are found in pair/group environments, suggesting that local interactions with a more massive neighbour cause them to cease forming new stars. We find that the effects of immediate environment (local galaxy-galaxy interactions) in forming passive systems increase with decreasing stellar mass, and highlight that this is potentially due to increasing interaction time-scales giving sufficient time for the galaxy to become passive via starvation. We then present a simplistic model to test this premise, and show that given our speculative assumptions, it is consistent with our observed results.

  19. SAMI Galaxy Survey: Spectrally Dissecting 3400 Galaxies By the Dozen

    NASA Astrophysics Data System (ADS)

    Cecil, Gerald N.; Croom, S.; The SAMI Galaxy Survey Team

    2014-01-01

    More than 440 mapped, less than 3000 to go in the Sydney-AAO Multi-object IFU (SAMI) Galaxy Survey! SAMI uses novel, photonic fused-optical fiber “hexabundles” that were developed successfully at The University of Sydney and the Australian Astronomical Observatory AAO), with support from the Australian Research Council Centre of Excellence for All-Sky Astrophysics (CAASTRO). The SAMI Galaxy Survey, led by Assoc. Prof. Croom, is backed by an international team. This spectro-bolometric survey mitigates against “aperture effects” that may mislead when stacking single-fiber galaxy spectra. We seek to answer questions such as “what is the physical role of environment in galaxy evolution? How is stellar mass growth and angular momentum development related in galaxies? How does gas get into and out of galaxies, and how do such flows drive star formation?” SAMI maps stellar and gas properties with 13 integral-field units (IFU) plugged onto a dozen galaxies over the 1° field of the AAT prime-focus corrector. 78% of each bundle's area is filled by sixty-one 1.6-arcsec diameter fibers that are packed closely into concentric circles then their etched, thinned cladding is fused without deforming their cores. The fiber hexabundles route to the bench-mounted AAOmega double-beam spectrograph to cover simultaneously 373-570 nm at R=1730 and 620-735 nm at R=4500. Full spatial resolution of the observing site is recovered by dithered exposures totaling 3.5 hours per field. Target stellar masses generally exceed 108 M⊙, and span a range of environments: ˜650 are within clusters of virial mass 1014-15 M⊙ at 0.03 < z < 0.06, the rest are in the z < 0.1 field with extensive frequency data ancillary to the GAMA Survey. We display some key early results of major science themes being addressed by the SAMI survey team, from rotation curve dependence on group halo mass, through galaxy winds and AGN feedback mechanisms, to oxygen abundance gradients, kinematic decomposition

  20. The structure and evolution of galaxies

    NASA Astrophysics Data System (ADS)

    Martini, Paul

    -infrared and visible-wavelength data combined provide essentially complete wavelength coverage over the 0.3mum--2.5mum range in 9 filters, the equivalent of a low resolution spectrum of each galaxy in this survey. This database includes a relatively large number of Extremely Red Objects, which have spectral energy distributions suggestive of galaxies at z ˜ 1. Galaxy template fits to these objects suggest an equal mix of old elliptical galaxies and young, dusty starbusts. This number of ellipticals provides further support of passive galaxy evolution since z ˜ 1. However the presence of so many dusty starburst galaxies, several with close companions, also shows that many galaxies were still assembling and forming large numbers of stars at this epoch. Recent studies have shown that nearly all galaxies today, including our own, have supermassive black holes at their center that are proportional in mass to the host galaxy spheroid. This result suggests an intimate relationship between the formation and evolution of galaxies and their central black holes. I have derived how upcoming measurements of quasar clustering can determine the characteristic lifetime of quasars, and therefore a timescale for the optically-luminous phase of black hole growth. The quasar lifetime will show if black holes acquired most of their mass during an optically bright quasar phase, or if most of the growth of supermassive black holes occurred during more quiescent, steady accretion over the lifetime of the universe.

  1. Pairing forces in nuclei

    SciTech Connect

    Chasman, R.R.

    1996-12-31

    In this contribution, the author mentions some features of pairing forces that are unique to nuclei and cover some areas of major interest in nuclear structure research, that involve pairing. At the level of most nuclear structure studies, nuclei are treated as consisting of two kinds of fermions (protons and neutrons) in a valence space with rather few levels. These features give rise to unique aspects of pairing forces in nuclei: (1) n-p pairing in T = 0 as well as the usual T = 1 pairing that is characteristic of like fermions; (2) a need to correct pairing calculations for the (1/N) effects that can typically be neglected in superconducting solids. An issue of current concern is the nature of the pairing interaction: several recent studies suggest a need for a density dependent form of the pairing interaction. There is a good deal of feedback between the questions of accurate calculations of pairing interactions and the form and magnitude of the pairing interaction. Finally, the authors discuss some many-body wave functions that are a generalization of the BCS wave function form, and apply them to a calculation of energy level spacings in superdeformed rotational bands.

  2. Dynamical analysis of the cluster pair: A3407 + A3408

    NASA Astrophysics Data System (ADS)

    Nascimento, R. S.; Ribeiro, A. L. B.; Trevisan, M.; Carrasco, E. R.; Plana, H.; Dupke, R.

    2016-08-01

    We carried out a dynamical study of the galaxy cluster pair A3407 and A3408 based on a spectroscopic survey obtained with the 4 metre Blanco telescope at the Cerro Tololo Interamerican Observatory, plus 6dF data, and ROSAT All-Sky Survey. The sample consists of 122 member galaxies brighter than mR = 20. Our main goal is to probe the galaxy dynamics in this field and verify if the sample constitutes a single galaxy system or corresponds to an ongoing merging process. Statistical tests were applied to clusters members showing that both the composite system A3407 + A3408 as well as each individual cluster have Gaussian velocity distribution. A velocity gradient of ˜847 ± 114 km s- 1 was identified around the principal axis of the projected distribution of galaxies, indicating that the global field may be rotating. Applying the KMM algorithm to the distribution of galaxies, we found that the solution with two clusters is better than the single unit solution at the 99 per cent cl. This is consistent with the X-ray distribution around this field, which shows no common X-ray halo involving A3407 and A3408. We also estimated virial masses and applied a two-body model to probe the dynamics of the pair. The more likely scenario is that in which the pair is gravitationally bound and probably experiences a collapse phase, with the cluster cores crossing in less than ˜1 h-1 Gyr, a pre-merger scenario. The complex X-ray morphology, the gas temperature, and some signs of galaxy evolution in A3408 suggest a post-merger scenario, with cores having crossed each other ˜1.65 h-1 Gyr ago, as an alternative solution.

  3. Tracing kinematic (mis)alignments in CALIFA merging galaxies. Stellar and ionized gas kinematic orientations at every merger stage

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; García-Lorenzo, B.; Falcón-Barroso, J.; van de Ven, G.; Lyubenova, M.; Wild, V.; Méndez-Abreu, J.; Sánchez, S. F.; Marquez, I.; Masegosa, J.; Monreal-Ibero, A.; Ziegler, B.; del Olmo, A.; Verdes-Montenegro, L.; García-Benito, R.; Husemann, B.; Mast, D.; Kehrig, C.; Iglesias-Paramo, J.; Marino, R. A.; Aguerri, J. A. L.; Walcher, C. J.; Vílchez, J. M.; Bomans, D. J.; Cortijo-Ferrero, C.; González Delgado, R. M.; Bland-Hawthorn, J.; McIntosh, D. H.; Bekeraitė, S.

    2015-10-01

    We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. In order to distinguish kinematic properties caused by a merger event from those driven by internal processes, we compare our galaxies with a control sample of 80 non-interacting galaxies. We measure for both the stellar and the ionized gas components the major (projected) kinematic position angles (PAkin, approaching and receding) directly from the velocity distributions with no assumptions on the internal motions. This method also allow us to derive the deviations of the kinematic PAs from a straight line (δPAkin). We find that around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. In particular, we observe those misalignments in galaxies with morphological signatures of interaction. On the other hand, thelevel of alignment between the approaching and receding sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the kinematic PA orientation from a straight line in the stellar component measured by δPAkin are large for both samples. However, for a large fraction of interacting galaxies the ionized gas δPAkin is larger than the typical values derived from isolated galaxies (48%), indicating that this parameter is a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42% (28/66) of the interacting galaxies have misalignments larger than 16°, compared to 10% from the control sample. Our results show the impact of interactions in the motion of stellar and ionized gas as well as the wide the variety of their spatially resolved kinematic distributions. This study also provides a local

  4. Galaxy groups

    SciTech Connect

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ⊙} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of Ω{sub matter}∼0.15 in a flat topology, with a 68% probability of being less than 0.44.

  5. The origin of galaxies and clusters of galaxies.

    PubMed

    Peebles, P J

    1984-06-29

    Debate on how galaxies and clusters of galaxies formed has reached an interesting stage at which one can find arguments for quite different scenarios. The galaxy distribution has a complex "frothy" character that could be the fossil of a network of protoclusters or pancakes that produced galaxies. However, there are galaxies like our own that seem never to have been in a protocluster but are physically similar to the galaxies in dense clusters. Some clues to be assessed in resolving this dilemma are the possible existence of galaxy filaments, the relative ages of galaxies and clusters of galaxies, and the continuity between cluster and field galaxies and between galaxies and clusters of galaxies.

  6. [Closing diastemas].

    PubMed

    Vieira, L C; Pereira, J C; Coradazzi, J L; Francischone, C E

    1990-01-01

    The authors describe a clinical case of closing upper central incisives diastema, reconstructiva of a conoid upper lateral and the rechaping of an upper canine to a lateral incisive. The material used was composite resin.

  7. Matched-pair classification

    SciTech Connect

    Theiler, James P

    2009-01-01

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  8. Deep MUSE observations in the HDFS. Morpho-kinematics of distant star-forming galaxies down to 108M⊙

    NASA Astrophysics Data System (ADS)

    Contini, T.; Epinat, B.; Bouché, N.; Brinchmann, J.; Boogaard, L. A.; Ventou, E.; Bacon, R.; Richard, J.; Weilbacher, P. M.; Wisotzki, L.; Krajnović, D.; Vielfaure, J.-B.; Emsellem, E.; Finley, H.; Inami, H.; Schaye, J.; Swinbank, M.; Guérou, A.; Martinsson, T.; Michel-Dansac, L.; Schroetter, I.; Shirazi, M.; Soucail, G.

    2016-06-01

    Aims: Whereas the evolution of gas kinematics of massive galaxies is now relatively well established up to redshift z ~ 3, little is known about the kinematics of lower mass (M⋆≤ 1010M⊙) galaxies. We use MUSE, a powerful wide-field, optical integral-field spectrograph (IFS) recently mounted on the VLT, to characterize this galaxy population at intermediate redshift. Methods: We made use of the deepest MUSE observations performed so far on the Hubble Deep Field South (HDFS). This data cube, resulting from 27 h of integration time, covers a one arcmin2 field of view at an unprecedented depth (with a 1σ emission-line surface brightness limit of 1 × 10-19 erg s-1 cm-2 arcsec-2) and a final spatial resolution of ≈0.7''. We identified a sample of 28 resolved emission-line galaxies, extending over an area that is at least twice the seeing disk, spread over a redshift interval of 0.2 galaxies are at z ~ 0.3 - 0.7, which is a redshift range poorly studied so far with IFS kinematics. We used the public HST images and multiband photometry over the HDFS to constrain the stellar mass and star formation rate (SFR) of the galaxies and to perform a morphological analysis using Galfit, providing estimates of the disk inclination, disk scale length, and position angle of the major axis. We derived the resolved ionized gas properties of these galaxies from the MUSE data and model the disk (both in 2D and in 3D with GalPaK3D) to retrieve their intrinsic gas kinematics, including the maximum rotation velocity and velocity dispersion. Results: We build a sample of resolved emission-line galaxies of much lower stellar mass and SFR (by ~1 - 2 orders of magnitude) than previous IFS surveys. The gas kinematics of most of the spatially resolved MUSE-HDFS galaxies is consistent with disk-like rotation, but about 20% have velocity dispersions that are larger than the rotation velocities and 30% are part of a close pair and/or show clear signs of recent

  9. Paired watershed study design

    SciTech Connect

    Clausen, J.C.; Spooner, J.

    1993-09-01

    The purpose of the fact sheet is to describe the paired watershed approach for conducting nonpoint source (NPS) water quality studies. The basic approach requires a minimum of two watersheds - control and treatment - and two periods of study - calibration and treatment. The basis of the paired watershed approach is that there is a quantifiable relationship between paired water quality data for the two watersheds, and that this relationship is valid until a major change is made in one of the watersheds.

  10. Pairing Beyond BCS

    NASA Astrophysics Data System (ADS)

    Volya, Alexander; Zelevinsky, Vladimir

    2013-01-01

    We concentrate on the specifics of the nuclear pairing problem from the standpoint of the BCS approach. We consider the properties of nuclear pairing which usually are not discussed in standard texts: how good is the BCS theory in nuclear context compared to the exact large-scale diagonalization, whether it can be improved by the particle number conservation, how to mark the phase transition regions in a mesoscopic system like a nucleus, how may effective many-body forces influence the formation and structure of the pairing condensate, what effect the decay instability has on the paired nuclear structure, etc.

  11. Galaxy-galaxy lensing by non-spherical haloes - I. Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Howell, Paul J.; Brainerd, Tereasa G.

    2010-09-01

    We use a series of Monte Carlo simulations to investigate the theory of galaxy-galaxy lensing by non-spherical dark matter haloes. The simulations include a careful accounting of the effects of multiple deflections on the galaxy-galaxy lensing signal. In a typical observational data set where the mean tangential shear of sources with redshifts zs ~= 0.6 is measured with respect to the observed symmetry axes of foreground galaxies with redshifts zl ~= 0.3, we find that the signature of anisotropic galaxy-galaxy lensing differs substantially from the simple expectation that one would have in the absence of multiple deflections. In general, the observed ratio of the mean tangential shears, γ+(θ)/γ-(θ), is strongly suppressed compared to the function that one would measure if the intrinsic symmetry axes of the foreground galaxies were known. Depending upon the characteristic masses of the lenses, the observed ratio of the mean tangential shears may be consistent with an isotropic signal (despite the fact that the lenses are non-spherical), or it may even be reversed from the expected signal (i.e. the mean tangential shear for sources close to the observed minor axes of the lenses may exceed the mean tangential shear for sources close to the observed major axes of the lenses). These effects are caused primarily by the fact that the images of the lens galaxies have, themselves, been lensed and therefore the observed symmetry axes of the lens galaxies differ from their intrinsic symmetry axes. We show that the effects of lensing of the foreground galaxies on the observed function γ+(θ)/γ-(θ) cannot be eliminated simply by the rejection of foreground galaxies with very small image ellipticities nor by simply focusing the analysis on sources that are located very close to the observed symmetry axes of the foreground galaxies. We conclude that any attempt to use a measurement of γ+(θ)/γ-(θ) to constrain the shapes of dark matter galaxy haloes must include Monte

  12. Observationally Constrained Metal Signatures of Galaxy Evolution in the Stars and Gas of Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Corlies, Lauren N.

    The halos of galaxies - consisting of gas, stars, and satellite galaxies - are formed and shaped by the most fundamental processes: hierarchical merging and the flow of gas into and out of galaxies. While these processes are hard to disentangle, metals are tied to the gas that fuels star formation and entrained in the wind that the deaths of these stars generate. As such, they can act as important indicators of the star formation, the chemical enrichment, and the outflow histories of galaxies. Thus, this thesis aims to take advantage of such metal signatures in the stars and gas to place observational constraints on current theories of galaxy evolution as implemented in cosmological simulations. The first two chapters consider the metallicities of stars in the stellar halo of the Milky Way and its surviving satellite dwarf galaxies. Chapter 2 pairs an N-body simulation with a semi-analytic model for supernova-driven winds to examine the early environment of a Milky Way-like galaxy. At z = 10, progenitors of surviving z = 0 satellite galaxies are found to sit preferentially on the outskirts of progenitor halos of the eventual main halo. The consequence of these positions is that main halo progenitors are found to more effectively cross-pollute each other than satellite progenitors. Thus, inhomogeneous cross-pollution as a result of different high-z spatial locations of different progenitors can help to explain observed differences in abundance patterns measured today. Chapter 3 expands this work into the analysis of a cosmological, hydrodynamical simulation of dwarf galaxies in the early universe. We find that simple assumptions for modeling the extent of supernova-driven winds used in Chapter 2 agree well with the simulation whereas the presence of inhomogeneous mixing in the simulation has a large effect on the stellar metallicities. Furthermore, the star-forming halos show both bursty and continuous SFHs, two scenarios proposed by stellar metallicity data

  13. Record-breaking ancient galaxy clusters

    NASA Astrophysics Data System (ADS)

    2003-12-01

    A tale of two record-breaking clusters hi-res Size hi-res: 768 kb Credits: for RDCS1252: NASA, ESA, J.Blakeslee (Johns Hopkins Univ.), M.Postman (Space Telescope Science Inst.) and P.Rosati, Chris Lidman & Ricardo Demarco (European Southern Observ.) for TNJ1338: NASA, ESA, G.Miley (Leiden Observ.) and R.Overzier (Leiden Obs) A tale of two record-breaking clusters Looking back in time to when the universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured these revealing images of two galaxy clusters. The image at left, which is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. The image reveals the core of the cluster and is part of a much larger mosaic of the entire cluster. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The cluster probably contains many thousands of galaxies, but only about 50 can be seen in this image. The full mosaic (heic0313d) reveals several hundred cluster members. Many of the other galaxies in the image, including several of the blue galaxies, are foreground or background galaxies. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002

  14. THE STRUCTURE OF 2MASS GALAXY CLUSTERS

    SciTech Connect

    Blackburne, Jeffrey A.; Kochanek, Christopher S.

    2012-01-01

    We use a sample of galaxies from the Two Micron All Sky Survey Extended Source Catalog to refine a matched filter method of finding galaxy clusters that takes into account each galaxy's position, magnitude, and redshift if available. The matched filter postulates a radial density profile, luminosity function, and line-of-sight velocity distribution for cluster galaxies. We use this method to search for clusters in the galaxy catalog, which is complete to an extinction-corrected K-band magnitude of 13.25 and has spectroscopic redshifts for roughly 40% of the galaxies, including nearly all brighter than K = 11.25. We then use a stacking analysis to determine the average luminosity function, radial distribution, and velocity distribution of cluster galaxies in several richness classes, and use the results to update the parameters of the matched filter before repeating the cluster search. We also investigate the correlations between a cluster's richness and its velocity dispersion and core radius using these relations to refine priors that are applied during the cluster search process. After the second cluster search iteration, we repeat the stacking analysis. We find a cluster galaxy luminosity function that fits a Schechter form, with parameters M{sub K*} - 5log h = -23.64 {+-} 0.04 and {alpha} = -1.07 {+-} 0.03. We can achieve a slightly better fit to our luminosity function by adding a Gaussian component on the bright end to represent the brightest cluster galaxy population. The radial number density profile of galaxies closely matches a projected Navarro-Frenk-White profile at intermediate radii, with deviations at small radii due to well-known cluster centering issues and outside the virial radius due to correlated structure. The velocity distributions are Gaussian in shape, with velocity dispersions that correlate strongly with richness.

  15. HOST GALAXIES OF X-SHAPED RADIO SOURCES

    SciTech Connect

    Springmann, A.; Cheung, C.

    2007-01-01

    Most radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, active galaxies that emit much of their radiation at radio wavelengths. Within each radio galaxy, an AGN powers a pair of collimated jets of relativistic particles, forming a pair of giant lobes at the end of the jets and thus giving a characteristic double-lobed appearance. A particular class of radio galaxies has an “X”-or winged-shaped morphology: in these, two pairs of lobes appear to originate from the galactic center, producing a distinctive X-shape. Two main mechanisms have been proposed to explain the X-shape morphology: one being a realignment of the black hole within the AGN and the second positing that the radio jets are expanding into an asymmetric medium, causing backflow and producing secondary wings. By analyzing radio host galaxy shapes, the distribution of the stellar mass is compared to the differing model expectations regarding the distribution of the surrounding gas and stellar material about the AGN. Results show elliptical host galaxies with an orthogonal offset between the semi-major axis of the host galaxy and the secondary radio wings, which lends support to the hydrodynamical model. However, results also show circular host galaxies with radio wings, making the realignment scenario a more likely model to describe the formation of these X-shaped radio sources.

  16. Host Galaxies of X-Shaped Extragalactic Radio Sources

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Cheung, C. C.

    2007-05-01

    The majority of radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, the active galaxies emitting much of their radiation at radio wavelengths. Classical double-lobed radio galaxies are characterized by a single pair of "active" radio lobes. A small subset show an additional pair of lower surface brightness 'wings' of emission, thus forming an overall winged or X-shaped appearance. Two competing mechanisms have been proposed to explain the "winged" morphology. One model posits that these are the remnants left over from a relatively recent merger of a binary supermassive black hole system. Others have argued that they result naturally from strong backflow in a radio jet cocoon expanding into an asymmetric medium. We used available Sloan Digital Sky Survey r-band images of 11 X-shaped sources to measure the host galaxy ellipticities. By analyzing the host galaxy shapes, we trace the surrounding gas distribution. The radio morphologies are compared to the host galaxy parameters to analogize between differing model expectations. This work was funded by the Department of Energy's Student Undergraduate Laboratory Internship Program and the Stanford Linear Accelerator Center.

  17. The environments of poor clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bliton, Mark Alan

    Poor clusters of galaxies are fundamental cosmological structures, but have received relatively little attention compared to rich, Abell clusters. In order to fully understand galaxy clustering, we must examine galaxy associations of all masses and richness levels. We have therefore undertaken an X-ray, optical, and radio investigation of the environments of poor clusters, in order to understand how their galaxies, radio sources, and intracluster media influence and interact with one another. To examine the global properties of poor clusters as observed in these three wavelength regimes, we have utilized three major sky surveys: the ROSAT All-Sky Survey, the Digitized Sky Survey, and the NRAO VLA Sky Survey. For the purposes of this study, we construct a complete, volume-limited sample of 306 poor clusters in the redshift range 0.01--0.03. We compute the X-ray luminosity function (XLF) of poor clusters and compare to XLFs of nearby, rich, Abell clusters. We also compute the bivariate radio luminosity function (BRLF), which is the fraction of radio-loud galaxies of a given optical magnitude. Higher richness clusters produce increased AGN activity in M* galaxies. We find that only clusters with an elliptical as their dominant galaxy possess an ICM. This implies that the presence of a dominant elliptical at the center of a poor cluster is more closely linked to the presence of an ICM than the overall morphological mix of the cluster galaxies. We also find a strong anti-correlation between richness and the fraction of starburst radio galaxies in poor clusters. There may be two factors which contribute to this anti-correlation. For richer clusters, the ICM density may be sufficiently strong that it can strip gas from starforming galaxies, thereby reducing the level of star formation in richer systems. Conversely, the poorest clusters contain higher galaxy compactness, which results in smaller nearest-neighbor distances between galaxies. These smaller galaxy separations

  18. Pair contact process with diffusion of pairs

    NASA Astrophysics Data System (ADS)

    Santos, F. L.; Dickman, Ronald; Fulco, U. L.

    2011-03-01

    The pair contact process (PCP) is a nonequilibrium stochastic model which, like the basic contact process (CP), exhibits a phase transition to an absorbing state. The two models belong to the directed percolation (DP) universality class, despite the fact that the PCP possesses infinitely many absorbing configurations whereas the CP has but one. The critical behavior of the PCP with hopping by particles (PCPD) is as yet unclear. Here we study a version of the PCP in which nearest-neighbor particle pairs can hop but individual particles cannot. Using quasistationary simulations for three values of the diffusion probability (D = 0.1, 0.5 and 0.9), we find convincing evidence of DP-like critical behavior.

  19. Cooper Pairs in Insulators?!

    SciTech Connect

    James Valles

    2008-07-23

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  20. Cooper Pairs in Insulators?!

    ScienceCinema

    James Valles

    2016-07-12

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  1. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  2. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  3. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    SciTech Connect

    Park, Youngsoo; Krause, Elisabeth; Dodelson, Scott; Jain, Bhuvnesh; Amara, Adam; Becker, Matt; Bridle, Sarah; Clampitt, Joseph; Crocce, Martin; Honscheid, Klaus; Gaztanaga, Enrique; Sanchez, Carles; Wechsler, Risa

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  4. Revealing the nature of star forming blue early-type galaxies at low redshift

    NASA Astrophysics Data System (ADS)

    George, Koshy; Zingade, Kshama

    2015-11-01

    Context. Star forming early-type galaxies with blue optical colours at low redshift can be used to test our current understanding of galaxy formation and evolution. Aims: We want to reveal the fuel and triggering mechanism for star formation in these otherwise passively evolving red and dead stellar systems. Methods: We undertook an optical and ultraviolet study of 55 star forming blue early-type galaxies, searching for signatures of recent interactions that could be driving the molecular gas into the galaxy and potentially triggering the star formation. Results: We report here our results on star forming blue early-type galaxies with tidal trails and in close proximity to neighbouring galaxies that are evidence of ongoing or recent interactions between galaxies. There are 12 galaxies with close companions with similar redshifts, among which two galaxies are having ongoing interactions that potentially trigger the star formation. Two galaxies show a jet feature that could be due to the complete tidal disruption of the companion galaxy. The interacting galaxies have high star formation rates and very blue optical colours. Galaxies with no companion could have undergone a minor merger in the recent past. Conclusions: The recent or ongoing interaction with a gas-rich neighbouring galaxy could be responsible for bringing cold gas to an otherwise passively evolving early-type galaxy. The sudden gas supply could trigger the star formation, eventually creating a blue early-type galaxy. The galaxies with ongoing tidal interaction are blue and star forming, thereby implying that blue early-type galaxies can exist even when the companion is on flyby so does not end up in a merger. Based on data compiled from Galaxy Zoo project, and the volunteers contribution are acknowledged at http://www.galaxyzoo.org/Volunteers.aspx

  5. ENVIRONMENTAL DEPENDENCE OF THE GALAXY MERGER RATE IN A {Lambda}CDM UNIVERSE

    SciTech Connect

    Jian, Hung-Yu; Chiueh, Tzihong; Lin Lihwai

    2012-07-20

    We make use of four galaxy catalogs based on four different semi-analytical models (SAMs) implemented in the Millennium Simulation to study the environmental effects and the model dependence of the galaxy merger rate. We begin the analyses by finding that the galaxy merger rate in SAMs has a mild redshift evolution with luminosity-selected samples in the evolution-corrected B-band magnitude range,-21 {<=} M{sup e}{sub B} {<=} -19, consistent with the results of previous works. To study the environmental dependence of the galaxy merger rate, we adopt two estimators, the local overdensity (1 + {delta}{sub n}), defined as the surface density from the nth nearest neighbor (n = 6 is chosen in this study), and the host halo mass M{sub h} . We find that the galaxy merger rate F{sub mg} shows a strong dependence on the local overdensity (1 + {delta}{sub n}) and the dependence is similar at all redshifts. For the overdensity estimator, the merger rate F{sub mg} is found to be about twenty times larger in the densest regions than in underdense ones in two of the four SAMs, while it is roughly four times higher in the other two. In other words, the discrepancies of the merger rate difference between the two extremes can differ by a factor of {approx}5 depending on the SAMs adopted. On the other hand, for the halo mass estimator, F{sub mg} does not monotonically increase with the host halo mass M{sub h} but peaks in the M{sub h} range between 10{sup 12} and 10{sup 13} h{sup -1} M{sub Sun }, which corresponds to group environments. The high merger rate in high local density regions corresponds primarily to the high merger rate in group environments. In addition, we also study the merger probability of 'close pairs' identified using the projected separation and the line-of-sight velocity difference C{sub mg} and the merger timescale T{sub mg}; these are two important quantities for observations to convert the pair fraction N{sub c} into the galaxy merger rate. We discover that T

  6. Galaxies as gravitational lenses.

    PubMed

    Barnothy, J; Barnothy, M F

    1968-10-18

    Of all the galaxies in the visible part of the universe, 500 million are seen through intervening galaxies. In some instances the foreground galaxy will act as a gravitational lens and produce distorted and (in brightness) greatly amplified images of the galaxy behind it; such images may simulate starlike superluminous objects such as quasars (quasi-stellar objects). The number of gravitational lenses is several times greater than the number of quasars yet observed. In other instances the superposition of the image upon a visible foreground galaxy may simulate morphological configurations resembling N-type, dumbbell, spiral, or barred-spiral galaxies. PMID:17836654

  7. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. PMID:25971511

  8. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  9. Mapping the Milky Way Galaxy with LISA

    NASA Technical Reports Server (NTRS)

    McKinnon, Jose A.; Littenberg, Tyson

    2012-01-01

    Gravitational wave detectors in the mHz band (such as the Laser Interferometer Space Antenna, or LISA) will observe thousands of compact binaries in the galaxy which can be used to better understand the structure of the Milky Way. To test the effectiveness of LISA to measure the distribution of the galaxy, we simulated the Close White Dwarf Binary (CWDB) gravitational wave sky using different models for the Milky Way. To do so, we have developed a galaxy density distribution modeling code based on the Markov Chain Monte Carlo method. The code uses different distributions to construct realizations of the galaxy. We then use the Fisher Information Matrix to estimate the variance and covariance of the recovered parameters for each detected CWDB. This is the first step toward characterizing the capabilities of space-based gravitational wave detectors to constrain models for galactic structure, such as the size and orientation of the bar in the center of the Milky Way

  10. SHINING LIGHT ON MERGING GALAXIES. I. THE ONGOING MERGER OF A QUASAR WITH A 'GREEN VALLEY' GALAXY

    SciTech Connect

    Da Silva, Robert L.; Xavier Prochaska, J.; Rosario, David; Tripp, Todd M.

    2011-07-01

    Serendipitous observations of a pair z = 0.37 interacting galaxies (one hosting a quasar) show a massive gaseous bridge of material connecting the two objects. This bridge is photoionized by the quasar (QSO), revealing gas along the entire projected 38 h{sup -1}{sub 70} kpc sightline connecting the two galaxies. The emission lines that result give an unprecedented opportunity to study the merger process at this redshift. We determine the kinematics, ionization parameter (log U {approx} -2.5 {+-} 0.03), column density (N{sub H,perpendicular} {approx} 10{sup 21} cm{sup -2}), metallicity ([M/H] {approx} - 0.20 {+-} 0.15), and mass ({approx}10{sup 8} M{sub sun}) of the gaseous bridge. We simultaneously constrain properties of the QSO host (M{sub DM} > 8.8 x 10{sup 11} M{sub sun}) and its companion galaxy (M{sub DM} > 2.1 x 10{sup 11} M{sub sun}; M{sub *} {approx} 2 x 10{sup 10} M{sub sun}; stellar burst age = 300-800 Myr; SFR {approx}6 M{sub sun} yr{sup -1}; and metallicity 12 + log (O/H) = 8.64 {+-} 0.2). The general properties of this system match the standard paradigm of a galaxy-galaxy merger caught between first and second passages while one of the galaxies hosts an active quasar. The companion galaxy lies in the so-called green valley, with a stellar population consistent with a recent starburst triggered during the first passage of the merger and has no discernible active galactic nucleus activity. In addition to providing case studies of quasars associated with galaxy mergers, quasar/galaxy pairs with QSO-photoionized tidal bridges such as this one offer unique insights into the galaxy properties while also distinguishing an important and inadequately understood phase of galaxy evolution.

  11. A Zoo of Galaxies

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.

    2015-03-01

    We live in a universe filled with galaxies with an amazing variety of sizes and shapes. One of the biggest challenges for astronomers working in this field is to understand how all these types relate to each other in the background of an expanding universe. Modern astronomical surveys (like the Sloan Digital Sky Survey) have revolutionised this field of astronomy, by providing vast numbers of galaxies to study. The sheer size of the these databases made traditional visual classification of the types galaxies impossible and in 2007 inspired the Galaxy Zoo project (www.galaxyzoo.org); starting the largest ever scientific collaboration by asking members of the public to help classify galaxies by type and shape. Galaxy Zoo has since shown itself, in a series of now more than 30 scientific papers, to be a fantastic database for the study of galaxy evolution. In this Invited Discourse I spoke a little about the historical background of our understanding of what galaxies are, of galaxy classification, about our modern view of galaxies in the era of large surveys. I finish with showcasing some of the contributions galaxy classifications from the Galaxy Zoo project are making to our understanding of galaxy evolution.

  12. The Unexpected Past of a Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    1996-08-01

    in this way effectively `eats' the smaller one. Thus the Milky Way may contain the remains of many smaller galaxies it has met and consumed in the past. A natural consequence of this theory is that the Milky Way halo may at least partially consist of stars which originally belonged to these smaller galaxies. However, it is also possible that some of the halo stars formed during the early collapse of the gas cloud from which the Milky Way formed. Like the Milky Way, the two nearest, large spiral galaxies (the Andromeda nebula and M33 in the neighbouring Triangulum constellation) are also surrounded by halos of old stars. Contrarily, investigations of the smaller galaxies in the Local Group have until now not shown that they possess such halos. These dwarf galaxies greatly outnumber the large spiral galaxies - to date about two dozen are known - and they are considered to be the last survivors of the earlier cannibalism phase. The nearest are the well-known Magellanic Clouds, about 170,000 (Large Cloud) and 250,000 light years distant (Small Cloud). They can be seen with the unaided eye from the Southern hemisphere. Recent studies indicate that they orbit the Milky Way and that they may eventually fall prey to our galaxy in a future round of cannibalism. So far, no evidence has been found of an old halo around the Magellanic Clouds. This does not necessarily imply that all dwarf galaxies must likewise lack halos: it is also possible that the halos of the Magellanic Clouds were stripped away when they came too close to the Milky Way sometime in the past. The isolated WLM dwarf galaxy Down in the southern sky, in the constellation of Cetus (the Whale or the Sea Monster), lies a relative faint and distant, small galaxy which astronomers normally refer to as the WLM dwarf galaxy . It was first seen in 1909 by the famous astrophotographer Max Wolf on photographic plates obtained at the Heidelberg Observatory (Germany), but it was only in 1926 that its true nature was

  13. Communication: Improved pair approximations in local coupled-cluster methods

    SciTech Connect

    Schwilk, Max; Werner, Hans-Joachim; Usvyat, Denis

    2015-03-28

    In local coupled cluster treatments the electron pairs can be classified according to the magnitude of their energy contributions or distances into strong, close, weak, and distant pairs. Different approximations are introduced for the latter three classes. In this communication, an improved simplified treatment of close and weak pairs is proposed, which is based on long-range cancellations of individually slowly decaying contributions in the amplitude equations. Benchmark calculations for correlation, reaction, and activation energies demonstrate that these approximations work extremely well, while pair approximations based on local second-order Møller-Plesset theory can lead to errors that are 1-2 orders of magnitude larger.

  14. MASSIVE BLACK HOLE PAIRS IN CLUMPY, SELF-GRAVITATING CIRCUMNUCLEAR DISKS: STOCHASTIC ORBITAL DECAY

    SciTech Connect

    Fiacconi, Davide; Mayer, Lucio; Roškar, Rok; Colpi, Monica

    2013-11-01

    We study the dynamics of massive black hole pairs in clumpy gaseous circumnuclear disks. We track the orbital decay of the light, secondary black hole M {sub .2} orbiting around the more massive primary at the center of the disk, using N-body/smoothed particle hydrodynamic simulations. We find that the gravitational interaction of M {sub .2} with massive clumps M {sub cl} erratically perturbs the otherwise smooth orbital decay. In close encounters with massive clumps, gravitational slingshots can kick the secondary black hole out of the disk plane. The black hole moving on an inclined orbit then experiences the weaker dynamical friction of the stellar background, resulting in a longer orbital decay timescale. Interactions between clumps can also favor orbital decay when the black hole is captured by a massive clump that is segregating toward the center of the disk. The stochastic behavior of the black hole orbit emerges mainly when the ratio M {sub .2}/M {sub cl} falls below unity, with decay timescales ranging from ∼1 to ∼50 Myr. This suggests that describing the cold clumpy phase of the interstellar medium in self-consistent simulations of galaxy mergers, albeit so far neglected, is important to predict the black hole dynamics in galaxy merger remnants.

  15. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  16. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  17. Galaxy NGC 300

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby spiral galaxy NGC 300 was taken by Galaxy Evolution Explorer in a single orbit exposure of 27 minutes on October 10, 2003. NGC 300 lies 7 million light years from our Milky Way galaxy and is one of a group of galaxies in the constellation Sculptor. NGC 300 is often used as a prototype of a spiral galaxy because in optical images it displays flowing spiral arms and a bright central region of older (and thus redder) stars. The Galaxy Evolution Explorer image taken in ultraviolet light shows us that NGC 300 is an efficient star-forming galaxy. The bright blue regions in the Galaxy Evolution Explorer image reveal new stars forming all the way into the nucleus of NGC 300.

  18. Adaptive Pairing Reversible Watermarking.

    PubMed

    Dragoi, Ioan-Catalin; Coltuc, Dinu

    2016-05-01

    This letter revisits the pairwise reversible watermarking scheme of Ou et al., 2013. An adaptive pixel pairing that considers only pixels with similar prediction errors is introduced. This adaptive approach provides an increased number of pixel pairs where both pixels are embedded and decreases the number of shifted pixels. The adaptive pairwise reversible watermarking outperforms the state-of-the-art low embedding bit-rate schemes proposed so far.

  19. Internal kinematics of modelled interacting disc galaxies

    NASA Astrophysics Data System (ADS)

    Kronberger, T.; Kapferer, W.; Schindler, S.; Böhm, A.; Kutdemir, E.; Ziegler, B. L.

    2006-10-01

    We present an investigation of galaxy-galaxy interactions and their effects on the velocity fields of disc galaxies in combined N-body/hydrodynamic simulations, which include cooling, star formation with feedback, and galactic winds. Rotation curves (RCs) of the gas are extracted from these simulations in a way that follows the procedure applied to observations of distant, small, and faint galaxies as closely as possible. We show that galaxy-galaxy mergers and fly-bys disturb the velocity fields significantly and hence the RCs of the interacting galaxies, leading to asymmetries and distortions in the RCs. Typical features of disturbed kinematics are significantly rising or falling profiles in the direction of the companion galaxy and pronounced bumps in the RCs. In addition, tidal tails can leave strong imprints on the rotation curve. All these features are observable for intermediate redshift galaxies, on which we focus our investigations. We use a quantitative measure for the asymmetry of rotation curves to show that the appearance of these distortions strongly depends on the viewing angle. We also find in this way that the velocity fields settle back into relatively undisturbed equilibrium states after unequal mass mergers and fly-bys. About 1 Gyr after the first encounter, the RCs show no severe distortions anymore. These results are consistent with previous theoretical and observational studies. As an illustration of our results, we compare our simulated velocity fields and direct images with rotation curves from VLT/FORS spectroscopy and ACS images of a cluster at z=0.53 and find remarkable similarities.

  20. Selection effects and binary galaxy velocity differences

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Salpeter, Edwin E.

    1990-01-01

    Measurements of the velocity differences (delta v's) in pairs of galaxies from large statistical samples have often been used to estimate the average masses of binary galaxies. A basic prediction of these models is that the delta v distribution ought to decline monotonically. However, some peculiar aspects of the kinematics have been uncovered, with an anomalous preference for delta v approx. equal to 72 km s(sup-1) appearing to be present in the data. The authors examine a large sample of binary galaxies with accurate redshift measurements and confirm that the distribution of delta v's appears to be non-monotonic with peaks at 0 and approx. 72 km s (exp -1). The authors suggest that the non-zero peak results from the isolation criteria employed in defining samples of binaries and that it indicates there are two populations of binary orbits contributing to the observed delta v distribution.

  1. Resonantly paired fermionic superfluids

    NASA Astrophysics Data System (ADS)

    Gurarie, V.; Radzihovsky, L.

    2007-01-01

    We present a theory of a degenerate atomic Fermi gas, interacting through a narrow Feshbach resonance, whose position and therefore strength can be tuned experimentally, as demonstrated recently in ultracold trapped atomic gases. The distinguishing feature of the theory is that its accuracy is controlled by a dimensionless parameter proportional to the ratio of the width of the resonance to Fermi energy. The theory is therefore quantitatively accurate for a narrow Feshbach resonance. In the case of a narrow s-wave resonance, our analysis leads to a quantitative description of the crossover between a weakly paired BCS superconductor of overlapping Cooper pairs and a strongly paired molecular Bose-Einstein condensate of diatomic molecules. In the case of pairing via a p-wave resonance, that we show is always narrow for a sufficiently low density, we predict a detuning-temperature phase diagram, that in the course of a BCS-BEC crossover can exhibit a host of thermodynamically distinct phases separated by quantum and classical phase transitions. For an intermediate strength of the dipolar anisotropy, the system exhibits a px + i py paired superfluidity that undergoes a topological phase transition between a weakly coupled gapless ground state at large positive detuning and a strongly paired fully gapped molecular superfluid for a negative detuning. In two dimensions the former state is characterized by a Pfaffian ground state exhibiting topological order and non-Abelian vortex excitations familiar from fractional quantum Hall systems.

  2. Cooper Pair Insulators

    NASA Astrophysics Data System (ADS)

    Valles, James

    One of the recent advances in the field of the Superconductor to Insulator Transition (SIT) has been the discovery and characterization of the Cooper Pair Insulator phase. This bosonic insulator, which consists of localized Cooper pairs, exhibits activated transport and a giant magneto-resistance peak. These features differ markedly from the weakly localized transport that emerges as pairs break at a ``fermionic'' SIT. I will describe how our experiments on films nano-patterned with a nearly triangular array of holes have enabled us to 1) distinguish bosonic insulators from fermionic insulators, 2) show that Cooper pairs, rather than quasi-particles dominate the transport in the Cooper Pair insulator phase, 3) demonstrate that very weak, sub nano-meter thickness inhomogeneities control whether a bosonic or fermionic insulator forms at an SIT and 4) reveal that Cooper pairs disintegrate rather than becoming more tightly bound deep in the localized phase. We have also developed a method, using a magnetic field, to tune flux disorder reversibly in these films. I will present our latest results on the influence of magnetic flux disorder and random gauge fields on phenomena near bosonic SITs. This work was performed in collaboration with M. D. Stewart, Jr., Hung Q. Nguyen, Shawna M. Hollen, Jimmy Joy, Xue Zhang, Gustavo Fernandez, Jeffrey Shainline and Jimmy Xu. It was supported by NSF Grants DMR 1307290 and DMR-0907357.

  3. Experimenting with galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1992-01-01

    A study to demonstrate how the dynamics of galaxies may be investigated through the creation of galaxies within a computer model is presented. The numerical technique for simulating galaxies is shown to be both highly efficient and highly robust. Consideration is given to the anatomy of a galaxy, the gravitational N-body problem, numerical approaches to the N-body problem, use of the Poisson equation, and the symplectic integrator.

  4. The rate of gravitational galaxy clustering

    NASA Astrophysics Data System (ADS)

    Saslaw, William C.

    1992-06-01

    The rate of gravitational galaxy clustering is considered within the framework of the simple but fundamental case when the initial distribution of galaxy positions is close to Poisson and most of the matter is closely associated with the galaxies. Simple gravitational clustering in an expanding universe is found to evolve along an adiabat of the equation of state which includes gravitational interactions. The faster the universe expands relative to its gravitational clustering time scale, the better this adiabatic approximation becomes. This generalizes the well-known result that a homogeneous unclustered perfect gas in an expanding universe evolves along an adiabat of the perfect gas equation of state. The evolving clustering is characterized. There is a critical value of 0.8604 at which clustering dominates the equation of state and the specific heat at constant volume becomes negative. Subsequent growth of clustering slows appreciably. Numerical N-body experiments are consistent with these properties.

  5. Insights from WISP, an Unbiased Search for Distant Emission-line Galaxies

    NASA Astrophysics Data System (ADS)

    Malkan, M.; WISP Team

    2013-10-01

    The search for true physical pairs of galaxies at high redshifts has been greatly hindered by the difficulty of obtaining good spectroscopic redshifts. Multi-object near-infrared spectroscopy is especially effective, since it reaches the strongest rest-frame spectral features, especially emission lines. From ground-based telescopes, this is still very difficult to obtain for faint galaxies. However, the near-IR grism spectrographs on Hubble Space Telescope are ideal for a large, unbiased survey for galaxy groups and pairs. Without any pre-selection based on continuum properties, slitless spectroscopic surveys are extremely effective at uncovering large numbers of extreme dwarf galaxies, with very high specific star formation rates, and very low metallicities. We discuss preliminary results on pairs and other properties of galaxies found in the most ambitious of these surveys, the WFC-3 Infrared Spectroscopic Parallels (WISP).

  6. Optical Identification of IRAS Point Sources. Galaxies. IX

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Sargsyan, L. A.

    2004-01-01

    The ninth list of objects from the BIG (Byurakan-IRAS Galaxies) sample is presented; 87 galaxies are identified with 60 point sources from the IRAS PSC catalog in the region +69° +73° and 03h50m 09h50m with an area of 117 deg2. Most of the identified galaxies are compact with bright bulges and faint peripheries. The identified objects include 7 Sy candidates, 8 interacting pairs (of which one is a merger” candidate), and 6 LSB galaxies. The optical coordinates and their deviations from the IR coordinates, the V magnitudes, morphological types, angular dimensions, and position angles are given. The identified galaxies are of morphological types Sa-Sc and have optical stellar magnitudes in the range 15.5m-21.5m with angular sizes in the range 3″-26″. Finding charts from DSS2 are provided for these objects.

  7. Optical emission of a molecular nanoantenna pair

    NASA Astrophysics Data System (ADS)

    Rice, E. M.; Andrews, D. L.

    2012-06-01

    The optical emission from a pair of nanoantennas is investigated within the theoretical framework of quantum electrodynamics. The analysis of fluorescent emission from a pair of molecular antenna species in close proximity is prompted by experimental work on oriented semiconductor polymer nanostructures. Each physically different possibility for separation-dependent features in photon emission by any such pair is explored in detail, leading to the identification of three distinct mechanisms: emission from a pair-delocalized exciton state, emission that engages electrodynamic coupling through quantum interference, and correlated photon emission from the two components of the pair. Although each mechanism produces a damped oscillatory dependence on the pair separation, each of the corresponding results exhibits an analytically different form. Significant differences in the associated spatial frequencies enable an apparent ambiguity in the interpretation of experiments to be resolved. Other major differences are found in the requisite conditions, the associated selection rules, and the variation with angular disposition of the emitters, together offering grounds for experimental discrimination between the coupling mechanisms. The analysis paves the way for investigations of pair-wise coupling effects in the emission from nanoantenna arrays.

  8. NMR analysis of base-pair opening kinetics in DNA.

    PubMed

    Szulik, Marta W; Voehler, Markus; Stone, Michael P

    2014-12-12

    Base pairing in nucleic acids plays a crucial role in their structure and function. Differences in the base-pair opening and closing kinetics of individual double-stranded DNA sequences or between chemically modified base pairs provide insight into the recognition of these base pairs by DNA processing enzymes. This unit describes how to quantify the kinetics for localized base pairs by observing changes in the imino proton signals by nuclear magnetic resonance spectroscopy. The determination of all relevant parameters using state-of-the art techniques and NMR instrumentation, including cryoprobes, is discussed.

  9. Galaxy Cluster Smashes Distance Record

    NASA Astrophysics Data System (ADS)

    2009-10-01

    he most distant galaxy cluster yet has been discovered by combining data from NASA's Chandra X-ray Observatory and optical and infrared telescopes. The cluster is located about 10.2 billion light years away, and is observed as it was when the Universe was only about a quarter of its present age. The galaxy cluster, known as JKCS041, beats the previous record holder by about a billion light years. Galaxy clusters are the largest gravitationally bound objects in the Universe. Finding such a large structure at this very early epoch can reveal important information about how the Universe evolved at this crucial stage. JKCS041 is found at the cusp of when scientists think galaxy clusters can exist in the early Universe based on how long it should take for them to assemble. Therefore, studying its characteristics - such as composition, mass, and temperature - will reveal more about how the Universe took shape. "This object is close to the distance limit expected for a galaxy cluster," said Stefano Andreon of the National Institute for Astrophysics (INAF) in Milan, Italy. "We don't think gravity can work fast enough to make galaxy clusters much earlier." Distant galaxy clusters are often detected first with optical and infrared observations that reveal their component galaxies dominated by old, red stars. JKCS041 was originally detected in 2006 in a survey from the United Kingdom Infrared Telescope (UKIRT). The distance to the cluster was then determined from optical and infrared observations from UKIRT, the Canada-France-Hawaii telescope in Hawaii and NASA's Spitzer Space Telescope. Infrared observations are important because the optical light from the galaxies at large distances is shifted into infrared wavelengths because of the expansion of the universe. The Chandra data were the final - but crucial - piece of evidence as they showed that JKCS041 was, indeed, a genuine galaxy cluster. The extended X-ray emission seen by Chandra shows that hot gas has been detected

  10. 3D structure of nearby groups of galaxies

    NASA Astrophysics Data System (ADS)

    Makarova, L.; Makarov, D.; Klypin, A.; Gottlöber, S.

    2016-10-01

    Using high accuracy distance estimates, we study the three-dimensional distribution of galaxies in five galaxy groups at a distance less than 5 Mpc from the Milky Way. Due to proximity of these groups our sample of galaxies is nearly complete down to extremely small dwarf galaxies with absolute magnitudes M B = -12. We find that the average number-density profile of the groups shows a steep power-law decline dn/dV ˜ R-3 at distances R=(100-500) kpc consistent with predictions of the standard cosmological model. We also find that there is no indication of a truncation or a cutoff in the density at the expected virial radius: the density profile extends at least to 1.5 Mpc. Vast majority of galaxies within 1.5 Mpc radius around group centres are gas-rich star-forming galaxies. Early-type galaxies are found only in the central ˜ 300 kpc region. Lack of dwarf spheroidal and dwarf elliptical galaxies in the field and in the outskirts of large groups is a clear indication that these galaxies experienced morphological transformation when they came close to the central region of forming galaxy group.

  11. CORRELATIONS AMONG GALAXY PROPERTIES FROM THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Li Zhongmu; Mao Caiyan

    2013-07-01

    Galaxies are complex systems with many properties. Correlations among galaxy properties can supply important clues for studying the formation and evolution of galaxies. Using principal component analysis and least-squares fitting, this paper investigates the correlations among galactic parameters involving more properties (color, morphology, stellar population, and absolute magnitude) than previous studies. We use a volume-limited sample (whole sample) of 75,423 galaxies that was selected from the Sloan Digital Sky Survey Data Release 2 and divided into two subsamples (blue and red samples) using a critical color of (g - r) = 0.70 mag. In addition to recovering some previous results, we also obtain some new results. First, all separators for dividing galaxies into two groups can be related via good parameter-first principal component (PC1) correlations. A critical PC1 that indicates whether or not stellar age (or the evolution of a stellar population over time) is important can be used to separate galaxies. This suggests that a statistical parameter, PC1, is helpful in understanding the physical separators of galaxies. In addition, stellar age is shown to be unimportant for red galaxies, while both stellar age and mass are dominating parameters of blue galaxies. This suggests that the various numbers of dominating parameters of galaxies may result from the use of different samples. Finally, some parameters are shown to be correlated, and quantitative fits for a few correlations are obtained, e.g., log(t) = 8.57 + 1.65 (g - r) for the age (log t) and color (g - r) of blue galaxies and log (M{sub *}) = 4.31 - 0.30 M{sub r} for the stellar mass (log M{sub *}) and absolute magnitude (M{sub r}) of red galaxies. The median relationships between various parameter pairs are also presented for comparison.

  12. Low surface brightness galaxies

    NASA Technical Reports Server (NTRS)

    Vanderhulst, J. M.; Deblok, W. J. G.; Mcgaugh, S. S.; Bothun, G. D.

    1993-01-01

    A program to investigate the properties of low surface brightness (LSB) galaxies involving surface photometry in U, B, V, R, I, and H-alpha, HI imaging with the Westerbork Synthesis Radio Telescope (WSRT) and the very large array (VLA) and spectrophotometry of H2 regions in LSB galaxies is underway. The goal is to verify the idea that LSB galaxies have low star formation rates because the local gas density falls below the critical density for star formation, and to study the stellar population and abundances in LSB galaxies. Such information should help understanding the evolutionary history of LSB galaxies. Some preliminary results are reported.

  13. Segregation properties of galaxies

    SciTech Connect

    Santiago, B.X.; Da Costa, L.N. )

    1990-10-01

    Using the recently completed Southern Sky Redshift Survey, in conjunction with measurements of the central surface brightness, the existence of segregation in the way galaxies of different morphology and surface brightness are distributed in space is investigated. Results indicate that there is some evidence that low surface brightness galaxies are more randomly distributed than brighter ones and that this effect is independent of the well-known tendency of early-type galaxies to cluster more strongly than spirals. Presuming that the observed clustering was established at the epoch of galaxy formation, it may provide circumstantial evidence for biased galaxy formation. 24 refs.

  14. Galaxy NGC 3079

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A lumpy bubble of hot gas rises from a cauldron of glowing matter in a distant galaxy, as seen by NASA's Hubble Space Telescope.

    The new images, taken by Hubble's Wide Field and Planetary Camera 2, are online at http://oposite.stsci.edu/pubinfo/pr/2001/28 and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Galaxy NGC 3079, located 50 million light-years from Earth in the constellation Ursa Major, has a huge bubble in the center of its disc, as seen in the image on the left. The smaller photo at right shows a close-up of the bubble. The two white dots are stars.

    Astronomers suspect the bubble is being blown by 'winds,' or high-speed streams of particles, released during a burst of star formation. The bubble's lumpy surface has four columns of gaseous filaments towering above the galaxy's disc. The filaments whirl around in a vortex and are expelled into space. Eventually, this gas will rain down on the disc and may collide with gas clouds, compress them and form a new generation of stars.

    Theoretical models indicate the bubble formed when winds from hot stars mixed with small bubbles of hot gas from supernova explosions. Radio telescope observations indicate those processes are still active. Eventually, the hot stars will die, and the bubble's energy source will fade away.

    The images, taken in 1998, show glowing gas as red and starlight as blue/green. Results appear in the July 1, 2001 issue of the Astrophysical Journal. More information about the Hubble Space Telescope is at http://www.stsci.edu. More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard

  15. HUBBLE REVEALS STELLAR FIREWORKS ACCOMPANYING GALAXY COLLISION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Hubble Space Telescope image provides a detailed look at a brilliant 'fireworks show' at the center of a collision between two galaxies. Hubble has uncovered over 1,000 bright, young star clusters bursting to life as a result of the head-on wreck. [Left] A ground-based telescopic view of the Antennae galaxies (known formally as NGC 4038/4039) - so named because a pair of long tails of luminous matter, formed by the gravitational tidal forces of their encounter, resembles an insect's antennae. The galaxies are located 63 million light-years away in the southern constellation Corvus. [Right] The respective cores of the twin galaxies are the orange blobs, left and right of image center, crisscrossed by filaments of dark dust. A wide band of chaotic dust, called the overlap region, stretches between the cores of the two galaxies. The sweeping spiral- like patterns, traced by bright blue star clusters, shows the result of a firestorm of star birth activity which was triggered by the collision. This natural-color image is a composite of four separately filtered images taken with the Wide Field Planetary Camera 2 (WFPC2), on January 20, 1996. Resolution is 15 light-years per pixel (picture element). Credit: Brad Whitmore (STScI), and NASA

  16. Modeling abundances in star forming galaxies

    NASA Astrophysics Data System (ADS)

    Kobayashi, Chiaki

    2015-08-01

    Heavy elements are produced from various types of supernovae (and AGB stars). I first show that elemental abundances of extremely metal-poor stars are consistent not with pair-instability supernovae but with faint supernovae. Then I introduce subclasses of Type Ia supernovae such as SN 2002cx-like objects and sub-Chandrasekhar mass explosions. These "minor" supernovae are important in the early Universe or metal-poor systems such as dwarf spheroidal galaxies. With "major" chemical enrichment sources, I show cosmic chemical enrichment in our cosmological, hydrodynamical simulations. The feedback from active galactic nuclei (AGN) is also included with a new model for the formation of black holes motivated by the first star formation. AGN-driven outflows transport metals into the circumgalactic medium and the intergalactic medium. Nonetheless, the metallicity changes of galaxies are negligible, and the mass-metallicity relations, which are mainly generated by supernova feedback at the first star burst, are preserved. Within galaxies, metallicity radial gradients are produced, which can be affected by AGN feedback but are more sensitive to the merging histories. We find a weak correlation between the gradients and galaxy mass, which is consistent with available observations. These simulations also provide predictions of supernova/hypernova/GRB rates and the properties of their host galaxies.

  17. Close encounters between two nanoshells.

    PubMed

    Lassiter, J Britt; Aizpurua, Javier; Hernandez, Luis I; Brandl, Daniel W; Romero, Isabel; Lal, Surbhi; Hafner, Jason H; Nordlander, Peter; Halas, Naomi J

    2008-04-01

    Plasmonic nanoparticle pairs known as "dimers" embody a simple system for generating intense nanoscale fields for surface enhanced spectroscopies and for developing an understanding of coupled plasmons. Individual nanoshell dimers in directly adjacent pairs and touching geometries show dramatically different plasmonic properties. At close distances, hybridized plasmon modes appear whose energies depend extremely sensitively on the presence of a small number of molecules in the interparticle junction. When touching, a new plasmon mode arising from charge transfer oscillations emerges. The extreme modification of the overall optical response due to minute changes in very reduced volumes opens up new approaches for ultrasensitive molecular sensing and spectroscopy. PMID:18345644

  18. Tidal Disruption Events Prefer Unusual Host Galaxies

    NASA Astrophysics Data System (ADS)

    Arcavi, Iair; French, K. Decker; Zabludoff, Ann I.

    2016-06-01

    A star passing close to a supermassive black hole (SMBH) can be torn apart in a Tidal Disruption Events (TDE). TDEs that are accompanied by observable flares are now being discovered in transient surveys and are revealing the presence and the properties of otherwise-quiescent SMBHs. Recently, it was discovered that TDEs show a strong preference for rare post-starburst galaxies, (i.e. galaxies that have undergone intense star formation but are no longer forming stars today). We quantify this preference and find that TDEs are approximately 30-200 times more likely to occur in post-starburst hosts (compared to the general SDSS galaxy population), with the enhancement factor depending on the star formation history of the galaxy. This surprising host-galaxy preference connects the until-now disparate TDE subclasses of UV/optical-dominated TDEs and X-ray-dominated TDEs, and serves as the basis for TDE-targeted transient surveys. Post-starburst galaxies may be post-mergers, with binary SMBH systems that are still spiraling in. Such systems could enhance the TDE rate, but it is not yet clear if models can quantitatively reproduce the observed enhancement. Alternative explanations for enhanced TDE rate in post-starbursts include non-spherical post-merger central potentials and enhanced rates of giant stars.

  19. Revisiting the First Galaxies: The Effects of Population III Stars on their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Muratov, Alexander L.; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; Zemp, Marcel

    2013-08-01

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 108 years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 × 106 M ⊙ re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  20. REVISITING THE FIRST GALAXIES: THE EFFECTS OF POPULATION III STARS ON THEIR HOST GALAXIES

    SciTech Connect

    Muratov, Alexander L.; Gnedin, Oleg Y.; Zemp, Marcel; Gnedin, Nickolay Y.

    2013-08-01

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H{sub 2} formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 10{sup 8} years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 Multiplication-Sign 10{sup 6} M{sub Sun} re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  1. HUBBLE AND KECK DISCOVER GALAXY BUILDING BLOCK

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows a very small, faint galaxy 'building block' newly discovered by a unique collaboration between ground- and space-based telescopes. Hubble and the 10-meter Keck Telescopes in Hawaii joined forces, using a galaxy cluster which acts as gravitational lens to detect what scientists believe is one of the smallest very distant objects ever found. The galaxy cluster Abell 2218 was used by a team of European and American astronomers led by Richard Ellis (Caltech) in their systematic search for intrinsically faint distant star-forming systems. Without help from Abell 2218's exceptional magnifying power to make objects appear about 30 times brighter, the galaxy building block would have been undetectable. In the image to the right, the object is seen distorted into two nearly identical, very red 'images' by the gravitational lens. The image pair represents the magnified result of a single background object gravitationally lensed by Abell 2218 and viewed at a distance of 13.4 billion light-years. The intriguing object contains only one million stars, far fewer than a mature galaxy, and scientists believe it is very young. Such young star-forming systems of low mass at early cosmic times are likely to be the objects from which present-day galaxies have formed. In the image to the left, the full overview of the galaxy cluster Abell 2218 is seen. This image was taken by Hubble in 1999 at the completion of Hubble Servicing Mission 3A. Credit: NASA, ESA, Richard Ellis (Caltech) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France) Acknowledgment: NASA, A. Fruchter and the ERO Team (STScI and ST-ECF)

  2. THE ORIENTATION OF GALAXIES IN GALAXY CLUSTERS

    SciTech Connect

    Godlowski, Wlodzimierz; Piwowarska, Paulina; Panko, Elena; Flin, Piotr E-mail: paoletta@interia.p E-mail: sfflin@cyf-kr.edu.p

    2010-11-10

    We present an analysis of the spatial orientations of galaxies in 247 optically selected rich Abell clusters which have at least 100 members in the considered area. We investigated the relation between angles that give information about galaxy angular momenta and the number of members in each structure. The position angles of the galaxies' major axes, as well as two angles describing the spatial orientation of the galaxy plane, were tested for isotropy by applying three different statistical tests. It is found that the values of the statistics increase with the amount of the galaxies' members, which is equivalent to the existence of a relation between anisotropy and the number of galaxies in a cluster. The search for connection between the galaxies' alignments and Bautz-Morgan (BM) morphological types of examined clusters showed a weak dependence. A statistically marginal relation between velocity dispersion and cluster richness was observed. In addition, it was found that the velocity dispersion decreases with BM type at almost 3{sigma} level. These results show the dependence of alignments with respect to clusters' richness, which can be regarded as an environmental effect.

  3. Using Galaxy Winds to Constrain Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher W.; Klypin, A.; Ceverino, D.; Kacprzak, G.; Klimek, E.

    2010-01-01

    Analysis of mock quasar spectra of metal absorption lines in the proximity of formed galaxies in cosmological simulation is a highly promising for understanding the role of galaxies in IGM physics, or IGM physics in the role of galaxy formation in context of the cosmic web. Such analysis using neutral hydrogen in the cosmic web has literally revolutionized our understanding of the Lyman alpha forest. We are undertaking a wholesale approach to use powerful Lambda-CDM simulations to interpret absorption line data from redshift 1-3 starbursting galaxies e.g. Lyman break galaxies, etc) The data with which direct quantitative comparison is made are from the DEEP survey (Weiner et al.) and the collective work of Steidel et al. and collaborators. The simulations are performed using the Eulerian Gasdynamics plus N-body Adaptive Refinement Tree (ART) code, which has gas cell resolutions of 20-50 pc. Physical processes implemented in the code include realistic radiative cooling, star formation, metal enrichment and thermal feedback due to type II and type Ia supernovae. We quantitatively compare the spatial and kinematic distribution of HI, MgII, CIV, and OVI of absorption lines over a range of impact parameters for various simulated galaxies as a function of redshift, and discuss key insights for interpreting the underlying temperature, density, and ionization structure of the halo/cosmic-web interface, and the influence of galaxies on its chemical enrichment.

  4. Distribution of Cold (≲300 K) Atomic Gas in Galaxies: Results from the GBT H i Absorption Survey Probing the Inner Halos (ρ < 20 kpc) of Low-z Galaxies

    NASA Astrophysics Data System (ADS)

    Borthakur, Sanchayeeta

    2016-10-01

    We present the Green Bank Telescope absorption survey of cold atomic hydrogen (≲300 K) in the inner halo of low-redshift galaxies. The survey aims to characterize the cold gas distribution and to address where the condensation—the process where ionized gas accreted by galaxies condenses into cold gas within the disks of galaxies—occurs. Our sample consists of 16 galaxy–quasar pairs with impact parameters of ≤20 kpc. We detected an H i absorber associated with J0958+3222 (NGC 3067) and H i emission from six galaxies. We also found two Ca ii absorption systems in the archival SDSS data associated with galaxies J0958+3222 and J1228+3706. Our detection rate of H i absorbers with optical depths of ≥0.06 is ∼7%. We also find that the cold H i phase (≲300 K) is 44(±18)% of the total atomic gas in the sightline probing J0958+3222. We find no correlation between the peak optical depth and impact parameter or stellar and H i radii normalized impact parameters, ρ/R 90 and ρ/R H i . We conclude that the process of condensation of inflowing gas into cold (≲300 K) H i occurs at the ρ ≪ 20 kpc. However, the warmer phase of neutral gas (T ∼ 1000 K) can exist out to much larger distances, as seen in emission maps. Therefore, the process of condensation of warm to cold H i is likely occurring in stages from ionized to warm H i in the inner halo and then to cold H i very close to the galaxy disk. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  5. Computers vs. Humans in Galaxy Classification

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    In this age of large astronomical surveys, one major scientific bottleneck is the analysis of enormous data sets. Traditionally, this task requires human input but could computers eventually take over? A pair of scientists explore this question by testing whether computers can classify galaxies as well as humans.Examples of disagreement: galaxies that Galaxy-Zoo humans classified as spirals with 95% agreement, but the computer algorithm classified as ellipticals with 70% certainty. Most are cases where the computer got it wrong but not all of them. [Adapted from Kuminski et al. 2016]Limits of Citizen ScienceGalaxy Zoo is an internet-based citizen science project that uses non-astronomer volunteers to classify galaxy images. This is an innovative way to provide more manpower, but its still only practical for limited catalog sizes. How do we handle the data from upcoming surveys like the Large Synoptic Survey Telescope (LSST), which will produce billions of galaxy images when it comes online?In a recent study by Evan Kuminski and Lior Shamir, two computer scientists at Lawrence Technological University in Michigan, a machine learning algorithm known as Wndchrm was used to classify a dataset of Sloan Digital Sky Survey (SDSS) galaxies into ellipticals and spirals. The authors goal is to determine whether their algorithm can classify galaxies as accurately as the human volunteers for Galaxy Zoo.Automatic ClassificationAfter training their classifier on a small set of spiral and elliptical galaxies, Kuminski and Shamir set it loose on a catalog of ~3 million SDSS galaxies. The classifier first computes a set of 2,885 numerical descriptors (like textures, edges, and shapes) for each galaxy image, and then uses these descriptors to categorize the galaxy as spiral or elliptical.Rate of agreement of the computer classification with human classification (for the Galaxy Zoo superclean subset) for different ranges of computed classification certainties. For certainties above

  6. Recognition of Short Time-Paired Activities

    NASA Astrophysics Data System (ADS)

    Chaminda, Hapugahage Thilak; Klyuev, Vitaly; Naruse, Keitaro; Osano, Minetada

    We undertake numerous activities in our daily life and for some of those we forget to complete the action as originally intended. Significant aspects while performing most of these actions might be: “pairing of both hands simultaneously” and “short time consumption”. In this work an attempt has been made to recognize those kinds of Paired Activities (PAs), which are easy to forget, and to provide a method to remind about uncompleted PAs. To represent PAs, a study was done on opening and closing of various bottles. A model to define PAs, which simulated the paired behavior of both hands, is proposed, called “Paired Activity Model” (PAM). To recognize PAs using PAM, Paired Activity Recognition Algorithm (PARA) was implemented. Paired motion capturing was done by accelerometers, which were worn by subjects on the wrist areas of both hands. Individual and correlative behavior of both hands was used to recognize exact PA among other activities. Artificial Neural Network (ANN) algorithm was used for data categorization in PARA. ANN significantly outperformed the support vector machine algorithm in real time evaluations. In the user-independent case, PARA achieved recognition rates of 96% for only target PAs and 91% for target PAs undertaken amidst unrelated activities.

  7. Using Colors to Improve Photometric Metallicity Estimates for Galaxies

    NASA Astrophysics Data System (ADS)

    Sanders, N. E.; Levesque, E. M.; Soderberg, A. M.

    2013-10-01

    There is a well known correlation between the mass and metallicity of star-forming galaxies. Because mass is correlated with luminosity, this relation is often exploited, when spectroscopy is not available, to estimate galaxy metallicities based on single band photometry. However, we show that galaxy color is typically more effective than luminosity as a predictor of metallicity. This is a consequence of the correlation between color and the galaxy mass-to-light ratio and the recently discovered correlation between star formation rate (SFR) and residuals from the mass-metallicity relation. Using Sloan Digital Sky Survey spectroscopy of ~180, 000 nearby galaxies, we derive "LZC relations," empirical relations between metallicity (in seven common strong line diagnostics), luminosity, and color (in 10 filter pairs and four methods of photometry). We show that these relations allow photometric metallicity estimates, based on luminosity and a single optical color, that are ~50% more precise than those made based on luminosity alone; galaxy metallicity can be estimated to within ~0.05-0.1 dex of the spectroscopically derived value depending on the diagnostic used. Including color information in photometric metallicity estimates also reduces systematic biases for populations skewed toward high or low SFR environments, as we illustrate using the host galaxy of the supernova SN 2010ay. This new tool will lend more statistical power to studies of galaxy populations, such as supernova and gamma-ray burst host environments, in ongoing and future wide-field imaging surveys.

  8. USING COLORS TO IMPROVE PHOTOMETRIC METALLICITY ESTIMATES FOR GALAXIES

    SciTech Connect

    Sanders, N. E.; Soderberg, A. M.; Levesque, E. M.

    2013-10-01

    There is a well known correlation between the mass and metallicity of star-forming galaxies. Because mass is correlated with luminosity, this relation is often exploited, when spectroscopy is not available, to estimate galaxy metallicities based on single band photometry. However, we show that galaxy color is typically more effective than luminosity as a predictor of metallicity. This is a consequence of the correlation between color and the galaxy mass-to-light ratio and the recently discovered correlation between star formation rate (SFR) and residuals from the mass-metallicity relation. Using Sloan Digital Sky Survey spectroscopy of ∼180, 000 nearby galaxies, we derive 'LZC relations', empirical relations between metallicity (in seven common strong line diagnostics), luminosity, and color (in 10 filter pairs and four methods of photometry). We show that these relations allow photometric metallicity estimates, based on luminosity and a single optical color, that are ∼50% more precise than those made based on luminosity alone; galaxy metallicity can be estimated to within ∼0.05-0.1 dex of the spectroscopically derived value depending on the diagnostic used. Including color information in photometric metallicity estimates also reduces systematic biases for populations skewed toward high or low SFR environments, as we illustrate using the host galaxy of the supernova SN 2010ay. This new tool will lend more statistical power to studies of galaxy populations, such as supernova and gamma-ray burst host environments, in ongoing and future wide-field imaging surveys.

  9. Gaseous Vortices in Barred Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    England, Martin N.; Hunter, James H., Jr.

    1995-01-01

    During the course of examining many two-dimensional, as well as a smaller sample of three-dimensional, models of gas flows in barred spiral galaxies, we have been impressed by the ubiquitous presence fo vortex pairs, oriented roughly perpendicular to their bars, with one vortex on each side. The vortices are obvious only when viewed in the bar frame, and the centers of their velocity fields usually are near Lagrangian points L(sub 4,5). In all models that we have studied, the vortices form on essentially the same time scale as that for the development of gaseous spiral arms, typically two bar rotations. Usually the corotation radius, r(sub c), lies slightly beyond the end of the bar. Depending upon the mass distributions of the various components, gas spirals either into, or out of, the vortices: In the former case, the vortices become regions of high density, whereas the opposite is true if the gas spirals out of a vortex. The models described in this paper have low-density vortices, as do most of the models we have studied. Moreover, usually the vortex centers lie approximately within +/- 15 deg of L(sub 4,5). In the stellar dynamic limit, when pressure and viscous forces are absent, short-period orbits exist, centered on L(sub 4,5). These orbits need not cross and therefore their morphology is that of gas streamlines, that is, vortices. We believe that the gas vortices in our models are hydrodynamic analogues of closed, short-period, libration orbits centered on L(sub 4,5).

  10. Locally Biased Galaxy Formation and Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Narayanan, Vijay K.; Berlind, Andreas A.; Weinberg, David H.

    2000-01-01

    We examine the influence of the morphology-density relation and a wide range of simple models for biased galaxy formation on statistical measures of large-scale structure. We contrast the behavior of local biasing models, in which the efficiency of galaxy formation is determined by the density, geometry, or velocity dispersion of the local mass distribution, with that of nonlocal biasing models, in which galaxy formation is modulated coherently over scales larger than the galaxy correlation length. If morphological segregation of galaxies is governed by a local morphology-density relation, then the correlation function of E/S0 galaxies should be steeper and stronger than that of spiral galaxies on small scales, as observed, while on large scales the E/S0 and spiral galaxies should have correlation functions with the same shape but different amplitudes. Similarly, all of our local bias models produce scale-independent amplification of the correlation function and power spectrum in the linear and mildly nonlinear regimes; only a nonlocal biasing mechanism can alter the shape of the power spectrum on large scales. Moments of the biased galaxy distribution retain the hierarchical pattern of the mass moments, but biasing alters the values and scale dependence of the hierarchical amplitudes S3 and S4. Pair-weighted moments of the galaxy velocity distribution are sensitive to the details of the bias prescription even if galaxies have the same local velocity distribution as the underlying dark matter. The nonlinearity of the relation between galaxy density and mass density depends on the biasing prescription and the smoothing scale, and the scatter in this relation is a useful diagnostic of the physical parameters that determine the bias. While the assumption that galaxy formation is governed by local physics leads to some important simplifications on large scales, even local biasing is a multifaceted phenomenon whose impact cannot be described by a single parameter or

  11. The LMT Galaxies' 3 mm Spectroscopic Survey: First Results

    NASA Astrophysics Data System (ADS)

    Rosa González, D.; Schloerb, P.; Vega, O.; Hunt, L.; Narayanan, G.; Calzetti, D.; Yun, M.; Terlevich, E.; Terlevich, R.; Mayya, Y. D.; Chávez, M.; Montaña, A.; Pérez García, A. M.

    2014-09-01

    The molecular phase of the interstellar medium (ISM) in galaxies offers fundamental insight for understanding star-formation processes and how stellar feedback affects the nuclear activity of certain galaxies. We present here Large Millimeter Telescope spectra obtained with the Redshift Search Receiver, a spectrograph that covers simultaneously the 3 mm band from 74 to 111 GHz with a spectral resolution of around 100 km/s. Our selected galaxies, have been detected previously in HCN, and have different degrees of nuclear activity — one normal galaxy (NGC 6946), the starburst prototype (M82) and two %ultraluminous infrared galaxies (ULIRGs, IRAS 17208-0014 and Mrk 231). We plotted our data in the HCO+/HCN vs. HCN/13CO diagnostic diagram finding that NGC 6946 and M82 are located close to other normal galaxies; and that both IRAS 17208-0014 and Mrk 231 are close to the position of the well known ULIRG Arp 220 reported by Snell et al. (2011). We found that in Mrk 231 - a galaxy with a well known active galactic nucleus - the HCO+/HCN ratio is similar to the ratio observed in normal galaxies.

  12. Multi-pair states in electron-positron pair creation

    NASA Astrophysics Data System (ADS)

    Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.

    2016-09-01

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron-positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron-positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron-positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron-positron pairs.

  13. Galaxy NGC 247

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the dwarf spiral galaxy NGC 247 was taken by Galaxy Evolution Explorer on October 13, 2003, in a single orbit exposure of 1600 seconds. The region that looks like a 'hole' in the upper part of the galaxy is a location with a deficit of gas and therefore a lower star formation rate and ultraviolet brightness. Optical images of this galaxy show a bright star on the southern edge. This star is faint and red in the Galaxy Evolution Explorer ultraviolet image, revealing that it is a foreground star in our Milky Way galaxy. The string of background galaxies to the North-East (upper left) of NGC 247 is 355 million light years from our Milky Way galaxy whereas NGC 247 is a mere 9 million light years away. The faint blue light that can be seen in the Galaxy Evolution Explorer image of the upper two of these background galaxies may indicate that they are in the process of merging together.

  14. The role of galaxy merging in the life of massive galaxies

    NASA Astrophysics Data System (ADS)

    Man, Allison W. S.; Zirm, Andrew; Toft, Sune

    2015-08-01

    In the local Universe, the most massive galaxies of above 10^11 solar masses are typically situated at the centres of galaxy clusters or groups, and have elliptical light profiles. They have uniformly old stellar populations with the majority of stars formed when the Universe was only 2-3 Gyrs old. Merging has been invoked as an important driver for their evolution, possibly responsible for morphological transformations, size growth, ignition of active galactic nuclei as well as both triggering and quenching of star formation. Accurate measurements of the merging history of massive galaxies is thus instrumental to understand their evolution. While several measurements of the merging fraction of massive galaxies up to z~3 exist to date, they lead to discrepant conclusions of whether the fraction is increasing or diminishing.My recent work resolves these discrepancies through the accurate measurement of the galaxy merger fraction up to z=3 in the COSMOS field. Combining the large area, near-infrared survey of UltraVISTA with the smaller area, but deeper and higher resolution HST/CANDELS dataset, yields the largest, most complete photometrically identified sample of mergers at z>1. The discrepancy of previous studies is found to be due to a selection effect. Selecting galaxy pairs by stellar mass ratio leads to a diminishing merger fraction at z~2, while selecting by flux ratio leads to an increasing trend. Flux-ratio selection is biased towards low M/L satellites, while stellar mass ratio selected mergers are likely biased against gas-rich satellites at z>2. I argue that the total baryon mass ratio is the least biased probe of the "true" merger rate of galaxies, and discuss future plans for examining the role of galaxy merging in the global star formation history, as well as its relation to star formation quenching.

  15. Suites of dwarfs around Nearby giant galaxies

    SciTech Connect

    Karachentsev, Igor D.; Kaisina, Elena I.; Makarov, Dmitry I. E-mail: kei@sao.ru

    2014-01-01

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ∼1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ{sub 1}, depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ{sub 1}. All suite members with positive Θ{sub 1} are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ∼ n {sup –2}. The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at M{sub B} = –18{sup m}. We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting of the

  16. Galaxies Gather at Great Distances

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Distant Galaxy Cluster Infrared Survey Poster [figure removed for brevity, see original site] [figure removed for brevity, see original site] Bird's Eye View Mosaic Bird's Eye View Mosaic with Clusters [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] 9.1 Billion Light-Years 8.7 Billion Light-Years 8.6 Billion Light-Years

    Astronomers have discovered nearly 300 galaxy clusters and groups, including almost 100 located 8 to 10 billion light-years away, using the space-based Spitzer Space Telescope and the ground-based Mayall 4-meter telescope at Kitt Peak National Observatory in Tucson, Ariz. The new sample represents a six-fold increase in the number of known galaxy clusters and groups at such extreme distances, and will allow astronomers to systematically study massive galaxies two-thirds of the way back to the Big Bang.

    A mosaic portraying a bird's eye view of the field in which the distant clusters were found is shown at upper left. It spans a region of sky 40 times larger than that covered by the full moon as seen from Earth. Thousands of individual images from Spitzer's infrared array camera instrument were stitched together to create this mosaic. The distant clusters are marked with orange dots.

    Close-up images of three of the distant galaxy clusters are shown in the adjoining panels. The clusters appear as a concentration of red dots near the center of each image. These images reveal the galaxies as they were over 8 billion years ago, since that's how long their light took to reach Earth and Spitzer's infrared eyes.

    These pictures are false-color composites, combining ground-based optical images captured by the Mosaic-I camera on the Mayall 4-meter telescope at Kitt Peak, with infrared pictures taken by Spitzer's infrared array camera. Blue and green represent visible light at wavelengths of 0

  17. Stellar kinematics and structural properties of virgo cluster dwarf early-type galaxies from the SMAKCED project. I. Kinematically decoupled cores and implications for infallen groups in clusters

    SciTech Connect

    Toloba, E.; Guhathakurta, P.; Boissier, S.; Boselli, A.; Den Brok, M.; Falcón-Barroso, J.; Ryś, A.; Janz, J.; Lisker, T.; Laurikainen, E.; Salo, H.; Paudel, S.

    2014-03-10

    We present evidence for kinematically decoupled cores (KDCs) in two dwarf early-type (dE) galaxies in the Virgo cluster, VCC 1183 and VCC 1453, studied as part of the SMAKCED stellar absorption-line spectroscopy and imaging survey. These KDCs have radii of 1.''8 (0.14 kpc) and 4.''2 (0.33 kpc), respectively. Each of these KDCs is distinct from the main body of its host galaxy in two ways: (1) inverted sense of rotation and (2) younger (and possibly more metal-rich) stellar population. The observed stellar population differences are probably associated with the KDC, although we cannot rule out the possibility of intrinsic radial gradients in the host galaxy. We describe a statistical analysis method to detect, quantify the significance of, and characterize KDCs in long-slit rotation curve data. We apply this method to the two dE galaxies presented in this paper and to five other dEs for which KDCs have been reported in the literature. Among these seven dEs, there are four significant KDC detections, two marginal KDC detections, and one dE with an unusual central kinematic anomaly that may be an asymmetric KDC. The frequency of occurrence of KDCs and their properties provide important constraints on the formation history of their host galaxies. We discuss different formation scenarios for these KDCs in cluster environments and find that dwarf-dwarf wet mergers or gas accretion can explain the properties of these KDCs. Both of these mechanisms require that the progenitor had a close companion with a low relative velocity. This suggests that KDCs were formed in galaxy pairs residing in a poor group environment or in isolation whose subsequent infall into the cluster quenched star formation.

  18. Stellar Kinematics and Structural Properties of Virgo Cluster Dwarf Early-type Galaxies from the SMAKCED Project. I. Kinematically Decoupled Cores and Implications for Infallen Groups in Clusters

    NASA Astrophysics Data System (ADS)

    Toloba, E.; Guhathakurta, P.; van de Ven, G.; Boissier, S.; Boselli, A.; den Brok, M.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Paudel, S.; Peletier, R. F.; Ryś, A.; Salo, H.

    2014-03-01

    We present evidence for kinematically decoupled cores (KDCs) in two dwarf early-type (dE) galaxies in the Virgo cluster, VCC 1183 and VCC 1453, studied as part of the SMAKCED stellar absorption-line spectroscopy and imaging survey. These KDCs have radii of 1.''8 (0.14 kpc) and 4.''2 (0.33 kpc), respectively. Each of these KDCs is distinct from the main body of its host galaxy in two ways: (1) inverted sense of rotation and (2) younger (and possibly more metal-rich) stellar population. The observed stellar population differences are probably associated with the KDC, although we cannot rule out the possibility of intrinsic radial gradients in the host galaxy. We describe a statistical analysis method to detect, quantify the significance of, and characterize KDCs in long-slit rotation curve data. We apply this method to the two dE galaxies presented in this paper and to five other dEs for which KDCs have been reported in the literature. Among these seven dEs, there are four significant KDC detections, two marginal KDC detections, and one dE with an unusual central kinematic anomaly that may be an asymmetric KDC. The frequency of occurrence of KDCs and their properties provide important constraints on the formation history of their host galaxies. We discuss different formation scenarios for these KDCs in cluster environments and find that dwarf-dwarf wet mergers or gas accretion can explain the properties of these KDCs. Both of these mechanisms require that the progenitor had a close companion with a low relative velocity. This suggests that KDCs were formed in galaxy pairs residing in a poor group environment or in isolation whose subsequent infall into the cluster quenched star formation.

  19. Deficiency of ''Thin'' Stellar Bars in Seyfert Host Galaxies

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Peletier, Reynier F.; Knapen, Johan

    1999-01-01

    Using all available major samples of Seyfert galaxies and their corresponding control samples of closely matched non-active galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in non-active galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., 'fat' or 'weak' bars) in Seyferts, compared to non-active galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, in redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their non-active counterparts on scales of a few kpc.

  20. The Unexpected Past of a Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    1996-08-01

    in this way effectively `eats' the smaller one. Thus the Milky Way may contain the remains of many smaller galaxies it has met and consumed in the past. A natural consequence of this theory is that the Milky Way halo may at least partially consist of stars which originally belonged to these smaller galaxies. However, it is also possible that some of the halo stars formed during the early collapse of the gas cloud from which the Milky Way formed. Like the Milky Way, the two nearest, large spiral galaxies (the Andromeda nebula and M33 in the neighbouring Triangulum constellation) are also surrounded by halos of old stars. Contrarily, investigations of the smaller galaxies in the Local Group have until now not shown that they possess such halos. These dwarf galaxies greatly outnumber the large spiral galaxies - to date about two dozen are known - and they are considered to be the last survivors of the earlier cannibalism phase. The nearest are the well-known Magellanic Clouds, about 170,000 (Large Cloud) and 250,000 light years distant (Small Cloud). They can be seen with the unaided eye from the Southern hemisphere. Recent studies indicate that they orbit the Milky Way and that they may eventually fall prey to our galaxy in a future round of cannibalism. So far, no evidence has been found of an old halo around the Magellanic Clouds. This does not necessarily imply that all dwarf galaxies must likewise lack halos: it is also possible that the halos of the Magellanic Clouds were stripped away when they came too close to the Milky Way sometime in the past. The isolated WLM dwarf galaxy Down in the southern sky, in the constellation of Cetus (the Whale or the Sea Monster), lies a relative faint and distant, small galaxy which astronomers normally refer to as the WLM dwarf galaxy . It was first seen in 1909 by the famous astrophotographer Max Wolf on photographic plates obtained at the Heidelberg Observatory (Germany), but it was only in 1926 that its true nature was

  1. A Cluster and a Sea of Galaxies

    NASA Astrophysics Data System (ADS)

    2010-05-01

    A new wide-field image released today by ESO displays many thousands of distant galaxies, and more particularly a large group belonging to the massive galaxy cluster known as Abell 315. As crowded as it may appear, this assembly of galaxies is only the proverbial "tip of the iceberg", as Abell 315 - like most galaxy clusters - is dominated by dark matter. The huge mass of this cluster deflects light from background galaxies, distorting their observed shapes slightly. When looking at the sky with the unaided eye, we mostly only see stars within our Milky Way galaxy and some of its closest neighbours. More distant galaxies are just too faint to be perceived by the human eye, but if we could see them, they would literally cover the sky. This new image released by ESO is both a wide-field and long-exposure one, and reveals thousands of galaxies crowding an area on the sky roughly as large as the full Moon. These galaxies span a vast range of distances from us. Some are relatively close, as it is possible to distinguish their spiral arms or elliptical halos, especially in the upper part of the image. The more distant appear just like the faintest of blobs - their light has travelled through the Universe for eight billion years or more before reaching Earth. Beginning in the centre of the image and extending below and to the left, a concentration of about a hundred yellowish galaxies identifies a massive galaxy cluster, designated with the number 315 in the catalogue compiled by the American astronomer George Abell in 1958 [1]. The cluster is located between the faint, red and blue galaxies and the Earth, about two billion light-years away from us. It lies in the constellation of Cetus (the Whale). Galaxy clusters are some of the largest structures in the Universe held together by gravity. But there is more in these structures than the many galaxies we can see. Galaxies in these giants contribute to only ten percent of the mass, with hot gas in between galaxies

  2. Hubble and Keck team up to find farthest known galaxy in the Universe

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Galaxy cluster Abell 2218 hi-res Size hi-res: 5212 Kb Credits: European Space Agency, NASA, J.-P. Kneib (Observatoire Midi-Pyrénées) and R. Ellis (Caltech) Close-up of the large galaxy cluster Abell 2218 This close-up of the large galaxy cluster Abell 2218 shows how this cluster acts as one of nature’s most powerful ‘gravitational telescopes’ and amplifies and stretches all galaxies lying behind the cluster core (seen as red, orange and blue arcs). Such natural gravitational ‘telescopes’ allow astronomers to see extremely distant and faint objects that could otherwise not be seen. A new galaxy (split into two ‘images’ marked with an ellipse and a circle) was detected in this image taken with the Advanced Camera for Surveys on board the NASA/ESA Hubble Space Telescope. The extremely faint galaxy is so far away that its visible light has been stretched into infrared wavelengths, making the observations particularly difficult. The galaxy may have set a new record in being the most distant known galaxy in the Universe. Located an estimated 13 billion light-years away (z~7), the object is being viewed at a time only 750 million years after the big bang, when the Universe was barely 5 percent of its current age. In the image the distant galaxy appears as multiple ‘images’, an arc (left) and a dot (right), as its light is forced along different paths through the cluster’s complex clumps of mass (the yellow galaxies) where the magnification is quite large. The colour of the different lensed galaxies in the image is a function of their distances and galaxy types. The orange arc is for instance an elliptical galaxy at moderate redshift (z=0.7) and the blue arcs are star forming galaxies at intermediate redshift (z between 1 and 2.5). An image of Abell 2218 hi-res Size hi-res: 29 563 Kb Credits: European Space Agency, NASA, J.-P. Kneib (Observatoire Midi-Pyrénées) and R. Ellis (Caltech) A ground-based wide-angle image of Abell 2218 This wide

  3. The Superwind Galaxy NGC 4666

    NASA Astrophysics Data System (ADS)

    2010-09-01

    The galaxy NGC 4666 takes pride of place at the centre of this new image, made in visible light with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. NGC 4666 is a remarkable galaxy with very vigorous star formation and an unusual "superwind" of out-flowing gas. It had previously been observed in X-rays by the ESA XMM-Newton space telescope, and the image presented here was taken to allow further study of other objects detected in the earlier X-ray observations. The prominent galaxy NGC 4666 in the centre of the picture is a starburst galaxy, about 80 million light-years from Earth, in which particularly intense star formation is taking place. The starburst is thought to be caused by gravitational interactions between NGC 4666 and its neighbouring galaxies, including NGC 4668, visible to the lower left. These interactions often spark vigorous star-formation in the galaxies involved. A combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast flow of gas from the galaxy into space - a so-called "superwind". The superwind is huge in scale, coming from the bright central region of the galaxy and extending for tens of thousands of light-years. As the superwind gas is very hot it emits radiation mostly as X-rays and in the radio part of the spectrum and cannot be seen in visible light images such as the one presented here. This image was made as part of a follow-up to observations made with the ESA XMM-Newton space telescope in X-rays. NGC 4666 was the target of the original XMM-Newton observations, but thanks to the telescope's wide field-of-view many other X-ray sources were also seen in the background. One such serendipitous detection is a faint galaxy cluster seen close to the bottom edge of the image, right of centre. This cluster is much further away from us than NGC 4666, at a distance of about three billion light-years. In order to fully understand the nature of

  4. Close supermassive binary black holes.

    PubMed

    Gaskell, C Martin

    2010-01-01

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive black-hole binary (SMBB). The AGN J1536+0441 ( = SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that J1536+0441 is an example of line emission from a disk. If this is correct, the lack of clear optical spectral evidence for close SMBBs is significant, and argues either that the merging of close SMBBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted. PMID:20054358

  5. Close supermassive binary black holes

    NASA Astrophysics Data System (ADS)

    Gaskell, C. Martin

    2010-01-01

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive blackhole binary (SMB). The AGN J1536+0441 (=SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that 1536+044 is an example of line emission from a disc. If this is correct, the lack of clear optical spectral evidence for close SMBs is significant and argues either that the merging of close SMBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.

  6. Galaxy NGC5474

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  7. Deep infrared galaxies

    NASA Technical Reports Server (NTRS)

    Ashby, Matthew; Houck, J. R.; Hacking, Perry B.

    1992-01-01

    High signal-to-noise ratio optical spectra of 17 infrared-bright emission-line galaxies near the north ecliptic pole are presented. Reddening-corrected line ratios forbidden O III 5007/H-beta, N II 6583/H-alpha, S II (6716 + 6731)/H-alpha, and O I 6300/H-alpha are used to discriminate between candidate energy generation mechanisms in each galaxy. These criteria have frequently been applied to optically selected samples of galaxies in the past, but this is the first time they have been applied to a set of faint flux-limited infrared-selected objects. The analysis indicates the sample contains seven starburst galaxies and three (AGN). However, seven galaxies in the present sample elude the classification scheme based on these line ratios. It is concluded that a two-component (starburst plus AGN) model for energy generation is inadequate for infrared galaxies.

  8. Classic Galaxy with Glamour

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This color composite image of nearby NGC 300 combines the visible-light pictures from Carnegie Institution of Washington's 100-inch telescope at Las Campanas Observatory (colored red and yellow), with ultraviolet views from NASA's Galaxy Evolution Explorer. Galaxy Evolution Explorer detectors image far ultraviolet light (colored blue).

    This composite image traces star formation in progress. Young hot blue stars dominate the outer spiral arms of the galaxy, while the older stars congregate in the nuclear regions which appear yellow-green. Gases heated by hot young stars and shocks due to winds from massive stars and supernova explosions appear in pink, as revealed by the visible-light image of the galaxy.

    Located nearly 7 million light years away, NGC 300 is a member of a nearby group of galaxies known as the Sculptor Group. It is a spiral galaxy like our own Milky Way.

  9. Tidal Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Mirabel, I. F.; Brinks, E.

    The life and evolution of galaxies are dramatically affected by environmental effects. Interactions with the intergalactic medium and collisions with companions cause major perturbations in the morphology and contents of galaxies: in particular stars and gas clouds may be gravitationally pulled out from their parent galaxies during tidal encounters, forming rings, tails and bridges. This debris of collisions lies at the origin of a new generation of small galaxies, the so-called "tidal dwarf galaxies" (TDGs). The authors have carried out multi-wavelength observations of some 20 TDGs. These systems are made of two stellar components: young stars, formed from the recent collapse of expelled H I clouds, and an older stellar population, tidally pulled out from the disks of their interacting parent galaxies. In the observed TDGs, the current star formation episode is fuelled by a large reservoir of H I gas and is younger than 10 Myr.

  10. PROBING THE INTERGALACTIC MEDIUM-GALAXY CONNECTION AT z < 0.5. I. A GALAXY SURVEY IN QSO FIELDS AND A GALAXY-ABSORBER CROSS-CORRELATION STUDY ,

    SciTech Connect

    Chen, H.-W.; Mulchaey, John S. E-mail: mulchaey@ociw.edu

    2009-08-20

    We present an imaging and spectroscopic survey of galaxies in fields around QSOs HE 0226-4110, PKS 0405-123, and PG 1216+069. The fields are selected to have ultraviolet echelle spectra available, which uncover 195 Ly{alpha} absorbers and 13 O{sub VI} absorbers along the three sightlines. We obtain robust redshifts for 1104 galaxies of rest-frame absolute magnitude M{sub R} - 5log h {approx}< -16 and at projected physical distances {rho} {approx}< 4 h{sup -1} Mpc from the QSOs. Hubble Space Telescope (HST)/WFPC2 images of the fields around PKS 0405-123 and PG 1216+069 are available for studying the optical morphologies of absorbing galaxies. Combining the absorber and galaxy data, we perform a cross-correlation study to understand the physical origin of Ly{alpha} and O{sub VI} absorbers and to constrain the properties of extended gas around galaxies. The results of our study are: (1) both strong Ly{alpha} absorbers of N(H{sub I}){>=}14 and O{sub VI} absorbers exhibit a comparable clustering amplitude as emission-line-dominated galaxies and a factor of {approx} 6 weaker amplitude than absorption-line-dominated galaxies on comoving projected distance scales of r{sub p} < 3 h{sup -1} Mpc; (2) weak Ly{alpha} absorbers of N(H{sub I})<13.5 appear to cluster very weakly around galaxies; (3) none of the absorption-line-dominated galaxies at r{sub p} {<=} 250 h{sup -1} kpc has a corresponding O{sub VI} absorber to a sensitive upper limit of W(1031) {approx}< 0.03 A, while the covering fraction of O{sub VI} absorbing gas around emission-line-dominated galaxies is found to be {kappa} {approx} 64%; and (4) high-resolution images of five O{sub VI} absorbing galaxies show that these galaxies exhibit disk-like morphologies with mildly disturbed features on the edge. Together, the data indicate that O{sub VI} absorbers arise preferentially in gas-rich galaxies. In addition, tidal debris in groups/galaxy pairs may be principally responsible for the observed O{sub VI} absorbers

  11. Decision trees and decision committee applied to star/galaxy separation problem

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Eduardo Charles

    Vasconcellos et al [1] study the efficiency of 13 diferente decision tree algorithms applied to photometric data in the Sloan Digital Sky Digital Survey Data Release Seven (SDSS-DR7) to perform star/galaxy separation. Each algorithm is defined by a set fo parameters which, when varied, produce diferente final classifications trees. In that work we extensively explore the parameter space of each algorithm, using the set of 884,126 SDSS objects with spectroscopic data as the training set. We find that Functional Tree algorithm (FT) yields the best results by the mean completeness function (galaxy true positive rate) in two magnitude intervals:14<=r<=21 (85.2%) and r>=19 (82.1%). We compare FT classification to the SDSS parametric, 2DPHOT and Ball et al (2006) classifications. At the faintest magnitudes (r > 19), our classifier is the only one that maintains high completeness (>80%) while simultaneously achieving low contamination ( 2.5%). We also examine the SDSS parametric classifier (psfMag - modelMag) to see if the dividing line between stars and galaxies can be adjusted to improve the classifier. We find that currently stars in close pairs are often misclassified as galaxies, and suggest a new cut to improve the classifier. Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,326 SDSS photometric objects in the magnitude range 14 <= r <= 21. We now study the performance of a decision committee composed by FT classifiers. We will train six FT classifiers with random selected objects from the same 884,126 SDSS-DR7 objects with spectroscopic data that we use before. Both, the decision commitee and our previous single FT classifier will be applied to the new ojects from SDSS data releses eight, nine and ten. Finally we will compare peformances of both methods in this new data set. [1] Vasconcellos, E. C.; de Carvalho, R. R.; Gal, R. R.; LaBarbera, F. L.; Capelato, H. V.; Fraga Campos Velho, H.; Trevisan, M.; Ruiz, R. S. R

  12. Finding the First Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.

  13. Amazing Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The many 'personalities' of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

    The wide, ultraviolet eyes of Galaxy Evolution Explorer reveal Andromeda's 'fiery' nature -- hotter regions brimming with young and old stars. In contrast, Spitzer's super-sensitive infrared eyes show Andromeda's relatively 'cool' side, which includes embryonic stars hidden in their dusty cocoons.

    Galaxy Evolution Explorer detected young, hot, high-mass stars, which are represented in blue, while populations of relatively older stars are shown as green dots. The bright yellow spot at the galaxy's center depicts a particularly dense population of old stars.

    Swaths of red in the galaxy's disk indicate areas where Spitzer found cool, dusty regions where stars are forming. These stars are still shrouded by the cosmic clouds of dust and gas that collapsed to form them.

    Together, Galaxy Evolution Explorer and Spitzer complete the picture of Andromeda's swirling spiral arms. Hints of pinkish purple depict regions where the galaxy's populations of hot, high-mass stars and cooler, dust-enshrouded stars co-exist.

    Located 2.5 million light-years away, the Andromeda is our largest nearby galactic neighbor. The galaxy's entire disk spans about 260,000 light-years, which means that a light beam would take 260,000 years to travel from one end of the galaxy to the other. By comparison, our Milky Way galaxy's disk is about 100,000 light-years across.

    This image is a false color composite comprised of data from Galaxy Evolution Explorer's far-ultraviolet detector (blue), near-ultraviolet detector (green), and Spitzer's multiband imaging photometer at 24 microns (red).

  14. Galaxy evolution. Galactic paleontology.

    PubMed

    Tolstoy, Eline

    2011-07-01

    Individual low-mass stars have very long lives, comparable to the age of the universe, and can thus be used to probe ancient star formation. At present, such stars can be identified and studied only in the Milky Way and in the very closest of our neighboring galaxies, which are predominantly small dwarf galaxies. These nearby ancient stars are a fossil record that can provide detailed information about the physical processes that dominated the epoch of galaxy formation and subsequent evolution.

  15. Demographic mechanisms of inbreeding adjustment through extra-pair reproduction

    PubMed Central

    Reid, Jane M; Duthie, A Bradley; Wolak, Matthew E; Arcese, Peter; van de Pol, Martijn

    2015-01-01

    One hypothesis explaining extra-pair reproduction is that socially monogamous females mate with extra-pair males to adjust the coefficient of inbreeding (f) of extra-pair offspring (EPO) relative to that of within-pair offspring (WPO) they would produce with their socially paired male. Such adjustment of offspring f requires non-random extra-pair reproduction with respect to relatedness, which is in turn often assumed to require some mechanism of explicit pre-copulatory or post-copulatory kin discrimination. We propose three demographic processes that could potentially cause mean f to differ between individual females’ EPO and WPO given random extra-pair reproduction with available males without necessarily requiring explicit kin discrimination. Specifically, such a difference could arise if social pairings formed non-randomly with respect to relatedness or persisted non-randomly with respect to relatedness, or if the distribution of relatedness between females and their sets of potential mates changed during the period through which social pairings persisted. We used comprehensive pedigree and pairing data from free-living song sparrows (Melospiza melodia) to quantify these three processes and hence investigate how individual females could adjust mean offspring f through instantaneously random extra-pair reproduction. Female song sparrows tended to form social pairings with unrelated or distantly related males slightly less frequently than expected given random pairing within the defined set of available males. Furthermore, social pairings between more closely related mates tended to be more likely to persist across years than social pairings between less closely related mates. However, these effects were small and the mean relatedness between females and their sets of potential extra-pair males did not change substantially across the years through which social pairings persisted. Our framework and analyses illustrate how demographic and social structuring

  16. Demographic mechanisms of inbreeding adjustment through extra-pair reproduction.

    PubMed

    Reid, Jane M; Duthie, A Bradley; Wolak, Matthew E; Arcese, Peter

    2015-07-01

    One hypothesis explaining extra-pair reproduction is that socially monogamous females mate with extra-pair males to adjust the coefficient of inbreeding (f) of extra-pair offspring (EPO) relative to that of within-pair offspring (WPO) they would produce with their socially paired male. Such adjustment of offspring f requires non-random extra-pair reproduction with respect to relatedness, which is in turn often assumed to require some mechanism of explicit pre-copulatory or post-copulatory kin discrimination. We propose three demographic processes that could potentially cause mean f to differ between individual females' EPO and WPO given random extra-pair reproduction with available males without necessarily requiring explicit kin discrimination. Specifically, such a difference could arise if social pairings formed non-randomly with respect to relatedness or persisted non-randomly with respect to relatedness, or if the distribution of relatedness between females and their sets of potential mates changed during the period through which social pairings persisted. We used comprehensive pedigree and pairing data from free-living song sparrows (Melospiza melodia) to quantify these three processes and hence investigate how individual females could adjust mean offspring f through instantaneously random extra-pair reproduction. Female song sparrows tended to form social pairings with unrelated or distantly related males slightly less frequently than expected given random pairing within the defined set of available males. Furthermore, social pairings between more closely related mates tended to be more likely to persist across years than social pairings between less closely related mates. However, these effects were small and the mean relatedness between females and their sets of potential extra-pair males did not change substantially across the years through which social pairings persisted. Our framework and analyses illustrate how demographic and social structuring within

  17. Halo Pairs in the Millennium Simulation: Love and Deception

    NASA Astrophysics Data System (ADS)

    Moreno, J.

    2013-10-01

    In this work I investigate the statistical properties of a huge catalog of closely interacting pairs of dark matter haloes, extracted from the Millennium Simulation database. Only haloes that reach a minimum mass ≥ 8.6 × 1010 M⊙ h-1 (corresponding to 100 particles) are considered. Close pairs are selected if they come within a critical distance dcrit. I explore the effects of replacing dcrit = 1 Mpc h-1 → 200 kpc h-1 on the evolution of separations, lifetimes, total masses and mass ratios of these pairs.

  18. Galaxy UGC10445

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This ultraviolet color image of the galaxy UGC10445 was taken by NASA's Galaxy Evolution Explorer on June 7 and June 14, 2003. UGC10445 is a spiral galaxy located 40 million light-years from Earth.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  19. Galaxy NGC5962

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5962 on June 7, 2003. This spiral galaxy is located 90 million light-years from Earth.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  20. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  1. Extremely Isolated Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Fuse, Christopher R.; Marcum, P.; Fanelli, M.; Aars, C.

    2006-06-01

    Isolated galaxies provide a means of assessing the evolution of galactic systems. Extremely isolated galaxies define a zero-interaction baseline for comparative studies of galaxy evolution. We present results of a search for isolated elliptical galaxies (IEGs). We utilize the optical imaging data produced by the Sloan Digital Sky Survey (SDSS) to identify candidate galaxies from Release 1-4 of the SDSS. Candidate IEGs meet strict isolation criteria: Any IEG must be separated by at least 2.5 Mpc from any neighboring non-dwarf galaxy having a MV fainter than -16.5 mag. The candidate isolated systems have no non-dwarf neighbors within a distance such that we can insure that the IEGs have never interacted with another existing galaxy since formation.In order to increase the signal-to-noise ratio, we have used the SDSS images in the u,g,r filters to create combined sets of images for each IEG. The stacked images permit a more robust determination of the morphology of the candidate galaxies. Verification that these are spheroidal systems is achieved through a bulge/disk decomposition technique using standard surface photometry. Our preliminary sample of 51 isolated systems defines a complete volume-limited population of extremely isolated early-type galaxies within a distance of 72Mpc

  2. Are rotating planes of satellite galaxies ubiquitous?

    NASA Astrophysics Data System (ADS)

    Phillips, John I.; Cooper, Michael C.; Bullock, James S.; Boylan-Kolchin, Michael

    2015-11-01

    We compare the dynamics of satellite galaxies in the Sloan Digital Sky Survey to simple models in order to test the hypothesis that a large fraction of satellites corotate in coherent planes. We confirm the previously reported excess of corotating satellite pairs located near diametric opposition with respect to their host, but show that this signal is unlikely to be due to rotating discs (or planes) of satellites. In particular, no overabundance of corotating satellites pairs is observed within ˜20°-50° of direct opposition, as would be expected for planar distributions inclined relative to the line of sight. Instead, the excess corotation for satellite pairs within ˜10° of opposition is consistent with random noise associated with undersampling of an underlying isotropic velocity distribution. Based upon the observed dynamics of the luminous satellite population, we conclude that at most 10 per cent of isolated hosts harbour corotating satellite planes (as traced by bright satellites).

  3. Stellar halos around Local Group galaxies

    NASA Astrophysics Data System (ADS)

    McConnachie, Alan W.

    2016-08-01

    The Local Group is now home to 102 known galaxies and candidates, with many new faint galaxies continuing to be discovered. The total stellar mass range spanned by this population covers a factor of close to a billion, from the faintest systems with stellar masses of order a few thousand to the Milky Way and Andromeda, with stellar masses of order 1011 M ⊙. Here, I discuss the evidence for stellar halos surrounding Local Group galaxies spanning from dwarf scales (with the case of the Andromeda II dwarf spheroidal), though to intermediate mass systems (M33) and finishing with M31. Evidence of extended stellar populations and merging is seen across the luminosity function, indicating that the processes that lead to halo formation are common at all mass scales.

  4. When did Round Disk Galaxies Form?

    NASA Astrophysics Data System (ADS)

    Takeuchi, T. M.; Ohta, K.; Yuma, S.; Yabe, K.

    2015-03-01

    When and how galaxy morphology, such as the disk and bulge seen in the present-day universe, emerged is still not clear. In the universe at z >~ 2, galaxies with various morphologies are seen, and star-forming galaxies at z ~ 2 show the intrinsic shape of bar-like structures. Then, when did the round disk structure form? Here we take a simple and straightforward approach to see the epoch when a round disk galaxy population emerged by constraining the intrinsic shape statistically based on the apparent axial ratio distribution of galaxies. We derived the distributions of the apparent axial ratios in the rest-frame optical light (~5000 Å) of star-forming main-sequence galaxies at 2.5 > z > 1.4, 1.4 > z > 0.85, and 0.85 > z > 0.5, and found that their apparent axial ratios show peaky distributions at z >~ 0.85, while a rather flat distribution at the lower redshift. By using a tri-axial model (A > B > C) for the intrinsic shape, we found that the best-fit models give the peaks of the B/A distribution of 0.81 ± 0.04, 0.84 ± 0.04, and 0.92 ± 0.05 at 2.5 > z > 1.4, 1.4 > z > 0.85, and 0.85 > z > 0.5, respectively. The last value is close to the local value of 0.95. Thickness (C/A) is ~0.25 at all the redshifts and is close to the local value (0.21). The results indicate that the shape of the star-forming galaxies in the main sequence changes gradually, and that the round disk is established at around z ~ 0.9. The establishment of the round disk may be due to the cessation of a violent interaction between galaxies or the growth of a bulge and/or a supermassive black hole residing at the center of a galaxy that dissolves the bar structure.

  5. WHEN DID ROUND DISK GALAXIES FORM?

    SciTech Connect

    Takeuchi, T. M.; Ohta, K.; Yuma, S.; Yabe, K.

    2015-03-01

    When and how galaxy morphology, such as the disk and bulge seen in the present-day universe, emerged is still not clear. In the universe at z ≳ 2, galaxies with various morphologies are seen, and star-forming galaxies at z ∼ 2 show the intrinsic shape of bar-like structures. Then, when did the round disk structure form? Here we take a simple and straightforward approach to see the epoch when a round disk galaxy population emerged by constraining the intrinsic shape statistically based on the apparent axial ratio distribution of galaxies. We derived the distributions of the apparent axial ratios in the rest-frame optical light (∼5000 Å) of star-forming main-sequence galaxies at 2.5 > z > 1.4, 1.4 > z > 0.85, and 0.85 > z > 0.5, and found that their apparent axial ratios show peaky distributions at z ≳ 0.85, while a rather flat distribution at the lower redshift. By using a tri-axial model (A > B > C) for the intrinsic shape, we found that the best-fit models give the peaks of the B/A distribution of 0.81 ± 0.04, 0.84 ± 0.04, and 0.92 ± 0.05 at 2.5 > z > 1.4, 1.4 > z > 0.85, and 0.85 > z > 0.5, respectively. The last value is close to the local value of 0.95. Thickness (C/A) is ∼0.25 at all the redshifts and is close to the local value (0.21). The results indicate that the shape of the star-forming galaxies in the main sequence changes gradually, and that the round disk is established at around z ∼ 0.9. The establishment of the round disk may be due to the cessation of a violent interaction between galaxies or the growth of a bulge and/or a supermassive black hole residing at the center of a galaxy that dissolves the bar structure.

  6. Bell pair in a generic random matrix environment

    NASA Astrophysics Data System (ADS)

    Pineda, Carlos; Seligman, Thomas H.

    2007-01-01

    Two noninteracting qubits are coupled to an environment. Both coupling and environment are chosen as random matrices to obtain generic results. The initial state of the pair ranges from a Bell state to a product state. Decoherence of the pair is evaluated analytically in terms of purity; Monte Carlo calculations confirm these results and also yield concurrence of the pair. Entanglement within the pair accelerates decoherence. Numerics displays the relation between concurrence and purity known for Werner states. A closed albeit heuristic formula for concurrence decay ensues.

  7. A homogeneous sample of binary galaxies: Basic observational properties

    NASA Technical Reports Server (NTRS)

    Karachentsev, I. D.

    1990-01-01

    A survey of optical characteristics for 585 binary systems, satisfying a condition of apparent isolation on the sky, is presented. Influences of various selection effects distorting the average parameters of the sample are noted. The pair components display mutual similarity over all the global properties: luminosity, diameter, morphological type, mass-to-luminosity ratio, angular momentum etc., which is not due only to selection effects. The observed correlations must be caused by common origin of pair members. Some features (nuclear activity, color index) could acquire similarity during synchronous evolution of double galaxies. Despite the observed isolation, the sample of double systems is seriously contaminated by accidental pairs, and also by members of groups and clusters. After removing false pairs estimates of orbital mass-to-luminosity ratio range from 0 to 30 f(solar), with the mean value (7.8 plus or minus 0.7) f(solar). Binary galaxies possess nearly circular orbits with a typical eccentrity e = 0.25, probably resulting from evolutionary selection driven by component mergers under dynamical friction. The double-galaxy population with space abundance 0.12 plus or minus 0.02 and characteristic merger timescale 0.2 H(exp -1) may significantly influence the rate of dynamical evolution of galaxies.

  8. HUBBLE PEEKS INTO A STELLAR NURSERY IN A NEARBY GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    HUBBLE PEEKS INTO A STELLAR NURSERY IN A NEARBY GALAXY NASA's Hubble Space Telescope has peered deep into a neighboring galaxy to reveal details of the formation of new stars. Hubble's target was a newborn star cluster within the Small Magellanic Cloud, a small galaxy that is a satellite of our own Milky Way. The new images show young, brilliant stars cradled within a nebula, or glowing cloud of gas, cataloged as N 81. These massive, recently formed stars inside N 81 are losing material at a high rate, sending out strong stellar winds and shock waves and hollowing out a cocoon within the surrounding nebula. The two most luminous stars, seen in the Hubble image as a very close pair near the center of N 81, emit copious ultraviolet radiation, causing the nebula to glow through fluorescence. Outside the hot, glowing gas is cooler material consisting of hydrogen molecules and dust. Normally this material is invisible, but some of it can be seen in silhouette against the nebular background, as long dust lanes and a small, dark, elliptical-shaped knot. It is believed that the young stars have formed from this cold matter through gravitational contraction. Few features can be seen in N 81 from ground-based telescopes, earning it the informal nick-name 'The Blob.' Astronomers were not sure if just one or a few hot stars were embedded in the cloud, or if it was a stellar nursery containing a large number of less massive stars. Hubble's high-resolution imaging shows the latter to be the case, revealing that numerous young, white-hot stars---easily visible in the color picture---are contained within N 81. This crucial information bears strongly on theories of star formation, and N 81 offers a singular opportunity for a close-up look at the turbulent conditions accompanying the birth of massive stars. The brightest stars in the cluster have a luminosity equal to 300,000 stars like our own Sun. Astronomers are especially keen to study star formation in the Small Magellanic

  9. The Topsy-Turvy Galaxy

    NASA Astrophysics Data System (ADS)

    2006-11-01

    The captivating appearance of this image of the starburst galaxy NGC 1313, taken with the FORS instrument at ESO's Very Large Telescope, belies its inner turmoil. The dense clustering of bright stars and gas in its arms, a sign of an ongoing boom of star births, shows a mere glimpse of the rough times it has seen. Probing ever deeper into the heart of the galaxy, astronomers have revealed many enigmas that continue to defy our understanding. ESO PR Photo 43a/06 ESO PR Photo 43a/06 The Topsy-Turvy Galaxy NGC 1313 This FORS image of the central parts of NGC 1313 shows a stunning natural beauty. The galaxy bears some resemblance to some of the Milky Way's closest neighbours, the Magellanic Clouds. NGC 1313 has a barred spiral shape, with the arms emanating outwards in a loose twist from the ends of the bar. The galaxy lies just 15 million light-years away from the Milky Way - a mere skip on cosmological scales. The spiral arms are a hotbed of star-forming activity, with numerous young clusters of hot stars being born continuously at a staggering rate out of the dense clouds of gas and dust. Their light blasts through the surrounding gas, creating an intricately beautiful pattern of light and dark nebulosity. But NGC 1313 is not just a pretty picture. A mere scratch beneath the elegant surface reveals evidence of some of the most puzzling problems facing astronomers in the science of stars and galaxies. Starburst galaxies are fascinating objects to study in their own right; in neighbouring galaxies, around one quarter of all massive stars are born in these powerful engines, at rates up to a thousand times higher than in our own Milky Way Galaxy. In the majority of starbursts the upsurge in star's births is triggered when two galaxies merge, or come too close to each other. The mutual attraction between the galaxies causes immense turmoil in the gas and dust, causing the sudden 'burst' in star formation. ESO PR Photo 43b/06 ESO PR Photo 43b/06 Larger View of NGC 1313

  10. Galaxy redshift surveys with sparse sampling

    SciTech Connect

    Chiang, Chi-Ting; Wullstein, Philipp; Komatsu, Eiichiro; Jee, Inh; Jeong, Donghui; Blanc, Guillermo A.; Ciardullo, Robin; Gronwall, Caryl; Hagen, Alex; Schneider, Donald P.; Drory, Niv; Fabricius, Maximilian; Landriau, Martin; Finkelstein, Steven; Jogee, Shardha; Cooper, Erin Mentuch; Tuttle, Sarah; Gebhardt, Karl; Hill, Gary J.

    2013-12-01

    Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc. A competitive survey, however, requires a large volume (e.g., V{sub survey} ∼ 10Gpc{sup 3}) to be covered, and thus tends to be expensive. A ''sparse sampling'' method offers a more affordable solution to this problem: within a survey footprint covering a given survey volume, V{sub survey}, we observe only a fraction of the volume. The distribution of observed regions should be chosen such that their separation is smaller than the length scale corresponding to the wavenumber of interest. Then one can recover the power spectrum of galaxies with precision expected for a survey covering a volume of V{sub survey} (rather than the volume of the sum of observed regions) with the number density of galaxies given by the total number of observed galaxies divided by V{sub survey} (rather than the number density of galaxies within an observed region). We find that regularly-spaced sampling yields an unbiased power spectrum with no window function effect, and deviations from regularly-spaced sampling, which are unavoidable in realistic surveys, introduce calculable window function effects and increase the uncertainties of the recovered power spectrum. On the other hand, we show that the two-point correlation function (pair counting) is not affected by sparse sampling. While we discuss the sparse sampling method within the context of the forthcoming Hobby-Eberly Telescope Dark Energy Experiment, the method is general and can be applied to other galaxy surveys.

  11. Merging a Pair of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-10-01

    hydrodynamically, simulating the final stages of the galaxy merger.When the separation of the two SMBHs is small enough, the authors extract a spherical region of 5 kpc from around the pair and evolve this as an N-body simulation.Finally, the separation of the SMBHs becomes so small (0.01 pc) that gravitational-wave emission is the dominant loss of energy driving the inspiral. The authors add post-Newtonian terms into the N-body simulation to account for this.Time evolution of the separation between the SMBHs, beginning with the hydrodynamical simulation (blue), then transitioning to the direct N-body calculation (red), and ending with the introduction of post-Newtonian terms (green) to account for gravitational-wave emission. [Adapted from Khan et al. 2016]Successful CoalescenceKhan and collaborators complex approach allows them to simulate the entire process of the merger and SMBH coalescence, resulting in several key determinations.First, they demonstrate that the SMBHs can coalesce on timescales of only tens of Myr, which is roughly two orders of magnitude smaller than what was typically estimated before. They find that gas dissipation before the merger is instrumental in creating the conditions that allow for this rapid orbital decay.The authors also demonstrate that the gravitational potential of the galaxy merger remnant is triaxial throughout the merger. Khan and collaborators simulations confirm that this non-spherical potential solves the final parsec problem by sending stars on plunging orbits around the SMBHs. These more distant stars cause the SMBHs to lose angular momentum through dynamical friction and continue their inspiral, even when the stars immediately surrounding the SMBHs have been depleted.This simulation isan important step toward a better understanding of SMBH mergers. Its outcomes are especially promising for future gravitational-wave campaigns, as the short SMBH coalescence timescales indicate that these mergers could indeed be observable

  12. Dark energy in systems of galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2013-11-01

    The precise observational data of the Hubble Space Telescope have been used to study nearby galaxy systems. The main result is the detection of dark energy in groups, clusters, and flows of galaxies on a spatial scale of about 1-10 Mpc. The local density of dark energy in these systems, which is determined by various methods, is close to the global value or even coincides with it. A theoretical model of the nearby Universe has been constructed, which describes the Local Group of galaxies with the flow of dwarf galaxies receding from this system. The key physical parameter of the group-flow system is zero gravity radius, which is the distance at which the gravity of dark matter is compensated by dark-energy antigravity. The model predicts the existence of local regions of space where Einstein antigravity is stronger than Newton gravity. Six such regions have been revealed in the data of the Hubble space telescope. The nearest of these regions is at a distance of 1-3 Mpc from the center of the Milky Way. Antigravity in this region is several times stronger than gravity. Quasiregular flows of receding galaxies, which are accelerated by the dark-energy antigravity, exist in these regions. The model of the nearby Universe at the scale of groups of galaxies (˜1 Mpc) can be extended to the scale of clusters (˜10 Mpc). The systems of galaxies with accelerated receding flows constitute a new and probably widespread class of metagalactic populations. Strong dynamic effects of local dark energy constitute the main characteristic feature of these systems.

  13. Dynamics & Morphology of Coma Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Beijersbergen, M.; van der Hulst, J. M.

    The principal aim of this project is to explore the link between the cluster and its environment, and to study the effects that changes in environment have on the properties of galaxies. Coma, the richest of the nearby clusters, appears to be a close equivalent to clusters at higher redshift. The most remarkable similarity is the presence of blue disk galaxies and galaxies with E+A type spectra, making Coma the perfect link between nearby and distant clusters. Despite numerous observations, many aspects of both the dynamics of the Coma cluster and of its galaxy populations remain unexplained. One of the most notable pieces of information that is as yet unavailable, is a proper, unbiased HI survey of the entire Coma area. The few pointed observations that have been done show a variety in HI properties: stripped disks, blue disk galaxies with quite a range in HI content and galaxies with low surface brightness companions. We have used the Westerbork Synthesis Radio Telescope (WSRT) to perform a blind survey of galaxies in Coma in the redshifted HI line. We have covered an area of 4.6 square degrees with 17 MHz bandwidth in 432 hours of total integration time. This allows us to study the HI properties as function of environment and assess the importance of merging and stripping. The HI observations will be used in combination with optical data from the wide field camera on the Isaac Newton Telescope (INT) to address a large number of interesting problems. Our data sets are unrivalled by what is available for any other cluster and will greatly enhance the ability to study the structure and dynamics of Coma. Here, I will discuss the data and the status of this ongoing project.

  14. Hubble's deepest view ever of the Universe unveils earliest galaxies

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Hubble sees galaxies galore hi-res Size hi-res: 446 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble sees galaxies galore Galaxies, galaxies everywhere - as far as the NASA/ESA Hubble Space Telescope can see. This view of nearly 10,000 galaxies is the deepest visible-light image of the cosmos. Called the Hubble Ultra Deep Field, this galaxy-studded view represents a ‘deep’ core sample of the universe, cutting across billions of light-years. Hubble reveals galactic drama hi-res Size hi-res: 879 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. Here three galaxies just below centre are enmeshed in battle, their shapes distorted by the brutal encounter. Hubble reveals galactic drama hi-res Size hi-res: 886 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. Here three galaxies just below centre are enmeshed in battle, their shapes distorted by the brutal encounter. Hubble reveals galactic drama hi-res Size hi-res: 892 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. The galaxies in this panel were plucked from a harvest of nearly 10,000 galaxies in the Ultra Deep Field, the deepest visible-light image of the cosmos. This historic new view is actually made up by two separate images taken by Hubble's Advanced Camera for Surveys (ACS) and the Near Infrared Camera and

  15. Dark Matter Equilibria in Galaxies and Galaxy Systems

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Cavaliere, A.

    2009-02-01

    In the dark matter (DM) halos embedding galaxies and galaxy systems the "entropy" K ≡ σ2/ρ2/3 (a quantity that combines the radial velocity dispersion σ with the density ρ) is found from intensive N-body simulations to follow a power-law run K vprop r α throughout the halos' bulk, with α around 1.25. Taking up from phenomenology just that α≈ const. applies, we cut through the rich analytic contents of the Jeans equation describing the self-gravitating equilibria of the DM; we specifically focus on computing and discussing a set of novel physical solutions that we name α-profiles, marked by the entropy slope α itself, and by the maximal gravitational pull κcrit(α) required for a viable equilibrium to hold. We then use an advanced semianalytic description for the cosmological buildup of halos to constrain the values of α to within the narrow range 1.25-1.29 from galaxies to galaxy systems; these correspond to halos' current masses in the range 1011-1015 M sun. Our range of α applies since the transition time that—both in our semianalytic description and in state-of-the-art numerical simulations—separates two development stages: an early violent collapse that comprises a few major mergers and enforces dynamical mixing, followed by smoother mass addition through slow accretion. In our range of α we provide a close fit for the relation κcrit(α), and discuss a related physical interpretation in terms of incomplete randomization of the infall kinetic energy through dynamical mixing. We also give an accurate analytic representation of the α-profiles with parameters derived from the Jeans equation; this provides straightforward precision fits to recent detailed data from gravitational lensing in and around massive galaxy clusters, and thus replaces the empirical Navarro-Frenk-White formula relieving the related problems of high concentration and old age. We finally stress how our findings and predictions as to α and κcrit contribute to

  16. Existence of best proximity pairs and equilibrium pairs

    NASA Astrophysics Data System (ADS)

    Kim, Won Kyu; Lee, Kyoung Hee

    2006-04-01

    In this paper, using the fixed point theorem for Kakutani factorizable multifunctions, we shall prove new existence theorems of best proximity pairs and equilibrium pairs for free abstract economies, which include the previous fixed point theorems and equilibrium existence theorems.

  17. Towards pair production near threshold with unstable particle effective theory

    SciTech Connect

    Beneke, M.; Kauer, N.; Signer, A.; Zanderighi, G.; /Fermilab

    2004-10-01

    We illustrate the use of effective theory techniques to describe processes involving unstable particles close to resonance. First, we present the main ideas in the context of a scalar resonance in an Abelian gauge-Yukawa model. We then outline the necessary modifications to describe W-pair production close to threshold in electron-positron collisions.

  18. Bars Triggered By Galaxy Flybys

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Lang, Meagan; Sinha, Manodeep

    2015-05-01

    Galaxy mergers drive galaxy evolution and are a key mechanism by which galaxies grow and transform. Unlike galaxy mergers where two galaxies combine into one remnant, galaxy flybys occur when two independent galaxy halos interpenetrate but detach at a later time; these one-time events are surprisingly common and can even out-number galaxy mergers at low redshift for massive halos. Although these interactions are transient and occur far outside the galaxy disk, flybys can still drive a rapid and large pertubations within both the intruder and victim halos. We explored how flyby encounters can transform each galaxy using a suite of N-body simulations. We present results from three co-planar flybys between disk galaxies, demonstrating that flybys can both trigger strong bar formation and can spin-up dark matter halos.

  19. SPIRALS, BRIDGES, AND TAILS: A GALAXY EVOLUTION EXPLORER ULTRAVIOLET ATLAS OF INTERACTING GALAXIES

    SciTech Connect

    Smith, Beverly J.; Giroux, Mark L.; Hancock, Mark; Struck, Curtis E-mail: girouxm@etsu.edu E-mail: curt@iastate.edu

    2010-03-15

    We have used the Galaxy Evolution Explorer (GALEX) ultraviolet telescope to study stellar populations and star formation morphology in a well-defined sample of 42 nearby optically selected pre-merger interacting galaxy pairs. Galaxy interactions were likely far more common in the early universe than in the present; thus our study provides a nearby well-resolved comparison sample for high-redshift studies. We have combined the GALEX near-ultraviolet (NUV) and far-ultraviolet images with broadband optical maps from the Sloan Digitized Sky Survey to investigate the ages and extinctions of the tidal features and the disks. The distributions of the UV/optical colors of the tidal features and the main disks of the galaxies are similar; however, the tidal features are bluer on average in NUV - g when compared with their own parent disks; thus tails and bridges are often more prominent relative to the disks in UV images compared to optical maps. This effect is likely due to enhanced star formation in the tidal features compared to the disks rather than reduced extinction; however, lower metallicities may also play a role. We have identified a few new candidate tidal dwarf galaxies in this sample. Other interesting morphologies such as accretion tails and 'beads on a string' are also seen in these images. We also identify a possible 'Taffy' galaxy in our sample, which may have been produced by a head-on collision between two galaxies. In only a few cases are strong tidal features seen in H I maps but not in GALEX.

  20. Mapping the infrared and hydrogen-alpha emission in mixed morphology binary galaxies

    NASA Astrophysics Data System (ADS)

    Domingue, Donovan Louis

    2001-09-01

    Mixed pairs give insight into the nature of simple galaxy interactions which contain only a single gas-rich component. These mixed pairs challenge galaxy formation models which view environmental factors as the sole predictor of pair morphology, they offer the best opportunity to view cross-fueling of the early-type galaxy, and they present a useful method to relate dust mass to extinction within paired spirals. The multi- wavelength approach applied here reveals both stellar and interstellar markers of the interaction process. The use of Hα and Infrared Space Observatory (ISO) data reveals: (1)that opacity and infrared emission estimates of spiral dust mass in overlapping pairs agree within a factor of two, (2)the relative IR emission contribution from the S0 galaxies of mixed pairs is often significant, (3)the star formation rate of paired spirals is approximately twice the rate of isolated spirals, and (4)the morphology of infrared emission in pair members is in good agreement with the Hα distribution.

  1. Ultraluminous infrared galaxies in the AKARI all-sky survey

    SciTech Connect

    Kilerci Eser, E.; Goto, T.; Doi, Y. E-mail: doi@ea.c.u-tokyo.ac.jp

    2014-12-10

    We present a new catalog of 118 ultraluminous infrared galaxies (ULIRGs) and one hyperluminous infrared galaxy (HLIRG) by cross-matching the AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the final data release of the Two-Degree Field Galaxy Redshift Survey. Forty of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing or postmergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the active galactic nucleus fraction and infrared luminosity. We show that ULIRGs have a large offset from the main sequence up to z ∼ 1; their offset from the z ∼ 2 'main sequence' is relatively smaller. We find a result consistent with the previous studies showing that, compared to local star-forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We demonstrate for the first time that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex-0.5 dex) is comparable to the scatter of z ∼ 2-3 galaxies. We provide the largest local (0.050

  2. Evolution of galaxy habitability

    NASA Astrophysics Data System (ADS)

    Gobat, R.; Hong, S. E.

    2016-08-01

    We combine a semi-analytic model of galaxy evolution with constraints on circumstellar habitable zones and the distribution of terrestrial planets in order to probe the suitability of galaxies of different mass and type to host habitable planets, and how it evolves with time. We find that the fraction of stars with terrestrial planets in their habitable zone (known as habitability) depends only weakly on galaxy mass, with a maximum around 4 × 1010M⊙. We estimate that 0.7% of all stars in Milky Way-type galaxies to host a terrestrial planet within their habitable zone, consistent with the value derived from Kepler observations. On the other hand, the habitability of passive galaxies is slightly but systematically higher, unless we assume an unrealistically high sensitivity of planets to supernovae. We find that the overall habitability of galaxies has not changed significantly in the last ~8 Gyr, with most of the habitable planets in local disk galaxies having formed ~1.5 Gyr before our own solar system. Finally, we expect that ~1.4 ×109 planets similar to present-day Earth have existed so far in our galaxy.

  3. Superluminous Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity Lr = 8-14L* (4.3-7.5 × 1044 erg s-1). These super spiral galaxies are also giant and massive, with diameter D = 57-134 kpc and stellar mass Mstars = 0.3-3.4 × 1011M⊙. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and Lr > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M⊙ yr-1 place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  4. UPDATED NEARBY GALAXY CATALOG

    SciTech Connect

    Karachentsev, Igor D.; Makarov, Dmitry I.; Kaisina, Elena I.

    2013-04-15

    We present an all-sky catalog of 869 nearby galaxies having individual distance estimates within 11 Mpc or corrected radial velocities V{sub LG} < 600 km s{sup -1}. The catalog is a renewed and expanded version of the Catalog of Neighboring Galaxies by Karachentsev et al. It collects data on the following galaxy observables: angular diameters, apparent magnitudes in far-UV, B, and K{sub s} bands, H{alpha} and H I fluxes, morphological types, H I-line widths, radial velocities, and distance estimates. In this Local Volume (LV) sample, 108 dwarf galaxies still remain without measured radial velocities. The catalog yields also calculated global galaxy parameters: linear Holmberg diameter, absolute B magnitude, surface brightness, H I mass, stellar mass estimated via K-band luminosity, H I rotational velocity corrected for galaxy inclination, indicative mass within the Holmberg radius, and three kinds of ''tidal index,'' which quantify the local density environment. The catalog is supplemented with data based on the local galaxies, which presents their optical and available H{alpha} images, as well as other services. We briefly discuss the Hubble flow within the LV and different scaling relations that characterize galaxy structure and global star formation in them. We also trace the behavior of the mean stellar mass density, H I-mass density, and star formation rate density within the volume considered.

  5. Hubble's galaxy nomenclature

    NASA Astrophysics Data System (ADS)

    Baldry, Ivan K.

    2008-10-01

    It is widely written and believed that Edwin Hubble introduced the terms ``early'' and ``late types'' to suggest an evolutionary sequence for galaxies. This is incorrect. Hubble took these terms from spectral classification of stars to signify a sequence related to complexity of appearance, albeit based on images, not spectra. The temporal connotations had been abandoned before his 1926 paper on classification of galaxies.

  6. Brightest Cluster Galaxy Identification

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haarsma, D. B.; Sebald, D. A.; ACCEPT Team

    2011-01-01

    Brightest cluster galaxies (BCGs) play an important role in several fields of astronomical research. The literature includes many different methods and criteria for identifying the BCG in the cluster, such as choosing the brightest galaxy, the galaxy nearest the X-ray peak, or the galaxy with the most extended profile. Here we examine a sample of 75 clusters from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT) and the Sloan Digital Sky Survey (SDSS), measuring masked magnitudes and profiles for BCG candidates in each cluster. We first identified galaxies by hand; in 15% of clusters at least one team member selected a different galaxy than the others.We also applied 6 other identification methods to the ACCEPT sample; in 30% of clusters at least one of these methods selected a different galaxy than the other methods. We then developed an algorithm that weighs brightness, profile, and proximity to the X-ray peak and centroid. This algorithm incorporates the advantages of by-hand identification (weighing multiple properties) and automated selection (repeatable and consistent). The BCG population chosen by the algorithm is more uniform in its properties than populations selected by other methods, particularly in the relation between absolute magnitude (a proxy for galaxy mass) and average gas temperature (a proxy for cluster mass). This work supported by a Barry M. Goldwater Scholarship and a Sid Jansma Summer Research Fellowship.

  7. Chandra Sees Wealth Of Black Holes In Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    2001-06-01

    NASA's Chandra X-ray Observatory has found new populations of suspected mid-mass black holes in several starburst galaxies, where stars form and explode at an unusually high rate. Although a few of these objects had been found previously, this is the first time they have been detected in such large numbers and could help explain their relationship to star formation and the production of even more massive black holes. At the 198th meeting of the American Astronomical Society in Pasadena, California, three independent teams of scientists reported finding dozens of X-ray sources in galaxies aglow with star formation. These X-ray objects appear point-like and are ten to a thousand times more luminous in X-rays than similar sources found in our Milky Way and the M81 galaxy. "Chandra gives us the ability to study the populations of individual bright X-ray sources in nearby galaxies in extraordinary detail," said Andreas Zezas, lead author from the Harvard-Smithsonian Center for Astrophysics team that observed The Antennae, a pair of colliding galaxies, and M82, a well-known starburst galaxy. "This allows us to build on earlier detections of these objects and better understand their relationship to starburst galaxies." Antennae-True Color Image True Color Image of Antennae Credit: NASA/SAO/G.Fabbiano et al. Press Image and Caption Kimberly Weaver, of NASA's Goddard Space Flight Center in Greenbelt, MD, lead scientist of the team that studied the starburst galaxy NGC 253, discussed the importance of the unusual concentration of these very luminous X-ray sources near the center of that galaxy. Four sources, which are tens to thousands of times more massive than the Sun, are located within 3,000 light years of the galaxy core. "This may imply that these black holes are gravitating toward the center of the galaxy where they could coalesce to form a single supermassive black hole," Weaver suggested. "It could be that this starburst galaxy is transforming itself into a quasar

  8. GALAXY EVOLUTION IN OVERDENSE ENVIRONMENTS AT HIGH REDSHIFT: PASSIVE EARLY-TYPE GALAXIES IN A CLUSTER AT z {approx} 2

    SciTech Connect

    Strazzullo, V.; Gobat, R.; Daddi, E.; Onodera, M.; Carollo, M.; Dickinson, M.; Renzini, A.; Arimoto, N.; Cimatti, A.; Finoguenov, A.; Chary, R.-R.

    2013-08-01

    We present a study of galaxy populations in the central region of the IRAC-selected, X-ray-detected galaxy cluster Cl J1449+0856 at z = 2. Based on a sample of spectroscopic and photometric cluster members, we investigate stellar populations and the morphological structure of cluster galaxies over an area of {approx}0.7 Mpc{sup 2} around the cluster core. The cluster stands out as a clear overdensity both in redshift space and in the spatial distribution of galaxies close to the center of the extended X-ray emission. The cluster core region (r < 200 kpc) shows a clearly enhanced passive fraction with respect to field levels. However, together with a population of massive, passive galaxies mostly with early-type morphologies, the cluster core also hosts massive, actively star-forming, often highly dust reddened sources. Close to the cluster center, a multi-component system of passive and star-forming galaxies could represent the future brightest cluster galaxy still forming. We observe a clear correlation between passive stellar populations and an early-type morphology, in agreement with field studies at similar redshift. Passive early-type galaxies in this cluster are typically a factor of 2-3 smaller than similarly massive early types at z {approx} 0. On the other hand, these same objects are on average larger by a factor of {approx}2 than field early-types at similar redshift, lending support to recent claims of an accelerated structural evolution in high-redshift dense environments. These results point toward the early formation of a population of massive galaxies, already evolved both in their structure and stellar populations, coexisting with still actively forming massive galaxies in the central regions of young clusters 10 billion years ago.

  9. GALAXIES: SNAPSHOTS IN TIME

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sequence of NASA Hubble Space Telescope (HST) images of remote galaxies offers tantalizing initial clues to the evolution of galaxies in the universe. [far left column] These are traditional spiral and elliptical-shaped galaxies that make up the two basic classes of island star cities that inhabit the universe we see in our current epoch (14 billion years after the birth of the universe in the Big Bang). Elliptical galaxies contain older stars, while spirals have vigorous ongoing star formation in their dusty, pancake-shaped disks. Our Milky Way galaxy is a typical spiral, or disk-shaped galaxy, on the periphery of the great Virgo cluster. Both galaxies in this column are a few tens of millions of light-years away, and therefore represent our current stage of the universe s evolution. [center left column] These galaxies existed in a rich cluster when the universe was approximately two-thirds its present age. Elliptical galaxies (top) appear fully evolved because they resemble today's descendants. By contrast, some spirals have a frothier appearance, with loosely shaped arms of young star formation. The spiral population appears more disrupted due to a variety of possible dynamical effects that result from dwelling in a dense cluster. [center right column] Distinctive spiral structure appears more vague and disrupted in galaxies that existed when the universe was nearly one-third its present age. These objects do not have the symmetry of current day spirals and contain irregular lumps of starburst activity. However, even this far back toward the beginning of time, the elliptical galaxy (top) is still clearly recognizable. However, the distinction between ellipticals and spirals grows less certain with increasing distance. [far right column] These extremely remote, primeval objects existed with the universe was nearly one-tenth its current age. The distinction between spiral and elliptical galaxies may well disappear at this early epoch. However, the object in

  10. Nucleosynthesis in the Magellanic Clouds and the Galaxy.

    NASA Technical Reports Server (NTRS)

    Burbidge, G.

    1971-01-01

    Available evidence on the chemical composition of the Magellanic Clouds (when compared to the Galaxy) is not sufficient for a detailed theory of the chemical evolution of the Clouds to be developed at present. However, this evidence is thus far compatible with the view that much of the material of the Clouds went through a considerable amount of nucleosynthesis early in its history. The Clouds could once have been part of the Galaxy, or they could have formed as satellites when the protogalaxy condensed. The general problem of the chemical evolution is tied closely to the problem of galaxy formation which remains unsolved.

  11. MULTIPLE GALAXY COLLISIONS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  12. Colliding and merging galaxies.

    PubMed

    Schweizer, F

    1986-01-17

    Aided by advances in computer technology and observations from space, astronomers have begun to unravel the mysteries of galaxy formation and evolution. Galaxies evolve by interacting with their environment and especially with each other. During brief but often fierce galactic encounters, gravitational forces generate strong tides that survive as telltale signatures for billions of years. Because these so-called collisions dissipate orbital energy, galaxies on bound orbits may eventually merge. Collisions and mergers are responsible for a great variety of phenomena, including the triggering of widespread star formation in galaxies and the fueling of nuclear activity in quasars. Evidence is accumulating that not all galaxies formed shortly after the Big Bang. A sizable fraction of them may have formed later, and many are still experiencing significant dynamical evolution. PMID:17769643

  13. Galaxy Messier 83

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the spiral galaxy Messier 83 was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. Located 15 million light years from Earth and known as the Southern Pinwheel Galaxy, Messier 83 displays significant amounts of ultraviolet emissions far from the optically bright portion of the galaxy. It is also known to have an extended hydrogen disc that appears to radiate a faint ultraviolet emission. The red stars in the foreground of the image are Milky Way stars.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  14. Close Encounters of the Stellar Kind

    NASA Astrophysics Data System (ADS)

    2003-07-01

    exchange partners in intricate dances. The data suggest that X-ray binary systems are formed in dense clusters known as globular clusters about once a day somewhere in the universe. Observations by NASA's Uhuru X-ray satellite in the 1970's showed that globular clusters seemed to contain a disproportionately large number of X-ray binary sources compared to the Galaxy as a whole. Normally only one in a billion stars is a member of an X-ray binary system containing a neutron star, whereas in globular clusters, the fraction is more like one in a million. The present research confirms earlier suggestions that the chance of forming an X-ray binary system is dramatically increased by the congestion in a globular cluster. Under these conditions two processes, known as three-star exchange collisions, and tidal captures, can lead to a thousandfold increase in the number of X-ray sources in globular clusters. 47 Tucanae 47 Tucanae In an exchange collision, a lone neutron star encounters a pair of ordinary stars. The intense gravity of the neutron star can induce the most massive ordinary star to "change partners," and pair up with the neutron star while ejecting the lighter star. A neutron star could also make a grazing collision with a single normal star, and the intense gravity of the neutron star could distort the gravity of the normal star in the process. The energy lost in the distortion, could prevent the normal star from escaping from the neutron star, leading to what is called tidal capture. "In addition to solving a long-standing mystery, Chandra data offer an opportunity for a deeper understanding of globular cluster evolution," said Heinke. "For example, the energy released in the formation of close binary systems could keep the central parts of the cluster from collapsing to form a massive black hole." NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of

  15. The galaxy ancestor problem

    NASA Astrophysics Data System (ADS)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  16. The influence of halo evolution on galaxy structure

    NASA Astrophysics Data System (ADS)

    White, Simon

    2015-03-01

    If Einstein-Newton gravity holds on galactic and larger scales, then current observations demonstrate that the stars and interstellar gas of a typical bright galaxy account for only a few percent of its total nonlinear mass. Dark matter makes up the rest and cannot be faint stars or any other baryonic form because it was already present and decoupled from the radiation plasma at z = 1000, long before any nonlinear object formed. The weak gravito-sonic waves so precisely measured by CMB observations are detected again at z = 4 as order unity fluctuations in intergalactic matter. These subsequently collapse to form today's galaxy/halo systems, whose mean mass profiles can be accurately determined through gravitational lensing. High-resolution simulations link the observed dark matter structures seen at all these epochs, demonstrating that they are consistent and providing detailed predictions for all aspects of halo structure and growth. Requiring consistency with the abundance and clustering of real galaxies strongly constrains the galaxy-halo relation, both today and at high redshift. This results in detailed predictions for galaxy assembly histories and for the gravitational arena in which galaxies live. Dark halos are not expected to be passive or symmetric but to have a rich and continually evolving structure which will drive evolution in the central galaxy over its full life, exciting warps, spiral patterns and tidal arms, thickening disks, producing rings, bars and bulges. Their growth is closely related to the provision of new gas for galaxy building.

  17. ON THE SHAPES AND STRUCTURES OF HIGH-REDSHIFT COMPACT GALAXIES

    SciTech Connect

    Chevance, Melanie; Damjanov, Ivana; Abraham, Roberto G.; Weijmans, Anne-Marie; Simard, Luc; Van den Bergh, Sidney; Caris, Evelyn; Glazebrook, Karl

    2012-08-01

    Recent deep Hubble Space Telescope WFC3 imaging suggests that a majority of compact quiescent massive galaxies at z {approx} 2 may contain disks. To investigate this claim, we have compared the ellipticity distribution of 31 carefully selected high-redshift massive quiescent compact galaxies to a set of mass-selected ellipticity and Sersic index distributions obtained from two-dimensional structural fits to {approx}40, 000 nearby galaxies from the Sloan Digital Sky Survey. A Kolmogorov-Smirnov test shows that the distribution of ellipticities for the high-redshift galaxies is consistent with the ellipticity distribution of a similarly chosen sample of massive early-type galaxies. However, the distribution of Sersic indices for the high-redshift sample is inconsistent with that of local early-type galaxies, and instead resembles that of local disk-dominated populations. The mismatch between the properties of high-redshift compact galaxies and those of both local early-type and disk-dominated systems leads us to conclude that the basic structures of high-redshift compact galaxies probably do not closely resemble those of any single local galaxy population. Any galaxy population analog to the high-redshift compact galaxies that exists at the current epoch is either a mix of different types of galaxies, or possibly a unique class of objects on their own.

  18. Closed and Not Closed: Mitigating a Mystery on Chandra's Door

    NASA Technical Reports Server (NTRS)

    Odom, Brian

    2015-01-01

    The Chandra X-ray Observatory is part of NASA's fleet of "Great Observatories" along with the Hubble Space Telescope, the Spitzer Space Telescope, and the now deorbited Compton Gamma Ray Observatory. The observatory was designed to detect x-ray emissions from some of the hottest regions of the galaxy including exploded stars, clusters of galaxies, and matter around black holes. One of the observatory's key scientific instruments is the Advanced CCD Imaging Spectrometer (ACIS), which is one of four primary and two focal plane instruments. Due to the sensitivity of the charged coupled devices (CCD's), an aperture door was designed and built by Lockheed-Martin that protected the instrument during testing and the time leading up to launch. The design called for a system of wax actuators (manufactured by STARSYS Corp) to be used as components in a rotary actuator that would open and close the door during ground testing and on-orbit operations. Another feature of the design was an internal shear disc located in each actuator to prevent excessive internal pressure and to shield other components from damage.

  19. A Cluster and a Sea of Galaxies

    NASA Astrophysics Data System (ADS)

    2010-05-01

    A new wide-field image released today by ESO displays many thousands of distant galaxies, and more particularly a large group belonging to the massive galaxy cluster known as Abell 315. As crowded as it may appear, this assembly of galaxies is only the proverbial "tip of the iceberg", as Abell 315 - like most galaxy clusters - is dominated by dark matter. The huge mass of this cluster deflects light from background galaxies, distorting their observed shapes slightly. When looking at the sky with the unaided eye, we mostly only see stars within our Milky Way galaxy and some of its closest neighbours. More distant galaxies are just too faint to be perceived by the human eye, but if we could see them, they would literally cover the sky. This new image released by ESO is both a wide-field and long-exposure one, and reveals thousands of galaxies crowding an area on the sky roughly as large as the full Moon. These galaxies span a vast range of distances from us. Some are relatively close, as it is possible to distinguish their spiral arms or elliptical halos, especially in the upper part of the image. The more distant appear just like the faintest of blobs - their light has travelled through the Universe for eight billion years or more before reaching Earth. Beginning in the centre of the image and extending below and to the left, a concentration of about a hundred yellowish galaxies identifies a massive galaxy cluster, designated with the number 315 in the catalogue compiled by the American astronomer George Abell in 1958 [1]. The cluster is located between the faint, red and blue galaxies and the Earth, about two billion light-years away from us. It lies in the constellation of Cetus (the Whale). Galaxy clusters are some of the largest structures in the Universe held together by gravity. But there is more in these structures than the many galaxies we can see. Galaxies in these giants contribute to only ten percent of the mass, with hot gas in between galaxies

  20. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    The origin and evolution of cosmic magnetic fields, their strength and structure in intergalactic space, their first occurrence in young galaxies, and their dynamical importance for galaxy evolution remain widely unknown. Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized radio synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 μG) and in central starburst regions (50-100 μG). Such fields are dynamically important; they can affect gas flows and drive gas inflows in central regions. Polarized radio emission traces ordered fields which can be regular or anisotropic turbulent, generated from isotropic turbulent fields by compression or shear. The strongest ordered fields of 10-15 μG strength are generally found in interarm regions and follow the orientation of adjacent gas spiral arms. In galaxies with strong density waves, ordered (anisotropic turbulent) fields are also observed at the inner edges of the spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions of starburst galaxies. Ordered fields in interacting galaxies have asymmetric distributions and are an excellent tracer of past interactions between galaxies or with the intergalactic medium. Irregular galaxies host isotropic turbulent fields often of similar strength as in spiral galaxies, but only weak ordered fields. Faraday rotation measures (RM) of the diffuse polarized radio emission from the disks of several galaxies reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by a mean-field α -Ω dynamo. So far no indications were found in external galaxies of large-scale field reversals, like the one in the Milky Way. Ordered magnetic fields are also observed in radio halos

  1. Early-type galaxies have been the predominant morphological class for massive galaxies since only z ˜ 1

    NASA Astrophysics Data System (ADS)

    Buitrago, Fernando; Trujillo, Ignacio; Conselice, Christopher J.; Häußler, Boris

    2013-01-01

    Present-day massive galaxies are composed mostly of early-type objects. It is unknown whether this was also the case at higher redshifts. In a hierarchical assembling scenario the morphological content of the massive population is expected to change with time from disc-like objects in the early Universe to spheroid-like galaxies at present. In this paper we have probed this theoretical expectation by compiling a large sample of massive (Mstellar ≥ 1011 h- 270 M⊙) galaxies in the redshift interval 0 < z < 3. Our sample of 1082 objects comprises 207 local galaxies selected from Sloan Digital Sky Survey plus 875 objects observed with the Hubble Space Telescope belonging to the Palomar Observatory Wide-field InfraRed/DEEP2 and GOODS NICMOS Survey surveys. 639 of our objects have spectroscopic redshifts. Our morphological classification is performed as close as possible to the optical rest frame according to the photometric bands available in our observations both quantitatively (using the Sérsic index as a morphological proxy) and qualitatively (by visual inspection). Using both techniques we find an enormous change on the dominant morphological class with cosmic time. The fraction of early-type galaxies among the massive galaxy population has changed from ˜20-30 per cent at z ˜ 3 to ˜70 per cent at z = 0. Early-type galaxies have been the predominant morphological class for massive galaxies since only z ˜ 1.

  2. Pair-instability supernovae in the local universe

    SciTech Connect

    Whalen, Daniel J.; Smidt, Joseph; Heger, Alexander; Hirschi, Raphael; Yusof, Norhasliza; Even, Wesley; Fryer, Chris L.; Stiavelli, Massimo; Chen, Ke-Jung; Joggerst, Candace C.

    2014-12-10

    The discovery of 150-300 M {sub ☉} stars in the Local Group and pair-instability supernova candidates at low redshifts has excited interest in this exotic explosion mechanism. Realistic light curves for pair-instability supernovae at near-solar metallicities are key to identifying and properly interpreting these events as more are found. We have modeled pair-instability supernovae of 150-500 M {sub ☉} Z ∼ 0.1-0.4 Z {sub ☉} stars. These stars lose up to 80% of their mass to strong line-driven winds and explode as bare He cores. We find that their light curves and spectra are quite different from those of Population III pair-instability explosions, which therefore cannot be used as templates for low-redshift events. Although non-zero metallicity pair-instability supernovae are generally dimmer than their Population III counterparts, in some cases they will be bright enough to be detected at the earliest epochs at which they can occur, the formation of the first galaxies at z ∼ 10-15. Others can masquerade as dim, short duration supernovae that are only visible in the local universe and that under the right conditions could be hidden in a wide variety of supernova classes. We also report for the first time that some pair-instability explosions can create black holes with masses of ∼100 M {sub ☉}.

  3. Temporomandibular Joint, Closed

    MedlinePlus

    ... Oral Health > The Temporomandibular Joint, Closed The Temporomandibular Joint, Closed Main Content Title: The Temporomandibular Joint, Closed Description: The temporomandibular joint connects the lower ...

  4. Gas Kinematics In and Around Edge-on Galaxies from MaNGA Observations

    NASA Astrophysics Data System (ADS)

    Bizyaev, D.

    2016-06-01

    Mapping Nearby Galaxies at APO (MaNGA) is a massive Integral Field Unit survey of a large number of relatively nearby galaxies that started in 2014 as a part of SDSS-IV at the Apache Point Observatory. After the first year of observations MaNGA has obtained IFU spectra of about a thousand of objects, with several dozens of edge-on galaxies among them. The two-dimensional spectra help us constrain parameters of galactic components with superior rotation curves. There is a significant fraction of galaxies in which the extra-planar gas emission is confidently detected. The extra-planar gas velocity fields in several galaxies show signs of lagging rotation with respect to the gas motion close to the galactic plane. We show progress of MaNGA survey in observations of edge-on galaxies and discuss their impact on our understanding of gas kinematics in and around spiral galaxies after finishing the survey.

  5. Measurable Relationship between Bright Galaxies and Their Faint Companions in WHL J085910.0+294957, a Galaxy Cluster at z = 0.30: Vestiges of Infallen Groups?

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hyeop; Lee, Hye-Ran; Kim, Minjin; Seon, Kwang-Il; Kim, Sang Chul; Yang, Soung-Chul; Ree, Chang Hee; Lee, Jong Chul; Jeong, Hyunjin; Ko, Jongwan; Choi, Changsu

    2014-08-01

    The properties of satellite galaxies are closely related to their host galaxies in galaxy groups. In cluster environments, on the other hand, the interaction between close neighbors is known to be limited. Our goal is to examine the relationships between host and satellite galaxies in the harsh environment of a galaxy cluster. To achieve this goal, we study a galaxy cluster WHL J085910.0+294957 at z = 0.30 using deep images obtained with CQUEAN CCD camera mounted on the 2.1 m Otto Struve Telescope. After member selection based on the scaling relations of photometric and structural parameters, we investigate the relationship between bright (Mi <= -18) galaxies and their faint (-18 < Mi <= -15) companions. The weighted mean color of faint companion galaxies shows no significant dependence (<1σ to bootstrap uncertainties) on cluster-centric distance and local luminosity density as well as the luminosity and concentration of an adjacent bright galaxy. However, the weighted mean color shows marginal dependence (~2.2σ) on the color of an adjacent bright galaxy when the sample is limited to bright galaxies with at least two faint companions. By using a permutation test, we confirm that the correlation in color between bright galaxies and their faint companions in this cluster is statistically significant with a confidence level of 98.7%. The statistical significance increases if we additionally remove non-members using the Sloan Digital Sky Survey photometric redshift information (~2.6σ and 99.3%). Our results suggest three possible scenarios: (1) vestiges of infallen groups, (2) dwarf capturing, and (3) tidal tearing of bright galaxies.

  6. Measurable relationship between bright galaxies and their faint companions in WHL J085910.0+294957, a galaxy cluster at z = 0.30: vestiges of infallen groups?

    SciTech Connect

    Lee, Joon Hyeop; Lee, Hye-Ran; Kim, Minjin; Seon, Kwang-Il; Kim, Sang Chul; Yang, Soung-Chul; Ree, Chang Hee; Lee, Jong Chul; Jeong, Hyunjin; Ko, Jongwan; Choi, Changsu

    2014-08-20

    The properties of satellite galaxies are closely related to their host galaxies in galaxy groups. In cluster environments, on the other hand, the interaction between close neighbors is known to be limited. Our goal is to examine the relationships between host and satellite galaxies in the harsh environment of a galaxy cluster. To achieve this goal, we study a galaxy cluster WHL J085910.0+294957 at z = 0.30 using deep images obtained with CQUEAN CCD camera mounted on the 2.1 m Otto Struve Telescope. After member selection based on the scaling relations of photometric and structural parameters, we investigate the relationship between bright (M{sub i} ≤ –18) galaxies and their faint (–18 < M{sub i} ≤ –15) companions. The weighted mean color of faint companion galaxies shows no significant dependence (<1σ to bootstrap uncertainties) on cluster-centric distance and local luminosity density as well as the luminosity and concentration of an adjacent bright galaxy. However, the weighted mean color shows marginal dependence (∼2.2σ) on the color of an adjacent bright galaxy when the sample is limited to bright galaxies with at least two faint companions. By using a permutation test, we confirm that the correlation in color between bright galaxies and their faint companions in this cluster is statistically significant with a confidence level of 98.7%. The statistical significance increases if we additionally remove non-members using the Sloan Digital Sky Survey photometric redshift information (∼2.6σ and 99.3%). Our results suggest three possible scenarios: (1) vestiges of infallen groups, (2) dwarf capturing, and (3) tidal tearing of bright galaxies.

  7. Polarisation properties of Milky-Way-like galaxies

    NASA Astrophysics Data System (ADS)

    Sun, X. H.; Reich, W.

    2012-07-01

    Aims: We study the polarisation properties, magnetic field strength, and synchrotron emission scale-height of Milky-Way-like galaxies in comparison with other spiral galaxies. Methods: We used our 3D-emission model of the Milky Way Galaxy for viewing the Milky Way from outside at various inclinations in the way that spiral galaxies are observed. We analysed these Milky Way maps with techniques used to obtain the strength of magnetic fields, rotation measures (RMs), and scale-heights of synchrotron emission from observations of resolved galaxies and compared the results with the Milky Way model parameter. We also simulated a large sample of unresolved Milky-Way-like galaxies to study their statistical polarisation properties. Results: When seen edge-on, the synchrotron emission from the Milky Way has an exponential scale-height of about 0.74 kpc, which is much lower than the values obtained from previous models. We find that current analysis methods overestimate the scale-height of synchrotron emission of galaxies by about 10% at an inclination of 80° and about 40% at an inclination of 70° because of contamination from the disk. The observed RMs for face-on galaxies derived from high-frequency polarisation measurements approximate to the Faraday depths (FDs) when scaled by a factor of two. For edge-on galaxies, the observed RMs are indicative of the orientation of the large-scale magnetic field, but are not closely related with the FDs. Assuming energy equipartition between the magnetic field and particles for the Milky Way results in an average magnetic-field strength that is about twice as high as the intrinsic value for a K factor of 100. The number distribution of the integrated polarisation percentages of a large sample of unresolved Milky-Way-like galaxies peaks at about 4.2% at 4.8 GHz and at about 0.8% at 1.4 GHz. Integrated polarisation angles rotated by 90° align very well with the position angles of the major axes, implying that unresolved galaxies do

  8. New water and remote galaxies complete ISO's observations

    NASA Astrophysics Data System (ADS)

    300 young stars have been identified to date, many of which were previously not recognized," Nordh and Olofsson say. "Most of the latter objects have luminosities 10-100 times lower than revealed by earlier observations. Our preliminary analysis indicates that at least ten per cent of the embedded young stars will become small brown dwarfs, or ownerless super-planets, less than one-tenth of the mass of the Sun." Colliding galaxies Some galaxies are unusually bright in the infrared because of cosmic traffic accidents that bring them into collision with other galaxies. The result is a frenzy of star formation called a starburst. The explosion of short-lived stars then creates a pall of warm dust which ISO observes in the infrared. The relative intensities of different wavelengths enable astronomers to distinguish starburst events from other sources of strong infrared rays, such as the environment of a black hole in the nucleus of a galaxy. Collisions and starbursts play an important part in the evolution of galaxies. A famous pair of colliding galaxies called the Antennae was one of the first objects to be examined by ISO. Continuing study of the Antennae over the past two years has revealed a clear picture of a starburst occurring exactly where the dense disks of the galaxies intersect. The nuclei of the two galaxies are plainly distinguished too. Centaurus A is a galaxy that first attracted the attention of astronomers by its strong of radio emissions. In its visible appearance, a large, round (elliptical) galaxy has a dark band across its face. This too turns out to be the result of a galactic collision. The dark band is a flat, disk-shaped galaxy seen almost edge-on. Centaurus A is the nearest case of a phenomenon seen elsewhere by ISO, in which a flat galaxy has merged with an elliptical galaxy while preserving its flat configuration. ISOCAM gives an image of Centaurus A in which the disk galaxy is the more conspicuous object. The orientation of the disk becomes

  9. Magnetic field evolution in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to

  10. Galaxy 'Hunting' Made Easy

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Galaxies found under the Glare of Cosmic Flashlights Astronomers using ESO's Very Large Telescope have discovered in a single pass about a dozen otherwise invisible galaxies halfway across the Universe. The discovery, based on a technique that exploits a first-class instrument, represents a major breakthrough in the field of galaxy 'hunting'. ESO PR Photo 40a/07 ESO PR Photo 40a/07 Newly Found Galaxies (SINFONI/VLT) The team of astronomers led by Nicolas Bouché have used quasars to find these galaxies. Quasars are very distant objects of extreme brilliance, which are used as cosmic beacons that reveal galaxies lying between the quasar and us. The galaxy's presence is revealed by a 'dip' in the spectrum of the quasar - caused by the absorption of light at a specific wavelength. The team used huge catalogues of quasars, the so-called SDSS and 2QZ catalogues, to select quasars with dips. The next step was then to observe the patches of the sky around these quasars in search for the foreground galaxies from the time the Universe was about 6 billion years old, almost half of its current age. "The difficulty in actually spotting and seeing these galaxies stems from the fact that the glare of the quasar is too strong compared to the dim light of the galaxy," says Bouché. This is where observations taken with SINFONI on ESO's VLT made the difference. SINFONI is an infrared 'integral field spectrometer' that simultaneously delivers very sharp images and highly resolved colour information (spectra) of an object on the sky. ESO PR Photo 32e/07 ESO PR Photo 40b/07 Chasing 'Hidden' Galaxies (Artist's Impression) With this special technique, which untangles the light of the galaxy from the quasar light, the team detected 14 galaxies out of the 20 pre-selected quasar patches of sky, a hefty 70% success rate. "This high detection rate alone is a very exciting result," says Bouché. "But, these are not just ordinary galaxies: they are most notable ones, actively forming a lot of

  11. Multiprocessor switch with selective pairing

    DOEpatents

    Gara, Alan; Gschwind, Michael K; Salapura, Valentina

    2014-03-11

    System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus

  12. Evidence for Tidal Interactions and Mergers as the Origin of Galaxy Morphology Evolution in Compact Groups

    NASA Astrophysics Data System (ADS)

    Coziol, R.; Plauchu-Frayn, I.

    2007-06-01

    We present the results of a morphological study based on NIR images of 25 galaxies, with different levels of nuclear activity (star formation or AGN), in eight compact groups (CGs) of galaxies. We independently perform two different analyses: a study of the deviations of the isophotal levels from pure ellipses and a study of morphological asymmetries. The results yielded by the two analyses are highly consistent. For the first time, it is possible to show that deviations from pure ellipses are produced by inhomogeneous stellar mass distributions related to galaxy interactions and mergers. We find evidence of mass asymmetries in 74% of the galaxies in our sample. In 59% of these cases, the asymmetries come in pairs and are consistent with tidal effects produced by the proximity of companion galaxies. The symmetric galaxies are generally small in size or mass and inactive, and have an early-type morphology. They may have already lost their gas and least-attached envelope of stars to their more massive companions. In 20% of the galaxies we find evidence for cannibalism: a big galaxy swallowing a smaller companion. In 36% of the early-type galaxies the color gradient is positive (blue nucleus) or flat. Summing up these results, as much as 52% of the galaxies in our sample could show evidence of an ongoing or past merger. Our observations also suggest that galaxies in CGs merge more frequently under ``dry'' conditions (that is, once they have lost most of their gas). The high frequency of interacting and merging galaxies observed in our study is consistent with the bias of our sample toward CGs of type B, which represent the most active phase in the evolution of the groups. In these groups we also find a strong correlation between asymmetries and nuclear activity in early-type galaxies. This correlation allows us to identify tidal interactions and mergers as the cause of galaxy morphology transformation in CGs.

  13. PROBING THE INTERSTELLAR MEDIUM OF z {approx} 1 ULTRALUMINOUS INFRARED GALAXIES THROUGH INTERFEROMETRIC OBSERVATIONS OF CO AND SPITZER MID-INFRARED SPECTROSCOPY

    SciTech Connect

    Pope, Alexandra; Kirkpatrick, Allison; Wagg, Jeff; Frayer, David; Armus, Lee; Chary, Ranga-Ram; Desai, Vandana; Daddi, Emanuele; Elbaz, David; Gabor, Jared

    2013-08-01

    We explore the relationship between gas, dust, and star formation in a sample of 12 ultraluminous infrared galaxies (ULIRGs) at high-redshift compared to a similar sample of local galaxies. We present new CO observations and/or Spitzer mid-IR spectroscopy for six 70 {mu}m selected galaxies at z {approx} 1 in order to quantify the properties of the molecular gas reservoir, the contribution of an active galactic nucleus (AGN) to the mid-IR luminosity, and the star formation efficiency (SFE = L{sub IR}/L{sup '}{sub CO}). The mid-IR spectra show strong polycyclic aromatic hydrocarbon (PAH) emission, and our spectral decomposition suggests that the AGN makes a minimal contribution (<25%) to the mid-IR luminosity. The 70 {mu}m selected ULIRGs, which we find to be spectroscopic close pairs, are observed to have high SFE, similar to local ULIRGs and high-redshift submillimeter galaxies, consistent with enhanced IR luminosity due to an ongoing major merger. Combined with existing observations of local and high-redshift ULIRGs, we further compare the PAH, IR, and CO luminosities. We show that the ratio L{sub PAH,6.2}/L{sub IR} decreases with increasing IR luminosity for both local and high-redshift galaxies, but the trend for high-redshift galaxies is shifted to higher IR luminosities; the average L{sub PAH,6.2}/L{sub IR} ratio at a given L{sub IR} is {approx}3 times higher at high-redshift. When we normalize by the molecular gas, we find this trend to be uniform for galaxies at all redshifts and that the molecular gas is correlated with the PAH dust emission. The similar trends seen in the [C II] to molecular gas ratios in other studies suggests that PAH emission, like [C II], continues to be a good tracer of photodissociation regions even at high-redshift. Together the CO, PAH, and far-IR fine structure lines should be useful for constraining the interstellar medium conditions in high-redshift galaxies.

  14. Multiple origins of asteroid pairs

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.

    2016-01-01

    Rotationally fissioned asteroids produce unbound asteroid pairs that have very similar heliocentric orbits. Backward integration of their current heliocentric orbits provides an age of closest proximity that can be used to date the rotational fission event. Most asteroid pairs follow a predicted theoretical relationship between the primary spin period and the mass ratio of the two pair members that is a direct consequence of the YORP-induced rotational fission hypothesis. If the progenitor asteroid has strength, asteroid pairs may have higher mass ratios or faster rotating primaries. However, the process of secondary fission leaves the originally predicted trend unaltered. We also describe the characteristics of pair members produced by four alternative routes from a rotational fission event to an asteroid pair. Unlike direct formation from the event itself, the age of closest proximity of these pairs cannot generally be used to date the rotational fission event since considerable time may have passed.

  15. Students' Perceptions of Dynamics Concept Pairs and Correlation with Their Problem-Solving Performance

    ERIC Educational Resources Information Center

    Fang, Ning

    2012-01-01

    A concept pair is a pair of concepts that are fundamentally different but closely related. To develop a solid conceptual understanding in dynamics (a foundational engineering science course) and physics, students must understand the fundamental difference and relationship between two concepts that are included in each concept pair. However, all…

  16. Massive Elliptical Galaxies at High Redshift: NICMOS Imaging of z~1 Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Zirm, Andrew W.; Dickinson, Mark; Dey, Arjun

    2003-03-01

    We present deep, ~1.6 μm, continuum images of 11 high-redshift (0.811galaxies observed with NICMOS on board the Hubble Space Telescope. Our NICMOS images probe the rest-frame optical light where stars are expected to dominate the galaxy luminosity. The rest-frame ultraviolet light of eight of these galaxies demonstrates the well-known ``alignment effect,'' with extended and often complex morphologies elongated along an axis close to that of the Fanaroff-Riley type II (FRII) radio source. As has been previously noted from ground-based near-infrared imaging, most of the radio galaxies have rounder, more symmetric morphologies at rest-frame optical wavelengths. Here we show the most direct evidence that in most cases the stellar hosts are normal elliptical galaxies with r1/4-law light profiles. For a few galaxies, very faint traces (less than 4% of the total H-band light) of the UV-bright aligned component are also visible in the infrared images. We derive both the effective radius and surface brightness for nine of 11 sample galaxies by fitting one- and two-dimensional surface-brightness models to them. We compare the high-redshift radio galaxies to lower redshift counterparts. We find that their sizes are similar to those of local FRII radio source hosts and are in general larger than other local galaxies. The derived host galaxy luminosities are very high and lie at the bright end of luminosity functions constructed at similar redshifts. This indicates that the high-redshift radio galaxies are likely rare, massive sources. The galaxies in our sample are also brighter than the rest-frame size-surface-brightness locus defined by the low-redshift sources. Passive evolution roughly aligns the z~1 galaxies with the low-redshift samples with a slope equal to 4.7. This value is intermediate between the canonical Kormendy relation (~3.5) and a constant luminosity line (=5). The optical host is sometimes centered on a local minimum in the rest-frame UV

  17. A Slow Merger History of Field Galaxies since z ~ 1

    NASA Astrophysics Data System (ADS)

    Bundy, Kevin; Fukugita, Masataka; Ellis, Richard S.; Kodama, Tadayuki; Conselice, Christopher J.

    2004-02-01

    Using deep infrared observations conducted with the CISCO imager on the Subaru Telescope, we investigate the field-corrected pair fraction and the implied merger rate of galaxies in redshift survey fields with Hubble Space Telescope (HST) imaging. In the redshift interval, 0.5pairs increases only modestly with redshift to 7%+/-6% at z~1. This is nearly a factor of 3 less than the fraction, 22%+/-8%, determined using the same technique on HST optical images and as measured in a previous similar study. Tests support the hypothesis that optical pair fractions at z~1 are inflated by bright star-forming regions that are unlikely to be representative of the underlying mass distribution. By determining stellar masses for the companions, we estimate the mass accretion rate associated with merging galaxies. At z~1, we estimate this to be 2×109+/-0.2 Msolar galaxy-1 Gyr-1. Although uncertainties remain, our results suggest that the growth of galaxies via the accretion of preexisting fragments remains as significant a phenomenon in the redshift range studied as that estimated from ongoing star formation in independent surveys. Based on data acquired at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  18. Accurate and efficient halo-based galaxy clustering modelling with simulations

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Guo, Hong

    2016-06-01

    Small- and intermediate-scale galaxy clustering can be used to establish the galaxy-halo connection to study galaxy formation and evolution and to tighten constraints on cosmological parameters. With the increasing precision of galaxy clustering measurements from ongoing and forthcoming large galaxy surveys, accurate models are required to interpret the data and extract relevant information. We introduce a method based on high-resolution N-body simulations to accurately and efficiently model the galaxy two-point correlation functions (2PCFs) in projected and redshift spaces. The basic idea is to tabulate all information of haloes in the simulations necessary for computing the galaxy 2PCFs within the framework of halo occupation distribution or conditional luminosity function. It is equivalent to populating galaxies to dark matter haloes and using the mock 2PCF measurements as the model predictions. Besides the accurate 2PCF calculations, the method is also fast and therefore enables an efficient exploration of the parameter space. As an example of the method, we decompose the redshift-space galaxy 2PCF into different components based on the type of galaxy pairs and show the redshift-space distortion effect in each component. The generalizations and limitations of the method are discussed.

  19. The morphology of faint galaxies in Medium Deep Survey images using WFPC2

    NASA Technical Reports Server (NTRS)

    Griffiths, R. E.; Casertano, S.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G. F.; Glazebrook, K.; Santiago, B.; Huchra, J. P.; Windhorst, R. A.

    1994-01-01

    First results from Hubble Space Telescope (HST) Medium Deep Survey images taken with Wide Field/Planetary Camera-2 (WFPC2) demonstrate that galaxy classifications can be reliably performed to magnitudes I814 approximately less than 22.0 in the F815W band. Published spectroscopic surveys to this depth indicate a mean redshift of bar-z approximately 0.5. We have classified over 200 galaxies in nine WFPC2 fields according to a basic morphological scheme. The majority of these faint galaxies appear to be similar to regular Hubble-sequence examples observed at low redshift. To the precision of our classification scheme, the relative proportion of spheroidal and disk systems of normal appearance is as expected from nearby samples, indicating that the bulk of the local galaxy population was in place at half the Hubble time. However, the most intriguing result is the relatively high proportion (approximately 40%) of objects which are in some way anomalous, and which may be of relevance in understanding the origin of the familiar excess population of faint galaxies established by others. These diverse objects include apparently interacting pairs whose multiple structure is only revealed with HST's angular resolution, galaxies with superluminous star-forming regions, diffuse low surface brightness galaxies of various forms, and compact galaxies. These anomalous galaxies contribute a substantial fraction of the excess counts at our limiting magnitude, and may provide insights into the 'faint blue galaxy' problem.

  20. Ultra-flat galaxies selected from RFGC catalog. II. Orbital estimates of halo masses

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Karachentseva, V. E.; Kudrya, Yu. N.

    2016-04-01

    We used the Revised Flat Galaxy Catalog (RFGC) to select 817 ultra-flat (UF) edge-on disk galaxies with blue and red apparent axial ratios of ( a/ b)B > 10.0 and ( a/ b)R > 8.5. The sample covering the whole sky, except the Milky Way zone, contains 490 UF galaxies with measured radial velocities. Our inspection of the neighboring galaxies around them revealed only 30 companions with radial velocity difference of | ΔV |< 500 kms-1 inside the projected separation of R p < 250 kpc. Wherein, the wider area around the UF galaxy within R p < 750 kpc contains no other neighbors brighter than the UF galaxy itself in the same velocity span. The resulting sample galaxies mostly belong to the morphological types Sc, Scd, Sd. They have a moderate rotation velocity curve amplitude of about 120 km s-1 and a moderate K-band luminosity of about 1010 L ⊙. The median difference of radial velocities of their companions is 87 km s-1, yielding the median orbital mass estimate of about 5 × 1011 M ⊙. Excluding six probable non-isolated pairs, we obtained a typical halo-mass-to-stellar-mass of UF galaxies of about 30, what is almost the same one as in the principal spiral galaxies, like M31 and M81 in the nearest groups. We also note that ultra-flat galaxies look two times less "dusty" than other spirals of the same luminosity.

  1. Phenomena, dynamics and instabilities of vortex pairs

    NASA Astrophysics Data System (ADS)

    Williamson, C. H. K.; Leweke, T.; Asselin, D. J.; Harris, D. M.

    2014-12-01

    Our motivation for studying the dynamics of vortex pairs stems initially from an interest in the trailing wake vortices from aircraft and the dynamics of longitudinal vortices close to a vehicle surface. However, our motivation also comes from the fact that vortex-vortex interactions and vortex-wall interactions are fundamental to many turbulent flows. The intent of the paper is to present an overview of some of our recent work concerning the formation and structure of counter-rotating vortex pairs. We are interested in the long-wave and short-wave three-dimensional instabilities that evolve for an isolated vortex pair, but also we would like to know how vortex pairs interact with a wall, including both two-dimensional interactions, and also the influence of the surface on the three-dimensional instabilities. The emphasis of this presentation is on physical mechanisms by which vortices interact with each other and with surfaces, principally from an experimental approach, but also coupled with analytical studies.

  2. Pairing, pseudogap and Fermi arcs in cuprates

    DOE PAGES

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmore » creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.« less

  3. Dynamics of Nuclear Regions of Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1996-01-01

    Current research carried out with the help of the ASEE-NASA Summer Faculty Program, at NASA-Ames, is concentrated on the dynamics of nuclear regions of galaxies. From a dynamical point of view a galaxy is a collection of around 10(sup 11) stars like our Sun, each of which moves in the summed gravitational field of all the remaining stars. Thus galaxy dynamics becomes a self-consistent n-body problem with forces given by Newtonian gravitation. Strong nonlinearity in the gravitational force and the inherent nonlinearity of self-consistent problems both argue for a numerical approach. The technique of numerical experiments consis of constructing an environment in the computer that is as close as possible to the physical conditions in a real galaxy and then carrying out experiments much like laboratory experiments in physics or engineering, in this environment. Computationally, an experiment is an initial value problem, and a good deal of thought and effort goes into the design of the starting conditions that serve as initial values. Experiments are run at Ames because all the 'equipment' is in place-the programs, the necessary computational power, and good facilities for post-run analysis. Our goal for this research program is to study the nuclear regions in detail and this means replacing most of the galaxy by a suitable boundary condition to allow the full capability of numerical experiments to be brought to bear on a small region perhaps 1/1000 of the linear dimensions of an entire galaxy. This is an extremely delicate numerical problem, one in which some small feature overlook, can easily lead to a collapse or blow-up of the entire system. All particles attract each other in gravitational problems, and the 1/r(sup 2) force is: (1) nonlinear; (2) strong at short range; (3) long-range, and (4) unscreened at any distance.

  4. Investigating galaxy-filament alignments in hydrodynamic simulations using density ridges

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Chi; Ho, Shirley; Tenneti, Ananth; Mandelbaum, Rachel; Croft, Rupert; DiMatteo, Tiziana; Freeman, Peter E.; Genovese, Christopher R.; Wasserman, Larry

    2015-12-01

    In this paper, we study the filamentary structures and the galaxy alignment along filaments at redshift z = 0.06 in the MassiveBlack-II simulation, a state-of-the-art, high-resolution hydrodynamical cosmological simulation which includes stellar and AGN feedback in a volume of (100 Mpc h-1)3. The filaments are constructed using the subspace constrained mean shift (SCMS; Ozertem & Erdogmus; Chen et al.). First, we show that reconstructed filaments using galaxies and reconstructed filaments using dark matter particles are similar to each other; over 50 per cent of the points on the galaxy filaments have a corresponding point on the dark matter filaments within distance 0.13 Mpc h-1 (and vice versa) and this distance is even smaller at high-density regions. Second, we observe the alignment of the major principal axis of a galaxy with respect to the orientation of its nearest filament and detect a 2.5 Mpc h-1 critical radius for filament's influence on the alignment when the subhalo mass of this galaxy is between 109 M⊙ h-1 and 1012 M⊙ h-1. Moreover, we find the alignment signal to increase significantly with the subhalo mass. Third, when a galaxy is close to filaments (less than 0.25 Mpc h-1), the galaxy alignment towards the nearest galaxy group is positively correlated with the galaxy subhalo mass. Finally, we find that galaxies close to filaments or groups tend to be rounder than those away from filaments or groups.

  5. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  6. Stereo Pair, Honolulu, Oahu

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by the Shuttle Radar Topography Mission (SRTM), shows how topography controls the urban pattern. This color image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    Features of interest in this scene include Diamond Head (an extinct volcano near the bottom of the image), Waikiki Beach (just above Diamond Head), the Punchbowl National Cemetary (another extinct volcano, near the image center), downtown Honolulu and Honolulu harbor (image left-center), and offshore reef patterns. The slopes of the Koolau mountain range are seen in the right half of the image. Clouds commonly hang above ridges and peaks of the Hawaiian Islands, but in this synthesized stereo rendition appear draped directly on the mountains. The clouds are actually about 1000 meters (3300 feet) above sea level.

    This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with a Landsat 7 Thematic Mapper image collected at the same time as the SRTM flight. The topography data were used to create two differing perspectives, one for each eye. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the

  7. EXCITATION CONDITIONS IN THE MULTI-COMPONENT SUBMILLIMETER GALAXY SMM J00266+1708

    SciTech Connect

    Sharon, Chelsea E.; Baker, Andrew J.; Harris, Andrew I.; Tacconi, Linda J.; Lutz, Dieter; Longmore, Steven N.

    2015-01-10

    We present multiline CO observations of the complex submillimeter galaxy SMM J00266+1708. Using the Zpectrometer on the Green Bank Telescope, we provide the first precise spectroscopic measurement of its redshift (z = 2.742). Based on followup CO(1-0), CO(3-2), and CO(5-4) mapping, SMM J00266+1708 appears to have two distinct components separated by ∼500 km s{sup –1} that are nearly coincident along our line of sight. The two components show hints of different kinematics, with the blueshifted component dispersion-dominated and the redshifted component showing a clear velocity gradient. CO line ratios differ slightly between the two components, indicating that the physical conditions in their molecular gas may not be alike. We tentatively infer that SMM J00266+1708 is an ongoing merger with a mass ratio of (7.8 ± 4.0)/sin {sup 2}(i), with its overall size and surface brightness closely resembling that of other merging systems. We perform large velocity gradient modeling of the CO emission from both components and find that each component's properties are consistent with a single phase of molecular gas (i.e., a single temperatures and density); additional multi-phase modeling of the redshifted component, although motivated by a CO(1-0) size larger than the CO(3-2) size, is inconclusive. SMM J00266+1708 provides evidence of early stage mergers within the submillimeter galaxy population. Continuum observations of J00266 at the ∼1'' resolution of our observations could not have distinguished between the two components due to their separation (0.''73 ± 0.''06), illustrating that the additional velocity information provided by spectral line studies is important for addressing the prevalence of unresolved galaxy pairs in low-resolution submillimeter surveys.

  8. Excitation Conditions in the Multi-component Submillimeter Galaxy SMM J00266+1708

    NASA Astrophysics Data System (ADS)

    Sharon, Chelsea E.; Baker, Andrew J.; Harris, Andrew I.; Tacconi, Linda J.; Lutz, Dieter; Longmore, Steven N.

    2015-01-01

    We present multiline CO observations of the complex submillimeter galaxy SMM J00266+1708. Using the Zpectrometer on the Green Bank Telescope, we provide the first precise spectroscopic measurement of its redshift (z = 2.742). Based on followup CO(1-0), CO(3-2), and CO(5-4) mapping, SMM J00266+1708 appears to have two distinct components separated by ~500 km s-1 that are nearly coincident along our line of sight. The two components show hints of different kinematics, with the blueshifted component dispersion-dominated and the redshifted component showing a clear velocity gradient. CO line ratios differ slightly between the two components, indicating that the physical conditions in their molecular gas may not be alike. We tentatively infer that SMM J00266+1708 is an ongoing merger with a mass ratio of (7.8 ± 4.0)/sin 2(i), with its overall size and surface brightness closely resembling that of other merging systems. We perform large velocity gradient modeling of the CO emission from both components and find that each component's properties are consistent with a single phase of molecular gas (i.e., a single temperatures and density); additional multi-phase modeling of the redshifted component, although motivated by a CO(1-0) size larger than the CO(3-2) size, is inconclusive. SMM J00266+1708 provides evidence of early stage mergers within the submillimeter galaxy population. Continuum observations of J00266 at the ~1'' resolution of our observations could not have distinguished between the two components due to their separation (0.''73 ± 0.''06), illustrating that the additional velocity information provided by spectral line studies is important for addressing the prevalence of unresolved galaxy pairs in low-resolution submillimeter surveys. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  9. Corrugated velocity pattern in spiral galaxies: NGC 278, NGC 1058, NGC 2500 and UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez Gil, M. C.; Alfaro, E. J.; Pérez, E.

    2011-11-01

    We report the detection in Hα emission of a radial corrugation pattern in the vertical velocity field of a sample of nearby face-on, spiral galaxies. We obtain long-slit spectra with the double arm ISIS spectrograph, attached to the 4.2 m William Herschel Telescope. The existence of corrugations has been already reported, e.g. Alfaro et al. (2001), Matthews & Uson (2008). Corrugations are closely link, as cause/effect, to the large scale star formation processes: density waves, tidal interactions, galactic bores, collisions of high velocity clouds with disk, etc. Which mechanism is the origin of disk corrugations is still an open problem. In this work not only the existence of radial and azimuthal corrugations are clearly observed, we report a first systematic study on the velocity corrugations in a sample of nearly face-on spiral galaxies. NGC 278 and NGC 1058 show a similar behavior to NGC 5427 (Alfaro et al. 2001), with a clear displacement between the velocities and emission line peaks. Where the approaching velocity peaks occur in the convex border of the arms, and the receding maxima are located behind the Hα emission maxima, in the concave side. This kinematical behavior is similar to the one expected in a galactic bore generated by the interaction of a spiral density wave with a thick gaseous disk. NGC 2500 and UGC 3574 do not show so clear this last relation between the velocity and emission line peaks, a possible cause should a fainter and discontinuous Hα emission. Oddly, these two pairs of galaxies also differ between them in their ionization mechanism features obtained from diagnostic diagrams.

  10. Stereo Pair, Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown. The cluster of large buildings left of center, at the base of the mountains, is the Jet Propulsion Laboratory. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation, U. S. Geological Survey digital aerial photography provided the image detail, and the Landsat Thematic Mapper provided the color. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data and the aerial photography. The image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration

  11. Chandra Observations of Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    We present early X-ray results from Chandra for two starburst galaxies, M82 and NGC3256, obtained using AXAF CCD Imaging Spectrometer (ACIS-I) and the HRC. For M82 the arcsecond spatial resolution enables us to separate the point source component from the extended emission for the first time. Astrometry reveals that most of the X-ray sources are not coincident with the family of compact radio sources believed to be Super Nova Remnants (SNRs). In addition, based on three epoch Chandra observations, several of the X-ray sources are clearly variable indicating that they are binaries. When we deconvolve the extended and point source components detected in the hard X-ray band, we find that 50 percent arises from the extended component. This fact, together with its morphology, constrains the various models proposed to explain the hard X-ray emission. For NGC3256 we resolve two closely separated nuclei. These new data support a pure starburst origin for the total X-ray emission rather than a composite AGN/starburst, thereby making NGC3256 one of the most X-ray luminous starburst galaxies known.

  12. A SIMPLE TECHNIQUE FOR PREDICTING HIGH-REDSHIFT GALAXY EVOLUTION

    SciTech Connect

    Behroozi, Peter S.; Silk, Joseph

    2015-01-20

    We show that the ratio of galaxies' specific star formation rates (SSFRs) to their host halos' specific mass accretion rates (SMARs) strongly constrains how the galaxies' stellar masses, SSFRs, and host halo masses evolve over cosmic time. This evolutionary constraint provides a simple way to probe z > 8 galaxy populations without direct observations. Tests of the method with galaxy properties at z = 4 successfully reproduce the known evolution of the stellar mass-halo mass (SMHM) relation, galaxy SSFRs, and the cosmic star formation rate (CSFR) for 5 < z < 8. We then predict the continued evolution of these properties for 8 < z < 15. In contrast to the nonevolution in the SMHM relation at z < 4, the median galaxy mass at fixed halo mass increases strongly at z > 4. We show that this result is closely linked to the flattening in galaxy SSFRs at z > 2 compared to halo SMARs; we expect that average galaxy SSFRs at fixed stellar mass will continue their mild evolution to z ∼ 15. The expected CSFR shows no breaks or features at z > 8.5; this constrains both reionization and the possibility of a steep falloff in the CSFR at z = 9-10. Finally, we make predictions for stellar mass and luminosity functions for the James Webb Space Telescope, which should be able to observe one galaxy with M {sub *} ≳ 10{sup 8} M {sub ☉} per 10{sup 3} Mpc{sup 3} at z = 9.6 and one such galaxy per 10{sup 4} Mpc{sup 3} at z = 15.

  13. Normal and Starburst Galaxies in Deep X-ray Surveys

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2006-01-01

    This talk will cover progress of the last several years in unraveling the nature of normal and starburst galaxies in deep X-ray surveys. This includes discussion of the normal galaxy X-ray Luminosity Function in deep field and cluster surveys and what it tells us about the binary populations in galaxies. The utility of broad band X-ray emission, especially as compared to other multiwavelength measurements of current/recent star formation, will be reviewed. These broad band X-ray measurements of star formation are based upon X-ray/Star Formation Rate correlations that span the currently available redshift range (0 < z < 1). I will also discuss new efforts underway to systematically characterize the X-ray emission from galaxies in group and cluster environments, including a new effort underway in the Coma cluster of galaxies. I will finish with discussion of the redshift frontier for studies of X-ray star formation, currently 2 approx.4, where the UV-selected Lyman Break galaxies are the best glimpse we have into X-ray emission from star formation in the early Universe. Lyman Break galaxies are of particular interest due to the overlap in basic properties with starburst galaxies in the more local Universe. Understanding the outflows in such starburst galaxies is of critical importance to constraining the "stellar" portion of cosmic feedback. The talk will close with a brief discussion of distant normal galaxy science with future X-ray observatories such as the upcoming Con-X/XEUS mission(s).

  14. Very wide binary stars as the primary source of stellar collisions in the galaxy

    SciTech Connect

    Kaib, Nathan A.; Raymond, Sean N.

    2014-02-20

    We present numerical simulations modeling the orbital evolution of very wide binaries, pairs of stars separated by over ∼10{sup 3} AU. Due to perturbations from other passing stars and the Milky Way's tide, the orbits of very wide binary stars occasionally become extremely eccentric, which forces close encounters between the companion stars. We show that this process causes a stellar collision between very wide binary companion stars once every 1000-7500 yr on average in the Milky Way. One of the main uncertainties in this collision rate is the amount of energy dissipated by dynamic tides during close (but not collisional) periastron passages. This dissipation presents a dynamical barrier to stellar collisions and can instead transform very wide binaries into close or contact binaries. However, for any plausible tidal dissipation model, very wide binary stars are an unrealized, and potentially the dominant, source of stellar collisions in our Galaxy. Such collisions should occur throughout the thin disk of the Milky Way. Stellar collisions within very wide binaries should yield a small population of single, Li-depleted, rapidly rotating massive stars.

  15. The First Galaxies

    NASA Astrophysics Data System (ADS)

    Bromm, Volker

    2009-03-01

    An important open frontier in astrophysics is to understand how the first sources of light, the first stars and galaxies, ended the cosmic dark ages at redshifts z ≃ 15 - 20. Their formation signaled the transition from the simple initial state of the universe to one of ever increasing complexity. We here review recent progress in understanding the assembly process of the first galaxies with numerical simulations, starting with cosmological initial conditions and modelling the detailed physics of star formation. The key drivers in building up the primordial galaxies are the feedback effects from the first stars, due to their input of radiation and of heavy chemical elements in the wake of supernova explosions. In addition, the conditions inside the first galaxies are governed by the gravitationally-driven turbulence generated during the virialization of the dark matter host halo. Our theoretical predictions will be tested with upcoming near-infrared observatories, such as the James Webb Space Telecope, in the decade ahead.

  16. Galaxy Messier 51

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Galaxy Evolution Explorer took this image of the spiral galaxy Messier 51 on June 19 and 20, 2003. Messier 51 is located 27 million light-years from Earth. Due to a lack of star formation, the companion galaxy in the top of the picture is barely visible as a near ultraviolet object.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  17. Galaxy NGC5398

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is an ultraviolet color image of the galaxy NGC5398 taken by NASA's Galaxy Evolution Explorer on June 7, 2003. NGC5398 is a barred spiral galaxy located 60 million light-years from Earth. The star formation is concentrated in the two bright regions of the image.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  18. Galaxy M101

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This three-color image of galaxy M101 was taken by NASA's Galaxy Evolution Explorer on June 20, 2003. The far ultraviolet emissions are shown in blue, the near ultraviolet emissions are green, and the red emissions, which were taken from NASA's Digital Sky Survey, represent visible light. This image combines short, medium, and long 'exposure' pictures to best display the evolution of star formation in a spiral galaxy.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  19. Ripples in disk galaxies

    NASA Astrophysics Data System (ADS)

    Schweizer, Francois; Seitzer, Patrick

    1988-05-01

    The authors present evidence that ripples ("shells") occur not only in ellipticals, as hitherto believed, but also in disk galaxies of Hubble types S0, S0/Sa, and Sa, and probably even in the Sbc galaxy NGC 3310. This evidence includes the discovery of ripples in the northern disk galaxies NGC 3032, 3619, 4382, 5548 (a Seyfert), and 5739, and in the "diskless S0" NGC 7600. It is argued that these ripples cannot usually have resulted form transient spiral waves or other forced vibrations in the existing disks, but instead consist of extraneous sheet-like matter. The frequent presence of major disk-shaped companions suggests that ripple material may be acquired not only through wholesale mergers, but also through mass transfer from neighbor galaxies.

  20. The Byurakan-IRAS Galaxy (BIG) Sample: The Redshift Survey

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.; Balayan, Smbat K.; Hakopian, Susanna A.

    The Byurakan-IRAS Galaxy (BIG) sample (1513 galaxies) is based on optical identifications of IRAS PSC sources at DEC > +61 and b > 15 (FBS area). A redshift survey for brighter objects (B < 18) is being carried out with 3 telescopes: Byurakan Observatory 2.6m, Special Observatory (Russia) 6m, and Observatoire de Haute-Provence 1.93m. 200 objects have been observed, and redshifts in the range 0.009-0.173 have been measured. For this subsample, 15% of objects are AGNs, and 5% are LIGs and ULIGs. Interesting cases of AGN containing interacting pairs are being studied by means of the 2D spectroscopy.

  1. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence. PMID:17730606

  2. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence.

  3. PAIR (Planning and Analysis of Inspection Resources)

    SciTech Connect

    Teichmann, T.; Santaniello, A.; Fishbone, L.G.

    1994-03-01

    The safeguards inspection effort of the International Atomic Energy Agency consists of the efforts for the Physical Inventory Verifications to close the annual material balance, Interim Inventory Verifications, conducted mainly to satisfy the Timeliness Criteria, Flow Verifications to verify the transfer of material, and Containment and Surveillance activities, which help preserve continuity of knowledge concerning the material. Estimating the requiring overall future inspection effort under a variety of conditions is an important part of Agency planning. As exemplified by the sample results provides a straightforward means to analyze `What if` situations in safeguards implementation. It thereby permits managers and analysts to study future scenarios and their effect on human resources. It is planned to introduce into PAIR a direct capability for studying costs associated with these hypothetical changes in safeguards implementation. In this way PAIR could more easily assist the Safeguards Department in its current program of investigating new safeguards approaches.

  4. A Portrait of One Hundred Thousand and One Galaxies

    NASA Astrophysics Data System (ADS)

    2002-08-01

    NGC 300 and the surrounding sky field, obtained in 1999 and 2000 with the Wide-Field Imager (WFI) on the MPG/ESO 2.2-m telescope at the La Silla Observatory. See the text for details about the many different uses of this photo. Smaller areas in this large field are shown in Photos 18b-h/02 , cf. below. The High-Res version of this image has been compressed by a factor 4 (2 x 2 pixel rebinning) to reduce it to a reasonably transportable size. Technical information about this and the other photos is available at the end of this communication. Located some 7 million light-years away, the spiral galaxy NGC 300 [1] is a beautiful representative of its class, a Milky-Way-like member of the prominent Sculptor group of galaxies in the southern constellation of that name. NGC 300 is a big object in the sky - being so close, it extends over an angle of almost 25 arcmin, only slightly less than the size of the full moon. It is also relative bright, even a small pair of binoculars will unveil this magnificent spiral galaxy as a hazy glowing patch on a dark sky background. The comparatively small distance of NGC 300 and its face-on orientation provide astronomers with a wonderful opportunity to study in great detail its structure as well as its various stellar populations and interstellar medium. It was exactly for this purpose that some images of NGC 300 were obtained with the Wide-Field Imager (WFI) on the MPG/ESO 2.2-m telescope at the La Silla Observatory. This advanced 67-million pixel digital camera has already produced many impressive pictures, some of which are displayed in the WFI Photo Gallery [2]. With its large field of view, 34 x 34 arcmin 2 , the WFI is optimally suited to show the full extent of the spiral galaxy NGC 300 and its immediate surroundings in the sky, cf. PR Photo 18a/02 . NGC 300 and "Virtual Astronomy" In addition to being a beautiful sight in its own right, the present WFI-image of NGC 300 is also a most instructive showcase of how astronomers with

  5. Supernova 2007bi as a pair-instability explosion.

    PubMed

    Gal-Yam, A; Mazzali, P; Ofek, E O; Nugent, P E; Kulkarni, S R; Kasliwal, M M; Quimby, R M; Filippenko, A V; Cenko, S B; Chornock, R; Waldman, R; Kasen, D; Sullivan, M; Beshore, E C; Drake, A J; Thomas, R C; Bloom, J S; Poznanski, D; Miller, A A; Foley, R J; Silverman, J M; Arcavi, I; Ellis, R S; Deng, J

    2009-12-01

    Stars with initial masses such that 10M[symbol: see text] or= 140M[symbol: see text] (if such exist) develop oxygen cores with masses, M(core), that exceed 50M[symbol: see text], where high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs before oxygen ignition and leads to a violent contraction which triggers a nuclear explosion that unbinds the star in a pair-instability supernova. Transitional objects with 100M[symbol: see text] < M(initial) < 140M[symbol: see text] may end up as iron-core-collapse supernovae following violent mass ejections, perhaps as a result of brief episodes of pair instability, and may already have been identified. Here we report observations of supernova SN 2007bi, a luminous, slowly evolving object located within a dwarf galaxy. We estimate the exploding core mass to be M(core) approximately 100M[symbol: see text], in which case theory unambiguously predicts a pair-instability supernova. We show that >3M[symbol: see text] of radioactive (56)Ni was synthesized during the explosion and that our observations are well fitted by models of pair-instability supernovae. This indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic stellar mass limit, which perhaps result from processes similar to those that created the first stars in the Universe. PMID:19956255

  6. Supernova 2007bi as a pair-instability explosion.

    PubMed

    Gal-Yam, A; Mazzali, P; Ofek, E O; Nugent, P E; Kulkarni, S R; Kasliwal, M M; Quimby, R M; Filippenko, A V; Cenko, S B; Chornock, R; Waldman, R; Kasen, D; Sullivan, M; Beshore, E C; Drake, A J; Thomas, R C; Bloom, J S; Poznanski, D; Miller, A A; Foley, R J; Silverman, J M; Arcavi, I; Ellis, R S; Deng, J

    2009-12-01

    Stars with initial masses such that 10M[symbol: see text] or= 140M[symbol: see text] (if such exist) develop oxygen cores with masses, M(core), that exceed 50M[symbol: see text], where high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs before oxygen ignition and leads to a violent contraction which triggers a nuclear explosion that unbinds the star in a pair-instability supernova. Transitional objects with 100M[symbol: see text] < M(initial) < 140M[symbol: see text] may end up as iron-core-collapse supernovae following violent mass ejections, perhaps as a result of brief episodes of pair instability, and may already have been identified. Here we report observations of supernova SN 2007bi, a luminous, slowly evolving object located within a dwarf galaxy. We estimate the exploding core mass to be M(core) approximately 100M[symbol: see text], in which case theory unambiguously predicts a pair-instability supernova. We show that >3M[symbol: see text] of radioactive (56)Ni was synthesized during the explosion and that our observations are well fitted by models of pair-instability supernovae. This indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic stellar mass limit, which perhaps result from processes similar to those that created the first stars in the Universe.

  7. PEARS Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; Cohen, Seth; Belini, Andrea; Holwerda, Benne W.; Straughn, Amber; Mechtley, Matthew

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  8. Abundance of field galaxies

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Karachentsev, Igor; Makarov, Dmitry; Nasonova, Olga

    2015-12-01

    We present new measurements of the abundance of galaxies with a given circular velocity in the Local Volume: a region centred on the Milky Way Galaxy and extending to distance ˜10 Mpc. The sample of ˜750 mostly dwarf galaxies provides a unique opportunity to study the abundance and properties of galaxies down to absolute magnitudes MB ≈ -10 and virial masses M_vir= 109{ M_{⊙}}. We find that the standard Λ cold dark matter (ΛCDM) model gives remarkably accurate estimates for the velocity function of galaxies with circular velocities V ≳ 70 kms-1 and corresponding virial masses M_vir≳ 5× 10^{10}{ M_{⊙}}, but it badly fails by overpredicting ˜5 times the abundance of large dwarfs with velocities V = 30-40 kms-1. The warm dark matter (WDM) models cannot explain the data either, regardless of mass of WDM particle. Just as in previous observational studies, we find a shallow asymptotic slope dN/dlog V ∝ Vα, α ≈ -1 of the velocity function, which is inconsistent with the standard ΛCDM model that predicts the slope α = -3. Though reminiscent to the known overabundance of satellite problem, the overabundance of field galaxies is a much more difficult problem. For the standard ΛCDM model to survive, in the 10 Mpc radius of the Milky Way there should be 1000 not yet detected galaxies with virial mass M_vir≈ 10^{10}{ M_{⊙}}, extremely low surface brightness and no detectable H I gas. So far none of this type of galaxies have been discovered.

  9. Chandra Galaxy Atlas

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Anderson, Craig; Burke, Doug; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer L.; McCollough, Michael L.; Morgan, Doug; Mossman, Amy; O'Sullivan, Ewan; Paggi, Alessandro; Trinchieri, Ginevra

    2016-01-01

    We present the new results from the Chandra Galaxy Atlas prpject. We have systematically analyzed the archival Chandra data of 50 early type galaxies to study their hot ISM. Taking full advantage of the Chandra capabilities, we produced spatially resolved data products with additional spectral information. We will make these products publicly available and use them for our focused science goals, e.g., gas morphology, scaling relation, X-ray based mass profile, circum-nuclear gas.

  10. Galaxy Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Nagamine, Kentaro; Reddy, Naveen; Daddi, Emanuele; Sargent, Mark T.

    2016-07-01

    In this chapter, we discuss the current status of observational and computational studies on galaxy formation and evolution. In particular, a joint analysis of star-formation rates (SFRs), stellar masses, and metallicities of galaxies throughout cosmic time can shed light on the processes by which galaxies build up their stellar mass and enrich the environment with heavy elements. Comparison of such observations and the results of numerical simulations can give us insights on the physical importance of various feedback effects by supernovae and active galactic nuclei. In Sect. 1, we first discuss the primary methods used to deduce the SFRs, stellar masses, and (primarily) gas-phase metallicities in high-redshift galaxies. Then, we show how these quantities are related to each other and evolve with time. In Sect. 2, we further examine the distribution of SFRs in galaxies following the `Main Sequence' paradigm. We show how the so-called `starbursts' display higher specific SFRs and SF efficiencies by an order of magnitude. We use this to devise a simple description of the evolution of the star-forming galaxy population since z ˜3 that can successfully reproduce some of the observed statistics in the infrared (IR) wavelength. We also discuss the properties of molecular gas. In Sect. 3, we highlight some of the recent studies of high-redshift galaxy formation using cosmological hydrodynamic simulations. We discuss the physical properties of simulated galaxies such as luminosity function and escape fraction of ionizing photons, which are important statistics for reionization of the Universe. In particular the escape fraction of ionizing photons has large uncertainties, and studying gamma-ray bursts (which is the main topic of this conference) can also set observational constraints on this uncertain physical parameter as well as cosmic star formation rate density.

  11. Life in the Galaxy?

    NASA Astrophysics Data System (ADS)

    Shostak, G. S.

    The arguments for and against the SETI (Search for Extra Terrestrial Intelligence) program are discussed. Based on apparently reasonable assumptions regarding the number of civilizations likely to exist in the Galaxy, it seems that ten million years would be sufficient time for an ambitious group of aliens to colonize the Galaxy; since no concrete evidence of aliens has turned up, the assumptions have to be reconsidered. The views of Sagan, Hart, Drake and a number of other researchers are noted.

  12. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Bauer, F. E.

    2014-10-01

    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  13. The environment of barred galaxies in the low-redshift universe

    SciTech Connect

    Lin, Ye; Sodi, Bernardo Cervantes; Li, Cheng; Wang, Lixin; Wang, Enci E-mail: leech@shao.ac.cn

    2014-12-01

    We present a study of the environment of barred galaxies using a volume-limited sample of over 30,000 galaxies drawn from the Sloan Digital Sky Survey. We use four different statistics to quantify the environment: the projected two-point cross-correlation function, the background-subtracted number count of neighbor galaxies, the overdensity of the local environment, and the membership of our galaxies to galaxy groups to segregate central and satellite systems. For barred galaxies as a whole, we find a very weak difference in all the quantities compared to unbarred galaxies of the control sample. When we split our sample into early- and late-type galaxies, we see a weak but significant trend for early-type galaxies with a bar to be more strongly clustered on scales from a few 100 kpc to 1 Mpc when compared to unbarred early-type galaxies. This indicates that the presence of a bar in early-type galaxies depends on the location within their host dark matter halos. This is confirmed by the group catalog in the sense that for early-types, the fraction of central galaxies is smaller if they have a bar. For late-type galaxies, we find fewer neighbors within ∼50 kpc around the barred galaxies when compared to unbarred galaxies from the control sample, suggesting that tidal forces from close companions suppress the formation/growth of bars. Finally, we find no obvious correlation between overdensity and the bars in our sample, showing that galactic bars are not obviously linked to the large-scale structure of the universe.

  14. GALAXIES IN X-RAY GROUPS. III. SATELLITE COLOR AND MORPHOLOGY TRANSFORMATIONS

    SciTech Connect

    George, Matthew R.; Ma, Chung-Pei; Bundy, Kevin; Leauthaud, Alexie; Vulcani, Benedetta; Tinker, Jeremy; Wechsler, Risa H.; Finoguenov, Alexis

    2013-06-20

    While the star formation rates and morphologies of galaxies have long been known to correlate with their local environment, the process by which these correlations are generated is not well understood. Galaxy groups are thought to play an important role in shaping the physical properties of galaxies before entering massive clusters at low redshift, and transformations of satellite galaxies likely dominate the buildup of local environmental correlations. To illuminate the physical processes that shape galaxy evolution in dense environments, we study a sample of 116 X-ray selected galaxy groups at z = 0.2-1 with halo masses of 10{sup 13}-10{sup 14} M{sub Sun} and centroids determined with weak lensing. We analyze morphologies based on Hubble Space Telescope imaging and colors determined from 31 photometric bands for a stellar mass-limited population of 923 satellite galaxies and a comparison sample of 16,644 field galaxies. Controlling for variations in stellar mass across environments, we find significant trends in the colors and morphologies of satellite galaxies with group-centric distance and across cosmic time. Specifically at low stellar mass (log (M{sub *}/M{sub Sun }) = 9.8-10.3), the fraction of disk-dominated star-forming galaxies declines from >50% among field galaxies to <20% among satellites near the centers of groups. This decline is accompanied by a rise in quenched galaxies with intermediate bulge+disk morphologies, and only a weak increase in red bulge-dominated systems. These results show that both color and morphology are influenced by a galaxy's location within a group halo. We suggest that strangulation and disk fading alone are insufficient to explain the observed morphological dependence on environment, and that galaxy mergers or close tidal encounters must play a role in building up the population of quenched galaxies with bulges seen in dense environments at low redshift.

  15. Heterospecific pairing and hybridization between Nasutitermes corniger and N. ephratae

    NASA Astrophysics Data System (ADS)

    Hartke, Tamara R.; Rosengaus, Rebeca B.

    2011-09-01

    The sympatric neotropical termites Nasutitermes corniger and Nasutitermes ephratae are clearly distinguishable based on morphology, nest architecture, defensive secretion composition, and molecular markers. However, given the extensive ecological, geographical, and behavioral overlap of these closely related species, the potential for interbreeding may exist. To explore this possibility, heterospecific pairs were formed experimentally to examine courtship and colony-establishment behaviors, and reproductive potential. Courtship and nest construction behavior occurred in heterospecific pairs in a similar manner to that of conspecific pairs. Survival of pairs depended upon the species of the female partner. N. ephratae females paired with N. corniger males produced as many offspring as conspecific pairs. N. corniger females mated to N. ephratae males, however, produced significantly fewer offspring at 60 days post-establishment than the reciprocal cross or conspecific N. ephratae or N. corniger pairs. This was also the only pairing in which any aggression was observed. Heterospecific pairs and groups formed in mate choice mesocosms, suggesting that species recognition between these two termites is not an important aspect of mate choice. Overall, species mismatch tolerance and hybrid offspring viability are high. The present data, together with previous evidence from defensive secretions and isozyme analysis, suggest that hybridization may periodically occur in nature, and that reproductive barriers between these two species may be incomplete. Hybridization could provide a rare but important source of genetic diversity and may ensure mating opportunities for the more abundant sex of alates in each species.

  16. A giant stream of metal-rich stars in the halo of the galaxy M31.

    PubMed

    Ibata, R; Irwin, M; Lewis, G; Ferguson, A M; Tanvir, N

    2001-07-01

    Recent observations have revealed streams of gas and stars in the halo of the Milky Way that are the debris from interactions between our Galaxy and some of its dwarf companion galaxies; the Sagittarius dwarf galaxy and the Magellanic clouds. Analysis of the material has shown that much of the halo is made up of cannibalized satellite galaxies, and that dark matter is distributed nearly spherically in the Milky Way. It remains unclear, however, whether cannibalized substructures are as common in the haloes of galaxies as predicted by galaxy-formation theory. Here we report the discovery of a giant stream of metal-rich stars within the halo of the nearest large galaxy, M31 (the Andromeda galaxy). The source of this stream could be the dwarf galaxies M32 and NGC205, which are close companions of M31 and which may have lost a substantial number of stars owing to tidal interactions. The results demonstrate that the epoch of galaxy building still continues, albeit at a modest rate, and that tidal streams may be a generic feature of galaxy haloes.

  17. Morphological evolution of galaxies

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.; Heap, Sara R.; Malumuth, Eliot M.; Hill, Robert S.; Smith, Eric P.

    1997-05-01

    Recent studies of the Hubble Deep Field (Abraham et al. 1996) [1] and Medium Deep Survey (Driver, Windhorst & Griffiths 1995) [6] find that the frequency of irregular/peculiar/merger systems rises with increasing redshift. However, this finding must be carefully interpreted in light of UV images of low-redshift galaxies obtained by the Ultraviolet Imaging Telescope (Stecher et al. 1992) [9]. These UV images imply that K-correction effects may be at least partially responsible for the apparent increase in Irr galaxies with redshift. To assess the degree to which there is an overabundance of Irregular galaxies (relative to the present epoch), we must understand the degree to which the K-correction biases morphological studies. We demonstrate the importance of the morphological K-correction to the classification schemes used in the HDF. We find that high-redshift spiral galaxies are misclassified as Irr galaxies, while Elliptical/S0 galaxies, should not be affected substantially. We have been granted 40 orbits in Cycle 7 with STIS to place these conclusions on a statistical basis.

  18. Galaxy Evolution Explorer Spies Band of Stars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Galaxy Evolution Explorer's ultraviolet eyes have captured a globular star cluster, called NGC 362, in our own Milky Way galaxy. In this new image, the cluster appears next to stars from a more distant neighboring galaxy, known as the Small Magellanic Cloud.

    Globular clusters are densely packed bunches of old stars scattered in galaxies throughout the universe. NGC 362, located 30,000 light-years away, can be spotted as the dense collection of mostly yellow-tinted stars surrounding a large white-yellow spot toward the top-right of this image. The white spot is actually the core of the cluster, which is made up of stars so closely packed together that the Galaxy Evolution Explorer cannot see them individually.

    The light blue dots surrounding the cluster core are called extreme horizontal branch stars. These stars used to be very similar to our sun and are nearing the end of their lives. They are very hot, with temperatures reaching up to about four times that of the surface of our sun (25,000 Kelvin or 45,500 degrees Fahrenheit).

    A star like our sun spends most of its life fusing hydrogen atoms in its core into helium. When the star runs out of hydrogen in its core, its outer envelope will expand. The star then becomes a red giant, which burns hydrogen in a shell surrounding its inner core. Throughout its life as a red giant, the star loses a lot of mass, then begins to burn helium at its core. Some stars will have lost so much mass at the end of this process, up to 85 percent of their envelopes, that most of the envelope is gone. What is left is a very hot ultraviolet-bright core, or extreme horizontal branch star.

    Blue dots scattered throughout the image are hot, young stars in the Small Magellanic Cloud, a satellite galaxy of the Milky Way located approximately 200,000 light-years away. The stars in this galaxy are much brighter intrinsically than extreme horizontal branch stars, but they appear just as bright because they are farther

  19. Transformations of galaxies - III. Encounter dynamics and tidal response as functions of galaxy structure

    NASA Astrophysics Data System (ADS)

    Barnes, Joshua E.

    2016-01-01

    Tidal interactions between disc galaxies depend on galaxy structure, but the details of this relationship are incompletely understood. I have constructed a three-parameter grid of bulge/disc/halo models broadly consistent with Λ cold dark matter, and simulated an extensive series of encounters using these models. Halo mass and extent strongly influence the dynamics of orbit evolution. In close encounters, the transfer of angular momentum mediated by the dynamical response of massive, extended haloes can reverse the direction of orbital motion of the central galaxies after their first passage. Tidal response is strongly correlated with the ratio ve/vc of escape to circular velocity within the participating discs. Moreover, the same ratio also correlates with the rate at which tidal tails are reaccreted by their galaxies of origin; consequently, merger remnants with `twin tails', such as NGC 7252, may prove hard to reproduce unless (ve/vc)2 ≲ 5.5. The tidal morphology of an interacting system can provide useful constraints on progenitor structure. In particular, encounters in which halo dynamics reverses orbital motion exhibit a distinctive morphology which may be recognized observationally. Detailed models attempting to reproduce observations of interacting galaxies should explore the likely range of progenitor structures along with other encounter parameters.

  20. Shocks and Cavities from Multiple Outbursts in the Galaxy Group NGC 5813: A Window to Active Galactic Nucleus Feedback

    NASA Astrophysics Data System (ADS)

    Randall, S. W.; Forman, W. R.; Giacintucci, S.; Nulsen, P. E. J.; Sun, M.; Jones, C.; Churazov, E.; David, L. P.; Kraft, R.; Donahue, M.; Blanton, E. L.; Simionescu, A.; Werner, N.

    2011-01-01

    We present results from new Chandra, GMRT, and SOAR observations of NGC 5813, the dominant central galaxy in a nearby galaxy group. The system shows three pairs of collinear cavities at 1 kpc, 8 kpc, and 20 kpc from the central source, from three distinct outbursts of the central active galactic nucleus (AGN), which occurred 3 × 106, 2 × 107, and 9 × 107 yr ago. The Hα and X-ray observations reveal filaments of cool gas that has been uplifted by the X-ray cavities. The inner two cavity pairs are filled with radio-emitting plasma, and each pair is associated with an elliptical surface brightness edge, which we unambiguously identify as shocks (with measured temperature jumps) with Mach numbers of M ≈ 1.7 and M ≈ 1.5 for the inner and outer shocks, respectively. Such clear signatures from three distinct AGN outbursts in an otherwise dynamically relaxed system provide a unique opportunity to study AGN feedback and outburst history. The mean power of the two most recent outbursts differs by a factor of six, from (1.5-10)×1042 erg s-1, indicating that the mean jet power changes significantly over long (~107 yr) timescales. The total energy output of the most recent outburst is also more than an order of magnitude less than the total energy of the previous outburst (1.5 × 1056 erg versus 4 × 1057 erg), which may be a result of the lower mean power, or may indicate that the most recent outburst is ongoing. The outburst interval implied by both the shock and cavity ages (~107 yr) indicates that, in this system, shock heating alone is sufficient to balance radiative cooling close to the central AGN, which is the relevant region for regulating feedback between the intracluster medium and the central supermassive black hole.

  1. The cluster-galaxy cross spectrum. An additional probe of cosmological and halo parameters

    NASA Astrophysics Data System (ADS)

    Hütsi, G.; Lahav, O.

    2008-12-01

    Context: There are several wide field galaxy and cluster surveys planned for the near future, e.g. BOSS, WFMOS, ADEPT, Hetdex, SPT, eROSITA. In the simplest approach, one would analyze these independently, thus neglecting the extra information provided by the cluster-galaxy cross pairs. Aims: In this paper we have focused on the possible synergy between these surveys by investigating the amount of information encoded in the cross pairs. Methods: We present a model for the cluster-galaxy cross spectrum within the halo model framework. To assess the gain in performance due to inclusion of the cluster-galaxy cross pairs, we carry out a Fisher matrix analysis for a BOSS-like galaxy redshift survey targeting luminous red galaxies and a hypothetical mass-limited cluster redshift survey with a lower mass threshold of 1.7 × 1014 h-1 M⊙ over the same volume. Results: On small scales, a cluster-galaxy cross spectrum directly probes the density profile of the halos, instead of the density profile convolved with itself, as is the case for the galaxy power spectrum. Due to this different behavior, adding information from the cross pairs helps to tighten constraints on the halo occupation distribution (e.g. a factor of ~2 compression of the error ellipses on the m_glow-α plane) and offers an alternative mechanism compared with techniques that directly fit halo density profiles. By inclusion of the cross pairs, a factor of ~2 stronger constraints are obtained for σ_8, while the improvement for the dark energy figure-of-merit is somewhat weaker: an increase by a factor of 1.4. We have also written down the formalism for the case when only photometric redshifts are available for both the clusters and the galaxies. For the analysis of the photometric surveys the inclusion of the cluster-galaxy cross pairs might be very beneficial since the photo-z errors for the clusters are usually significantly smaller than for the typical galaxies.

  2. Prevalence of galaxy-galaxy interactions in AGN hosts

    NASA Astrophysics Data System (ADS)

    Lim, Jeremy; Kuo, Cheng-Yu; Tang, Ya-Wen; Greene, Jenny; Ho, Paul T. P.

    2004-11-01

    Studies in optical starlight have failed to reach a consensus on the importance of either galaxy interactions, bars, or nuclear spirals in triggering luminous active galactic nuclei (AGNs). Here, we present the first systematic imaging study of Seyfert (disk) galaxies in the 21-cm line of neutral atomic hydrogen (HI) gas. HI is the most sensitive and enduring tracer of galaxy interactions, and can reveal tidal features not otherwise visible in optical starlight. Our sample comprises all twenty-eight galaxies in the Véron-Cetty & Véron (1998) catalog with nuclear magnitudes -19 ≥ MB > -23 (including Seyfert, LINER, and HII galaxies) at 0.015 ≤ z ≤ 0.017 in the northern hemisphere, and a matched control sample of twenty-seven inactive galaxies at z≈0.008. We have detected nearly all the galaxies observed, and find a much higher incidence of tidal interactions -- usually not seen in optical starlight -- among the Seyfert galaxies by comparison with the matched control sample. Those Seyferts with uncertain or no clear tidal features show disturbed HI morphologies and/or kinematics, as well as HI companion galaxies, more frequently than the control sample. Our study suggests that the undisturbed optical appearence of active galaxies may be deceptive, and imply that galaxy-galaxy interactions trigger a significant fraction luminous AGNs at low redshifts. The majority of the Seyfert galaxies in our sample appear to be at a relatively early stage of an encounter rather than late in a merger.

  3. Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation?

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Rigopoulou, D.; Lutz, D.; Tecza, M.

    2001-12-01

    We report high-quality near-IR spectroscopy of 12 ultraluminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies, most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are ``ellipticals in formation.'' Random motions dominate their stellar dynamics, but significant rotation is common. Gasdynamics and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution-sensitive, reff-σ projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane, and their distribution of vrotsini/σ closely resemble those of intermediate-mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas-rich disk galaxies while giant ellipticals with large cores have a different formation history. Based on observations at the European Southern Observatory, Chile (ESO 65.N-0266, 65.N-0289), and on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, The University of California,