Sample records for closed circulation system

  1. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  2. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  3. Operation of a cascade air conditioning system with two-phase loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yinshan; Wang, Jinliang; Zhao, Futao

    A method of operating a heat transfer system includes starting operation of a first heat transfer fluid vapor/compression circulation loop including a fluid pumping mechanism, a heat exchanger for rejecting thermal energy from a first heat transfer fluid, and a heat absorption side of an internal heat exchanger. A first conduit in a closed fluid circulation loop circulates the first heat transfer fluid therethrough. Operation of a second two-phase heat transfer fluid circulation loop is started after starting operation of the first heat transfer fluid circulation loop. The second heat transfer fluid circulation loop transfers heat to the first heatmore » transfer fluid circulation loop through the internal heat exchanger and includes a heat rejection side of the internal heat exchanger, a liquid pump, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough.« less

  4. Closed-loop helium circulation system for actuation of a continuously operating heart catheter pump.

    PubMed

    Karabegovic, Alen; Hinteregger, Markus; Janeczek, Christoph; Mohl, Werner; Gföhler, Margit

    2017-06-09

    Currently available, pneumatic-based medical devices are operated using closed-loop pulsatile or open continuous systems. Medical devices utilizing gases with a low atomic number in a continuous closed loop stream have not been documented to date. This work presents the construction of a portable helium circulation addressing the need for actuating a novel, pneumatically operated catheter pump. The design of its control system puts emphasis on the performance, safety and low running cost of the catheter pump. Static and dynamic characteristics of individual elements in the circulation are analyzed to ensure a proper operation of the system. The pneumatic circulation maximizes the working range of the drive unit inside the catheter pump while reducing the total size and noise production.Separate flow and pressure controllers position the turbine's working point into the stable region of the pressure creation element. A subsystem for rapid gas evacuation significantly decreases the duration of helium removal after a leak, reaching subatmospheric pressure in the intracorporeal catheter within several milliseconds. The system presented in the study offers an easy control of helium mass flow while ensuring stable behavior of its internal components.

  5. In situ heat treatment process utilizing a closed loop heating system

    DOEpatents

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  6. The NICMOS Cooling SYSTEM-5 Years of Successful On-Orbit Operation

    NASA Astrophysics Data System (ADS)

    Swift, W. L.; Dolan, F. X.; Zagarola, M. V.

    2008-03-01

    The NICMOS Cooling System consists of a closed-loop turbo-Brayton cryocooler coupled with a cryogenic circulator that provides refrigeration to the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope (HST). The cryocooler heat is rejected to space through a capillary pumped loop connected to radiators mounted on the side of the telescope. The system was deployed and integrated with NICMOS by astronauts during STS-109 (Space Shuttle Columbia) in March 2002. It has operated nearly continuously without performance degradation since that time, maintaining NICMOS detectors at a constant temperature of 77 K. Miniature, high-speed turbomachines are used in the cryocooler and the circulator loop to provide vibration-free, long-life operation. A small centrifugal compressor and miniature turboalternator are key elements of the closed loop cryocooler. A miniature cryogenic centrifugal circulator in a separate pressurized neon loop transports heat from the NICMOS instrument to the cryocooler interface heat exchanger. This paper describes the development of the system, key operational features, ground and orbital tests prior to its deployment, and operational results during its five-year operational history on orbit.

  7. In situ conversion process utilizing a closed loop heating system

    DOEpatents

    Sandberg, Chester Ledlie [Palo Alto, CA; Fowler, Thomas David [Houston, TX; Vinegar, Harold J [Bellaire, TX; Schoeber, Willen Jan Antoon Henri

    2009-08-18

    An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

  8. Performance of Control System Using Microcontroller for Sea Water Circulation

    NASA Astrophysics Data System (ADS)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  9. High average power laser using a transverse flowing liquid host

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2003-07-29

    A laser includes an optical cavity. A diode laser pumping device is located within the optical cavity. An aprotic lasing liquid containing neodymium rare earth ions fills the optical cavity. A circulation system that provides a closed loop for circulating the aprotic lasing liquid into and out of the optical cavity includes a pump and a heat exchanger.

  10. Development and evaluation of endurance test system for ventricular assist devices.

    PubMed

    Sumikura, Hirohito; Homma, Akihiko; Ohnuma, Kentaro; Taenaka, Yoshiyuki; Takewa, Yoshiaki; Mukaibayashi, Hiroshi; Katano, Kazuo; Tatsumi, Eisuke

    2013-06-01

    We developed a novel endurance test system that can arbitrarily set various circulatory conditions and has durability and stability for long-term continuous evaluation of ventricular assist devices (VADs), and we evaluated its fundamental performance and prolonged durability and stability. The circulation circuit of the present endurance test system consisted of a pulsatile pump with a small closed chamber (SCC), a closed chamber, a reservoir and an electromagnetic proportional valve. Two duckbill valves were mounted in the inlet and outlet of the pulsatile pump. The features of the circulation circuit are as follows: (1) the components of the circulation circuit consist of optimized industrial devices, giving durability; (2) the pulsatile pump can change the heart rate and stroke length (SL), as well as its compliance using the SCC. Therefore, the endurance test system can quantitatively reproduce various circulatory conditions. The range of reproducible circulatory conditions in the endurance test circuit was examined in terms of fundamental performance. Additionally, continuous operation for 6 months was performed in order to evaluate the durability and stability. The circulation circuit was able to set up a wide range of pressure and total flow conditions using the SCC and adjusting the pulsatile pump SL. The long-term continuous operation test demonstrated that stable, continuous operation for 6 months was possible without leakage or industrial device failure. The newly developed endurance test system demonstrated a wide range of reproducible circulatory conditions, durability and stability, and is a promising approach for evaluating the basic characteristics of VADs.

  11. Reduced connection between the East Asian Summer Monsoon and Southern Hemisphere Circulation on interannual timescales under intense global warming

    NASA Astrophysics Data System (ADS)

    Yu, Tianlei; Guo, Pinwen; Cheng, Jun; Hu, Aixue; Lin, Pengfei; Yu, Yongqiang

    2018-03-01

    Previous studies show a close relationship between the East Asian Summer Monsoon (EASM) and Southern Hemisphere (SH) circulation on interannual timescales. In this study, we investigate whether this close relationship will change under intensive greenhouse-gas effect by analyzing simulations under two different climate background states: preindustrial era and Representative Concentration Pathway (RCP) 8.5 stabilization from the Community Climate System Model Version 4 (CCSM4). Results show a significantly reduced relationship under stabilized RCP8.5 climate state, such a less correlated EASM with the sea level pressure in the southern Indian Ocean and the SH branch of local Hadley Cell. Further analysis suggests that the collapse of the Atlantic Meridional Overturning Circulation (AMOC) due to this warming leads to a less vigorous northward meridional heat transport, a decreased intertropical temperature contrast in boreal summer, which produces a weaker cross-equatorial Hadley Cell in the monsoonal region and a reduced Interhemispheric Mass Exchange (IME). Since the monsoonal IME acts as a bridge connecting EASM and SH circulation, the reduced IME weakens this connection. By performing freshwater hosing experiment using the Flexible Global Ocean—Atmosphere—Land System model, Grid-point Version 2 (FGOALS-g2), we show a weakened relationship between the EASM and SH circulation as in CCSM4 when AMOC collapses. Our results suggest that a substantially weakened AMOC is the main driver leading to the EASM, which is less affected by SH circulation in the future warmer climate.

  12. Destroyer Engineered Operating Cycle (DDEOC), System Maintenance Analysis DDG-37 Class, Salt Water Circulating System SMA 37-106-256, Review of Experience

    DTIC Science & Technology

    1978-07-01

    horizontally mounted, single-end suction, single- stage centrifugal pumps. The rotating elements are mounted on the shaft of the driving motor, and the pump...annual open-and-inspect requirement for MIP E-17/296-21, MRC 21 A14V A. Industrial Facility Improvements -- None IMA Improvements -- None Intergrated ...Circulating Pump, Warren Pumps, Inc., NAVSHIPS 347-3146, January 1959. 4. Technical Manual - Horizontal Close-Co!;pled Pumps Sea (Salt) Water

  13. Residential Proximity to Major Roadways Is Associated With Increased Levels of AC133+ Circulating Angiogenic Cells.

    PubMed

    DeJarnett, Natasha; Yeager, Ray; Conklin, Daniel J; Lee, Jongmin; O'Toole, Timothy E; McCracken, James; Abplanalp, Wes; Srivastava, Sanjay; Riggs, Daniel W; Hamzeh, Ihab; Wagner, Stephen; Chugh, Atul; DeFilippis, Andrew; Ciszewski, Tiffany; Wyatt, Brad; Becher, Carrie; Higdon, Deirdre; Ramos, Kenneth S; Tollerud, David J; Myers, John A; Rai, Shesh N; Shah, Jasmit; Zafar, Nagma; Krishnasamy, Sathya S; Prabhu, Sumanth D; Bhatnagar, Aruni

    2015-11-01

    Previous studies have shown that residential proximity to a roadway is associated with increased cardiovascular disease risk. Yet, the nature of this association remains unclear, and its effect on individual cardiovascular disease risk factors has not been assessed. The objective of this study was to determine whether residential proximity to roadways influences systemic inflammation and the levels of circulating angiogenic cells. In a cross-sectional study, cardiovascular disease risk factors, blood levels of C-reactive protein, and 15 antigenically defined circulating angiogenic cell populations were measured in participants (n=316) with moderate-to-high cardiovascular disease risk. Attributes of roadways surrounding residential locations were assessed using geographic information systems. Associations between road proximity and cardiovascular indices were analyzed using generalized linear models. Close proximity (<50 m) to a major roadway was associated with lower income and higher rates of smoking but not C-reactive protein levels. After adjustment for potential confounders, the levels of circulating angiogenic cells in peripheral blood were significantly elevated in people living in close proximity to a major roadway (CD31(+)/AC133(+), AC133(+), CD34(+)/AC133(+), and CD34(+)/45(dim)/AC133(+) cells) and positively associated with road segment distance (CD31(+)/AC133(+), AC133(+), and CD34(+)/AC133(+) cells), traffic intensity (CD31(+)/AC133(+) and AC133(+) cells), and distance-weighted traffic intensity (CD31(+)/34(+)/45(+)/AC133(+) cells). Living close to a major roadway is associated with elevated levels of circulating cells positive for the early stem marker AC133(+). This may reflect an increased need for vascular repair. Levels of these cells in peripheral blood may be a sensitive index of cardiovascular injury because of residential proximity to roadways. © 2015 American Heart Association, Inc.

  14. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    NASA Astrophysics Data System (ADS)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  15. A global multiscale mathematical model for the human circulation with emphasis on the venous system.

    PubMed

    Müller, Lucas O; Toro, Eleuterio F

    2014-07-01

    We present a global, closed-loop, multiscale mathematical model for the human circulation including the arterial system, the venous system, the heart, the pulmonary circulation and the microcirculation. A distinctive feature of our model is the detailed description of the venous system, particularly for intracranial and extracranial veins. Medium to large vessels are described by one-dimensional hyperbolic systems while the rest of the components are described by zero-dimensional models represented by differential-algebraic equations. Robust, high-order accurate numerical methodology is implemented for solving the hyperbolic equations, which are adopted from a recent reformulation that includes variable material properties. Because of the large intersubject variability of the venous system, we perform a patient-specific characterization of major veins of the head and neck using MRI data. Computational results are carefully validated using published data for the arterial system and most regions of the venous system. For head and neck veins, validation is carried out through a detailed comparison of simulation results against patient-specific phase-contrast MRI flow quantification data. A merit of our model is its global, closed-loop character; the imposition of highly artificial boundary conditions is avoided. Applications in mind include a vast range of medical conditions. Of particular interest is the study of some neurodegenerative diseases, whose venous haemodynamic connection has recently been identified by medical researchers. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Vortex circulation and polarity patterns in closely packed cap arrays

    DOE PAGES

    Streubel, Robert; Kronast, Florian; Reiche, Christopher F.; ...

    2016-01-25

    For this work, we studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetrymore » axis of the hexagonal array. An even and random distribution of vortex polarity indicates the absence of any circulation-polarity coupling.« less

  17. Patent Foramen Ovale

    MedlinePlus

    ... which also closes when the left ventricle relaxes. Baby's heart in the womb Because a baby in the ... to the body via another bypass system. Newborn baby's heart When a baby's lungs begin functioning, the circulation ...

  18. Surgical implications of portal venous system malformation

    PubMed Central

    Marks, Charles

    1974-01-01

    The significance of congenital abnormalities in predisposing to portal hypertension and variceal haemorrhage needs to be remembered when these effects manifest in childhood, as portal venography will permit elucidation of the complicated congenital developmental abnormalities underlying the pathological condition and permit rational surgical amelioration. In the presence of portal hypertension the development of a collateral venous circulation may be represented by a hepatopetal or hepatofugal circulatory pattern and will closely parallel the developmental areas where portal and systemic venous circulations meet, being representative of the embryological anastomosis between the vitelloumbilical system and the posterior cardinal system of veins. ImagesFig. 3Fig. 5Fig. 6 PMID:4614690

  19. Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes

    USDA-ARS?s Scientific Manuscript database

    Hydroponic production systems grow plants without soil, relying on a circulating solution to provide the necessary nutrients. Maintaining an optimum nutrient balance in this solution is important for maximizing crop growth and yield. Particularly in closed hydroponic systems it is important to monit...

  20. Zebrafish as an early stage screening tool to study the systemic circulation of nanoparticulate drug delivery systems in vivo.

    PubMed

    Sieber, Sandro; Grossen, Philip; Detampel, Pascal; Siegfried, Salome; Witzigmann, Dominik; Huwyler, Jörg

    2017-10-28

    Nanomedicines have gained much attention for the delivery of small molecules or nucleic acids as treatment options for many diseases. However, the transfer from experimental systems to in vivo applications remains a challenge since it is difficult to assess their circulation behavior in the body at an early stage of drug discovery. Thus, innovative and improved concepts are urgently needed to overcome this issue and to close the gap between empiric nanoparticle design, in vitro assessment, and first in vivo experiments using rodent animal models. This study was focused on the zebrafish as a vertebrate screening model to assess the circulation in blood and extravasation behavior of nanoparticulate drug delivery systems in vivo. To validate this novel approach, monodisperse preparations of fluorescently labeled liposomes with similar size and zeta potential were injected into transgenic zebrafish lines expressing green fluorescent protein in their vasculature. Phosphatidylcholine-based lipids differed by fatty acid chain length and saturation. Circulation behavior and vascular distribution pattern were evaluated qualitatively and semi-quantitatively using image analysis. Liposomes composed of lipids with lower transition temperature (<28°C) as well as PEGylated liposomes showed longer circulation times and extravasation. In contrast, liposomes composed of lipids with transition temperatures>28°C bound to venous parts of the vasculature. This circulation patterns in the zebrafish model did correlate with published and experimental pharmacokinetic data from mice and rats. Our findings indicate that the zebrafish model is a useful vertebrate screening tool for nanoparticulate drug delivery systems to predict their in vivo circulation behavior with respect to systemic circulation time and exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Air Circulation and Heat Exchange under Reduced Pressures

    NASA Astrophysics Data System (ADS)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  2. Heat flow anomalies caused by water circulation

    NASA Astrophysics Data System (ADS)

    Alföldi, L.; Gálfi, J.; Liebe, P.

    1985-12-01

    The practically important part of geothermal systems belongs to the convective type where the thermal energy is transported by movement of water or steam. Both geothermics and hydrology should be in very close cooperation at the interpretation of convective geothermal anomalies. In the first part of the study the parameters required for the calculation of water- and thermal-balance will be enumerated and their obtainable accuracy will be discussed based mainly on the praxis used in Hungary. In the second part, heat convection problems connected to subterranean water movement will be discussed, divided into three cases which have importance in praxis: — regional water-flow systems with great inflow and outflow areas; — mountainous — mainly karstic — areas of infiltration with springs at the foot of the mountain; — closed convective systems of circulation. For illustrating the conceptual examples given above, Hungarian case histories with characteristic data will be presented: The Transdanubian Middle Range, Spa of Budapest, Spa of Héviz, the Great Hungarian Plain and the Thermal Anomaly at Tiszakécske.

  3. The Mini-Earth facility and present status of habitation experiment program.

    PubMed

    Nitta, Keiji

    2005-01-01

    The history of construction of the CEEF (the Mini-Earth), the configuration and scale of the CEEF are initially described. The effective usable areas in plant cultivation and animal holding and habitation modules and the accommodation equipment installed in each module are also explained. Mechanisms of the material circulation systems belonging to each module and subsystems in each material circulation system are introduced. Finally the results of pre-habitation experiments conducted until the year 2004 for clarifying the requirements in order to promote final closed habitation experiments are shown. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  4. Water cooling system for an air-breathing hypersonic test vehicle

    NASA Technical Reports Server (NTRS)

    Petley, Dennis H.; Dziedzic, William M.

    1993-01-01

    This study provides concepts for hypersonic experimental scramjet test vehicles which have low cost and low risk. Cryogenic hydrogen is used as the fuel and coolant. Secondary water cooling systems were designed. Three concepts are shown: an all hydrogen cooling system, a secondary open loop water cooled system, and a secondary closed loop water cooled system. The open loop concept uses high pressure helium (15,000 psi) to drive water through the cooling system while maintaining the pressure in the water tank. The water flows through the turbine side of the turbopump to pump hydrogen fuel. The water is then allowed to vent. In the closed loop concept high pressure, room temperature, compressed liquid water is circulated. In flight water pressure is limited to 6000 psi by venting some of the water. Water is circulated through cooling channels via an ejector which uses high pressure gas to drive a water jet. The cooling systems are presented along with finite difference steady-state and transient analysis results. The results from this study indicate that water used as a secondary coolant can be designed to increase experimental test time, produce minimum venting of fluid and reduce overall development cost.

  5. The Measureable Effects of Closing a Branch Library: Circulation, Instruction, and Service Perception

    ERIC Educational Resources Information Center

    Lange, Jessica; Lannon, Amber; McKinnon, Dawn

    2014-01-01

    This article explores the closing of the Howard Ross Library of Management at McGill University, Montreal, Canada. We hypothesized that closing a branch library would result in a decline in the use of library services. We measured library service using circulation statistics, library instruction workshop statistics, and data from the online survey…

  6. New Genotype of Dengue Type 3 Virus Circulating in Brazil and Colombia Showed a Close Relationship to Old Asian Viruses

    PubMed Central

    Aquino, Victor Hugo; Amarilla, Alberto Anastacio; Alfonso, Helda Liz; Batista, Weber Cheli; Figueiredo, Luiz Tadeu Moraes

    2009-01-01

    Dengue type 3 genotype V viruses have been recently detected in Brazil and Colombia. In this study, we described another Brazilian isolate belonging to this genotype. Phylogenetic analysis including dengue type 3 viruses isolated worldwide showed that Brazilian and Colombian viruses were closely related to viruses isolated in Asia more than two decades ago. The characteristic evolutionary pattern of dengue type 3 virus cannot explain the close similarity of new circulating viruses with old viruses. Further studies are needed to confirm the origin of the new dengue type III genotype circulating in Brazil and Colombia. PMID:19823677

  7. Control of respiration-driven retrograde flow in the subdiaphragmatic venous return of the Fontan circulation

    PubMed Central

    Vukicevic, M; Conover, T; Jaeggli, M; Zhou, J; Pennati, G; Hsia, TY; Figliola, RS

    2014-01-01

    Respiration influences the subdiaphragmatic venous return in the total cavopulmonary connection (TCPC) of the Fontan circulation whereby both the inferior vena cava (IVC) and hepatic vein flows can experience retrograde motion. Controlling retrograde flows could improve patient outcomes. Using a patient-specific model within a Fontan mock circulatory system with respiration, we inserted a valve into the IVC to examine its effects on local hemodynamics while varying retrograde volumes by changing vascular impedances. A bovine valved conduit reduced IVC retrograde flow to within 3% of antegrade flow in all cases. The valve closed only under conditions supporting retrograde flow and its effects on local hemodynamics increased with larger retrograde volume. Liver and TCPC pressures improved only while the valve leaflets were closed while cycle-averaged pressures improved only slightly (italic>1 mm Hg). Increased pulmonary vascular resistance raised mean circulation pressures but the valve functioned and cardiac output improved and stabilized. Power loss across the TCPC improved by 12–15% (pbold>0.05) with a valve. The effectiveness of valve therapy is dependent on patient vascular impedance. PMID:24814833

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streubel, Robert; Kronast, Florian; Reiche, Christopher F.

    For this work, we studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetrymore » axis of the hexagonal array. An even and random distribution of vortex polarity indicates the absence of any circulation-polarity coupling.« less

  9. The Ocean's Role in Outlet Glacier Variability: A Case Study from Uummannaq, Greenland

    NASA Astrophysics Data System (ADS)

    Sutherland, D.; Catania, G. A.; Bartholomaus, T. C.; Nash, J. D.; Shroyer, E.; Walker, R. T.; Stearns, L. A.

    2014-12-01

    The dynamics controlling the coupling between fjord circulation and outlet glacier movement are poorly understood. Here, we use oceanographic data collected from 2013-2014 from two west Greenland fjords, Rink Isbrae and Kangerdlugssup Sermerssua, to constrain the spatial and temporal variability observed in fjord circulation. We aim to quantify the ocean's role, if any, in explaining the marked differences in glacier behavior from two systems that are in close proximity to one another. Combining time series data from a set of subsurface moorings with repeat transects in each fjord allows an unprecedented look at the temporal and spatial variability in circulation. We find significant differences in the variability in each fjord and discuss the implications for the glaciers.

  10. Mock Circulatory System of the Fontan Circulation to Study Respiration Effects on Venous Flow Behavior

    PubMed Central

    Vukicevic, M.; Chiulli, J.A.; Conover, T.; Pennati, G.; Hsia, T.Y.; Figliola, R.S.

    2013-01-01

    We describe an in vitro model of the Fontan circulation with respiration to study subdiaphragmatic venous flow behavior. The venous and arterial connections of a total cavopulmonary connection (TCPC) test section were coupled with a physical lumped parameter (LP) model of the circulation. Intrathoracic and subdiaphragmatic pressure changes associated with normal breathing were applied. This system was tuned for two patients (5 years, 0.67 m2; 10 years, 1.2 m2) to physiological values. System function was verified by comparison to the analytical model on which it was based and by consistency with published clinical measurements. Overall, subdiaphragmatic venous flow was influenced by respiration. Flow within the arteries and veins increased during inspiration but decreased during expiration with retrograde flow in the inferior venous territories. System pressures and flows showed close agreement with the analytical LP model (p < 0.05). The ratio of the flow rates occurring during inspiration to expiration were within the clinical range of values reported elsewhere. The approach used to setup and control the model was effective and provided reasonable comparisons with clinical data. PMID:23644612

  11. An improved method for detection of Shiga toxin 2 in human serum

    USDA-ARS?s Scientific Manuscript database

    Shiga toxins (Stx) produced by Stx-producing Escherichia coli (STEC) are virulence factors that is most closely associated with hemolytic uremic syndrome (HUS), a life-threatening complication of intestinal infections by STEC. Stx have to enter into the circulation system before they can be delivere...

  12. A new disease: pregnancy-induced sudden sensorineural hearing loss?

    PubMed

    Hou, Zhi-Qiang; Wang, Qiu-Ju

    2011-07-01

    Sudden sensorineural hearing loss (SSNHL) may occur during pregnancy, but its prevalence is very low. It is conjectured that SSNHL is closely related to the changes in the cardiovascular system, hematological system, endocrine system, and/or some other systems due to pregnancy. These changes possibly evoke disorders of cochlear circulation or cochlear fluid homeostasis leading to SSNHL. Two SSNHL cases were observed in our clinic, and their clinical features were analyzed. In one patient the SSNHL was likely to be related to the disturbance of cochlear fluid homestasis and in the other it might be induced by some disorders in cochlear circulation. Based on their distinct clinic profiles, we defined a new disease, called "pregnancy-induced sudden sensorineural hearing loss," similar to the definition of "pregnancy-induced hypertension." This study also deepened our understanding of the etiology of SSNHL.

  13. Clinical experience with the mini-extracorporeal circulation system: an evolution or a revolution?

    PubMed

    Remadi, Jean-Paul; Marticho, Paul; Butoi, Irina; Rakotoarivelo, Zava; Trojette, Faouzi; Benamar, Amar; Beloucif, Sadek; Foure, Dominique; Poulain, Henri J

    2004-06-01

    We studied a cohort of 150 patients operated on with a new cardiopulmonary bypass (CPB) system. This is the mini-extracorporeal circulation (MECC) system. The MECC is a fully heparin coated closed-loop CPB system that includes a centrifugal pump and has a priming volume of 450 mL. Between March 2001 and September 2002, 150 consecutive patients were operated on using the mini-CPB (MECC) method. This includes 105 coronary artery bypass graft and 45 aortic valve replacement patients. The median age was 66.7 +/- 10.7 years with a gender ratio of 3.27 males to 1 female. The 30-day operative mortality was 1.3%. The hemoglobin concentration was stable and perioperative transfusion was needed in only 6% of all patients. The renal and neuropsychiatric complications were less than 1%. In our experience, the MECC system is a reliable new concept for CPB with good clinical results.

  14. Performance comparison of ethanol and butanol production in a continuous and closed-circulating fermentation system with membrane bioreactor.

    PubMed

    Chen, Chunyan; Long, Sihua; Li, Airong; Xiao, Guoqing; Wang, Linyuan; Xiao, Zeyi

    2017-03-16

    Since both ethanol and butanol fermentations are urgently developed processes with the biofuel-demand increasing, performance comparison of aerobic ethanol fermentation and anerobic butanol fermentation in a continuous and closed-circulating fermentation (CCCF) system was necessary to achieve their fermentation characteristics and further optimize the fermentation process. Fermentation and pervaporation parameters including the average cell concentration, glucose consumption rate, cumulated production concentration, product flux, and separation factor of ethanol fermentation were 11.45 g/L, 3.70 g/L/h, 655.83 g/L, 378.5 g/m 2 /h, and 4.83, respectively, the corresponding parameters of butanol fermentation were 2.19 g/L, 0.61 g/L/h, 28.03 g/L, 58.56 g/m 2 /h, and 10.62, respectively. Profiles of fermentation and pervaporation parameters indicated that the intensity and efficiency of ethanol fermentation was higher than butanol fermentation, but the stability of butanol fermentation was superior to ethanol fermentation. Although the two fermentation processes had different features, the performance indicated the application prospect of both ethanol and butanol production by the CCCF system.

  15. Operation and maintenance of the SOL-DANCE building solar system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-07-29

    The Sol-Dance building solar heating system consists of 136 flat plate solar collectors divided evenly into two separate building systems, each providing its total output to a common thermal storage tank. An aromatic base transformer oil is circulated through a closed loop consisting of the collectors and a heat exchanger. Water from the thermal storage tank is passed through the same heat exchanger where heat from the oil is given up to the thermal storage. Back-up heat is provided by air source heat pumps. Heat is transferred from the thermal storage to the living space by liquid-to-air coils in themore » distribution ducts. Separate domestic hot water systems are provided for each building. The system consists of 2 flat plate collectors with a single 66 gallon storage tank with oil circulated in a closed loop through an external tube and shell heat exchanger. Some problems encountered and lessons learned during the project construction are listed as well as beneficial aspects and a project description. As-built drawings are provided as well as system photographs. An acceptance test plan is provided that checks the collection, thermal storage, and space and water heating subsystems and the total system installation. Predicted performance data are tabulated. Details are discussed regarding operation, maintenance, and repair, and manufacturers data are provided. (LEW)« less

  16. Evaluation of Heating Methods for Thermal Structural Testing of Large Structures

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Sikora, Joseph G.; Caldwell, Darrell L., Jr.

    1998-01-01

    An experimental study was conducted to evaluate different heating methods for thermal structural testing of large scale structures at temperatures up to 350 F as part of the High Speed Research program. The heating techniques evaluated included: radiative/convective, forced convective, and conductive. The radiative/convective heaters included finned strip heaters, and clear and frosted quartz lamps. The forced convective heating was accomplished by closed loop circulation of heated air. The conductive heater consisted of heating blankets. The tests were conducted on an 1/8 inch thick stainless steel plate in a custom-built oven. The criteria used for comparing the different heating methods included test specimen temperature uniformity, heater response time, and consumed power. The parameters investigated included air circulation in the oven, reflectance of oven walls, and the orientation of the test specimen and heaters (vertical and horizontal). It was found that reflectance of oven walls was not an important parameter. Air circulation was necessary to obtain uniform temperatures only for the vertically oriented specimen. Heating blankets provided unacceptably high temperature non-uniformities. Quartz lamps with internal air circulation had the lowest power consumption levels. Using frosted quartz lamps with closed loop circulation of cool air, and closed loop circulation of heated air provided the fastest response time.

  17. [Cardiovascular circulation feedback control treatment instrument].

    PubMed

    Ge, Yu-zhi; Zhu, Xing-huan; Sheng, Guo-tai; Cao, Ping-liang; Liu, Dong-sheng; Wu, Zhi-ting

    2005-07-01

    The cardiovascular circulation feedback control treatment instrument (CFCTI) is an automatic feedback control treatment system, which has the function of monitoring, alarming, trouble self-diagnosis and testing on the line in the closed loop. The instrument is designed based on the successful clinical experiences and the data are inputted into the computer in real-time through a pressure sensor and A/D card. User interface window is set up for the doctor's choosing different medicine. The orders are outputted to control the dose of medicine through the transfusion system. The response to medicine is updated continually. CFCTI can avoid the man-made errors and the long interval of sampling. Its reliability and accuracy in rescuing the critical patients are much higher than the traditional methods.

  18. Vascular and Immunobiology of the Circulatory Sphingosine 1-Phosphate Gradient

    PubMed Central

    Yanagida, Keisuke; Hla, Timothy

    2017-01-01

    Vertebrates are endowed with a closed circulatory system, the evolution of which required novel structural and regulatory changes. Furthermore, immune cell trafficking paradigms adapted to the barriers imposed by the closed circulatory system. How did such changes occur mechanistically? We propose that spatial compartmentalization of the lipid mediator sphingosine 1-phosphate (S1P) may be one such mechanism. In vertebrates, S1P is spatially compartmentalized in the blood and lymphatic circulation, thus comprising a sharp S1P gradient across the endothelial barrier. Circulatory S1P has critical roles in maturation and homeostasis of the vascular system as well as in immune cell trafficking. Physiological functions of S1P are tightly linked to shear stress, the key biophysical stimulus from blood flow. Thus, circulatory S1P confinement could be a primordial strategy of vertebrates in the development of a closed circulatory system. This review discusses the cellular and molecular basis of the S1P gradients and aims to interpret its physiological significance as a key feature of the closed circulatory system. PMID:27813829

  19. Disruption of a cyclonic eddy circulation by wind stress in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Halverson, Mark J.; Carter Ohlmann, J.; Johnson, Mark A.; Scott Pegau, W.

    2013-07-01

    Oceanographic observations made during the Sound Predictions 2009 field experiment in Prince William Sound, Alaska, have documented rapid changes in the upper water column (0-40m) circulation. An assortment of drifting buoys, sampling four different depths, and HF radar surface current mapping, revealed three modes of circulation: anticyclonic, open cyclonic, and closed cyclonic. Each mode was observed at least once within an 18-day window, and the transition between them took as little as a day. Time-resolved hydrographic measurements show that the mass field was variable, but generally arranged such that the surface geostrophic flow should be in a closed-core cyclonic eddy configuration. Observations show that the mass field was likely influenced by relatively low salinity water flowing into Prince William Sound from the shelf, and from local freshwater input. We quantitatively examine why a closed-core circulation was not always observed by focusing on the transition between the closed and open cyclonic flow patterns. The western region of the central sound is a key area for this transition. Here, the high-frequency radar revealed that the closed circulation was established when the net flow shifted direction from northward to southward. A detailed comparison of the meridional geostrophic and wind-driven flows, using measured winds and hydrographic data from CTD profiles and two autonomous vehicles, shows that the geostrophic flow was mostly southward while the wind-driven flow was mostly northward. A net southward flow can be caused by a decrease in the northward wind-driven flow or an increase in the southward geostrophic flow.

  20. Laser Gyro Attitude Control System Feasibility Study.

    DTIC Science & Technology

    1987-04-24

    GYROS (Distinguishable by method used to circumvent lock-in phenomenon) M ECHANICAL DITHER ,. MAGNETIC MIRROR DILAG (MULTI-OSCILLATOR) Figure 1...by a multiple transit of a light beam within a closed optical cavity (a three- mirror system). The beam traverses the cavity continuously; after each...circulation a small fraction of the beam intensity is output at one of the mirrors . Each transit incurs a phase % %0 ? % o I" us ol *..~% % %~*,~*)*f

  1. Avoidance-related EEG asymmetry predicts circulating interleukin-6.

    PubMed

    Shields, Grant S; Moons, Wesley G

    2016-03-01

    Recent research has linked avoidance-oriented motivational states to elevated pro-inflammatory cytokine levels. According to one of many theories regarding the association between avoidance and cytokine levels, because the evolutionarily basic avoidance system may be activated when an organism is threatened or overwhelmed, an associated inflammatory response may be adaptive for dealing with potential injury in such threatening situations. To examine this hypothesis, we tested whether the neural correlate of avoidance motivation associates with baseline levels of the circulating pro-inflammatory cytokine interleukin-6 (IL-6). Controlling for covariates, greater resting neural activity in the right frontal cortex relative to the left frontal cortex-the neural correlate of avoidance motivation-was associated with baseline IL-6. These results thus support the hypothesis that the avoidance motivational system may be closely linked to systemic inflammatory activity. (c) 2016 APA, all rights reserved).

  2. Performance of an on-chip superconducting circulator for quantum microwave systems

    NASA Astrophysics Data System (ADS)

    Chapman, Benjamin; Rosenthal, Eric; Moores, Bradley; Kerckhoff, Joseph; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; LalumíEre, Kevin; Blais, Alexandre; Lehnert, K. W.

    Microwave circulators enforce a single propagation direction for signals in an electrical network. Unfortunately, commercial circulators are bulky, lossy, and cannot be integrated close to superconducting circuits because they require strong ( kOe) magnetic fields produced by permanent magnets. Here we report on the performance of an on-chip, active circulator for superconducting microwave circuits, which uses no permanent magnets. Non-reciprocity is achieved by actively modulating reactive elements around 100 MHz, giving roughly a factor of 50 in the separation between signal and control frequencies, which facilitates filtering. The circulator's active components are dynamically tunable inductors constructed with arrays of dc-SQUIDs in series. Array inductance is tuned by varying the magnetic flux through the SQUIDs with fields weaker than 1 Oe. Although the instantaneous bandwidth of the device is narrow, the operation frequency is tunable between 4 and 8 GHz. This presentation will describe the device's theory of operation and compare its measured performance to design goals. This work is supported by the ARO under contract W911NF-14-1-0079 and the National Science Foundation under Grant Number 1125844.

  3. Gravitational effects on global hemodynamics in different postures: A closed-loop multiscale mathematical analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiancheng; Noda, Shigeho; Himeno, Ryutaro; Liu, Hao

    2017-06-01

    We present a novel methodology and strategy to predict pressures and flow rates in the global cardiovascular network in different postures varying from supine to upright. A closed-loop, multiscale mathematical model of the entire cardiovascular system (CVS) is developed through an integration of one-dimensional (1D) modeling of the large systemic arteries and veins, and zero-dimensional (0D) lumped-parameter modeling of the heart, the cardiac-pulmonary circulation, the cardiac and venous valves, as well as the microcirculation. A versatile junction model is proposed and incorporated into the 1D model to cope with splitting and/or merging flows across a multibranched junction, which is validated to be capable of estimating both subcritical and supercritical flows while ensuring the mass conservation and total pressure continuity. To model gravitational effects on global hemodynamics during postural change, a robust venous valve model is further established for the 1D venous flows and distributed throughout the entire venous network with consideration of its anatomically realistic numbers and locations. The present integrated model is proven to enable reasonable prediction of pressure and flow rate waveforms associated with cardiopulmonary circulation, systemic circulation in arteries and veins, as well as microcirculation within normal physiological ranges, particularly in mean venous pressures, which well match the in vivo measurements. Applications of the cardiovascular model at different postures demonstrate that gravity exerts remarkable influence on arterial and venous pressures, venous returns and cardiac outputs whereas venous pressures below the heart level show a specific correlation between central venous and hydrostatic pressures in right atrium and veins.

  4. The geothermal system of Caviahue-Copahue Volcanic Complex (Chile-Argentina): New insights from self-potential, soil CO2 degassing, temperature measurements and helium isotopes, with structural and fluid circulation implications.

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Bravo, Francisco; Barde-Cabusson, Stephanie; Pizarro, Marcela; Muños, Carlos; Sanchez, Juan; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; de Cal, Federico; Esteban, Carlos

    2016-04-01

    Geothermal systems represent natural heat transfer engines in a confined volume of rock which are strongly influenced by the regional volcano-tectonic setting controlling the formation of shallow magmatic reservoirs, and by the local faults/fracture network, that permits the development of hydrothermal circulation cells and promote the vertical migration of fluids and heat. In the Southern Volcanic Zone of Chile-Argentina, geothermal resources occur in close spatial relationship with active volcanism along the Cordillera which is primarily controlled by the 1000 km long, NNE Liquiñe-Ofqui Fault Zone (LOFZ), an intra-arc dextral strike-slip fault system, associated with second-order intra-arc anisotropy of overall NE-SW (extensional) and NW-SE orientation (compressional). However there is still a lack of information on how fault network (NE and WNW strinking faults) and lithology control the fluid circulation. In this study, we propose new data of dense self-potential (SP), soil CO2 emanation and temperature (T) measurements within the geothermal area from Caviahue-Copahue Volcanic Complex (CCVC), coupled with helium isotopes ratios measured in fumaroles and thermal springs. We observe that inside the geothermal system the NE-striking faults, characterized by a combination of SP-CO2 and T maxima with high 3He/4He ratios (7.86Ra), promote the formation of high vertical permeability pathways for fluid circulation. Whereas, the WNW-striking faults represent low permeability pathways for hydrothermal fluids ascent associated with moderate 3He/4He ratios (5.34Ra), promoting the infiltration of meteoric water at shallow depth. These active zones are interspersed by SP-CO2- T minima, which represent self-sealed zones (e.g. impermeable altered rocks) at depth, creating a barrier inhibiting fluids rise. The NE-striking faults seem to be associated with the upflow zones of the geothermal system, where the boiling process produces a high vapor-dominated zone close to the surface. The WNW-striking faults seems to limit to the south the Copahue geothermal area.

  5. Basic fluid system trainer

    DOEpatents

    Semans, Joseph P.; Johnson, Peter G.; LeBoeuf, Jr., Robert F.; Kromka, Joseph A.; Goron, Ronald H.; Hay, George D.

    1993-01-01

    A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  6. Integrated design of cryogenic refrigerator and liquid-nitrogen circulation loop for HTS cable

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Ryu, Ki Nam; Yang, Hyung Suk

    2016-12-01

    A new concept of cryogenic cooling system is proposed and investigated for application to long-length HTS cables. One of major obstacles to the cable length of 1 km or longer is the difficulty in circulating liquid nitrogen (LN) along the cables, since the temperature rise and pressure drop of LN flow could be excessively large. This study attempts a breakthrough by integrating the refrigerator with the LN circulation loop in order to eliminate the cryogenic LN pumps, and generate a large LN flow with the power of compressors at ambient temperature. A variety of thermodynamic structures are investigated on standard and modified Claude cycles, where nitrogen is used as refrigerant and the LN circulation loop is included as part of the closed cycle. Four proposed cycles are fully analyzed and optimized with a process simulator (Aspen HYSYS) to evaluate the FOM (figure of merit) and examine the feasibility. The modified dual-pressure cycle cooled with expander stream is recommended for long HTS cables.

  7. Metabolic phenotype-microRNA data fusion analysis of the systemic consequences of Roux-en-Y gastric bypass surgery.

    PubMed

    Wu, Q; Li, J V; Seyfried, F; le Roux, C W; Ashrafian, H; Athanasiou, T; Fenske, W; Darzi, A; Nicholson, J K; Holmes, E; Gooderham, N J

    2015-07-01

    Bariatric surgery offers sustained marked weight loss and often remission of type 2 diabetes, yet the mechanisms of establishment of these health benefits are not clear. We mapped the coordinated systemic responses of gut hormones, the circulating miRNAome and the metabolome in a rat model of Roux-en-Y gastric bypass (RYGB) surgery. The response of circulating microRNAs (miRNAs) to RYGB was striking and selective. Analysis of 14 significantly altered circulating miRNAs within a pathway context was suggestive of modulation of signaling pathways including G protein signaling, neurodegeneration, inflammation, and growth and apoptosis responses. Concomitant alterations in the metabolome indicated increased glucose transport, accelerated glycolysis and inhibited gluconeogenesis in the liver. Of particular significance, we show significantly decreased circulating miRNA-122 levels and a more modest decline in hepatic levels, following surgery. In mechanistic studies, manipulation of miRNA-122 levels in a cell model induced changes in the activity of key enzymes involved in hepatic energy metabolism, glucose transport, glycolysis, tricarboxylic acid cycle, pentose phosphate shunt, fatty-acid oxidation and gluconeogenesis, consistent with the findings of the in vivo surgery-mediated responses, indicating the powerful homeostatic activity of the miRNAs. The close association between energy metabolism, neuronal signaling and gut microbial metabolites derived from the circulating miRNA, plasma, urine and liver metabolite and gut hormone correlations further supports an enhanced gut-brain signaling, which we suggest is hormonally mediated by both traditional gut hormones and miRNAs. This transomic approach to map the crosstalk between the circulating miRNAome and metabolome offers opportunities to understand complex systems biology within a disease and interventional treatment setting.

  8. Metabolic phenotype-microRNA data fusion analysis of the systemic consequences of Roux-en-Y gastric bypass surgery

    PubMed Central

    Wu, Q; Li, J V; Seyfried, F; le Roux, C W; Ashrafian, H; Athanasiou, T; Fenske, W; Darzi, A; Nicholson, J K; Holmes, E; Gooderham, N J

    2015-01-01

    Background/Objectives: Bariatric surgery offers sustained marked weight loss and often remission of type 2 diabetes, yet the mechanisms of establishment of these health benefits are not clear. Subjects/Methods: We mapped the coordinated systemic responses of gut hormones, the circulating miRNAome and the metabolome in a rat model of Roux-en-Y gastric bypass (RYGB) surgery. Results: The response of circulating microRNAs (miRNAs) to RYGB was striking and selective. Analysis of 14 significantly altered circulating miRNAs within a pathway context was suggestive of modulation of signaling pathways including G protein signaling, neurodegeneration, inflammation, and growth and apoptosis responses. Concomitant alterations in the metabolome indicated increased glucose transport, accelerated glycolysis and inhibited gluconeogenesis in the liver. Of particular significance, we show significantly decreased circulating miRNA-122 levels and a more modest decline in hepatic levels, following surgery. In mechanistic studies, manipulation of miRNA-122 levels in a cell model induced changes in the activity of key enzymes involved in hepatic energy metabolism, glucose transport, glycolysis, tricarboxylic acid cycle, pentose phosphate shunt, fatty-acid oxidation and gluconeogenesis, consistent with the findings of the in vivo surgery-mediated responses, indicating the powerful homeostatic activity of the miRNAs. Conclusions: The close association between energy metabolism, neuronal signaling and gut microbial metabolites derived from the circulating miRNA, plasma, urine and liver metabolite and gut hormone correlations further supports an enhanced gut-brain signaling, which we suggest is hormonally mediated by both traditional gut hormones and miRNAs. This transomic approach to map the crosstalk between the circulating miRNAome and metabolome offers opportunities to understand complex systems biology within a disease and interventional treatment setting. PMID:25783038

  9. Water cycle and its management for plant habitats at reduced pressures

    NASA Technical Reports Server (NTRS)

    Rygalov, Vadim Y.; Fowler, Philip A.; Wheeler, Raymond M.; Bucklin, Ray A.

    2004-01-01

    Experimental and mathematical models were developed for describing and testing temperature and humidity parameters for plant production in bioregenerative life support systems. A factor was included for analyzing systems operating at low (10-101.3 kPa) pressure to reduce gas leakage and structural mass (e.g., inflatable greenhouses for space application). The expected close relationship between temperature and relative humidity was observed, along with the importance of heat exchanger coil temperature and air circulation rate. The presence of plants in closed habitats results in increased water flux through the system. Changes in pressure affect gas diffusion rates and surface boundary layers, and change convective transfer capabilities and water evaporation rates. A consistent observation from studies with plants at reduced pressures is increased evapotranspiration rates, even at constant vapor pressure deficits. This suggests that plant water status is a critical factor for managing low-pressure production systems. The approach suggested should help space mission planners design artificial environments in closed habitats.

  10. Water cycle and its management for plant habitats at reduced pressures.

    PubMed

    Rygalov, Vadim Y; Fowler, Philip A; Wheeler, Raymond M; Bucklin, Ray A

    2004-01-01

    Experimental and mathematical models were developed for describing and testing temperature and humidity parameters for plant production in bioregenerative life support systems. A factor was included for analyzing systems operating at low (10-101.3 kPa) pressure to reduce gas leakage and structural mass (e.g., inflatable greenhouses for space application). The expected close relationship between temperature and relative humidity was observed, along with the importance of heat exchanger coil temperature and air circulation rate. The presence of plants in closed habitats results in increased water flux through the system. Changes in pressure affect gas diffusion rates and surface boundary layers, and change convective transfer capabilities and water evaporation rates. A consistent observation from studies with plants at reduced pressures is increased evapotranspiration rates, even at constant vapor pressure deficits. This suggests that plant water status is a critical factor for managing low-pressure production systems. The approach suggested should help space mission planners design artificial environments in closed habitats.

  11. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  12. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  13. Circulation system configuration characteristics of four rainfall patterns in summer over the East China

    NASA Astrophysics Data System (ADS)

    Zhao, Junhu; Yang, Liu; Feng, Guolin

    2018-02-01

    In this study, the simultaneous atmospheric circulation system configuration characteristics of the four rainfall patterns (FRP) over the East China during the period 1951-2015 are analyzed in order to investigate their formation mechanisms. The results confirm that the FRP possess obvious differences in the upper-level, middle-level, and lower-level troposphere. In northern China rainfall pattern (NCP) years, the East Asian subtropical westerly jet stream (EAJS) shows a northward trend, with a higher intensity than normal; the blocking high (BH) in the mid-high latitudes is inactive; and the western Pacific subtropical high (WPSH) tends to be stronger, with a location to the north of its normal position. The East Asian summer monsoon (EASM) is stronger, which promotes vapor transport to northern China, and this leads to increased rainfall. In intermediate rainfall pattern (IRP) years, the EAJS position is close to that in normal years; the BH is inactive; the WPSH tends to be weaker, with a location to the east of its normal position; and the EASM is stronger, which is conducive to increased rainfall over the Huaihe River Basin. In Yangtze River rainfall pattern (YRP) years, the circulations are found to be almost opposite in their features to those in NCP years. In South China rainfall pattern (SCP) years, the circulations are found to be almost opposite in their features to those in IRP years. This leads to increased rainfall over South China. Therefore, the different circulation system configuration characteristics lead to the different rainfall patterns.

  14. NORTH PORTAL-HOT WATER CIRCULATION PUMP CALCULATION-SHOP BUILDING #5006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Blackstone

    1996-01-25

    The purpose of this design analysis and calculation is to size a circulating pump for the service hot water system in the Shop Building 5006, in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2). The method used for the calculation is based on Reference 5.2. This consists of determining the total heat transfer from the service hot water system piping to the surrounding environment. The heat transfer is then used to define the total pumping capacity based on a given temperature change in the circulating hot water as it flows throughmore » the closed loop piping system. The total pumping capacity is used to select a pump model from manufacturer's literature. This established the head generation for that capacity and particular pump model. The total length of all hot water supply and return piping including fittings is then estimated from the plumbing drawings which defines the pipe friction losses that must fit within the available pump head. Several iterations may be required before a pump can be selected that satisfies the head-capacity requirements.« less

  15. A climatological study of the duration of Northern Hemisphere Cut-off low systems

    NASA Astrophysics Data System (ADS)

    Nieto, R.; Gimeno, L.; de La Torre, L.; Tesouro, M.; Añel, J. A.; Ribera, P.

    2003-04-01

    Cut-off low-pressure systems-COLS- are usually closed circulations at middle and upper troposphere developed from a deep trough in the westerlies. The importance of their study is due to both the convective severe events that can occur if they are over warm ocean and because they are important mechanisms of Stratosphere-troposphere exchange- STE-. A COL system would last about a couple of days before being destroyed by diabatic heating if there were not injection of new air into the COL with high potential vorticity. In the practice their duration range from 1 day to 17 days. There are previous climatological studies about the duration of COLs, but limited to five years. In this work we extended the study to a period of 41-year period (1958 to 1998). The identification of COLs were done using an approach based in imposing the three main physical characteristics of the conceptual model of COL (a. closed circulation and minimum of geopotential, minimum of equivalent thickness, and two baroclinic zones, one in front of the low and the other behind the low). Data from NCAR-NCEP reanalysis were used. Results confirmed previous studies that most of COL systems have a short time of life. The majority of COLs lasted 2-3 days and very few lasted more than 10 days.

  16. Slow and Steady: Ocean Circulation. The Influence of Sea Surface Height on Ocean Currents

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa

    2000-01-01

    The study of ocean circulation is vital to understanding how our climate works. The movement of the ocean is closely linked to the progression of atmospheric motion. Winds close to sea level add momentum to ocean surface currents. At the same time, heat that is stored and transported by the ocean warms the atmosphere above and alters air pressure distribution. Therefore, any attempt to model climate variation accurately must include reliable calculations of ocean circulation. Unlike movement of the atmosphere, movement of the ocean's waters takes place mostly near the surface. The major patterns of surface circulation form gigantic circular cells known as gyres. They are categorized according to their general location-equatorial, subtropical, subpolar, and polar-and may run across an entire ocean. The smaller-scale cell of ocean circulation is known' as an eddy. Eddies are much more common than gyres and much more difficult to track in computer simulations of ocean currents.

  17. Effects of Drake Passage on the Ocean's Thermal and Mechanical Energy Budget in a Coupled AOGCM

    NASA Astrophysics Data System (ADS)

    von der Heydt, A. S.; Viebahn, J. P.

    2016-12-01

    During the Cenozoic Earth's climate has undergone a major long-term transition from `greenhouse' to `icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The gradual cooling may be seen as response to the overall slowly decreasing atmospheric CO2-concentration due to weathering processes in the Earth System, however, continental geometry has changed considerably over this period and the long-term gradual trend was interrupted, by several rapid transitions and periods where temperature and greenhouse gas concentrations seem to be decoupled. The Eocene-Oligocene boundary ( 34 Ma, E/O) and mid-Miocene climatic transition ( 13 Ma, MCT) reflect major phases of Antarctic ice sheet build-up and global climate cooling, while Northern Hemisphere ice sheets developed much later ( 2.7Ma). Thresholds in atmospheric CO2-concentration together with feedback mechanisms related to land ice formation are among the favoured mechanisms of these climatic transitions, while the long-proposed ocean circulation changes caused by opening of tectonic gateways seem to play a less direct role. The opening of the Southern Ocean gateways, however, has eventually led to the development of today's strongest ocean current, the Antarctic Circumpolar Current, playing a major role in the transport properties of the global ocean circulation. The overall state of the global ocean circulation, therefore, must precondition the climate system to dramatic events such as major ice sheet formation. Closing Drake Passage in ocean-only and coupled climate models under otherwise present-day boundary conditions has become a classic experiment, indicating that there exists a considerable uncertainty in the climate response of those models to a closed Drake Passage. Here we quantify the climate response to a closed Drake Passage in a state-of-the-art coupled climate model (CESM). We show that the ocean gateway mechanism is robust in the sense that the equatorward expansion of the Southern Ocean sub-polar gyres inevitably leads to widespread warming around Antarctica. Moreover, we provide a framework to characterise the ocean temperature response to a closed Drake Passage in terms of both the mechanical and thermal energy budget of the ocean.

  18. State University of New York at Stony Brook Main Library Circulation Department Procedures Manual.

    ERIC Educational Resources Information Center

    Kendrick, Curtis L., Comp.; Lange, Robert, Comp.

    Designed to train student circulation desk workers at the State University of New York at Stony Brook's Main Library, this guide details specific procedures and outlines administrative policies. Topics covered include: (1) what circulation is; (2) what is expected of graduate students; (3) the library's opening and closing procedures; (4) who may…

  19. Navy Tactical Applications Guide, Volume 8 Part 2: Arctic - East Siberian/Chukchi/Beaufort Seas. Weather Analysis and Forecast Applications

    DTIC Science & Technology

    1992-12-01

    storm. The southernmost vortex does not appear as a closed circulation in the surface analysis (Fig. lA-9b) whereas the central Alaskan vortex seems...rise to an enhanced cloud trail. lA-40 FNOC surface analysis . 27 January 1989, 0600 GMT. lA-40 / /■■■■ / / ’’ / I ’:/, d m ,MeSOSCALE VORTEX AND...emphasized to clarify that this is a different system than the cloud vortex we have been describing, yet is close to the same area. A careful assessment of

  20. Ockham's Razorblade Shaving Wind-Induced Circulation

    NASA Astrophysics Data System (ADS)

    Bergmann, Juan Carlos

    2010-05-01

    Terrestrial physical oceanography is fortunate because of the existence of the continents that divide the low-latitude oceans into basins. At first glance, the previous statement appears to be not obvious because an ocean-planet should be much simpler to describe. Simple-case explanation is the central aspect of Ockham's Razorblade: If a theory fails to describe the most-simple case properly, the theory is, at least, ‘not good'. Also Descartes' methodical rules take the most-simple case as starting point. The analysis of wind-induced circulation on an ocean-planet will support the initial statement. Earth's south hemisphere is dominated by the oceans. The continents' influence on the zonal-average zonal-wind climate is relatively small. Therefore, South Hemisphere's zonal wind pattern is a relatively good proxy for that of an ocean planet. Application of this wind-stress pattern to an ocean planet yields reasonable meridional mass-flow results from the polar-regions down to the high-pressure belts: Down-welling and up-welling of water-mass are approximately balanced. However, the entire tropical circulation can in principle not be closed because there is only down-welling - even if the extreme down-welling in the equatorial belt (± 8°, with a singularity at the equator) is disregarded. The only input to the calculations is the observed terrestrial south-hemisphere zonal wind-stress pattern. Meridional stress is irrelevant because it produces a closed zonal Ekman-transport around the ocean planet (sic!). Vertical mass-transport is calculated from the divergence of the wind-induced meridional Ekman-mass-transport, which in its turn is a necessary consequence of angular-momentum conservation. No assumptions are made on how the return-flows at depth are forced because the wind-force equations cannot contribute hereto. This circumstance expresses a fundamental difference to atmospheric circulation, where mechanical forcing is caused by the pressure-fields that result from differential heating/cooling and therefore ‘automatically' comprise the entire circulation system. Wind-caused oceanic flow is exclusively generated by frictional wind-forces at the surface, and other processes in the ocean are not causally connected hereto. In absence of continents it is quite difficult to ‘find' the corresponding forcing for the meridional return-flows - and it can definitely not be wind-force-caused - very strange! The fact that the wind-induced circulation can only be closed by the action of other processes, which are not causally connected to wind-forces, demonstrates that something must be fundamentally wrong. The singularity at the equator and the extreme down-welling in the equatorial belt indicate an additional severe problem that can only be avoided if zonal wind-stress is completely excluded. Escape to additional assumptions is similar to the introduction of the epicycles in order to explain the planets' retrograde motion in maintaining geocentric cosmology. Should the previous analysis be ignored in favour of maintaining the ‘established' ideas of wind-induced circulation or should there be an effort to formulate new ideas that provide closed and balanced circulation without employing other processes than wind-forces?

  1. FLUID MODERATED REACTOR

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1957-10-22

    A reactor which utilizes fissionable fuel elements in rod form immersed in a moderator or heavy water and a means of circulating the heavy water so that it may also function as a coolant to remove the heat generated by the fission of the fuel are described. In this design, the clad fuel elements are held in vertical tubes immersed in heavy water in a tank. The water is circulated in a closed system by entering near the tops of the tubes, passing downward through the tubes over the fuel elements and out into the tank, where it is drawn off at the bottom, passed through heat exchangers to give up its heat and then returned to the tops of the tubes for recirculation.

  2. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  3. Effect of weak rotation on large-scale circulation cessations in turbulent convection.

    PubMed

    Assaf, Michael; Angheluta, Luiza; Goldenfeld, Nigel

    2012-08-17

    We investigate the effect of weak rotation on the large-scale circulation (LSC) of turbulent Rayleigh-Bénard convection, using the theory for cessations in a low-dimensional stochastic model of the flow previously studied. We determine the cessation frequency of the LSC as a function of rotation, and calculate the statistics of the amplitude and azimuthal velocity fluctuations of the LSC as a function of the rotation rate for different Rayleigh numbers. Furthermore, we show that the tails of the reorientation PDF remain unchanged for rotating systems, while the distribution of the LSC amplitude and correspondingly the cessation frequency are strongly affected by rotation. Our results are in close agreement with experimental observations.

  4. Nuclear Aircraft Feasibility Study. Volume 1

    DTIC Science & Technology

    1975-03-01

    Cycle 6-36 6.2.2 Helium Mass Flow 6-42 6.2.3 Fan Pressure Ratio 6-42 6.2.4 Regenerative Cycle Application 6-43 6.2.5 Brayton Cycle...6-8 Engine Systems Summary 6-9 T-S Diagram of Ideal Brayton Cycle 6-13 T-S Diagram of Brayton Cycle for Turbofan Engine 6-15 Comparison of... Brayton Closed Cycle Thermodynamic Analysis 6-50 6.2.8-1 Indirect Cycle Gas Circulation System 6-53 6.2.8-2 Gas Turbine Generator — Pump Cycle

  5. Three-dimensional circulation structures leading to heavy summer rainfall over central North China

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Yu, Rucong; Li, Jian; Yuan, Weihua

    2016-04-01

    Using daily and hourly rain gauge records and Japanese 25 year reanalysis data over 30 years, this work reveals two major circulation structures leading to heavy summer rainfall events in central North China (CNC), and further analyzes the effects of the circulations on these rainfall events. One circulation structure has an extensive upper tropospheric warm anomaly (UTWA) covering North China (NC). By strengthening the upper anticyclonic anomaly and lower southerly flows around NC, the UTWA plays a positive role in forming upper level divergence and lower level moisture convergence. As a result, the warm anomalous circulation has a solid relationship with large-scale, long-duration rainfall events with a diurnal peak around midnight to early morning. The other circulation structure has an upper tropospheric cold anomaly (UTCA) located in the upper stream of NC. Contributed to by the UTCA, a cold trough appears in the upper stream of NC and an unstable configuration with upper (lower) cold (warm) anomalies forms around CNC. Consequently, CNC is covered by strong instability and high convective energy, and the cold anomalous circulation is closely connected with local, short-duration rainfall events concentrated from late afternoon to early nighttime. The close connections between circulation structures and typical rainfall events are confirmed by two independent converse analysis processes: from circulations to rainfall characteristics, and from typical rainfall events to circulations. The results presented in this work indicate that the upper tropospheric temperature has significant influences on heavy rainfall, and thus more attention should be paid to the upper tropospheric temperature in future analyses.

  6. Development and analysis of closed cycle circulator elements. Final report 31 Jul 978-31 May 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, C.C.; Karr, G.R.; Perkins, J.F.

    1980-05-01

    A series of experiments with various flow rates of laser gas and coolants under several levels of energy inputs has been conducted on the Army Closed Cycle Circulator for pulsed EDL to collect sufficient data for flow calibration and coefficient determination. Verification of the theoretical models depicting the functions of the heat exchangers in maintaining the thermal balance in the flow through the steady and transient states are made through comparison with results of the experimental analysis.

  7. An extra-uterine system to physiologically support the extreme premature lamb

    PubMed Central

    Partridge, Emily A.; Davey, Marcus G.; Hornick, Matthew A.; McGovern, Patrick E.; Mejaddam, Ali Y.; Vrecenak, Jesse D.; Mesas-Burgos, Carmen; Olive, Aliza; Caskey, Robert C.; Weiland, Theodore R.; Han, Jiancheng; Schupper, Alexander J.; Connelly, James T.; Dysart, Kevin C.; Rychik, Jack; Hedrick, Holly L.; Peranteau, William H.; Flake, Alan W.

    2017-01-01

    In the developed world, extreme prematurity is the leading cause of neonatal mortality and morbidity due to a combination of organ immaturity and iatrogenic injury. Until now, efforts to extend gestation using extracorporeal systems have achieved limited success. Here we report the development of a system that incorporates a pumpless oxygenator circuit connected to the fetus of a lamb via an umbilical cord interface that is maintained within a closed ‘amniotic fluid' circuit that closely reproduces the environment of the womb. We show that fetal lambs that are developmentally equivalent to the extreme premature human infant can be physiologically supported in this extra-uterine device for up to 4 weeks. Lambs on support maintain stable haemodynamics, have normal blood gas and oxygenation parameters and maintain patency of the fetal circulation. With appropriate nutritional support, lambs on the system demonstrate normal somatic growth, lung maturation and brain growth and myelination. PMID:28440792

  8. An extra-uterine system to physiologically support the extreme premature lamb

    NASA Astrophysics Data System (ADS)

    Partridge, Emily A.; Davey, Marcus G.; Hornick, Matthew A.; McGovern, Patrick E.; Mejaddam, Ali Y.; Vrecenak, Jesse D.; Mesas-Burgos, Carmen; Olive, Aliza; Caskey, Robert C.; Weiland, Theodore R.; Han, Jiancheng; Schupper, Alexander J.; Connelly, James T.; Dysart, Kevin C.; Rychik, Jack; Hedrick, Holly L.; Peranteau, William H.; Flake, Alan W.

    2017-04-01

    In the developed world, extreme prematurity is the leading cause of neonatal mortality and morbidity due to a combination of organ immaturity and iatrogenic injury. Until now, efforts to extend gestation using extracorporeal systems have achieved limited success. Here we report the development of a system that incorporates a pumpless oxygenator circuit connected to the fetus of a lamb via an umbilical cord interface that is maintained within a closed `amniotic fluid' circuit that closely reproduces the environment of the womb. We show that fetal lambs that are developmentally equivalent to the extreme premature human infant can be physiologically supported in this extra-uterine device for up to 4 weeks. Lambs on support maintain stable haemodynamics, have normal blood gas and oxygenation parameters and maintain patency of the fetal circulation. With appropriate nutritional support, lambs on the system demonstrate normal somatic growth, lung maturation and brain growth and myelination.

  9. Ecological Challenges for Closed Systems

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Dempster, William; Allen, John P.

    2012-07-01

    Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, the sustaining of healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and measures and options which may be necessary to ensure long-term operation of closed ecological systems.

  10. Key ecological challenges for closed systems facilities

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Dempster, William F.; Allen, John P.

    2013-07-01

    Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet, recycling nutrients and maintaining soil fertility, the maintenance of healthy air and water and preventing the loss of critical elements from active circulation. In biospheric facilities, the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and backup technologies and strategic options which may be necessary to ensure long-term operation of closed ecological systems.

  11. Effect of the sinus of valsalva on the closing motion of bileaflet prosthetic heart valves.

    PubMed

    Ohta, Y; Kikuta, Y; Shimooka, T; Mitamura, Y; Yuhta, T; Dohi, T

    2000-04-01

    Conventional bileaflet prosthetic mechanical heart valves close passively with backflow. Naturally, the valve has problems associated with closure, such as backflow, water hammer effect, and fracture of the leaflet. On the other hand, in the case of the natural aortic valve, the vortex flow in the sinus of Valsalva pushes the leaflet to close, and the valve starts the closing motion earlier than the prosthetic valve as the forward flow decelerates. This closing mechanism is thought to decrease backflow at valve closure. In this study, we propose a new bileaflet mechanical valve resembling a drawbridge in shape, and the prototype valve was designed so that the leaflet closes with the help of the vortex flow in the sinus. The test valve was made of aluminum alloy, and its closing motion was compared to that of the CarboMedics (CM) valve. Both valves were driven by a computer controlled hydraulic mock circulator and were photographed at 648 frames/s by a high speed charge-coupled device (CCD) camera. Each frame of the valve motion image was analyzed with a personal computer, and the opening angles were measured. The flow rate was set as 5.0 L/min. The system was pulsed with 70 bpm, and the systolic/diastolic ratio was 0.3. Glycerin water was used as the circulation fluid at room temperature, and polystyrene particles were used to visualize the streamline. The model of the sinus of Valsalva was made of transparent silicone rubber. As a result, high speed video analysis showed that the test valve started the closing motion 41 ms earlier than the CM valve, and streamline analysis showed that the test valve had a closing mechanism similar to the natural one with the effect of vortex flow. The structure of the test valve was thought to be effective for soft closure and could solve problems associated with closure.

  12. Scholars and scientists in the history of the lymphatic system.

    PubMed

    Natale, Gianfranco; Bocci, Guido; Ribatti, Domenico

    2017-09-01

    The discovery of the lymphatic system has a long and fascinating history. The interest in anatomy and physiology of this system paralleled that of the blood cardiocirculatory system and has been maybe obscured by the latter. Paradoxically, if the closed blood system appeared open in Galen's anatomy and physiology, and took a very long time to be correctly described in terms of pulmonary and general circulation by ibn Al-Nafis/Michael Servetus/Realdo Colombo and William Harvey, respectively, the open lymphatic system was incorrectly described as a closed circuit connected with arteries and veins. In ancient times only macroscopic components of the lymphatic system have been described, although misinterpreted, including lymph nodes and lacteals, the latter being easily identified because of their milk-like content. For about 15 centuries the dogmatic acceptance of Galen's notions did not allow a significant progress in medicine. After Vesalius' revolution in anatomical studies, new knowledge was accumulated, and the 17th century was the golden age for the investigation of the lymphatic system with several discoveries: gut lacteals (Gaspare Aselli), cloacal bursa (Hieronimus Fabricius of Acquapendente), reservoir of the chyle (Jean Pecquet), extra-intestinal lymphatic vessels (Thomas Bartholin and Olaus Rudbeck dispute), hepatic lymph circulation (Francis Glisson). In the Enlightenment century Frederik Ruysch described the function of lymphatic valves, and Paolo Mascagni provided a magnificent iconography of the lymphatic network in humans. In recent times, Leonetto Comparini realized three-dimensional reconstructions of the liver lymphatic vessels, and Kari Alitalo discovered the lymphatic growth factor/receptor system. Far from a complete understanding of its anatomy and function, the lymphatic system still needs to be profoundly examined. © 2017 Anatomical Society.

  13. Relationship between Hydrodynamic Conditions and Water Quality in Landscape Water Body

    NASA Astrophysics Data System (ADS)

    Kang, Mengxin; Tian, Yimei; Zhang, Haiya; Wang, Dehong

    2018-01-01

    The urban landscape water usually lacks necessary water cycle and water speed is closed to zero, which easily lead to eutrophication in water system and deterioration of water quality. Therefore, understanding the impact of water circulation on the water quality is of great significance. With that significance, this research has been done to investigate the relationship between hydrodynamic conditions and water quality of urban landscape water based on adopted water quality indexes such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and nitrogen-ammonia (NH3-N). Moreover, MIKE 21 model is used to simulate the hydrodynamics and water quality under different cases in an urban landscape lake. The results of simulation show that water circulation system could effectively improve current speeds, reduce the proportion of stagnation area, and solve the problem of water quality deterioration caused by reclaimed water in the lake.

  14. Closed recirculating system for shrimp-mollusk polyculture

    NASA Astrophysics Data System (ADS)

    Wu, Xiongfei; Zhao, Zhidong; Li, Deshang; Chang, Kangmei; Tong, Zhuanshang; Si, Liegang; Xu, Kaichong; Ge, Bailin

    2005-12-01

    This paper deals with a new system of aquaculture, i.e., a closed recirculating system for shrimp-mollusk polyculture. The culture system consisted of several shrimp ponds, a mollusk water-purifying pond and a reservoir. During the production cycle, water circulated between the shrimp and mollusk ponds, and the reservoir compensated for water loss from seepage and evaporation. Constricted tagelus, Sinonovacula constricta, was selected as the cultured mollusk, and Pacific white shrimp, Litopenaeus vannamei, as the cultured shrimp. The main managing measures during the production cycle were: setting and using the aerators; introducting the probiotic products timely into the shrimp ponds; adopting a “pen-closing” method for controlling shrimp viral epidemics; setting the flow diversion barriers in the mollusk pond to keep the circulating water flowing through the pond along a sine-like curve and serve as substrate for biofilm; no direct feeding was necessary for the cultured mollusk until the co-cultured shrimp was harvested; natural foods in the water from the shrimp ponds was used for their foods. Two sets of the system were used in the experiment in 2002 and satisfactory results were achieved. The average yield of the shrimp was 11 943.5 kg/hm2, and that of the mollusk was 16 965 kg/hm2. After converting the mollusk yield into shrimp yield at their market price ratio, the food coefficient of the entire system averaged at as low as 0.81. The water quality in the ponds was maintained at a desirable level and no viral epidemics were discovered during the production cycle.

  15. Hot spot detection system for vanes or blades of a combustion turbine

    DOEpatents

    Twerdochlib, Michael

    1999-01-01

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature.

  16. Performance of the dark energy camera liquid nitrogen cooling system

    NASA Astrophysics Data System (ADS)

    Cease, H.; Alvarez, M.; Alvarez, R.; Bonati, M.; Derylo, G.; Estrada, J.; Flaugher, B.; Flores, R.; Lathrop, A.; Munoz, F.; Schmidt, R.; Schmitt, R. L.; Schultz, K.; Kuhlmann, S.; Zhao, A.

    2014-01-01

    The Dark Energy Camera, the Imager and its cooling system was installed onto the Blanco 4m telescope at the Cerro Tololo Inter-American Observatory in Chile in September 2012. The imager cooling system is a LN2 two-phase closed loop cryogenic cooling system. The cryogenic circulation processing is located off the telescope. Liquid nitrogen vacuum jacketed transfer lines are run up the outside of the telescope truss tubes to the imager inside the prime focus cage. The design of the cooling system along with commissioning experiences and initial cooling system performance is described. The LN2 cooling system with the DES imager was initially operated at Fermilab for testing, then shipped and tested in the Blanco Coudé room. Now the imager is operating inside the prime focus cage. It is shown that the cooling performance sufficiently cools the imager in a closed loop mode, which can operate for extended time periods without maintenance or LN2 fills.

  17. On the possibility of connecting a non-operating main circulation pump with three pumps in operation without preliminary coast-down of power-generating unit No. 5 in the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Vitkovskii, I. L.; Nikonov, S. P.; Ryasnyi, S. I.

    2014-02-01

    The subject of this paper is a transient caused by connection of a standby loop to three operating circulation pumps at the initial reactor heat rate equal to 70% of the rated value without preliminarily reducing it to 30% of the rated level as required by the safe operation regulations. Failure of the following normal operation systems is supposed: the first- and the second-type warning protection systems, all quick-acting reducing devices releasing steam into the auxiliary manifold, the electric heaters of the pressurizer, the pressurizer injection system, the primary cooling circuit fluid makeup/blow-through systems, and the blocking systems to shut down the main circulation pump after the level in the steam generator is exceeded. In addition, it is supposed that, under transient conditions, the valves of the turbine regulation system will be in the position in which they were at the moment of the initial event until generation of the signal for positive closing of the turbine stop valves. The first signal to actuate the reactor emergency protection system (EPS) is skipped. The failure of all quick-acting reducing devices releasing steam into the atmosphere is assumed. In addition to equipment failure, at the moment when the main circulation pump is connected, the operator erroneously puts in a new setting to maintain the power allowable for four pumps in operation-in the calculations it was taken equal to 104% of the rated level at most considering the accuracy of evaluating and maintaining the reactor heat rate-and the working group of the reactor protection and control system (P&CS) starts moving upward. On reaching the set power level, the automatic reactor power regulator stops operating and the P&CS elements remain in the position in which they are at the moment. Compliance with the design safety criteria for the adopted scenario of the transient is demonstrated.

  18. Genome Sequences of Human Adenovirus 14 Isolates from Mild Respiratory Cases and a Fatal Pneumonia, Isolated during 2006-2007 Epidemics in North America

    DTIC Science & Technology

    2010-01-01

    We also compare the genome sequences of the recent isolates with those of the prototype HAdV-14 that circulated in Eurasia 30 years ago and the...closely related sequence of HAdV-11a, which has been circulating in southeast Asia. Conclusions: The data suggest that the currently circulating strain of...both mild and severe outbreaks. We also compare the genome sequences of the recent isolates with those of the prototype HAdV-14 that circulated in

  19. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  20. Modular minimally invasive extracorporeal circulation systems; can they become the standard practice for performing cardiac surgery?

    PubMed

    Anastasiadis, K; Antonitsis, P; Argiriadou, H; Deliopoulos, A; Grosomanidis, V; Tossios, P

    2015-04-01

    Minimally invasive extracorporeal circulation (MiECC) has been developed in an attempt to integrate all advances in cardiopulmonary bypass technology in one closed circuit that shows improved biocompatibility and minimizes the systemic detrimental effects of CPB. Despite well-evidenced clinical advantages, penetration of MiECC technology into clinical practice is hampered by concerns raised by perfusionists and surgeons regarding air handling together with blood and volume management during CPB. We designed a modular MiECC circuit, bearing an accessory circuit for immediate transition to an open system that can be used in every adult cardiac surgical procedure, offering enhanced safety features. We challenged this modular circuit in a series of 50 consecutive patients. Our results showed that the modular AHEPA circuit design offers 100% technical success rate in a cohort of random, high-risk patients who underwent complex procedures, including reoperation and valve and aortic surgery, together with emergency cases. This pilot study applies to the real world and prompts for further evaluation of modular MiECC systems through multicentre trials. © The Author(s) 2015.

  1. Engineering Challenges for Closed Ecological System facilities

    NASA Astrophysics Data System (ADS)

    Dempster, William; Nelson, Mark; Allen, John P.

    2012-07-01

    Engineering challenges for closed ecological systems include methods of achieving closure for structures of different materials, and developing methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is developing means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differentials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.

  2. Surface circulation in the Strait of Gibraltar: a comparison study between HF radar and high resolution model data.

    NASA Astrophysics Data System (ADS)

    Soto-Navarro, Javier; Lorente, Pablo; Álvarez-Fanjul, Enrique; Ruiz-Gil de la Serna, M. Isabel

    2015-04-01

    Surface currents from the HF radar system deployed by Puertos del Estado (PdE) at the Strait of Gibraltar and an operational high resolution configuration of the MIT global circulation model, implemented in the strait area in the frame of the SAMPA project, have been analyzed and compared in the period February 2013 - September 2014. The comparison have been carried out in the time and frequency domains, by statistical a geophysical (tide ellipses, wind forcing, EOF) methods. Results show good agreement between both current fields in the strait axis, with correlation around 0.6 (reaching 0.9 in the low frequency band). Higher discrepancies are found in the boundaries of the domain, due to the differences in the meridional components, likely related to the sparser and less accurate radar measurements in these areas. Rotary spectral analysis show a very good agreement between both systems, which is reflected in a very similar and realistic representation of the main tide constituents (M2, S2 and K1). The wind forced circulation pattern, of special interest in the mouth of the Bay of Algeciras, is also precisely represented by radar and model. Finally, the spatial patterns of the first four EOF modes of both fields are rather close, reinforcing the previous results. As conclusion, the analysis points out the proper representation of the surface circulation of the area performed by the PdE HF radar system and the SAMPA model. However, weak and strong points are found in both, stressing the importance of having two complementary tools in the area.

  3. Heat flow evidence for hydrothermal circulation in the volcanic basement of subducting plates

    NASA Astrophysics Data System (ADS)

    Harris, R. N.; Spinelli, G. A.; Fisher, A. T.

    2017-12-01

    We summarize and interpret evidence for hydrothermal circulation in subducting oceanic basement from the Nankai, Costa Rica, south central Chile, Haida Gwaii, and Cascadia margins and explore the influence of hydrothermal circulation on plate boundary temperatures in these settings. Heat flow evidence for hydrothermal circulation in the volcanic basement of incoming plates includes: (a) values that are well below conductive (lithospheric) predictions due to advective heat loss, and (b) variability about conductive predictions that cannot be explained by variations in seafloor relief or thermal conductivity. We construct thermal models of these systems that include an aquifer in the upper oceanic crust that enhances heat transport via a high Nusselt number proxy for hydrothermal circulation. At the subduction zones examined, patterns of seafloor heat flow are not well fit by purely conductive simulations, and are better explained by simulations that include the influence of hydrothermal circulation. This result is consistent with the young basement ages (8-35 Ma) of the incoming igneous crust at these sites as well as results from global heat flow analyses showing a significant conductive heat flow deficit for crustal ages less than 65 Ma. Hydrothermal circulation within subducting oceanic basement can have a profound influence on temperatures close to the plate boundary and, in general, leads to plate boundary temperatures that are cooler than those where fluid flow does not occur. The magnitude of cooling depends on the permeability structure of the incoming plate and the evolution of permeability with depth and time. Resolving complex relationships between subduction processes, the permeability structure in the ocean crust, and the dynamics of hydrothermal circulation remains an interdisciplinary frontier.

  4. High-temperature hydrothermal circulation in the lower oceanic crust at fast spreading ridges: Reconciling geophysical and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Wilcock, W.

    2003-04-01

    Hydrothermal circulation is the dominant mechanism for cooling young oceanic crust and knowledge of its depth, extent and timing is critical for our understanding of crustal accretion. At fast-spreading ridges there is considerable controversy regarding the importance of this process in the lower crust. Geochemical data indicate that high-temperature hydrothermal fluids react with the lower crust but they also suggest that the reactions are limited to a narrow temperature interval and involve relatively small volumes of fluid. As a result many geochemical studies conclude that high-temperature hydrothermal circulation plays a relatively small role in heat transport in the lower crust and occurs in a closed system that is isolated from upper crustal hydrothermal cells. In contrast, seismic observations on the fast spreading East Pacific Rise show that the mid-crustal axial magma chamber is underlain by a low velocity zone which is no more than 5-8 km wide throughout the lower crust and is interpreted as a region of elevated temperatures containing relatively low average melt fractions. Irrespective of the style of lower crustal accretion, simple physical considerations suggest that this structure is only thermally feasible if the lower crust cools by extensive hydrothermal circulation. Modeling studies indicate that this requires the permeability of the lower crust to temporarily reach at least ~10-13 m2. In order to reconcile the geochemical and geophysical data it is important to recognize that the thermal constraints do not require pervasive seawater circulation in the lower crust and can be satisfied by focused flow through narrow permeable zones spaced as far as about 1 km apart. Widely spaced regions of flow might be difficult to find in the field especially if the sampling strategies focus on the freshest outcrops. There is a tendency to overestimate the volume of fluid that must circulate through an open single-pass system. The fluid-rock ratios (0.2 - 1) inferred from oxygen isotope studies are often cited as evidence of limited circulation but when interpreted physically they are actually sufficient to transport a substantial proportion of the heat required to solidify and cool the lower crust. Nevertheless the geophysical constraints are also compatible with circulation in a two-layer double diffusive system favored by many researchers, in which the lower crust is cooled by a recirculating brine cell.

  5. Numerical Modeling of a Shallow Borehole Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Catolico, N.; Ge, S.; Lu, N.; McCartney, J. S.

    2014-12-01

    Borehole thermal energy storage (BTES) combined with solar thermal energy harvesting is an economic technological system to garner and store energy as well as an environmentally-sustainable alternative for the heating of buildings. The first community-scale BTES system in North America was installed in 2007 in the Drake Landing Solar Community (DLSC), about 35 miles south of Calgary, Canada. The BTES system involves direct circulation of water heated from solar thermal panels in the summer into a storage tank, after which it is circulate within an array of 144 closed-loop geothermal heat exchangers having a depth of 35 m and a spacing of 2.5 m. In the winter the circulation direction is reversed to supply heat to houses. Data collection over a six year period indicates that this system can supply more than 90% of the winter heating energy needs for 52 houses in the community. One major challenge facing the BTES system technology is the relatively low annual efficiency, i.e., the ratio of energy input and output is in the range of 15% to 40% for the system in Drake Landing. To better understand the working principles of BTES and to improve BTES performance for future applications at larger scales, a three-dimensional transient coupled fluid and heat transfer model is established using TOUGH2. The time-dependent injection temperatures and circulation rate measured over the six years of monitoring are used as model input. The simulations are calibrated using soil temperature data measured at different locations over time. The time-dependent temperature distributions within the borehole region agree well with the measured temperatures for soil with an intrinsic permeability of 10e-19 m2, an apparent thermal conductivity of 2.03 W/m°C, and a volumetric heat capacity of 2.31 MJ/m-3°C. The calibrated model serves as the basis for a sensitivity analysis of soil and operational parameters on BTES system efficiency preformed with TOUGH2. Preliminary results suggest 1) BTES efficiency increases with increased in-pipe circulation rates; 2) BTES efficiency increases with decreasing soil thermal conductivity due to lateral heat loss from the system; and 3) BTES efficiency increases only slightly with decreasing soil permeability.

  6. A climatological study of the associated weather events to Cut-off low systems in the Southwestern Europe and Northern Africa

    NASA Astrophysics Data System (ADS)

    Nieto, R.; Gimeno, L.; de La Torre, L.; Tesouro, M.; Añel, J.; Ribera, P.

    2003-04-01

    Cut-off low-pressure systems-COLS- are usually closed circulations at middle and upper troposphere developed from a deep trough in the westerlies. As general rule troposphere below COLs is unstable and convective severe events can occur as a function of the surface conditions. COLs can bring moderate to heavy rainfall over large areas. In particular they are among the most important weather systems that affect Southern Europe and Northern Africa and responsible for some of the most catastrophic weather events in terms of precipitation rate. In this study we identify COLs systems in Southwestern Europe and Northern Africa for a 41-year period (1958 to 1998) using an approach based in imposing the three main physical characteristics of the conceptual model of COL (a. closed circulation and minimum of geopotential, minimum of equivalent thickness, and two two baroclinic zones, one in front of the low and the other behind the low). Data from NCAR-NCEP reanalysis were used. The objective was to check the expected weather events according to the conceptual model of COL in an area where precipitation due to COL is relevant. In general terms results confirm expected weather events: a frontal cloud band on the leading edge of an upper level low that is usually thick enough to produce precipitation. Over cold surface there is no convection, and therefore no showers occur. Over Sea, moderate to heavy showery precipitation is frequent. The heaviest precipitation occur when convective cells are observed in the centre and over warm ocean, fall flash flood is frequent.

  7. Hot spot detection system for vanes or blades of a combustion turbine

    DOEpatents

    Twerdochlib, M.

    1999-02-02

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature. 5 figs.

  8. Assessment of Radiation Risk by Circulating microRNAs

    NASA Astrophysics Data System (ADS)

    Wang, Jufang

    2016-07-01

    Highly energized particles delivered by galactic cosmic rays as well as solar particle events are one of the most severe detrimental factors to the health of crews during long-term space missions. Researches related to the assessment of radiation risk have been carried out with ground-based accelerator facilities all around the world. Circulating microRNAs (miRNAs) in blood have the advantages of specificity and stability, which could be used as disease biomarkers and potential bio-dosimeters to monitor the radiation risk. Based on this backgroud, circulating miRNAs were isolated from blood after Kunming mice were whole-body exposed to 300MeV/u carbon ion beam which were generated by the Heavy Ion Research Facility in Lanzhou (HIRFL), and the levels of miRNA expression were detected by miRNA PCR array. It was found that more than one hundred of circulating miRNAs were responded to carbon ion irradiation. Among these radiosensitive miRNAs, most of them were closely associated with immune system and hematopoietic system. The miRNA levels changed more than 2-fold were further verified by qRT-PCR analysis following exposure to X rays and iron ion beam. Some miRNAs such as let-7a, miR-34a, miR-223 and miR-150 showed obvious radio-sensitivity and dose-dependent effect, demonstrating that they were potential biomarkers of radiation and could be used as ideal bio-dosimeters. Those findings indicate that with the properties of high radio-sensitivity and time-saving quantification method by standard PCR assay, circulating miRNAs may become potential biomarkers for radiation detection in space exploration.

  9. Genesis of Pre-Hurricane Felix (2007). Part I: The Role of the Easterly Wave Critical Layer

    DTIC Science & Technology

    2010-06-01

    the boundary layer does not overcome the positive entropy flux from the ocean surface. As suggested by Montgomery et al. (2006), cold pools of...Weather Research and Forecasting (WRF) model with a high-resolution nested grid configuration that permits the representation of cloud system processes...from the jet level to the top of the atmospheric boundary layer. The region of a quasi-closed Lagrangian circulation within the wave pouch provides a

  10. A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.

    PubMed

    Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A

    2005-11-01

    While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.

  11. Sex differences in athletic performance emerge coinciding with the onset of male puberty.

    PubMed

    Handelsman, David J

    2017-07-01

    Male performance in athletic events begins to exceed that of age-matched females during early adolescence, but the timing of this divergence relative to the onset of male puberty and the rise in circulating testosterone remains poorly defined. This study is a secondary quantitative analysis of four published sources which aimed to define the timing of the gender divergence in athletic performance and relating it to the rise in circulating testosterone due to male puberty. Four data sources reflecting elite swimming and running and jumping track and field events as well as hand-grip strength in nonathletes were analysed to define the age-specific gender differences through adolescence and their relationship to the rising circulating testosterone during male puberty. The onset and tempo of gender divergence were very similar for swimming, running and jumping events as well as the hand-grip strength in nonathletes, and all closely paralleled the rise in circulating testosterone in adolescent boys. The gender divergence in athletic performance begins at the age of 12-13 years and reaches adult plateau in the late teenage years with the timing and tempo closely parallel to the rise in circulating testosterone in boys during puberty. © 2017 John Wiley & Sons Ltd.

  12. Patent ductus arteriosus in a lamb: A case report

    PubMed Central

    Jafari Dehkordi, Afshin; Hoseini, Farzaneh

    2016-01-01

    Patent ductus arteriosus (PDA) is a persistent patency of a vessel normally present in the fetus that connects the pulmonary arterial system to the aorta. The ductus arteriosus fails to close at birth when breathing commences and placental blood circulation is removed. Closure of the ductus arteriosus arises in response to decline pulmonary vascular resistance and increased systemic vascular resistance. This report describes a case of PDA in a two-month-old male lamb with clinical signs of machinery murmur, tachycardia, increase respiratory rate, weakness and ill thrift. Echocardiographic examination and necropsy finding confirmed PDA. PMID:27226893

  13. The vascular morphology and in vivo muscle temperatures of thresher sharks (Alopiidae).

    PubMed

    Patterson, James C; Sepulveda, Chugey A; Bernal, Diego

    2011-11-01

    The thresher sharks comprise a single family (Alopiidae) of pelagic sharks most easily recognized by the elongate dorsal lobe of their caudal fin. Despite morphological similarities among the alopiids, the common thresher (Alopias vulpinus) is unique in that its red, aerobic myotomal muscle (RM) is medially positioned (i.e., closer to the vertebrae), its systemic blood is supplied through a lateral circulation which give rise to counter-current heat exchanging retia, and it is capable of regional RM endothermy. Despite this information, it remains unknown if the other two alopiid species (bigeye thresher, Alopias superciliosus and pelagic thresher, Alopias pelagicus) also possess some or all of the characteristics related to regional RM endothermy. Thus, this study aimed to 1) document the presence of vascular specializations necessary for heat retention and RM endothermy and 2) measure the in vivo muscle temperatures of all three alopiid species. Laboratory dissections of the thresher species showed that only A. vulpinus possesses the lateral branching of the dorsal aorta giving rise to a lateral subcutaneous circulation and retial system, and that RM temperatures are elevated relative to ambient temperature. By contrast, both A. pelagicus and A. superciliosus have a similar systemic blood circulation pathway, in which the dorsal aorta and postcardinal vein form the basis for the central circulation and in vivo RM temperature measurements closely matched those of the ambient temperature at which the sharks were captured. Collectively, the vascular anatomy and in vivo temperature data suggest that only one species of thresher shark (A. vulpinus) possesses the requisite vascular specializations (i.e., lateral subcutaneous vessels and retia mirabilia) that facilitate RM endothermy. Copyright © 2011 Wiley-Liss, Inc.

  14. Library Circulation Systems -- An Overview.

    ERIC Educational Resources Information Center

    Surace, Cecily J.

    The model circulation system outlined is an on-line real time system in which the circulation file is created from the shelf list and the terminal inquiry system includes the capability to query and browse through the bibliographic system and the circulation subsystem together to determine the availability for circulation of specific documents, or…

  15. Rice production with minimal irrigation and no nitrogen fertilizer by intensive use of treated municipal wastewater.

    PubMed

    Muramatsu, Ayumi; Watanabe, Toru; Sasaki, Atsushi; Ito, Hiroaki; Kajihara, Akihiko

    2014-01-01

    We designed a new cultivation system of rice with circulated irrigation to remove nitrogen from treated municipal wastewater effectively and assessed the possibility of nitrogen removal in the new system without any adverse effects on rice production through bench-scale experiments through two seasons. Overgrowth of the rice plant, which can lead to lodging and tasteless rice, was found in the first season probably because nitrogen supply based on standard practice in normal paddy fields was too much in the closed irrigation system. In the second season, therefore, the amount of treated wastewater initially applied to the system was reduced but this resulted in a considerably decreased yield. On the other hand, the taste of the rice was significantly improved. The two-season experiments revealed that the new system enabled rice production with minimal irrigation (approximately 50% on the yield base compared to normal paddy fields) and no nitrogen fertilizer. The system also achieved >95% removal of nitrogen from the treated wastewater used for circulated irrigation. The accumulation of harmful metals in the rice was not observed after one season of cultivation in the new system. The accumulation after cultivation using the same soil repeatedly for a longer time should be examined by further studies.

  16. Circulation system for flowing uranium hexafluoride cavity reactor experiments

    NASA Technical Reports Server (NTRS)

    Jaminet, J. F.; Kendall, J. S.

    1976-01-01

    Research related to determining the feasibility of producing continuous power from fissile fuel in the gaseous state is presented. The development of three laboratory-scale flow systems for handling gaseous UF6 at temperatures up to 500 K, pressure up to approximately 40 atm, and continuous flow rates up to approximately 50g/s is presented. A UF6 handling system fabricated for static critical tests currently being conducted is described. The system was designed to supply UF6 to a double-walled aluminum core canister assembly at temperatures between 300 K and 400 K and pressure up to 4 atm. A second UF6 handling system designed to provide a circulating flow of up to 50g/s of gaseous UF6 in a closed-loop through a double-walled aluminum core canister with controlled temperature and pressure is described. Data from flow tests using UF6 and UF6/He mixtures with this system at flow rates up to approximately 12g/s and pressure up to 4 atm are presented. A third UF6 handling system fabricated to provide a continuous flow of UF6 at flow rates up to 5g/s and at pressures up to 40 atm for use in rf-heated, uranium plasma confinement experiments is described.

  17. Effect of gravity waves on the North Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Eden, Carsten

    2017-04-01

    The recently proposed IDEMIX (Internal wave Dissipation, Energy and MIXing) parameterisation for the effect of gravity waves offers the possibility to construct consistent ocean models with a closed energy cycle. This means that the energy available for interior mixing in the ocean is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. A central difficulty is the unknown fate of meso-scale eddy energy. In different scenarios for that eddy dissipation, the parameterized internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. The impact of the different mixing on the meridional overturning in the North Atlantic is discussed and compared to hydrographic observations. Furthermore, the direct energy exchange of the wave field with the geostrophic flow is parameterized in extended IDEMIX versions and the sensitivity of the North Atlantic circulation by this gravity wave drag is discussed.

  18. Mid-Term Progress Report on the Development of Army Closed Cycle Circulator (CCC) System.

    DTIC Science & Technology

    1979-09-20

    installation of the rotor assembly. The compressor shaft is sealed with a Crane Type 28 Kinetic Wedge gas seal for positive static sealing. A unitized...Pressure ratio 1.91 Horsepower 134 R (Molecular weight 18.67) 82.76 The compressor is fitted with a Crane Packing Company Type 28 gas seal. This seal...simply reading a digital voltmeter which is hooked up to the anemometer. The only preparation that the anemometer requires is that the operating

  19. Production and Field Planting of Vegetative Propagules for Restoration of Redhead Grass and Sago Pondweed in Chesapeake Bay

    DTIC Science & Technology

    2009-08-01

    submerged aquatic vegetation (SAV) have been lost from shallow waters of Chesapeake Bay (Orth and Moore 1983) and other coastal ecosystems worldwide...a mixture of ambient estuarine water from the Choptank River (a tributary of Chesapeake Bay) and freshwater (tap) needed to maintain a salinity of 7...with a mixture of freshwater and ambient estuarine water (to maintain a salinity of 10) that was circulated through a closed- loop recirculation system

  20. A Magnetohydrodynamic Modeling of the Interchange Cycle for Oblique Northward Interplanetary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Watanabe, Masakazu; Fujita, Shigeru; Tanaka, Takashi; Kubota, Yasubumi; Shinagawa, Hiroyuki; Murata, Ken T.

    2018-01-01

    We perform numerical modeling of the interchange cycle in the magnetosphere-ionosphere convection system for oblique northward interplanetary magnetic field (IMF). The interchange cycle results from the coupling of IMF-to-lobe reconnection and lobe-to-closed reconnection. Using a global magnetohydrodynamic simulation code, for an IMF clock angle of 20° (measured from due north), we successfully reproduced the following features of the interchange cycle. (1) In the ionosphere, for each hemisphere, there appears a reverse cell circulating exclusively in the closed field line region (the reciprocal cell). (2) The topology transition of the magnetic field along a streamline near the equatorial plane precisely represents the magnetic flux reciprocation during the interchange cycle. (3) Field-aligned electric fields on the interplanetary-open separatrix and on the open-closed separatrix are those that are consistent with IMF-to-lobe reconnection and lobe-to-closed reconnection, respectively. These three features prove the existence of the interchange cycle in the simulated magnetosphere-ionosphere system. We conclude that the interchange cycle does exist in the real solar wind-magnetosphere-ionosphere system. In addition, the simulation revealed that the reciprocal cell described above is not a direct projection of the diffusion region as predicted by the "vacuum" model in which diffusion is added a priori to the vacuum magnetic topology. Instead, the reciprocal cell is a consequence of the plasma convection system coupled to the so-called NBZ ("northward Bz") field-aligned current system.

  1. Effects of hypoxia on the closing pressure of the canine systemic arterial circulation.

    PubMed

    Sylvester, J T; Gilbert, R D; Traystman, R J; Permutt, S

    1981-10-01

    We studied the relationships among closing pressure (Pc) and indices of systemic arterial resistance (Ra) and compliance (Ca) during hypoxic hypoxia (HH) and carbon monoxide hypoxia (COH) in anesthetized dogs with cardiac bypass and constant ventilation. Closing pressure was measured as the lowest level to which arterial pressure (Pa) fell after inflow to the arterial bed was reduced suddenly to zero. Since the fall of Pa to Pc could be well-described as a single exponential function of time and since Pc was always greater than outflow (venous) pressure. Ra and CA were determined by applying a "vascular waterfall" model to the arterial bed. During HH, Pc increased while Ra and Ca decreased. During COH, Pc and Ra decreased, but Ca did not change. The Pc results indicate that during HH, but not COH, a large portion of the systemic arterial bed experienced a marked increase in vasomotor tone, a qualitative difference that would have been missed if Pc had not been measured. The relationship among Pc, Ra, and Ca during hypoxia suggest these indices may have been determined largely by different portions of the arterial bed in which tone changed independently.

  2. Interannual variability in the number of Northern Hemisphere Cut-off low systems.

    NASA Astrophysics Data System (ADS)

    Nieto, R.; Gimeno, L.; de La Torre, L.; Tesouro, M.; Añel, J. A.; Ribera, P.

    2003-04-01

    Cut-off low-pressure systems-COLS- are usually closed circulations at middle and upper troposphere developed from a deep trough in the westerlies. The importance of their study is due to both the convective severe events that can occur if they are over warm ocean and because they are important mechanisms of Stratosphere-troposphere exchange- STE-. However few is known about their interannual variability, due to the limited duration of the study (five years) of previous global climatologies. In this study we identify COLs systems in the Northern Hemisphere for a 41-year period (1958 to 1998) using an approach based in imposing the three main physical characteristics of the conceptual model of COL (a. closed circulation and minimum of geopotential, minimum of equivalent thickness, and two baroclinic zones, one in front of the low and the other behind the low). Data from NCAR-NCEP reanalysis were used. The aim of the study is to detect trends and to identify associations both with blocking events and major modes of climate variability. Results show that 1) in the Asian sector both less intense and more intense COLs had a significant positive trend whereas in the Pacific and the Atlantic sectors only less intense COLs had a significant positive trend, 2) Most of COLs were associated with blocking events, 3) During positive ENSO phases the number of less intense COLs in the Pacific were lower than during negative ENSO phases and 4) During positive Northern Annular Mode (NAM) phases the number of less intense COLs in the Atlantic were higher than during negative NAM phases.

  3. Ocean circulation drifts in multi-millennial climate simulations: the role of salinity corrections and climate feedbacks

    NASA Astrophysics Data System (ADS)

    Dentith, Jennifer E.; Ivanovic, Ruza F.; Gregoire, Lauren J.; Tindall, Julia C.; Smith, Robin S.

    2018-05-01

    Low-resolution, complex general circulation models (GCMs) are valuable tools for studying the Earth system on multi-millennial timescales. However, slowly evolving salinity drifts can cause large shifts in climatic and oceanic regimes over thousands of years. We test two different schemes for neutralising unforced salinity drifts in the FAMOUS GCM: surface flux correction and volumetric flux correction. Although both methods successfully maintain a steady global mean salinity, local drifts and subsequent feedbacks promote cooling (≈ 4 °C over 6000 years) and freshening (≈ 2 psu over 6000 years) in the North Atlantic Ocean, and gradual warming (≈ 0.2 °C per millennium) and salinification (≈ 0.15 psu per millennium) in the North Pacific Ocean. Changes in the surface density in these regions affect the meridional overturning circulation (MOC), such that, after several millennia, the Atlantic MOC (AMOC) is in a collapsed state, and there is a strong, deep Pacific MOC (PMOC). Furthermore, the AMOC exhibits a period of metastability, which is only identifiable with run lengths in excess of 1500 years. We also compare simulations with two different land surface schemes, demonstrating that small biases in the surface climate may cause regional salinity drifts and significant shifts in the MOC (weakening of the AMOC and the initiation then invigoration of PMOC), even when the global hydrological cycle has been forcibly closed. Although there is no specific precursor to the simulated AMOC collapse, the northwest North Pacific and northeast North Atlantic are important areas that should be closely monitored for trends arising from such biases.

  4. Detection of Poliovirus Circulation by Environmental Surveillance in the Absence of Clinical Cases in Israel and the Palestinian Authority

    PubMed Central

    Manor, Y.; Handsher, R.; Halmut, T.; Neuman, M.; Bobrov, A.; Rudich, H.; Vonsover, A.; Shulman, L.; Kew, O.; Mendelson, E.

    1999-01-01

    The global eradication of poliomyelitis, believed to be achievable around the year 2000, relies on strategies which include high routine immunization coverage and mass vaccination campaigns, along with continuous monitoring of wild-type virus circulation by using the laboratory-based acute flaccid paralysis (AFP) surveillance. Israel and the Palestinian Authority are located in a geographical region in which poliovirus is still endemic but have been free of poliomyelitis since 1988 as a result of intensive immunization programs and mass vaccination campaigns. To monitor the wild-type virus circulation, environmental surveillance of sewage samples collected monthly from 25 to 30 sites across the country was implemented in 1989 and AFP surveillance began in 1994. The sewage samples were processed in the laboratory with a double-selective tissue culture system, which enabled economical processing of large number of samples. Between 1989 and 1997, 2,294 samples were processed, and wild-type poliovirus was isolated from 17 of them in four clusters, termed “silent outbreaks,” in September 1990 (type 3), between May and September 1991 (type 1), between October 1994 and June 1995 (type 1), and in December 1996 (type 1). Fifteen of the 17 positive samples were collected in the Gaza Strip, 1 was collected in the West Bank, and 1 was collected in the Israeli city of Ashdod, located close to the Gaza Strip. The AFP surveillance system failed to detect the circulating wild-type viruses. These findings further emphasize the important role that environmental surveillance can play in monitoring the eradication of polioviruses. PMID:10325305

  5. Aboveground production and nutrient circulation along a flooding gradient in a South Carolina Coastal Plain forest

    Treesearch

    B. Graeme Lockaby; William H. Conner

    1999-01-01

    Relative to effects of flooding, little is known about the influence of hydrology-nutrient interactions on aboveground net primary production (NPP) in forested wetlands. The authors found that nutrient circulation and NPP were closely related along a complex physical, chemical, and hydrologic gradient in a bottomland hardwood forest with four distinct communities....

  6. Subseasonal forecast skills and biases of global summer monsoons in the NCEP Climate Forecast System version 2

    NASA Astrophysics Data System (ADS)

    Liu, Xiangwen; Yang, Song; Li, Qiaoping; Kumar, Arun; Weaver, Scott; Liu, Shi

    2014-03-01

    Subseasonal forecast skills and biases of global summer monsoons are diagnosed using daily data from the hindcasts of 45-day integrations by the NCEP Climate Forecast System version 2. Predictions for subseasonal variability of zonal wind and precipitation are generally more skillful over the Asian and Australian monsoon regions than other monsoon regions. Climatologically, forecasts for the variations of dynamical monsoon indices have high skills at leads of about 2 weeks. However, apparent interannual differences exist, with high skills up to 5 weeks in exceptional cases. Comparisons for the relationships of monsoon indices with atmospheric circulation and precipitation patterns between skillful and unskillful forecasts indicate that skills for subseasonal variability of a monsoon index depend partially on the degree to which the observed variability of the index attributes to the variation of large-scale circulation. Thus, predictions are often more skillful when the index is closely linked to atmospheric circulation over a broad region than over a regional and narrow range. It is also revealed that, the subseasonal variations of biases of winds, precipitation, and surface temperature over various monsoon regions are captured by a first mode with seasonally independent biases and a second mode with apparent phase transition of biases during summer. The first mode indicates the dominance of overall weaker-than-observed summer monsoons over major monsoon regions. However, at certain stages of monsoon evolution, these underestimations are regionally offset or intensified by the time evolving biases portrayed by the second mode. This feature may be partially related to factors such as the shifts of subtropical highs and intertropical convergence zones, the reversal of biases of surface temperature over some monsoon regions, and the transition of regional circulation system. The significant geographical differences in bias growth with increasing lead time reflect the distinctions of initial memory capability of the climate system over different monsoon regions.

  7. Dynamics of mononuclear phagocyte system Fc receptor function in systemic lupus erythematosus. Relation to disease activity and circulating immune complexes.

    PubMed Central

    Kimberly, R P; Parris, T M; Inman, R D; McDougal, J S

    1983-01-01

    Seventeen pairs of longitudinal studies of mononuclear phagocyte system (MPS) Fc receptor function in 15 patients with systemic lupus were performed to explore the dynamic range of Fc receptor dysfunction in lupus and to establish the relationships between MPS function, clinical disease activity and circulating immune complexes (CIC). Fc receptor function was measured by the clearance of IgG sensitized autologous erythrocytes. At the time of first study the degree of MPS dysfunction was correlated with both clinical activity (P less than 0.05) and CIC (P less than 0.05). At follow-up patients with a change in clinical status show significantly larger changes in clearance function compared to clinically stable patients (206 min vs 7 min; P less than 0.001). MPS function changed concordantly with a change in clinical status in all cases (P = 0.002). Longitudinal assessments did not demonstrate concordance of changes in MPS function and CIC, measured by three different assays. The MPS Fc receptor defect in systemic lupus is dynamic and closely associated with disease activity. The lack of concordance of the defect with changes in CIC suggests that either CIC does not adequately reflect receptor site saturation or that other factors may also contribute to the magnitude of MPS dysfunction. PMID:6839542

  8. Note: A dual temperature closed loop batch reactor for determining the partitioning of trace gases within CO2-water systems.

    PubMed

    Warr, Oliver; Rochelle, Christopher A; Masters, Andrew J; Ballentine, Christopher J

    2016-01-01

    An experimental approach is presented which can be used to determine partitioning of trace gases within CO2-water systems. The key advantages of this system are (1) The system can be isolated with no external exchange, making it ideal for experiments with conservative tracers. (2) Both phases can be sampled concurrently to give an accurate composition at each phase at any given time. (3) Use of a lower temperature flow loop outside of the reactor removes contamination and facilitates sampling. (4) Rapid equilibration at given pressure/temperature conditions is significantly aided by stirring and circulating the water phase using a magnetic stirrer and high-pressure liquid chromatography pump, respectively.

  9. Heat-flow and hydrothermal circulation at the ocean-continent transition of the eastern gulf of Aden

    NASA Astrophysics Data System (ADS)

    Lucazeau, Francis; Leroy, Sylvie; Rolandone, Frédérique; d'Acremont, Elia; Watremez, Louise; Bonneville, Alain; Goutorbe, Bruno; Düsünur, Doga

    2010-07-01

    In order to investigate the importance of fluid circulation associated with the formation of ocean-continent transitions (OCT), we examine 162 new heat-flow (HF) measurements in the eastern Gulf of Aden, obtained at close locations along eight seismic profiles and with multi-beam bathymetry. The average HF values in the OCT and in the oceanic domain (~ 18 m.y.) are very close to the predictions of cooling models, showing that the overall importance of fluids remains small at the present time compared to oceanic ridge flanks of the same age. However, local HF anomalies are observed, although not systematically, in the vicinity of the unsedimented basement and are interpreted by the thermal effect of meteoric fluids flowing laterally. We propose a possible interpretation of hydrothermal paths based on the shape of HF anomalies and on the surface morphology: fluids can circulate either along-dip or along-strike, but are apparently focussed in narrow "pipes". In several locations in the OCT, there is no detectable HF anomaly while the seismic velocity structure suggests serpentinization and therefore past circulation. We relate the existence of the present day fluid circulation in the eastern Gulf of Aden to the presence of unsedimented basement and to the local extensional stress in the vicinity of the Socotra-Hadbeen fault zone. At the scale of rifted-margins, fluid circulation is probably not as important as in the oceanic domain because it can be inhibited rapidly with high sedimentation rates, serpentinization and stress release after the break-up.

  10. Renewed circulation scheme of the Baltic Sea - based on the 40-year simulation with GETM.

    NASA Astrophysics Data System (ADS)

    Maljutenko, Ilja; Raudsepp, Urmas

    2015-04-01

    The general circulation of the Baltic Sea has been characterized as cyclonic in all sub-basins based on numerous measurements and model simulations. From the long-term hydrodynamical simulation our model results have verified the general cyclonic circulation in the Baltic Proper and in the Gulf of Bothnia, but the Gulf of Finland and the Gulf of Riga have shown tendency to anticyclonic circulation. We have applied the General Estuarine Transport Model ( GETM ) for the period of 1966 - 2006 with a 1 nautical mile horizontal resolution and density adaptive bottom following vertical coordinates to make it possible to simulate horizontal and vertical density gradients with better precision. The atmospheric forcing from dynamically downscaled ERA40-HIRLAM and parametrized lateral boundary conditions are applied. Model simulation show close agreement with measurements conducted in the main monitoring stations in the BS during the simulation period. The geostrophic adjustment of density driven currents along with the upward salinity flux due to entrainment could explain the anticyclonic circulation and strong coastal current. Mean vertical velocities show that upward and downward movements are forming closed vertical circulation loops along the bottom slope of the Baltic Proper and the Gulf of Bothnia. The model has also reproduced patchy vertical movement across the BS with some distinctive areas of upward advective fluxes in the GoF along the thalweg. The distinctive areas of deepwater upwelling are also evident in the Gdansk Basin, western Gotland Basin, northern Gotland Basin and in the northen part of the Bothnia Sea.

  11. The role of supplementary environmental surveillance to complement acute flaccid paralysis surveillance for wild poliovirus in Pakistan - 2011-2013.

    PubMed

    Cowger, Tori L; Burns, Cara C; Sharif, Salmaan; Gary, Howard E; Iber, Jane; Henderson, Elizabeth; Malik, Farzana; Zahoor Zaidi, Syed Sohail; Shaukat, Shahzad; Rehman, Lubna; Pallansch, Mark A; Orenstein, Walter A

    2017-01-01

    More than 99% of poliovirus infections are non-paralytic and therefore, not detected by acute flaccid paralysis (AFP) surveillance. Environmental surveillance (ES) can detect circulating polioviruses from sewage without relying on clinical presentation. With extensive ES and continued circulation of polioviruses, Pakistan presents a unique opportunity to quantify the impact of ES as a supplement to AFP surveillance on overall completeness and timeliness of poliovirus detection. Genetic, geographic and temporal data were obtained for all wild poliovirus (WPV) isolates detected in Pakistan from January 2011 through December 2013. We used viral genetics to assess gaps in AFP surveillance and ES as measured by detection of 'orphan viruses' (≥1.5% different in VP1 capsid nucleotide sequence). We compared preceding detection of closely related circulating isolates (≥99% identity) detected by AFP surveillance or ES to determine which surveillance system first detected circulation before the presentation of each polio case. A total of 1,127 WPV isolates were detected by AFP surveillance and ES in Pakistan from 2011-2013. AFP surveillance and ES combined exhibited fewer gaps (i.e., % orphan viruses) in detection than AFP surveillance alone (3.3% vs. 7.7%, respectively). ES detected circulation before AFP surveillance in nearly 60% of polio cases (200 of 346). For polio cases reported from provinces conducting ES, ES detected circulation nearly four months sooner on average (117.6 days) than did AFP surveillance. Our findings suggest ES in Pakistan is providing earlier, more sensitive detection of wild polioviruses than AFP surveillance alone. Overall, targeted ES through strategic selection of sites has important implications in the eradication endgame strategy.

  12. The role of supplementary environmental surveillance to complement acute flaccid paralysis surveillance for wild poliovirus in Pakistan – 2011–2013

    PubMed Central

    Burns, Cara C.; Sharif, Salmaan; Gary, Howard E.; Iber, Jane; Henderson, Elizabeth; Malik, Farzana; Zahoor Zaidi, Syed Sohail; Shaukat, Shahzad; Rehman, Lubna; Pallansch, Mark A.; Orenstein, Walter A.

    2017-01-01

    Background More than 99% of poliovirus infections are non-paralytic and therefore, not detected by acute flaccid paralysis (AFP) surveillance. Environmental surveillance (ES) can detect circulating polioviruses from sewage without relying on clinical presentation. With extensive ES and continued circulation of polioviruses, Pakistan presents a unique opportunity to quantify the impact of ES as a supplement to AFP surveillance on overall completeness and timeliness of poliovirus detection. Methods Genetic, geographic and temporal data were obtained for all wild poliovirus (WPV) isolates detected in Pakistan from January 2011 through December 2013. We used viral genetics to assess gaps in AFP surveillance and ES as measured by detection of ‘orphan viruses’ (≥1.5% different in VP1 capsid nucleotide sequence). We compared preceding detection of closely related circulating isolates (≥99% identity) detected by AFP surveillance or ES to determine which surveillance system first detected circulation before the presentation of each polio case. Findings A total of 1,127 WPV isolates were detected by AFP surveillance and ES in Pakistan from 2011–2013. AFP surveillance and ES combined exhibited fewer gaps (i.e., % orphan viruses) in detection than AFP surveillance alone (3.3% vs. 7.7%, respectively). ES detected circulation before AFP surveillance in nearly 60% of polio cases (200 of 346). For polio cases reported from provinces conducting ES, ES detected circulation nearly four months sooner on average (117.6 days) than did AFP surveillance. Interpretation Our findings suggest ES in Pakistan is providing earlier, more sensitive detection of wild polioviruses than AFP surveillance alone. Overall, targeted ES through strategic selection of sites has important implications in the eradication endgame strategy. PMID:28742803

  13. Development of Conceptual Design Support Tool Founded on Formalization of Conceptual Design Process for Regenerative Life Support Systems

    NASA Astrophysics Data System (ADS)

    Miyajima, Hiroyuki; Yuhara, Naohiro

    Regenerative Life Support Systems (RLSS), which maintain human lives by recycling substances essential for living, are comprised of humans, plants, and material circulation systems. The plants supply food to the humans or reproduce water and gases by photosynthesis, while the material circulation systems recycle physicochemically and circulate substances disposed by humans and plants. RLSS attracts attention since manned space activities have been shifted from previous short trips to long-term stay activities as such base as a space station, a lunar base, and a Mars base. The present typical space base is the International Space Station (ISS), a manned experimental base for prolonged stays, where RLSS recycles only water and air. In order to accommodate prolonged and extended manned activity in future space bases, developing RLSS that implements food production and regeneration of resources at once using plants is expected. The configuration of RLSS should be designed to suit its own duty, for which design requirements for RLSS with an unprecedented configuration may arise. Accordingly, it is necessary to establish a conceptual design method for generalized RLSS. It is difficult, however, to systematize the design process by analyzing previous design because there are only a few ground-experimental facilities, namely CEEF (Closed Ecology Experiment Facilities) of Japan, BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) of the U.S., and BIOS3 of Russia. Thus a conceptual design method which doesn’t rely on previous design examples is required for generalized RLSS from the above reasons. This study formalizes a conceptual design process, and develops a conceptual design support tool for RLSS based on this design process.

  14. Antigenic and genomic characterization of human influenza A and B viruses circulating in Argentina after the introduction of influenza A(H1N1)pdm09.

    PubMed

    Russo, Mara L; Pontoriero, Andrea V; Benedetti, Estefania; Czech, Andrea; Avaro, Martin; Periolo, Natalia; Campos, Ana M; Savy, Vilma L; Baumeister, Elsa G

    2014-12-01

    This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed during the study period. The virological surveillance showed that the majority of the circulating strains during the study period were antigenically related to the corresponding Southern Hemisphere vaccine strains except for the 2012 A(H3N2) viruses. © 2014 The Authors.

  15. A compact cryogenic pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gang; Caldwell, Shane; Clark, Jason A.

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  16. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  17. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    NASA Astrophysics Data System (ADS)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2004-02-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a ``partial energy conversion'' system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  18. Geochemistry of spring water, southeastern Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Kimball, Briant A.

    1981-01-01

    The chemical quality of water in the southeastern Uinta Basin, Utah and Colorado, is important to the future development of the abundant oil-shale resources of the area. This report examines the observed changes in chemistry as water circulates in both shallow and deep ground-water systems. Mass-balance and mass- transfer calculations are used to define reactions that simulate the observed water chemistry in the mixed sandstone, siltstone, and carbonate lithology of the Green River Formation of Tertiary age.The mass-transfer calculations determine a reaction path particular to this system. The early dominance of calcite dissolution produces a calcium carbonate water. After calcite saturation, deeper circulation and further rock-water interaction cause the reprecipitation of calcite, the dissolution of dolomite and plagioclase, and the oxidation of pyrite; all combining to produce a calcium magnesium sodium bicarbonate sulfate water. The calculations suggest that silica concentrations are controlled by a kaolinite-Ca-montmorillonite phase boundary. Close agreement of mineral-saturation indices calculated by both an aqueous-equilibrium model and the mass-transfer model support the selection of reactions from the mass-transfer calculations.

  19. Library Circulation Systems: An Overview

    ERIC Educational Resources Information Center

    Surace, Cecily J.

    1972-01-01

    The model circulation system outlined is an on-line real time system in which the circulation file is created from the shelf list. The model extends beyond the operational limits of most existing circulation systems and can be considered a reflection of the current state of the art. (36 references) (Author/NH)

  20. Impact of closed minimal extracorporeal circulation on microvascular tissue perfusion during surgical aortic valve replacement: intravital imaging in a prospective randomized study.

    PubMed

    Donndorf, Peter; Park, Hannah; Vollmar, Brigitte; Alms, Angela; Gierer, Philipp; Steinhoff, Gustav; Kaminski, Alexander

    2014-08-01

    Closed minimal extracorporeal circulation (MECC) systems currently do not represent the standard of surgical care for open-heart surgery. Yet, considering the beneficial results reported for coronary artery bypass graft (CABG) surgery, we used an MECC system in aortic valve replacement (AVR) and analysed the effects on intraoperative microvascular perfusion in comparison with conventional open extracorporeal circulation (CECC). In the current study, we analysed alterations in microvascular perfusion at 4 predefined time points (T1-T4) during surgical AVR utilizing orthogonal polarization spectral (OPS) imaging. Twenty patients were randomized for being operated on utilizing either MECC or CECC. Changes in functional capillary density (FCD, cm/cm(2)), mircovascular blood flow velocity (mm/s) and vessel diameter (μm) were analysed by a blinded investigator. After the start of extracorporeal circulation and aortic cross-clamping (T2), both groups showed a significant drop in FCD, but with a significantly higher FCD in the MECC group (153.1 ± 15.0 cm/cm² in the CECC group vs 160.8 ± 12.2 cm/cm² in the MECC group, P = 0.034). During the late phase of the cardiopulmonary bypass (CPB) (T3), the FCD was still significantly depressed in both treatment groups (153.5 ± 14.6 cm/cm² in the CECC group, P <0.05 vs 'T1'; 159.5 ± 12.4 cm/cm² in the MECC group, P <0.05 versus 'T1'). After termination of CPB (T4), the FCD recovered in both groups to baseline values. Microvascular blood flow velocity tended to remain at a higher level in the MECC group, whereas haemodilution during CPB was significantly reduced in the MECC group. The use of MECC in AVR did not affect procedural safety and, resulted in beneficial preservation of microvascular blood flow velocity and significantly reduced haemodilution during CPB. In contrast to CABG surgery, the use of MECC did not improve FCD during surgical AVR. Clinical advantages possibly resulting from attenuated haemodilution and preservation of microvascular blood flow velocity require further validation in larger patient cohorts. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  1. Electrical Lumped Model Examination for Load Variation of Circulation System

    NASA Astrophysics Data System (ADS)

    Koya, Yoshiharu; Ito, Mitsuyo; Mizoshiri, Isao

    Modeling and analysis of the circulation system enables the characteristic decision of circulation system in the body to be made. So, many models of circulation system have been proposed. But, they are complicated because the models include a lot of elements. Therefore, we proposed a complete circulation model as a lumped electrical circuit, which is comparatively simple. In this paper, we examine the effectiveness of the complete circulation model as a lumped electrical circuit. We use normal, angina pectoris, dilated cardiomyopathy and myocardial infarction for evaluation of the ventricular contraction function.

  2. Physically Consistent Eddy-resolving State Estimation and Prediction of the Coupled Pan-Arctic Climate System at Daily to Interannual Time Scales Using the Regional Arctic Climate Model (RACM)

    DTIC Science & Technology

    2014-09-30

    large biases aloft manifest themselves as large circulation biases at the surface (Fig. 3). Wintertime sea level pressure ( SLP ) contours align closely...extends Arctic, and the Icelandic low is very weak and shifted eastward from its proper location. Summer SLP biases in RASM_nonudg are smaller than...winter SLP biases, but are still substantial, and are again greatly improved in RASM_nudg. Although the magnitude of SLP biases is somewhat smaller

  3. Pattern formation in a monolayer of magnetic spheres

    NASA Astrophysics Data System (ADS)

    Stambaugh, Justin; Lathrop, Daniel P.; Ott, Edward; Losert, Wolfgang

    2003-08-01

    Pattern formation is investigated for a vertically vibrated monolayer of magnetic spheres. The spheres of diameter D encase cylindrical magnetic cores of length l. For large D/l, we find that the particles form a hexagonal-close-packed pattern in which the particles’ dipole vectors assume a macroscopic circulating vortical pattern. For smaller D/l, the particles form concentric rings. The static configurational magnetic energy (which depends on D/l) appears to be a determining factor in pattern selection even though the experimental system is driven and dissipative.

  4. Satellite observations of fumarole activity at Aluto volcano, Ethiopia: Implications for geothermal monitoring and volcanic hazard

    NASA Astrophysics Data System (ADS)

    Braddock, Mathilde; Biggs, Juliet; Watson, Iain M.; Hutchison, William; Pyle, David M.; Mather, Tamsin A.

    2017-07-01

    Fumaroles are the surface manifestation of hydrothermal circulation and can be influenced by magmatic, hydrothermal, hydrological and tectonic processes. This study investigates the temporal changes in fumarole temperatures and spatial extent on Aluto, a restless volcano in the Main Ethiopian Rift (MER), in order to better understand the controls on fluid circulation and the interaction between the magmatic and hydrothermal systems. Thermal infrared (TIR) satellite images, acquired by the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) over the period of 2004 to 2016, are used to generate time series of the fumarole temperatures and areas. The thermal anomalies identified in the ASTER images coincide with known fumaroles with temperatures > 80 °C and are located on or close to fault structures, which provide a pathway for the rising fluids. Most of the fumaroles, including those along the major zone of hydrothermal upwelling, the Artu Jawe Fault Zone, have pixel-integrated temperature variations of only 2 ± 1.5 °C. The exception are the Bobesa fumaroles located on a hypothesised caldera ring fault which show pixel-integrated temperature changes of up to 9 °C consistent with a delayed response of the hydrothermal system to precipitation. We conclude that fumaroles along major faults are strongly coupled to the magmatic-hydrothermal system and are relatively stable with time, whereas those along shallower structures close to the rift flank are more strongly influenced by seasonal variations in groundwater flow. The use of remote sensing data to monitor the thermal activity of Aluto provides an important contribution towards understanding the behaviour of this actively deforming volcano. This method could be used at other volcanoes around the world for monitoring and geothermal exploration.

  5. Variation of the North Equatorial Current, Mindanao Current, and Kuroshio Current in a high-resolution data assimilation during 2008-2012

    NASA Astrophysics Data System (ADS)

    Zhai, Fangguo; Wang, Qingye; Wang, Fujun; Hu, Dunxin

    2014-11-01

    Outputs from a high-resolution data assimilation system, the global Hybrid Coordinate Ocean Model and Navy Coupled Ocean Data Assimilation (HYCOM+NCODA) 1/12° analysis, were analyzed for the period September 2008 to February 2012. The objectives were to evaluate the performance of the system in simulating ocean circulation in the tropical northwestern Pacific and to examine the seasonal to interannual variations of the western boundary currents. The HYCOM assimilation compares well with altimetry observations and mooring current measurements. The mean structures and standard deviations of velocities of the North Equatorial Current (NEC), Mindanao Current (MC) and Kuroshio Current (KC) also compare well with previous observations. Seasonal to interannual variations of the NEC transport volume are closely correlated with the MC transport volume, instead of that of the KC. The NEC and MC transport volumes mainly show well-defined annual cycles, with their maxima in spring and minima in fall, and are closely related to the circulation changes in the Mindanao Dome (MD) region. In seasons of transport maxima, the MD region experiences negative SSH anomalies and a cyclonic gyre anomaly, and in seasons of transport minima the situation is reversed. The sea surface NEC bifurcation latitude (NBL) in the HYCOM assimilation also agrees well with altimetry observations. In 2009, the NBL shows an annual cycle similar to previous studies, reaching its southernmost position in summer and its northernmost position in winter. In 2010 and 2011, the NBL variations are dominantly influenced by La Niña events. The dynamics responsible for the seasonal to interannual variations of the NEC-MC-KC current system are also discussed.

  6. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 1. Model description and behavior

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.

    2012-06-01

    Antarctic ice shelves interact closely with the ocean cavities beneath them, with ice shelf geometry influencing ocean cavity circulation, and heat from the ocean driving changes in the ice shelves, as well as the grounded ice streams that feed them. We present a new coupled model of an ice stream-ice shelf-ocean system that is used to study this interaction. The model is capable of representing a moving grounding line and dynamically responding ocean circulation within the ice shelf cavity. Idealized experiments designed to investigate the response of the coupled system to instantaneous increases in ocean temperature show ice-ocean system responses on multiple timescales. Melt rates and ice shelf basal slopes near the grounding line adjust in 1-2 years, and downstream advection of the resulting ice shelf thinning takes place on decadal timescales. Retreat of the grounding line and adjustment of grounded ice takes place on a much longer timescale, and the system takes several centuries to reach a new steady state. During this slow retreat, and in the absence of either an upward-or downward-sloping bed or long-term trends in ocean heat content, the ice shelf and melt rates maintain a characteristic pattern relative to the grounding line.

  7. A High-Resolution Model of Water Mass Transformation and Transport in the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Hazel, J.; Stewart, A.

    2016-12-01

    The ocean circulation around the Antarctic margins has a pronounced impact on the global ocean and climate system. One of these impacts includes closing the global meridional overturning circulation (MOC) via formation of dense Antarctic Bottom Water (AABW), which ventilates a large fraction of the subsurface ocean. AABW is also partially composed of modified Circumpolar Deep Water (CDW), a warm, mid-depth water mass whose transport towards the continent has the potential to induce rapid retreat of marine-terminating glaciers. Previous studies suggest that these water mass exchanges may be strongly influenced by high-frequency processes such as downslope gravity currents, tidal flows, and mesoscale/submesoscale eddy transport. However, evaluating the relative contributions of these processes to near-Antarctic water mass transports is hindered by the region's relatively small scales of motion and the logistical difficulties in taking measurements beneath sea ice.In this study we develop a regional model of the Weddell Sea, the largest established source of AABW. The model is forced by an annually-repeating atmospheric state constructed from the Antarctic Mesoscale Prediction System data and by annually-repeating lateral boundary conditions constructed from the Southern Ocean State Estimate. The model incorporates the full Filchner-Ronne cavity and simulates the thermodynamics and dynamics of sea ice. To analyze the role of high-frequency processes in the transport and transformation of water masses, we compute the model's overturning circulation, water mass transformations, and ice sheet basal melt at model horizontal grid resolutions ranging from 1/2 degree to 1/24 degree. We temporally decompose the high-resolution (1/24 degree) model circulation into components due to mean, eddy and tidal flows and discuss the geographical dependence of these processes and their impact on water mass transformation and transport.

  8. Tidal flushing and wind driven circulation of Ahe atoll lagoon (Tuamotu Archipelago, French Polynesia) from in situ observations and numerical modelling.

    PubMed

    Dumas, F; Le Gendre, R; Thomas, Y; Andréfouët, S

    2012-01-01

    Hydrodynamic functioning and water circulation of the semi-closed deep lagoon of Ahe atoll (Tuamotu Archipelago, French Polynesia) were investigated using 1 year of field data and a 3D hydrodynamical model. Tidal amplitude averaged less than 30 cm, but tide generated very strong currents (2 ms(-1)) in the pass, creating a jet-like circulation that partitioned the lagoon into three residual circulation cells. The pass entirely flushed excess water brought by waves-induced radiation stress. Circulation patterns were computed for climatological meteorological conditions and summarized with stream function and flushing time. Lagoon hydrodynamics and general overturning circulation was driven by wind. Renewal time was 250 days, whereas the e-flushing time yielded a lagoon-wide 80-days average. Tide-driven flush through the pass and wind-driven overturning circulation designate Ahe as a wind-driven, tidally and weakly wave-flushed deep lagoon. The 3D model allows studying pearl oyster larvae dispersal in both realistic and climatological conditions for aquaculture applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology.

    PubMed

    Paschalidou, A K; Kassomenos, P A

    2016-01-01

    Wildfire management is closely linked to robust forecasts of changes in wildfire risk related to meteorological conditions. This link can be bridged either through fire weather indices or through statistical techniques that directly relate atmospheric patterns to wildfire activity. In the present work the COST-733 classification schemes are applied in order to link wildfires in Greece with synoptic circulation patterns. The analysis reveals that the majority of wildfire events can be explained by a small number of specific synoptic circulations, hence reflecting the synoptic climatology of wildfires. All 8 classification schemes used, prove that the most fire-dangerous conditions in Greece are characterized by a combination of high atmospheric pressure systems located N to NW of Greece, coupled with lower pressures located over the very Eastern part of the Mediterranean, an atmospheric pressure pattern closely linked to the local Etesian winds over the Aegean Sea. During these events, the atmospheric pressure has been reported to be anomalously high, while anomalously low 500hPa geopotential heights and negative total water column anomalies were also observed. Among the various classification schemes used, the 2 Principal Component Analysis-based classifications, namely the PCT and the PXE, as well as the Leader Algorithm classification LND proved to be the best options, in terms of being capable to isolate the vast amount of fire events in a small number of classes with increased frequency of occurrence. It is estimated that these 3 schemes, in combination with medium-range to seasonal climate forecasts, could be used by wildfire risk managers to provide increased wildfire prediction accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Superconducting cable cooling system by helium gas at two pressures

    DOEpatents

    Dean, John W.

    1977-01-01

    Thermally contacting, oppositely streaming, cryogenic fluid streams in the same enclosure in a closed cycle that changes the fluid from a cool high pressure helium gas to a cooler reduced pressure helium gas in an expander so as to be at different temperature ranges and pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid from a refrigerator at one end of the line as a cool gas at a temperature range T.sub.2 to T.sub.3 in the go leg, then circulating the gas through an expander at the other end of the line where the gas becomes a cooler gas at a reduced pressure and at a reduced temperature T.sub.4 and finally by circulating the cooler gas back again to the refrigerator in a return leg at a temperature range T.sub.4 to T.sub.5, while in thermal contact with the gas in the go leg, and in the same enclosure therewith for compression into a higher pressure gas at T.sub.2 in a closed cycle, where T.sub.2 >T.sub.3 and T.sub.5 >T.sub.4, the fluid leaves the enclosure in the go leg as a gas at its coldest point in the go leg, and the temperature distribution is such that the line temperature decreases along its length from the refrigerator due to the cooling from the gas in the return leg.

  11. Superconducting cable cooling system by helium gas and a mixture of gas and liquid helium

    DOEpatents

    Dean, John W.

    1977-01-01

    Thermally contacting, oppositely streaming cryogenic fluid streams in the same enclosure in a closed cycle that changes from a cool high pressure helium gas to a cooler reduced pressure helium fluid comprised of a mixture of gas and boiling liquid so as to be near the same temperature but at different pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid in a go leg from a refrigerator at one end of the line as a high pressure helium gas near the normal boiling temperature of helium; then circulating the gas through an expander at the other end of the line where the gas becomes a mixture of reduced pressure gas and boiling liquid at its boiling temperature; then by circulating the mixture in a return leg that is separated from but in thermal contact with the gas in the go leg and in the same enclosure therewith; and finally returning the resulting low pressure gas to the refrigerator for compression into a high pressure gas at T.sub.2 is a closed cycle, where T.sub.1 >T.sub.2, the temperature distribution is such that the line temperature is nearly constant along its length from the refrigerator to the expander due to the boiling of the liquid in the mixture. A heat exchanger between the go and return lines removes the gas from the liquid in the return leg while cooling the go leg.

  12. In Vitro Study of Flow Regulation for Pulmonary Insufficiency

    PubMed Central

    Camp, T. A.; Stewart, K. C.; Figliola, R. S.; McQuinn, T.

    2007-01-01

    Given the tolerance of the right heart circulation to mild regurgitation and gradient, we study the potential of using motionless devices to regulate the pulmonary circulation. In addition, we document the flow performance of two mechanical valves. A motionless diode, a nozzle, a mechanical bileaflet valve, and a tilting disk valve were tested in a pulmonary mock circulatory system over the normal human range of pulmonary vascular resistance (PVR). For the mechanical valves, regurgitant fractions (RFs) and transvalvular pressure gradients were found to be weak functions of PVR. On the low end of normal PVR, the bileaflet and tilting disk valves fluttered and would not fully close. Despite this anomaly, the regurgitant fraction of either valve did not change significantly. The values for RF and transvalvular gradient measured varied from 4 to 7% and 4 to 7 mm Hg, respectively, at 5 lpm for all tests. The diode valve was able to regulate flow with mild regurgitant fraction and trivial gradient but with values higher than either mechanical valve tested. Regurgitant fraction ranged from 2 to 17% in tests extending from PVR values of 1 to 4.5 mm Hg/lpm at 5 lpm and with concomitant increases in gradient up to 17 mm Hg. The regurgitant fraction for the nozzle increased from 2 to 23% over the range of PVR with gradients increasing to 18 mm Hg. The significant findings were: (1) the mechanical valves controlled regurgitation at normal physiological cardiac output and PVR even though they failed to close at some normal values of PVR and showed leaflet flutter; and (2) it may be possible to regulate the pulmonary circulation to tolerable levels using a motionless pulmonary valve device. PMID:17408334

  13. Geochemical constraints on the origin of serpentinization of oceanic mantle

    NASA Astrophysics Data System (ADS)

    Li, Z.; Lee, C. A.

    2004-12-01

    The lower seismic zone of double seismic zones in subducting oceanic lithosphere is suggested to be a result of serpentine or chlorite dehydration in the lithospheric mantle (Hacker et al., 2003). However, the mechanism by which oceanic lithospheric mantle is serpentinized is unclear. One way is through hydrothermal circulation where the lithospheric mantle represents part of the circuit through which seawater passes and then returns to the ocean. Another way is to inject seawater into the lithospheric mantle through fractures in the overlying crust without having a return path of water to the ocean. The two mechanisms differ in that the former is an open system process whereas the latter is a closed system process in which the mantle serves as a ¡°sponge¡± for water. Identifying the dominant process is important. For example, if the mantle is part of a hydrothermal circulation cell, the interaction of seawater with the mantle will influence the composition of seawater. This also has important implications for the heat flow out of seafloor. On the other hand, if serpentinization occurs by a closed system process, there will be no influence on seawater composition. Previous studies have suggested that serpentinization of ophiolite bodies was an isochemical process, hence closed system, but it was not clear in these studies whether serpentinization occurred in situ in the oceanic lithosphere. To better understand serpentinization processes in the oceanic lithosphere, we investigated a continuous transition zone of relatively unaltered harzburgite to completely serpentinized harzburgite in the Feather River Ophiolite in northern California. These samples are highly enriched in Na, K, Rb, Cs, U, and Sr, which strongly suggests that serpentinization occurred while the oceanic lithosphere was beneath the ocean. All samples (n=19) have Al2O3 contents ranging from 0.6 to 2.5 wt.% and have extremely depleted light rare-earth element abundances, indicating that these samples are cpx-free harzburgites, which have experienced roughly 20 to 35% melt extraction. The degree of serpentinization was quantified using the concentration of magnetite, a by-product of serpentinization. The lack of antigorite suggests that serpentinization occurred at temperatures lower than 300 C. By comparing Cr and Cr/Al systematics to that predicted from theoretical partial melting calculations and empirical relationships in unaltered peridotite xenoliths, it is shown that Cr and Al are immobile. Al content was thus used to determine the composition of the protolith, which allows us to estimate the amount of depletion/enrichment of a given element by processes other than melt depletion. Most of the harzburgites show no evidence for mantle metasomatism as evidenced by extreme depletions in LREE elements. Consistent with previous studies, we find no depletions in Mg, Fe, or Ca. As seawater is undersaturated in Mg-bearing minerals, an open system process would yield progressive depletion of Mg as is seen in abyssal peridotites, which have been weathered by seawater at the bottom of the seafloor (e.g., Snow et al. 1995). Collectively, this suggests that, except for the addition of seawater and its constituents, serpentinization of the Feather River Ophiolite, was a closed system process. By combining these observations with the results of our field mapping project, we suggest that serpentinization of the lithospheric mantle occurs by local introduction of seawater through fractures extending from the crust and into the mantle. We find no evidence that serpentinized zones in oceanic lithospheric mantle represents an extremely deep hydrothermal circulation cell.

  14. Scaling Properties of Circulation in Moderate-Reynolds-Number Turbulent Wakes

    NASA Astrophysics Data System (ADS)

    Sreenivasan, K. R.; Juneja, A.; Suri, A. K.

    1995-07-01

    Circulation around closed contours (square boxes) of various sizes is computed from two-dimensional spatial velocity data, acquired by the particle image velocimetry technique in the turbulent wake behind a circular cylinder. Scaling is observed for an intermediate range of box sizes even at the low and moderate Reynolds numbers of measurement. The scaling exponents are determined at various Reynolds numbers and presented with a plausible interpretation.

  15. The effects of conventional extracorporeal circulation versus miniaturized extracorporeal circulation on microcirculation during cardiopulmonary bypass-assisted coronary artery bypass graft surgery.

    PubMed

    Yuruk, Koray; Bezemer, Rick; Euser, Mariska; Milstein, Dan M J; de Geus, Hilde H R; Scholten, Evert W; de Mol, Bas A J M; Ince, Can

    2012-09-01

    OBJECTIVES To reduce the complications associated with cardiopulmonary bypass (CPB) during cardiac surgery, many modifications have been made to conventional extracorporeal circulation systems. This trend has led to the development of miniaturized extracorporeal circulation systems. Cardiac surgery using conventional extracorporeal circulation systems has been associated with significantly reduced microcirculatory perfusion, but it remains unknown whether this could be prevented by an mECC system. Here, we aimed to test the hypothesis that microcirculatory perfusion decreases with the use of a conventional extracorporeal circulation system and would be preserved with the use of an miniaturized extracorporeal circulation system. METHODS Microcirculatory density and perfusion were assessed using sublingual side stream dark-field imaging in patients undergoing on-pump coronary artery bypass graft (CABG) surgery before, during and after the use of either a conventional extracorporeal circulation system (n = 10) or a miniaturized extracorporeal circulation system (n = 10). In addition, plasma neutrophil gelatinase-associated lipocalin and creatinine levels and creatinine clearance were assessed up to 5 days post-surgery to monitor renal function. RESULTS At the end of the CPB, one patient in the miniaturized extracorporeal circulation-treated group and five patients in the conventional extracorporeal circulation-treated group received one bag of packed red blood cells (300 ml). During the CPB, the haematocrit and haemoglobin levels were slightly higher in the miniaturized extracorporeal circulation-treated patients compared with the conventional extracorporeal circulation-treated patients (27.7 ± 3.3 vs 24.7 ± 2.0%; P = 0.03; and 6.42 ± 0.75 vs 5.41 ± 0.64 mmol/l; P < 0.01). The density of perfused vessels with a diameter <25 µm (i.e. perfused vessel density) decreased slightly in the conventional extracorporeal circulation-treated group from 16.4 ± 3.8 to 12.8 ± 3.3 mm/mm(2) (P < 0.01) and remained stable in the miniaturized extracorporeal circulation-treated group (16.3 ± 2.7 and 15.2 ± 2.9 mm/mm(2) before and during the pump, respectively). Plasma neutrophil gelatinase-associated lipocalin levels were increased following the use of extracorporeal circulation in both groups, and no differences were observed between the groups. Plasma creatinine levels and creatinine clearance were not affected by CABG surgery or CPB. CONCLUSIONS The results from this relatively small study suggest that the use of the miniaturized extracorporeal circulation system is associated with a statistically significant (but clinically insignificant) reduction in haemodilution and microcirculatory hypoperfusion compared with the use of the conventional extracorporeal circulation system.

  16. Opening Pandora's Box: The impact of open system modeling on interpretations of anoxia

    NASA Astrophysics Data System (ADS)

    Hotinski, Roberta M.; Kump, Lee R.; Najjar, Raymond G.

    2000-06-01

    The geologic record preserves evidence that vast regions of ancient oceans were once anoxic, with oxygen levels too low to sustain animal life. Because anoxic conditions have been postulated to foster deposition of petroleum source rocks and have been implicated as a kill mechanism in extinction events, the genesis of such anoxia has been an area of intense study. Most previous models of ocean oxygen cycling proposed, however, have either been qualitative or used closed-system approaches. We reexamine the question of anoxia in open-system box models in order to test the applicability of closed-system results over long timescales and find that open and closed-system modeling results may differ significantly on both short and long timescales. We also compare a scenario with basinwide diffuse upwelling (a three-box model) to a model with upwelling concentrated in the Southern Ocean (a four-box model). While a three-box modeling approach shows that only changes in high-latitude convective mixing rate and character of deepwater sources are likely to cause anoxia, four-box model experiments indicate that slowing of thermohaline circulation, a reduction in wind-driven upwelling, and changes in high-latitude export production may also cause dysoxia or anoxia in part of the deep ocean on long timescales. These results suggest that box models must capture the open-system and vertically stratified nature of the ocean to allow meaningful interpretations of long-lived episodes of anoxia.

  17. Note: A dual temperature closed loop batch reactor for determining the partitioning of trace gases within CO{sub 2}-water systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warr, Oliver, E-mail: oliver.warr@earth.ox.ac.uk; Ballentine, Christopher J.; Rochelle, Christopher A.

    An experimental approach is presented which can be used to determine partitioning of trace gases within CO{sub 2}-water systems. The key advantages of this system are (1) The system can be isolated with no external exchange, making it ideal for experiments with conservative tracers. (2) Both phases can be sampled concurrently to give an accurate composition at each phase at any given time. (3) Use of a lower temperature flow loop outside of the reactor removes contamination and facilitates sampling. (4) Rapid equilibration at given pressure/temperature conditions is significantly aided by stirring and circulating the water phase using a magneticmore » stirrer and high-pressure liquid chromatography pump, respectively.« less

  18. Studies in Three Phase Gas-Liquid Fluidised Systems

    NASA Astrophysics Data System (ADS)

    Awofisayo, Joyce Ololade

    1992-01-01

    Available from UMI in association with The British Library. The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid -solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with "true" three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties.

  19. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  20. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  1. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  2. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  3. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  4. Refined Three-Dimensional Modelling of Thermally-Driven Flow in the Bormio System (Central Italian Alps)

    NASA Astrophysics Data System (ADS)

    Volpi, Giorgio; Riva, Federico; Frattini, Paolo; Battista Crosta, Giovanni; Magri, Fabien

    2016-04-01

    Thermal springs are widespread in the European Alps, where more than 80 geothermal sites are known and exploited. The quantitative assessment of those thermal flow systems is a challenging issue and requires accurate conceptual model and a thorough understanding of thermo-hydraulic properties of the aquifers. Accordingly in the last years, several qualitative studies were carried out to understand the heat and fluid transport processes driving deep fluids from the reservoir to the springs. Our work focused on thermal circulation and fluid outflows of the area around Bormio (Central Italian Alps), where nine geothermal springs discharge from dolomite bodies located close to a regional alpine thrust, called the Zebrù Line. At this site, water is heated in deep circulation systems and vigorously upwells at temperature of about 40°C. The aim of this paper is to explore the mechanisms of heat and fluid transport in the Bormio area by carrying out refined steady and transient three-dimensional finite element simulations of thermally-driven flow and to quantitatively assess the source area of the thermal waters. The full regional model (ca. 700 km2) is discretized with a highly refined triangular finite element planar grid obtained with Midas GTS NX software. The structural 3D features of the regional Zebrù thrust are built by interpolating series of geological cross sections using Fracman. A script was developed to convert and implement the thrust grid into FEFLOW mesh that comprises ca. 4 million elements. The numerical results support the observed discharge rates and temperature field within the simulated domain. Flow and temperature patterns suggest that thermal groundwater flows through a deep system crossing both sedimentary and metamorphic lithotypes, and a fracture network associated to the thrust system. Besides providing a numerical framework to simulate complex fractured systems, this example gives insights into the influence of deep alpine structures on groundwater circulation that underlies the development of many hydrothermal systems.

  5. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  6. STUDIES ON THE PATHOGENESIS OF FEVER

    PubMed Central

    Atkins, Elisha; Wood, W. Barry

    1955-01-01

    Further studies have been made of a pyrogenic substance which appears in the circulation of rabbits during the course of experimental fever induced by injection of typhoid vaccine. With the use of a passive transfer method and pyrogen-tolerant recipients, the biological properties of this substance have been differentiated from those of the uncleared vaccine in the circulation. The newly identified factor resembles leucocytic pyrogen in the rapidity with which it produces fever and in its failure to exhibit cross-tolerance with bacterial pyrogen. This striking similarity of properties suggests that the circulating factor is of endogenous origin and may arise from cell injury. A close correlation between its presence in the circulation and the existence of fever has been demonstrated. The possible relationship of these findings to the pathogenesis of fever is evident. PMID:13271667

  7. The Somali current at the equator: annual cycle of currents and transports in the upper 1000 m and connection to neighbouring latitudes

    NASA Astrophysics Data System (ADS)

    Schott, Friedrich; Swallow, John C.; Fieux, Michèle

    1990-12-01

    Current measurements were obtained with moored stations during October 1984 to October 1986 in two consecutive deployments across the Somali Current on the equator. For the transport calculations the deficiency of conventional subsurface moorings, i.e. no data from close to the surface, had to be overcome using the historical ship drift climatology. While the current structure during the summer monsoon is that typical of a western boundary current, the profile in winter is far from being a weaker southward reverse of the summer situation. Below a thin surface layer of southward flow, there is a northward undercurrent between about 120 and 400 m depth. Below that, the flow reverses again to southward. This results in drastic differences in cross-equatorial monsoon season transports. While the summer mean transport is 21 Sv for the upper 500 m, the winter monsoon mean for that depth range is close to zero. The annual mean transport in the upper 500 m is 10 Sv northward. Very little transport is measured in the 500-1000 m depth range in either season or the annual mean. The almost closed mass budget of the boundary current system during the winter circulation allows a calculation of cross-equatorial heat transport, which comes out to -3 × 10 14 W (southward) for the northeast monsoon season mean. The heat flux associated with the annually varying part of the boundary current is small, only about -0.3 × 10 14 W or about 5% of the total cross-equatorial heat flux as estimated by other methods. By combining the equatorial measurements with earlier off-equatorial current observations, particularly at 2°-4°S and 5°N, and with property distributions (salinity and oxygen) on isopycnal surfaces, analysed from the historical data file, a synopsis of the seasonal circulation changes of the entire Somali Current system between about 4°S and 12°N is then derived.

  8. Keynesian multiplier versus velocity of money

    NASA Astrophysics Data System (ADS)

    Wang, Yougui; Xu, Yan; Liu, Li

    2010-08-01

    In this paper we present the relation between Keynesian multiplier and the velocity of money circulation in a money exchange model. For this purpose we modify the original exchange model by constructing the interrelation between income and expenditure. The random exchange yields an agent's income, which along with the amount of money he processed determines his expenditure. In this interactive process, both the circulation of money and Keynesian multiplier effect can be formulated. The equilibrium values of Keynesian multiplier are demonstrated to be closely related to the velocity of money. Thus the impacts of macroeconomic policies on aggregate income can be understood by concentrating solely on the variations of money circulation.

  9. Active CryoCubeSat

    NASA Technical Reports Server (NTRS)

    Swenson, Charles

    2016-01-01

    The Active CryoCubeSat project will demonstrate an advanced thermal control system for a 6-Unit (6U) CubeSat platform. A miniature, active thermal control system, in which a fluid is circulated in a closed loop from thermal loads to radiators, will be developed. A miniature cryogenic cooler will be integrated with this system to form a two-stage thermal control system. Key components will be miniaturized by using advanced additive manufacturing techniques resulting in a thermal testbed for proving out these technologies. Previous CubeSat missions have not tackled the problem of active thermal control systems nor have any past or current CubeSat missions included cryogenic instrumentation. This Active CryoCubeSat development effort will provide completely new capacities for CubeSats and constitutes a major advancement over the state-of-the-art in CubeSat thermal control.

  10. Circulation Systems on Microcomputers.

    ERIC Educational Resources Information Center

    Carlson, Gary

    1984-01-01

    Reports on the use of microcomputers in comprehensive library circulation systems. Topics covered include system requirements (reliability, completeness); determining circulation system needs (saving money, improving service, modernization); limitations of microcomputers (capacity, kinds of data stored, number of stations or terminals); system…

  11. The effects of conventional extracorporeal circulation versus miniaturized extracorporeal circulation on microcirculation during cardiopulmonary bypass-assisted coronary artery bypass graft surgery

    PubMed Central

    Yuruk, Koray; Bezemer, Rick; Euser, Mariska; Milstein, Dan M.J.; de Geus, Hilde H.R.; Scholten, Evert W.; de Mol, Bas A.J.M.; Ince, Can

    2012-01-01

    OBJECTIVES To reduce the complications associated with cardiopulmonary bypass (CPB) during cardiac surgery, many modifications have been made to conventional extracorporeal circulation systems. This trend has led to the development of miniaturized extracorporeal circulation systems. Cardiac surgery using conventional extracorporeal circulation systems has been associated with significantly reduced microcirculatory perfusion, but it remains unknown whether this could be prevented by an mECC system. Here, we aimed to test the hypothesis that microcirculatory perfusion decreases with the use of a conventional extracorporeal circulation system and would be preserved with the use of an miniaturized extracorporeal circulation system. METHODS Microcirculatory density and perfusion were assessed using sublingual side stream dark-field imaging in patients undergoing on-pump coronary artery bypass graft (CABG) surgery before, during and after the use of either a conventional extracorporeal circulation system (n = 10) or a miniaturized extracorporeal circulation system (n = 10). In addition, plasma neutrophil gelatinase-associated lipocalin and creatinine levels and creatinine clearance were assessed up to 5 days post-surgery to monitor renal function. RESULTS At the end of the CPB, one patient in the miniaturized extracorporeal circulation-treated group and five patients in the conventional extracorporeal circulation-treated group received one bag of packed red blood cells (300 ml). During the CPB, the haematocrit and haemoglobin levels were slightly higher in the miniaturized extracorporeal circulation-treated patients compared with the conventional extracorporeal circulation-treated patients (27.7 ± 3.3 vs 24.7 ± 2.0%; P = 0.03; and 6.42 ± 0.75 vs 5.41 ± 0.64 mmol/l; P < 0.01). The density of perfused vessels with a diameter <25 µm (i.e. perfused vessel density) decreased slightly in the conventional extracorporeal circulation-treated group from 16.4 ± 3.8 to 12.8 ± 3.3 mm/mm2 (P < 0.01) and remained stable in the miniaturized extracorporeal circulation-treated group (16.3 ± 2.7 and 15.2 ± 2.9 mm/mm2 before and during the pump, respectively). Plasma neutrophil gelatinase-associated lipocalin levels were increased following the use of extracorporeal circulation in both groups, and no differences were observed between the groups. Plasma creatinine levels and creatinine clearance were not affected by CABG surgery or CPB. CONCLUSIONS The results from this relatively small study suggest that the use of the miniaturized extracorporeal circulation system is associated with a statistically significant (but clinically insignificant) reduction in haemodilution and microcirculatory hypoperfusion compared with the use of the conventional extracorporeal circulation system. PMID:22700685

  12. Direct-contact closed-loop heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1984-01-01

    A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  13. Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test

    NASA Astrophysics Data System (ADS)

    Godfroy, Thomas J.; Kapernick, Richard J.; Bragg-Sitton, Shannon M.

    2004-02-01

    One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.

  14. A modeling study on the Qiongzhou Strait westward current during summer

    NASA Astrophysics Data System (ADS)

    Bao, X.; Ren, S.

    2016-02-01

    The dynamic mechanism of Qiongzhou Strait westward current (QSWC) was studied using an advanced unstructured-grid finite volume coastal ocean model with high spatial resolution. The current in the Qiongzhou Strait (QS) flows westward all year round, even under southwest monsoon during summer season. Process-oriented experiments focused on wind, stratification, tide and river discharge were performed to examine the driving mechanism of the QSWC during summer. Numerical experiments results show that the QSWC is primarily caused by the tide-rectified flow. The connections between QSWC, West Guangdong coastal current (WGCC) and Gulf of Tonkin circulation (GOTC) were also evaluated. It shows that the WGCC could carry low-salinity water from the Pear River Estuary (PRE) into Gulf of Tonkin (GOT) through the QS and also contribute to the QSWC. We also examined the continuity of the coastal current system west of Guangdong based on the model experiments. It seemed that the coastal current was discontinuous when reached the QS. In addition, when QSWC was excluded in the model by closing the QS, the cyclonic circulation in the GOT still existed with reduced intensity. However, shutting down the QSWC had a great effect on modeling the salinity field in the GOT. The QS plays an important role in the water exchange between West Guangdong and GOT, therefore the QS need to be well resolved in a numerical model in order to accurately simulate the circulation system around West of Guangdong.

  15. Genetic characterization of a potentially novel goose parvovirus circulating in Muscovy duck flocks in Fujian Province, China.

    PubMed

    Wang, Shao; Cheng, Xiao-Xia; Chen, Shao-Ying; Zhu, Xiao-Li; Chen, Shi-Long; Lin, Feng-Qiang; Li, Zhao-Long

    2013-01-01

    We report a novel goose parvovirus (MDGPV/PT) isolated from an affected Muscovy duck in Fujian Province, China. In this study, the NS1 sequence analyses indicated a close genetic relationship between MDGPV/PT and Muscovy duck parvovirus (MDPV) strains, although MDGPV/DY, which was isolated from a Muscovy duck in 2006 in Sichuan Province, could be divided into GPV-related groups. Phylogenetic analysis showed that except for differences in the NS1 gene, MDGPV strains PT and DY are closely related to a parvovirus that infects domestic waterfowls. This is the first demonstration of recombination between goose and Muscovy duck parvoviruses in nature, and MDGPV/PT might have led to the generation of a novel waterfowl parvovirus strain circulating in Muscovy duck flocks in China.

  16. Complete Genome Sequence of a Street Rabies Virus Isolated from a Dog in Nigeria

    PubMed Central

    Zhou, Ming; Zhou, Zutao; Kia, Grace S. N.; Gnanadurai, Clement W.; Leyson, Christina M.; Umoh, Jarlath U.; Kwaga, Jacob P.; Kazeem, Haruna M.

    2013-01-01

    A canine rabies virus (RABV) was isolated from a trade dog in Nigeria. Its entire genome was sequenced and found to be closely related to canine RABVs circulating in Africa. Sequence comparison indicates that the virus is closely related to the Africa 2 RABV lineage. The virus is now termed DRV-NG11. PMID:23469344

  17. Vapor-dominated zones within hydrothermal systems: evolution and natural state

    USGS Publications Warehouse

    Ingebritsen, S.E.; Sorey, M.L.

    1988-01-01

    Three conceptual models illustrate the range of hydrothermal systems in which vapor-dominated conditions are found. The first model (model I) represents a system with an extensive near-vaporstatic vapor-dominated zone and limited liquid throughflow and is analogous to systems such as The Geysers, California. Models II and III represent systems with significant liquid throughflow and include steam-heated discharge features at higher elevations and high-chloride springs at lower elevations connected to and fed by a single circulation system at depth. In model II, as in model I, the vapor-dominated zone has a near-vaporstatic vertical pressure gradient and is generally underpressured with respect to local hydrostatic pressure. The vapor-dominated zone in model III is quite different, in that phase separation takes place at pressures close to local hydrostatic and the overall pressure gradient is near hydrostatic. -from Authors

  18. Brain perivascular macrophages: characterization and functional roles in health and disease.

    PubMed

    Faraco, Giuseppe; Park, Laibaik; Anrather, Josef; Iadecola, Costantino

    2017-11-01

    Perivascular macrophages (PVM) are a distinct population of resident brain macrophages characterized by a close association with the cerebral vasculature. PVM migrate from the yolk sac into the brain early in development and, like microglia, are likely to be a self-renewing cell population that, in the normal state, is not replenished by circulating monocytes. Increasing evidence implicates PVM in several disease processes, ranging from brain infections and immune activation to regulation of the hypothalamic-adrenal axis and neurovascular-neurocognitive dysfunction in the setting of hypertension, Alzheimer disease pathology, or obesity. These effects involve crosstalk between PVM and cerebral endothelial cells, interaction with circulating immune cells, and/or production of reactive oxygen species. Overall, the available evidence supports the idea that PVM are a key component of the brain-resident immune system with broad implications for the pathogenesis of major brain diseases. A better understanding of the biology and pathobiology of PVM may lead to new insights and therapeutic strategies for a wide variety of brain diseases.

  19. Importation and co-circulation of multiple serotypes of dengue virus in Sarawak, Malaysia.

    PubMed

    Holmes, Edward C; Tio, Phaik-Hooi; Perera, David; Muhi, Jamail; Cardosa, Jane

    2009-07-01

    Although dengue is a common disease in South-East Asia, there is a marked absence of virological data from the Malaysian state of Sarawak located on the island of Borneo. From 1997 to 2002 we noted the co-circulation of DENV-2, DENV-3 and DENV-4 in Sarawak. To determine the origins of these Sarawak viruses we obtained the complete E gene sequences of 21 isolates. A phylogenetic analysis revealed multiple entries of DENV-2 and DENV-4 into Sarawak, such that multiple lineages co-circulate, yet with little exportation from Sarawak. Notably, all viral isolates were most closely related to those circulating in different localities in South-East Asia. In sum, our analysis reveals a frequent traffic of DENV in South-East Asia, with Sarawak representing a local sink population.

  20. Direct-contact closed-loop heat exchanger

    DOEpatents

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A high temperature heat exchanger is disclosed which has a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  1. Application of classical thermodynamic principles to the study of oceanic overturning circulation

    NASA Astrophysics Data System (ADS)

    Gade, Herman G.; Gustafsson, Karin E.

    2004-08-01

    Stationary deep-reaching overturning circulation in the ocean is studied by means of classical thermodynamic methods employing closed cycles in pV-space (p, pressure; V, volume). From observed (or computed) density fields, the pV-method may be used to infer the power required for driving a circulation with a given mass flux, or, if the available power is known, the resulting mass flux of the circulation may be assessed. Here, the circulation is assumed to be driven by diapycnal mixing caused by internal disturbances of meteorological and tidal origin and from transfer of geothermal heat through the ocean bottom. The analysis is developed on the basis that potential energy produced by any of these mechanisms is available for driving a circulation of the water masses above its level of generation. The method also takes into account secondary generated potential energy resulting from turbulence developed by the ensuing circulation.Models for different types of circulation are developed and applied to four types of hemispheric circulation with deep-water formation, convection and sinking in an idealized North Atlantic. Our calculations show that the energy input must exceed 15 J kg-1 for a cycle to the bottom to exist. An energy supply of 2 TW would in that case support a constant vertical mass flux of 3.2 G kg s-1 (3.1 Sv). Computed mass fluxes reaching the surface in the subtropics, corresponding to the same energy input, range between 2.3 5.2 G kg s-1, depending on the type of convection/sinking involved. Much higher flux values ensue with ascending water masses reaching the surface at higher geographical latitudes.The study reveals also that compressibility of sea water does not enhance the circulation. An incompressible system, operating within the same mass flux and temperature range, would require about 25% less energy supply, provided that the circulation comprises the same water masses. It is furthermore shown that the meridional distribution of surface salinity, with higher values in the tropics and lower values in regions of deep-water formation, actually enhances the circulation in comparison with one of a more uniform surface salinity. With a homohaline North Atlantic, operating within the same temperature range as presently observed, an increase of 66% of power supply would be required in order that the mass flux of the overturning circulation should remain the same.

  2. A Selective Stratistical Study of Transaction Activity in a Large On-Line Automated Circulation System. Final Report.

    ERIC Educational Resources Information Center

    Guthrie, Gerry D.

    The objective of this study was to provide the library community with basic statistical data from on-line activity in the Ohio State University Libraries' Circulation System. Over 1.6 million archive records in the circulation system for 1972 were investigated to produce subject reports of circulation activity, activity reports by collection…

  3. Is our heart a well-designed pump? The heart along animal evolution.

    PubMed

    Bettex, Dominique A; Prêtre, René; Chassot, Pierre-Guy

    2014-09-07

    A carrier system for gases and nutrients became mandatory when primitive animals grew larger and developed different organs. The first circulatory systems are peristaltic tubes pushing slowly the haemolymph into an open vascular tree without capillaries (worms). Arthropods developed contractile bulges on the abdominal aorta assisted by accessory hearts for wings or legs and by abdominal respiratory motions. Two-chamber heart (atrium and ventricle) appeared among mollusks. Vertebrates have a multi-chamber heart and a closed circulation with capillaries. Their heart has two chambers in fishes, three chambers (two atria and one ventricle) in amphibians and reptiles, and four chambers in birds and mammals. The ventricle of reptiles is partially divided in two cavities by an interventricular septum, leaving only a communication of variable size leading to a variable shunt. Blood pressure increases progressively from 15 mmHg (worms) to 170/70 mmHg (birds) according to the increase in metabolic rate. When systemic pressure exceeds 50 mmHg, a lower pressure system appears for the circulation through gills or lungs in order to improve gas exchange. A four-chamber heart allows a complete separation of systemic and pulmonary circuits. This review describes the circulatory pumping systems used in the different classes of animals, their advantages and failures, and the way they have been modified with evolution. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  4. In vitro microfluidic circulatory system for circulating cancer cells

    PubMed Central

    wan, jiandi; Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-01-01

    Circulating tumor cells (CTCs) experience hemodynamic shear stress in circulation and play critical roles in cancer metastasis. The effect of shear on CTCs, however, remains less studied. Here, we described a protocol to circulate HCT116 human colon cancer cells in a microfluidic circulatory system mimicking physiologically relevant circulating conditions. This protocol represents a useful scaffold to mimic the transportation of CTCs in circulation and thus provides an effective means to study the effect of shear on CTCs. We anticipate that future studies using the developed system will help us to further investigate the regulatory roles of shear in molecular responses of CTCs. PMID:28690779

  5. Water Quality Monitoring in the Execution of Canal Remediation Methods in the Florida Keys

    NASA Astrophysics Data System (ADS)

    Serna, A.; Briceno, H.

    2016-02-01

    Monitoring data indicate relatively high nutrient concentrations in waters close to shore along the Florida Keys, and corresponding responses from the system, such as higher phytoplankton biomass, turbidity and light attenuation as well as lower oxygenation and lower salinities of the water column. These changes, associated to human impact, have become more obvious near canal mouths. Waters close to shore show characteristics closely related to those in residential canals, affected by quick movement of infiltrated runoff and wastewaters (septic tanks), tides and high water table. Many canals do not meet the minimum water quality (WQ) criteria established by the State of Florida and are a potential source of contaminants to near shore waters designated as Outstanding Florida Waters. Canal remediation is being conducted by the Monroe County targeting poor circulation and organic matter accumulation. The restoration technologies include reduction in weed wrack, enhanced circulation, organic removal and partial backfilling. The objective of WQ monitoring is to measure the status and trends of WQ parameters to evaluate progress toward achieving and maintaining WQ standards and protecting/restoring the living marine resources. Monitoring followed a Before-and-After-Control-Impact scheme (BACI). Field measurements, included diel observations and vertical profiles of physical-chemical properties (salinity, DO, %DO saturation, temperature and turbidity) and nutrient analysis. Comparing profiles between remediated and control canals indicated similar patterns in physicochemical properties, and suggesting larger seasonal than spatial variability. BACI diel observations, in surface and bottom waters of remediated canals indicated little difference for surface waters, but significant improvements for bottom waters. Most surface waters are well oxygenated, while bottom waters show a significant increase in DO following culvert installation.

  6. A numerical investigation of surface-induced mesocyclogenesis near the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Cione, Joseph J.; Raman, Sethu

    1995-10-01

    A series of numerical experiments designed to simulate the initial development stages of low-level coastal mesocyclogenesis near the Gulf Stream was recently conducted. Under initially quiescent conditions, surface cyclogenesis in the control simulation occurs along a Gulf Stream meander in a region where the gradients in sea surface temperature (SST) are maximized. A low-level mesovortex on the order of 140km forms approximately 12 h into the simulation and continues to intensify through 42h. During the 24 48 h time period, a mesoscale frontal feature develops in direct response to strong diabatic forcing associated with sustained surface latent and sensible heating near the Gulf Stream frontal zone south of the main circulation center. Due to the non-linear advection of the frontal feature during this time period, the previously quasi-stationary circulation center drifts eastward (and away) from the thermal forcing associated with the large SST gradients found to the west. This eastward frontal propagation acts to decrease the magnitude of the low level horizontal air temperature gradient near the center of circulation throughout the 24 42 h development period. During the 42 48-h period, the relatively quick moving frontal feature acts to severely shear the nearly stationary center of circulation in the east west direction. As a result, the mesoscale system begins to fill during the final 6 h of integration. In addition to the control simulation, additional sensitivity experiments were conducted. These experiments were specifically designed to: (1) investigate how the magnitude of the Gulf Stream SST gradients affect the timing and degree of cyclonic development; (2) address the impact surface moisture fluxes and moist convection each have on the simulated low level mesocyclogenesis; (3) isolate the role surface sensible heating plays in the overall development of the simulated mesocyclone. Results from the SST gradient experiment indicate that a moderate enhancement of the SST distribution significantly affects the timing of the initial cyclogenesis and the maximum intensity of the simulated frontal circulation. For the "no turbulent heat flux" experiment, it appears that the elimination of surface sensible heating does not radically alter the overall structure of the simulated mesocyclone. However, the rate of development during the early stage of cyclogenesis, the absolute peak intensity of the system as well as the vertical depth of the simulated mesoscale frontal feature were all noticeably reduced when compared with the control simulation. The initial development of a closed low level circulation was delayed by nearly 18 h in the absence surface latent heat fluxes. Once formed, the system intensified throughout the 48-h period of integration, but unlike the control experiment, a mesoscale frontal feature south of the main circulation center was not simulated. Results from the "no surface moisture flux/no moist convection" simulation illustrate that moist convective processes play a dominant role in the overall development of the mesoscale cyclone. For this particular case, a weak and extremely shallow circulation was simulated after 24h. This circulation quickly eroded however, and was virtually non-existent for integration times greater than 39h.

  7. Development of Web-Based Menu Planning Support System and its Solution Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kashima, Tomoko; Matsumoto, Shimpei; Ishii, Hiroaki

    2009-10-01

    Recently lifestyle-related diseases have become an object of public concern, while at the same time people are being more health conscious. As an essential factor for causing the lifestyle-related diseases, we assume that the knowledge circulation on dietary habits is still insufficient. This paper focuses on everyday meals close to our life and proposes a well-balanced menu planning system as a preventive measure of lifestyle-related diseases. The system is developed by using a Web-based frontend and it provides multi-user services and menu information sharing capabilities like social networking services (SNS). The system is implemented on a Web server running Apache (HTTP server software), MySQL (database management system), and PHP (scripting language for dynamic Web pages). For the menu planning, a genetic algorithm is applied by understanding this problem as multidimensional 0-1 integer programming.

  8. Close Relationship between West Nile Virus from Turkey and Lineage 1 Strain from Central African Republic

    PubMed Central

    Ergunay, Koray; Bakonyi, Tamas; Nowotny, Norbert

    2015-01-01

    We sequenced West Nile viruses (WNVs) from Turkey and found close relationships to WNV lineage 1 strain ArB310/67 from the Central African Republic, distinct from other WNVs circulating in the Mediterranean Basin, eastern Europe, and the Middle East. These findings suggest independent introductions of WNV strains from Africa to the Middle East. PMID:25625703

  9. Bucknell On-Line Circulation System; A Library Staff View.

    ERIC Educational Resources Information Center

    Rivoire, Helena

    The Bucknell On-Line Circulation System (BLOCS) was designed to meet the requirements of a circulation system of the Ellen Clarke Bertrand Library of Bucknell University. The requirements for an automated system were, in sum: (1) a system whose operations were not only reliable but simple enough for student assistants (many of whom work only 10…

  10. [The present and future state of minimized extracorporeal circulation].

    PubMed

    Meng, Fan; Yang, Ming

    2013-05-01

    Minimized extracorporeal circulation improved in the postoperative side effects of conventional extracorporeal circulation is a kind of new extracorporeal circulation. This paper introduces the principle, characteristics, applications and related research of minimized extracorporeal circulation. For the problems of systemic inflammatory response syndrome and limited assist time, the article proposes three development direction including system miniaturization and integration, pulsatile blood pump and the adaptive control by human parameter identification.

  11. Genetic characterization and diversity of circulating influenza A/H1N1pdm09 viruses isolated in Jeddah, Saudi Arabia between 2014 and 2015.

    PubMed

    Hashem, Anwar M; Azhar, Esam I; Shalhoub, Sarah; Abujamel, Turki S; Othman, Norah A; Al Zahrani, Abdulwahab B; Abdullah, Hanan M; Al-Alawi, Maha M; Sindi, Anees A

    2018-05-01

    The emerged influenza A/H1N1pdm09 viruses have replaced the previously circulating seasonal H1N1 viruses. The close antigenic properties of these viruses to the 1918 H1N1 pandemic viruses and their post-pandemic evolution pattern could further enhance their adaptation and pathogenicity in humans representing a major public health threat. Given that data on the dynamics and evolution of these viruses in Saudi Arabia is sparse we investigated the genetic diversity of circulating influenza A/H1N1pdm09 viruses from Jeddah, Saudi Arabia, by analyzing 39 full genomes from isolates obtained between 2014-2015, from patients with varying symptoms. Phylogenetic analysis of all gene segments and concatenated genomes showed similar topologies and co-circulation of clades 6b, 6b.1 and 6b.2, with clade 6b.1 being the most predominate since 2015. Most viruses were more closely related to the vaccine strain (Michigan/45/2015) recommended for the 2017/2018 season, than to the California/07/2009 strain. Low sequence variability was observed in the haemagglutinin protein compared to the neuraminidase protein. Resistance to neuraminidase inhibitors was limited as only one isolate had the H275Y substitution. Interestingly, two isolates had short PA-X proteins of 206 amino acids compared to the 232 amino acid protein found in most influenza A/H1N1pdm09 viruses. Together, the co-circulation of several clades and the predominance of clade 6b.1, despite its low circulation in Asia in 2015, suggests multiple introductions most probably during the mass gathering events of Hajj and Umrah. Jeddah represents the main port of entry to the holy cities of Makkah and Al-Madinah, emphasizing the need for vigilant surveillance in the kingdom.

  12. The puzzling Venusian polar atmospheric structure reproduced by a general circulation model

    PubMed Central

    Ando, Hiroki; Sugimoto, Norihiko; Takagi, Masahiro; Kashimura, Hiroki; Imamura, Takeshi; Matsuda, Yoshihisa

    2016-01-01

    Unlike the polar vortices observed in the Earth, Mars and Titan atmospheres, the observed Venus polar vortex is warmer than the midlatitudes at cloud-top levels (∼65 km). This warm polar vortex is zonally surrounded by a cold latitude band located at ∼60° latitude, which is a unique feature called ‘cold collar' in the Venus atmosphere. Although these structures have been observed in numerous previous observations, the formation mechanism is still unknown. Here we perform numerical simulations of the Venus atmospheric circulation using a general circulation model, and succeed in reproducing these puzzling features in close agreement with the observations. The cold collar and warm polar region are attributed to the residual mean meridional circulation enhanced by the thermal tide. The present results strongly suggest that the thermal tide is crucial for the structure of the Venus upper polar atmosphere at and above cloud levels. PMID:26832195

  13. Studies on the pathogenesis of fever. II. Identification of an endogenous pyrogen in the blood stream following the injection of typhoid vaccine.

    PubMed

    ATKINS, E; WOOD, W B

    1955-11-01

    Further studies have been made of a pyrogenic substance which appears in the circulation of rabbits during the course of experimental fever induced by injection of typhoid vaccine. With the use of a passive transfer method and pyrogen-tolerant recipients, the biological properties of this substance have been differentiated from those of the uncleared vaccine in the circulation. The newly identified factor resembles leucocytic pyrogen in the rapidity with which it produces fever and in its failure to exhibit cross-tolerance with bacterial pyrogen. This striking similarity of properties suggests that the circulating factor is of endogenous origin and may arise from cell injury. A close correlation between its presence in the circulation and the existence of fever has been demonstrated. The possible relationship of these findings to the pathogenesis of fever is evident.

  14. Molecular epidemiology of rabies viruses circulating in two rabies endemic provinces of Laos, 2011-2012: regional diversity in Southeast Asia.

    PubMed

    Ahmed, Kamruddin; Phommachanh, Phouvong; Vorachith, Phengphet; Matsumoto, Takashi; Lamaningao, Pheophet; Mori, Daisuke; Takaki, Minako; Douangngeun, Bounlom; Khambounheuang, Bounkhouang; Nishizono, Akira

    2015-03-01

    Although rabies is endemic in Laos, genetic characterization of the viruses in this country is limited. There are growing concerns that development in the region may have increased transport of dog through Laos for regional dog meat consumption, and that this may cause spillover of the viruses from dogs brought here from other countries. This study was therefore undertaken to evaluate the current rabies situation and the genetic characteristics of rabies viruses currently circulating in Laos. We determined the rate of rabies-positive samples by analyzing data from animal samples submitted to the Lao Ministry of Agriculture and Forestry's National Animal Health Centre rabies laboratory from 2004 through 2011. Twenty-three rabies-positive samples were used for viral genetic characterization. Full genome sequencing was performed on two rabies viruses. Rabies-positive samples increased substantially from 40.5% in 2004 to 60.2% in 2009 and continued at this level during the study period. More than 99% of the samples were from dogs, followed by cats and monkeys. Phylogenetic analyses showed that three rabies virus lineages belonging to the Southeast Asian cluster are currently circulating in Laos; these are closely related to viruses from Thailand, Cambodia and Vietnam. Lineages of the circulating Laos rabies viruses diverged from common ancestors as recently as 44.2 years and as much as 55.3 years ago, indicating periodic virus invasions. There is an increasing trend of rabies in Laotian animals. Similar to other rabies-endemic countries, dogs are the main viral reservoir. Three viral lineages closely related to viruses from neighboring countries are currently circulating in Laos. Data provide evidence of periodic historic exchanges of the viruses with neighboring countries, but no recent invasion.

  15. Molecular Epidemiology of Rabies Viruses Circulating in Two Rabies Endemic Provinces of Laos, 2011–2012: Regional Diversity in Southeast Asia

    PubMed Central

    Ahmed, Kamruddin; Phommachanh, Phouvong; Vorachith, Phengphet; Matsumoto, Takashi; Lamaningao, Pheophet; Mori, Daisuke; Takaki, Minako; Douangngeun, Bounlom; Khambounheuang, Bounkhouang; Nishizono, Akira

    2015-01-01

    Background Although rabies is endemic in Laos, genetic characterization of the viruses in this country is limited. There are growing concerns that development in the region may have increased transport of dog through Laos for regional dog meat consumption, and that this may cause spillover of the viruses from dogs brought here from other countries. This study was therefore undertaken to evaluate the current rabies situation and the genetic characteristics of rabies viruses currently circulating in Laos. Methods We determined the rate of rabies-positive samples by analyzing data from animal samples submitted to the Lao Ministry of Agriculture and Forestry’s National Animal Health Centre rabies laboratory from 2004 through 2011. Twenty-three rabies-positive samples were used for viral genetic characterization. Full genome sequencing was performed on two rabies viruses. Results Rabies-positive samples increased substantially from 40.5% in 2004 to 60.2% in 2009 and continued at this level during the study period. More than 99% of the samples were from dogs, followed by cats and monkeys. Phylogenetic analyses showed that three rabies virus lineages belonging to the Southeast Asian cluster are currently circulating in Laos; these are closely related to viruses from Thailand, Cambodia and Vietnam. Lineages of the circulating Laos rabies viruses diverged from common ancestors as recently as 44.2 years and as much as 55.3 years ago, indicating periodic virus invasions. Conclusion There is an increasing trend of rabies in Laotian animals. Similar to other rabies-endemic countries, dogs are the main viral reservoir. Three viral lineages closely related to viruses from neighboring countries are currently circulating in Laos. Data provide evidence of periodic historic exchanges of the viruses with neighboring countries, but no recent invasion. PMID:25825907

  16. Symmetry, stability, and computation of degenerate lasing modes

    NASA Astrophysics Data System (ADS)

    Liu, David; Zhen, Bo; Ge, Li; Hernandez, Felipe; Pick, Adi; Burkhardt, Stephan; Liertzer, Matthias; Rotter, Stefan; Johnson, Steven G.

    2017-02-01

    We present a general method to obtain the stable lasing solutions for the steady-state ab initio lasing theory (SALT) for the case of a degenerate symmetric laser in two dimensions (2D). We find that under most regimes (with one pathological exception), the stable solutions are clockwise and counterclockwise circulating modes, generalizing previously known results of ring lasers to all 2D rotational symmetry groups. Our method uses a combination of semianalytical solutions close to lasing threshold and numerical solvers to track the lasing modes far above threshold. Near threshold, we find closed-form expressions for both circulating modes and other types of lasing solutions as well as for their linearized Maxwell-Bloch eigenvalues, providing a simple way to determine their stability without having to do a full nonlinear numerical calculation. Above threshold, we show that a key feature of the circulating mode is its "chiral" intensity pattern, which arises from spontaneous symmetry breaking of mirror symmetry, and whose symmetry group requires that the degeneracy persists even when nonlinear effects become important. Finally, we introduce a numerical technique to solve the degenerate SALT equations far above threshold even when spatial discretization artificially breaks the degeneracy.

  17. Changing Characteristics of Jupiter's Little Red Spot

    NASA Technical Reports Server (NTRS)

    Cheng, A. F.; Simon-Miller, A. A.; Weaver, H. A.; Baines, K. H.; Orton, G. S.; Yanamandra-FIsher, P. A.; Mousis, O.; Pantin, E.; Vanzi, L.; Fletcher, L. N.; hide

    2008-01-01

    The Little Red Spot (LRS) in Jupiter's atmosphere was investigated in unprecedented detail by the New Horizons spacecraft together with the Hubble Space Telescope (HST) and the Very Large Telescope (VLT). The LRS and the larger Great Red Spot (GRS) of Jupiter are the largest known atmospheric storms in the solar system. Originally a white oval, the LRS formed from the mergers of three smaller storms in 1998 and 2000 and became as red as the GRS between 2005 and 2006. Here we show that circulation and wind speeds in the LRS have increased substantially since the Voyager and Galileo eras when the oval was white. The maximum tangential velocity of the LRS is now 172 +/- 18 m/s, close to the highest values ever seen in the GRS, which has also evolved both in size and maximum wind speed. The cloud top altitudes of the GRS and LRS are similar, both storms extending much higher in the atmosphere than other Jovian anticyclonic systems. The similarities in wind speeds, cloud morphology, and coloring suggest a common dynamical mechanism explains the reddening of the two largest anticyclonic systems on Jupiter. These storms will not be observed again from close range until at least 2016.

  18. Experimental System of Solar Adsorption Refrigeration with Concentrated Collector.

    PubMed

    Yuan, Z X; Li, Y X; Du, C X

    2017-10-18

    To improve the performance of solar adsorption refrigeration, an experimental system with a solar concentration collector was set up and investigated. The main components of the system were the adsorbent bed, the condenser, the evaporator, the cooling sub-system, and the solar collector. In the first step of the experiment, the vapor-saturated bed was heated by the solar radiation under closed conditions, which caused the bed temperature and pressure to increase. When the bed pressure became high enough, the bed was switched to connect to the condenser, thus water vapor flowed continually from the bed to the condenser to be liquefied. Next, the bed needed to cool down after the desorption. In the solar-shielded condition, achieved by aluminum foil, the circulating water loop was opened to the bed. With the water continually circulating in the bed, the stored heat in the bed was took out and the bed pressure decreased accordingly. When the bed pressure dropped below the saturation pressure at the evaporation temperature, the valve to the evaporator was opened. A mass of water vapor rushed into the bed and was adsorbed by the zeolite material. With the massive vaporization of the water in the evaporator, the refrigeration effect was generated finally. The experimental result has revealed that both the COP (coefficient of the performance of the system) and the SCP (specific cooling power of the system) of the SAPO-34 zeolite was greater than that of the ZSM-5 zeolite, no matter whether the adsorption time was longer or shorter. The system of the SAPO-34 zeolite generated a maximum COP of 0.169.

  19. About the seasonal variability of the Alboran Sea circulation

    NASA Astrophysics Data System (ADS)

    Vargas-Yáñez, M.; Plaza, F.; García-Lafuente, J.; Sarhan, T.; Vargas, J. M.; Vélez-Belchi, P.

    2002-07-01

    Data from a mooring line deployed midway between the Alboran Island and Cape Tres Forcas are used to study the time variability of the Alboran Sea from May 1997 to May 1998. The upper layer salinity and zonal velocity present annual and semiannual cycles characterised by a minimum in spring and autumn and a maximum in summer and winter. Temperature has the opposite behaviour to that of salinity indicating changes in the presence of the Atlantic water within the Alboran Passage. A large set of SST images is used to study these cycles. The decrease of salinity and velocity in our mooring location in spring and autumn seems to be related to the eastward drifting of the Western Alboran Gyre (WAG). The increase of salinity and velocity is caused by the Atlantic current flowing south of the Alboran Island and its associated thermohaline front. Conductivity-temperature-depth (CTD) data from two cruises along the 3°W are coherent with current meters and SST interpretations. During the period analysed, summer months are characterised by the stability of the two-gyre system, while in winter, the circulation is characterised by a coastal jet flowing close to the African shore. We use sea level differences across the Strait of Gibraltar for studying the variability of the Atlantic inflow. We discuss the changes in the Alboran Sea circulation and its relation with the variability of the inertial radius of the Atlantic inflow. Though our results are speculative, we find a possible relation between the disappearance of the two-gyre system and a reversal of the circulation in Gibraltar. Longer time series are needed to conclude, but comparison with previous works makes us think that the seasonal cycle described from May 1997 to May 1998 could be the most likely one for the Alboran Sea upper layer.

  20. 46 CFR 56.50-45 - Circulating pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-45 Circulating pumps. (a) A main circulating pump and emergency means for circulating water through the main condenser shall be provided. The... circulating pump and the condenser. (b) Independent sea suctions shall be provided for the main circulating...

  1. Seasonal surface circulation, temperature, and salinity in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Musgrave, David L.; Halverson, Mark J.; Scott Pegau, W.

    2013-02-01

    Salinity, temperature, and depth profiles from 1973 to 2010 were used to construct a seasonal climatology of surface temperature, surface salinity, mixed layer depth (MLD), potential energy of mixing, and surface geostrophic circulation in Prince William Sound (PWS) and the adjacent Gulf of Alaska. Surface salinity is greatest in winter and least in summer due to the influence of increased freshwater runoff in summer. It is generally lowest in the northwest and highest in the Gulf of Alaska. The surface temperature is lowest in the winter and highest in the summer when surface heating is greatest, with little spatial variability across the Sound. The MLD is deepest in winter (9-27 m) and shallowest in summer (4-5 m). The work by winds was estimated from meteorological buoy data in central PWS and compared to the potential energy of mixing of the upper water column. The potential depth to which winds mix the upper water column was generally consistent with the MLD. The surface geostrophic circulation in the central Sound has: a southerly flow in the western central Sound in the winter; a closed, weak anticyclonic cell in spring; a closed, cyclonic cell in the summer; an open, cyclonic circulation in the fall. In the western passages, a southerly flow occurs in spring, summer, and fall. These results have important implications for oil spill response in PWS, the use of oil dispersants, and for comparison to numerical studies.

  2. The impact of environmental inertial stability on the secondary circulation of axisymmetric tropical cyclones

    NASA Astrophysics Data System (ADS)

    O'Neill, M. E.; Chavas, D. R.

    2017-12-01

    In f-plane numerical simulations and analytical theory, tropical cyclones completely recycle their exhausted outflow air back into the boundary layer. This low-angular momentum air must experience cyclonic torque at the sea surface for cyclone to reach equilibrium. On Earth, however, it is not clear that tropical cyclones recycle all of the outflow air in a closed secondary circulation, and strong asymmetric outflow-jet interactions suggest that much of the air may be permanently evacuated from the storm over its lifetime. The fraction of outflow air that is returned to the near-storm boundary layer is in part a function of the environmental inertial stability, which controls the size and strength of the upper anticyclone. We run a suite of idealized axisymmetric tropical cyclone simulations at constant latitude while varying the outer domain's inertial stability profile. Fixing the latitude allows the gradient wind balance of the storm core to remain constant except for changes due to the far environment. By varying both the outer inertial stability and its location with respect to the Rossby radius of deformation, we show how the tropical cyclone's area-of-influence is controlled by the nature and strength of the upper anticyclone. Parcel tracking additionally demonstrates the likelihood of outflow air parcels to be quickly re-consumed by the secondary circulation as a function of inertial stability. These experiments demonstrate the sensitivity of the tropical cyclone's secondary circulation, typically assumed to be closed, to the dynamics of the far environment.

  3. Survey of Cooling Options for Application in a Low-TC Squid System for Fetal Magnetocardiography

    NASA Astrophysics Data System (ADS)

    Rijpma, A. P.; Uzunbajakau, S.; ter Brake, H. J. M.; Peters, M. J.; Rogalla, H.

    2004-06-01

    As part of the development of a low-Tc SQUID-based magnetometer system for measuring fetal heart activity, the means of cooling is evaluated. To lower the threshold for the clinical application of this fetal heart monitor, it should be simple to operate. It is, therefore, deemed necessary to replace the liquid helium by a closed-cycle refrigerator. In this paper, the requirements with respect to the cryogenic system are defined. These include operating temperature (4 K), temperature stability (<0.2 K), cooling power (>0.1 W) and requirements on magnetic and mechanical interference. The paper also reviews the most relevant options for the realization of the cryogenic system. After comparison, we selected a 4-K mechanical cooler. To reduce the interference, it is placed at several meters from the magnetometer. The cooling power is to be transferred by circulation of helium.

  4. Are Surface Waters Around Greenland Getting Saltier in a Warming Climate?

    NASA Astrophysics Data System (ADS)

    Vinogradova, N. T.; Ponte, R. M.; Piecuch, C. G.; Little, C. M.

    2016-02-01

    During the past two decades, most surface waters around Greenland ice sheet and in the Nordic Seas became significantly saltier. Given the fact that these waters feed the North Atlantic thermohaline circulation, an increase in surface salinity, which can exceed 0.2 psu in places, might have an important impact on the global ocean circulation and on future projections of the climate state. Surface salinification may seem counter-intuitive to the reported long-term increase in freshwater supply to the region from river discharge and ice melting, sparking debates about whether the freshening of the subpolar gyre has ceased, and whether the recent salinification, if continued, will be able to forestall the projected slowdown of the overturning circulation. Here we assess what controls contemporary salinity changes by examining various terms of the salinity budget, including the dilution effect due to air-sea fluxes of freshwater, fluxes of salt due to sea ice formation/melting, and ocean fluxes of salinity associated with advective and diffusive processes. We use an ocean state estimate produced by the ECCO consortium to consider the budgets over the period 1992-2011. ECCO estimates produce salinity fields close to the observations and, crucial for our purposes, permit closed budget diagnostics of salinity and respective fluxes. The budgets are formulated within the entire water column in order to examine three-dimensional structure of freshwater storage and establish a link between the surface and upper-ocean change in near-Greenland waters. Over the past two decades, patterns of change are evident in all budget terms, with ocean fluxes either offsetting or enhancing surface forcing, including the effects of sea ice dynamics. Interpretation is provided within the context of a changing climate, including intensification of the hydrological cycle and weakening of ocean transports and overturning, as well as natural decadal-to-interdacadal variability present in the system.

  5. Biological filter capable of simultaneous nitrification and denitrification for Aquatic Habitat in International Space Station

    NASA Astrophysics Data System (ADS)

    Uemoto, H.; Shoji, T.; Uchida, S.

    2014-04-01

    The biological filter capable of simultaneous nitrification and denitrification was constructed for aquatic animal experiments in the International Space Station (ISS). The biological filter will be used to remove harmful ammonia excreted from aquatic animals in a closed water circulation system (Aquatic Habitat). The biological filter is a cylindrical tank packed with porous glass beads for nitrification and dual plastic bags for denitrification. The porous beads are supporting media for Nitrosomonas europaea and Nitrobacter winogradskyi. The N. europaea cells and N. winogradskyi cells on the porous beads, oxidize the excreted ammonia to nitrate via nitrite. On the other hand, the dual bag is composed of an outer non-woven fabric bag and an inner non-porous polyethylene film bag. The outer bag is supporting media for Paracoccus pantotrophus. The inner bag, in which 99.5% ethanol is packed, releases the ethanol slowly, since ethanol can permeate through the non-porous polyethylene film. The P. pantotrophus cells on the outer bag reduce the produced nitrate to nitrogen gas by using the released ethanol as an electron donor for denitrification. The biological filter constructed in this study consequently removed the ammonia without accumulating nitrate. Most of the excess ethanol was consumed and did not affect the nitrification activity of the N. europaea cells and N. winogradskyi cells severely. In accordance with the aquatic animal experiments in the ISS, small freshwater fish had been bred in the closed water circulation system equipped with the biological filter for 90 days. Ammonia concentration daily excreted from fish is assumed to be 1.7 mg-N/L in the recirculation water. Under such conditions, the harmful ammonia and nitrite concentrations were kept below 0.1 mg-N/L in the recirculation water. Nitrate and total organic carbon concentrations in the recirculation water were kept below 5 mg-N/L and 3 mg-C/L, respectively. All breeding fish were alive and ate the feed well. The results show that the nitrification and denitrification abilities of the biological filter sufficed to keep water quality for aquatic animal experiments in the ISS. This simple and effective system is certainly applicable to aquarium systems and aquaculture systems.

  6. Measurement of central venous pressure and determination of hormones in blood serum during weightlessness

    NASA Technical Reports Server (NTRS)

    Kirsch, K.

    1981-01-01

    A Spacelab experiment is described which proposes to obtain data on the degree of engorgement of the cephalad circulation during weightlessness by recording central venous pressure. Of practical importance is the question of how close the astronauts are to pulmonary edema and whether the pressure falls toward normal during the time of the mission. Another experiment to investigate deviations from normal fluid and mineral metabolism, possibly initiated by the central engorgement of the low pressure system, is discussed. Hormones responsible for the control of water and mineral balance (vasopressin, catecholamines, renin, aldosterone, corticosteroids, and prostaglandin E1) will be analyzed from blood samples.

  7. Pacific western boundary currents and their roles in climate.

    PubMed

    Hu, Dunxin; Wu, Lixin; Cai, Wenju; Gupta, Alex Sen; Ganachaud, Alexandre; Qiu, Bo; Gordon, Arnold L; Lin, Xiaopei; Chen, Zhaohui; Hu, Shijian; Wang, Guojian; Wang, Qingye; Sprintall, Janet; Qu, Tangdong; Kashino, Yuji; Wang, Fan; Kessler, William S

    2015-06-18

    Pacific Ocean western boundary currents and the interlinked equatorial Pacific circulation system were among the first currents of these types to be explored by pioneering oceanographers. The widely accepted but poorly quantified importance of these currents-in processes such as the El Niño/Southern Oscillation, the Pacific Decadal Oscillation and the Indonesian Throughflow-has triggered renewed interest. Ongoing efforts are seeking to understand the heat and mass balances of the equatorial Pacific, and possible changes associated with greenhouse-gas-induced climate change. Only a concerted international effort will close the observational, theoretical and technical gaps currently limiting a robust answer to these elusive questions.

  8. Improvement of the GEOS-5 AGCM upon Updating the Air-Sea Roughness Parameterization

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Molod, A.; Oman, L. D.; Song, I.-S.

    2011-01-01

    The impact of an air-sea roughness parameterization over the ocean that more closely matches recent observations of air-sea exchange is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their air-sea roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.

  9. Coupled climate impacts of the Drake Passage and the Panama Seaway

    NASA Astrophysics Data System (ADS)

    Yang, Simon; Galbraith, Eric; Palter, Jaime

    2014-07-01

    Tectonically-active gateways between ocean basins have modified ocean circulation over Earth history. Today, the Atlantic and Pacific are directly connected via the Drake Passage, which forms a barrier to the time-mean geostrophic transport between the subtropics and Antarctica. In contrast, during the warm early Cenozoic era, when Antarctica was ice-free, the Drake Passage was closed. Instead, at that time, the separation of North and South America provided a tropical seaway between the Atlantic and Pacific that remained open until the Isthmus of Panama formed in the relatively recent geological past. Ocean circulation models have previously been used to explore the individual impacts of the Drake Passage and the Panama Seaway, but rarely have the two gateways been considered together, and most explorations have used very simple atmospheric models. Here we use a coupled ocean-ice-atmosphere model (GFDL's CM2Mc), to simulate the impacts of a closed Drake Passage both with and without a Panama Seaway. We find that the climate response to a closed Drake Passage is relatively small when the Panama Seaway is absent, similar to prior studies, although the coupling to a dynamical atmosphere does increase the temperature change. However, with a Panama Seaway, closing Drake Passage has a much larger effect, due to the cessation of deep water formation in the northern hemisphere. Both gateways alter the transport of salt by ocean circulation, with the Panama Seaway allowing fresh Pacific water to be imported to the North Atlantic, and the Drake Passage preventing the flow of saline subtropical water to the circum-Antarctic, a flow that is particularly strong when the Panama Seaway is open. Thus, with a Panama Seaway and a closed Drake Passage, the Southern Ocean tends to be relatively salty, while the North Atlantic tends to be relatively fresh, such that the deep ocean is ventilated from the circum-Antarctic. Ensuing changes in the ocean heat transport drive a bi-polar shift of surface ocean temperatures, and the Intertropical Convergence Zone migrates toward the warmer southern hemisphere. The response of clouds to changes in surface ocean temperatures amplifies the climate response, resulting in temperature changes of up to 9 °C over Antarctica, even in the absence of land-ice feedbacks. These results emphasize the importance of tectonic gateways to the climate history of the Cenozoic, and support a role for ocean circulation changes in the glaciation of Antarctica.

  10. Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content

    NASA Astrophysics Data System (ADS)

    Piecuch, Christopher G.; Ponte, Rui M.; Little, Christopher M.; Buckley, Martha W.; Fukumori, Ichiro

    2017-09-01

    The subpolar North Atlantic (SPNA) is subject to strong decadal variability, with implications for surface climate and its predictability. In 2004-2005, SPNA decadal upper ocean and sea-surface temperature trends reversed from warming during 1994-2004 to cooling over 2005-2015. This recent decadal trend reversal in SPNA ocean heat content (OHC) is studied using a physically consistent, observationally constrained global ocean state estimate covering 1992-2015. The estimate's physical consistency facilitates quantitative causal attribution of ocean variations. Closed heat budget diagnostics reveal that the SPNA OHC trend reversal is the result of heat advection by midlatitude ocean circulation. Kinematic decompositions reveal that changes in the deep and intermediate vertical overturning circulation cannot account for the trend reversal, but rather ocean heat transports by horizontal gyre circulations render the primary contributions. The shift in horizontal gyre advection reflects anomalous circulation acting on the mean temperature gradients. Maximum covariance analysis (MCA) reveals strong covariation between the anomalous horizontal gyre circulation and variations in the local wind stress curl, suggestive of a Sverdrup response. Results have implications for decadal predictability.

  11. Topographic enhancement of vertical turbulent mixing in the Southern Ocean

    PubMed Central

    Mashayek, A.; Ferrari, R.; Merrifield, S.; Ledwell, J. R.; St Laurent, L.; Garabato, A. Naveira

    2017-01-01

    It is an open question whether turbulent mixing across density surfaces is sufficiently large to play a dominant role in closing the deep branch of the ocean meridional overturning circulation. The diapycnal and isopycnal mixing experiment in the Southern Ocean found the turbulent diffusivity inferred from the vertical spreading of a tracer to be an order of magnitude larger than that inferred from the microstructure profiles at the mean tracer depth of 1,500 m in the Drake Passage. Using a high-resolution ocean model, it is shown that the fast vertical spreading of tracer occurs when it comes in contact with mixing hotspots over rough topography. The sparsity of such hotspots is made up for by enhanced tracer residence time in their vicinity due to diffusion toward weak bottom flows. The increased tracer residence time may explain the large vertical fluxes of heat and salt required to close the abyssal circulation. PMID:28262808

  12. Ecosystem behavior at Bermuda Station [open quotes]S[close quotes] and ocean weather station [open quotes]India[close quotes]: A general circulation model and observational analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasham, M.J.R.; Sarmiento, J.L.; Slater, R.D.

    1993-06-01

    One important theme of modern biological oceanography has been the attempt to develop models of how the marine ecosystem responds to variations in the physical forcing functions such as solar radiation and the wind field. The authors have addressed the problem by embedding simple ecosystem models into a seasonally forced three-dimensional general circulation model of the North Atlantic ocean. In this paper first, some of the underlying biological assumptions of the ecosystem model are presented, followed by an analysis of how well the model predicts the seasonal cycle of the biological variables at Bermuda Station s' and Ocean Weather Stationmore » India. The model gives a good overall fit to the observations but does not faithfully model the whole seasonal ecosystem model. 57 refs., 25 figs., 5 tabs.« less

  13. The impact of the ocean observing system on estimates of the California current circulation spanning three decades

    NASA Astrophysics Data System (ADS)

    Moore, Andrew M.; Jacox, Michael G.; Crawford, William J.; Laughlin, Bruce; Edwards, Christopher A.; Fiechter, Jérôme

    2017-08-01

    Data assimilation is now used routinely in oceanography on both regional and global scales for computing ocean circulation estimates and for making ocean forecasts. Regional ocean observing systems are also expanding rapidly, and observations from a wide array of different platforms and sensor types are now available. Evaluation of the impact of the observing system on ocean circulation estimates (and forecasts) is therefore of considerable interest to the oceanographic community. In this paper, we quantify the impact of different observing platforms on estimates of the California Current System (CCS) spanning a three decade period (1980-2010). Specifically, we focus attention on several dynamically related aspects of the circulation (coastal upwelling, the transport of the California Current and the California Undercurrent, thermocline depth and eddy kinetic energy) which in many ways describe defining characteristics of the CCS. The circulation estimates were computed using a 4-dimensional variational (4D-Var) data assimilation system, and our analyses also focus on the impact of the different elements of the control vector (i.e. the initial conditions, surface forcing, and open boundary conditions) on the circulation. While the influence of each component of the control vector varies between different metrics of the circulation, the impact of each observing system across metrics is very robust. In addition, the mean amplitude of the circulation increments (i.e. the difference between the analysis and background) remains relatively stable throughout the three decade period despite the addition of new observing platforms whose impact is redistributed according to the relative uncertainty of observations from each platform. We also consider the impact of each observing platform on CCS circulation variability associated with low-frequency climate variability. The low-frequency nature of the dominant climate modes in this region allows us to track through time the impact of each observation on the circulation, and illustrates how observations from some platforms can influence the circulation up to a decade into the future.

  14. Automated Circulation Systems as a Source of Secondary Information.

    ERIC Educational Resources Information Center

    Chapin, Giny Ziegler

    This report looks at the use of public library online circulation systems for the generation of in-house secondary information--such as statistical reports and mailing lists--and also considers problems in maintaining confidentiality of patron records when using online circulation systems. Based on a survey of the literature, general information…

  15. On-Line Circulation: University of Guelph Library. Report No. 8.

    ERIC Educational Resources Information Center

    Beckman, Margaret; And Others

    This report describes the development, design, and evaluation of an online circulation system at the University of Guelph, Ontario. A 1976 study identified the specific problems or inadequacies of the existing circulation system and specified design requirements for a new online system. This 1978 report is divided into six parts: (1) historical…

  16. 78 FR 19606 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnace Fans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... electrically-powered devices used in central HVAC systems for the purposes of circulating air through ductwork...- powered device used in a central HVAC system for the purpose of circulating air through ductwork. DOE... included single-phase, electrically-powered devices that circulate air through ductwork in HVAC systems...

  17. A Low-Cost, Efficient, Machine-Assisted Manual Circulation System

    ERIC Educational Resources Information Center

    Stangl, Peter

    1975-01-01

    A circulation system uses plastic embossed user cards, an addressograph electric imprinter, a copy of the catalog card as a book card, and a pocket imprinted by the user's card and holding the book card during circulation. (LS)

  18. Identifying three-dimensional nested groundwater flow systems in a Tóthian basin

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Sheng; Wan, Li; Jiang, Xiao-Wei; Li, Hailong; Zhou, Yangxiao; Wang, Junzhi; Ji, Xiaohui

    2017-10-01

    Nested groundwater flow systems have been revealed in Tóth's theory as the structural property of basin-scale groundwater circulation but were only well known with two-dimensional (2D) profile models. The method of searching special streamlines across stagnation points for partitioning flow systems, which has been successfully applied in the 2D models, has never been implemented for three-dimensional (3D) Tóthian basins because of the difficulty in solving the dual stream functions. Alternatively, a new method is developed to investigate 3D nested groundwater flow systems without determination of stagnation points. Connective indices are defined to quantify the connection between individual recharge and discharge zones along streamlines. Groundwater circulation cells (GWCCs) are identified according to the distribution of the connective indices and then grouped into local, intermediate and regional flow systems. This method requires existing solution of the flow velocity vector and is implemented via particle tracking technique. It is applied in a hypothetical 3D Tóthian basin with an analytical solution of the flow field and in a real-world basin with a numerical modeling approach. Different spatial patterns of flow systems compared to 2D profile models are found. The outcrops boundaries of GWCCs on water table may significantly deviate from and are not parallel to the nearby water table divides. Topological network is proposed to represent the linked recharge-discharge zones through closed and open GWCCs. Sensitivity analysis indicates that the development of GWCCs depends on the basin geometry, hydraulic parameters and water table shape.

  19. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    NASA Astrophysics Data System (ADS)

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO). Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from Garcez Faria et al. (1998, 2000). Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).

  20. Influence of the direct NO-donor SIN-1 on the interaction between platelets and stainless steel stents under dynamic conditions.

    PubMed

    Jung, F; Mrowietz, C; Seyfert, U T; Grewe, R; Franke, R P

    2003-01-01

    It was investigated whether the NO-donor SIN-1, the active metabolite of molsidomine, influenced the activation of platelets, the formation of circulating platelet aggregates, the spontaneous aggregation of platelets and the activation of the clotting system triggered by a body foreign surface in an in vitro closed-loop perfusion model. With human platelet-rich plasma at micromolar concentrations SIN-1 exerted pronounced effects on the interaction between platelets and an exogenous surface. In the absence of SIN-1, the number of circulating single platelets decreased significantly, which could be due either to the formation of circulating platelet aggregates or to the adhesion of platelets to the stent. Both these processes were blocked by the addition of SIN-1. Moreover, the platelets exhibited hyperaggregability in the absence of SIN-1 whereas the NO-donor was able to completely inhibit spontaneous platelet aggregation. Similar results were obtained in flow cytometry experiments. Without SIN-1, high platelet surface densities of both the GPIb/IX and GPIIb/IIIa receptors were observed. In addition, the density of the fibrinogen receptor increased significantly with the number of perfusion cycles. SIN-1 was able to suppress the augmented GPIIb/IIIa receptor expression significantly. Molsidomine seemed to have the potential to reduce the incidence of thrombotic processes triggered by the exogenous surface of the stent.

  1. Ocean-Ice Sheet Interactions in the Norwegian Sea and Teleconnections to Low Latitude Hydrology and Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Brendryen, J.; Hannisdal, B.; Haaga, K. A.; Haflidason, H.; Castro, D. D.; Grasmo, K. J.; Sejrup, H. P.; Edwards, R. L.; Cheng, H.; Kelly, M. J.; Lu, Y.

    2016-12-01

    Abrupt millennial scale climatic events known as Dansgaard-Oeschger events are a defining feature of the Quaternary climate system dynamics in the North Atlantic and beyond. We present a high-resolution multi-proxy record of ocean-ice sheet interactions in the Norwegian Sea spanning the interval between 50 and 150 ka BP. A comparison with low latitude records indicates a very close connection between the high northern latitude ocean-ice sheet interactions and large scale changes in low latitude atmospheric circulation and hydrology even on sub-millennial scales. The records are placed on a common precise radiometric chronology based on correlations to U/Th dated speleothem records from China and the Alps. This enables a comparison of the records to orbital and other climatically important parameters such as U/Th dated sea-level data from corals and speleothems. We explore the drive-response relationships in these coupled systems with the information transfer (IT) and the convergent cross mapping (CCM) analytical techniques. These methods employ conceptually different approaches to detect the relative strength and directionality of potentially chaotic and nonlinearly coupled systems. IT is a non-parametric measure of information transfer between data records based on transfer entropy, while CCM relies on delay reconstructions using Takens' theorem. This approach enables us to address how the climate system processes interact and how this interaction is affected by external forcing from for example greenhouse gases and orbital variability.

  2. Fundamental Characterization of Spanwise Loading and Trailed Wake Vortices

    DTIC Science & Technology

    2016-07-01

    the close interaction of the tip vortex with a following blade . Such vortex interactions are fundamental determinants of rotor performance, loads, and...wing loading distribution differs from a typical loading on a hovering rotor blade in that the maximum bound circulation occurs at the blade root...and not close to the tip; this is similar to a very highly twisted rotor blade , like a tilt-rotor, in hover. The wing-vortex interaction alters the

  3. A theoretical model of the variation of the meridional circulation with the solar cycle

    NASA Astrophysics Data System (ADS)

    Hazra, Gopal; Choudhuri, Arnab Rai

    2017-12-01

    Observations of the meridional circulation of the Sun, which plays a key role in the operation of the solar dynamo, indicate that its speed varies with the solar cycle, becoming faster during the solar minima and slower during the solar maxima. To explain this variation of the meridional circulation with the solar cycle, we construct a theoretical model by coupling the equation of the meridional circulation (the ϕ component of the vorticity equation within the solar convection zone) with the equations of the flux transport dynamo model. We consider the back reaction due to the Lorentz force of the dynamo-generated magnetic fields and study the perturbations produced in the meridional circulation due to it. This enables us to model the variations of the meridional circulation without developing a full theory of the meridional circulation itself. We obtain results which reproduce the observational data of solar cycle variations of the meridional circulation reasonably well. We get the best results on assuming the turbulent viscosity acting on the velocity field to be comparable to the magnetic diffusivity (i.e. on assuming the magnetic Prandtl number to be close to unity). We have to assume an appropriate bottom boundary condition to ensure that the Lorentz force cannot drive a flow in the subadiabatic layers below the bottom of the tachocline. Our results are sensitive to this bottom boundary condition. We also suggest a hypothesis on how the observed inward flow towards the active regions may be produced.

  4. The "benefits" of the mini-extracorporeal circulation in the minimal invasive cardiac surgery era.

    PubMed

    Baikoussis, Nikolaos G; Papakonstantinou, Nikolaos A; Apostolakis, Efstratios

    2014-06-01

    Mini-extracorporeal circulation (MECC) constitutes a novel miniaturized cardiopulmonary bypass (CPB) circuit, heparin-coated and primed with aprotinin. Its membrane oxygenation is similar to conventional cardio-pulmonary bypass (CCPB), but it is a completely closed-volume system due to the lack of the venous reservoir which has been removed. In a mini circuit, the reservoir is the patient himself. Consequently, air entering the venous cannula is avoided. Nevertheless, the capabilities of MECC have been expanded either by the inclusion of a suction device that is only activated on direct contact with liquid in some circuits or by postoperative autotransfusion of the wrecked erythrocytes by a separate suction device with a cell-saver. Although the tubing diameter is similar between the two systems, the tubing length of the MECC is around half that of the CCPB, resulting in the restriction of priming volume. As a consequence, a higher hematocrit thus a limited need for perioperative blood transfusion is achieved due to less hemodilution. In addition, the inflammatory response is also diminished as a result of less artificial surface area interacting with blood. Finally, a lower dose of heparin is required prior to MECC than prior to CCPB. Copyright © 2014 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  5. Optoacoustic measurements of human placenta and umbilical blood oxygenation

    NASA Astrophysics Data System (ADS)

    Nanovskaya, T. N.; Petrov, I. Y.; Petrov, Y.; Patrikeeva, S. L.; Ahmed, M. S.; Hankins, G. D. V.; Prough, D. S.; Esenaliev, R. O.

    2016-03-01

    Adequate oxygenation is essential for normal embryogenesis and fetal growth. Perturbations in the intrauterine oxidative environment during pregnancy are associated with several pathophysiological disorders such as pregnancy loss, preeclampsia, and intrauterine growth restriction. We proposed to use optoacoustic technology for monitoring placental and fetal umbilical blood oxygenation. In this work, we studied optoacoustic monitoring of oxygenation in placenta and umbilical cord blood ex vivo using technique of placenta perfusion. We used a medical grade, nearinfrared, tunable, optoacoustic system developed and built for oxygenation monitoring in blood vessels and in tissues. First, we calibrated the system for cord blood oxygenation measurements by using a CO-Oximeter (gold standard). Then we performed validation in cord blood circulating through the catheters localized on the fetal side of an isolated placental lobule. Finally, the oxygenation measurements were performed in the perfused placental tissue. To increase or decrease blood oxygenation, we used infusion of a gas mixture of 95% O2 + 5% CO2 and 95% N2 + 5% CO2, respectively. In placental tissue, up to four cycles of changes in oxygenation were performed. The optoacoustically measured oxygenation in circulating cord blood and in placental lobule closely correlated with the actual oxygenation data measured by CO-Oximeter. We plan to further test the placental and cord blood oxygenation monitoring with optoacoustics in animal and clinical studies.

  6. A Theory of Money and Financial Institutions. Part IV. Fiat Money and Noncooperative Equilibrium in a Closed Economy,

    DTIC Science & Technology

    microeconomies ; Inflation and deflation; Transactions costs; The velocity of circulation and the quantity of money; A moncooperative game for the money market; Taxation, gross national product and welfare.

  7. Achieving Closure for Bioregenerative Life Support Systems: Engineering and Ecological Challenges, Research Opportunities

    NASA Astrophysics Data System (ADS)

    Dempster, William; Allen, John P.

    Closed systems are desirable for a number of purposes: space life support systems where precious life-supporting resources need to be kept inside; biospheric systems; where global ecological pro-cesses can be studied in great detail and testbeds where research topics requiring isolation from the outside (e.g. genetically modified organisms; radioisotopes) can be studied in isolation from the outside environment and where their ecological interactions and fluxes can be studied. But to achieve and maintain closure raises both engineering and ecological challenges. Engineering challenges include methods of achieving closure for structures of different materials, and devel-oping methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is devel-oping means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differen-tials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro-and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosys-tems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.

  8. A Theory For The Variability of The Baroclinic Quasi-geostrophic Winnd Driven Circulation.

    NASA Astrophysics Data System (ADS)

    Ben Jelloul, M.; Huck, T.

    We propose a theory of the wind driven circulation based on the large scale (i.e. small Burger number) quasi-geostrophic assumptions retained in the Rhines and Young (1982) classical study of the steady baroclinic flow. We therefore use multiple time scale and asymptotic expansions to separate steady and the time dependent component of the flow. The barotropic flow is given by the Sverdrup balance. At first order in Burger number, the baroclinic flow can be decom- posed in two parts. A steady contribution ensures no flow in the deep layer which is at rest in absence of dissipative processes. Since the baroclinic instability is inhibited at large scale a spectrum of neutral modes also arises. These are of three type, classical Rossby basin modes deformed through advection by the barotropic flow, recirculating modes localized in the recirculation gyre and blocked modes corresponding to closed potential vorticity contours. At next order in Burger number, amplitude equations for baroclinic modes are derived. If dissipative processes are included at this order, the system adjusts towards Rhines and Young solution with a homogenized potential vorticity pool.

  9. Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo

    PubMed Central

    White, JD; Thesier, DM; Swain, JBD; Katz, MG; Tomasulo, C; Henderson, A; Wang, L; Yarnall, C; Fargnoli, A; Sumaroka, M; Isidro, A; Petrov, M; Holt, D; Nolen-Walston, R; Koch, WJ; Stedman, HH; Rabinowitz, J; Bridges, CR

    2013-01-01

    We use a novel technique that allows for closed recirculation of vector genomes in the cardiac circulation using cardiopulmonary bypass, referred to here as molecular cardiac surgery with recirculating delivery (MCARD). We demonstrate that this platform technology is highly efficient in isolating the heart from the systemic circulation in vivo. Using MCARD, we compare the relative efficacy of single-stranded (ss) adeno-associated virus (AAV)6, ssAAV9 and self-complimentary (sc)AAV6-encoding enhanced green fluorescent protein, driven by the constitutive cytomegalovirus promoter to transduce the ovine myocardium in situ. MCARD allows for the unprecedented delivery of up to 48 green fluorescent protein genome copies per cell globally in the sheep left ventricular (LV) myocardium. We demonstrate that scAAV6-mediated MCARD delivery results in global, cardiac-specific LV gene expression in the ovine heart and provides for considerably more robust and cardiac-specific gene delivery than other available delivery techniques such as intramuscular injection or intracoronary injection; thus, representing a potential, clinically translatable platform for heart failure gene therapy. PMID:21228882

  10. Adding the 'heart' to hanging drop networks for microphysiological multi-tissue experiments.

    PubMed

    Rismani Yazdi, Saeed; Shadmani, Amir; Bürgel, Sebastian C; Misun, Patrick M; Hierlemann, Andreas; Frey, Olivier

    2015-11-07

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid-air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip.

  11. MOCASSIM - an operational forecast system for the Portuguese coastal waters.

    NASA Astrophysics Data System (ADS)

    Vitorino, J.; Soares, C.; Almeida, S.; Rusu, E.; Pinto, J.

    2003-04-01

    An operational system for the forecast of oceanographic conditions off the Portuguese coast is presently being implemented at Instituto Hidrográfico (IH), in the framework of project MOCASSIM. The system is planned to use a broad range of observations provided both from IH observational networks (wave buoys, tidal gauges) and programs (hydrographic surveys, moorings) as well as from external sources. The MOCASSIM system integrates several numerical models which, combined, are intended to cover the relevant physical processes observed in the geographical areas of interest. At the present stage of development the system integrates a circulation module and a wave module. The circulation module is based on the Harvard Ocean Prediction System (HOPS), a primitive equation model formulated under the rigid lid assumption, which includes a data assimilation module. The wave module is based on the WaveWatch3 (WW3) model, which provides wave conditions in the North Atlantic basin, and on the SWAN model which is used to improve the wave forecasts on coastal or other specific areas of interest. The models use the meteorological forcing fields of a limited area model (ALADIN model) covering the Portuguese area, which are being provided in the framework of a close colaboration with Instituto de Meteorologia. Although still under devellopment, the MOCASSIM system has already been used in several operationnal contexts. These included the operational environmental assessment during both national and NATO navy exercises and, more recently, the monitoring of the oceanographic conditions in the NW Iberian area affected by the oil spill of MV "Prestige". The system is also a key component of ongoing research on the oceanography of the Portuguese continental margin, which is presently being conducted at IH in the framework of national and European funded projects.

  12. Resistance distance and Kirchhoff index in circulant graphs

    NASA Astrophysics Data System (ADS)

    Zhang, Heping; Yang, Yujun

    The resistance distance rij between vertices i and j of a connected (molecular) graph G is computed as the effective resistance between nodes i and j in the corresponding network constructed from G by replacing each edge of G with a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all pairs of vertices. In this work, closed-form formulae for Kirchhoff index and resistance distances of circulant graphs are derived in terms of Laplacian spectrum and eigenvectors. Special formulae are also given for four classes of circulant graphs (complete graphs, complete graphs minus a perfect matching, cycles, Möbius ladders Mp). In particular, the asymptotic behavior of Kf(Mp) as p ? ? is obtained, that is, Kf(Mp) grows as ⅙p3 as p ? ?.

  13. System Analysis for Decay Heat Removal in Lead-Bismuth Cooled Natural Circulated Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takaaki Sakai; Yasuhiro Enuma; Takashi Iwasaki

    2002-07-01

    Decay heat removal analyses for lead-bismuth cooled natural circulation reactors are described in this paper. A combined multi-dimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural circulation reactors. For the preliminary study, transient analysis has been performed for a 100 MWe lead-bismuth-cooled reactor designed by Argonne National Laboratory (ANL). In addition, decay heat removal characteristics of a 400 MWe lead-bismuth-cooled natural circulation reactor designed by Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. PRACS (Primary Reactor Auxiliary Cooling System) is prepared for the JNC's concept to get sufficient heatmore » removal capacity. During 2000 sec after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 Centigrade, because the buoyancy force in a primary circulation path is temporary reduced. However, the natural circulation is recovered by the PRACS system and the out let temperature decreases successfully. (authors)« less

  14. System Analysis for Decay Heat Removal in Lead-Bismuth-Cooled Natural-Circulation Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Takaaki; Enuma, Yasuhiro; Iwasaki, Takashi

    2004-03-15

    Decay heat removal analyses for lead-bismuth-cooled natural-circulation reactors are described in this paper. A combined multidimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural-circulation reactors. For the preliminary study, transient analysis has been performed for a 300-MW(thermal) lead-bismuth-cooled reactor designed by Argonne National Laboratory. In addition, decay heat removal characteristics of a 400-MW(electric) lead-bismuth-cooled natural-circulation reactor designed by the Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. The primary reactor auxiliary cooling system (PRACS) is prepared for the JNC concept to get sufficient heat removal capacity. During 2000 smore » after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 deg. C because the buoyancy force in a primary circulation path is temporarily reduced. However, the natural circulation is recovered by the PRACS system, and the outlet temperature decreases successfully.« less

  15. Single-Chip T/R Module for 1.2 GHz

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Mojarradi, Mohammad; Johnson, Travis; Davis, John; Grigorian, Edwin; Hoffman, James; Caro, Edward; Kuhn, William

    2006-01-01

    A single-chip CMOS-based (complementary-metal-oxide-semiconductorbased) transmit/receive (T/R) module is being developed for L-band radar systems. Previous T/R module implementations required multiple chips employing different technologies (GaAs, Si, and others) combined with off-chip transmission lines and discrete components including circulators. The new design eliminates the bulky circulator, significantly reducing the size and mass of the T/R module. Compared to multi-chip designs, the single-chip CMOS can be implemented with lower cost. These innovations enable cost-effective realization of advanced phased array and synthetic aperture radar systems that require integration of thousands of T/R modules. The circulator is a ferromagnetic device that directs the flow of the RF (radio frequency) power during transmission and reception. During transmission, the circulator delivers the transmitted power from the amplifier to the antenna, while preventing it from damaging the sensitive receiver circuitry. During reception, the circulator directs the energy from the antenna to the low-noise amplifier (LNA) while isolating the output of the power amplifier (PA). In principle, a circulator could be replaced by series transistors acting as electronic switches. However, in practice, the integration of conventional series transistors into a T/R chip introduces significant losses and noise. The prototype single-chip T/R module contains integrated transistor switches, but not connected in series; instead, they are connected in a shunt configuration with resonant circuits (see figure). The shunt/resonant circuit topology not only reduces the losses associated with conventional semiconductor switches but also provides beneficial transformation of impedances for the PA and the LNA. It provides full singlepole/ double-throw switching for the antenna, isolating the LNA from the transmitted signal and isolating the PA from the received signal. During reception, the voltage on control line RX/TX (raised bar) is high, causing the field-effect transistor (FET) switch S1 to be closed, forming a parallel resonant tank circuit L1||C1. This circuit presents high impedance to the left of the antenna, so that the received signal is coupled to the LNA. At the same time, FET switches S2 and S3 are open, so that C2 is removed from the circuit (except for a small parasitic capacitance). The combination of L2 and C3 forms a matching network that transforms the antenna impedance of 50 ohms to a higher value from the perspective of the LNA input terminal. This transformation of impedance improves LNA noise figure by increasing the received voltage delivered to the input transistor. This allows lower transconductance and therefore a smaller transistor, which makes it possible to design the CMOS LNA for low power consumption. During transmission, the voltage on control line RX/TX (raised bar) is low, causing switch S1 to be open. In this configuration, the combination of L1 and C1 transforms the antenna impedance to a lower value from the perspective of the PA. This low impedance is helpful in producing a relatively high output power compatible with the low CMOS operating potential. At the same time, switches S2 and S3 are closed, forming the parallel resonant tank circuit L2||C2. This circuit presents high impedance to the right of the antenna, directing the PA output signal to the antenna and away from the LNA. During this time, S3 presents a short circuit across the LNA input terminals to guarantee that the voltage seen by the LNA is small enough to prevent damage.

  16. Functional morphology and patterns of blood flow in the heart of Python regius.

    PubMed

    Starck, J Matthias

    2009-06-01

    Brightness-modulated ultrasonography, continuous-wave Doppler, and pulsed-wave Doppler-echocardiography were used to analyze the functional morphology of the undisturbed heart of ball pythons. In particular, the action of the muscular ridge and the atrio-ventricular valves are key features to understand how patterns of blood flow emerge from structures directing blood into the various chambers of the heart. A step-by-step image analysis of echocardiographs shows that during ventricular diastole, the atrio-ventricular valves block the interventricular canals so that blood from the right atrium first fills the cavum venosum, and blood from the left atrium fills the cavum arteriosum. During diastole, blood from the cavum venosum crosses the muscular ridge into the cavum pulmonale. During middle to late systole the muscular ridge closes, thus prohibiting further blood flow into the cavum pulmonale. At the same time, the atrio-ventricular valves open the interventricular canal and allow blood from the cavum arteriosum to flow into the cavum venosum. In the late phase of ventricular systole, all blood from the cavum pulmonale is pressed into the pulmonary trunk; all blood from the cavum venosum is pressed into both aortas. Quantitative measures of blood flow volume showed that resting snakes bypass the pulmonary circulation and shunt about twice the blood volume into the systemic circulation as into the pulmonary circulation. When digesting, the oxygen demand of snakes increased tremendously. This is associated with shunting more blood into the pulmonary circulation. The results of this study allow the presentation of a detailed functional model of the python heart. They are also the basis for a functional hypothesis of how shunting is achieved. Further, it was shown that shunting is an active regulation process in response to changing demands of the organism (here, oxygen demand). Finally, the results of this study support earlier reports about a dual pressure circulation in Python regius.

  17. Circulating monocyte chemoattractant protein‐1 (MCP‐1) is associated with cachexia in treatment‐naïve pancreatic cancer patients

    PubMed Central

    Talbert, Erin E.; Lewis, Heather L.; Farren, Matthew R.; Ramsey, Mitchell L.; Chakedis, Jeffery M.; Rajasekera, Priyani; Haverick, Ericka; Sarna, Angela; Bloomston, Mark; Pawlik, Timothy M.; Zimmers, Teresa A.; Lesinski, Gregory B.; Hart, Phil A.; Dillhoff, Mary E.; Schmidt, Carl R.

    2018-01-01

    Abstract Background Cancer‐associated wasting, termed cancer cachexia, has a profound effect on the morbidity and mortality of cancer patients but remains difficult to recognize and diagnose. While increases in circulating levels of a number of inflammatory cytokines have been associated with cancer cachexia, these associations were generally made in patients with advanced disease and thus may be associated with disease progression rather than directly with the cachexia syndrome. Thus, we sought to assess potential biomarkers of cancer‐induced cachexia in patients with earlier stages of disease. Methods A custom multiplex array was used to measure circulating levels of 25 soluble factors from 70 pancreatic cancer patients undergoing attempted tumour resections. A high‐sensitivity multiplex was used for increased sensitivity for nine cytokines. Results Resectable pancreatic cancer patients with cachexia had low levels of canonical pro‐inflammatory cytokines including interleukin‐6 (IL‐6), interleukin‐1β (IL‐1β), interferon‐γ (IFN‐γ), and tumour necrosis factor (TNF). Even in our more sensitive analysis, these cytokines were not associated with cancer cachexia. Of the 25 circulating factors tested, only monocyte chemoattractant protein‐1 (MCP‐1) was increased in treatment‐naïve cachectic patients compared with weight stable patients and identified as a potential biomarker for cancer cachexia. Although circulating levels of leptin and granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) were found to be decreased in the same cohort of treatment‐naïve cachectic patients, these factors were closely associated with body mass index, limiting their utility as cancer cachexia biomarkers. Conclusions Unlike in advanced disease, it is possible that cachexia in patients with resectable pancreatic cancer is not associated with high levels of classical markers of systemic inflammation. However, cachectic, treatment‐naïve patients have higher levels of MCP‐1, suggesting that MCP‐1 may be useful as a biomarker of cancer cachexia. PMID:29316343

  18. A blood circulation model for reference man

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    This paper describes a dynamic blood circulation model that predicts the movement and gradual dispersal of a bolus of material in the circulation after its intravascular injection into an adult human. The main purpose of the model is to improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The total blood volume is partitioned into the blood contents of 24 separate organs or tissues, right heart chambers, left heart chambers, pulmonary circulation, arterial outflow to the systemic tissues (aorta and large arteries), and venous return from the systemic tissues (large veins). As amore » compromise between physical reality and computational simplicity, the circulation of blood is viewed as a system of first-order transfers between blood pools, with the delay time depending on the mean transit time across the pool. The model allows consideration of incomplete, tissue-dependent extraction of material during passage through the circulation and return of material from tissues to plasma.« less

  19. Co-circulation and co-infections of all dengue virus serotypes in Hyderabad, India 2014.

    PubMed

    Vaddadi, K; Gandikota, C; Jain, P K; Prasad, V S V; Venkataramana, M

    2017-09-01

    The burden of dengue virus infections increased globally during recent years. Though India is considered as dengue hyper-endemic country, limited data are available on disease epidemiology. The present study includes molecular characterization of dengue virus strains occurred in Hyderabad, India, during the year 2014. A total of 120 febrile cases were recruited for this study, which includes only children and 41 were serologically confirmed for dengue positive infections using non-structural (NS1) and/or IgG/IgM ELISA tests. RT-PCR, nucleotide sequencing and evolutionary analyses were carried out to identify the circulating serotypes/genotypes. The data indicated a high percent of severe dengue (63%) in primary infections. Simultaneous circulation of all four serotypes and co-infections were observed for the first time in Hyderabad, India. In total, 15 patients were co-infected with more than one dengue serotype and 12 (80%) of them had severe dengue. One of the striking findings of the present study is the identification of serotype Den-1 as the first report from this region and this strain showed close relatedness to the Thailand 1980 strains but not to any of the strains reported from India until now. Phylogenetically, all four strains of the present study showed close relatedness to the strains, which are reported to be high virulent.

  20. Circulation of two Enterovirus C105 (EV-C105) lineages in Europe and Africa.

    PubMed

    Piralla, A; Daleno, C; Girello, A; Esposito, S; Baldanti, F

    2015-06-01

    The coding sequences of five human enterovirus (HEV)-C genotype 105 strains recovered in Italy, Romania and Burundi from patients with upper and lower respiratory tract infections were analysed and phylogenetically compared with other circulating HEV-C strains. The EV-C105 was closely related to EV-C109 and EV-C118 strains. The European strains were similar to other circulating EV-C105 strains, while the two African EV-C105 clustered in separate bootstrap-supported (>0.90) branches of the P2 and P3 region trees. Minor inconsistencies in the clustering pattern of EV-C105 in the capsid region (P1) and non-capsid region (P3) suggest that recombination may have occurred in EV-C105 group B viruses. In conclusion, phylogenetic analysis revealed the circulation of two distinct EV-C105 lineages in Europe and Africa. A different pattern of evolution could be hypothesized for the two EV-C105 lineages. © 2015 The Authors.

  1. Gynaecomastia complicating the treatment of myeloma.

    PubMed Central

    Large, D. M.; Jones, J. M.; Shalet, S. M.; Scarffe, J. H.; Gibbs, A. C.

    1983-01-01

    The hormonal mechanisms involved in the development of gynaecomastia accompanying the treatment of multiple myeloma in adult men have been investigated by studying levels of circulating testosterone (T), oestrone (EI), oestradiol (E2), sex-hormone binding globulin (SHBG), prolactin (PRL) and the gonadotrophins LH and FSH, before, during and after development of gynaecomastia in 4 men. These have been compared with 5 closely matched men who did not develop gynaecomastia during similar treatment for myeloma. Levels of circulating T fell, and levels of E1 and E2 rose during treatment periods in all subjects, and the changes were statistically significant in subjects developing gynaecomastia, which resolved as levels of sex steroid returned towards normal following cessation of treatment. We conclude that treatment of adult men for myeloma results in testicular dysfunction with a reduction in circulating T and a rise in circulating oestrogens. These changes are most marked in subjects developing gynaecomastia in whom the normal breast tissue is stimulated by a subtle, transient oestrogen:androgen imbalance in favour of oestrogens. PMID:6409138

  2. Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S. (Editor); Joslin, Ronald D. (Editor)

    2005-01-01

    As technological advances influence the efficiency and effectiveness of aerodynamic and hydrodynamic applications, designs and operations, this workshop was intended to address the technologies, systems, challenges and successes specific to Coanda driven circulation control in aerodynamics and hydrodynamics. A major goal of this workshop was to determine the 2004 state-of-the-art in circulation control and understand the roadblocks to its application. The workshop addressed applications, CFD, and experiments related to circulation control, emphasizing fundamental physics, systems analysis, and applied research. The workshop consisted of 34 single session oral presentations and written papers that focused on Naval hydrodynamic vehicles (e.g. submarines), Fixed Wing Aviation, V/STOL platforms, propulsion systems (including wind turbine systems), ground vehicles (automotive and trucks) and miscellaneous applications (e.g., poultry exhaust systems and vacuum systems). Several advanced CFD codes were benchmarked using a two-dimensional NCCR circulation control airfoil. The CFD efforts highlighted inconsistencies in turbulence modeling, separation and performance predictions.

  3. Slip stream apparatus and method for treating water in a circulating water system

    DOEpatents

    Cleveland, J.R.

    1997-03-18

    An apparatus is described for treating water in a circulating water system that has a cooling water basin which includes a slip stream conduit in flow communication with the circulating water system, a source of acid solution in flow communication with the slip stream conduit, and a decarbonator in flow communication with the slip stream conduit and the cooling water basin. In use, a slip stream of circulating water is drawn from the circulating water system into the slip stream conduit of the apparatus. The slip stream pH is lowered by contact with an acid solution provided from the source thereof. The slip stream is then passed through a decarbonator to form a treated slip stream, and the treated slip stream is returned to the cooling water basin. 4 figs.

  4. Public Library Automation Report: Circulation [and] Appendix.

    ERIC Educational Resources Information Center

    Gotanda, Masae; And Others

    An online circulation system--ULISYS (the Universal Library System Ltd.) manufactured by Digital Equipment Corporation (DEC)--is being installed in the Hawaii State Library, Kaneohe Regional Library, Kailua Community Library and Waimanalo Community/School Library. These libraries are the first users of a statewide online circulation system…

  5. High levels of 15-oxygenated steroids in circulation of patients with multiple sclerosis: fact or fiction?

    PubMed

    Björkhem, I; Lövgren-Sandblom, A; Piehl, F; Khademi, M; Pettersson, H; Leoni, V; Olsson, T; Diczfalusy, U

    2011-01-01

    15-Oxygenated cholesterol species such as 5α-cholest-8(14)ene-3β,15α-diol (15HC) and 3β-hydroxy-5α-cholest-8(14)-en-15-one (15KC) are commercially available synthetic products unlikely to occur in biological systems. Surprisingly, Farez et al. recently reported that these two steroids occur in human circulation at levels considerably higher than those of any other endogenous oxysterol [Farez, M. et al. 2009. Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat. Immunol. 10: 958-964]. The levels were reported to be increased in patients with multiple sclerosis in a progressive phase and the authors suggested that this could be utilized diagnostically. Based on extensive in vitro experiments exposing cells to the same high levels of 15HC as found in vivo (1000 ng/ml) the authors concluded that 15HC may be an important pathogenetic factor in multiple sclerosis. Using combined gas chromatography-mass spectrometry we fail to detect significant plasma levels of 15HC either in healthy controls or in patients with multiple sclerosis (levels < 2 ng/ml). If 15KC is present in these plasma samples, the concentration of it must be <10 ng/ml. Our failure to detect significant levels of the above steroids could not be due to loss during hydrolysis and work-up because recovery of the added two oxysterols was close to 100%. Autoxidation of lipoprotein-bound cholesterol resulted in extensive conversion of cholesterol into 7-oxygenated but not 15-oxygenated sterols. We conclude that if present there are trace amounts only of the above 15-oxygenated steroids in human circulation and that the role of such oxysterols as pathogenetic factors and biomarkers must be reconsidered.

  6. Assessing Northern Hemisphere Land-Atmosphere Hotspots Using Dynamical Adjustment

    NASA Astrophysics Data System (ADS)

    Merrifield, Anna; Lehner, Flavio; Deser, Clara; Xie, Shang-Ping

    2017-04-01

    Understanding the influence of soil moisture on surface air temperature (SAT) is made more challenging by large-scale, internal atmospheric variability present in the midlatitude summer atmosphere. In this study, dynamical adjustment is used to characterize and remove summer SAT variability associated with large-scale circulation patterns in the Community Earth System Model large ensemble (CESM-LE). The adjustment is performed over North America and Europe with two different circulation indicators: sea level pressure (SLP) and 500mb height (Z500). The removal of dynamical "noise" leaves residual SAT variability in the central U.S. and Mediterranean regions identified as hotspots of land-atmosphere interaction (e.g. Koster et al. 2004, Seneviratne et al. 2006). The residual SAT variability "signal" is not clearly related to modes of sea surface temperature (SST) variability, but is related to local soil moisture, evaporative fraction, and radiation availability. These local relationships suggest that residual SAT variability is representative of the aggregate land surface signal. SLP dynamical adjustment removes ˜15% more variability in the central U.S. hotspot region than Z500 dynamical adjustment. Similar amounts of variability are removed by SLP and Z500 in the Mediterranean region. Differences in SLP and Z500 signal magnitude in the central U.S. are likely due to the modification of SLP by local land surface conditions, while the proximity of European hotspots to the Mediterranean sea mitigates the land surface influence. Variations in the Z500 field more closely resemble large-scale midlatitude circulation patterns and therefore Z500 may be a more suitable circulation indicator for summer dynamical adjustment. Changes in the residual SAT variability signal under increased greenhouse gas forcing will also be explored.

  7. Enterovirus-D68 (EV-D68) in pediatric patients with respiratory infection: The circulation of a new B3 clade in Italy.

    PubMed

    Piralla, Antonio; Principi, Nicola; Ruggiero, Luca; Girello, Alessia; Giardina, Federica; De Sando, Elisabetta; Caimmi, Silvia; Bianchini, Sonia; Marseglia, Gian Luigi; Lunghi, Giovanna; Baldanti, Fausto; Esposito, Susanna

    In recent years, several outbreaks due to Enterovirus D-68 (EV-D68) have been reported, and it was confirmed that the virus can cause upper and lower respiratory tract diseases and be associated with the development of neurological problems. The main aim of this research was to study the genetic characteristics of EV-D68 strains that were circulating in Italy identified during an outbreak of an EV-D68 infection that occurred in Italy during the period March-October 2016. A retrospective study of the circulation of different types and subtypes of EV-D68 was performed. Nasopharyngeal swabs were collected from March 2016 through October 2016 in children admitted to the Emergency Room with respiratory diseases. Among 390 children, 22 (59.1% males; mean age 47 months) were found to be infected by EV-D68 and most of them were immunocompetent (72.7%). Pneumonia was diagnosed in 12 (54.5%) children. Phylogenetic analysis of the VP1 region showed that all the strains identified in this study belonged to clade B3. Within B3 subclade, the Italian EV-D68 strains were most closely related to strains detected in Southern China in 2015 as well as to strains detected in US and the Netherlands in 2016. These results showed that EV-D68 infections are a common cause of lower respiratory illness in pediatric age. The circulation of one EV-D68 lineage has been proven in Italy and in the European region during 2016. However, further studies are required to investigate whether some strains or lineages may possess a higher affinity for the lower airway or central nervous system. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Lymphatic regulation in nonmammalian vertebrates.

    PubMed

    Hedrick, Michael S; Hillman, Stanley S; Drewes, Robert C; Withers, Philip C

    2013-08-01

    All vertebrate animals share in common the production of lymph through net capillary filtration from their closed circulatory system into their tissues. The balance of forces responsible for net capillary filtration and lymph formation is described by the Starling equation, but additional factors such as vascular and interstitial compliance, which vary markedly among vertebrates, also have a significant impact on rates of lymph formation. Why vertebrates show extreme variability in rates of lymph formation and how nonmammalian vertebrates maintain plasma volume homeostasis is unclear. This gap hampers our understanding of the evolution of the lymphatic system and its interaction with the cardiovascular system. The evolutionary origin of the vertebrate lymphatic system is not clear, but recent advances suggest common developmental factors for lymphangiogenesis in teleost fishes, amphibians, and mammals with some significant changes in the water-land transition. The lymphatic system of anuran amphibians is characterized by large lymphatic sacs and two pairs of lymph hearts that return lymph into the venous circulation but no lymph vessels per se. The lymphatic systems of reptiles and some birds have lymph hearts, and both groups have extensive lymph vessels, but their functional role in both lymph movement and plasma volume homeostasis is almost completely unknown. The purpose of this review is to present an evolutionary perspective in how different vertebrates have solved the common problem of the inevitable formation of lymph from their closed circulatory systems and to point out the many gaps in our knowledge of this evolutionary progression.

  9. Empirical justification of the elementary model of money circulation

    NASA Astrophysics Data System (ADS)

    Schinckus, Christophe; Altukhov, Yurii A.; Pokrovskii, Vladimir N.

    2018-03-01

    This paper proposes an elementary model describing the money circulation for a system, composed by a production system, the government, a central bank, commercial banks and their customers. A set of equations for the system determines the main features of interaction between the production and the money circulation. It is shown, that the money system can evolve independently of the evolution of production. The model can be applied to any national economy but we will illustrate our claim in the context of the Russian monetary system.

  10. The cryogenics design of the SuperCDMS SNOLAB experiment

    NASA Astrophysics Data System (ADS)

    Hollister, M. I.; Bauer, D. A.; Dhuley, R. C.; Lukens, P.; Martin, L. D.; Ruschman, M. K.; Schmitt, R. L.; Tatkowski, G. L.

    2017-12-01

    The Super Cryogenic Dark Matter Search (SuperCDMS) experiment is a direct detection dark matter experiment intended for deployment to the SNOLAB underground facility in Ontario, Canada. With a payload of up to 186 germanium and silicon crystal detectors operating below 15 mK, the cryogenic architecture of the experiment is complex. Further, the requirement that the cryostat presents a low radioactive background to the detectors limits the materials and techniques available for construction, and heavily influences the design of the cryogenics system. The resulting thermal architecture is a closed cycle (no liquid cryogen) system, with stages at 50 and 4 K cooled with gas and fluid circulation systems and stages at 1 K, 250 mK and 15 mK cooled by the lower temperature stages of a large, cryogen-free dilution refrigerator. This paper describes the thermal design of the experiment, including details of the cooling systems, mechanical designs and expected performance of the system under operational conditions.

  11. Usefulness of thermographic analysis to control temperature homogeneity in the development and implementation of a closed recirculating CO2 chemohyperthermia model.

    PubMed

    Padilla-Valverde, David; Sanchez-Garcia, Susana; García-Santos, Esther; Marcote-Ibañez, Carlos; Molina-Robles, Mercedes; Martín-Fernández, Jesús; Villarejo-Campos, Pedro

    2016-09-30

    To determine the effectiveness of thermography to control the distribution of abdominal temperature in the development of a closed chemohyperthermia model. For thermographic analysis, we divided the abdominopelvic cavity into nine regions according to a modification of carcinomatosis peritoneal index. A difference of 2.5 °C between and within the quadrants, and thermographic colours, were used as asymmetric criteria. Preclinical study:· Rats Model: Six athymic nude rats, male, rnu/rnu. They were treated with closed technique and open technique. Porcine Model: 12 female large white pigs. Four were treated with open technique and eight with closed recirculation CO 2 technique. Clinical Pilot Study, EUDRACT 2011-006319-69: 18 patients with ovarian cancer were treated with cytoreductive surgery and hyperthermia intraperitoneal chemotherapy, HIPEC, with a closed recirculating CO 2 system. Thermographic control and intra-abdominal temperature assessment was performed at the baseline, when outflow temperature reached 41 °C, and at 30´. The thermographic images showed a higher homogeneity of the intra-abdominal temperature in the closed model respect to the open technique. The thermogram showed a temperature distribution homogeneity when starting the circulation of chemotherapy. There was correlation between the temperature thermographic map in the closed porcine model and pilot study, and reached inflow and outflow temperatures, at half time of HIPEC, of 42/41.4 °C and 42 ± 0.2/41 ± 0.8 °C, respectively. There was no significant impact to the core temperature of patients after reaching the homogeneous temperature distribution. To control homogeneity of temperature distribution is feasible using infra-red digital images in a closed HIPEC with CO 2 recirculation.

  12. Meridional Circulation Dynamics from 3D Magnetohydrodynamic Global Simulations of Solar Convection

    NASA Astrophysics Data System (ADS)

    Passos, Dário; Charbonneau, Paul; Miesch, Mark

    2015-02-01

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 {{R}⊙ }). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.

  13. Closed Loop Two-Phase Thermosyphon of Small Dimensions: a Review of the Experimental Results

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro; Filippeschi, Sauro

    2012-06-01

    A bibliographical review on the heat and mass transfer in gravity assisted Closed Loop Two Phase Thermosyphons (CLTPT) with channels having a hydraulic diameter of the order of some millimetres and input power below 1 kW is proposed. The available experimental works in the literature are critically analysed in order to highlight the main results and the correlation between mass flow rate and heat input in natural circulation loops. A comparison of different experimental apparatuses and results is made. It is observed that the results are very different among them and in many cases the experimental data disagree with the conventional theory developed for an imposed flow rate. The paper analyses the main differences among the experimental devices and try to understand these disagreements. From the present analysis it is evident that further systematic studies are required to generate a meaningful body of knowledge of the heat and mass transport mechanism in these devices for practical applications in cooling devices or energy systems.

  14. Slip stream apparatus and method for treating water in a circulating water system

    DOEpatents

    Cleveland, Joe R.

    1997-01-01

    An apparatus (10) for treating water in a circulating water system (12) t has a cooling water basin (14) includes a slip stream conduit (16) in flow communication with the circulating water system (12), a source (36) of acid solution in flow communication with the slip stream conduit (16), and a decarbonator (58) in flow communication with the slip stream conduit (16) and the cooling water basin (14). In use, a slip stream of circulating water is drawn from the circulating water system (12) into the slip stream conduit (16) of the apparatus (10). The slip stream pH is lowered by contact with an acid solution provided from the source (36) thereof. The slip stream is then passed through a decarbonator (58) to form a treated slip stream, and the treated slip stream is returned to the cooling water basin (14).

  15. A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans.

    PubMed

    Spector, Reynold; Robert Snodgrass, S; Johanson, Conrad E

    2015-11-01

    In this review, a companion piece to our recent examination of choroid plexus (CP), the organ that secretes the cerebrospinal fluid (CSF), we focus on recent information in the context of reliable older data concerning the composition and functions of adult human CSF. To accomplish this, we define CSF, examine the methodology employed in studying the CSF focusing on ideal or near ideal experiments and discuss the pros and cons of several widely used analogical descriptions of the CSF including: the CSF as the "third circulation," the CSF as a "nourishing liquor," the similarities of the CSF/choroid plexus to the glomerular filtrate/kidney and finally the CSF circulation as part of the "glymphatic system." We also consider the close interrelationship between the CSF and extracellular space of brain through gap junctions and the paucity of data suggesting that the cerebral capillaries secrete a CSF-like fluid. Recently human CSF has been shown to be in dynamic flux with heart-beat, posture and especially respiration. Functionally, the CSF provides buoyancy, nourishment (e.g., vitamins) and endogenous waste product removal for the brain by bulk flow into the venous (arachnoid villi and nerve roots) and lymphatic (nasal) systems, and by carrier-mediated reabsorptive transport systems in CP. The CSF also presents many exogenous compounds to CP for metabolism or removal, indirectly cleansing the extracellular space of brain (e.g., of xenobiotics like penicillin). The CSF also carries hormones (e.g., leptin) from blood via CP or synthesized in CP (e.g., IGF-2) to the brain. In summary the CP/CSF, the third circulation, performs many functions comparable to the kidney including nourishing the brain and contributing to a stable internal milieu for the brain. These tasks are essential to normal adult brain functioning. Copyright © 2015. Published by Elsevier Inc.

  16. Sulfide-Sulfate Mineralizations in Verzino Area (Crotone Basin, Southern Italy): New insights on localized hydrothermal fluid circulations and their relationship with tectonics.

    NASA Astrophysics Data System (ADS)

    Berardi, Gabriele; Lucci, Federico; Cozzupoli, Domenico; Pizzino, Luca; Cantucci, Barbara; Quattrocchi, Fedora

    2010-05-01

    In this early stage of the work we present a preliminary study of hydrothermal mineralizations found in Verzino locality, Crotone Basin, Southern Appennines, (Calabria, Italy). Both geochemical and petrographic investigations were developed with the aim of understanding the genesis of the sulfide-sulfate associations present in the "Argille Marnose del Ponda" formation, deepening their relationship with fluids circulation. These mineralizations have been recognized only in two "Calanchi" morphostructures - Badlands like morphology developed by the differential erosional pattern of the "Argille Marnose del Ponda" fm. - and constituting the northwestern flank of a little valley evolved in the Miocene sedimentary sequence from "Conglomerato di S.Nicola" fm. to "Evaporiti Superiori" fm. The mineralizations are distributed along isooriented centimetric veins (with mean direction of N120) and in nodules diffused close to the veins. These hydrothermal mineralizations are constituted by an associations of Pyrite spherical nodules (millimetric to centimetric in radius with occurrences of well developed octahedral habit single crystals), sulphate crystals (Gypsum, Jarosite, NatroJarosite), Oxides (Goethite mainly), millimetric veins of Barite and micrometric Ankerite specimens. The data (mineral habits, semiquantitative compositions and x-Ray spectra), obtained by an integration of S.E.M and XRD investigations, permit us, at the current stage of the study, to hypothesize a possible hydrothermal origin (whose temperature range estimate needs further investigations) for the sulfide-sulfate mineral phases. At the moment, we exclude their primary or secondary sedimentary provenance. The comparison of our results with the previous scientific literature focused on hydrothermal sulfide-sulfate systems (Vinogradov and Stephanov, 1964; Kostov, 1968; Plummer 1971; Boles, 1978; Ferrini and Moretti 1998) allows us to propose a possible "thermal window" ranging in the interval 50°C-230°C, characterizing an exalative-ephitermal facies condition for the genesis of the here presented mineralizations. The supposed hydrothermal genesis, together with the localization and oriented distribution of the vein/nodule systems, suggest a strong control on the fluid circulation by the very local fault systems characterizing the tectonic of the investigated area. A very close relationship between faults and fluids in Calabria region has been recently claimed by Italiano et al (2010); the presence of thermal and sulphur-rich ground-waters farther south and west of the study area (Belvedere di Spinello, Verzino, Casabona and Cotronei), strongly supports our inferences. The study area (and in general the Crotone basin) has suffered two destructive earthquakes in 1638 and 1832, with an estimated magnitude of 6.5-6.8. Moreover, recent paleoseismological studies (Galli and Bosi, 2003; Galli et al., 2008) re-evaluated the seismic hazard of the area, by detecting some historical strong earthquakes along previously unknown fault systems. This work, with the reported results on mineral associations developed by important fluid/fault interactions, highlights the role and the timing of both localized stress and pore pressures cycles in an active tectonic setting, and may represent a new interpretation key and a clue reference for a deeper understanding of a not well known italian seismic area characterized, at least, by the presence of three regional active master faults: the Marchesato Fault, the Lakes fault the Cerenzia-San Nicola-Strongoli Line. Geochemical and isotopic analyses on mineralizations, host rock and spring fluids are in progress to better define and understand the local hydrothermal system and to propose a model of time and control of the tectonic on the fluid circulation.

  17. A short circuit in thermohaline circulation: A cause for northern hemisphere glaciation?

    PubMed

    Driscoll; Haug

    1998-10-16

    The cause of Northern Hemisphere glaciation about 3 million years ago remains uncertain. Closing the Panamanian Isthmus increased thermohaline circulation and enhanced moisture supply to high latitudes, but the accompanying heat would have inhibited ice growth. One possible solution is that enhanced moisture transported to Eurasia also enhanced freshwater delivery to the Arctic via Siberian rivers. Freshwater input to the Arctic would facilitate sea ice formation, increase the albedo, and isolate the high heat capacity of the ocean from the atmosphere. It would also act as a negative feedback on the efficiency of the "conveyor belt" heat pump.

  18. Design and Off-design Performance of 100 Kwe-class Brayton Power Conversion Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.; Mason, Lee S.

    2005-01-01

    The NASA Glenn Research Center in-house computer model Closed Cycle Engine Program (CCEP) was used to explore the design trade space and off-design performance characteristics of 100 kWe-class recuperated Closed Brayton Cycle (CBC) power conversion systems. Input variables for a potential design point included the number of operating units (1, 2, 4), cycle peak pressure (0.5, 1, 2 MPa), and turbo-alternator shaft speed (30, 45, 60 kRPM). The design point analysis assumed a fixed turbine inlet temperature (1150 K), compressor inlet temperature (400 K), working-fluid molecular weight (40 g/mol), compressor pressure ratio (2.0), recuperator effectiveness (0.95), and a Sodium-Potassium (NaK) pumped-loop radiator. The design point options were compared on the basis of thermal input power, radiator area, and mass. For a nominal design point with defined Brayton components and radiator area, off-design cases were examined by reducing turbine inlet temperature (as low as 900 K), reducing shaft speed (as low as 50% of nominal), and circulating a percentage (up to 20%) of the compressor exit flow back to the gas cooler. The off-design examination sought approaches to reduce thermal input power without freezing the radiator.

  19. Interaction between Meso-scale Eddies and Sub-polar Front in the East (Japan) Sea based on ARGO, AVHRR, and Numerical Model

    NASA Astrophysics Data System (ADS)

    Ro, Y.; Kim, E.

    2008-12-01

    The East (Japan) Sea is drawing keen international attentions from broad spectrum of groups such as scientists, diplomats, and defense officers for its geopolitical situation, peculiar scientific assets recognized as miniature ocean. From physical oceanographic aspect, it is very rich with many features such as basin-wide circulation pattern, boundary currents, sub-polar front, meso-scale eddy activities and deep water formation. The circulation pattern in the East (Japan) Sea has been of major interests for its peculiar gyre, a western boundary current and its separation that resembles the currents such as Kuroshio and Gulf Stream. In relation to the gyre system in the East Sea, the formation of the East Korea Warm Current (EKWC) has brought up with many numerical experiments. Numerical experiments suggested a new idea to explain the formation of the EKWC in that the potential energy supply into the Ulleung Basin (UB) from the meso-scale eddy is a key process. This is closely linked with the baroclinic instability and the meandering of offshore component of Tsushima Warm Current. The UB has drawn attentions for its role of the formation of two major boundary currents, EKWC, North Korea Warm Current (NKCC), their interaction with the mesoscale UWE, watermass exchange between the Northern Japan Basin and UB. Numerical experiments along with hydrographic and other satellite datasets such as AVHRR, altimeter and ARGO profiles have been analyzed to understand the formation of the UWE. We found that the influence of the bottom topography and frictional forcing against lateral boundary are all closely associated with the sub-polar front. Meandering of the axis of the sub-polar front is closely linked with the separation point of the EKWC, Ulleung Warm Eddy, and other small and meso-scale eddies on the sub-polar front. These will be demonstrated with results of the numerical modeling experiments and animation movie will be presented.

  20. The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model

    NASA Astrophysics Data System (ADS)

    Rodríguez, José M.; Milton, Sean F.; Marzin, Charline

    2017-10-01

    In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.

  1. Comparison of circulation times of thermal waters discharging from the Idaho batholith based on geothermometer temperatures, helium concentrations, and 14C measurements

    USGS Publications Warehouse

    Mariner, R.H.; Evans, William C.; Young, H.W.

    2006-01-01

    Circulation times of waters in geothermal systems are poorly known. In this study, we examine the thermal waters of the Idaho batholith to verify whether maximum system temperatures, helium concentrations, and 14C values are related to water age in these low-to-moderate temperature geothermal systems. He/N2 values of gas collected from thermal waters that circulate solely through distinct units of the Idaho batholith correlate linearly with Na-K-(4/3)Ca geothermometer temperatures, showing that both variables are excellent indicators of relative water age. Thermal waters that circulate in early Tertiary (45-50 Ma) granite of the Sawtooth batholith have 3.5 times more helium than thermal waters of the same aquifer temperature that circulate through the main Cretaceous granite (average 91 Ma). Hot spring waters circulating in hydrothermally altered parts of the batholith have very little dissolved helium and no correlation between He/N2 values and geothermometer temperatures. Thermal waters discharging from the Idaho batholith are more depleted in deuterium than modern precipitation in the area. Recharge to these geothermal systems occurred from at least 10,000 BP for the cooler systems up to about 33,000 BP for the hotter systems.

  2. Miocene oceanographic changes of the western equatorial Atlantic (Ceara Rise) based on calcareous dinoflagellate cysts

    NASA Astrophysics Data System (ADS)

    Heinrich, Sonja; Zonneveld, Karin A. F.; Willems, Helmut

    2010-05-01

    The middle- and upper Miocene represent a time-interval of major changes in palaeoclimate leading to global cooling forming the precursor of the onset of Northern Hemisphere Glaciations (NHG). These climate changes are thought to be strongly controlled by oceanographic modifications although the nature of the relationship between ocean and climate change is far from clear. It has for instance been observed that in this time interval the modern deepwater circulation system; the thermohaline circulation was established. It is thought that tectonic events, such as the narrowing of the Panama gateway, played a key role in the progressing of these Miocene oceanographic changes (e.g. Duque-Caro 1990; Lear et al. 2003). However, the complex interaction between the closing of the Panama Gateway, the development of NADW, and thus the oceanographic progression towards our present day circulation is far from being fully understood. A key region to study these interactions is the Caribbean region, notably the Ceara Rise since it is an area of highest sensitivity to global deep water circulation changes. Here we intent to improve the understanding of these processes by establishing a detailed palaeoceanographic reconstruction of the western equatorial Atlantic Ocean on the basis of calcareous dinoflagellate cyst (dinocyst) associations. For this, we investigated sediment samples from ODP Site 926A by defining the calcareous dinocyst assemblage. Site 926A is located at the southwestern flank of the Ceara Rise, an area of highest sensitivity to global deep water circulation changes. At about 11 Ma, we see a distinct increase in the absolute abundances of the calcareous dinocysts suggesting enhanced productivity and better carbonate preservation that can be related to the intensification of NADW formation (Woodruff & Savin 1989). At 11.3 Ma, Leonella granifera, a species known to be strongly related to terrestrial input increases. This could be a signal for the initiation of the Amazon River as a transcontinental river (11.8 - 11.3 Ma; Figueiredo et al. 2009) in relation to Andean tectonism. References: Duque-Caro, H. (1990): Neogene stratigraphy, paleoceanography and palebiology in Northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology 77, 203-234. Figueiredo, J., Hoorn, C., van der Veen, P., Soares, E. (2009): Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology; v. 37, no. 7; p. 619 - 622. Lear, C.H., Rosenthal, Y., Wright, J.D. (2003): The closing of a seaway: ocean water masses and global climate change. Earth and Planetary Science Letters 210, 425-436. Woodruff, F., Savin, S.M. (1989): Miocene deepwater oceanography. Paloceanography 4, 87-140.

  3. Angiotensin peptides in the non-gravid uterus: Paracrine actions beyond circulation.

    PubMed

    Casalechi, Maíra; Dela Cruz, Cynthia; Lima, Luiza C; Maciel, Luciana P; Pereira, Virgínia M; Reis, Fernando M

    2018-03-01

    The renin-angiotensin system (RAS) involves a complex network of precursors, peptides, enzymes and receptors comprising a systemic (endocrine) and a local (paracrine/autocrine) system. The local RAS plays important roles in tissue modulation and may operate independently of or in close interaction with the circulatory RAS, acting in a complementary fashion. Angiotensin (Ang) II, its receptor AT 1 and Ang-(1-7) expression in the endometrium vary with menstrual cycle, and stromal cell decidualization in vitro is accompanied by local synthesis of angiotensinogen and prorenin. Mas receptor is unlikely to undergo marked changes accompanying the cyclic ovarian steroid hormone fluctuations. Studies investigating the functional relevance of the RAS in the non-gravid uterus show a number of paracrine effects beyond circulation and suggest that RAS peptides may be involved in the pathophysiology of proliferative and fibrotic diseases. Endometrial cancer is associated with increased expression of Ang II, Ang-converting enzyme 1 and AT 1 in the tumoral tissue compared to neighboring non-neoplastic endometrium, and also with a gene polymorphism that enhances AT 1 signal. Ang II induces human endometrial cells to transdifferentiate into cells with myofibroblast phenotype and to synthetize extracellular matrix components that might contribute to endometrial fibrosis. Altogether, these findings point to a fully operating RAS within the uterus, but since many concepts rely on preliminary evidence further studies are needed to clarify the role of the local RAS in uterine physiology and pathophysiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. An elementary model of money circulation

    NASA Astrophysics Data System (ADS)

    Pokrovskii, Vladimir N.; Schinckus, Christophe

    2016-12-01

    This paper investigates money circulation for a system, consisting of a production system, the government, a central bank, commercial banks and many customers of the commercial banks. A set of equations for the system is written; the theory determines the main features of interaction between production and money circulation. Investigation of the equations in a steady-state situation reveals some relationship among output of the production system and monetary variables. The relation of quantity theory of money is confirmed, whereas a new concept of the efficiency of the system is introduced.

  5. Ghrelin receptor regulates adipose tissue inflammation in aging

    USDA-ARS?s Scientific Manuscript database

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth ho...

  6. Kinetic model of continuous ethanol fermentation in closed-circulating process with pervaporation membrane bioreactor by Saccharomyces cerevisiae.

    PubMed

    Fan, Senqing; Chen, Shiping; Tang, Xiaoyu; Xiao, Zeyi; Deng, Qing; Yao, Peina; Sun, Zhaopeng; Zhang, Yan; Chen, Chunyan

    2015-02-01

    Unstructured kinetic models were proposed to describe the principal kinetics involved in ethanol fermentation in a continuous and closed-circulating fermentation (CCCF) process with a pervaporation membrane bioreactor. After ethanol was removed in situ from the broth by the membrane pervaporation, the secondary metabolites accumulated in the broth became the inhibitors to cell growth. The cell death rate related to the deterioration of the culture environment was described as a function of the cell concentration and fermentation time. In CCCF process, 609.8 g L(-1) and 750.1 g L(-1) of ethanol production were obtained in the first run and second run, respectively. The modified Gompertz model, correlating the ethanol production with the fermentation period, could be used to describe the ethanol production during CCCF process. The fitting results by the models showed good agreement with the experimental data. These models could be employed for the CCCF process technology development for ethanol fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The Ocean-Atmosphere Hydrothermohaline Conveyor Belt

    NASA Astrophysics Data System (ADS)

    Döös, Kristofer; Kjellsson, Joakim; Zika, Jan; Laliberté, Frédéric; Brodeau, Laurent

    2015-04-01

    The ocean thermohaline circulation is linked to the hydrothermal circulation of the atmosphere. The ocean thermohaline circulation is expressed in potential temperature-salinity space and comprises a tropical upper-ocean circulation, a global conveyor belt cell and an Antarctic Bottom Water cell. The atmospheric hydrothermal circulation in a potential temperature-specific humidity space unifies the tropical Hadley and Walker cells as well as the midlatitude eddies into a single, global circulation. Superimposed, these thermohaline and hydrothermal stream functions reveal the possibility of a close connection between some parts of the water and air mass conversions. The exchange of heat and fresh water through the sea surface (precipiation-evaporation) and incoming solar radiation act to make near-surface air warm and moist while making surface water warmer and saltier as both air and water travel towards the Equator. In the tropics, air masses can undergo moist convection releasing latent heat by forming precipitation, thus acting to make warm surface water fresher. We propose that the Clausius-Clapeyron relationship for moist near-surface air acts like a lower bound for the atmospheric hydrothermal cell and an upper bound for the ocean thermohaline Conveyor-Belt cell. The analysis is made by combining and merging the overturning circulation of the ocean and atmosphere by relating the salinity of the ocean to the humidity of the atmosphere, where we set the heat and freshwater transports equal in the two stream functions By using simulations integrated with our Climate-Earth system model EC-Earth, we intend to produce the "hydrothermohaline" stream function of the coupled ocean-atmosphere overturning circulation in one single picture. We explore how the oceanic thermohaline Conveyor Belt can be linked to the global atmospheric hydrothermal circulation and if the water and air mass conversions in humidity-temperature-salinity space can be related and linked to each other along a "line" corresponding to the Clausius-Clapeyron relationship. A geographical description of how and where this occurs together with this new hydrothermohaline stream function will be searched for. The net heat and freshwater transport of the ocean and atmosphere can aslo be calculated from the thermohaline and hydrothermal stream functions. The heat transport across isohumes in the atmosphere and isohalines in the ocean as well as the freshwater transport across isotherms in both the atmosphere and ocean are computed. The maximum heat transport is about 16 PW in the atmosphere, while that of the ocean is just about 1 PW. The freshwater transport across isotherms in the atmosphere and ocean are shown to be tightly connected with a net maximum freshwater transport of 4 SV in the atmosphere and 2 Sv in the ocean.

  8. The East Asian Jet Stream and Asian-Pacific-American Climate

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Kim, K.-M.

    2000-01-01

    The upper-tropospheric westerly jet stream over subtropical East Asia and western Pacific, often referred to as East Asian Jet (EAJ), is an important atmospheric circulation system in the Asian-Pacific-American (APA) region during winter. It is characterized by variabilities on a wide range of time scales and exerts a strong impact on the weather and climate of the region. On the synoptic scale, the jet stream is closely linked to many phenomena such as cyclogenesis, frontogenesis, blocking, storm track activity, and the development of other atmospheric disturbances. On the seasonal time scale, the variation of the EAJ determines many characteristics of the seasonal transition of the atmospheric circulation especially over East Asia. The variabilities of the EAJ on these time scales have been relatively well documented. It has also been understood since decades ago that the interannual. variability of the EAJ is associated with many climate signals in the APA region. These signals include the persistent anomalies of the East Asian winter monsoon and the changes in diabatic heating and in the Hadley circulation. However, many questions remain for the year-to-year variabilities of the EAJ and their relation to the APA climate. For example, what is the relationship between the EAJ and El Nino/Southern Oscillation (ENSO)? Will the EAJ and ENSO play different roles in modulating the APA climate? How is the jet stream linked to the non-ENSO-related sea surface temperature (SST) anomalies and to the Pacific/North American (PNA) teleconnection pattern?

  9. Fluid circulation determined in the isolated bovine lens.

    PubMed

    Candia, Oscar A; Mathias, Richard; Gerometta, Rosana

    2012-10-11

    In 1997, a theoretical model was developed that predicted the existence of an internal, Na(+)-driven fluid circulation from the poles to the equator of the lens. In the present work, we demonstrate with a novel system that fluid movement can be measured across the polar and equatorial surface areas of isolated cow lenses. We have also determined the effects of ouabain and reduced bath [Na(+)]. Lenses were isolated in a chamber with three compartments separated by two thin O-rings. Each compartment, anterior (A), equatorial (E), and posterior (P), was connected to a vertical capillary graduated in 0.25 μL. Capillary levels were read every 15 minutes. The protocols consisted of 2 hours in either open circuit or short circuit. The effects of ouabain and low-Na(+) solutions were determined under open circuit. In 21 experiments, the E capillary increased at a mean rate of 0.060 μL/min while the A and P levels decreased at rates of 0.044 and 0.037 μL/min, respectively, closely accounting for the increase in E. The first-hour flows under short circuit were approximately 40% larger than those in open-circuit conditions. The first-hour flows were always larger than those during the second hour. Preincubation of lenses with either ouabain or low-[Na(+)] solutions resulted in reduced rates of fluid transport. When KCl was used to replace NaCl, a transitory stimulation of fluid transport occurred. These experiments support that a fluid circulation consistent with the 1997 model is physiologically active.

  10. Circulating levels of sphingosine-1-phosphate are elevated in severe, but not mild psoriasis and are unresponsive to anti-TNF-α treatment

    NASA Astrophysics Data System (ADS)

    Checa, Antonio; Xu, Ning; Sar, Daniel G.; Haeggström, Jesper Z.; Ståhle, Mona; Wheelock, Craig E.

    2015-07-01

    Sphingolipids are bioactive molecules with a putative role in inflammation. Alterations in sphingolipids, in particular ceramides, have been consistently observed in psoriatic skin. Herein, we quantified the circulating sphingolipid profile in individuals with mild or severe psoriasis as well as healthy controls. In addition, the effects of anti-TNF-α treatment were determined. Levels of sphingoid bases, including sphingosine-1-phosphate (S1P), increased in severe (P < 0.001 n = 32), but not in mild (n = 32), psoriasis relative to healthy controls (n = 32). These alterations were not reversed in severe patients (n = 16) after anti-TNF-α treatment despite significant improvement in psoriasis lesions. Circulating levels of sphingomyelins and ceramides shifted in a fatty acid chain length-dependent manner. These alterations were also observed in psoriasis skin lesions and were associated with changes in mRNA levels of ceramide synthases. The lack of S1P response to treatment may have pathobiological implications due to its close relation to the vascular and immune systems. In particular, increased levels of sphingolipids and especially S1P in severe psoriasis patients requiring biological treatment may potentially be associated with cardiovascular comorbidities. The fact that shifts in S1P levels were not ameliorated by anti-TNF-α treatment, despite improvements in the skin lesions, further supports targeting S1P receptors as therapy for severe psoriasis.

  11. North Pacific Atmospheric Circulation Change and Effective Moisture Variability in the Yukon Territory, Canada

    NASA Astrophysics Data System (ADS)

    Anderson, L.; Abbott, M. B.; Finney, B. P.; Burns, S. J.

    2005-12-01

    Analyses of sediment cores from Marcella Lake, a small, hydrologically-closed lake in the semi-arid interior southwest Yukon Territory, provide evaporation information for the last 4500 years at century-scale resolution. Water chemistry and oxygen isotope data from lakes and precipitation in the region indicate that oxygen isotope ratios from Marcella Lake are currently affected by summer evaporation. Past lake water changes were reconstructed from oxygen isotope analyses of sedimentary endogenic calcite. An oxygen isotope record of mean-annual precipitation from Jellybean Lake, a nearby open evaporation-insensitive system, provides simultaneous oxygen isotope ratio variations related to atmospheric circulation and ambient temperature. The difference between the two isotope records represents oxygen-18-enrichment in Marcella Lake water caused by summer evaporation. The oxygen isotope results indicate a prolonged period of lower evaporation between 3000 and 1500 cal BP, a finding that is consistent with independent evidence for higher lake levels during this period (i.e. increased effective moisture). The data indicate that since 1500 cal BP evaporation has increased and that during the last 200 years it has been greater than during the previous ~4000 years. Two prominent increases in evaporation occurred at 1200 and 200 cal BP. These shifts correspond with increases in aridity observed in other records of effective moisture variability in the interior southwest Yukon and with prominent changes in North Pacific atmospheric circulation patterns over the Gulf of Alaska.

  12. Hydrodynamic study of an internal airlift reactor for microalgae culture.

    PubMed

    Rengel, Ana; Zoughaib, Assaad; Dron, Dominique; Clodic, Denis

    2012-01-01

    Internal airlift reactors are closed systems considered today for microalgae cultivation. Several works have studied their hydrodynamics but based on important solid concentrations, not with biomass concentrations usually found in microalgae cultures. In this study, an internal airlift reactor has been built and tested in order to clarify the hydrodynamics of this system, based on microalgae typical concentrations. A model is proposed taking into account the variation of air bubble velocity according to volumetric air flow rate injected into the system. A relationship between riser and downcomer gas holdups is established, which varied slightly with solids concentrations. The repartition of solids along the reactor resulted to be homogenous for the range of concentrations and volumetric air flow rate studied here. Liquid velocities increase with volumetric air flow rate, and they vary slightly when solids are added to the system. Finally, liquid circulation time found in each section of the reactor is in concordance with those employed in microalgae culture.

  13. Protection of tokamak plasma facing components by a capillary porous system with lithium

    NASA Astrophysics Data System (ADS)

    Lyublinski, I.; Vertkov, A.; Mirnov, S.; Lazarev, V.

    2015-08-01

    Development of plasma facing material (PFM) based on the Capillary-Porous System (CPS) with lithium and activity on realization of lithium application strategy are addressed to meet the challenges under the creation of steady-state tokamak fusion reactor and fusion neutron source. Presented overview of experimental study of lithium CPS in plasma devices demonstrates the progress in protection of tokamak plasma facing components (PFC) from damage, stabilization and self-renewal of liquid lithium surface, elimination of plasma pollution and lithium accumulation in tokamak chamber. The possibility of PFC protection from the high power load related to cooling of the tokamak boundary plasma by radiation of non-fully stripped lithium ions supported by experimental results. This approach demonstrated in scheme of closed loops of Li circulation in the tokamak vacuum chamber and realized in a series of design of tokamak in-vessel elements.

  14. Recent circulation of West Nile virus and potentially other closely related flaviviruses in Southern France.

    PubMed

    Vittecoq, Marion; Lecollinet, Sylvie; Jourdain, Elsa; Thomas, Frédéric; Blanchon, Thomas; Arnal, Audrey; Lowenski, Steeve; Gauthier-Clerc, Michel

    2013-08-01

    In recent years, the number of West Nile virus (WNV) cases reported in horses and humans has increased dramatically throughout the Mediterranean basin. Furthermore, the emergence of Usutu virus (USUV) in Austria in 2001, and its subsequent expansion to Hungary, Spain, Italy, Switzerland, the United Kingdom, and Germany, has given added cause for concern regarding the impact of the spread of flaviviruses on human and animal health in western Europe. Despite frequent detection of WNV and USUV cases in neighboring countries, no case of WNV has been detected in France since 2006 and USUV has never been reported. However, recent investigations focused on detecting the circulation of flaviviruses in France are lacking. We investigated the circulation of WNV and USUV viruses in wild birds in southern France on the basis of a serological survey conducted on a sentinel species, the magpie (Pica pica), in the Camargue area from November, 2009, to December, 2010. We detected WNV-neutralizing antibodies at a high titer (160) in a second-year bird showing recent exposure to WNV, although no WNV case has been detected in humans or in horses since 2004 in the Camargue. In addition, we observed low titers (10 or 20) of USUV-specific antibodies in six magpies, two of which were also seropositive for WNV. Such low titers do not give grounds for concluding that these birds had been exposed to USUV; cross-reactions at low titers may occur between antigenically closely related flaviviruses. But these results urge for further investigations into the circulation of flaviviruses in southern France. They also emphasize the necessity of undertaking epidemiological studies on a long-term basis, rather than over short periods following public health crises, to gain insight into viral dynamics within natural reservoirs.

  15. Genome-Wide Meta-Analyses of Plasma Renin Activity and Concentration Reveal Association with the Kininogen 1 and Prekallikrein Genes

    PubMed Central

    Lieb, Wolfgang; Chen, Ming-Huei; Teumer, Alexander; de Boer, Rudolf A.; Lin, Honghuang; Fox, Ervin R.; Musani, Solomon K.; Wilson, James G.; Wang, Thomas J.; Völzke, Henry; Petersen, Ann-Kristin; Meisinger, Christine; Nauck, Matthias; Schlesinger, Sabrina; Li, Yong; Menard, Jöel; Hercberg, Serge; Wichmann, H.-Erich; Völker, Uwe; Rawal, Rajesh; Bidlingmaier, Martin; Hannemann, Anke; Dörr, Marcus; Rettig, Rainer; van Gilst, Wiek H.; van Veldhuisen, Dirk J.; Bakker, Stephan J.L.; Navis, Gerjan; Wallaschofski, Henri; Meneton, Pierre; van der Harst, Pim; Reincke, Martin; Vasan, Ramachandran S.; Consortium, CKDGen

    2015-01-01

    Background The renin-angiotensin-aldosterone-system (RAAS) is critical for regulation of blood pressure and fluid balance and influences cardiovascular remodeling. Dysregulation of the RAAS contributes to cardiovascular and renal morbidity. The genetic architecture of circulating RAAS components is incompletely understood. Methods and Results We meta-analyzed genome-wide association data for plasma renin activity (n=5,275), plasma renin concentrations (n=8,014) and circulating aldosterone (n=13,289) from up to four population-based cohorts of European and European-American ancestry, and assessed replication of the top results in an independent sample (n=6,487). Single nucleotide polymorphisms (SNPs) in two independent loci displayed associations with plasma renin activity atgenome-wide significance (p<5×10-8). A third locus was close to this threshold (rs4253311 in kallikrein B [KLKB1], p=5.5×10-8). Two of these loci replicated in an independent sample for both plasma renin and aldosterone concentrations (SNP rs5030062 in kininogen 1 [KNG1]: p=0.001 for plasma renin, p=0.024 for plasma aldosterone concentration; rs4253311 with p<0.001 for both plasma renin and aldosterone concentration). SNPs in the NEBL gene reached genome-wide significance for plasma renin concentration in the discovery sample (top SNP rs3915911, p= 8.81×10-9), but did not replicate (p=0.81). No locus reached genome-wide significance for aldosterone. SNPs rs5030062 and rs4253311 were not related to blood pressure or renal traits; in a companion study, variants in the kallikrein B locus were associated with B-type natriuretic peptide concentrations in African-Americans. Conclusions We identified two genetic loci (kininogen 1 and kallikrein B) influencing key components of the RAAS, consistent with the close interrelation between the kallikrein-kinin system and the RAAS. PMID:25477429

  16. Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Wang, Lei; Chen, Deliang; Tu, Kai; Ruan, Chengqing; Hu, Zengyun

    2016-06-01

    The relationship between the large-scale circulation dynamics and regional precipitation regime in the Tibetan Plateau (TP) has so far not been well understood. In this study, we classify the circulation types using the self-organizing maps based on the daily field of 500 hPa geopotential height and link them to the precipitation climatology in the eastern and central TP. By virtue of an objective determining method, 18 circulation types are quantified. The results show that the large amount of precipitation in summer is closely related to the circulation types in which the enhanced and northward shifted subtropical high (SH) over the northwest Pacific and the obvious cyclconic circulation anomaly over the Bay of Bengal are helpful for the Indian summer monsoon and East Asian summer monsoon to take abundant low-latitude moisture to the eastern and southern TP. On the contrary, the dry winter in the central and eastern Tibet corresponds to the circulation types with divergence over the central and eastern TP and the water vapor transportations of East Asian winter monsoon and mid-latitude westerly are very weak. Some circulation types are associated with some well-known circulation patterns/monsoons influencing the TP (e.g. East Atlantic Pattern, El Niño Southern Oscillation, Indian Summer Monsoon and the mid-latitude westerly), and exhibit an overall good potential for explaining the variability of regional seasonal precipitation. Moreover, the climate shift signals in the late 1970s over the eastern Pacific/North Pacific Oceans could also be reflected by both the variability of some circulation types and their correspondingly composite precipitations. This study extends our understandings for the large-scale atmospheric dynamics and their linkages with regional precipitation and is beneficial for the climate change projection and related adaptation activities in the highest and largest plateau in the world.

  17. Planning for Downtown Circulation Systems. Volume 1. Planning Concepts.

    DOT National Transportation Integrated Search

    1983-10-01

    This document brings together the state-of-the-art in planning concepts, methods and data for use by those cities proposing or considering comprehensive or innovative downtown circulation systems, particularly Downtown People Mover systems. DPM syste...

  18. Visible light optical coherence tomography measure retinal oxygen metabolic response to systemic oxygenation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yi, Ji; Liu, Wenzhong; Chen, Siyu; Backman, Vadim; Sheibani, Nader; Sorenson, Christine M.; Fawzi, Amani A.; Linsenmeier, Robert A.; Zhang, Hao F.

    2016-03-01

    The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. The rMRO2 was calculated by concurrent measurement of blood flow and blood oxygen saturation (sO2). Blood flow was calculated by the principle of Doppler optical coherence tomography, where the phase shift between two closely spaced A-lines measures the axial velocity. The distinct optical absorption spectra of oxy- and deoxy-hemoglobin provided the contrast for sO2 measurement, combined with the spectroscopic analysis of vis-OCT signal within the blood vessels. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28+/-0.08 μL/min (p<0.001), and 0.20+/-0.04 μL/min (p<0.001) per 100 mmHg systemic pO2 reduction, respectively. The increased oxygen extraction compensated for the deficient oxygen supply from the poorly regulated choroidal circulation (CC).

  19. Large eddy simulation model for wind-driven sea circulation in coastal areas

    NASA Astrophysics Data System (ADS)

    Petronio, A.; Roman, F.; Nasello, C.; Armenio, V.

    2013-12-01

    In the present paper a state-of-the-art large eddy simulation model (LES-COAST), suited for the analysis of water circulation and mixing in closed or semi-closed areas, is presented and applied to the study of the hydrodynamic characteristics of the Muggia bay, the industrial harbor of the city of Trieste, Italy. The model solves the non-hydrostatic, unsteady Navier-Stokes equations, under the Boussinesq approximation for temperature and salinity buoyancy effects, using a novel, two-eddy viscosity Smagorinsky model for the closure of the subgrid-scale momentum fluxes. The model employs: a simple and effective technique to take into account wind-stress inhomogeneity related to the blocking effect of emerged structures, which, in turn, can drive local-scale, short-term pollutant dispersion; a new nesting procedure to reconstruct instantaneous, turbulent velocity components, temperature and salinity at the open boundaries of the domain using data coming from large-scale circulation models (LCM). Validation tests have shown that the model reproduces field measurement satisfactorily. The analysis of water circulation and mixing in the Muggia bay has been carried out under three typical breeze conditions. Water circulation has been shown to behave as in typical semi-closed basins, with an upper layer moving along the wind direction (apart from the anti-cyclonic veering associated with the Coriolis force) and a bottom layer, thicker and slower than the upper one, moving along the opposite direction. The study has shown that water vertical mixing in the bay is inhibited by a large level of stable stratification, mainly associated with vertical variation in salinity and, to a minor extent, with temperature variation along the water column. More intense mixing, quantified by sub-critical values of the gradient Richardson number, is present in near-coastal regions where upwelling/downwelling phenomena occur. The analysis of instantaneous fields has detected the presence of large cross-sectional eddies spanning the whole water column and contributing to vertical mixing, associated with the presence of sub-surface horizontal turbulent structures. Analysis of water renewal within the bay shows that, under the typical breeze regimes considered in the study, the residence time of water in the bay is of the order of a few days. Finally, vertical eddy viscosity has been calculated and shown to vary by a couple of orders of magnitude along the water column, with larger values near the bottom surface where density stratification is smaller.

  20. Automated Bilingual Circulation System Using PC Local Area Networks.

    ERIC Educational Resources Information Center

    Iskanderani, A. I.; Anwar, M. A.

    1992-01-01

    Describes a personal computer and LAN-based automated circulation system capable of handling both Arabic and Latin characters that was developed for use at King Abdullaziz University (Jeddah, Saudi Arabia). Outlines system requirements, system structure, hardware needs, and individual functional modules of the system. Numerous examples and flow…

  1. Lineage II of Southeast Asian/American DENV-2 Is Associated with a Severe Dengue Outbreak in the Peruvian Amazon

    PubMed Central

    Williams, Maya; Mayer, Sandra V.; Johnson, William L.; Chen, Rubing; Volkova, Evgeniya; Vilcarromero, Stalin; Widen, Steven G.; Wood, Thomas G.; Suarez-Ognio, Luis; Long, Kanya C.; Hanley, Kathryn A.; Morrison, Amy C.; Vasilakis, Nikos; Halsey, Eric S.

    2014-01-01

    During 2010 and 2011, the Loreto region of Peru experienced a dengue outbreak of unprecedented magnitude and severity for the region. This outbreak coincided with the reappearance of dengue virus-2 (DENV-2) in Loreto after almost 8 years. Whole-genome sequence indicated that DENV-2 from the outbreak belonged to lineage II of the southeast Asian/American genotype and was most closely related to viruses circulating in Brazil during 2007 and 2008, whereas DENV-2 previously circulating in Loreto grouped with lineage I (DENV-2 strains circulating in South America since 1990). One amino acid substitution (NS5 A811V) in the 2010 and 2011 isolates resulted from positive selection. However, the 2010 and 2011 DENV-2 did not replicate to higher titers in monocyte-derived dendritic cells and did not infect or disseminate in a higher proportion of Aedes aegypti than DENV-2 isolates previously circulating in Loreto. These results suggest that factors other than enhanced viral replication played a role in the severity of this outbreak. PMID:25002298

  2. Increased numbers of circulating ECs are associated with systemic GVHD.

    PubMed

    Yan, Z; Zeng, L; Jia, L; Xu, S; Ding, S

    2011-10-01

    Circulating endothelial cells (ECs) are known to reflect endothelial injury, and endothelial injury is associated with graft-versus-host disease (GVHD). We hypothesised that circulating ECs might be associated with systemic acute graft-versus-host disease (aGVHD). BALB/c (H-2k(d) ) mice were treated with total body irradiation and then infused with C57B/6-derived T-cell-depleted bone marrow (TCD-BM) cells or TCD-BM cells and splenocytes. Cyclosporine was used to prevent aGVHD. Circulating ECs and allogeneic lymphocytes were analysed by flow cytometry at multiple time points. The morphology and ultrastructure of the endothelium were examined by light microscopy or transmission electron microscopy. The results indicated that the number of circulating ECs peaked at day 5 after lethal irradiation in all mice; allogenic transplanted mice (TCD-BM cells and splenocytes) developed typical aGVHD beginning at day 7, exhibiting both histological and clinical symptoms of disease. Circulating ECs peaked a second time at day 9 with aGVHD progression. However, following the administration of CSA, an absence of or a reduction in the amount of subsequent endothelial injury was observed. Circulating ECs might be associated with systemic aGVHD. © 2011 Blackwell Publishing Ltd.

  3. Research on the Impact of a Computerized Circulation System on the Performance of a Large College Library. Final Report.

    ERIC Educational Resources Information Center

    Frohmberg, Katherine A.; Moffett, William A.

    In order to study the effects of introducing an automated circulation system at Oberlin College, Ohio, data were collected from September 1978 until June 1982 on book availability, usage of library facilities, attitudes of library users toward the library, and the efficiency of circulation activities. Data collection methods included circulation…

  4. Systems Analysis, Machineable Circulation Data and Library Users and Non-Users.

    ERIC Educational Resources Information Center

    Lubans, John, Jr.

    A study to be made with computer-based circulation data of the non-use and use of a large academic library is discussed. A search of the literature reveals that computer-based circulation systems can be, but have not been, utilized to provide data bases for systematic analyses of library users and resources. The data gathered in the circulation…

  5. Mechanization in a New Medical School Library II. Serials and Circulation

    PubMed Central

    Payne, Ladye Margarete; Small, Louise; Divett, Robert T.

    1966-01-01

    The serials and circulation phases of the data-processing system in use at the University of New Mexico Library of the Medical Sciences are described. The development of the programs is also reported. The serials program uses simple punched card equipment. The circulation program uses the IBM 357 Data Collection System and punched card data-processing equipment. Images PMID:5921473

  6. Power generation costs and ultimate thermal hydraulic power limits in hypothetical advanced designs with natural circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffey, R.B.; Rohatgi, U.S.

    Maximum power limits for hypothetical designs of natural circulation plants can be described analytically. The thermal hydraulic design parameters are those which limit the flow, being the elevations, flow areas, and loss coefficients. WE have found some simple ``design`` equations for natural circulation flow to power ratio, and for the stability limit. The analysis of historical and available data for maximum capacity factor estimation shows 80% to be reasonable and achievable. The least cost is obtained by optimizing both hypothetical plant performance for a given output,a nd the plant layout and design. There is also scope to increase output andmore » reduce cost by considering design variations of primary and secondary pressure, and by optimizing component elevations and loss coefficients. The design limits for each are set by stability and maximum flow considerations, which deserve close and careful evaluation.« less

  7. Serologic and Molecular Evidence of Vaccinia Virus Circulation among Small Mammals from Different Biomes, Brazil

    PubMed Central

    Miranda, Júlia B.; Borges, Iara A.; Campos, Samantha P.S.; Vieira, Flávia N.; de Ázara, Tatiana M.F.; Marques, Fernanda A.; Costa, Galileu B.; Luis, Ana Paula M.F.; de Oliveira, Jaqueline S.; Ferreira, Paulo César P.; Bonjardim, Cláudio Antônio; da Silva, Silvio L.M.; Eiras, Álvaro E.; Abrahão, Jônatas S.; Kroon, Erna G.; Drumond, Betânia P.; Paglia, Adriano P.

    2017-01-01

    Vaccinia virus (VACV) is a zoonotic agent that causes a disease called bovine vaccinia, which is detected mainly in milking cattle and humans in close contact with these animals. Even though many aspects of VACV infection have been described, much is still unknown about its circulation in the environment and its natural hosts/reservoirs. To investigate the presence of Orthopoxvirus antibodies or VACV DNA, we captured small rodents and marsupials in 3 areas of Minas Gerais state, Brazil, and tested their samples in a laboratory. A total of 336 animals were tested; positivity ranged from 18.1% to 25.5% in the 3 studied regions located in different biomes, including the Atlantic Forest and the Cerrado. Analysis of nucleotide sequences indicated co-circulation of VACV groups I and II. Our findings reinforce the possible role played by rodents and marsupials in VACV maintenance and its transmission chain. PMID:28518030

  8. The evolution of misoscale circulations in a downburst-producing storm and comparison to numerical results

    NASA Technical Reports Server (NTRS)

    Kessinger, C. J.; Wilson, J. W.; Weisman, M.; Klemp, J.

    1984-01-01

    Data from three NCAR radars are used in both single and dual Doppler analyses to trace the evolution of a June 30, 1982 Colorado convective storm containing downburst-type winds and strong vortices 1-2 km in diameter. The analyses show that a series of small circulations formed along a persistent cyclonic shear boundary; at times as many as three misocyclones were present with vertical vorticity values as large as 0.1/s using a 0.25 km grid interval. The strength of the circulations suggests the possibility of accompanying tornadoes or funnels, although none were observed. Dual-Doppler analyses show that strong, small-scale downdrafts develop in close proximity to the misocyclones. A midlevel mesocyclone formed in the same general region of the storm where the misocylones later developed. The observations are compared with numerical simulations from a three-dimensional cloud model initialized with sounding data from the same day.

  9. Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Special Session C06 on: “Physical, biological and biogeochemical processes associated with young thin ice types”

    NASA Astrophysics Data System (ADS)

    Prinsenberg, S. J.

    2009-12-01

    Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Simon Prinsenberg1 and Yves Graton2 1Bedford Inst. of Oceanography, Fisheries and Oceans Canada P.O. Box1006, Dartmouth, Nova Scotia, B2Y 4A2, Canada prinsenbergs@mar.dfo-mpo.gc.ca 2Inst. National de la Recherche Scientifique-Eau, INRS-ETE University of Quebec at Quebec City, Quebec yvesgratton@eteinrs.ca During the winter of 2008, the flaw lead south of Banks Island repeatedly opened and closed representing an elongated region where periodically the large ice growth stimulates the densification of the surface layer due to salt rejection and instigates a local circulation pattern that will affect the biological processes of the region. Helicopter-borne sensors were available to monitor the aftermath of one of the rapid closing of the flaw lead into extensive elongated rubble field using a Canadian Ice breaker, CCGS Amundsen, as a logistic base. After the wind reversed a new open flaw lead 20km wide restarting a new flaw lead formation cycle. Ice thickness and surface roughness data were collected from the rubble field and adjacent open flaw lead with an Electromagnetic-Laser system. The strong wind event of April 4-5 2009 generated a large linear 1.5km wide ice rubble field up to 8-10m thick when the 60cm thick, 18km wide flaw lead was crunched into land-fast by the 1.5m thick offshore pack ice. It is expected that during rapid ice growth in a flaw lead, salt rejection increase the density of the surface water layer producing a surface depression (Low) and cyclonic circulation. In contrast at depth, the extra surface dense water produces a high in the horizontal pressure field and anti-cyclonic circulation which remains after the rapid ice growth within the flaw lead stops. One of such remnants may have been observed during the CFL-IPY winter survey.

  10. Constructing LDPC Codes from Loop-Free Encoding Modules

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher; Thorpe, Jeremy; Andrews, Kenneth

    2009-01-01

    A method of constructing certain low-density parity-check (LDPC) codes by use of relatively simple loop-free coding modules has been developed. The subclasses of LDPC codes to which the method applies includes accumulate-repeat-accumulate (ARA) codes, accumulate-repeat-check-accumulate codes, and the codes described in Accumulate-Repeat-Accumulate-Accumulate Codes (NPO-41305), NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 90. All of the affected codes can be characterized as serial/parallel (hybrid) concatenations of such relatively simple modules as accumulators, repetition codes, differentiators, and punctured single-parity check codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. These codes can also be characterized as hybrid turbolike codes that have projected graph or protograph representations (for example see figure); these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The present method comprises two related submethods for constructing LDPC codes from simple loop-free modules with circulant permutations. The first submethod is an iterative encoding method based on the erasure-decoding algorithm. The computations required by this method are well organized because they involve a parity-check matrix having a block-circulant structure. The second submethod involves the use of block-circulant generator matrices. The encoders of this method are very similar to those of recursive convolutional codes. Some encoders according to this second submethod have been implemented in a small field-programmable gate array that operates at a speed of 100 megasymbols per second. By use of density evolution (a computational- simulation technique for analyzing performances of LDPC codes), it has been shown through some examples that as the block size goes to infinity, low iterative decoding thresholds close to channel capacity limits can be achieved for the codes of the type in question having low maximum variable node degrees. The decoding thresholds in these examples are lower than those of the best-known unstructured irregular LDPC codes constrained to have the same maximum node degrees. Furthermore, the present method enables the construction of codes of any desired rate with thresholds that stay uniformly close to their respective channel capacity thresholds.

  11. 36 CFR 910.17 - Pedestrian circulation system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.17 Pedestrian circulation system...

  12. 36 CFR 910.17 - Pedestrian circulation system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.17 Pedestrian circulation system...

  13. Magnetic resonance imaging during untreated ventricular fibrillation reveals prompt right ventricular overdistention without left ventricular volume loss.

    PubMed

    Berg, Robert A; Sorrell, Vincent L; Kern, Karl B; Hilwig, Ronald W; Altbach, Maria I; Hayes, Melinda M; Bates, Kathryn A; Ewy, Gordon A

    2005-03-08

    Most out-of-hospital ventricular fibrillation (VF) is prolonged (>5 minutes), and defibrillation from prolonged VF typically results in asystole or pulseless electrical activity. Recent visual epicardial observations in an open-chest, open-pericardium model of swine VF indicate that blood flows from the high-pressure arterial system to the lower-pressure venous system during untreated VF, thereby overdistending the right ventricle and apparently decreasing left ventricular size. Therefore, inadequate left ventricular stroke volume after defibrillation from prolonged VF has been postulated as a major contributor to the development of pulseless rhythms. Ventricular dimensions were determined by MRI for 30 minutes of untreated VF in a closed-chest, closed-pericardium model in 6 swine. Within 1 minute of untreated VF, mean right ventricular volume increased by 29% but did not increase thereafter. During the first 5 minutes of untreated VF, mean left ventricular volume increased by 34%. Between 20 and 30 minutes of VF, stone heart occurred as manifested by dramatic thickening of the myocardium and concomitant substantial decreases in left ventricular volume. In this closed-chest swine model of VF, substantial right ventricular volume changes occurred early and did not result in smaller left ventricular volumes. The changes in ventricular volumes before the late development of stone heart do not explain why defibrillation from brief duration VF (<5 minutes) typically results in a pulsatile rhythm with return of spontaneous circulation, whereas defibrillation from prolonged VF (5 to 15 minutes) does not.

  14. Circulating tumor cells (CTCs) from metastatic breast cancer patients linked to decreased immune function and response to treatment.

    PubMed

    Green, Taryn L; Cruse, Julius M; Lewis, Robert E; Craft, Barbara S

    2013-10-01

    We aimed to examine the use of circulating tumor cells (CTCs) as an effective measure of treatment efficacy and immune system function in metastatic breast cancer patients. CTCs are believed to be indicators of residual disease and thus pose an increased risk of metastasis and poorer outcomes to those patients who are CTC-positive. We obtained peripheral blood samples from 45 patients previously diagnosed with metastatic disease originating in the breast. Using TLR agonists that bind TLR ligands and upregulate immune effects versus unstimulated cells, we calculated a percent specific lysis using chromium-51 assay to illustrate the functional abilities of patient natural killer (NK) cells. We found those with greater than 5 CTCs per 7.5 mL blood had significantly decreased responses by their immune cells when compared with those patients who had 5 CTCs or less. We furthermore found a correlation between disease progression and CTC-positive patients, indicating that those who have a positive test should be closely monitored by their clinician. CTCs represent an exciting new clinical opportunity that will ideally utilize their low invasiveness and quick turnaround time to best benefit clinical scenarios. © 2013.

  15. Adding the ‘heart’ to hanging drop networks for microphysiological multi-tissue experiments†

    PubMed Central

    Yazdi, Saeed Rismani; Shadmani, Amir; Bürgel, Sebastian C.; Misun, Patrick M.; Hierlemann, Andreas; Frey, Olivier

    2017-01-01

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid–air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip. PMID:26401602

  16. Statistics of velocity fluctuations of Geldart A particles in a circulating fluidized bed riser

    DOE PAGES

    Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji

    2017-11-21

    Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less

  17. Tropical disturbances in relation to general circulation modeling

    NASA Technical Reports Server (NTRS)

    Estoque, M. A.

    1982-01-01

    The initial results of an evaluation of the performance of the Goddard Laboratory of Atmospheric Simulation general circulation model depicting the tropical atmosphere during the summer are presented. Because the results show the existence of tropical wave disturbances throughout the tropics, the characteristics of synoptic disturbances over Africa were studied and a synoptic case study of a selected disturbance in this area was conducted. It is shown that the model is able to reproduce wave type synoptic disturbances in the tropics. The findings show that, in one of the summers simulated, the disturbances are predominantly closed vortices; in another summer, the predominant disturbances are open waves.

  18. FXR activation by obeticholic acid or nonsteroidal agonists induces a human-like lipoprotein cholesterol change in mice with humanized chimeric liver.

    PubMed

    Papazyan, Romeo; Liu, Xueqing; Liu, Jingwen; Dong, Bin; Plummer, Emily M; Lewis, Ronald D; Roth, Jonathan D; Young, Mark A

    2018-06-01

    Obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist that regulates bile acid and lipid metabolism. FXR activation induces distinct changes in circulating cholesterol among animal models and humans. The mechanistic basis of these effects has been elusive because of difficulties in studying lipoprotein homeostasis in mice, which predominantly package circulating cholesterol in HDLs. Here, we tested the effects of OCA in chimeric mice whose livers are mostly composed (≥80%) of human hepatocytes. Chimeric mice exhibited a human-like ratio of serum LDL cholesterol (LDL-C) to HDL cholesterol (HDL-C) at baseline. OCA treatment in chimeric mice increased circulating LDL-C and decreased circulating HDL-C levels, demonstrating that these mice closely model the cholesterol effects of FXR activation in humans. Mechanistically, OCA treatment increased hepatic cholesterol in chimeric mice but not in control mice. This increase correlated with decreased SREBP-2 activity and target gene expression, including a significant reduction in LDL receptor protein. Cotreatment with atorvastatin reduced total cholesterol, rescued LDL receptor protein levels, and normalized serum LDL-C. Treatment with two clinically relevant nonsteroidal FXR agonists elicited similar lipoprotein and hepatic changes in chimeric mice, suggesting that the increase in circulating LDL-C is a class effect of FXR activation.

  19. Interannual variation of the South China Sea circulation during winter: intensified in the southern basin

    NASA Astrophysics Data System (ADS)

    Zu, Tingting; Xue, Huijie; Wang, Dongxiao; Geng, Bingxu; Zeng, Lili; Liu, Qinyan; Chen, Ju; He, Yunkai

    2018-05-01

    Surface geostrophic current derived from altimetry remote sensing data, and current profiles observed from in-situ Acoustic Doppler Current Profilers (ADCP) mooring in the northern South China Sea (NSCS) and southern South China Sea (SSCS) are utilized to study the kinetic and energetic interannual variability of the circulation in the South China Sea (SCS) during winter. Results reveal a more significant interannual variation of the circulation and water mass properties in the SSCS than that in the NSCS. Composite ananlysis shows a significantly reduced western boundary current (WBC) and a closed cyclonic eddy in the SSCS at the mature phase of El Niño event, but a strong WBC and an unclosed cyclonic circulation in winter at normal or La Niña years. The SST is warmer while the subsurface water is colder and fresher in the mature phase of El Niño event than that in the normal or La Niña years in the SSCS. Numerical experiments and energy analysis suggest that both local and remote wind stress change are important for the interannual variation in the SSCS, remote wind forcing and Kuroshio intrusion affect the circulation and water mass properties in the SSCS through WBC advection.

  20. MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passos, Dário; Charbonneau, Paul; Miesch, Mark, E-mail: dariopassos@ist.utl.pt

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone atmore » mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.« less

  1. Using a Gravity Model to Predict Circulation in a Public Library System.

    ERIC Educational Resources Information Center

    Ottensmann, John R.

    1995-01-01

    Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…

  2. Hyperserotoninemia and Antiserotonin Antibodies in Autism and Other Disorders.

    ERIC Educational Resources Information Center

    Yuwiler, Arthur; And Others

    1992-01-01

    This study examined the linkage between elevated blood serotonin in autism and the presence of circulating autoantibodies against the serotonin 5HT receptor. Results showed elevated blood serotonin was not closely related to inhibition of serotonin binding by antibody-rich blood fractions. Data were insufficient to determine whether people with…

  3. Seasonal variation of the South Indian tropical gyre

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; van Aken, Hendrik M.; de Ruijter, Will P. M.; Maas, Leo R. M.

    2016-04-01

    The South Indian tropical gyre receives and redistributes water masses from the Indonesian Throughflow (ITF), a source of Pacific Ocean water which represents the only low-latitude connector between the world oceans and, therefore, a key component in the global ocean circulation and climate system. We investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles-Chagos Thermocline Ridge (SCTR), based on satellite altimeter data (AVISO) and global atlases of temperature and salinity (CARS09), wind stress (SCOW) and wind-driven circulation. Two novel large-scale features governing the upper geostrophic circulation of the South Indian tropical gyre are revealed. First, the seasonal shrinkage of the ocean gyre. This occurs when the South Equatorial Countercurrent (SECC) recirculates before arrival to Sumatra from winter to spring, in apparent synchronization with the annual cycle of the ITF. Second, the open-ocean upwelling is found to vary following seasonality of the overlying geostrophic ocean gyre, a relationship that has not been previously shown for this region. An analysis of major forcing mechanisms suggests that the thermocline ridge results from the constructive interaction of basin-scale wind stress curl, local-scale wind stress forcing and remote forcing driven by Rossby waves of different periodicity: semiannual in the west, under the strong influence of monsoonal winds; and, annual in the east, where the southeasterlies prevail. One exception occurs during winter, when the well-known westward intensification of the upwelling core, the Seychelles Dome, is shown to be largely a response of the wind-driven circulation. Broadly speaking, the seasonal shrinkage of the ocean gyre (and the SCTR) is the one feature that differs most when the geostrophic circulation is compared to the wind-driven Sverdrup circulation. From late autumn to spring, the eastward SECC recirculates early in the east on feeding the westward South Equatorial Current, therefore closing the gyre before arrival to Sumatra. We find this recirculation longitude migrates over 20° and collocates with the westward advance of a zonal thermohaline front emerging from the encounter between (upwelled) Indian Equatorial Water and relatively warmer and fresher Indonesian Throughflow Water. We suggest this front, which we call the Indonesian Throughflow Front, plays an important role as forcing to the tropical gyre, generating southward geostrophic flows that contribute to the early recirculation of the SECC at longitudes more westward than predicted from the barotropic wind-driven circulation. Because our findings are based on time-averaged seasonal fields from 22 years of satellite altimeter data and from about 60 years of non-systematic sampling of ocean temperature and salinity data (CARS09), we stress the importance of further study on the possibility that interanual variability in the seasonal ITF may cause changes in the seasonal resizing of the ocean gyre and its associated upwelling ridge.

  4. On the glacial and interglacial thermohaline circulation and the associated transports of heat and freshwater

    NASA Astrophysics Data System (ADS)

    Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.

    2014-11-01

    The thermohaline circulation (THC) and the oceanic heat and freshwater transports are essential for understanding the global climate system. Streamfunctions are widely used in oceanography to represent the THC and estimate the transport of heat and freshwater. In the present study, the regional and global changes of the THC, the transports of heat and freshwater and the timescale of the circulation between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present-day climate are explored using an Ocean General Circulation Model and streamfunctions projected in various coordinate systems. We found that the LGM tropical circulation is about 10% stronger than under modern conditions due to stronger wind stress. Consequently, the maximum tropical transport of heat is about 20% larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes by almost 50% and reorganising the freshwater transport. The strength of the Atlantic Meridional Overturning Circulation depends strongly on the coordinate system. It varies between 9 and 16 Sv during the LGM, and between 12 to 19 Sv for the present day. Similar to paleo-proxy reconstructions, a large intrusion of saline Antarctic Bottom Water takes place into the Northern Hemisphere basins and squeezes most of the Conveyor Belt circulation into a shallower part of the ocean. These different haline regimes between the glacial and interglacial period are illustrated by the streamfunctions in latitude-salinity coordinates and thermohaline coordinates. From these diagnostics, we found that the LGM Conveyor Belt circulation is driven by an enhanced salinity contrast between the Atlantic and the Pacific basin. The LGM abyssal circulation lifts and makes the Conveyor Belt cell deviate from the abyssal region, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimate of the timescale of the circulation reveals a sluggish abyssal circulation during the LGM, and a Conveyor Belt circulation that is more vigorous due to the combination of a stronger wind stress and a shortened circulation route.

  5. The Automated Circulation Marketplace: Active and Heating Up.

    ERIC Educational Resources Information Center

    Matthews, Joseph R.

    1982-01-01

    Predicts that the growing market for automated circulation systems will expand even faster in the near future, given the availability of a wide variety of systems and computer types, which enables libraries of all sizes to obtain a system to fit their needs. Currently there are 301 systems installed. (RAA)

  6. An Integrated Systems Approach: A Description of an Automated Circulation Management System.

    ERIC Educational Resources Information Center

    Seifert, Jan E.; And Others

    These bidding specifications describe requirements for a turn-key automated circulation system for the University of Oklahoma Libraries. An integrated systems approach is planned, and requirements are presented for various subsystems: acquisitions, fund accounting, reserve room, and bibliographic and serials control. Also outlined are hardware…

  7. A little island with significant groundwater resources: hydrogeological and hydrogeochemical features of the Pianosa aquifer (Tuscan Archipelago, Italy)

    NASA Astrophysics Data System (ADS)

    Giannecchini, R.; Doveri, M.; Mussi, M.; Nicotra, I.; Puccinelli, A.

    2012-12-01

    The Pianosa Island is one of the seven islands of the Tuscan Archipelago, particularly known for its typical flat morphological structure. It is formed by Neogenic-Quaternary sedimentary rocks, mainly represented by superficial calcarenite and underlying marl and clayey marl. Despite the small extension of the island (just 10,2 km2 wide, coastal perimeter of approximately 18 km, maximum altitude of 29 m a.s.l.) and poor rainfall amount (the annual average is 480,7 mm in 1951-2002 period), the Pianosa aquifer is characterized by significant groundwater resources, which supported the presence of approximately 2,000 people at the end of Eighties. Nevertheless, the groundwater overexploitation and the land use (agricultural activity and cattle-breeding, associated to the local penal settlement activity) caused important sea-water intrusion and pollution phenomena. An improvement of such situation occurs since 1998, owing to the closing of the penal settlement and its activities. This pilot research intends to describe the hydrogeological and hydrogeochemical features of the Pianosa Island aquifer system and the groundwater quality several years after the penal settlement closing. The results of a multidisciplinary approach (hydrogeological, geochemical, isotopic) show that the groundwater recharge and circulation are substantially controlled by the hydro-structural conditions. The flat and permeable superficial calcarenite allows a high infiltration rate. The water table flow direction is generally W-E, in accordance with the dip direction of the stratigraphic contact between the calcarenite and the underlying impermeable marly-clayey rocks. However, the latter present conglomerate and sandstone intercalations, sometimes in contact (by angular unconformity) with the calcarenite, determining a general continuity in groundwater circulation, which is phreatic in the calcarenite, and confined in the conglomerate and sandstone horizons. A piezometric depression with values below the sea level has been identified in the eastern part of the island. The electric conductivity (EC) map confirms this hydrogeological structure. EC values above 1.000 μS/cm are common in almost all the groundwater analyzed. An increase in groundwater salinity is observable in the eastern part of Pianosa, where the water table depression has been recognized. In agreement with the hydro-structural and water table conditions, the hydrogeochemical analyses confirm the recharge of the confined horizons (conglomerate and sandstone) by the superficial calcarenite. The isotopic data indicate that the aquifer system is recharged by the rainfall direct infiltration and there are not connections with the close Elba Island. Finally, the chemical analyses of most groundwater samples suggest an intermediate facies Na-Cl/Ca-HCO3, produced by the combination of the sea spray and the circulation in a prevalently carbonate aquifer (calcarenite). Clearly Na-Cl groundwater prevails in the eastern portion of the island, evidencing the seawater intrusion in the calcarenite, also confirmed by water table conditions and isotopic data.

  8. Non-extracorporeal circulation for coronary artery bypass graft surgery is more beneficial than extracorporeal circulation.

    PubMed

    Yang, F-Y; Bao, Y-Z; Liu, F-S; Zhu, Y-C; Zheng, J; Zhang, J-H; Zheng, X-F; Wei, G-C

    2015-04-01

    The objective of this study was to compare coronary artery bypass graft (CABG) surgery with non-extracorporeal vs. extracorporeal circulation. The study outcomes included operative time, number of graft vessels, pulmonary infection rates, and systemic inflammatory markers. 96 patients received selective CABG, either with non-extracorporeal (study group; n = 48) or extracorporeal circulation (control group; n = 48). Operative time, pulmonary infection rates, and blood levels of inflammatory markers TNF-α, IL-6, and IL-8 before and 4, 24, and 48 hours after the surgery were quantified. Graft vessels were quantified using computed tomography. Operative time was significantly shorter in study group (4.58 ± 0.91 vs. 5.36 ± 1.12 hours in control group; p < 0.05). The number of graft vessels and pulmonary infection rates were comparable between both techniques. However, systemic inflammatory markers were significantly (p < 0.05) lower in study group at 4 and, partly, 24 hours after the surgery. Extracorporeal circulation prolongs operation and can aggravate systemic inflammatory response. Therefore, CABG with non-extracorporeal circulation offers more beneficial outcomes.

  9. An economic and performance design study of solar preheaters for domestic hot water heaters in North Carolina

    NASA Technical Reports Server (NTRS)

    Jones, C. B.; Smetana, F. O.

    1977-01-01

    The performance and estimated material costs for several solar preheaters for domestic hot water heaters using isolation levels present in North Carolina are presented. The effects of monthly variations in isolation and the direction of incident radiation are included. Demand is assumed at 13 gallons (49.2 liters) per day per person. The study shows that a closed circulation system with 82 gallons (310 liters) of preheated storage and 53.4 cu ft (4.94 cu m) of collector surface with single cover can be expected to cost about $800 and to repay it capital cost and interest (at 8%) in 5.2 years, assuming present electric rates increase at 5% per year.

  10. Performance and stability analysis of gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems

    NASA Astrophysics Data System (ADS)

    Yoo, Yeon-Jong

    The purpose of this study is to investigate the performance and stability of the gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems. The target system is STAR-LM, which is a 400-MWt-class advanced lead-cooled fast reactor under development by Argonne National Laboratory and Oregon State University. The primary loop of STAR-LM relies on natural circulation to eliminate main circulation pumps for enhancement of passive safety. To significantly increase the natural circulation flow rate for the incorporation of potential future power uprates, the injection of noncondensable gas into the coolant above the core is envisioned ("gas lift pump"). Reliance upon gas-injection enhanced natural circulation raises the concern of flow instability due to the relatively high temperature change in the reactor core and the two-phase flow condition in the riser. For this study, the one-dimensional flow field equations were applied to each flow section and the mixture models of two-phase flow, i.e., both the homogeneous and drift-flux equilibrium models were used in the two-phase region of the riser. For the stability analysis, the linear perturbation technique based on the frequency-domain approach was used by employing the Nyquist stability criterion and a numerical root search method. It has been shown that the thermal power of the STAR-LM natural circulation system could be increased from 400 up to 1152 MW with gas injection under the limiting void fraction of 0.30 and limiting coolant velocity of 2.0 m/s from the steady-state performance analysis. As the result of the linear stability analysis, it has turned out that the STAR-LM natural circulation system would be stable even with gas injection. In addition, through the parametric study, it has been found that the thermal inertia effects of solid structures such as fuel rod and heat exchanger tube should be considered in the stability analysis model. The results of this study will be a part of the optimized stable design of the gas-injection enhanced natural circulation of STAR-LM with substantially improved power level and economical competitiveness. Furthermore, combined with the parametric study, this research could contribute a guideline for the design of other similar heavy-liquid-metal-cooled natural circulation systems with gas injection.

  11. Levetiracetam-induced transaminitis in a young male with traumatic brain injury.

    PubMed

    Rachamallu, Vivekananda; Song, Michael M; Reed, Jace M; Aligeti, Manish

    2017-11-01

    Levetiracetam is a commonly prescribed antiepileptic drug for seizure prophylaxis in patients with traumatic brain injury (TBI). Levetiracetam metabolism has been reported to be non-dependent on hepatic cytochrome P450 (CYP450) isoenzyme system. Furthermore, levetiracetam and its metabolites are reported to be eliminated from systemic circulation via renal excretion. Therefore, due to its well-known renal clearance mechanism with no dosage adjustments recommended for hepatic impairment, levetiracetam is often chosen as the drug of choice in patients with suspected or ongoing hepatic dysfunction. Furthermore, monitoring of liver enzymes is often not considered to be critical in levetiracetam therapy. However, hepatotoxicity is still possible with levetiracetam. Here, we report on an 18-year-old male with TBI who developed transaminitis with levetiracetam therapy which resolved following the discontinuation of levetiracetam. A close monitoring of liver enzymes and early recognition of hepatotoxicity is still necessary and critical to preventing major sequelae stemming from levetiracetam-induced hepatotoxicity.

  12. Effect of working fluids on thermal performance of closed loop pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Kolková, Zuzana; Malcho, Milan

    2014-08-01

    Improving the performance of electrical components needs higher heat removal from these systems. One of the solutions available is to use a sealed heat pipe with a throbbing filling, where development meets the current requirements for intensification of heat removal and elimination of moving parts cooling systems. Heat pipes operate using phase change working fluid, and it is evaporation and condensation. They have a meandering shape and are characterized by high intensity of heat transfer, high durability and reliability. Advantage of these tubes is that it is not necessary to create the internal capillary structure for transporting liquid and they need any pump to the working fluid circulation. They have a simple structure, low cost, high performance, and they can be used for various structural applications. The choice of working fluid volume and performance affects thermal performance. Distilled water, ethanol and acetone were used in the performance ranges 0-80%.

  13. Beta Testing of CFD Code for the Analysis of Combustion Systems

    NASA Technical Reports Server (NTRS)

    Yee, Emma; Wey, Thomas

    2015-01-01

    A preliminary version of OpenNCC was tested to assess its accuracy in generating steady-state temperature fields for combustion systems at atmospheric conditions using three-dimensional tetrahedral meshes. Meshes were generated from a CAD model of a single-element lean-direct injection combustor, and the latest version of OpenNCC was used to calculate combustor temperature fields. OpenNCC was shown to be capable of generating sustainable reacting flames using a tetrahedral mesh, and the subsequent results were compared to experimental results. While nonreacting flow results closely matched experimental results, a significant discrepancy was present between the code's reacting flow results and experimental results. When wide air circulation regions with high velocities were present in the model, this appeared to create inaccurately high temperature fields. Conversely, low recirculation velocities caused low temperature profiles. These observations will aid in future modification of OpenNCC reacting flow input parameters to improve the accuracy of calculated temperature fields.

  14. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  15. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-05

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  16. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-01

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  17. Well-balanced high-order solver for blood flow in networks of vessels with variable properties.

    PubMed

    Müller, Lucas O; Toro, Eleuterio F

    2013-12-01

    We present a well-balanced, high-order non-linear numerical scheme for solving a hyperbolic system that models one-dimensional flow in blood vessels with variable mechanical and geometrical properties along their length. Using a suitable set of test problems with exact solution, we rigorously assess the performance of the scheme. In particular, we assess the well-balanced property and the effective order of accuracy through an empirical convergence rate study. Schemes of up to fifth order of accuracy in both space and time are implemented and assessed. The numerical methodology is then extended to realistic networks of elastic vessels and is validated against published state-of-the-art numerical solutions and experimental measurements. It is envisaged that the present scheme will constitute the building block for a closed, global model for the human circulation system involving arteries, veins, capillaries and cerebrospinal fluid. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Research on Parallel Three Phase PWM Converters base on RTDS

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Zou, Jianxiao; Li, Kai; Liu, Jingbo; Tian, Jun

    2018-01-01

    Converters parallel operation can increase capacity of the system, but it may lead to potential zero-sequence circulating current, so the control of circulating current was an important goal in the design of parallel inverters. In this paper, the Real Time Digital Simulator (RTDS) is used to model the converters parallel system in real time and study the circulating current restraining. The equivalent model of two parallel converters and zero-sequence circulating current(ZSCC) were established and analyzed, then a strategy using variable zero vector control was proposed to suppress the circulating current. For two parallel modular converters, hardware-in-the-loop(HIL) study based on RTDS and practical experiment were implemented, results prove that the proposed control strategy is feasible and effective.

  19. Optimizing laboratory-based radon flux measurements for sediments.

    PubMed

    Chanyotha, Supitcha; Kranrod, Chutima; Kritsananuwat, Rawiwan; Lane-Smith, Derek; Burnett, William C

    2016-07-01

    Radon flux via diffusion from sediments and other materials may be determined in the laboratory by circulating air through the sample and a radon detector in a closed loop. However, this approach is complicated by the necessity of having to determine the total air volume in the system and accounting for any small air leaks that can arise if using extended measurement periods. We designed a simple open-loop configuration that includes a measured mass of wet sediment and water inside a gas-tight reaction flask connected to a drying system and a radon-in-air analyzer. Ambient air flows through two charcoal columns before entering the reaction vessel to eliminate incoming radon. After traveling through the reaction flask, the air passes the drier and the radon analyzer and is then vented. After some time, the radon activity will reach a steady state depending upon the airflow rate. With this approach, the radon flux via diffusion is simply the product of the steady-state radon activity (Bq/m(3)) multiplied by the airflow rate (mL/min). We demonstrated that this setup could produce good results for materials that produce relatively high radon fluxes. We also show that a modified closed system approach, including radon removal of the incoming air by charcoal filtration in a bypass, can produce very good results including samples with very low emission rates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Butterflies, Black swans and Dragon kings: How to use the Dynamical Systems Theory to build a "zoology" of mid-latitude circulation atmospheric extremes?

    NASA Astrophysics Data System (ADS)

    Faranda, D.; Yiou, P.; Alvarez-Castro, M. C. M.

    2015-12-01

    A combination of dynamical systems and statistical techniques allows for a robust assessment of the dynamical properties of the mid-latitude atmospheric circulation. Extremes at different spatial and time scales are not only associated to exceptionally intense weather structures (e.g. extra-tropical cyclones) but also to rapid changes of circulation regimes (thunderstorms, supercells) or the extreme persistence of weather structure (heat waves, cold spells). We will show how the dynamical systems theory of recurrence combined to the extreme value theory can take into account the spatial and temporal dependence structure of the mid-latitude circulation structures and provide information on the statistics of extreme events.

  1. Plasma enteroglucagon and CCK levels and cell proliferation in defunctioned small bowel in the rat.

    PubMed

    Gornacz, G E; Ghatei, M A; Al-Mukhtar, M Y; Yeats, J C; Adrian, T E; Wright, N A; Bloom, S R

    1984-11-01

    Luminal nutrients exert a powerful trophic effect on small bowel mucosa. Recent evidence suggests that a circulating factor, possibly enteroglucagon, is also growth-promoting. In order to study the isolated effect of nonluminal influences on bowel mucosa, Thiry-Vella fistulae (TVF) were constructed in rats. Circulating enteric hormone concentrations were manipulated by resecting different lengths of remaining gut. Thirty-two male Wistar rats had either 25%, 50%, 75%, or 90% proximal small bowel resection. In each animal the first 25% of resected bowel was exteriorized as a Thiry-Vella fistula. Seven control rats underwent jejunal transection. Twelve days postoperatively the fasted animals were killed, and circulating and tissue concentrations of enteroglucagon and CCK were estimated by radioimmunoassay. Crypt-cell production rate was used as an index of cellular proliferation in the Thiry-Vella fistulae. Proximal small bowel defunctioned in the Thirty-Vella fistulae had a significantly lower crypt-cell production rate and enteroglucagon and CCK content than the equivalent segment in transected rats. Further small bowel resection produced a subsequent increase in circulating enteroglucagon and CCK concentrations, an increase in the Thiry-Vella fistula content of these hormones, and a doubling of the crypt-cell production rate in the Thiry-Vella fistulae. These results show that circulating enteroglucagon and CCK concentrations match closely with enterocyte production even when luminal influences are excluded. It is suggested that circulating factors may play a major role in postresectional ileal hyperplasia. This hyperplasia apparently affects endocrine cells as well as enterocytes.

  2. Heparin-coated extracorporeal circulation systems in heart surgery.

    PubMed

    Tagarakis, Georgios I; Tsilimingas, Nikolaos B

    2009-11-01

    Despite the progress accomplished in the field of off-pump heart surgery, the vast majority of cardiac operations are still performed with the use of extracorporeal circulation, otherwise known as "heart-lung machine." This valuable tool, however, is connected with various complications, partly deriving from the application of intravenous heparin, necessary for the extracorporeal circuits to function. In order to deal with these complications, which among others include postoperative hemorrhage and systemic inflammatory response, several extracorporeal circulation systems, which contain a heparin-coating on their blood-contacting surfaces, have been developed with patents. The philosophy behind the creation of these systems is that with the controlled absorption and interaction of this heparin with the blood elements, adequate intraoperative anticoagulation with lower doses of systemic heparin and fewer systemic complications can be achieved. The idea of the use of heparin coatings has also been applied in other settings, such as in renal dialysis catheters, ECMO (extracorporeal membrane oxygenation), MECC (minimized extracorporeal circulation) and left ventricle assist devices.

  3. Governor`s award of excellence for outstanding achievement in waste management. Cape Industries, Wilmington, North Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1990-12-31

    Cape Industries produces Dimethyl Terephthalate (DMT) and Terephthalic Acid (TA) which are used as raw materials in the production of polyester fibers and films. In this process para-cymene is used as a heat transfer fluid for the process equipment. As the para-cymene is circulated through the process and repeatedly reheated to operating temperatures, some thermal degradation of the cymene and minor contamination due to infiltration of the process material occurs. Prior to August 1988 this spent material was purged from the system and shipped off site for reclamation. The spent material was classified as a hazardous waste due to themore » characteristic of ignitability. In early 1988 existing equipment was retrofitted allowing for on site distillation of the spent para-cymene in a closed-loop system. Reclaimed para-cymene is returned to the system for reuse while the still bottoms are used as a feedstock in the production of DMT. No waste material is generated.« less

  4. A large ultra-clean gas system with closed loop for the high-rate Outer Tracker at HERA-B

    NASA Astrophysics Data System (ADS)

    Hohlmann, Marcus

    2003-12-01

    The gas system for the Outer Tracker of the HERA-B experiment at DESY produces the desired counting gas mixture Ar/CF 4/CO 2 65:30:5 and circulates it through the detector at a flow rate of 20 m3/ h, i.e. ˜1 vol/ h. It controls flows and regulates pressures in all 26 OTR half-superlayers, purifies the gas upon return from the detector, and automatically performs a quantitative analysis of main and trace (O 2, N 2, H 2O) gas components for the common input and the outputs of all half-superlayers. The first running experience and the strategies employed during system construction to avoid any detector aging possibly induced by the gas system are discussed. The large system with major gas purification stations was constructed using only non-outgassing, "clean" materials and devices, such as stainless steel, PEEK, baked Viton, and metal bellows pumps. An epoxy glue was used extensively as a non-outgassing sealing material in applications with up to 100 bar pressure.

  5. A model of mechanical interactions between heart and lungs.

    PubMed

    Fontecave Jallon, Julie; Abdulhay, Enas; Calabrese, Pascale; Baconnier, Pierre; Gumery, Pierre-Yves

    2009-12-13

    To study the mechanical interactions between heart, lungs and thorax, we propose a mathematical model combining a ventilatory neuromuscular model and a model of the cardiovascular system, as described by Smith et al. (Smith, Chase, Nokes, Shaw & Wake 2004 Med. Eng. Phys.26, 131-139. (doi:10.1016/j.medengphy.2003.10.001)). The respiratory model has been adapted from Thibault et al. (Thibault, Heyer, Benchetrit & Baconnier 2002 Acta Biotheor. 50, 269-279. (doi:10.1023/A:1022616701863)); using a Liénard oscillator, it allows the activity of the respiratory centres, the respiratory muscles and rib cage internal mechanics to be simulated. The minimal haemodynamic system model of Smith includes the heart, as well as the pulmonary and systemic circulation systems. These two modules interact mechanically by means of the pleural pressure, calculated in the mechanical respiratory system, and the intrathoracic blood volume, calculated in the cardiovascular model. The simulation by the proposed model provides results, first, close to experimental data, second, in agreement with the literature results and, finally, highlighting the presence of mechanical cardiorespiratory interactions.

  6. Pharmacological interference with tissue hypercatabolism in tumour-bearing rats.

    PubMed Central

    Tessitore, L; Costelli, P; Baccino, F M

    1994-01-01

    Marked loss of body weight and profound waste of both skeletal muscle and white adipose tissue occur in rats into which the ascites hepatoma Yoshida AH-130 has been transplanted, associated with marked perturbations in the hormonal homoeostasis and the presence of circulating tumour necrosis factor and high plasma levels of prostaglandin E2 [Tessitore, Costelli and Baccino (1993) Br. J. Cancer 67, 15-23]. On the basis of previous findings, the present study examined whether the development of cachexia in this model system could be significantly affected by adrenalectomy or by pharmacological treatments that may interfere with proximal or distal mediators of tissue hypercatabolism. In no instance was tumour growth modified. Medroxyprogesterone acetate, an anabolic-hormone-like drug, was completely ineffective. In adrenalectomized animals, although changes such as the elevation of plasma triacylglycerols and corticosterone were corrected, the general course of cachexia was not modified. A partial prevention of muscle waste was observed with acetylsalicylic acid, a non-steroidal anti-inflammatory drug, or with leupeptin, a proteinase inhibitor. Insulin afforded the most significant preservation of muscle protein and adipose-tissue mass, which were maintained close to control values even 10 days after transplantation. The effects of insulin on gastrocnemius muscle and liver protein content were exerted by slowing down protein turnover, mainly enhancing synthesis. Consistently, the total free amino acid concentration in the gastrocnemius of insulin-treated rats 10 days after tumour transplantation was close to that of controls. Although treatment with insulin decreased plasma corticosterone to normal values, it did not modify the circulating level of tumour necrosis factor. On the whole these data show that it seems possible to prevent, at least in part, the tissue waste that characterizes cancer cachexia by purely pharmacological means. PMID:8166661

  7. Seasonal variation of the South Indian tropical gyre

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; van Aken, Hendrik M.; de Ruijter, Will P. M.; Maas, Leo R. M.

    2016-04-01

    Based on satellite altimeter data and global atlases of temperature, salinity, wind stress and wind-driven circulation we investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles-Chagos Thermocline Ridge (SCTR). Results show a year-round, altimeter-derived cyclonic gyre where the upwelling regime appears closely related to seasonality of the ocean gyre, a relationship that has not been previously explored in this region. An analysis of major forcing mechanisms suggests that the thermocline ridge results from the constructive interaction of basin-scale wind stress curl, local-scale wind stress forcing and remote forcing driven by Rossby waves of different periodicity: semiannual in the west, under the strong influence of monsoonal winds; and, annual in the east, where the southeasterlies prevail. One exception occurs during winter, when the well-known westward intensification of the upwelling core, the Seychelles Dome, is shown to be largely a response of the wind-driven circulation. At basin-scale, the most outstanding feature is the seasonal shrinkage of the ocean gyre and the SCTR. From late autumn to spring, the eastward South Equatorial Countercurrent (SECC) recirculates early in the east on feeding the westward South Equatorial Current, therefore closing the gyre before arrival to Sumatra. We find this recirculation longitude migrates over 20° and collocates with the westward advance of a zonal thermohaline front emerging from the encounter between (upwelled) Indian Equatorial Water and relatively warmer and fresher Indonesian Throughflow Water. We suggest this front, which we call the Indonesian Throughflow Front, plays an important role as remote forcing to the tropical gyre, generating southward geostrophic flows that contribute to the early recirculation of the SECC.

  8. Experimental Investigation on The Electromagnetic Clutch Water pump and Pneumatic Compressor for Improving the Efficiency of an Engine

    NASA Astrophysics Data System (ADS)

    Kumarasubramanian, R.; Xavier, Goldwin; Nishanthi, W. Mary; Rajasekar, R.

    2017-05-01

    Considering the fuel crises today many work and research were conducted to reduce the fuel consumption of the internal combustion engine. The fuel consumption of an internal combustion engine can be relatively reduced by use of the electromagnetic clutch water pump and pneumatic compressor. Normally in an engine, the water pump is driven by the crankshaft, with an aid of belt, for the circulation of the water for the cooling process. The circulation of coolant is resisted by the thermostat valve, while the temperature inside the coolant jacket of the engine is below 375K the thermostat is closed only above 375K it tends to open. But water pump run continuously even when thermostat is closed. In pneumatic braking system, pneumatic or air compressor purpose is to compress the air and stored into the storage tank for the brake operation. When the air pressure of the storage tanks gets increases above its storage capacity pressure is regulated by governor, by passing them to atmosphere. Such unnecessary work of this water pump and air compressor can be minimized by use of the electromagnetic clutch water pump and air compressor. The European Driving Cycle is used to evaluate the performance of this water pump and air compressor when used in an engine. The result shows that the fuel economy of the engine while using electromagnetic water pump and pneumatic compressor were improved by 8.0% compared with conventional types which already exist. The application of these electromagnetic water pump and pneumatic compressor are expected to contribute for the improvement of engine performance because of their effect in reduction of the rate of fuel consumption.

  9. Regulation of diet-induced adipose tissue and systemic inflammation by salicylates and pioglitazone.

    PubMed

    Kim, Myung-Sunny; Yamamoto, Yasuhiko; Kim, Kyungjin; Kamei, Nozomu; Shimada, Takeshi; Liu, Libin; Moore, Kristin; Woo, Ju Rang; Shoelson, Steven E; Lee, Jongsoon

    2013-01-01

    It is increasingly accepted that chronic inflammation participates in obesity-induced insulin resistance and type 2 diabetes (T2D). Salicylates and thiazolidinediones (TZDs) both have anti-inflammatory and anti-hyperglycemic properties. The present study compared the effects of these drugs on obesity-induced inflammation in adipose tissue (AT) and AT macrophages (ATMs), as well as the metabolic and immunological phenotypes of the animal models. Both drugs improved high fat diet (HFD)-induced insulin resistance. However, salicylates did not affect AT and ATM inflammation, whereas Pioglitazone improved these parameters. Interestingly, HFD and the drug treatments all modulated systemic inflammation as assessed by changes in circulating immune cell numbers and activation states. HFD increased the numbers of circulating white blood cells, neutrophils, and a pro-inflammatory monocyte subpopulation (Ly6C(hi)), whereas salicylates and Pioglitazone normalized these cell numbers. The drug treatments also decreased circulating lymphocyte numbers. These data suggest that obesity induces systemic inflammation by regulating circulating immune cell phenotypes and that anti-diabetic interventions suppress systemic inflammation by normalizing circulating immune phenotypes.

  10. Magnetohydrodynamic motion of a two-fluid plasma

    DOE PAGES

    Burby, Joshua W.

    2017-07-21

    Here, the two-fluid Maxwell system couples frictionless electron and ion fluids via Maxwell’s equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally-exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, asmore » well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-orders closure may be obtained in closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-orders bracket gives explicit expressions for a number of the full closure’s conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.« less

  11. Magnetohydrodynamic motion of a two-fluid plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burby, Joshua W.

    Here, the two-fluid Maxwell system couples frictionless electron and ion fluids via Maxwell’s equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally-exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, asmore » well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-orders closure may be obtained in closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-orders bracket gives explicit expressions for a number of the full closure’s conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.« less

  12. Closed-Loop Insulin Delivery for Adults with Type 1 Diabetes Undertaking High-Intensity Interval Exercise Versus Moderate-Intensity Exercise: A Randomized, Crossover Study.

    PubMed

    Jayawardene, Dilshani C; McAuley, Sybil A; Horsburgh, Jodie C; Gerche, André La; Jenkins, Alicia J; Ward, Glenn M; MacIsaac, Richard J; Roberts, Timothy J; Grosman, Benyamin; Kurtz, Natalie; Roy, Anirban; O'Neal, David N

    2017-06-01

    We aimed to compare closed-loop glucose control for people with type 1 diabetes undertaking high-intensity interval exercise (HIIE) versus moderate-intensity exercise (MIE). Adults with type 1 diabetes established on insulin pumps undertook HIIE and MIE stages in random order during automated insulin delivery via a closed-loop system (Medtronic). Frequent venous sampling for glucose, lactate, ketones, insulin, catecholamines, cortisol, growth hormone, and glucagon levels was performed. The primary outcome was plasma glucose <4.0 mmol/L for ≥15 min, from exercise commencement to 120 min postexercise. Secondary outcomes included continuous glucose monitoring and biochemical parameters. Twelve adults (age mean ± standard deviation 40 ± 13 years) were recruited; all completed the study. Plasma glucose of one participant fell to 3.4 mmol/L following MIE completion; no glucose levels were <4.0 mmol/L for HIIE (primary outcome). There were no glucose excursions >15.0 mmol/L for either stage. Mean (±standard error) plasma glucose did not differ between stages pre-exercise; was higher during exercise in HIIE than MIE (11.3 ± 0.5 mmol/L vs. 9.7 ± 0.6 mmol/L, respectively; P < 0.001); and remained higher until 60 min postexercise. There were no differences in circulating free insulin before, during, or postexercise. During HIIE compared with MIE, there were greater increases in lactate (P < 0.001), catecholamines (all P < 0.05), and cortisol (P < 0.001). Ketones increased more with HIIE than MIE postexercise (P = 0.031). Preliminary findings suggest that closed-loop glucose control is safe for people undertaking HIIE and MIE. However, the management of the postexercise rise in ketones secondary to counter-regulatory hormone-induced insulin resistance observed with HIIE may represent a challenge for closed-loop systems.

  13. Child Maltreatment Is Associated with a Reduction of the Oxytocin Receptor in Peripheral Blood Mononuclear Cells

    PubMed Central

    Krause, Sabrina; Boeck, Christina; Gumpp, Anja M.; Rottler, Edit; Schury, Katharina; Karabatsiakis, Alexander; Buchheim, Anna; Gündel, Harald; Kolassa, Iris-Tatjana; Waller, Christiane

    2018-01-01

    Background: Child maltreatment (CM) and attachment experiences are closely linked to alterations in the human oxytocin (OXT) system. However, human data about oxytocin receptor (OXTR) protein levels are lacking. Therefore, we investigated oxytocin receptor (OXTR) protein levels in circulating immune cells and related them to circulating levels of OXT in peripheral blood. We hypothesized reduced OXTR protein levels, associated with both, experiences of CM and an insecure attachment representation. Methods: OXTR protein expressions were analyzed by western blot analyses in peripheral blood mononuclear cells (PBMC) and plasma OXT levels were determined by radioimmunoassay (RIA) in 49 mothers. We used the Childhood Trauma Questionnaire (CTQ) to assess adverse childhood experiences. Attachment representations (secure vs. insecure) were classified using the Adult Attachment Projective Picture System (AAP) and levels of anxiety and depression were assessed with the German version of the Hospital Depression and Anxiety scale (HADS-D). Results: CM-affected women showed significantly lower OXTR protein expression with significantly negative correlations between the OXTR protein expression and the CTQ sum score, whereas plasma OXT levels showed no significant differences in association with CM. Lower OXTR protein expression in PBMC were particularly pronounced in the group of insecurely attached mothers compared to the securely attached group. Anxiety levels were significantly higher in CM-affected women. Conclusion: This study demonstrated a significant association between CM and an alteration of OXTR protein expression in human blood cells as a sign for chronic, long-lasting alterations in this attachment-related neurobiological system. PMID:29535656

  14. STUDIES ON THE ORIGIN OF CIRCULATING 18-HYDROXYCORTISOL AND 18-OXOCORTISOL IN NORMAL HUMAN SUBJECTS.

    PubMed Central

    Freel, E Marie; Shakerdi, Loai A; Friel, Elaine C; Wallace, A Michael; Davies, Eleanor; Fraser, Robert; Connell, John MC

    2005-01-01

    18-hydroxycortisol (18-OHF) and 18-oxocortisol (18oxo-F) are derivatives of cortisol found in Primary Aldosteronism but whose origin and regulation in normal subjects is uncertain. 18-OHF can be synthesised by zona fasciculata 11-β hydroxylase; 18-oxoF can only be produced by zona glomerulosa aldosterone synthase (AS). Stably transfected cell lines expressing either CYP11B1 (11β-hydroxylase) or CYP11B2 (AS) were incubated with cortisol and other substrates over a range of concentrations. Both enzymes could synthesise 18-OHF from cortisol but only AS could synthesise 18-oxoF. AS was more efficient than 11β-hydroxylase at 18-hydroxylation. The apparent Km of AS for cortisol was estimated to be 2.6μM. In 5 patients with adrenal insufficiency maintained on hydrocortisone, urinary free cortisol and cortisone levels were high; 18-oxoF was detectable in all patients and 18-hydroxycortisol in 3. It is likely that the 18-oxygenated steroids were synthesised from circulating cortisol, either in the zona glomerulosa or at extra-adrenal sites. In 8 male volunteers, dexamethasone treatment decreased urinary excretion rates of free cortisol, cortisone, 18-OHF and 18-oxoFl, confirming dependence of 18-oxygenated steroid levels on cortisol availability. In both groups, hydrocortisone administration resulted in detectable levels of 18-OHF and raised levels of 18-oxoF. There was close correlation between 18-oxoF and cortisol excretion during hydrocortisone administration in normal subjects (r=0.86, p<0.001). These data show, for the first time, that 18-OHF and 18oxoF can be synthesised from circulating cortisol. The close correlation between 18-oxoF and cortisol suggests that 18-oxoF is normally produced by the action of aldosterone synthase utilising circulating cortisol as a substrate. Although 18OHF can be synthesized using circulating cortisol as substrate, our data suggest this is normally produced in the zona fasciculata by 11β-hydroxylase from locally available cortisol. PMID:15356073

  15. Oxidative Burst of Circulating Neutrophils Following Traumatic Brain Injury in Human

    PubMed Central

    Liao, Yiliu; Liu, Peng; Guo, Fangyuan; Zhang, Zhi-Yuan; Zhang, Zhiren

    2013-01-01

    Besides secondary injury at the lesional site, Traumatic brain injury (TBI) can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91phox) in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected organs and the injured brain from the secondary damage. PMID:23894384

  16. A comparison between minimized extracorporeal circuits and conventional extracorporeal circuits in patients undergoing aortic valve surgery: is 'minimally invasive extracorporeal circulation' just low prime or closed loop perfusion ?

    PubMed

    Starinieri, Pascal; Declercq, Peter E; Robic, Boris; Yilmaz, Alaaddin; Van Tornout, Michiel; Dubois, Jasperina; Mees, Urbain; Hendrikx, Marc

    2017-07-01

    Even though results have been encouraging, an unequivocal conclusion on the beneficial effect of minimally invasive extracorporeal circulation (MiECC) in patients undergoing aortic valve surgery cannot be derived from previous publications. Long-term outcomes are rarely reported and a significant decrease in operative mortality has not been shown. Most studies have a limited number of patients and are underpowered. They merely report on short-term results of a heterogeneous intraoperative group using different types of ECC system in aortic valve surgery. The aim of the present study was to determine whether MiECC systems are more beneficial than conventional extracorporeal systems (CECC) with regard to mortality, hospital stay and inflammation and with only haemodilution and blood-air interface as differences. We retrospectively analysed data regarding mortality, hospital stay and inflammation in patients undergoing isolated aortic valve surgery. Forty patients were divided into two groups based on the type of extracorporeal system used; conventional (n=20) or MiECC (n=20). Perioperative blood product requirements were significantly lower in the MiECC group (MiECC: 0.2±0.5 units vs CECC: 0.9±1.2 units, p=0.004). No differences were seen postoperatively regarding mortality (5% vs 5%, p=0.99), total length of hospital stay (10.6±7.2 days (MiECC) vs 12.1±5.9 days (CECC), p=0.39) or inflammation markers (CRP: MiECC: 7.09±13.62 mg/L vs CECC: 3.4±3.2 mg/L, p=0.89). MiECC provides circulatory support that is equally safe and feasible as conventional extracorporeal circuits. No differences in mortality, hospital stay or inflammation markers were observed.

  17. Climate and CO2 coupling in the early Cenozoic Greenhouse

    NASA Astrophysics Data System (ADS)

    Rae, J. W. B.; Greenop, R.; Kaminski, M.; Sexton, P. F.; Foster, G. L.; Greene, S. E.; Littley, E.; Kirtland Turner, S.; Ridgwell, A.

    2017-12-01

    The early Cenozoic is a time of climatic extremes: hyperthermals pepper the transition from extreme global warmth to the start of Cenozoic cooling, with these evolving climate regimes accompanied by major changes in ocean chemistry and biota. The exogenic carbon cycle, and ocean-atmospheric CO2 in particular, is thought to have played a key role in these climatic changes, but the carbon chemistry of the early Cenozoic ocean remains poorly constrained. Here we present new boron isotope data from benthic foraminifera, which can be used to constrain relative changes in ocean pH. These are coupled with modelling experiments performed with the cGenie Earth system model to provide new constraints on the carbon cycle and carbonate system of the early Cenozoic. While our benthic boron isotope data do not readily provide a record of surface ocean CO2 , they do place constraints on the whole ocean-atmosphere carbonate system, alongside changes in ocean circulation and biogeochemistry, and also have relatively robust calcite tests and small `vital effects'. During the late Paleocene ascent to peak greenhouse conditions and the middle Eocene descent towards the icehouse, our boron isotope data show close coupling with benthic δ18O, demonstrating a clear link between CO2 and climate. However within the early Eocene our boron isotope data reveal more dynamic changes in deep ocean pH, which may be linked to changes in ocean circulation. Overall, our data demonstrate the ability of CO2 to regulate the climate system across varying boundary conditions, and the influence of both the long-term carbon cycle and shorter-term ocean biogeochemical cycling on Earth's climate.

  18. Comparison of authigenic carbonates formation at mud volcanoes and pockmarks in the Portuguese Margin vs. at the Yinazao serpentinite mud volcano in the Marianas forearc

    NASA Astrophysics Data System (ADS)

    Magalhaes, V. H.; Freitas, M.; Azevedo, M. R.; Pinheiro, L. M.; Salgueiro, E.; Abrantes, F. F. G.

    2017-12-01

    On the Portuguese passive continental margin, active and past seepage processes form mud volcanoes and pockmarks at the seafloor. Often associated with these structures are extensive methane-derived authigenic carbonates that form from deep-sourced methane-rich fluids that ascend from deep to the upper sedimentary column and often discharge at the seafloor. These carbonates form within the sediments and are either dominated by dolomite and high-Mg calcites, when formed under a restricted seawater circulation environment, anoxic and low sulphate conditions; or by aragonite and calcite when formed close to or at the seafloor in a high sulphate system. The δ13C values (-56.2‰ VPDB) found on the carbonate-cemented material clearly indicates methane as the major carbon source. On the Yinazao serpentinite mud volcano at an active, non-accretionary, convergent margin, sediment samples from IODP Sites U1491 and U1492 (Exp. 366) contain authigenic minerals such as aragonite, calcite, brucite, gypsum among others. Authigenic aragonite occurs predominantly within the top meters of the cores where both oxidation and seawater circulation in the sedimentary column are higher. In this system, initial results indicate that the major carbon source is most probably not methane but seawater related. This work discusses and compares the major carbon sources in both systems: sedimentary mud volcanoes and pockmarks of a passive margin vs. a serpentinite mud volcano of an active, non-accretionary, convergent margin. We acknowledge the support from the PES project - Pockmarks and fluid seepage in the Estremadura Spur: implications for regional geology, biology, and petroleum systems (PTDC/GEOFIQ/5162/2014) financed by the Portuguese Foundation for Science and Technology (FCT).

  19. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  20. Experimental and analytical study of stability characteristics of natural circulation boiling water reactors during startup transient

    NASA Astrophysics Data System (ADS)

    Woo, Kyoungsuk

    Two-phase natural circulation loops are unstable at low pressure operating conditions. New reactor design relying on natural circulation for both normal and abnormal core cooling is susceptible to different types of flow instabilities. In contrast to forced circulation boiling water reactor (BWR), natural circulation BWR is started up without recirculation pumps. The tall chimney placed on the top of the core makes the system susceptible to flashing during low pressure start-up. In addition, the considerable saturation temperature variation may induce complicated dynamic behavior driven by thermal non-equilibrium between the liquid and steam. The thermal-hydraulic problems in two-phase natural circulation systems at low pressure and low power conditions are investigated through experimental methods. Fuel heat conduction, neutron kinetics, flow kinematics, energetics and dynamics that govern the flow behavior at low pressure, are formulated. A dimensionless analysis is introduced to obtain governing dimensionless groups which are groundwork of the system scaling. Based on the robust scaling method and start-up procedures of a typical natural circulation BWR, the simulation strategies for the transient with and without void reactivity feedback is developed. Three different heat-up rates are applied to the transient simulations to study characteristics of the stability during the start-up. Reducing heat-up rate leads to increase in the period of flashing-induced density wave oscillation and decrease in the system pressurization rate. However, reducing the heat-up rate is unable to completely prevent flashing-induced oscillations. Five characteristic regions of stability are discovered at low pressure conditions. They are stable single-phase, flashing near the separator, intermittent oscillation, sinusoidal oscillation and low subcooling stable regions. Stability maps were acquired for system pressures ranging 100 kPa to 400 kPa. According to experimental investigation, the flow becomes stable below a certain heat flux regardless of the inlet subcooling at the core and system pressure. At higher heat flux, unstable phenomena were indentified within a certain range of inlet subcooling. The unstable region diminishes as the system pressure increases. In natural circulation BWRs, the significant gravitational pressure drop over the tall chimney section induces a Type-I instability. The Type-I instability becomes especially important during low power and pressure conditions during reactor start-up. Under these circumstances the effect of pressure variations on the saturation enthalpy becomes significant. An experimental study shows that the flashing phenomenon in the adiabatic chimney section is dominant during the start-up of a natural circulation BWR. Since flashing occurs outside the core, nuclear feedback effects on the stability are small. Furthermore, the thermal-hydraulic oscillation period is much longer than power fluctuation period caused by void reactivity feedback. In the natural circulation system increasing the inlet restriction reduces the natural circulation flow rate, shifting the unstable region to higher inlet subcooling.

  1. Circulatory response and autonomic nervous activity during gum chewing.

    PubMed

    Hasegawa, Yoko; Sakagami, Joe; Ono, Takahiro; Hori, Kazuhiro; Zhang, Min; Maeda, Yoshinobu

    2009-08-01

    Mastication has been proven to enhance the systemic circulation, with circulatory responses seeming to be largely regulated by autonomic nervous activity via a more complex regulatory system than those of other activities. However, few studies have examined the relationships between changes in autonomic nervous activity and the systemic circulation that are induced by masticatory movement. We investigated changes in the systemic circulation and autonomic nervous activity during gum chewing to clarify the influence of mastication. Electrocardiograms, arterial blood pressure, and masseter electromyograms were taken while chewing gum continuously as indicators of systemic circulation in 10 healthy subjects with normal dentition. Cardiac sympathetic activity and vagus nervous activity, as well as vasomotor sympathetic nervous activity, were evaluated by fluctuation analysis of heart rate and blood pressure. Repeated analysis of variance and multiple comparisons were performed to determine chronological changes in each indicator during gum chewing. Gum chewing increased the heart rate and the mean arterial pressure. Although cardiac sympathetic activity and vagus nervous activity showed significant changes, vasomotor sympathetic nervous activity did not. These results suggest that changes in the autonomic nervous activity of the heart are mainly involved in the enhancement of systemic circulation with gum chewing. This explains some characteristics of autonomic nervous regulation in masticatory movement.

  2. Design and Off-Design Performance of 100 kWe-Class Brayton Power Conversion Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.; Mason, Lee S.

    2005-01-01

    The NASA Glenn Research Center in-house computer model Closed Cycle Engine Program (CCEP) was used to explore the design trade space and off-design performance characteristics of 100 kWe-class recuperated Closed Brayton Cycle (CBC) power conversion systems. Input variables for a potential design point included the number of operating units (1, 2, 4), cycle peak pressure (0.5, 1, 2 MPa), and turbo-alternator shaft speed (30, 45, 60 kRPM). The design point analysis assumed a fixed turbine inlet temperature (1150 K), compressor inlet temperature (400 K), helium-xenon working-fluid molecular weight (40 g/mol), compressor pressure ratio (2.0), recuperator effectiveness (0.95), and a Sodium-Potassium (NaK) pumped-loop radiator. The design point options were compared on the basis of thermal input power, radiator area, and mass. For a nominal design point with defined Brayton components and radiator area, off-design cases were examined by reducing turbine inlet temperature (as low as 900 K), reducing shaft speed (as low as 50 percent of nominal), and circulating a percentage (up to 20 percent) of the compressor exit flow back to the gas cooler. The off-design examination sought approaches to reduce thermal input power without freezing the radiator.

  3. Design and Off-Design Performance of 100 kWe-Class Brayton Power Conversion Systems

    NASA Astrophysics Data System (ADS)

    Johnson, Paul K.; Mason, Lee S.

    2005-02-01

    The NASA Glenn Research Center in-house computer model Closed Cycle Engine Program (CCEP) was used to explore the design trade space and off-design performance characteristics of 100 kWe-class recuperated Closed Brayton Cycle (CBC) power conversion systems. Input variables for a potential design point included the number of operating units (1, 2, 4), cycle peak pressure (0.5, 1, 2 MPa), and turbo-alternator shaft speed (30,45, 60 kRPM). The design point analysis assumed a fixed turbine inlet temperature (1150 K), compressor inlet temperature (400 K), helium-xenon working-fluid molecular weight (40 g/mol), compressor pressure ratio (2.0), recuperator effectiveness (0.95), and a Sodium-Potassium (NaK) pumped-loop radiator. The design point options were compared on the basis of thermal input power, radiator area, and mass. For a nominal design point with defined Brayton components and radiator area, off-design cases were examined by reducing turbine inlet temperature (as low as 900 K), reducing shaft speed (as low as 50% of nominal), and circulating a percentage (up to 20%) of the compressor exit flow back to the gas cooler. The off-design examination sought approaches to reduce thermal input power without freezing the radiator.

  4. Elite Circulation and the Convertibility of Knowledge: Comparing Different Types and Forms of Knowledge and Degrees of Elite Circulation in Europe

    ERIC Educational Resources Information Center

    Mangset, Marte

    2017-01-01

    According to classical elite theory, increased circulation is related to increased integration which is thought to increase elites' power. Based on a comparative analysis of some European countries' elite education systems, recruitment to elite positions and degrees of circulation--with a specific focus on administrative elites--this article…

  5. Circulating anti-double-stranded DNA antibody-secreting cells in patients with systemic lupus erythematosus: a novel biomarker for disease activity.

    PubMed

    Hanaoka, H; Okazaki, Y; Satoh, T; Kaneko, Y; Yasuoka, H; Seta, N; Kuwana, M

    2012-10-01

    Antibodies against double-stranded DNA (dsDNA) are widely used to diagnose systemic lupus erythematosus (SLE) and evaluate its activity in patients. This study was undertaken to examine the clinical utility of circulating anti-dsDNA antibody-secreting cells for evaluating SLE patients. Anti-dsDNA antibody-secreting cells quantified using an enzyme-linked immunospot assay were detected in the spleen, bone marrow and peripheral blood from MRL/lpr but not in control BALB/c mice. Circulating anti-dsDNA antibody-secreting cells were detected in 29 (22%) of 130 patients with SLE, but in none of 49 with non-SLE connective-tissue disease or 18 healthy controls. The presence of circulating anti-dsDNA antibody-secreting cells was associated with persistent proteinuria, high SLE disease activity index and systemic lupus activity measures, and a high serum anti-dsDNA antibody titre measured with an enzyme-linked immunosorbent assay. The positive predictive value for active disease was 48% for circulating anti-dsDNA antibody-secreting cells versus 17% for serum anti-dsDNA antibodies. A prospective cohort of patients with circulating anti-dsDNA antibodies and inactive SLE showed that the cumulative disease flare-free rate was significantly lower in patients with than without circulating anti-dsDNA antibody-secreting cells (p < 0.001). Circulating anti-dsDNA antibody-secreting cells are a useful biomarker for assessing disease activity in SLE patients.

  6. Mesofauna Influence on Humification Process of Vegetable Oddments with Participation Microarthropod

    ERIC Educational Resources Information Center

    Simonov, Yuriy V.; Svetkina, Irina A.; Kryuchkov, Konstantin V.

    2016-01-01

    Relevance of the studied problem is caused by the fact that stability of natural ecosystems strongly depends on functioning of their destructive block which closes a biological circulation. The organisms that ensure functioning of the destructive block are very different and numerous. All of them partly supplement, partly duplicate functions of…

  7. The effectiveness of closed-circulation gaseous chlorine dioxide or ozone treatment against bacterial pathogens on produce food control

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to compare the effectiveness of gaseous chlorine dioxide (ClO2) and ozone (O3) treatment against Shiga toxin-producing Escherichia coli (STEC), Salmonella enterica serovars, and Listeria monocytogenes on baby-cut carrots, lowbush blueberries, and beefsteak tomatoes us...

  8. Fluid Circulation Determined in the Isolated Bovine Lens

    PubMed Central

    Candia, Oscar A.; Mathias, Richard; Gerometta, Rosana

    2012-01-01

    Purpose. In 1997, a theoretical model was developed that predicted the existence of an internal, Na+-driven fluid circulation from the poles to the equator of the lens. In the present work, we demonstrate with a novel system that fluid movement can be measured across the polar and equatorial surface areas of isolated cow lenses. We have also determined the effects of ouabain and reduced bath [Na+]. Methods. Lenses were isolated in a chamber with three compartments separated by two thin O-rings. Each compartment, anterior (A), equatorial (E), and posterior (P), was connected to a vertical capillary graduated in 0.25 μL. Capillary levels were read every 15 minutes. The protocols consisted of 2 hours in either open circuit or short circuit. The effects of ouabain and low-Na+ solutions were determined under open circuit. Results. In 21 experiments, the E capillary increased at a mean rate of 0.060 μL/min while the A and P levels decreased at rates of 0.044 and 0.037 μL/min, respectively, closely accounting for the increase in E. The first-hour flows under short circuit were approximately 40% larger than those in open-circuit conditions. The first-hour flows were always larger than those during the second hour. Preincubation of lenses with either ouabain or low-[Na+] solutions resulted in reduced rates of fluid transport. When KCl was used to replace NaCl, a transitory stimulation of fluid transport occurred. Conclusions. These experiments support that a fluid circulation consistent with the 1997 model is physiologically active. PMID:22969071

  9. Changes in benthic ecosystems and ocean circulation in the Southeast Atlantic across Eocene Thermal Maximum 2

    NASA Astrophysics Data System (ADS)

    Jennions, S. M.; Thomas, E.; Schmidt, D. N.; Lunt, D.; Ridgwell, A.

    2015-08-01

    Eocene Thermal Maximum 2 (ETM2) occurred 1.8 Myr after the Paleocene-Eocene Thermal Maximum (PETM) and, like the PETM, was characterized by a negative carbon isotope excursion and warming. We combined benthic foraminiferal and sedimentological records for Southeast Atlantic Sites 1263 (1500 m paleodepth) and 1262 (3600 m paleodepth) to show that benthic foraminiferal diversity and accumulation rates declined more precipitously and severely at the shallower site during peak ETM2. As the sites are in close proximity, differences in surface productivity cannot have caused this differential effect. Instead, we infer that changes in ocean circulation across ETM2 may have produced more pronounced warming at intermediate depths (Site 1263). The effects of warming include increased metabolic rates, a decrease in effective food supply and increased deoxygenation, thus potentially explaining the more severe benthic impacts at Site 1263. In response, bioturbation may have decreased more at Site 1263 than at Site 1262, differentially affecting bulk carbonate records. We use a sediment-enabled Earth system model to test whether a reduction in bioturbation and/or the likely reduced carbonate saturation of more poorly ventilated waters can explain the more extreme excursion in bulk δ13C and sharper transition in wt % CaCO3 at Site 1263. We find that both enhanced acidification and reduced bioturbation during the ETM2 peak are needed to account for the observed features. Our combined ecological and modeling analysis illustrates the potential role of ocean circulation changes in amplifying local environmental changes and driving temporary, but drastic, loss of benthic biodiversity and abundance.

  10. Circulating CXCR5+PD-1+ICOS+ Follicular T Helper Cells Are Increased Close to the Diagnosis of Type 1 Diabetes in Children With Multiple Autoantibodies.

    PubMed

    Viisanen, Tyyne; Ihantola, Emmi-Leena; Näntö-Salonen, Kirsti; Hyöty, Heikki; Nurminen, Noora; Selvenius, Jenni; Juutilainen, Auni; Moilanen, Leena; Pihlajamäki, Jussi; Veijola, Riitta; Toppari, Jorma; Knip, Mikael; Ilonen, Jorma; Kinnunen, Tuure

    2017-02-01

    Although type 1 diabetes (T1D) is primarily perceived as a T cell-driven autoimmune disease, islet autoantibodies are the best currently available biomarker for autoimmunity and disease risk. These antibodies are produced by autoreactive B cells, the activation of which is largely dependent on the function of CD4 + CXCR5 + follicular T helper cells (Tfh). In this study, we have comprehensively characterized the Tfh- as well as B-cell compartments in a large cohort of children with newly diagnosed T1D or at different stages of preclinical T1D. We demonstrate that the frequency of CXCR5 + PD-1 + ICOS + -activated circulating Tfh cells is increased both in children with newly diagnosed T1D and in autoantibody-positive at-risk children with impaired glucose tolerance. Interestingly, this increase was only evident in children positive for two or more biochemical autoantibodies. No alterations in the circulating B-cell compartment were observed in children with either prediabetes or diabetes. Our results demonstrate that Tfh activation is detectable in the peripheral blood close to the presentation of clinical T1D but only in a subgroup of children identifiable by positivity for multiple autoantibodies. These findings suggest a role for Tfh cells in the pathogenesis of human T1D and carry important implications for targeting Tfh cells and/or B cells therapeutically. © 2017 by the American Diabetes Association.

  11. A thermosphere-ionosphere-mesosphere-electrodynamic general circulation model (time-GCM): Equinox solar cycle minimum simulations (30-500 km)

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Ridley, E. C.

    1994-01-01

    A new simulation model of the mesosphere, thermosphere, and ionosphere with coupled electrodynamics has been developed and used to calculate the global circulation, temperature and compositional structure between 30-500 km for equinox, solar cycle minimum, geomagnetic quiet conditions. The model incorporates all of the features of the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere- electrodynamics general circulation model (TIE-GCM) but the lower boundary has been extended downward from 97 to 30 km (10 mb) and it includes the physical and chemical processes appropriate for the mesosphere and upper stratosphere. The first simulation used Rayleigh friction to represent gravity wave drag in the middle atmosphere and although it was able to close the mesospheric jets it severely damped the diurnal tide. Reduced Rayleigh friction allowed the tide to penetrate to thermospheric heights but did not close the jets. A gravity wave parameterization developed by Fritts and Lu (1993) allows both features to exist simultaneously with the structure of tides and mean flow dependent upon the strength of the gravity wave source. The model calculates a changing dynamic structure with the mean flow and diurnal tide dominant in the mesosphere, the in-situ generated semi-diurnal tide dominating the lower thermosphere and an in-situ generated diurnal tide in the upper thermosphere. The results also show considerable interaction between dynamics and composition, especially atomic oxygen between 85 and 120 km.

  12. Development of the Technologies for Stabilization Treatment of the Water of the Recycling Cooling Systems at Thermal Power Plants

    NASA Astrophysics Data System (ADS)

    Vlasov, S. M.; Chichirova, N. D.; Chichirov, A. A.; Vlasova, A. Yu.; Filimonova, A. A.; Prosvirnina, D. V.

    2018-02-01

    A turbine-condensate cooling system is one of the less stable and most hard-to-control systems of maintaining optimal water chemistry. A laboratory recycling cooling water test facility, UVO-0.3, was developed for physical simulation of innovative zero-discharge water chemistry conditions and improvement of technological flowcharts of stabilization treatment of the initial and circulating water of the recycling cooling systems at thermal power plants. Experiments were conducted in the UVO-0.3 facility to investigate the processes that occur in the recycling water supply system and master new technologies of stabilization of the initial and circulating water. It is shown that, when using untreated initial water, scaling cannot be prevented even under low concentration levels. The main reason for the activation of scale depositing is the desorption of carbon dioxide that results in alkalization of the circulating water and, as a consequence, a displacement of the chemical reaction equilibrium towards the formation of slightly soluble hardness ions. Some techniques, viz., liming and alkalization of the initial water and the by-pass treatment of the circulating water, are considered. New engineering solutions have been developed for reducing the amount of scale-forming substances in the initial and circulating water. The best results were obtained by pretreating the initial water with alkalizing agents and simultaneously bypassing and treating part of the circulating water. The obtained experimental data underlie the process flowcharts of stabilization treatment of the initial and circulating TPP water that ensure scale-free and noncorrosive operation and meet the corresponding environmental requirements. Under the bypassing, the specific rates of the agents and the residual hardness are reduced compared with the conventional pretreatment.

  13. Quantifying predictability variations in a low-order ocean-atmosphere model - A dynamical systems approach

    NASA Technical Reports Server (NTRS)

    Nese, Jon M.; Dutton, John A.

    1993-01-01

    The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.

  14. Patron Use of an Online Circulation System in Known-Item Searching.

    ERIC Educational Resources Information Center

    Specht, Jerry

    1980-01-01

    A study of patron use of the University of Illinois online circulation system (LCS) found that 56 percent of original known item searches and 86 percent of location searches were successful, and that graduate students use the system very differently from the way undergraduates use it. (FM)

  15. Baffin Island and West Greenland Current Systems in northern Baffin Bay

    NASA Astrophysics Data System (ADS)

    Münchow, Andreas; Falkner, Kelly K.; Melling, Humfrey

    2015-03-01

    Temperature, salinity, and direct velocity observations from northern Baffin Bay are presented from a summer 2003 survey. The data reveal interactions between fresh and cold Arctic waters advected southward along Baffin Island and salty and warm Atlantic waters advected northward along western Greenland. Geostrophic currents estimated from hydrography are compared to measured ocean currents above 600 m depth. The Baffin Island Current is well constrained by the geostrophic thermal wind relation, but the West Greenland Current is not. Furthermore, both currents are better described as current systems that contain multiple velocity cores and eddies. We describe a surface-intensified Baffin Island Current seaward of the continental slope off Canada and a bottom-intensified West Greenland Current over the continental slope off Greenland. Acoustic Doppler current profiler observations suggest that the West Greenland Current System advected about 3.8 ± 0.27 Sv (Sv = 106 m3 s-1) towards the north-west at this time. The most prominent features were a surface intensified coastal current advecting 0.5 Sv and a bottom intensified slope current advecting about 2.5 Sv in the same direction. Most of this north-westward circulation turned southward in the Baffin Island Current System. The Baffin Island system was transporting 5.1 ± 0.24 Sv to the south-east at the time that includes additional contributions from Nares Strait to the north (1.0 ± 0.2 Sv) and Lancaster Sound to the east (1.0 ± 0.2 Sv). Net freshwater fluxes were 72 and 187 mSv for the West Greenland and Baffin Island Currents, respectively. Empirical uncertainty arises from unknown temporal variations at weekly time scales and pertubations introduced by unresolved eddies. Eddies with 10 km horizontal and 400 m vertical scales were common and recirculated up to 1 Sv. Our 2003 observations represent conditions when the North-Atlantic Oscillation index (NAO) was close to zero. Analysis of historical hydrographic data averaged along isobaths during NAO-positive years reveals a baroclinic circulation in Baffin Bay more intense than 2003 with stronger southward flow of fresher Arctic waters along Baffin Island and stronger northward inflow of saltier Atlantic waters along Greenland. During negative NAO years this cyclonic circulation weakens as evidenced by a 1979 synoptic survey of the hydrography along Baffin Island.

  16. Experimental study on natural circulation precooling of cryogenic pump system with gas phase inlet reflux configuration

    NASA Astrophysics Data System (ADS)

    Chen, G. B.; Zhong, Y. K.; Zheng, X. L.; Li, Q. F.; Xie, X. M.; Gan, Z. H.; Huang, Y. H.; Tang, K.; Kong, B.; Qiu, L. M.

    2003-12-01

    A novel gas-phase inlet configuration in the natural circulation system instead of the liquid-phase inlet is introduced to cool down a cryogenic pump system from room temperature to cryogenic temperatures, effectively. The experimental apparatus is illustrated and test process is described. Heat transfer and pressure drop data during the cool-down process are recorded and portrayed. By contrast with liquid-phase inlet configuration, experimental results demonstrate that the natural circulation with the gas-phase inlet configuration is an easier and more controllable way to cool down the pump system and maintain it at cryogenic temperatures.

  17. Patient-Specific Modeling of Hemodynamics: Supporting Surgical Planning in a Fontan Circulation Correction.

    PubMed

    van Bakel, Theodorus M J; Lau, Kevin D; Hirsch-Romano, Jennifer; Trimarchi, Santi; Dorfman, Adam L; Figueroa, C Alberto

    2018-04-01

    Computational fluid dynamics (CFD) is a modeling technique that enables calculation of the behavior of fluid flows in complex geometries. In cardiovascular medicine, CFD methods are being used to calculate patient-specific hemodynamics for a variety of applications, such as disease research, noninvasive diagnostics, medical device evaluation, and surgical planning. This paper provides a concise overview of the methods to perform patient-specific computational analyses using clinical data, followed by a case study where CFD-supported surgical planning is presented in a patient with Fontan circulation complicated by unilateral pulmonary arteriovenous malformations. In closing, the challenges for implementation and adoption of CFD modeling in clinical practice are discussed.

  18. The leading mode of observed and CMIP5 ENSO-residual sea surface temperatures and associated changes in Indo-Pacific climate

    USGS Publications Warehouse

    Funk, Christopher C.; Hoell. Andrew,

    2015-01-01

    WPWM circulation changes appear consistent with a Matsuno–Gill-like atmospheric response associated with an ocean–atmosphere dipole structure contrasting increased (decreased) western (eastern) Pacific precipitation, SSHs, and ocean temperatures. These changes have enhanced the Walker circulation and modulated weather on a global scale. An AGCM experiment and the WPWM of global boreal spring precipitation indicate significant drying across parts of East Africa, the Middle East, the southwestern United States, southern South America, and Asia. Changes in the WPWM have tracked closely with precipitation and the increase in drought frequency over the semiarid and water-insecure areas of East Africa, the Middle East, and southwest Asia.

  19. The circulation of a baroclinic ocean around planetary scale islands with topography

    NASA Astrophysics Data System (ADS)

    Pedlosky, J.

    2010-12-01

    The circulation around planetary-scale islands is considered for an island with a topographic skirt for a stratified ocean. The simplest model of the ocean is a two layer ocean in a circular domain with the island in the center. When the girdling topography is steep, closed geostrophic contours guide the flow in each of the two layers although that guiding occurs at different horizontal locations in each layer. For flows with weak dissipation, modeled as bottom and interfacial friction, explicit formulae are given for the dependence of the streamfunction in each layer on the ambient potential vorticity, f/(layer depth). Numerical model calculations will be presented to supplement the analytical results.

  20. Residual estuarine circulation in the Mandovi, a monsoonal estuary: A three-dimensional model study

    NASA Astrophysics Data System (ADS)

    Vijith, V.; Shetye, S. R.; Baetens, K.; Luyten, P.; Michael, G. S.

    2016-05-01

    Observations in the Mandovi estuary, located on the central west coast of India, have shown that the salinity field in this estuary is remarkably time-dependent and passes through all possible states of stratification (riverine, highly-stratified, partially-mixed and well-mixed) during a year as the runoff into the estuary varies from high values (∼1000 m3 s-1) in the wet season to negligible values (∼1 m3 s-1) at end of the dry season. The time-dependence is forced by the Indian Summer Monsoon (ISM) and hence the estuary is referred to as a monsoonal estuary. In this paper, we use a three-dimensional, open source, hydrodynamic, numerical model to reproduce the observed annual salinity field in the Mandovi. We then analyse the model results to define characteristics of residual estuarine circulation in the Mandovi. Our motivation to study this aspect of the Mandovi's dynamics is derived from the following three considerations. First, residual circulation is important to long-term evolution of an estuary; second, we need to understand how this circulation responds to strongly time-dependent runoff forcing experienced by a monsoonal estuary; and third, Mandovi is among the best studied estuaries that come under the influence of ISM, and has observations that can be used to validate the model. Our analysis shows that the residual estuarine circulation in the Mandovi shows four distinct phases during a year: a river like flow that is oriented downstream throughout the estuary; a salt-wedge type circulation, with flow into the estuary near the bottom and out of the estuary near the surface restricted close to the mouth of the estuary; circulation associated with a partially-mixed estuary; and, the circulation associated with a well-mixed estuary. Dimensional analysis of the field of residual circulation helped us to establish the link between strength of residual circulation at a location and magnitude of river runoff and rate of mixing at the location. We then derive an analytical expression that approximates exchange velocity (bottom velocity minus near freshwater velocity at a location) as a function of freshwater velocity and rate of mixing.

  1. Interannual Variability in the Position and Strength of the East Asian Jet Stream and Its Relation to Large - scale Circulation

    NASA Astrophysics Data System (ADS)

    Chan, Duo; Zhang, Yang; Wu, Qigang

    2013-04-01

    East Asian Jet Stream (EASJ) is charactered by obvious interannual variability in strength and position (latitude), with wide impacts on East Asian climate in all seasons. In this study, two indices are established to measure the interannual variability in intensity and position of EAJS. Possible causing factors, including both local signals and non-local large-scale circulation, are examined using NCAP-NCAR reanalysis data to investigate their relations with jet variation. Our analysis shows that the relationship between the interannual variations of EASJ and these factors depends on seasons. In the summer, both the intensity and position of EASJ are closely related to the meridional gradient of local surface temperature, but display no apparent relationship with the larg-scale circulation. In cold seasons (autumn, winter and spring), both the local factor and the large-scale circulation, i.e. the Pacific/North American teleconnection pattern (PNA), play important roles in the interannual variability of the jet intensity. The variability in the jet position, however, is more correlated to the Arctic Oscillation (AO), especially in winter. Diagnostic analysis indicates that transient eddy activity plays an important role in connecting the interannual variability of EASJ position with AO.

  2. Influence of the biosphere and circulation on atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Corbett, A.; Jiang, X.; La, J.; Olsen, E. T.; Licata, S. J.; Yung, Y. L.

    2017-12-01

    Using multiple satellite CO2 retrievals (e.g., AIRS, GOSAT, and OCO-2), we have investigated seasonal changes of CO2 as a function of latitudes and altitudes. The annual cycle of atmospheric CO2 is closely related to the exchange of CO2 between the biosphere and the atmosphere, so we also examine solar-induced fluorescence (SIF). High SIF value means more CO2 uptake by photosynthesis, which will lead to lower atmospheric CO2 concentrations. The satellite data demonstrate a negative correlation between atmospheric CO2 and SIF. SIF can be influenced by precipitation and evaporation. We have found a positive correlation between SIF and the difference of precipitation and evaporation, suggesting there is more CO2 uptake by vegetation when more water is available. In addition to the annual cycle, large-scale circulation, such as South Atlantic Walker Circulation, can also modulate atmospheric CO2 concentrations. As seen from AIRS, GOSAT, and OCO-2 CO2 retrievals, there is less CO2 over the South Atlantic Ocean than over South America from December to March. Results in this study will help us better understand interactions between the biosphere, circulation, and atmospheric CO2.

  3. Selective Homogeneous Assay for Circulating Endopeptidase Fibroblast Activation Protein (FAP).

    PubMed

    Bainbridge, Travis W; Dunshee, Diana Ronai; Kljavin, Noelyn M; Skelton, Nicholas J; Sonoda, Junichiro; Ernst, James A

    2017-10-02

    Fibroblast Activation Protein (FAP) is a membrane-bound serine protease whose expression is often elevated in activated fibroblasts associated with tissue remodeling in various common diseases such as cancer, arthritis and fibrosis. Like the closely related dipeptidyl peptidase DPPIV, the extracellular domain of FAP can be released into circulation as a functional enzyme, and limited studies suggest that the circulating level of FAP correlates with the degree of tissue fibrosis. Here we describe a novel homogeneous fluorescence intensity assay for circulating FAP activity based on a recently identified natural substrate, FGF21. This assay is unique in that it can effectively distinguish endopeptidase activity of FAP from that of other related enzymes such as prolyl endopeptidase (PREP) and was validated using Fap-deficient mice. Structural modeling was used to elucidate the mechanistic basis for the observed specificity in substrate recognition by FAP, but not by DPPIV or PREP. Finally, the assay was used to detect elevated FAP activity in human patients diagnosed with liver cirrhosis and to determine the effectiveness of a chemical inhibitor for FAP in mice. We propose that the assay presented here could thus be utilized for diagnosis of FAP-related pathologies and for the therapeutic development of FAP inhibitors.

  4. First detection of co-circulation of West Nile and Usutu viruses in equids in the south-west of Tunisia.

    PubMed

    Ben Hassine, T; De Massis, F; Calistri, P; Savini, G; BelHaj Mohamed, B; Ranen, A; Di Gennaro, A; Sghaier, S; Hammami, S

    2014-10-01

    In the last fifteen years, West Nile Virus (WNV) has dramatically expanded its geographic range and is now considered the most widespread arbovirus in the world. In Tunisia, West Nile Fever (WNF) outbreaks were reported in humans in 1997, 2003 and 2012. Usutu Virus (USUV), which is a 'new' emerging Flavivirus antigenically close to WNV, has never been reported in Tunisia. A serological investigation in 284 equids was conducted in 2012 in the southern west region of the country to assess the presence and prevalence of the WNV and USUV infection. Of the 284 samples tested by competitive enzyme-linked immunoassay, 129 were positive. Of these, 120 (42.3%) had WNV-specific neutralizing antibodies. The prevalence was significantly higher in areas closer to the oasis compared with that of the surrounding arid areas. Antibody titres against USUV were also reported in 10 equids. This was the first evidence of USUV circulation in Tunisia. Data recorded by this study indicate that WNV and USUV have circulated/are circulating in the region and that there is an urgent need to adapt the current surveillance programmes to this new scenario. © 2014 Blackwell Verlag GmbH.

  5. Pathogenic and Genotypic Characterization of a Japanese Encephalitis Virus Isolate Associated with Reproductive Failure in an Indian Pig Herd

    PubMed Central

    Desingu, P. A.; Ray, Pradeep K.; Patel, B. H. M.; Singh, R.; Singh, R. K.; Saikumar, G

    2016-01-01

    Background India is endemic to Japanese encephalitis virus (JEV) and recurrent outbreaks occur mainly in rice growing areas. Pigs are considered to be the amplifying host for JEV and infection in gestating pigs results in reproductive failure. Most studies conducted on JEV infection in Indian pigs have been serological surveys and very little is known about JEV genotypes circulating in pigs. So the potential risk posed by pigs in JEV transmission and the genetic relationship between viruses circulating in pigs, mosquitoes and humans is poorly understood. Methodology/Principal Findings This study was conducted in pigs with a history of reproductive failure characterized by stillborn piglets with neuropathological lesions. Japanese encephalitis (JE) suspected brain specimens inoculated intracerebrally into mice and Vero cells resulted in successful isolation of JEV/SW/IVRI/395A/2014. Clinicopathological observations in infected mice, demonstration of JEV antigen in brain, and analysis of the envelope protein identified the swine isolate as being neurovirulent. Phylogenetic analysis based on prM and E gene sequences showed that it belonged to genotype III. This swine isolate was closely related to JEV associated with the 2005 outbreak in India and JaoArS982 from Japan. Phylogenetic analysis of JEV strains collected between 1956 and 2014 in India categorized the GIII viruses into different clades blurring their spatial distribution, which has been discernible in the previous century. Conclusions/Significance Isolation of JEV from stillborn piglets and its close genetic relationship with viruses detected at least three decades ago in humans and mosquitoes in Japan suggests that the virus may have been circulating among Indian pigs for several decades. The close similarity between the present swine isolate and those detected in humans affected in the 2005 outbreak in Uttar Pradesh, India, suggests the need for more intensive surveillance of pigs and implementation of suitable strategies to control JE in India. PMID:26895440

  6. Event-driven management algorithm of an Engineering documents circulation system

    NASA Astrophysics Data System (ADS)

    Kuzenkov, V.; Zebzeev, A.; Gromakov, E.

    2015-04-01

    Development methodology of an engineering documents circulation system in the design company is reviewed. Discrete event-driven automatic models using description algorithms of project management is offered. Petri net use for dynamic design of projects is offered.

  7. Staff Training Aspects of Circulation System Implementation.

    ERIC Educational Resources Information Center

    Juergens, Bonnie

    1979-01-01

    Presents program guidelines for training library staff in the operation and use of automated library circulation systems. Advice is given on the qualificatons of the training coordinator, levels of training, training and training aids, vendor responsibilities and time frame. (RAA)

  8. Effect of PEG and water-soluble chitosan coating on moxifloxacin-loaded PLGA long-circulating nanoparticles.

    PubMed

    Mustafa, Sanaul; Devi, V Kusum; Pai, Roopa S

    2017-02-01

    Moxifloxacin (MOX) is a Mycobacterium tuberculosis DNA gyrase inhibitor. Due to its intense hydrophilicity, MOX is cleared from the body within 24 h and required for repetitive doses which may then result in hepatotoxicity and acquisition of MOX resistant-TB, related with its use. To overcome the aforementioned limitations, the current study aimed to develop PLGA nanoparticles (PLGA NPs), to act as an efficient carrier for controlled delivery of MOX. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG) to MOX-PLGA NPs and adsorption of water-soluble chitosan (WSC) (cationic deacetylated chitin) to particle surface, was rose for surface modification of NPs. Surface modified NPs (MOX-PEG-WSC NPs) were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetic and in vivo biodistribution following oral administration were investigated. NP surface charge was closed to neutral +4.76 mV and significantly affected by the WSC coating. MOX-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long-drawn-out the blood circulation half-life with resultant reduced liver sequestration vis-à-vis MOX-PLGA NPs. The studies, therefore, indicate the successful formulation development of MOX-PEG-WSC NPs that showed sustained release behavior from nanoparticles which indicates low frequency of dosing.

  9. Particle Swarms in Fractures: Open Versus Partially Closed Systems

    NASA Astrophysics Data System (ADS)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2014-12-01

    In the field, fractures may be isolated or connected to fluid reservoirs anywhere along the perimeter of a fracture. These boundaries affect fluid circulation, flow paths and communication with external reservoirs. The transport of drop like collections of colloidal-sized particles (particle swarms) in open and partially closed systems was studied. A uniform aperture synthetic fracture was constructed using two blocks (100 x 100 x 50 mm) of transparent acrylic placed parallel to each other. The fracture was fully submerged a tank filled with 100cSt silicone oil. Fracture apertures were varied from 5-80 mm. Partially closed systems were created by sealing the sides of the fracture with plastic film. The four boundary conditions study were: (Case 1) open, (Case 2) closed on the sides, (Case 3) closed on the bottom, and (Case 4) closed on both the sides and bottom of the fracture. A 15 μL dilute suspension of soda-lime glass particles in oil (2% by mass) were released into the fracture. Particle swarms were illuminated using a green (525 nm) LED array and imaged with a CCD camera. The presence of the additional boundaries modified the speed of the particle swarms (see figure). In Case 1, enhanced swarm transport was observed for a range of apertures, traveling faster than either very small or very large apertures. In Case 2, swarm velocities were enhanced over a larger range of fracture apertures than in any of the other cases. Case 3 shifted the enhanced transport regime to lower apertures and also reduced swarm speed when compared to Case 2. Finally, Case 4 eliminated the enhanced transport regime entirely. Communication between the fluid in the fracture and an external fluid reservoir resulted in enhanced swarm transport in Cases 1-3. The non-rigid nature of a swarm enables drag from the fracture walls to modify the swarm geometry. The particles composing a swarm reorganize in response to the fracture, elongating the swarm and maintaining its density. Unlike a drop or solid sphere, fracture boundaries do not exclusively decelerate swarm motion but instead produce enhanced swarm transport. Acknowledgments: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  10. Increasing persistent haze in Beijing: potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends

    NASA Astrophysics Data System (ADS)

    Pei, Lin; Yan, Zhongwei; Sun, Zhaobin; Miao, Shiguang; Yao, Yao

    2018-03-01

    Over the past decades, Beijing, the capital city of China, has encountered increasingly frequent persistent haze events (PHE). While the increased pollutant emissions are considered as the most important reason, changes in regional atmospheric circulations associated with large-scale climate warming also play a role. In this study, we find a significant positive trend of PHE in Beijing for the winters from 1980 to 2016 based on updated daily observations. This trend is closely related to an increasing frequency of extreme anomalous southerly episodes in North China, a weakened East Asian trough in the mid-troposphere and a northward shift of the East Asian jet stream in the upper troposphere. These conditions together depict a weakened East Asian winter monsoon (EAWM) system, which is then found to be associated with an anomalous warm, high-pressure system in the middle-lower troposphere over the northwestern Pacific. A practical EAWM index is defined as the seasonal meridional wind anomaly at 850 hPa in winter over North China. Over the period 1900-2016, this EAWM index is positively correlated with the sea surface temperature anomalies over the northwestern Pacific, which indicates a wavy positive trend, with an enhanced positive phase since the mid-1980s. Our results suggest an observation-based mechanism linking the increase in PHE in Beijing with large-scale climatic warming through changes in the typical regional atmospheric circulation.

  11. Structural controls on fluid circulation at the Caviahue-Copahue Volcanic Complex (CCVC) geothermal area (Chile-Argentina), revealed by soil CO2 and temperature, self-potential, and helium isotopes

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Bravo, Francisco; Pinti, Daniele L.; Barde-Cabusson, Stéphanie; Pizarro, Marcela; Tardani, Daniele; Muñoz, Carlos; Sanchez, Juan; Sano, Yuji; Takahata, Naoto; de la Cal, Federico; Esteban, Carlos; Morata, Diego

    2017-07-01

    Natural geothermal systems are limited areas characterized by anomalously high heat flow caused by recent tectonic or magmatic activity. The heat source at depth is the result of the emplacement of magma bodies, controlled by the regional volcano-tectonic setting. In contrast, at a local scale a well-developed fault-fracture network favors the development of hydrothermal cells, and promotes the vertical advection of fluids and heat. The Southern Volcanic Zone (SVZ), straddling Chile and Argentina, has an important, yet unexplored and undeveloped geothermal potential. Studies on the lithological and tectonic controls of the hydrothermal circulation are therefore important for a correct assessment of the geothermal potential of the region. Here, new and dense self-potential (SP), soil CO2 and temperature (T) measurements, and helium isotope data measured in fumaroles and thermal springs from the geothermal area located in the north-eastern flank of the Copahue volcanic edifice, within the Caviahue Caldera (the Caviahue-Copahue Volcanic Complex - CCVC) are presented. Our results allowed to the constraint of the structural origin of the active thermal areas and the understanding of the evolution of the geothermal system. NE-striking faults in the area, characterized by a combination of SP, CO2, and T maxima and high 3He/4He ratios (up to 8.16 ± 0.21Ra, whereas atmospheric Ra is 1.382 × 10- 6), promote the formation of vertical permeability preferential pathways for fluid circulation. WNW-striking faults represent low-permeability pathways for hydrothermal fluid ascent, but promote infiltration of meteoric water at shallow depths, which dilute the hydrothermal input. The region is scattered with SP, CO2, and T minima, representing self-sealed zones characterized by impermeable altered rocks at depth, which create local barriers for fluid ascent. The NE-striking faults seem to be associated with the upflowing zones of the geothermal system, where the boiling process produces a high vapor-dominated zone close to the surface, whereas the WNW-striking faults could act as a boundary of the Copahue geothermal area to the south.

  12. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  13. Methods for measuring right ventricular function and hemodynamic coupling with the pulmonary vasculature.

    PubMed

    Bellofiore, Alessandro; Chesler, Naomi C

    2013-07-01

    The right ventricle (RV) is a pulsatile pump, the efficiency of which depends on proper hemodynamic coupling with the compliant pulmonary circulation. The RV and pulmonary circulation exhibit structural and functional differences with the more extensively investigated left ventricle (LV) and systemic circulation. In light of these differences, metrics of LV function and efficiency of coupling to the systemic circulation cannot be used without modification to characterize RV function and efficiency of coupling to the pulmonary circulation. In this article, we review RV physiology and mechanics, established and novel methods for measuring RV function and hemodynamic coupling, and findings from application of these methods to RV function and coupling changes with pulmonary hypertension. We especially focus on non-invasive measurements, as these may represent the future for clinical monitoring of disease progression and the effect of drug therapies.

  14. Closed Brayton cycle power conversion systems for nuclear reactors :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors,more » reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.« less

  15. Heat Pump Clothes Dryer Model Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo

    A heat pump clothes dryer (HPCD) is an innovative appliance that uses a vapor compression system to dry clothes. Air circulates in a closed loop through the drum, so no vent is required. The condenser heats air to evaporate moisture out of the clothes, and the evaporator condenses water out of the air stream. As a result, the HPCD can achieve 50% energy savings compared to a conventional electric resistance dryer. We developed a physics-based, quasi-steady-state HPCD system model with detailed heat exchanger and compressor models. In a novel approach, we applied a heat and mass transfer effectiveness model tomore » simulate the drying process of the clothes load in the drum. The system model is able to simulate the inherently transient HPCD drying process, to size components, and to reveal trends in key variables (e.g. compressor discharge temperature, power consumption, required drying time, etc.) The system model was calibrated using experimental data on a prototype HPCD. In the paper, the modeling method is introduced, and the model predictions are compared with experimental data measured on a prototype HPCD.« less

  16. A STRATEGY FOR PROTECTING CIRCULATING SEAWATER SYSTEMS FROM OIL SPILLS

    EPA Science Inventory

    A strategy is described for establishing a simple, inexpensive monitoring program for determining approximate levels of petroleum hydrocarbons in ambient water collected near intake structures of circulating seawater systems. The ambient water is obtained from the depth of intake...

  17. Study of lubricant circulation in HVAC systems. Volume 1: Description of technical effort and results; Final technical report, March 1995--April 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biancardi, F.R.; Michels, H.H.; Sienel, T.H.

    1996-10-01

    The purpose of this program was to conduct experimental and analytical efforts to determine lubricant circulation characteristics of new HFC/POE pairs and HFC/mineral oil pairs in a representative central residential HVAC system and to compare their behavior with the traditional HCFC-22/mineral oil (refrigerant/lubricant) pair. A dynamic test facility was designed and built to conduct the experimental efforts. This facility provided a unique capability to visually and physically measure oil circulation rates, on-line, in operating systems. A unique on-line ultraviolet-based measurement device was used to obtain detailed data on the rate and level of lubricant oil circulated within the operating heatmore » pump system. The experimental and analytical data developed during the program are presented as a function of vapor velocity, refrigerant/lubricant viscosity, system features and equipment. Both visual observations and instrumentation were used to understand ``worst case`` oil circulation situations. This report is presented in two volumes. Volume 1 contains a complete description of the program scope, objective, test results summary, conclusions, description of test facility and recommendations for future effort. Volume 2 contains all of the program test data essentially as taken from the laboratory dynamic test facility during the sequence of runs.« less

  18. Automated Circulation Systems in Libraries Serving the Blind and Physically Handicapped: A Reference Guide for Planning.

    ERIC Educational Resources Information Center

    Wanger, Judith; And Others

    Designed to facilitate communications in future automation projects between library and data processing personnel, especially those projects involving the use of automated systems in the service of disabled patrons, this guide identifies and describes a master set of major circulation system requirements and design considerations, and illustrates…

  19. Library Specifications for a New Circulation System for Concordia University Libraries.

    ERIC Educational Resources Information Center

    Tallon, James

    This study of library requirements for a new circulation system is organized into three sections: (1) items required for initial implementation in July 1982; (2) items relating to notice generation and activity statistics, with implementation expected by fall 1982; and (3) items provided in the system as initially implemented, with additional…

  20. Manipulating parallel circuits: the perioperative management of patients with complex congenital cardiac disease.

    PubMed

    Lawrenson, John; Eyskens, Benedicte; Vlasselaers, Dirk; Gewillig, Marc

    2003-08-01

    In all patients undergoing cardiac surgery, the effective delivery of oxygen to the tissues is of paramount importance. In the patient with relatively normal cardiac structures, the pulmonary and systemic circulations are relatively independent of each other. In the patient with a functional single ventricle, the pulmonary and systemic circulations are dependent on the same pump. As a consequence of this interdependency, the haemodynamic changes following complex palliative procedures, such as the Norwood operation, can be difficult to understand. Comparison of the newly created surgical connections to a simple set of direct current electrical circuits may help the practitioner to successfully care for the patient. In patients undergoing complex palliations, the pulmonary and systemic circulations can be compared to two circuits in parallel. Manipulations of variables, such as resistance or flow, in one circuit, can profoundly affect the performance of the other circuit. A large pulmonary flow might result in a large increase in the saturation of haemoglobin with oxygen returning to the heart via the pulmonary veins at the expense of a decreased systemic flow. Accurate balancing of these parallel circulations requires an appreciation of all interventions that can affect individual components of both circulations.

  1. Inkjet-Print Micromagnet Array on Glass Slides for Immunomagnetic Enrichment of Circulating Tumor Cells

    PubMed Central

    Chen, Peng; Huang, Yu-Yen; Bhave, Gauri; Hoshino, Kazunori; Zhang, Xiaojing

    2015-01-01

    We report an inkjet-printed microscale magnetic structure that can be integrated on regular glass slides for the immunomagnetic screening of rare Circulating Tumor Cells (CTCs). CTCs detach from the primary tumor site, circulate with the bloodstream, and initiate the cancer metastasis process. Therefore, a liquid biopsy in the form of capturing and analyzing CTCs may provide key information for cancer prognosis and diagnosis. Inkjet printing technology provides a non-contact, layer-by-layer and mask-less approach to deposit defined magnetic patterns on an arbitrary substrate. Such thin film patterns, when placed in an external magnetic field, significantly enhance the attractive force in the near-field close to the CTCs to facilitate the separation. We demonstrated the efficacy of the inkjet-print micromagnet array integrated immunomagnetic assay in separating COLO205 (human colorectal cancer cell line) from whole blood samples. The micromagnets increased the capture efficiency by 26% compared with using plain glass slide as the substrate. PMID:26289942

  2. Molecular Epidemiological Analysis of Dengue Fever in Bolivia from 1998 to 2008

    PubMed Central

    Roca, Yelin; Baronti, Cécile; Revollo, Roberto Jimmy; Cook, Shelley; Loayza, Roxana; Ninove, Laetitia; Fernandez, Roberto Torrez; Flores, Jorge Vargas; Herve, Jean-Pierre; de Lamballerie, Xavier

    2012-01-01

    Dengue fever was first recognized in Bolivia in 1931. However, very limited information was available to date regarding the genetic characterization and epidemiology of Bolivian dengue virus strains. Here, we performed genetic characterization of the full-length envelope gene of 64 Bolivian isolates from 1998 to 2008 and investigated their origin and evolution to determine whether strains circulated simultaneously or alternatively, and whether or not multiple introductions of distinct viral variants had occurred during the period studied. We determined that, during the last decade, closely related viruses circulated during several consecutive years (5, 6, and 6 years for DENV-1, DENV-2, and DENV-3, respectively) and the co-circulation of two or even three serotypes was observed. Emergence of new variants (distinct from those identified during the previous episodes) was identified in the case of DENV-1 (2007 outbreak) and DENV-2 (2001 outbreak). In all cases, it is likely that the viruses originated from neighboring countries. PMID:19505253

  3. Iceberg discharges of the last glacial period driven by oceanic circulation changes

    PubMed Central

    Alvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa; Ritz, Catherine

    2013-01-01

    Proxy data reveal the existence of episodes of increased deposition of ice-rafted detritus in the North Atlantic Ocean during the last glacial period interpreted as massive iceberg discharges from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence of the crucial role that the ocean plays both for past and future behavior of the cryosphere suggests a climatic control of these ice surges. Here, we present simulations of the last glacial period carried out with a hybrid ice sheet–ice shelf model forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. The model generates a time series of iceberg discharge that closely agrees with ice-rafted debris records over the past 80 ka, indicating that oceanic circulation variations were responsible for the enigmatic ice purges of the last ice age. PMID:24062437

  4. Stable isotopes of fossil teeth corroborate key general circulation model predictions for the Last Glacial Maximum in North America

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.; McKay, Moriah

    2010-11-01

    Oxygen isotope data provide a key test of general circulation models (GCMs) for the Last Glacial Maximum (LGM) in North America, which have otherwise proved difficult to validate. High δ18O pedogenic carbonates in central Wyoming have been interpreted to indicate increased summer precipitation sourced from the Gulf of Mexico. Here we show that tooth enamel δ18O of large mammals, which is strongly correlated with local water and precipitation δ18O, is lower during the LGM in Wyoming, not higher. Similar data from Texas, California, Florida and Arizona indicate higher δ18O values than in the Holocene, which is also predicted by GCMs. Tooth enamel data closely validate some recent models of atmospheric circulation and precipitation δ18O, including an increase in the proportion of winter precipitation for central North America, and summer precipitation in the southern US, but suggest aridity can bias pedogenic carbonate δ18O values significantly.

  5. Emergence of a New Lineage of Dengue Virus Type 2 Identified in Travelers Entering Western Australia from Indonesia, 2010-2012

    PubMed Central

    Ernst, Timo; McCarthy, Suzi; Chidlow, Glenys; Luang-Suarkia, Dagwin; Holmes, Edward C.; Smith, David W.; Imrie, Allison

    2015-01-01

    Dengue virus (DENV) transmission is ubiquitous throughout the tropics. More than 70% of the current global dengue disease burden is borne by people who live in the Asia-Pacific region. We sequenced the E gene of DENV isolated from travellers entering Western Australia between 2010–2012, most of whom visited Indonesia, and identified a diverse array of DENV1-4, including multiple co-circulating viral lineages. Most viruses were closely related to lineages known to have circulated in Indonesia for some time, indicating that this geographic region serves as a major hub for dengue genetic diversity. Most notably, we identified a new lineage of DENV-2 (Cosmopolitan genotype) that emerged in Bali in 2011–2012. The spread of this lineage should clearly be monitored. Surveillance of symptomatic returned travellers provides important and timely information on circulating DENV serotypes and genotypes, and can reveal the herald wave of dengue and other emerging infectious diseases. PMID:25635775

  6. [Philological structure of Dan xi shou jing (Danxi's Hand Mirror)].

    PubMed

    Chen, Yincan; Zhu, Jianping

    2015-05-01

    Zhu Danxi, one of the four Major Schools of the Jin-Yuan Dynasties, had a lot of works circulated with its authorship in disarray. Part of the works were compiled by his disciples, while others were by his self-taught followers based on prior circulated Danxi's originals, plus some apocryphal so-called Danxi's works circulated posthumously. When sorting out Danxi's Hand Mirror, we found that some of its contents are closely related to Bei ji qian jin yao fang (Essential Prescriptions Worth a Thousand Gold for Emergencies), Qian jin yi fang (Supplements to Qian jin yao fang), Tai ping sheng hui fang (Peaceful Holy Benevolent Prescriptions), Zhu jie shang han lun (Annotated Treatises of Cold Pathogenic Disease), Shang han ming li lun (Elucidation of Cold Pathogenic Disease), Ge zhi yu lun (Treatise of Inquiring the Properties of Things), either by transcription or with an identical origin. By clearing their relationships, it can provide assistance to the research of the philological structure of Danxi's hand Mirror.

  7. Noise Reduction Through Circulation Control

    NASA Technical Reports Server (NTRS)

    Munro, Scott E.; Ahuja, K. K.; Englar, Robert J.

    2005-01-01

    Circulation control technology uses tangential blowing around a rounded trailing edge or a leading edge to change the force and moment characteristics of an aerodynamic body. This technology has been applied to circular cylinders, wings, helicopter rotors, and even to automobiles for improved aerodynamic performance. Only limited research has been conducted on the acoustic of this technology. Since wing flaps contribute to the environmental noise of an aircraft, an alternate blown high lift system without complex mechanical flaps could prove beneficial in reducing the noise of an approaching aircraft. Thus, in this study, a direct comparison of the acoustic characteristics of high lift systems employing a circulation control wing configuration and a conventional wing flapped configuration has been made. These results indicate that acoustically, a circulation control wing high lift system could be considerably more acceptable than a wing with conventional mechanical flaps.

  8. Analysis of Influence of Heat Insulation on the Thermal Regime of Storage Tanks with Liquefied Natural Gas

    NASA Astrophysics Data System (ADS)

    Maksimov, Vyacheslav I.; Nagornova, Tatiana A.; Glazyrin, Viktor P.; Shestakov, Igor A.

    2016-02-01

    Is numerically investigated the process of convective heat transfer in the reservoirs of liquefied natural gas (LNG). The regimes of natural convection in a closed rectangular region with different intensity of heat exchange at the external borders are investigated. Is solved the time-dependent system of energy and Navier-Stokes equations in the dimensionless variables "vorticity - the stream function". Are obtained distributions of the hydrodynamic parameters and temperatures, that characterize basic regularities of the processes. The special features of the formation of circulation flows are isolated and the analysis of the temperature distribution in the solution region is carried out. Is shown the influence of geometric characteristics and intensity of heat exchange on the outer boundaries of reservoir on the temperature field in the LNG storage.

  9. Obese mice on a high-fat alternate-day fasting regimen lose weight and improve glucose tolerance.

    PubMed

    Joslin, P M N; Bell, R K; Swoap, S J

    2017-10-01

    Alternate-day fasting (ADF) causes body weight (BW) loss in humans and rodents. However, it is not clear that ADF while maintaining a high-fat (HF) diet results in weight loss and the accompanying improvement in control of circulating glucose. We tested the hypotheses that a high-fat ADF protocol in obese mice would result in (i) BW loss, (ii) improved glucose control, (iii) fluctuating phenotypes on 'fasted' days when compared to 'fed' days and (iv) induction of torpor on 'fasted days'. We evaluated the physiological effects of ADF in diet-induced obese mice for BW, heart rate (HR), body temperature (T b ), glucose tolerance, insulin responsiveness, blood parameters (leptin, insulin, free fatty acids) and hepatic gene expression. Diet-induced obese male C57BL/6J mice lost one-third of their pre-diet BW while on an ADF diet for 10 weeks consisting of HF food. The ADF protocol improved glucose tolerance and insulin sensitivity, although mice on a fast day were less glucose tolerant than the same mice on a fed day. ADF mice on a fast day had low circulating insulin, but had an enhanced response to an insulin-assisted glucose tolerance test, suggesting the impaired glucose tolerance may be a result of insufficient insulin production. On fed days, ADF mice were the warmest, had a high HR and displayed hepatic gene expression and circulating leptin that closely mimicked that of mice fed an ad lib HF diet. ADF mice never entered torpor as assessed by HR and T b . However, on fast days, they were the coolest, had the slowest HR, and displayed hepatic gene expression and circulating leptin that closely mimicked that of Chow-Fed mice. Collectively, the ADF regimen with a HF diet in obese mice results in weight loss, improved blood glucose control, and daily fluctuations in selected physiological and biochemical parameters in the mouse. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  10. Circulation and oxygenation of the glacial South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Dawei; Chiang, Tzu-Ling; Kao, Shuh-Ji; Hsin, Yi-Chia; Zheng, Li-Wei; Yang, Jin-Yu Terence; Hsu, Shih-Chieh; Wu, Chau-Ron; Dai, Minhan

    2017-05-01

    Degree of oxygenation in intermediate water modulates the downward transferring efficiency of primary productivity (PP) from surface water to deep water for carbon sequestration, consequently, the storage of nutrients versus the delivery and sedimentary burial fluxes of organic matter and associated biomarkers. To better decipher the PP history of the South China Sea (SCS), appreciation about the glacial-interglacial variation of the Luzon Strait (LS) throughflow, which determines the mean residence time and oxygenation of water mass in the SCS interior, is required. Based on a well-established physical model, we conducted a 3-D modeling exercise to quantify the effects of sea level drop and monsoon wind intensity on glacial circulation pattern, thus, to evaluate effects of productivity and circulation-induced oxygenation on the burial of organic matter. Under modern climatology wind conditions, a 135 m sea-level drop results in a greater basin closeness and a ∼24% of reduction in the LS intermediate westward throughflow, consequently, an increase in the mean water residence time (from 19.0 to 23.0 years). However, when the wind intensity was doubled during glacial low sea-level conditon, the throughflow restored largely to reach a similar residence time (18.4 years) as today regardless its closeness. Comparing with present day SCS, surface circulation pattern in glacial model exhibits (1) stronger upwelling at the west off Luzon Island, and (2) an intensified southwestward jet current along the western boundary of the SCS basin. Superimposed hypothetically by stronger monsoon wind, the glacial SCS conditions facilitate greater primary productivity in the northern part. Manganese, a redox sensitive indicator, in IMAGES core MD972142 at southeastern SCS revealed a relatively reducing environment in glacial periods. Considering the similarity in the mean water residence time between modern and glacial cases, the reducing environment of the glacial southeastern SCS was thus ascribed to a productivity-induced rather than ventilation-induced consequence.

  11. Efficient quantum circuits for dense circulant and circulant like operators

    PubMed Central

    Zhou, S. S.

    2017-01-01

    Circulant matrices are an important family of operators, which have a wide range of applications in science and engineering-related fields. They are, in general, non-sparse and non-unitary. In this paper, we present efficient quantum circuits to implement circulant operators using fewer resources and with lower complexity than existing methods. Moreover, our quantum circuits can be readily extended to the implementation of Toeplitz, Hankel and block circulant matrices. Efficient quantum algorithms to implement the inverses and products of circulant operators are also provided, and an example application in solving the equation of motion for cyclic systems is discussed. PMID:28572988

  12. Development of an Accident Reproduction Simulator System Using a Hemodialysis Extracorporeal Circulation System.

    PubMed

    Nishite, Yoshiaki; Takesawa, Shingo

    2016-01-01

    Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. The aim of this study was to create an extracorporeal circulation system (hereinafter, the circulation system) for dialysis machines so that it sets off five types of alarms for: 1) decreased arterial pressure, 2) increased arterial pressure, 3) decreased venous pressure, 4) increased venous pressure, and 5) blood leakage, according to the five types of accidents chosen based on their frequency of occurrence and the degree of severity. In order to verify the alarm from the dialysis apparatus connected to the circulation system and the accident corresponding to it, an evaluation of the alarm for its reproducibility of an accident was performed under normal treatment circumstances. The method involved testing whether the dialysis apparatus raised the desired alarm from the moment of control of the circulation system, and measuring the time it took until the desired alarm was activated. This was tested on five main models from four dialyzer manufacturers that are currently used in Japan. The results of the tests demonstrated successful activation of the alarms by the dialysis apparatus, which were appropriate for each of the five types of accidents. The time between the control of the circulatory system to the alarm signal was as follows, 1) venous pressure lower limit alarm: 7 seconds; 2) venous pressure lower limit: 8 seconds; 3) venous pressure upper limit: 7 seconds; 4) venous pressure lower limit alarm: 2 seconds; and 5) blood leakage alarm: 19 seconds. All alarms were set off in under 20 seconds. Thus, we can conclude that a simulator system using an extracorporeal circulation system can be set to different models of dialyzers, and that the reproduced treatment scenarios can be used for simulation training.

  13. Paying Attention to Procedural Texts: Critically Reading School Routines as Embodied Achievement

    ERIC Educational Resources Information Center

    Zanden, Sarah Vander; Wohlwend, Karen E.

    2011-01-01

    In this article, we look closely at the way power circulates through school routines with ordinary texts in everyday moments. We address texts that support different types of achievement and how critical literacy helps us redefine achievement and examine what we're doing with texts and students in classrooms. We interrogate the notion of…

  14. Performance of wood in a do-it-yourself solar collector

    Treesearch

    G. E. Sherwood; W. A. Gatz

    1979-01-01

    Six variations of a do-it-yourself solar collector design were constructed and exposed under stagnation conditions for 1 year; collectors were basically closed boxes without air circulation. Temperature in each collector was recorded throughout the test period and the effect of these temperatures on the wood framing and plywood in the collectors was estimated...

  15. Rift Valley fever in Namibia, 2010.

    PubMed

    Monaco, Federica; Pinoni, Chiara; Cosseddu, Gian Mario; Khaiseb, Siegfried; Calistri, Paolo; Molini, Umberto; Bishi, Alec; Conte, Annamaria; Scacchia, Massimo; Lelli, Rossella

    2013-12-01

    During May-July 2010 in Namibia, outbreaks of Rift Valley fever were reported to the National Veterinary Service. Analysis of animal specimens confirmed virus circulation on 7 farms. Molecular characterization showed that all outbreaks were caused by a strain of Rift Valley fever virus closely related to virus strains responsible for outbreaks in South Africa during 2009-2010.

  16. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less

  17. Hematite (U-Th)/He thermochronometry constrains intraplate strike-slip faulting on the Kuh-e-Faghan Fault, central Iran

    NASA Astrophysics Data System (ADS)

    Calzolari, Gabriele; Rossetti, Federico; Ault, Alexis K.; Lucci, Federico; Olivetti, Valerio; Nozaem, Reza

    2018-03-01

    The Kuh-e-Faghan strike-slip fault system (KFF), located to the northern edge of the Lut Block in central Iran, developed through a Neogene-Quaternary pulsed history of eastward fault propagation and fault-related exhumation. This system is a consequence of the residual stresses transmitted from the Arabia-Eurasia convergent plate boundary. Here we integrate structural and textural analysis with new and previously published apatite fission-track (AFT) and apatite (U-Th)/He (apatite He) results, chlorite thermomentry, and hematite (U-Th)/He data from hematite-coated brittle fault surfaces to constrain the timing of tectonic activity and refine patterns of late Miocene-Pliocene burial and exhumation associated with the propagation of the KFF. Twenty-nine hematite (U-Th)/He (hematite He) dates from three striated hematite coated slip surfaces from the KFF fault core and damage zone yield individual dates from 12-2 Ma. Petrographic analysis and chlorite thermometry of a polyphase, fossil fluid system in the KFF fault core document that fluid circulation and mineralization transitioned from a closed system characterized by pressure solution and calcite growth to an open system characterized by hot hydrothermal (T = 239 ± 10 °C) fluids and hematite formation. Hematite microtextures and grain size analysis reveal primary and secondary syntectonic hematite fabrics, no evidence of hematite comminution and similar hematite He closure temperatures ( 60-85 °C) in each sample. Integration of these results with thermal history modeling of AFT and apatite He data shows that KFF activity in the late Miocene is characterized by an early stage of fault nucleation, fluid circulation, hematite mineralization, and eastward propagation not associated with vertical movement that lasted from 12 to 7 Ma. Hematite He, AFT, and apatite He data track a second phase of fault system activity involving fault-related exhumation initiating at 7 Ma and continuing until present time. Our new data constrain the onset of the recognized Late Miocene-Pliocene tectonic reorganization in north-central Iran.

  18. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling approach to the PB-FHR annular pebble bed core cooled by fluoride salt mixtures generated a model that is called Pod. Pod. was used to show the resilience of the PB-FHR core to generation of hot spots or cold spots, due to the effect of buoyancy on the flow and temperature distribution in the packed bed. Pod. was used to investigate the PB-FHR response to ATWS transients. Based on the functional requirements for the core, Pod. was used to generate an optimized design of the flow distribution in the core. An analysis of natural circulation loops cooled by single-phase Boussinesq fluids is presented here, in the context of reactor design that relies on natural circulation decay heat removal, and design of scaled experiments. The scaling arguments are established for a transient natural circulation loop, for loops that have long fluid residence time, and negligible contribution of fluid inertia to the momentum equation. The design of integral effects tests for the loss of forced circulation (LOFC) for PB-FHR is discussed. The special case of natural circulation decay heat removal from a pebble bed reactor was analyzed. A way to define the Reynolds number in a multi-dimensional pebble bed was identified. The scaling methodology for replicating pebble bed friction losses using an electrically resistance heated annular pipe and a needle valve was developed. The thermophysical properties of liquid fluoride salts lead to design of systems with low flow velocities, and hence long fluid residence times. A comparison among liquid coolants for the performance of steady state natural circulation heat removal from a pebble bed was performed. Transient natural circulation experimental data with simulant fluids for fluoride salts is given here. The low flow velocity and the relatively high viscosity of the fluoride salts lead to low Reynolds number flows, and a low Reynolds number in conjunction with a sufficiently high coefficient of thermal expansion makes the system susceptible to local buoyancy effects Experiments indicate that slow exchange of stagnant fluid in static legs can play a significant role in the transient response of natural circulation loops. The effect of non-linear temperature profiles on the hot or cold legs or other segments of the flow loop, which may develop during transient scenarios, should be considered when modeling the performance of natural circulation loops. The data provided here can be used for validation of the application of thermal-hydraulic systems codes to the modeling of heat removal by natural circulation with liquid fluoride salts and its simulant fluids.

  19. A Forecast Skill Comparison between CliPAS One-Tier and Two-Tier Hindcast Experiments

    NASA Astrophysics Data System (ADS)

    Lee, J.; Wang, B.; Kang, I.

    2006-05-01

    A 24-year (1981-2004) MME hindcast experimental dataset is produced under the "Climate Prediction and Its Application to Society" (CliPAS) project sponsored by Korean Meteorological Administration (KMA). This dataset consists of 5 one-tier model systems from National Aeronautics and Space Administration (NASA), National Center for Environmental Prediction (NCEP), Frontier Research Center for Global Change (FRCGC), Seoul National University (SNU), and University of Hawaii (UH) and 5 two-tier model systems from Florida State University (FSU), Geophysical Fluid Dynamic Lab (GFDL), SNU, and UH. Multi-model Ensemble (MME) Forecast skills of seasonal precipitation and atmospheric circulation are compared between CliPAS one-tier and two-tier hindcast experiments for seasonal mean precipitation and atmospheric circulation. For winter prediction, two-tier MME has a comparable skill to one-tier MME. However, it is demonstrated that in the Asian-Australian monsoon (A-AM) heavy precipitation regions, one-tier systems are superior to two-tier systems in summer season. The reason is that inclusion of the local warm pool- monsoon interaction in the one-tier system improves the ENSO teleconnection with monsoon regions. Both one-tier and two-tier MME fail to predict Indian monsoon circulation, while they have a significantly good skill for the broad scale monsoon circulation defined by Webster and Yang index. One-tier system has a much better skill to predict the monsoon circulation over the western North pacific where air-sea interaction plays an important role than two-tier system.

  20. Liver failure induces a systemic inflammatory response. Prevention by recombinant N-terminal bactericidal/permeability-increasing protein.

    PubMed Central

    Boermeester, M. A.; Houdijk, A. P.; Meyer, S.; Cuesta, M. A.; Appelmelk, B. J.; Wesdorp, R. I.; Hack, C. E.; Van Leeuwen, P. A.

    1995-01-01

    The observed increased susceptibility of patients with fulminant hepatic failure for local and systemic infections has been hypothesized to be due to a failure for the hepatic clearance function and subsequent leaking of endogenous endotoxins into the systemic circulation. However, experimental evidence for such a systemic inflammation during liver failure due to endogenous endotoxemia is lacking. Therefore, we designed a study to clarify whether circulating endotoxins due to liver failure could lead to the development of systemic inflammations. In a rat model for liver failure induced by a two-thirds partial hepatectomy, we evaluated the course of circulating tumor necrosis factor and interleukin-6, changes in blood chemistry and hemodynamics, and histopathological changes in the lungs. Partially hepatectomized animals, but not sham-operated animals, demonstrated cardiac failure, increased levels of creatinin and urea, metabolic acidosis, high plasma levels of tumor necrosis factor and interleukin-6, and an influx of PMNs in the lungs-together indicating the development of a systemic inflammatory response. Continuous infusion of recombinant N-terminal bactericidal/permeability-increasing protein (rBPI23), a well described endotoxin-neutralizing protein, prevented these inflammatory reactions. Ex vivo experiments with rat plasma samples confirmed the presence of circulating endotoxins in partially hepatectomized rats as opposed to those treated with rBPI23. Thus, our results indicate that the early phase of liver failure induces a systemic inflammatory response triggered by circulating endotoxins, which can be prevented by perioperative infusion of rBPI23. Images Figure 2 PMID:7485405

  1. Miniature Gas-Circulating Machine

    NASA Technical Reports Server (NTRS)

    Swift, Walter L.; Valenzuela, Javier A.; Sixsmith, Herbert; Nutt, William E.

    1993-01-01

    Proposed gas-circulating machine consists essentially of centrifugal pump driven by induction motor. Noncontact bearings suppress wear and contamination. Used to circulate helium (or possibly hydrogen or another gas) in regeneration sorption-compressor refrigeration system aboard spacecraft. Also proves useful in terrestrial applications in which long life, reliability, and low contamination essential.

  2. 76 FR 12217 - Exempt Discretionary Program Grants (Section 5309) for Urban Circulator Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... redevelopment of urban spaces into walkable mixed use, high density environments. FOR FURTHER INFORMATION... development. FTA's approval to advance the Urban Circulator projects through project development and grant... urban circulators shall be required to submit information that describes the impact of the urban...

  3. Hepatic dysfunction contributes to coagulation disturbances in patients undergoing whole body hyperthermia by use of extracorporeal circulation.

    PubMed

    Worel, Nina; Knöbl, Paul; Karanikas, Georgios; Fuchs, Eva-Maria; Bojic, Andja; Brodowicz, Thomas; Jilma, Petra; Zielinski, Christoph C; Köstler, Wolfgang J; Locker, Gottfried J

    2014-09-01

    This phase I study was performed to evaluate coagulation alterations during extracorporeal circulation (ECC) induced whole body hyperthermia (WBHT) in 12 patients with advanced soft tissue sarcomas. To distinguish between effects of normothermic ECC and ECC-WBHT, blood samples were drawn at different time points: at baseline, after 30 min on normothermic ECC, at the end of the heating period, and 24 h and 7 days thereafter. Standard coagulation tests, coagulation factors, thrombelastography,platelets and reticulated platelets, liver enzymes, and scintigraphic platelet imaging were performed. Normothermic ECC resulted in coagulation alterations most likely due to systemic anticoagulation. Induction of hyperthermia caused thrombocytopenia, increased fibrin degradation products,prolonged clotting times, alteration in coagulation factors, and increased liver enzymes. The majority of these effects was most pronounced 24 h after ECC-WBHT. In addition, late liver sequestration of platelets was demonstrated in scintigraphic imaging at that time point. Temporal correlation between hemostatic alterations and elevation in liver enzymes leads to the assumption that liver impairment might play a crucial role in coagulation disturbances observed during ECC-WBHT and thereafter, thus strongly supported by liver sequestration of platelets.Therefore a close monitoring of hepatic derived coagulation alterations in patients undergoing extracorporeal whole body hypothermia is warranted.

  4. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  5. Nimbus 7 SMMR Derived Seasonal Variations in the Water Vapor, Liquid Water and Surface Winds over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Short, D. A.

    1984-01-01

    Monthly mean distributions of water vapor and liquid water contained in a vertical column of the atmosphere and the surface wind speed were derived from Nimbus Scanning Multichannel Microwave Radiometer (SMMR) observations over the global oceans for the period November 1978 to November 1979. The remote sensing techniques used to estimate these parameters from SMMR are presented to reveal the limitations, accuracies, and applicability of the satellite-derived information for climate studies. On a time scale of the order of a month, the distribution of atmospheric water vapor over the oceans is controlled by the sea surface temperature and the large scale atmospheric circulation. The monthly mean distribution of liquid water content in the atmosphere over the oceans closely reflects the precipitation patterns associated with the convectively and baroclinically active regions. Together with the remotely sensed surface wind speed that is causing the sea surface stress, the data collected reveal the manner in which the ocean-atmosphere system is operating. Prominent differences in the water vapor patterns from one year to the next, or from month to month, are associated with anomalies in the wind and geopotential height fields. In association with such circulation anomalies the precipitation patterns deduced from the meteorological network over adjacent continents also reveal anomalous distributions.

  6. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  7. 29 CFR 1910.126 - Additional requirements for special dipping and coating operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sprinklers; or (ii) An automatic fire-extinguishing system conforming to the requirements of subpart L of... the alarm set point, you must equip the tank with a circulating cooling system. (5) If the tank has a bottom drain, the bottom drain may be combined with the oil-circulating system. (6) You must not use air...

  8. 29 CFR 1910.126 - Additional requirements for special dipping and coating operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sprinklers; or (ii) An automatic fire-extinguishing system conforming to the requirements of subpart L of... the alarm set point, you must equip the tank with a circulating cooling system. (5) If the tank has a bottom drain, the bottom drain may be combined with the oil-circulating system. (6) You must not use air...

  9. Fluid circulations in the depths of accretionary prism: the record of quartz from the Shimanto Belt, Japan

    NASA Astrophysics Data System (ADS)

    Raimbourg, Hugues; Vacelet, Maxime; Ramboz, Claire; Famin, Vincent; Augier, Romain; Palazzin, Giulia

    2014-05-01

    Fluids present in the depths of subduction zones play a major role on seismogenesis, although fluid circulations paths and physico-chemical conditions are still largely unknown. Two main reservoirs of water, either in the pores of sediments or bound to hydrous minerals, release large amounts of water in the relatively shallow and deep domains of subduction zones, respectively. The usual model of circulation assumes then a bottom-up circulation driven by fluid pressure gradients. This study aims at reassessing this model, using the record of rocks from a paleo-accretionary prism, the Shimanto Belt in Japan. These rocks, buried to 5kbars and 300° C (Toriumi and Teruya, Modern Geology, 1988), were affected by pervasive fracturing throughout their history, from burial to exhumation. The quartz filling these fractures and the fluid inclusions that it contains keep the track of the fluid associated with the rock evolution. Using a combined approach of microstructural observations by optical microscopy and cathodoluminescence (CL), and chemical characterization by electron and ion microprobe as well as microthermometry, we show that there are actually two distinct fluids that have cyclically wetted the rock at depth. The first one is an 'external' fluid penetrating through macroscopic fractures and precipitating a quartz blue in CL. In contrast, a 'local' fluid attended the formation of quartz brown in CL, precipitating in microfractures or associated with ductile recrystallization. The two fluids are also chemically distinct: Both have a salinity close to seawater, but the local fluid is fresher than the external one. In addition, the external fluid is richer in aluminum than the local one. Finally, the external fluid is very slightly depleted in δ18O, although the difference is probably not significant and the first-order isotopic signal is a buffering by host rock. Our interpretation of microstructures and chemical signatures is that the external fluid is seawater, penetrating to accretionary prism depths during transient phases of large-scale fracturing and fluid circulation. Macroscale fractures then close, permeability drops, and the fluid is progressively reequilibrated at depth with water produced in-situ by metamorphic reactions. The general scheme is therefore a top-down circulation, contrasting with the usually proposed bottom-up flux. We finally discuss geodynamical scenarios, such as during the postseismic phase or in association with thermal anomalies, where such a counter-intuitive top-down flux of water could prevail in subduction zones.

  10. Temperature field study of hot water circulation pump shaft system

    NASA Astrophysics Data System (ADS)

    Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.

  11. Planning an Integrated On-Line Library system (IOLS)

    DTIC Science & Technology

    1989-03-01

    Logical Workflow for Circulation of Library Materials ............. 14 Figure 9. Detail of Circulation of Libary Materials ...................... 15...Operating Honolulu, HI 96826 System (808) 947-4441 DATA RESEARCH ASSOCIATES, Inc. (ATLAS) 9270 Olive Blvd. St. Louis, MO 01775 DIGITAL EQUIPMENT CORP... DIGITAL EQUIPMENT CORP. Stow, MA 01775 (617) 897-7163 EYRING LIBRARY SYSTEMS (CARL) 5280 S. West, Suite E260 Salt Lake City, UT 84107 TANDEM SYSTEMS

  12. Using real time traveler demand data to optimize commuter rail feeder systems.

    DOT National Transportation Integrated Search

    2012-08-01

    "This report focuses on real time optimization of the Commuter Rail Circulator Route Network Design Problem (CRCNDP). The route configuration of the circulator system where to stop and the route among the stops is determined on a real-time ba...

  13. Adaptive-Repetitive Visual-Servo Control of Low-Flying Aerial Robots via Uncalibrated High-Flying Cameras

    NASA Astrophysics Data System (ADS)

    Guo, Dejun; Bourne, Joseph R.; Wang, Hesheng; Yim, Woosoon; Leang, Kam K.

    2017-08-01

    This paper presents the design and implementation of an adaptive-repetitive visual-servo control system for a moving high-flying vehicle (HFV) with an uncalibrated camera to monitor, track, and precisely control the movements of a low-flying vehicle (LFV) or mobile ground robot. Applications of this control strategy include the use of high-flying unmanned aerial vehicles (UAVs) with computer vision for monitoring, controlling, and coordinating the movements of lower altitude agents in areas, for example, where GPS signals may be unreliable or nonexistent. When deployed, a remote operator of the HFV defines the desired trajectory for the LFV in the HFV's camera frame. Due to the circular motion of the HFV, the resulting motion trajectory of the LFV in the image frame can be periodic in time, thus an adaptive-repetitive control system is exploited for regulation and/or trajectory tracking. The adaptive control law is able to handle uncertainties in the camera's intrinsic and extrinsic parameters. The design and stability analysis of the closed-loop control system is presented, where Lyapunov stability is shown. Simulation and experimental results are presented to demonstrate the effectiveness of the method for controlling the movement of a low-flying quadcopter, demonstrating the capabilities of the visual-servo control system for localization (i.e.,, motion capturing) and trajectory tracking control. In fact, results show that the LFV can be commanded to hover in place as well as track a user-defined flower-shaped closed trajectory, while the HFV and camera system circulates above with constant angular velocity. On average, the proposed adaptive-repetitive visual-servo control system reduces the average RMS tracking error by over 77% in the image plane and over 71% in the world frame compared to using just the adaptive visual-servo control law.

  14. Estimated flows of gases and carbon within CEEF ecosystem composed of human, crops and goats

    NASA Astrophysics Data System (ADS)

    Tako, Y.; Komatsubara, O.; Honda, G.; Arai, R.; Nitta, K.

    The Closed Ecology Experiment Facilities (CEEF) can be used as a test bed for Controlled Ecological Life Support Systems (CELSS), because technologies developed for the CEEF system facilitate self-sufficient material circulation necessary for long term missions such as Lunar and Mars exploration. In the experiment conducted under closed condition in FY2003, rice and soybeans were cultivated sequentially in two chambers and a chamber, each having a cultivation area of 30 m2 and floor area of 43 m2, inside the Plantation Module with artificial lighting of the CEEF. In the chamber having a cultivation area of 60 m2 and floor area of 65 m2, inside the Plantation Module with natural and artificial lighting, peanuts and safflowers were also cultivated. Stable transplant (or seeding) and harvest of each crop were maintained during a month. Flows of CO2, O2 and carbon to and from the crops were analyzed during the stable cultivation period. Simulated works and stay in the CEEF lasting five days were conducted two times under ventilating condition in FY2003. Gas exchange of human was estimated using heart rate data collected during the experiments and correlation between gas exchange rate and heart rate. Gas exchange rate and carbon balance of female goats were determined using an open-flow measurement system with a gastight chamber. From these results, flows of gases and carbon in the CEEF were discussed.

  15. Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao

    2003-03-01

    The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.

  16. Two phase gap cooling of an electrical machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoykhet, Boris A.

    2016-10-04

    An electro-dynamic machine has a rotor and stator with a gap therebetween. The machine has a frame defining a hollow interior with end cavities on axially opposite ends of the frame. A gas circulating system has an inlet that supplies high pressure gas to the frame interior and an outlet to collect gas passing therethrough. A liquid coolant circulating system has an inlet that supplies coolant to the frame interior and an outlet that collects coolant passing therethrough. The coolant inlet and gas inlet are generally located on the frame in a manner to allow coolant from the coolant inletmore » to flow with gas from the gas inlet to the gap. The coolant outlet and gas outlet are generally located on the frame in a manner to allow the coolant to be separated from the gas with the separated coolant and gas collected for circulation through their respective circulating systems.« less

  17. The Consequences of Saturn’s Rotating Asymmetric Ring Current

    NASA Astrophysics Data System (ADS)

    Southwood, D. J.; Kivelson, M. G.

    2009-12-01

    The plasma and field behavior in the dipolar region of the Saturnian magnetosphere is described, based primarily on interpretation of the magnetic field behavior measured by the Cassini spacecraft. Previous authors, such as Provan and Khurana, have pointed out that the regular pulses in field strength at around 10.8 hrs period detected in this region imply the existence not only of a symmetric ring current but also of a partial ring current. Once spacecraft motion in local time has been allowed for, one finds a close to sinusoidal variation with azimuth and time of the magnetic signal. Hence the partial ring current appears to quasi-rigidly rotate about the planetary axis at the same 10.8 hr period as the pulsing of the Saturn kilometric radiation. We point out that, independent of whether the excess current is due to asymmetry in flux tube population or in plasma beta (pressure normalized to field pressure), such a current gives rise to a rotating circulation system. The compressional field pattern is consistent with an m = 1 pattern of circulation. The fairly uniform inner magnetosphere cam magnetic signature predicted on the basis of inner magnetosphere transverse field components in our past work is modified in a systematic way by the partial ring current effects. The circulation due to the partial ring current has its own set of distributed field aligned currents (FACs). The rotating transverse perturbation field components are twisted by the FACs so that the radial field is reduced at low L-shells and increased at larger L. Overall the cam field is depressed at low L and enhanced as one approaches the boundary of the cam region at L = 10-12. In practice the system must also respond to some local time effects. Loss of plasma is easier on the night-side and flanks than on the day-side and so a day-night asymmetry is imposed tending to increase the perturbation field amplitudes by night. The FACs driven by the asymmetric ring current should be broadly distributed throughout the cam region and correspondingly are associated with smaller current densities than those associated with the more narrowly confined cam current system on the outer edge of the cam. Accordingly the intense fluxes of electrons that give rise to the SKR signals are associated with the upward elements of the latter current system.

  18. The impact of Southern Ocean gateways on the Cenozoic climate evolution

    NASA Astrophysics Data System (ADS)

    von der Heydt, Anna; Viebahn, Jan; Dijkstra, Henk

    2016-04-01

    During the Cenozoic period, which covers the last 65 Million (Ma) years, Earth's climate has undergone a major long-term transition from warm "greenhouse" to colder "icehouse" conditions with extensive ice sheets in the polar regions of both hemispheres. On the very long term the gradual cooling may be seen as response to the overall slowly decreasing atmospheric CO2-concentration due to weathering processes in the Earth System, however, continental geometry has changed considerably over this period and the long-term gradual trend was interrupted, by several rapid transitions as well as periods where temperature and greenhouse gas concentrations seem to be decoupled. The Eocene-Oligocene boundary (˜34 Ma, E/O) and mid-Miocene climatic transition (˜13 Ma, MCT) reflect major phases of Antarctic ice sheet build-up and global climate cooling, while Northern Hemisphere ice sheets developed much later, most likely at the Pliocene-Pleistocene transition (˜2.7Ma). Thresholds in atmospheric CO2-concentration together with feedback mechanisms related to land ice formation are now among the favoured mechanisms of these climatic transitions, while the long-proposed ocean circulation changes caused by opening of tectonic gateways seem to play a less direct role. The opening of the Southern Ocean gateways, notably the Drake Passage and the Tasman Gateway as well as the northward movement of Australia over this long time period, however, has eventually led to the development of today's strongest ocean current, the Antarctic Circumpolar Current (ACC), playing a major role in the transport properties of the global ocean circulation. The overall state of the global ocean circulation, therefore, preconditions the climate system to dramatic events such as major ice sheet formation. Here, we present results of a state-of-the art global climate model (CESM) under various continental configurations: (i) present day geometry, (ii) present day geometry with a closed Drake Passage and (iii) a recently developed late Eocene continental configuration. Between the different configurations we find significant differences in heat transport as well as sea surface and deep ocean temperatures around the Antarctic continent. By decomposing the heat transport with respect to different ocean circulation regimes, we reveal the dominant physical processes responsible for the heat transport changes. Moreover, we compare the fully coupled system with the corresponding ocean-only simulations in order to further analyze the interplay between the ocean gateways, sea-ice and atmospheric feedbacks. Finally, for the ocean-only simulations we also compare eddy-resolving spatial resolution with non-eddying resolution to quantify the relevance of resolved mesoscale turbulence on the changes in ocean circulation regimes induced by gateway openings. In conclusion, we demonstrate that for deciphering the different mechanisms active in the steps of the Cenozoic greenhouse-to-icehouse transition detailed analyses of the pathways of heat in the different climate subsystems are crucial in order to clearly identify the physical processes at work.

  19. Review of the clinical applications and technological advances of circulating tumor DNA in cancer monitoring.

    PubMed

    Chang, Yi; Tolani, Bhairavi; Nie, Xiuhong; Zhi, Xiuyi; Hu, Mu; He, Biao

    2017-01-01

    Circulating cell-free DNA (cfDNA) released by tumor cells, termed ctDNA, closely reflects the heterogeneity of primary cancers and their metastases. As a noninvasive, real-time monitoring biomarker, ctDNA is a promising tool for detecting driver gene mutations, assessing tumor burden and acquired resistance, and early diagnosis. However, isolation and enrichment of cfDNA is a big challenge due to the high degree of DNA fragmentation and its relatively low abundance in the bloodstream. This review aims to provide insights into the recent technological advances in acquisition of optimal quality cfDNA, the use of preservatives, isolation methods, processing timelines, and detection techniques. It also describes clinical applications of ctDNA in cancer patient management.

  20. Thermal Pollution Mathematical Model. Volume 5: User's Manual for Three-Dimensional Rigid-Lid Model. [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.

    1980-01-01

    A user's manual for a three dimensional, rigid lid model used for hydrothermal predictions of closed basins subjected to a heated discharge together with various other inflows and outflows is presented. The model has the capability to predict (1) wind driven circulation; (2) the circulation caused by inflows and outflows to the domain; and (3) the thermal effects in the domain, and to combine the above processes. The calibration procedure consists of comparing ground truth corrected airborne radiometer data with surface isotherms predicted by the model. The model was verified for accuracy at various sites and results are found to be fairly accurate in all verification runs.

  1. Effects of Drake Passage on a strongly eddying global ocean

    NASA Astrophysics Data System (ADS)

    Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.

    2015-04-01

    During the past 65 Million (Ma) years, Earth's climate has undergone a major change from warm 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. Drake Passage (DP) is an intensively studied gateway because it plays a central role in closing the transport pathways of heat and chemicals in the ocean. The climate response to a closed DP has been explored with a variety of general circulation models, however, all of these models employ low model-grid resolutions such that the effects of subgrid-scale fluctuations ('eddies') are parameterized. We present results of the first high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed DP in which the eddy field is largely resolved. The simulation extends over more than 200 years such that the strong transient adjustment process is passed and a near-equilibrium ocean state is reached. The effects of DP are diagnosed by comparing with both an open DP high-resolution control simulation (of same length) and corresponding low-resolution simulations. By focussing on the heat/tracer transports we demonstrate that the results are twofold: Considering spatially integrated transports the overall response to a closed DP is well captured by low-resolution simulations. However, looking at the actual spatial distributions drastic differences appear between far-scattered high-resolution and laminar-uniform low-resolution fields. We conclude that sparse and highly localized tracer proxy observations have to be interpreted carefully with the help of high-resolution model simulations.

  2. Circulation and Purification in the LUX-ZEPLIN System Test

    NASA Astrophysics Data System (ADS)

    Alsum, Shaun; Lz Collaboration

    2016-03-01

    LZ is a dark-matter direct detection experiment whose detector is a two-phase TPC using approximately seven tons of active xenon as its scintillator. The xenon must have few electronegative impurities to ensure sufficient electron transport through the drift region. The LZ purification system is being prototyped in the LZ system test, a test platform located at SLAC using about 100kg of Xenon, which consists of gas circulation through a SAES getter. We utilize a dual-phase and a gas-phase heat exchanger to reduce needed cooling power. To achieve this circulation we employ an all metal seal triple diaphragm pump, also prototyped in the System Test. This talk will present early results from the system test as well as some baseline LZ designs. The LUX-ZEPLIN dark matter direct detection experiment.

  3. Pressure Regulator With Internal Ejector Circulation Pump, Flow and Pressure Measurement Porting, and Fuel Cell System Integration Options

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2011-01-01

    An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also be used with NASA's advanced nonflow-through fuel cell power systems by simply incorporating a jet nozzle with an appropriate nozzle diameter.

  4. Beyond the NAO: Dynamics and Precipitation Implications of the Azores High Since AD 800

    NASA Astrophysics Data System (ADS)

    Thatcher, D.; Wanamaker, A. D.; Denniston, R. F.; Asmerom, Y.; Ummenhofer, C.; Polyak, V. J.; Haws, J.; Gillikin, D. P.

    2016-12-01

    Atmospheric circulation in the North Atlantic region during the last millennium, particularly the state of the North Atlantic Oscillation (NAO), a system closely tied to regional precipitation dynamics, remains the subject of considerable debate in both proxy- and model-based studies. It has been suggested that the winter NAO was in a persistently positive state during the Medieval Climate Anomaly (MCA; AD 850-1250), resulting in increased precipitation across much of northern Europe and decreased rainfall across Iberia. However, besides changes in atmospheric circulation and precipitation dynamics that could be associated with an altered mean state of the NAO, relatively little attention has been given to atmospheric dynamics, namely the intensity and location, of the subtropical high system (Azores High, the southern node of the NAO) in driving hydroclimate in Iberia. Presented here is a continuous, precisely dated, and sub-decadally-resolved stalagmite isotopic and elemental time series from Buraca Gloriosa (BG) cave, western Portugal, situated within the center of the Azores High at the southern node of the NAO, which preserves evidence of regional hydroclimate from approximately AD 800 to the present. Stalagmite oxygen and carbon isotopic values and magnesium/calcium ratios primarily reflect effective moisture and reveal generally dry conditions during the MCA with a rapid shift to wetter conditions during the Little Ice Age (LIA; AD 1250-1850) at this location. Our proxy data reveal that substantial short-term hydroclimate variability characterized the last 1200 years. They support the hypothesis that while an intensified, semi-persistent subtropical high (and likely positive NAO state) characterized much of the MCA, the NAO remained variable over this time period. Climate model results also suggest that the Azores High pressure system both migrated southward and weakened from the MCA into the LIA.

  5. RFQ (radio-frequency quadrupole) accelerator tuning system

    DOEpatents

    Bolie, V.W.

    1988-04-12

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in responsive to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. 3 figs., 2 tabs.

  6. RHIC Prefire Protection Masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drees, A.; Biscardi, C.; Curcio, T.

    2015-01-07

    The protection of the RHIC experimental detectors from damage due to beam hitting close upstream elements in cases of abort kicker prefires requires some dedicated precautionary measures with two general options: to bring the beam close to a limiting aperture (i.e. the beam pipe wall), as far upstream of the detector components as possible or, alternatively, to bring a limiting aperture close to the circulating beam. During the FY 2014 RHIC Heavy Ion run the first option was chosen because of the limited time available for preparation before the start of the run. For future runs the second option, inmore » this case the installation of dual-sided movable masks, is preferred. The installation of the masks, one per ring, is planned before the start of the FY 2015 run.« less

  7. Profiting from Knowledge Circulation: The Gains from University-Industry Interaction

    ERIC Educational Resources Information Center

    van der Sijde, P. C.

    2012-01-01

    In this paper the concept of knowledge circulation is explored and placed in a social systems approach that distinguishes four types of "capital": cultural, strategic, network and economic. Knowledge circulation is a form of university-industry interaction that accommodates the objectives of what are, in many respects, unequal partners and…

  8. Montane ecosystem productivity responds more to global circulation patterns than climatic trends.

    PubMed

    Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Eugster, W; Montagnani, L; Gianelle, D; Mauder, M; Schmid, H-P

    2016-02-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.

  9. Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.

    2016-02-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.

  10. Experimental investigation of a new method for advanced fast reactor shutdown cooling

    NASA Astrophysics Data System (ADS)

    Pakholkov, V. V.; Kandaurov, A. A.; Potseluev, A. I.; Rogozhkin, S. A.; Sergeev, D. A.; Troitskaya, Yu. I.; Shepelev, S. F.

    2017-07-01

    We consider a new method for fast reactor shutdown cooling using a decay heat removal system (DHRS) with a check valve. In this method, a coolant from the decay heat exchanger (DHX) immersed into the reactor upper plenum is supplied to the high-pressure plenum and, then, inside the fuel subassemblies (SAs). A check valve installed at the DHX outlet opens by the force of gravity after primary pumps (PP-1) are shut down. Experimental studies of the new and alternative methods of shutdown cooling were performed at the TISEY test facility at OKBM. The velocity fields in the upper plenum of the reactor model were obtained using the optical particle image velocimetry developed at the Institute of Applied Physics (Russian Academy of Sciences). The study considers the process of development of natural circulation in the reactor and the DHRS models and the corresponding evolution of the temperature and velocity fields. A considerable influence of the valve position in the displacer of the primary pump on the natural circulation of water in the reactor through the DHX was discovered (in some modes, circulation reversal through the DHX was obtained). Alternative DHRS designs without a shell at the DHX outlet with open and closed check valve are also studied. For an open check valve, in spite of the absence of a shell, part of the flow is supplied through the DHX pipeline and then inside the SA simulators. When simulating power modes of the reactor operation, temperature stratification of the liquid was observed, which increased in the cooling mode via the DHRS. These data qualitatively agree with the results of tests at BN-600 and BN-800 reactors.

  11. Simple and rapid LC-MS method for the determination of circulating albumin microheterogeneity in veal calves exposed to heat stress.

    PubMed

    Baldassarre, Maurizio; Naldi, Marina; Domenicali, Marco; Volo, Sabrina; Pietra, Marco; Dondi, Francesco; Caraceni, Paolo; Peli, Angelo

    2017-09-10

    Heat stress has a major impact on veal calves welfare and productivity. Prolonged exposure to warm temperature is associated with several alterations of physiologic processes and increased systemic inflammation and oxidative stress. Bovine serum albumin (BSA) is the most abundant plasma protein and, besides the regulation of osmotic pressure, carries several additional functions, including antioxidant, immunomodulatory, binding and transport activities. Such non-oncotic properties are closely related to structural integrity of the circulating molecule and may be compromised in stressful microenvironments as it occurs in heat stressed animals. Thus, in the present study we developed and validated an LC-MS analytical technique for the characterization of circulating BSA microheterogeneity in veal calves exposed to heat stress. The method was specifically tailored to the structural characteristics of the BSA molecule as well as to the complexity of the biological samples, allowing the identification of several BSA isoforms, each characterized by a specific structural defect. The mass spectrometry based approach enabled the identification of BSA isoforms with reversible and irreversible oxidation and/or glycation and the native BSA, the only isoform endowed with structural and functional integrity. We found that, in veal calves, heat stress is associated to a significant reduction of the native BSA and to a significant increment of the reversibly and irreversibly oxidized BSA. Then, by monitoring the BSA microheterogeneity over a period of moderate heat stress, we found that the native BSA as well as the glycated BSA increased significantly during the recovery period. Based on our results the analysis of the BSA microheterogeneity could represent a novel biomarker for the assessment of animal welfare during environmental stressful conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Tide, Ocean and Climate on Exoplanets

    NASA Astrophysics Data System (ADS)

    Si, Y.; Yang, J.

    2017-12-01

    On Earth, tide is a main part of the driving force for the deep ocean overturning circulation. For habitable planets around low-mass stars, the tidal force is expected to be much stronger than that on Earth, due to the fact that the habitable zone is very close to the host stars and that tide force is inversely proportional to the orbital distance cubed. The deep ocean overturning circulation on this type of planets is therefore expected to be much stronger than that on Earth, if all else being equal. We test this hypothesis using a fully coupled atmosphere-ocean model, the Community Climate System Model version 3 (CCSM3). Our results show that the intensity of oceanic meridional overturning circulation (MOC) is approximately proportional to κ1/3, where κ is the mixing coefficient across density interfaces and it is mainly determined by the strength of the tidal force. As a result of the enhanced MOC, more heat is transported to dark regions and sea ice melts completely there, and meanwhile more heat is mixed from the surface to the deep ocean and thereby the entire ocean becomes much warmer (Fig. 1). A positive cloud feedback further warms the global ocean and atmosphere. These results imply that one planet with a stronger tidal force will likely enter a globally ice-covered snowball state at a lower stellar flux and enter a moist greenhouse or runaway greenhouse state at also a lower stellar flux, meaning that the tidal force acts to push the habitable zone outward. This study significantly improves our understanding of the possible coupling between planetary orbit, ocean, climate, and habitability on exoplanets.

  13. Influence of the Minho River plume on the Rias Baixas (NW of the Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Sousa, M. C.; Vaz, N.; Alvarez, I.; Gomez-Gesteira, M.; Dias, J. M.

    2014-11-01

    The buoyancy generated by the Minho estuarine plume can flood the Rias Baixas for long periods, reversing the normal salinity gradients. Thus, the main purpose of this work was to study the propagation of Minho estuarine plume to the Rias Baixas, establishing the wind and river discharge conditions in which this plume affects the circulation and hydrography features of these coastal systems as well as the plume characteristics under the most probable forcing conditions, through the application of the numerical model MOHID. For this purpose, several scenarios with different river discharges and wind were simulated. The numerical results revealed that the Minho estuarine plume responds rapidly to wind variations and is influenced by coastline geometry. Under Minho River discharges higher than 700 m3 s- 1 and weak northward winds (3 m s- 1) the circulation patterns of the Rias de Vigo and Pontevedra are reversed. On the other hand, moderate northward winds (6 m s- 1) combined with Minho River discharges higher than 200 m3 s- 1, 300 m3 s- 1 and 700 m3 s- 1 reverse the circulation pattern of the Rias de Vigo, Pontevedra and Arousa, respectively. Under the same conditions, the water exchange between Rias Baixas was analyzed using a particle-tracking model following the trajectories of particles released close to the Minho River mouth. Over 5 days, under Minho River discharges higher than 2100 m3 s- 1 combined with northward winds of 6 m s- 1, an intense water exchange between Rias was observed. However, only 20% of the particles found in Ria de Pontevedra come directly from the Minho River.

  14. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukemia definition

    PubMed Central

    Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara Mª; Teixidó, Montserrat; Gimenez, Mª Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Bladé, Joan; de Larrea, Carlos Fernández

    2017-01-01

    The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the study herein, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analyzed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukemia were reviewed and patients were classified into 4 categories according to the percentage of circulating plasma cells: 0%, 1–4%, 5–20%, and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%), respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, the presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95% CI 2.6–9.3) independently of age, creatinine, the Durie-Salmon system stage and the International Staging System (ISS) stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86×109/L vs. 214×109/L, P<0.0001) and higher bone marrow plasma cells (median 53% vs. 36%, P=0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has a similar adverse prognostic impact as plasma cell leukemia. PMID:28255016

  15. (Neuro)transmitter systems in circulating immune cells: a target of immunopharmacological interventions?

    PubMed

    Tayebati, Seyed Khosrow; Amenta, Francesco

    2008-01-01

    Increasing evidence indicates the existence of an association between nervous and immune systems. The two systems communicate with each-other to maintain immune homeostasis. Activated immune cells secrete cytokines that influence central nervous system activity. Nervous system, through its peripheral and/or autonomic divisions activates output regulating levels of immune cell activity and the subsequent magnitude of an immune response. On the other hand, neurotransmitters, which represent the main substances involved in nerve cell communications, can influence immune function. Immune organs and circulating immune cells express several (neuro)transmitter systems that can be involved in regulating their activity. The expression of neurotransmitter systems by different subsets of circulating immune cells was reviewed. The regulatory role of different families of (neuro)transmitters (catecholamines, 5-hydroxytryptamine, acetylcholine, histamine and neuropeptides) in modulating levels of immune mediators or specific immune responses is discussed.

  16. First signal from a broadband cryogenic preamplifier cooled by circulating liquid nitrogen in a 7 T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Choi, Myoung Choul; Lee, Jeong Min; Lee, Se Gyu; Choi, Sang Hwan; Choi, Yeon Suk; Lee, Kyung Jae; Kim, SeungYong; Kim, Hyun Sik; Stahl, Stefan

    2012-12-18

    Despite the outstanding performance of Fourier transform ion cyclotron/mass spectrometry (FTICR/MS), the complexity of the cellular proteome or natural compounds presents considerable challenges. Sensitivity is a key performance parameter of a FTICR mass spectrometer. By improving this parameter, the dynamic range of the instrument can be increased to improve the detection signal of low-abundance compounds or fragment ion peaks. In order to improve sensitivity, a cryogenic detection system was developed by the KBSI (Korean Basic Science Institute) in collaboration with Stahl-Electronics (Mettenheim, Germany). A simple, efficient liquid circulation cooling system was designed and a cryogenic preamplifier implemented inside a FTICR mass spectrometer. This cooling system circulates a cryoliquid from a Dewar to the "liquid circulation unit" through a CF flange to cool a copper block and a cryopreamplifier; the cooling medium is subsequently exhausted into the air. The cryopreamplifier can be operated over a very wide temperature range, from room temperature to low temperature environments (4.2 K). First, ion signals detected by the cryopreamplifier using a circulating liquid nitrogen cooling system were observed and showed a signal-to-noise ratio (S/N) about 130% better than that obtained at room temperature.

  17. Towards the impact of eddies on the response of the global ocean circulation to Southern Ocean gateway opening

    NASA Astrophysics Data System (ADS)

    Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.

    2014-05-01

    During the past 65 Million (Ma) years, Earth's climate has undergone a major change from warm 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. A long-standing hypothesis is that the formation of the Antarctic Circumpolar Current due to opening/deepening of Southern Ocean gateways led to glaciation of the Antarctic continent. However, while this hypothesis remains controversial, its assessment via coupled climate model simulations depends crucially on the spatial resolution in the ocean component. More precisely, only high-resolution modeling of the turbulent ocean circulation is capable of adequately describing reorganizations in the ocean flow field and related changes in turbulent heat transport. In this study, for the first time results of a high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed Drake Passage are presented. Changes in global ocean temperatures, heat transport, and ocean circulation (e.g., Meridional Overturning Circulation and Antarctic Coastal Current) are established by comparison with an open Drake Passage high-resolution reference simulation. Finally, corresponding low-resolution simulations are also analyzed. The results highlight the essential impact of the ocean eddy field in palaeoclimatic change.

  18. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of parking spaces per development; and (3) To encourage the use of public transportation by linking... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Vehicular circulation and storage systems. 910.18 Section 910.18 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT...

  19. Kansas State University Libraries' OCR Labeling Project.

    ERIC Educational Resources Information Center

    Thierer, Joyce; Bower, Merry

    This publication describes the planning and implementation of an optical character recognition (OCR) labeling project, the first stage of Kansas State University (KSU) Libraries' program of conversion from a manual to an automated circulation system. It is noted that a telephone survey of libraries with automated circulation systems and…

  20. An Automated Circulation System for a Small Technical Library.

    ERIC Educational Resources Information Center

    Culnan, Mary J.

    The traditional manually-controlled circulation records of the Burroughs Corporation Library in Goleta, California, presented problems of inaccuracies, time time-consuming searches, and lack of use statistics. An automated system with the capacity to do file maintenance and statistical record-keeping was implemented on a Burroughts B1700 computer.…

  1. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  2. Repeated isolation of virulent Newcastle disease viruses of sub-genotype VIId from backyard chickens in Bulgaria and Ukraine between 2002 and 2013.

    PubMed

    Dimitrov, Kiril M; Bolotin, Vitaliy; Muzyka, Denys; Goraichuk, Iryna V; Solodiankin, Olexii; Gerilovych, Anton; Stegniy, Borys; Goujgoulova, Gabriela V; Silko, Nikita Y; Pantin-Jackwood, Mary J; Miller, Patti J; Afonso, Claudio L

    2016-12-01

    Here, we report the circulation of highly related virulent Newcastle disease viruses (NDV) in Bulgaria and Ukraine from 2002 until 2013. All of these NDV isolates have the same virulence-associated cleavage site (" 113 RQKR↓F 117 "), and selected ones have intracerebral pathogenicity index values ranging from 1.61 to 1.96. These isolates are most closely related to viruses circulating in Eastern Europe, followed by viruses isolated in Asia during the same period of time. Interestingly, the majority of the viruses were isolated from backyard poultry, suggesting the possibility of a "domestic" or "urban" cycle of maintenance. The molecular characterization of the nucleotide sequence of the complete fusion protein gene of the studied viruses suggests continued circulation of virulent NDV of sub-genotype VIId in Eastern Europe, with occasional introductions from Asia. Furthermore, the high level of genetic similarity among those isolates suggests that the NDV isolates of sub-genotype VIId from Bulgaria and Ukraine may have been part of a broader epizootic process in Eastern Europe rather than separate introductions from Asia or Africa. The continuous monitoring of backyard poultry flocks for the presence of circulating virulent NDV strains will allow early identification of Newcastle disease outbreaks.

  3. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.

    PubMed

    Kilpeläinen, Tuomas O; Carli, Jayne F Martin; Skowronski, Alicja A; Sun, Qi; Kriebel, Jennifer; Feitosa, Mary F; Hedman, Åsa K; Drong, Alexander W; Hayes, James E; Zhao, Jinghua; Pers, Tune H; Schick, Ursula; Grarup, Niels; Kutalik, Zoltán; Trompet, Stella; Mangino, Massimo; Kristiansson, Kati; Beekman, Marian; Lyytikäinen, Leo-Pekka; Eriksson, Joel; Henneman, Peter; Lahti, Jari; Tanaka, Toshiko; Luan, Jian'an; Del Greco M, Fabiola; Pasko, Dorota; Renström, Frida; Willems, Sara M; Mahajan, Anubha; Rose, Lynda M; Guo, Xiuqing; Liu, Yongmei; Kleber, Marcus E; Pérusse, Louis; Gaunt, Tom; Ahluwalia, Tarunveer S; Ju Sung, Yun; Ramos, Yolande F; Amin, Najaf; Amuzu, Antoinette; Barroso, Inês; Bellis, Claire; Blangero, John; Buckley, Brendan M; Böhringer, Stefan; I Chen, Yii-Der; de Craen, Anton J N; Crosslin, David R; Dale, Caroline E; Dastani, Zari; Day, Felix R; Deelen, Joris; Delgado, Graciela E; Demirkan, Ayse; Finucane, Francis M; Ford, Ian; Garcia, Melissa E; Gieger, Christian; Gustafsson, Stefan; Hallmans, Göran; Hankinson, Susan E; Havulinna, Aki S; Herder, Christian; Hernandez, Dena; Hicks, Andrew A; Hunter, David J; Illig, Thomas; Ingelsson, Erik; Ioan-Facsinay, Andreea; Jansson, John-Olov; Jenny, Nancy S; Jørgensen, Marit E; Jørgensen, Torben; Karlsson, Magnus; Koenig, Wolfgang; Kraft, Peter; Kwekkeboom, Joanneke; Laatikainen, Tiina; Ladwig, Karl-Heinz; LeDuc, Charles A; Lowe, Gordon; Lu, Yingchang; Marques-Vidal, Pedro; Meisinger, Christa; Menni, Cristina; Morris, Andrew P; Myers, Richard H; Männistö, Satu; Nalls, Mike A; Paternoster, Lavinia; Peters, Annette; Pradhan, Aruna D; Rankinen, Tuomo; Rasmussen-Torvik, Laura J; Rathmann, Wolfgang; Rice, Treva K; Brent Richards, J; Ridker, Paul M; Sattar, Naveed; Savage, David B; Söderberg, Stefan; Timpson, Nicholas J; Vandenput, Liesbeth; van Heemst, Diana; Uh, Hae-Won; Vohl, Marie-Claude; Walker, Mark; Wichmann, Heinz-Erich; Widén, Elisabeth; Wood, Andrew R; Yao, Jie; Zeller, Tanja; Zhang, Yiying; Meulenbelt, Ingrid; Kloppenburg, Margreet; Astrup, Arne; Sørensen, Thorkild I A; Sarzynski, Mark A; Rao, D C; Jousilahti, Pekka; Vartiainen, Erkki; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G; Kajantie, Eero; Osmond, Clive; Palotie, Aarno; Eriksson, Johan G; Heliövaara, Markku; Knekt, Paul B; Koskinen, Seppo; Jula, Antti; Perola, Markus; Huupponen, Risto K; Viikari, Jorma S; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T; Mellström, Dan; Lorentzon, Mattias; Casas, Juan P; Bandinelli, Stefanie; März, Winfried; Isaacs, Aaron; van Dijk, Ko W; van Duijn, Cornelia M; Harris, Tamara B; Bouchard, Claude; Allison, Matthew A; Chasman, Daniel I; Ohlsson, Claes; Lind, Lars; Scott, Robert A; Langenberg, Claudia; Wareham, Nicholas J; Ferrucci, Luigi; Frayling, Timothy M; Pramstaller, Peter P; Borecki, Ingrid B; Waterworth, Dawn M; Bergmann, Sven; Waeber, Gérard; Vollenweider, Peter; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf; Hu, Frank B; Eline Slagboom, P; Grallert, Harald; Spector, Tim D; Jukema, J W; Klein, Robert J; Schadt, Erik E; Franks, Paul W; Lindgren, Cecilia M; Leibel, Rudolph L; Loos, Ruth J F

    2016-02-01

    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.

  4. Severe Infections with Human Adenovirus 7d in 2 Adults in Family, Illinois, USA, 2014

    PubMed Central

    Ison, Michael G.

    2016-01-01

    Human adenovirus 7d, a genomic variant with no reported circulation in the United States, was isolated from 2 adults with severe respiratory infections in Illinois. Molecular typing identified a close relationship with strains of the same genome type isolated from cases of respiratory disease in several provinces of China since 2009. PMID:26982199

  5. Trends of Circulation and Penetration Following Failure of Metropolitan Daily Newspapers.

    ERIC Educational Resources Information Center

    Niebauer, Walter E., Jr.

    A study examined whether the suburban press is better off if competing metropolitan daily newspapers are allowed to merge operations in a joint operating agreement (JOA) as provided by the Newspaper Preservation Act of 1970, or if the weaker of the two dailies is allowed to close down, throwing the suburban paper into competition with a monopoly…

  6. Complete Genome Sequence of a Highly Virulent Newcastle Disease Virus Currently Circulating in Mexico

    PubMed Central

    Xiao, Sa; Paldurai, Anandan; Nayak, Baibaswata; Mirande, Armando; Collins, Peter L.

    2013-01-01

    The complete genome sequence was determined for a highly virulent Newcastle disease virus strain from vaccinated chicken farms in Mexico during outbreaks in 2010. On the basis of phylogenetic analysis this strain was classified into genotype V in the class II cluster that was closely related to Mexican strains that appeared in 2004–2006. PMID:23409252

  7. Australian bat lyssavirus: a recently discovered new rhabdovirus.

    PubMed

    Warrilow, D

    2005-01-01

    Australian bat lyssavirus (ABLV), first identified in 1996, has been associated with two human fatalities. ABLV is genetically and serologically distinct from, but is closely related to, classical rabies. It has a bullet-shaped morphology by electron microscopy. There are two strains of ABLV known: one circulates in frugivorous bats, sub-order Megachiroptera, and the other circulates in the smaller, mainly insectivorous bats, sub-order Microchiroptera. Each strain has been associated with one human fatality. Surveillance indicates infected bats are widespread at a low frequency on the Australian mainland. It is unclear how long ABLV has been present in Australia, although molecular clock studies suggest the two strains separated 950 or 1,700 years ago based on synonymous or non-synonymous nucleotide changes, respectively. Recent serological surveys suggest a closely related virus may exist in the Philippines. Due to demonstrated cross-protection in mice, rabies vaccine is used to prevent infection. Rabies post-exposure prophylaxis (PEP) protocols have been adopted for when a human is scratched or bitten by a suspect bat. A long-term commitment to public health programs that test bats that have been involved in scratch or bite incidents, followed by PEP if appropriate, will be necessary to minimise further human infection.

  8. A molecular epidemiological study of rabies epizootics in kudu (Tragelaphus strepsiceros) in Namibia

    PubMed Central

    Mansfield, Karen; McElhinney, Lorraine; Hübschle, Otto; Mettler, Felix; Sabeta, Claude; Nel, Louis H; Fooks, Anthony R

    2006-01-01

    Background A panel of 37 rabies virus isolates were collected and studied, originating mainly from the northern and central regions of Namibia, between 1980 and 2003. Results These virus isolates demonstrated a high degree of genetic similarity with respect to a 400 bp region of the nucleoprotein gene, with the virus isolates originating from kudu antelope (n = 10) sharing 97.2–100% similarity with jackal isolates, and 97–100% similarity with those isolated from domestic dogs. Phylogenetic analysis suggested that these viruses were all of the canid rabies biotype of southern Africa. The viruses from kudu were closely associated with jackal isolates (n = 6), bat-eared fox isolates (n = 2) and domestic dog isolates (n = 2) at the genetic level and identical at the amino acid level, irrespective of the year of isolation. Conclusion These data suggest that jackal and kudu may form part of the same epidemiological cycle of rabies in Namibian wildlife, and might demonstrate the close-relationship between rabies virus strains that circulate within Namibia and those that circulate between Namibia and its neighbouring countries such as Botswana and South Africa. PMID:16412222

  9. Ionospheric convection signatures observed by DE 2 during northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Hanson, W. B.; Reiff, P. H.; Winningham, J. D.

    1986-01-01

    Observations of the ionospheric convection signature at high latitudes are examined during periods of prolonged northward interplanetary magnetic field (IMF). The data from Dynamics Explorer 2 show that a four-cell convection pattern can frequently be observed in a region that is displaced to the sunward side of the dawn-dusk meridian regardless of season. In the eclipsed ionosphere, extremely structured or turbulent flow exists with no identifiable connection to a more coherent pattern that may simultaneously exist in the dayside region. The two highest-latitude convection cells that form part of the coherent dayside pattern show a dependence on the y component of the IMF. This dependence is such that a clockwise circulating cell displaced toward dawn dominates the high-latitude region when B(Y) is positive. Anti-clockwise circulation displaced toward dusk dominates the highest latitudes when B(Y) is negative. Examination of the simultaneously observed energetic particle environment suggests that both open and closed field lines may be associated with the high-latitude convection cells. On occasions these entire cells can exist on open field lines. The existence of closed field lines in regions of sunward flow is also apparent in the data.

  10. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, D; Mutic, S; Shvartsman, S

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placedmore » in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.« less

  11. Molecular characterization of influenza viruses circulating in Northern Italy during two seasons (2005/2006 and 2006/2007) of low influenza activity.

    PubMed

    Pariani, Elena; Amendola, Antonella; Zappa, Alessandra; Bianchi, Silvia; Colzani, Daniela; Anselmi, Giovanni; Zanetti, Alessandro; Tanzi, Elisabetta

    2008-11-01

    The influenza activity and circulation of influenza viruses in Lombardy (the most populous Italian region) were observed during two consecutive seasons (2005/2006 and 2006/2007) characterized by low influenza activity by the Italian Influenza Surveillance Network. The molecular characteristics of circulating viruses were analyzed to evaluate the introduction of new variants and emergence of vaccine-escape viruses. In both seasons, the epidemic in Lombardy was sustained almost exclusively by influenza A viruses, accounting for 80.5% and 93.6% of total detections, respectively, and the co-circulation of A/H3 viruses belonging to distinct phylogenetic groups was observed. The A/H1N1 viruses isolated during the 2005/2006 season were closely related to A/New Caledonia/20/99, while the hemagglutinin (HA) sequences of the A/H1N1 viruses from the 2006/2007 season exhibited a greater diversity. These viruses were A/Solomon Islands/3/2006-like and showed several variants. All B isolates were similar to B/Malaysia/2506/2004 belonging to the B/Victoria/2/87-lineage. Influenza B virus was the dominant virus in Europe in the 2005/2006 season and accounted for the 20% of total detections in Lombardy. Overall, the viruses studied presented heterogeneity in their HA sequences suggesting the circulation of a miscellaneous set of variants during the two seasons notwithstanding the medium-low activity of influenza. The importance of virological surveillance of influenza viruses is recognized widely and the molecular characterization of the viruses, especially in vaccinated subjects, is of particular importance to evaluate the introduction and circulation of new variants. 2008 Wiley-Liss, Inc.

  12. Recent outbreak of aseptic meningitis in Italy due to Echovirus 30 and phylogenetic relationship with other European circulating strains.

    PubMed

    Milia, Maria Grazia; Cerutti, Francesco; Gregori, Gabriella; Burdino, Elisa; Allice, Tiziano; Ruggiero, Tina; Proia, Maria; De Rosa, Giulia; Enrico, Eugenia; Lipani, Filippo; Di Perri, Giovanni; Ghisetti, Valeria

    2013-11-01

    Enteroviruses (EVs) are common human viral pathogens, causing a variety of diseases, including aseptic meningitis. Recently, EV aseptic meningitis outbreaks have been reported across Europe, but, in Italy, knowledge of recent EV molecular epidemiology is very limited. We report an outbreak of EV aseptic meningitis in 10 adults in North-Western Italy, from October to November 2012. Patients were parents or close relatives of children <5 years old attending the same class of a nursery school, suffering from a mild febrile upper respiratory disease. Phylogenetic relationship with other European circulating strains was analyzed updating E30 circulation in Italy in recent years. EVs were detected from cerebrospinal fluid (CSF) specimens with a real-time reverse transcription polymerase chain reaction and virus isolation was achieved from rectal and pharyngeal swabs. For cluster definition and phylogenetic studies, viral VP1 region was directly amplified and sequenced from CSF. EVs were identified in CSF from all patients and from rectal and pharyngeal swabs in 7 of them. Direct sequencing of CSF revealed the presence of the same Echovirus 30 (E30) in all patients and phylogenetic analysis identified it as a diverging clade within E30 genotype VII, the most recent strain circulating in UK, Finland and Denmark since 2006. Molecular techniques allowed the rapid identification and typing of E30 from CSF. Phylogenetic analysis revealed that the cluster might be due to a new E30 variant within the genotype VII currently circulating in Europe, thus updating the epidemiology of EV circulation in Italy. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Myocardial revascularization with miniaturized extracorporeal circulation versus off pump: Evaluation of systemic and myocardial inflammatory response in a prospective randomized study.

    PubMed

    Formica, Francesco; Broccolo, Francesco; Martino, Antonello; Sciucchetti, Jennifer; Giordano, Vincenzo; Avalli, Leonello; Radaelli, Gianluigi; Ferro, Orazio; Corti, Fabrizio; Cocuzza, Clementina; Paolini, Giovanni

    2009-05-01

    This prospective randomized study sought to verify the systemic inflammatory response, inflammatory myocardial damage, and early clinical outcome in coronary surgery with the miniaturized extracorporeal circulation system or on the beating heart. Sixty consecutive patients were randomized to miniaturized extracorporeal circulation (n = 30) or off-pump coronary revascularization (off-pump coronary artery bypass grafting, n = 30). Intraoperative and postoperative data were recorded. Plasma levels of interleukin-6 and tumor necrosis factor-alpha were measured from systemic blood intraoperatively, at the end of operation, and 24 and 48 hours thereafter. Levels of the same markers and blood lactate were measured from coronary sinus blood intraoperatively to evaluate myocardial inflammation. Markers of myocardial damage were also analyzed. One patient died in the off-pump coronary artery bypass grafting group. There was no statistical difference in early clinical outcome in both groups. Release of interleukin-6 was higher in the off-pump coronary artery bypass grafting group 24 hours after the operation (P = .03), whereas levels of tumor necrosis factor-alpha were not different in both groups. Cardiac release of interleukin-6, tumor necrosis factor-alpha, and blood lactate were not different in both groups. Release of troponin T was not significantly different in both groups. Levels of creatine kinase mass were statistically higher in the miniaturized extracorporeal circulation group than in the off-pump coronary artery bypass grafting group, but only at the end of the operation (P < .0001). Hemoglobin levels were significantly higher in the miniaturized extracorporeal circulation group than in the off-pump coronary artery bypass grafting group after 24 hours (P = .01). Miniaturized extracorporeal circulation can be considered similar to off-pump surgery in terms of systemic inflammatory response, myocardial inflammation and damage, and early outcome.

  14. Spinal cord infarction as a rare complication of fat embolism syndrome following bilateral intramedullary nailing of femur fractures.

    PubMed

    Kearsley, RoseMarie; Galbraith, John; Dalton, David; Motherway, Catherine

    2016-09-13

    Fat embolism syndrome (FES) is a rare and potentially fatal complication occurring most often after long bone or pelvic fractures and orthopaedic procedures. It can consist of pulmonary, central nervous system and cutaneous manifestations. The exact pathophysiology of emboli reaching the arterial circulation is poorly understood.1 It is suggested that this may occur by either 'paradoxical' embolism or microembolism.2 3 Its true incidence is unknown but increases in the presence of multiple closed fractures. It can be a diagnostic dilemma for clinicians and if suspected diffusion-weighted MRI is the modality of choice for the investigation of the central nervous system.4 We present the case of a 22-year-old man who developed multifocal cerebral infarcts, a right-sided cerebellar infarct and an infarct in the anterior cord bilaterally at the level of C5-C6 as a result of FES. 2016 BMJ Publishing Group Ltd.

  15. A Comparative Anatomic and Physiologic Overview of the Porcine Heart

    PubMed Central

    Lelovas, Pavlos P; Kostomitsopoulos, Nikolaos G; Xanthos, Theodoros T

    2014-01-01

    Despite advances during the last 2 decades in every aspect of cardiovascular research (interventional cardiology, cardiopulmonary resuscitation, and so forth), Western societies still are plagued by the consequences of cardiovascular disease. Consequently the discovery of new regimens and therapeutic interventions is of utmost importance. Research using human subjects is associated with substantial methodologic and ethical considerations, and the quest for an appropriate animal model for the human cardiovascular system has led to swine. The porcine heart bears a close resemblance to the human heart in terms of its coronary circulation and hemodynamic similarities and offers ease of implementation of methods and devices from human healthcare facilities. A thorough comprehension of the anatomy and physiology of the porcine cardiovascular system should focus on differences between swine and humans as well as similarities. Understanding these differences and similarities is essential to extrapolating data appropriately and to addressing the social demand for the ethical use of animals in biomedical research. PMID:25255064

  16. Circulation effect: response of precipitation δ18O to the ENSO cycle in monsoon regions of China

    NASA Astrophysics Data System (ADS)

    Tan, Ming

    2014-02-01

    Inter-annual variation in the ratio of 18O to 16O of precipitation (δ18Op) in the monsoon regions of China (MRC, area approximately east of 100°E) has not yet been fully analyzed. Based on an analysis of the relationships between the time series of amount-weighted mean annual δ18O in precipitation (δ18Ow) and meteorological variables such as temperature, precipitation as well as atmospheric/oceanic circulation indices, it is recognized that the El Niño-Southern Oscillation (ENSO) cycle appears to be the dominant control on the inter-annual variation in δ18Op in the MRC. Further analysis shows that the trade wind plays a role in governing δ18Ow through affecting the intensity of the different summer monsoon circulations which are closely linked to the weakening (weaker than normal) and strengthening (stronger than normal) of the trade wind and gives the δ18Ow different values at or over inter-annual timescales. The southwest monsoon (SWM) drives long-distance transport of water vapor from Indian Ocean to the MRC, and along this pathway increasing rainout leads to more negative δ18Ow via Rayleigh distillation processes. In contrast, the southeast monsoon (SEM), which is consistent with the changes in the strength of the West Pacific subtropical high, drives short-distance water vapor transport from the West Pacific Ocean to the MRC and leads to less negative δ18Ow. Therefore, the δ18Ow value directly reflects the differences in influence between the SWM, which is strong when the SE trade wind is strong, and the SEM, which is strong when the SE trade wind is weak. In addition, the South China Sea Monsoon also transports local water vapor as well as plays a role in achieving the synchronization between the δ18Ow and ENSO. The author thus terms the δ18Op rhythm in the MRC the "circulation effect". In turn, the δ18Op variation in the MRC has the potential to provide information on atmospheric circulation and the signal of δ18Op recorded in natural archives can then be used to deduce a long-term behavior of the tropical climate system.

  17. Salinity Remote Sensing and the Study of the Global Water Cycle

    NASA Technical Reports Server (NTRS)

    Lagerloef, G. S. E.; LeVine, David M.; Chao, Y.; Colomb, F. Raul; Font, J.

    2007-01-01

    The SMOS and AquariusISAC-D satellite missions will begin a new era to map the global sea surface salinity (SSS) field and its variability from space within the next twothree years. They will provide critical data needed to study the interactions between the ocean circulation, global water cycle and climate. Key scientific issues to address are (1) mapping large expanses of the ocean where conventional SSS data do not yet exist, (2) understanding the seasonal and interannual SSS variations and the link to precipitation, evaporation and sea-ice patterns, (3) links between SSS and variations in the oceanic overturning circulation, (4) air-sea coupling processes in the tropics that influence El Nino, and (4) closing the marine freshwater budget. There is a growing body of oceanographic evidence in the form of salinity trends that portend significant changes in the hydrologic cycle. Over the past several decades, highlatitude oceans have become fresher while the subtropical oceans have become saltier. This change is slowly spreading into the subsurface ocean layers and may be affecting the strength of the ocean's therrnohaline overturning circulation. Salinity is directly linked to the ocean dynamics through the density distribution, and provides an important signature of the global water cycle. The distribution and variation of oceanic salinity is therefore attracting increasing scientific attention due to the relationship to the global water cycle and its influence on circulation, mixing, and climate processes. The oceans dominate the water cycle by providing 86% of global surface evaporation (E) and receiving 78% of global precipitation (P). Regional differences in E-P, land runoff, and the melting or freezing of ice affect the salinity of surface water. Direct observations of E-P over the ocean have large uncertainty, with discrepancies between the various state-of-the-art precipitation analyses of a factor of two or more in many regions. Quantifying the climatic influence of the oceanic water cycle requires more accurately resolving the net air-sea water flux. Measuring global SSS trends on seasonal to interannual timescales by satellite is fundamental to this problem because the SSS trends represent detectable time-integrated signals of the variable marine hydrological cycle. Satellite measurements, coupled with an array of in situ observations, will provide global synoptic SSS fields for the first time history. These data will provide a strong constraint on climate models and data assimilation efforts, which must properly represent the freshwater budget in terms of E-P, ocean advection and surface layer mixing in order to accurately simulate the true ocean state. The SSS fields will allow us to quantify the covariability between the SSS and the strong seasonal E-P cycle in the tropics and high latitudes. Field measurement campaigns to exploit satellite and in situ measurements to close the seasonal E-P cycle over an ocean region are being considered. Lastly the satellite systems will monitor and trace the large long-lived SSS anomalies from year to year that have the potential to influence El Nino and the large scale ocean circulation.

  18. Performance and operational analysis of a liquid desiccant open-flow solar collector

    NASA Astrophysics Data System (ADS)

    Grodzka, P. G.; Rico, S. S.

    1982-10-01

    Theoretical predictions of the heat and mass transfer in an open flow solar collector used in conjunction with an absorption chiller are compared with performance data from a rooftop system. The study focuses on aqueous solutions of a hygroscopic salt, e.g., LiCl, flowing continuously over a solar absorbing surface. Water in the solution sublimes to a region of lower vapor pressure, i.e., the atmosphere. Direction of the water-depleted dessiccant to a storage volume and then to circulation around an evaporator unit permits operation of a solar-powered air conditioner. A closed form solution was defined for the heat and mass transfer, along with a finite difference solution. The system studied comprised a sloped roof top with 2500 sq ft of asphalt shingles, collector pipes beneath the shingles, and two 500 gal storage tanks. Relatively good agreement was found between the models and the recorded data, although some discrepancies were present when considering temperatures and performance at specific times of day. The measured 30-40% efficiencies indicated that further development of the system is warranted.

  19. A Saturnian cam current system driven by asymmetric thermospheric heating

    NASA Astrophysics Data System (ADS)

    Smith, C. G. A.

    2011-02-01

    We show that asymmetric heating of Saturn's thermosphere can drive a current system consistent with the magnetospheric ‘cam’ proposed by Espinosa, Southwood & Dougherty. A geometrically simple heating distribution is imposed on the Northern hemisphere of a simplified three-dimensional global circulation model of Saturn's thermosphere. Currents driven by the resulting winds are calculated using a globally averaged ionosphere model. Using a simple assumption about how divergences in these currents close by flowing along dipolar field lines between the Northern and Southern hemispheres, we estimate the magnetic field perturbations in the equatorial plane and show that they are broadly consistent with the proposed cam fields, showing a roughly uniform field implying radial and azimuthal components in quadrature. We also identify a small longitudinal phase drift in the cam current with radial distance as a characteristic of a thermosphere-driven current system. However, at present our model does not produce magnetic field perturbations of the required magnitude, falling short by a factor of ˜100, a discrepancy that may be a consequence of an incomplete model of the ionospheric conductance.

  20. Effects of interventions on oxidative stress and inflammation of cardiovascular diseases

    PubMed Central

    Lee, Sewon; Park, Yoonjung; Zuidema, Mozow Yusof; Hannink, Mark; Zhang, Cuihua

    2011-01-01

    Excessive oxidative stress and low-grade chronic inflammation are major pathophysiological factors contributing to the development of cardiovascular diseases (CVD) such as hypertension, diabetes and atherosclerosis. Accumulating evidence suggests that a compromised anti-oxidant system can lead to excessive oxidative stress in cardiovascular related organs, resulting in cell damage and death. In addition, increased circulating levels of pro-inflammatory cytokines, such as tumor necrosis factor α, interleukin-6 and C-reactive protein, are closely related to morbidity and mortality of cardiovascular complications. Emerging evidence suggests that interventions including nutrition, pharmacology and exercise may activate expression of cellular anti-oxidant systems via the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 signaling pathway and play a role in preventing inflammatory processes in CVD. The focus of the present review is to summarize recent evidence showing the role of these anti-oxidant and anti-inflammatory interventions in cardiovascular disease. We believe that these findings may prompt new effective pathogenesis-oriented interventions, based on the exercise-induced protection from disease in the cardiovascular system, aimed at targeting oxidant stress and inflammation. PMID:21286214

  1. Cloud cover analysis associated to cut-off low-pressure systems over Europe using Meteosat Imagery

    NASA Astrophysics Data System (ADS)

    Delgado, G.; Redaño, A.; Lorente, J.; Nieto, R.; Gimeno, L.; Ribera, P.; Barriopedro, D.; García-Herrera, R.; Serrano, A.

    2007-04-01

    This paper reports a cloud cover analysis of cut-off low pressure systems (COL) using a pattern recognition method applied to IR and VIS bispectral histograms. 35 COL occurrences were studied over five years (1994-1998). Five cloud types were identified in COLs, of which high clouds (HCC) and deep convective clouds (DCC) were found to be the most relevant to characterize COL systems, though not the most numerous. Cloud cover in a COL is highly dependent on its stage of development, but a higher percentage of cloud cover is always present in the frontal zone, attributable due to higher amounts of high and deep convective clouds. These general characteristics are most marked during the first stage (when the amplitude of the geopotencial wave increases) and second stage (characterized by the development of a cold upper level low), closed cyclonic circulation minimizing differences between rearward and frontal zones during the third stage. The probability of heavy rains during this stage decreases considerably. The centres of mass of high and deep convective clouds move towards the COL-axis centre during COL evolution.

  2. Numerical Hydraulic Study on Seawater Cooling System of Combined Cycle Power Plant

    NASA Astrophysics Data System (ADS)

    Kim, J. Y.; Park, S. M.; Kim, J. H.; Kim, S. W.

    2010-06-01

    As the rated flow and pressure increase in pumping facilities, a proper design against surges and severe cavitations in the pipeline system is required. Pressure surge due to start-up, shut-down process and operation failure causes the water hammer in upstream of the closing valve and the cavitational hammer in downstream of the valve. Typical cause of water hammer is the urgent closure of valves by breakdown of power supply and unexpected failure of pumps. The abrupt changes in the flow rate of the liquid results in high pressure surges in upstream of the valves, thus kinetic energy is transformed into potential energy which leads to the sudden increase of the pressure that is called as water hammer. Also, by the inertia, the liquid continues to flow downstream of the valve with initial speed. Accordingly, the pressure decreases and an expanding vapor bubble known as column separation are formed near the valve. In this research, the hydraulic study on the closed cooling water heat exchanger line, which is the one part of the power plant, is introduced. The whole power plant consists of 1,200 MW combined power plant and 220,000 m3/day desalination facility. Cooling water for the plant is supplied by sea water circulating system with a capacity of 29 m3/s. The primary focus is to verify the steady state hydraulic capacity of the system. The secondary is to quantify transient issues and solutions in the system. The circuit was modeled using a commercial software. The stable piping network was designed through the hydraulic studies using the simulation for the various scenarios.

  3. A System Approach to Navy Medical Education and Training. Appendix 10. Operating Room Technician.

    DTIC Science & Technology

    1974-08-31

    WOUND 38 IPATCH EYES 39 IAPPLY/CHANGE SKIN GRAFT DRESSINGS 40 1APPLY/CHANGE PEDICLE SKIN GRAFT DRESSINGS 41 IFIRST ASSIST DURING MAJOR SURGERY 42...GRAFTS CIRCULATE 44 ISPLIT THICKN-cSS SKIN GRAFT SCRUB 45 ISPLIT THICKNESS SKIN GRAFT CIRCULATE 46 lHOMO GRAFTS SCRUB 47 IHOMO GRAFTS CIRCULATE 48

  4. Relations between winter precipitation and atmospheric circulation simulated by the Geophysical Fluid Dynamics Laboratory general circulation model

    USGS Publications Warehouse

    McCabe, G.J.; Dettinger, M.D.

    1995-01-01

    General circulation model (GCM) simulations of atmospheric circulation are more reliable than GCM simulations of temperature and precipitation. In this study, temporal correlations between 700 hPa height anomalies simulated winter precipitation at eight locations in the conterminous United States are compared with corresponding correlations in observations. The objectives are to 1) characterize the relations between atmospheric circulation and winter precipitation simulated by the GFDL, GCM for selected locations in the conterminous USA, ii) determine whether these relations are similar to those found in observations of the actual climate system, and iii) determine if GFDL-simulated precipitation is forced by the same circulation patterns as in the real atmosphere. -from Authors

  5. Solar energy receiver

    DOEpatents

    Schwartz, Jacob

    1978-01-01

    An improved long-life design for solar energy receivers provides for greatly reduced thermally induced stress and permits the utilization of less expensive heat exchanger materials while maintaining receiver efficiencies in excess of 85% without undue expenditure of energy to circulate the working fluid. In one embodiment, the flow index for the receiver is first set as close as practical to a value such that the Graetz number yields the optimal heat transfer coefficient per unit of pumping energy, in this case, 6. The convective index for the receiver is then set as closely as practical to two times the flow index so as to obtain optimal efficiency per unit mass of material.

  6. LLNL demonstration of liquid gun propellant destruction in a 0.1 gallon per minute scale reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cena, R.J.; Thorsness, C.B.; Coburn, T.T.

    1994-06-01

    The Lawrence Livermore National Laboratory (LLNL) has built and operated a pilot plant for processing oil shale using recirculating hot solids. This pilot plant, was adapted in 1993 to demonstrate the feasibility of decomposing a liquid gun propellant (LGP), LP XM46, a mixture of 76% HAN (NH{sub 3}OHNO{sub 3}) and 24% TEAN (HOCH{sub 2}CH{sub 2}){sub 3} NHNO{sub 3} diluted 1:3 in water. In the Livermore process, the LPG is thermally treated in a moving packed bed of ceramic spheres, where TEAN and HAN decompose, forming a suite of gases including: methane, carbon monoxide, oxygen, nitrogen oxides, ammonia and molecular nitrogen.more » The ceramic spheres are circulated and heated, providing the energy required for thermal decomposition. The authors performed an extended one day (8 hour) test of the solids recirculation system, with continuous injection of approximately 0.1 gal/min of LGP, diluted 1:3 in water, for a period of eight hours. The apparatus operated smoothly over the course of the eight hour run during which 144 kg of solution was processed, containing 36 kg of LGP. Continuous on-line gas analysis was invaluable in tracking the progress of the experiment and quantifying the decomposition products. The reactor was operated in two modes, a {open_quotes}Pyrolysis{close_quotes} mode, where decomposition products were removed from the moving bed reactor exit, passing through condensers to a flare, and in a {open_quotes}Combustion{close_quotes} mode, where the products were oxidized in air lift pipe prior to exiting the system. In the {open_quotes}Pyrolysis{close_quotes} mode, driver gases were recycled producing a small, concentrated stream of decomposition products. In the {open_quotes}Combustion mode{close_quotes}, the driver gases were not recycled, resulting in 40 times higher gas flow rates and correspondingly lower concentrations of nitrogen bearing gases.« less

  7. Artificial blood circulation: stabilization, physiological control, and optimization.

    PubMed

    Lerner, A Y

    1990-04-01

    The requirements for creating an efficient Artificial Blood Circulation System (ABCS) have been determined. A hierarchical three-level adaptive control system is suggested for ABCS to solve the following problems: stabilization of the circulation conditions, left and right pump coordination, physiological control for maintaining a proper relation between the cardiac output and the level of gas exchange required for metabolism, and optimization of the system behavior. The adaptations to varying load and body parameters will be accomplished using the signals which characterize the real-time computer-processed values of correlations between the changes in hydraulic resistance of blood vessels, or the changes in aortic pressure, and the oxygen (or carbon dioxide) concentration.

  8. On-Line Remote Catalog Access and Circulation Control System. Part I: Functional Specifications. Part II: User's Manual.

    ERIC Educational Resources Information Center

    International Business Machines Corp., Gaithersburg, MD. Data Processing Div.

    The Ohio State University Libraries On-line Remote Catalog Access and Circulation Control System (LCS) began on-line operations with the conversion of one department library in November 1970. By December all 26 libraries had been converted to the automated system and LCS was fully operational one month ahead of schedule. LCS is designed as a…

  9. Development of an Accident Reproduction Simulator System Using a Hemodialysis Extracorporeal Circulation System

    PubMed Central

    Nishite, Yoshiaki; Takesawa, Shingo

    2016-01-01

    Background: Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. Objectives: The aim of this study was to create an extracorporeal circulation system (hereinafter, the circulation system) for dialysis machines so that it sets off five types of alarms for: 1) decreased arterial pressure, 2) increased arterial pressure, 3) decreased venous pressure, 4) increased venous pressure, and 5) blood leakage, according to the five types of accidents chosen based on their frequency of occurrence and the degree of severity. Materials and Methods: In order to verify the alarm from the dialysis apparatus connected to the circulation system and the accident corresponding to it, an evaluation of the alarm for its reproducibility of an accident was performed under normal treatment circumstances. The method involved testing whether the dialysis apparatus raised the desired alarm from the moment of control of the circulation system, and measuring the time it took until the desired alarm was activated. This was tested on five main models from four dialyzer manufacturers that are currently used in Japan. Results: The results of the tests demonstrated successful activation of the alarms by the dialysis apparatus, which were appropriate for each of the five types of accidents. The time between the control of the circulatory system to the alarm signal was as follows, 1) venous pressure lower limit alarm: 7 seconds; 2) venous pressure lower limit: 8 seconds; 3) venous pressure upper limit: 7 seconds; 4) venous pressure lower limit alarm: 2 seconds; and 5) blood leakage alarm: 19 seconds. All alarms were set off in under 20 seconds. Conclusions: Thus, we can conclude that a simulator system using an extracorporeal circulation system can be set to different models of dialyzers, and that the reproduced treatment scenarios can be used for simulation training. PMID:26981503

  10. System for drying and heating particulate coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Offergeld, E.; Wischniewski, M.

    1978-04-04

    Wet particulate coal and a current of hot dry gas at superatmospheric pressure are introduced into a substantially closed drying chamber to contact the material with the gas while maintaining the drying chamber under superatmospheric pressure so that the material is dried by the gas. The dried material is withdrawn from the drying chamber and the gas is withdrawn from the drying chamber and itself mixed with a stream of hot dry gas produced by burning a combustible and a combustion-supporting gas. This mixture is then reintroduced into the drying chamber as the current of hot gas used to drymore » the coal. The burner is operated at superatmospheric pressure and is formed of a jet-pump type injector, and a diffusor is provided downstream of this injector in the circulation path.« less

  11. Flow regions of granules in Dorfan Impingo filter for gas cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, J.T.; Smid, J.; Hsiau, S.S.

    1999-07-01

    Inside a two-dimensional model of the louvered Dorfan Impingo panel with transparent front and rear walls the flow region of filter granules without gas cross flow were observed. The white PE beads were used as filter granules. Colored PE beads served as tracers. Filter granules were discharged and circulated to the bed. The flow rate of filter medium was controlled by the belt conveyor. The image processing system including a Frame Grabber and JVC videocamera was used to record the granular flow. Every image of motion was digitized and stored in a file. The flow patterns and the quasi-stagnant zonesmore » history in the moving granular bed were evaluated. The experiment showed fast central moving region (flowing core) of filter granules and quasi-stagnant zones close to louver walls.« less

  12. Age-associated Pro-inflammatory Remodeling and Functional Phenotype in the Heart and Large Arteries

    PubMed Central

    Wang, Mingyi; Shah, Ajay M

    2015-01-01

    The aging population is increasing dramatically. Aging–associated stress simultaneously drives proinflammatory remodeling, involving angiotensin II and other factors, in both the heart and large arteries. The structural remodeling and functional changes that occur with aging include cardiac and vascular wall stiffening, systolic hypertension and suboptimal ventricular-arterial coupling, features that are often clinically silent and thus termed a silent syndrome. These age-related effects are the result of responses initiated by cardiovascular proinflammatory cells. Local proinflammatory signals are coupled between the heart and arteries due to common mechanical and humoral messengers within a closed circulating system. Thus, targeting proinflammatory signaling molecules would be a promising approach to improve age-associated suboptimal ventricular-arterial coupling, a major predisposing factor for the pathogenesis of clinical cardiovascular events such as heart failure. PMID:25665458

  13. Principles of Management of Central Nervous System Infections.

    PubMed

    Singhi, Sunit; Angurana, Suresh Kumar

    2018-01-15

    CNS infections in children are medical emergency and are associated with high mortality and morbidity. For diagnosis, a high index of suspicion is required. Clinical assessment should be supplemented by laboratory investigations including CSF Gram stain and cultures, blood culture, PCR on CSF, serological tests, and imaging. Commonly associated life threatening complications include coma, seizure, raised intracranial pressure (ICP), focal deficits, shock, respiratory failure, and fluid and electrolyte abnormalities. Immediate management should first address control of airway, breathing and circulation; protocolized management of raised ICP and status epilepticus; maintaining adequate intravascular volume; and close monitoring for early detection of complications. Appropriate antimicrobial agents should be administered promptly according to the suspected pathogen. Clinical evaluation, laboratory workup, specific antimicrobial therapy, supportive treatment, and management of associated complications should go hand in hand in a protocolized way for better outcome.

  14. Enhanced photocatalytic hydrogen production from water-ethanol solution by Ruthenium doped La-NaTaO3

    NASA Astrophysics Data System (ADS)

    Husin, H.; Alam, P. N.; Zaki, M.; Sofyana; Jakfar; Husaini; Hasfita, F.

    2018-04-01

    The photocatalytic hydrogen production from ethanol aqueous solution, with the use ruthenium doped La-NaTaO3 has been investigated. Ruthenium doped La-NaTaO3 catalysts are prepared by impregnation method. The catalysts are by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Ru co-catalyst demonstrated from the TEM image shows a good dispersion on the surface of La-C-NaTaO3 with an average particle size between 4-5 nm. The photocatalytic reaction is carried out in a closed reactor with a gas circulation system. The catalytic activity of La-NaTaO3 improved markedly (6.6 times from pure water) when Ru is loaded onto its surface. The hydrogen production is notably enhanced in the presence of ethanol as electron donors. This result is much higher when compared with the rate of hydrogen production in the sample without co- catalysts about 9.4 times higher after Ru deposition from ethanol aqueous solution. Increasing the production of hydrogen on the Ru/La-NaTaO3 closely related to the decrease in recombination between electron-hole pairs.

  15. Learning to Use an Online Circulation System. Final Report.

    ERIC Educational Resources Information Center

    Marchionini, Gary; And Others

    A study conducted at the University of Maryland, College Park campus compared the effectiveness of three instructional media for presenting introductory training in the use of an online circulation system. Modules based on a common set of instructional objectives and examples were developed and delivered using three formats: a print packet, a…

  16. Cost-Effectiveness Analysis of the Automation of a Circulation System.

    ERIC Educational Resources Information Center

    Mosley, Isobel

    A general methodology for cost effectiveness analysis was developed and applied to the Colorado State University library loan desk. The cost effectiveness of the existing semi-automated circulation system was compared with that of a fully manual one, based on the existing manual subsystem. Faculty users' time and computer operating costs were…

  17. Mining and Analyzing Circulation and ILL Data for Informed Collection Development

    ERIC Educational Resources Information Center

    Link, Forrest E.; Tosaka, Yuji; Weng, Cathy

    2015-01-01

    The authors investigated quantitative methods of collection use analysis employing library data that are available in ILS and ILL systems to better understand library collection use and user needs. For the purpose of the study, the authors extracted circulation and ILL records from the library's systems using data-mining techniques. By comparing…

  18. Multiport optical circulator by using polarizing beam splitter cubes as spatial walk-off polarizers.

    PubMed

    Chen, Jing-Heng; Chen, Kun-Huang; Lin, Jiun-You; Hsieh, Hsiang-Yung

    2010-03-10

    Optical circulators are necessary passive devices applied in optical communication systems. In the design of optical circulators, the implementation of the function of spatial walk-off polarizers is a key technique that significantly influences the performance and cost of a device. This paper proposes a design of a multiport optical circulator by using polarizing beam splitter cubes as spatial walk-off polarizers. To show the feasibility of the design, a prototype of a six-port optical circulator was fabricated. The insertion losses are 0.94-1.49 dB, the isolations are 25-51 dB, and return losses are 27.72 dB.

  19. Effect of two types of helium circulators on the performance of a subsonic nuclear powered airplane

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1971-01-01

    Two types of helium circulators are analytically compared on the bases of their influence on airplane payload and on propulsion system variables. One type of circulator is driven by the turbofan engines with power takeoff shafting while the other, a turbocirculator, is powered by a turbine placed in the helium loop between the nuclear reactor and the helium-to-air heat exchangers inside the engines. Typical results show that the turbocirculator yields more payload for circulator efficiencies greater than 0.82. Optimum engine and heat exchanger temperatures and pressures are significantly lower in the turbocirculator case compared to the engine-driven circulator scheme.

  20. Exercise capacity in the Bidirectional Glenn physiology: Coupling cardiac index, ventricular function and oxygen extraction ratio.

    PubMed

    Vallecilla, Carolina; Khiabani, Reza H; Trusty, Phillip; Sandoval, Néstor; Fogel, Mark; Briceño, Juan Carlos; Yoganathan, Ajit P

    2015-07-16

    In Bi-directional Glenn (BDG) physiology, the superior systemic circulation and pulmonary circulation are in series. Consequently, only blood from the superior vena cava is oxygenated in the lungs. Oxygenated blood then travels to the ventricle where it is mixed with blood returning from the lower body. Therefore, incremental changes in oxygen extraction ratio (OER) could compromise exercise tolerance. In this study, the effect of exercise on the hemodynamic and ventricular performance of BDG physiology was investigated using clinical patient data as inputs for a lumped parameter model coupled with oxygenation equations. Changes in cardiac index, Qp/Qs, systemic pressure, oxygen extraction ratio and ventricular/vascular coupling ratio were calculated for three different exercise levels. The patient cohort (n=29) was sub-grouped by age and pulmonary vascular resistance (PVR) at rest. It was observed that the changes in exercise tolerance are significant in both comparisons, but most significant when sub-grouped by PVR at rest. Results showed that patients over 2 years old with high PVR are above or close to the upper tolerable limit of OER (0.32) at baseline. Patients with high PVR at rest had very poor exercise tolerance while patients with low PVR at rest could tolerate low exercise conditions. In general, ventricular function of SV patients is too poor to increase CI and fulfill exercise requirements. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different exercise levels according to patient specific data. Published by Elsevier Ltd.

  1. Bioregenerative Life Support Experiment for 90-days in a Closed Integrative Experimental Facility LUNAR PALACE 1

    NASA Astrophysics Data System (ADS)

    Liu, Hong

    A 90-day bioregenerative life support experiment with three-member crew was carried out in the closed integrative experimental facility, LUNAR PALACE 1 regenerating basic living necessities and disposing wastes to provide life support for crew. It was composed of higher plant module, animal module, and waste treatment module. The higher plant module included wheat, chufa, pea, carrot and green leafy vegetables, with aim to satisfy requirement of 60% plant food and 100% O2 and water for crew. The yellow mealworm was selected as animal module to provide partial animal protein for crew, and reared on plant inedible biomass. The higher plant and yellow mealworm were both cultivated and harvested in the conveyor-type manner. The partial plant inedible biomass and human feces were mixed and co- fermented in the waste treatment module for preparation of soil-like substrate by bioconversion, maintaining gas balance and increasing closure degree. Meanwhile, in the waste treatment module, the water and partial nitrogen from human urine were recovered by physical-chemical means. Circulation of O2 and water as well as food supply from crops cultivated in the LUNAR PALACE 1 were investigated and calculated, and simultaneously gas exchange, mass flow among different components and system closure degree were also analyzed, respectively. Furthermore, the system robustness with respect to internal variation was tested and evaluated by sensitivity analysis of the aggregative index consisting of key performance indicators like crop yield, gaseous equilibrium concentration, microbial community composition, biogenic elements dynamics, etc., and comprehensively evaluating the operating state, to number change of crew from 2 to 4 during the 90-day closed experiment period.

  2. Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)

    2001-01-01

    An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values obtained in isolation. The circulation may be accurately modeled with an expression based on Prandtl's relationship between finite airfoil circulation and airfoil geometry. A correlation for the peak vorticity has been derived from a conservation relationship equating the moment at the airfoil tip to the rate of angular momentum production of the shed vortex, modeled as a Lamb (ideal viscous) vortex. This technique provides excellent qualitative agreement to the observed behavior of peak vorticity for low aspect ratio airfoils typically used as vortex generators.

  3. RFQ accelerator tuning system

    DOEpatents

    Bolie, V.W.

    1990-07-03

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  4. RFQ accelerator tuning system

    DOEpatents

    Bolie, Victor W.

    1990-01-01

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  5. Desulfurization characteristics of rapidly hydrated sorbents with various adhesive carrier particles for a semidry CFB-FGD system.

    PubMed

    You, Changfu; Li, Yuan

    2013-03-19

    Semidry flue gas desulfurization (FGD) experiments were conducted using rapidly hydrated sorbents with four different adhesive carrier particles: circulation ash from a circulating fluidized bed boiler (CFBB circulation ash), fly ash from the first electrical field of the electrostatic precipitator of a circulating fluidized bed boiler (CFBB ESP ash), fly ash from a chain boiler (chain boiler ash), and river sand smaller than 1 mm. The influences of various adhesive carrier particles and operating conditions on the desulfurization characteristics of the sorbents were investigated, including sprayed water, reaction temperature, and the ratio of calcium to sulfur (Ca/S). The experimental results indicated that the rapidly hydrated sorbents had better desulfurization characteristics by using adhesive carrier particles which possessed better pore, adhesion, and fluidization characteristics. The desulfurization efficiency of the system increased as the reaction temperature decreased, it improved from 35% to 90% as the mass flow rate of the sprayed water increased from 0 to 10 kg/h, and it increased from 65.6% to 82.7% as Ca/S increased from 1.0 to 2.0. Based on these findings, a new semidry circulating fluidized bed (CFB)-FGD system using rapidly hydrated sorbent was developed. Using the rapidly hydrated sorbent, this system uses a cyclone separator instead of an ESP or a bag filter to recycle the sorbent particles, thereby decreasing the system flow resistance, saving investment and operating costs of the solids collection equipment.

  6. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukemia definition.

    PubMed

    Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara Mª; Teixidó, Montserrat; Gimenez, Mª Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Bladé, Joan; de Larrea, Carlos Fernández

    2017-06-01

    The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the study herein, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analyzed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukemia were reviewed and patients were classified into 4 categories according to the percentage of circulating plasma cells: 0%, 1-4%, 5-20%, and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%), respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, the presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95% CI 2.6-9.3) independently of age, creatinine, the Durie-Salmon system stage and the International Staging System (ISS) stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86×10 9 /L vs 214×10 9 /L, P <0.0001) and higher bone marrow plasma cells (median 53% vs 36%, P =0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has a similar adverse prognostic impact as plasma cell leukemia. Copyright© Ferrata Storti Foundation.

  7. Progressive Derechos in the Presence of Closed Upper-level Subtropical Anticyclones

    NASA Astrophysics Data System (ADS)

    Guastini, C.; Bosart, L. F.

    2013-12-01

    Progressive derechos are a type of long-lived mesoscale convective system that produces large swaths of wind damage. In contrast to their serial derecho counterparts, which form in association with extratropical cyclones, progressive derechos often occur in the presence of benign synoptic conditions on the poleward side of closed upper-level subtropical anticyclones. Forecasters have been known to struggle predicting progressive derechos with any certainty due to the common lack of large-scale support for severe weather in regimes dominated by anticyclonic conditions. This study will classify a group of days on which there was a closed upper-level anticyclone over the United States and a progressive derecho did not occur and a group of days on which there was a closed upper-level anticyclone over the United States and a progressive derecho did occur, examine the synoptic environments of the two groups, and identify derecho null cases. By analyzing the null cases, derecho failure modes will be determined, which will help forecaster situational awareness and reveal the science behind the environmental conditions necessary for, and detrimental to, derecho development. This presentation will include climatologies of both derechos and closed upper-level anticyclones over the United States for June, July, and August of the years 1994-2013 (the modern radar era). The presentation will also include closed anticyclone-relative composites of both derecho cases and derecho null cases. The composites will elucidate which conditions are necessary for, and which are detrimental to, derecho development. The hypothesis is that derecho failure days occur due either to the lack of a triggering mechanism or other phenomena working against convective development such as a strong capping inversion or transverse ageostrophic circulations around an upper-level jet creating subsidence in an otherwise favorable environment. A representative case study will be included to highlight a common derecho failure mode.

  8. Improvement in intra-aortic balloon pumping and evaluation of its efficacy by electrode methods of control.

    PubMed

    Ioseliani, G D; Chilaia, S M

    1983-02-01

    A basically new design for the reversing balloon pump has been proposed for increasing the efficacy of intra-aortic balloon pumping (IABP). The device not only causes a significant increase in discharge, but also permits control of the central and peripheral circulation within the desired limits owing to back-and-forth movements (like a piston) of the balloon pump. Standard one- and two-chamber balloon pumps were compared. In addition to traditional hemodynamic and biochemical indexes, the efficacy of IABP was assessed based on electrode monitor control of PO2 and pH in the myocardium, peripheral tissues, and circulating blood. Based on 54 experiments on dogs, it was found that IABP with reversing balloon pumps in synchronous pulsation resulted in survival of 69% of the cases; PO2 and pH levels in the myocardium, tissues, and blood in the coronary sinus were close to normal, and coronary blood flow and peripheral circulation were increased. With standard one-chamber balloon pumps, the survival rate did not exceed 33.4%; PO2 and pH in the peripheral tissues reached critical levels.

  9. Variability of Changjiang Diluted Water revealed by a 45-year long-term ocean hindcast and Self-Organizing Maps analysis

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangming; He, Ruoying; Zong, Haibo

    2017-08-01

    Based on long-term realistic ocean circulation hindcast for in the Bohai, Yellow, and East China Seas, 45 years (1961-2005) of sea surface salinity data were analyzed using Self-Organizing Maps (SOM) to have a better understanding of the Changjiang Diluted Water (CDW) variation. Three spatial patterns were revealed by the SOM: normal, transition, and extension. The normal pattern mainly occurs from December to May while the CDW hugs China's east coast closely and flows southward. The extension pattern is dominant from June to October when the CDW extends northwestward toward Jeju Island in an omega shape. The transition pattern prevails for the rest of the year. Pattern-averaged temperature, circulation, and chlorophyll-a concentration show significant differences. CDW area and its eastern most extension were explored as a function of the Changjiang runoff and regional upwelling index. We found that Changjiang runoff and upwelling index can be reasonable predictors for the overall CDW area, while ambient circulation determines the distribution and structure of the CDW, and thus the CDW eastern most extension.

  10. Liquid biopsy in patients with hepatocellular carcinoma: Circulating tumor cells and cell-free nucleic acids

    PubMed Central

    Okajima, Wataru; Komatsu, Shuhei; Ichikawa, Daisuke; Miyamae, Mahito; Ohashi, Takuma; Imamura, Taisuke; Kiuchi, Jun; Nishibeppu, Keiji; Arita, Tomohiro; Konishi, Hirotaka; Shiozaki, Atsushi; Morimura, Ryo; Ikoma, Hisashi; Okamoto, Kazuma; Otsuji, Eigo

    2017-01-01

    Hepatocellular carcinoma (HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor. Therefore, to provide optimal treatment for each patient with HCC, more precise and effective biomarkers are urgently needed which could facilitate a more detailed individualized decision-making during HCC treatment, including the following; risk assessment, early cancer detection, prediction of treatment or prognostic outcome. In the blood of cancer patients, accumulating evidence about circulating tumor cells and cell-free nucleic acids has suggested their potent clinical utilities as novel biomarker. This concept, so-called “liquid biopsy” is widely known as an alternative approach to cancer tissue biopsy. This method might facilitate a more sensitive diagnosis and better decision-making by obtaining genetic and epigenetic aberrations that are closely associated with cancer initiation and progression. In this article, we review recent developments based on the available literature on both circulating tumor cells and cell-free nucleic acids in cancer patients, especially focusing on Hepatocellular carcinoma. PMID:28883691

  11. Liquid biopsy in patients with hepatocellular carcinoma: Circulating tumor cells and cell-free nucleic acids.

    PubMed

    Okajima, Wataru; Komatsu, Shuhei; Ichikawa, Daisuke; Miyamae, Mahito; Ohashi, Takuma; Imamura, Taisuke; Kiuchi, Jun; Nishibeppu, Keiji; Arita, Tomohiro; Konishi, Hirotaka; Shiozaki, Atsushi; Morimura, Ryo; Ikoma, Hisashi; Okamoto, Kazuma; Otsuji, Eigo

    2017-08-21

    Hepatocellular carcinoma (HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor. Therefore, to provide optimal treatment for each patient with HCC, more precise and effective biomarkers are urgently needed which could facilitate a more detailed individualized decision-making during HCC treatment, including the following; risk assessment, early cancer detection, prediction of treatment or prognostic outcome. In the blood of cancer patients, accumulating evidence about circulating tumor cells and cell-free nucleic acids has suggested their potent clinical utilities as novel biomarker. This concept, so-called "liquid biopsy" is widely known as an alternative approach to cancer tissue biopsy. This method might facilitate a more sensitive diagnosis and better decision-making by obtaining genetic and epigenetic aberrations that are closely associated with cancer initiation and progression. In this article, we review recent developments based on the available literature on both circulating tumor cells and cell-free nucleic acids in cancer patients, especially focusing on Hepatocellular carcinoma.

  12. The Double ITCZ Syndrome in GCMs: A Coupled Problem among Convection, Atmospheric and Ocean Circulations

    NASA Astrophysics Data System (ADS)

    Zhang, G. J.; Song, X.

    2017-12-01

    The double ITCZ bias has been a long-standing problem in coupled atmosphere-ocean models. A previous study indicates that uncertainty in the projection of global warming due to doubling of CO2 is closely related to the double ITCZ biases in global climate models. Thus, reducing the double ITCZ biases is not only important to getting the current climate features right, but also important to narrowing the uncertainty in future climate projection. In this work, we will first review the possible factors contributing to the ITCZ problem. Then, we will focus on atmospheric convection, presenting recent progress in alleviating the double ITCZ problem and its sensitivity to details of convective parameterization, including trigger conditions for convection onset, convective memory, entrainment rate, updraft model and closure in the NCAR CESM1. These changes together can result in dramatic improvements in the simulation of ITCZ. Results based on both atmospheric only and coupled simulations with incremental changes of convection scheme will be shown to demonstrate the roles of convection parameterization and coupled interaction between convection, atmospheric circulation and ocean circulation in the simulation of ITCZ.

  13. Optical circulation in a multimode optomechanical resonator.

    PubMed

    Ruesink, Freek; Mathew, John P; Miri, Mohammad-Ali; Alù, Andrea; Verhagen, Ewold

    2018-05-04

    Breaking the symmetry of electromagnetic wave propagation enables important technological functionality. In particular, circulators are nonreciprocal components that can route photons directionally in classical or quantum photonic circuits and offer prospects for fundamental research on electromagnetic transport. Developing highly efficient circulators thus presents an important challenge, especially to realise compact reconfigurable implementations that do not rely on magnetic fields to break reciprocity. We demonstrate optical circulation utilising radiation pressure interactions in an on-chip multimode optomechanical system. Mechanically mediated optical mode conversion in a silica microtoroid provides a synthetic gauge bias for light, enabling four-port circulation that exploits tailored interference between appropriate light paths. We identify two sideband conditions under which ideal circulation is approached. This allows to experimentally demonstrate ~10 dB isolation and <3 dB insertion loss in all relevant channels. We show the possibility of actively controlling the circulator properties, enabling ideal opportunities for reconfigurable integrated nanophotonic circuits.

  14. Application of remote sensing to study nearshore circulation. [and the continental shelf

    NASA Technical Reports Server (NTRS)

    Zeigler, J.; Lobecker, R.; Stauble, D.; Welch, C.; Haas, L.; Fang, C. S.

    1974-01-01

    The research to use remote sensing techniques for studying the continental shelf is reported. The studies reported include: (1) nearshore circulation in the vincinity of a natural tidal inlet; (2) identification of indicators of biological activity; (3) remote navigation system for tracking free drifting buoys; (4) experimental design of an estuaring tidal circulation; and (5) Skylab support work.

  15. Tropical Pacific moisture variability: Its detection, synoptic structure and consequences in the general circulation

    NASA Technical Reports Server (NTRS)

    Mcguirk, James P.

    1990-01-01

    Satellite data analysis tools are developed and implemented for the diagnosis of atmospheric circulation systems over the tropical Pacific Ocean. The tools include statistical multi-variate procedures, a multi-spectral radiative transfer model, and the global spectral forecast model at NMC. Data include in-situ observations; satellite observations from VAS (moisture, infrared and visible) NOAA polar orbiters (including Tiros Operational Satellite System (TOVS) multi-channel sounding data and OLR grids) and scanning multichannel microwave radiometer (SMMR); and European Centre for Medium Weather Forecasts (ECHMWF) analyses. A primary goal is a better understanding of the relation between synoptic structures of the area, particularly tropical plumes, and the general circulation, especially the Hadley circulation. A second goal is the definition of the quantitative structure and behavior of all Pacific tropical synoptic systems. Finally, strategies are examined for extracting new and additional information from existing satellite observations. Although moisture structure is emphasized, thermal patterns are also analyzed. Both horizontal and vertical structures are studied and objective quantitative results are emphasized.

  16. Modeling of circulating fluised beds for post-combustion carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.; Shadle, L.; Miller, D.

    2011-01-01

    A compartment based model for a circulating fluidized bed reactor has been developed based on experimental observations of riser hydrodynamics. The model uses a cluster based approach to describe the two-phase behavior of circulating fluidized beds. Fundamental mass balance equations have been derived to describe the movement of both gas and solids though the system. Additional work is being performed to develop the correlations required to describe the hydrodynamics of the system. Initial testing of the model with experimental data shows promising results and highlights the importance of including end effects within the model.

  17. Numerical study of air ingress transition to natural circulation in a high temperature helium loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franken, Daniel; Gould, Daniel; Jain, Prashant K.

    Here, the generation-IV high temperature gas cooled reactors (HTGRs) are designed with many passive safety features, one of which is the ability to passively remove heat under a loss of coolant accident (LOCA). However, several common reactor designs do not prevent against a large break in the coolant system and may therefore experience a depressurized LOCA. This would lead to air entering into the reactor system via several potential modes of ingress: diffusion, gravity currents, and natural circulation. At the onset of a LOCA, the initial rate of air ingress is expected to be very slow because it is governedmore » by molecular diffusion. However, after several hours, natural circulation would commence, thus, bringing the air into the reactor system at a much higher rate. As a consequence, air ingress would cause the high temperature graphite matrix to oxidize, leading to its thermal degradation and decreased passive heat (decay) removal capability. Therefore, it is essential to understand the transition of air ingress from molecular diffusion to natural circulation in an HTGR system. This paper presents results from a computational fluid dynamics (CFD) model to study the air ingress transition behavior. These results are validated against an h-shaped high temperature helium loop experiment. Details are provided to quantitatively predict the transition time from molecular diffusion to natural circulation.« less

  18. Numerical study of air ingress transition to natural circulation in a high temperature helium loop

    DOE PAGES

    Franken, Daniel; Gould, Daniel; Jain, Prashant K.; ...

    2017-09-21

    Here, the generation-IV high temperature gas cooled reactors (HTGRs) are designed with many passive safety features, one of which is the ability to passively remove heat under a loss of coolant accident (LOCA). However, several common reactor designs do not prevent against a large break in the coolant system and may therefore experience a depressurized LOCA. This would lead to air entering into the reactor system via several potential modes of ingress: diffusion, gravity currents, and natural circulation. At the onset of a LOCA, the initial rate of air ingress is expected to be very slow because it is governedmore » by molecular diffusion. However, after several hours, natural circulation would commence, thus, bringing the air into the reactor system at a much higher rate. As a consequence, air ingress would cause the high temperature graphite matrix to oxidize, leading to its thermal degradation and decreased passive heat (decay) removal capability. Therefore, it is essential to understand the transition of air ingress from molecular diffusion to natural circulation in an HTGR system. This paper presents results from a computational fluid dynamics (CFD) model to study the air ingress transition behavior. These results are validated against an h-shaped high temperature helium loop experiment. Details are provided to quantitatively predict the transition time from molecular diffusion to natural circulation.« less

  19. Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier: [17O]H2O JJVCPE MRI study.

    PubMed

    Huber, Vincent J; Igarashi, Hironaka; Ueki, Satoshi; Kwee, Ingrid L; Nakada, Tsutomu

    2018-06-13

    The blood-brain barrier (BBB), which imposes significant water permeability restriction, effectively isolates the brain from the systemic circulation. Seemingly paradoxical, the abundance of aquaporin-4 (AQP-4) on the inside of the BBB strongly indicates the presence of unique water dynamics essential for brain function. On the basis of the highly specific localization of AQP-4, namely, astrocyte end feet at the glia limitans externa and pericapillary Virchow-Robin space, we hypothesized that the AQP-4 system serves as an interstitial fluid circulator, moving interstitial fluid from the glia limitans externa to pericapillary Virchow-Robin space to ensure proper glymphatic flow draining into the cerebrospinal fluid. The hypothesis was tested directly using the AQP-4 facilitator TGN-073 developed in our laboratory, and [O]H2O JJ vicinal coupling proton exchange MRI, a method capable of tracing water molecules delivered into the blood circulation. The results unambiguously showed that facilitation of AQP-4 by TGN-073 increased turnover of interstitial fluid through the system, resulting in a significant reduction in [O]H2O contents of cortex with normal flux into the cerebrospinal fluid. The study further suggested that in addition to providing the necessary water for proper glymphatic flow, the AQP-4 system produces a water gradient within the interstitial space promoting circulation of interstitial fluid within the BBB.

  20. Influenza A(H6N1) Virus in Dogs, Taiwan

    PubMed Central

    Lin, Hui-Ting; Wang, Ching-Ho; Chueh, Ling-Ling; Su, Bi-Ling

    2015-01-01

    We determined the prevalence of influenza A virus in dogs in Taiwan and isolated A/canine/Taiwan/E01/2014. Molecular analysis indicated that this isolate was closely related to influenza A(H6N1) viruses circulating in Taiwan and harbored the E627K substitution in the polymerase basic 2 protein, which indicated its ability to replicate in mammalian species. PMID:26583707

  1. Literacy Networks: Following the Circulation of Texts, Bodies, and Objects in the Schooling and Online Gaming of One Youth

    ERIC Educational Resources Information Center

    Leander, Kevin M.; Lovvorn, Jason F.

    2006-01-01

    In this article, we offer an approach to conceiving of the relation between literacy practices and space-time. Literacy, embedded in other forms of activity, has a unique role in producing and organizing space-time relations, and such relations provide for different forms of cognition and learning. Closely examining how literacy practices produce…

  2. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.18 Vehicular circulation and...

  3. Dynamics and contaminants in the coastal lagoon system of Nichupte-Bojórquez located in the Peninsula of Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Carbajal, N.; Gaviño, J.; Galicia, M. A.

    2007-05-01

    Measurements of hydrographic parameters like temperature, salinity, pH, turbidity, dissolved oxygen and determination of concentrations of contaminants like ammonia, surfactants, phosphate, nitrite and nitrate give a picture about the degradation of the lagoon system of Nichupté-Bojórquez. Numerical experiments reveal that the tidal circulation is not intense enough to induce an efficient exchange of water. Tidal currents are small and limited to regions near the two mouths which connect the lagoon system with the Caribbean Sea. The circulation induced by wind forcing is more effective in generating strong currents in the different lagoons of the system. The wind induced circulation reduces the residence time of water. To explain the observed distribution of contaminants, we also simulate numerically the dispersion of contaminants. We present a general picture of the environmental problems of this beautiful lagoon system.

  4. A central solar domestic hot water system - Performance and economic analysis

    NASA Astrophysics Data System (ADS)

    Wolf, D.; Tamir, A.; Kudish, A. I.

    1980-02-01

    A solar-assisted central hot water system was retrofitted onto one of the student dormitory complexes. The system consisted of twenty commercial solar collectors, of the pipe and plate type, and central hot water tank connected to two dormitory buildings. The system has two loops: (1) a solar loop, in which the heated water circulates between the collector panels and the central hot water tank, and (2) a consumer loop, where the solar-heated water circulates between the central hot water tank and the dormitory. The solar-heated water circulates through the individual electric hot water tanks which serve as individual hot water storage and booster units, and the mains water is introduced at the bottom of the central tank to replace consumed water. The description of the system, the design and its performance, together with an economic analysis, are presented.

  5. Phylogenetic and nucleotide sequence analysis of influenza A (H1N1) HA and NA genes of strains isolated from Saudi Arabia.

    PubMed

    Al-Qahtani, Ahmed Ali; Mubin, Muhammad; Dela Cruz, Damian M; Althawadi, Sahar Isa; Ul Rehman, Muhammad Shah Nawaz; Bohol, Marie Fe F; Al-Ahdal, Mohammed N

    2017-01-30

    In early 2009, a novel influenza A (H1N1) virus appeared in Mexico and rapidly disseminated worldwide. Little is known about the phylogeny and evolutionary dynamics of the H1N1 strain found in Saudi Arabia. Nucleotide sequencing and bioinformatics analyses were used to study molecular variation between the virus isolates. In this report, 72 hemagglutinin (HA) and 45 neuraminidase (NA) H1N1 virus gene sequences, isolated in 2009 from various regions of Saudi Arabia, were analyzed. Genetic characterization indicated that viruses from two different clades, 6 and 7, were circulating in the region, with clade 7, the most widely circulating H1N1 clade globally in 2009, being predominant. Sequence analysis of the HA and NA genes revealed a high degree of sequence identity with the corresponding genes from viruses circulating in the South East Asia region and with the A/California/7/2009 strain. New mutations in the HA gene of pandemic H1N1 (pH1N1) viruses, that could alter viral fitness, were identified. Relaxed-clock and Bayesian Skyline Plot analyses, based on the isolates used in this study and closely related globally representative strains, indicated marginally higher substitution rates than the type strain (5.14×10-3 and 4.18×10-3 substitutions/nucleotide/year in the HA and NA genes, respectively). The Saudi isolates were antigenically homogeneous and closely related to the prototype vaccine strain A/California/7/2009. The antigenic site of the HA gene had acquired novel mutations in some isolates, making continued monitoring of these viruses vital for the identification of potentially highly virulent and drug resistant variants.

  6. The role of the immune system in central nervous system plasticity after acute injury.

    PubMed

    Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano

    2014-12-26

    Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. The solar dynamo and prediction of sunspot cycles

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi

    2012-07-01

    Much progress has been made in understanding the solar dynamo since Parker first developed the concepts of dynamo waves and magnetic buoyancy around 1955, and the German school first formulated the solar dynamo using the mean-field formalism. The essential ingredients of these mean-field dynamos are turbulent magnetic diffusivity, a source of lifting of flux, or 'alpha-effect', and differential rotation. With the advent of helioseismic and other observations at the Sun's photosphere and interior, as well as theoretical understanding of solar interior dynamics, solar dynamo models have evolved both in the realm of mean-field and beyond mean-field models. After briefly discussing the status of these models, I will focus on a class of mean-field model, called flux-transport dynamos, which include meridional circulation as an essential additional ingredient. Flux-transport dynamos have been successful in simulating many global solar cycle features, and have reached the stage that they can be used for making solar cycle predictions. Meridional circulation works in these models like a conveyor-belt, carrying a memory of the magnetic fields from 5 to 20 years back in past. The lower is the magnetic diffusivity, the longer is the model's memory. In the terrestrial system, the great-ocean conveyor-belt in oceanic models and Hadley, polar and Ferrel circulation cells in the troposphere, carry signatures from the past climatological events and influence the determination of future events. Analogously, the memory provided by the Sun's meridional circulation creates the potential for flux-transport dynamos to predict future solar cycle properties. Various groups in the world have built flux-transport dynamo-based predictive tools, which nudge the Sun's surface magnetic data and integrated forward in time to forecast the amplitude of the currently ascending cycle 24. Due to different initial conditions and different choices of unknown model-ingredients, predictions can vary; so it is for their cycle 24 forecasts. We all await the peak of cycle 24. I will close by discussing the prospects of improving dynamo-based predictive tools using more sophisticated data-assimilation techniques, such as the Ensemble Kalman Filter method and variational approaches.

  8. Recharge and Topographical Controls on Groundwater Circulation in Shallow Crystalline Rock Aquifers revealed by CFC-based Age Data

    NASA Astrophysics Data System (ADS)

    Kolbe, T.; Abbott, B. W.; Marçais, J.; Thomas, Z.; Aquilina, L.; Labasque, T.; Pinay, G.; De Dreuzy, J. R.

    2016-12-01

    Groundwater transit time and flow path are key factors controlling nitrogen retention and removal capacity at the catchment scale (Abbott et al., 2016), but the relative importance of hydrogeological and topographical factors in determining these parameters remains uncertain (Kolbe et al., 2016). To address this unknown, we used numerical modelling techniques calibrated with CFC groundwater age data to quantify transit time and flow path in an unconfined aquifer in Brittany, France. We assessed the relative importance of parameters (aquifer depth, porosity, arrangement of geological layers, and permeability profile), hydrology (recharge rate), and topography in determining characteristic flow distances (Leray et al., 2016). We found that groundwater flow was highly local (mean travel distance of 350 m) but also relatively old (mean CFC age of 40 years). Sensitivity analysis revealed that groundwater travel distances were not sensitive to geological parameters within the constraints of the CFC age data. However, circulation was sensitive to topography in lowland areas where the groundwater table was close to the land surface, and to recharge rate in upland areas where water input modulated the free surface of the aquifer. We quantified these differences with a local groundwater ratio (rGW-LOCAL) defined as the mean groundwater travel distance divided by the equivalent surface distance water would have traveled along the land surface. Lowland rGW-LOCAL was near 1, indicating primarily topographic controls. Upland rGW-LOCALwas 1.6, meaning the groundwater recharge area was substantially larger than the topographically-defined catchment. This ratio was applied to other catchments in Brittany to test its relevance in comparing controls on groundwater circulation within and among catchments. REFERENCES Abbott et al., 2016, Using multi-tracer inference to move beyond single-catchment ecohydrology. Earth-Science Reviews. Kolbe et al., 2016, Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer. J. Hydrol. Leray et al., 2016, Residence time distributions for hydrologic systems: Mechanistic foundations and steady-state analytical solutions. J. Hydrol.

  9. Ocean circulation and climate during the past 120,000 years

    NASA Astrophysics Data System (ADS)

    Rahmstorf, Stefan

    2002-09-01

    Oceans cover more than two-thirds of our blue planet. The waters move in a global circulation system, driven by subtle density differences and transporting huge amounts of heat. Ocean circulation is thus an active and highly nonlinear player in the global climate game. Increasingly clear evidence implicates ocean circulation in abrupt and dramatic climate shifts, such as sudden temperature changes in Greenland on the order of 5-10 °C and massive surges of icebergs into the North Atlantic Ocean - events that have occurred repeatedly during the last glacial cycle.

  10. Performance evaluation of four different methods for circulating water in commercial-scale, split-pond aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two conveyance structures. Water is circulated between the two basins with high-volume pumps and many different pumping systems are being used on commercial farms. Pump performance was evaluated with fou...

  11. 29 CFR 1910.126 - Additional requirements for special dipping and coating operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operations from fire, you must have in place: (i) Automatic sprinklers; or (ii) An automatic fire... the alarm set point, you must equip the tank with a circulating cooling system. (5) If the tank has a bottom drain, the bottom drain may be combined with the oil-circulating system. (6) You must not use air...

  12. 29 CFR 1910.126 - Additional requirements for special dipping and coating operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operations from fire, you must have in place: (i) Automatic sprinklers; or (ii) An automatic fire... the alarm set point, you must equip the tank with a circulating cooling system. (5) If the tank has a bottom drain, the bottom drain may be combined with the oil-circulating system. (6) You must not use air...

  13. Cooling system for a nuclear reactor

    DOEpatents

    Amtmann, Hans H.

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  14. Circulating triacylglycerol signatures in nonalcoholic fatty liver disease associated with the I148M variant in PNPLA3 and with obesity.

    PubMed

    Hyysalo, Jenni; Gopalacharyulu, Peddinti; Bian, Hua; Hyötyläinen, Tuulia; Leivonen, Marja; Jaser, Nabil; Juuti, Anne; Honka, Miikka-Juhani; Nuutila, Pirjo; Olkkonen, Vesa M; Oresic, Matej; Yki-Järvinen, Hannele

    2014-01-01

    We examined whether relative concentrations of circulating triacylglycerols (TAGs) between carriers compared with noncarriers of PNPLA3(I148M) gene variant display deficiency of TAGs, which accumulate in the liver because of defective lipase activity. We also analyzed the effects of obesity-associated nonalcoholic fatty liver disease (NAFLD) independent of genotype, and of NAFLD due to either PNPLA3(I148M) gene variant or obesity on circulating TAGs. A total of 372 subjects were divided into groups based on PNPLA3 genotype or obesity. Absolute and relative deficiency of distinct circulating TAGs was observed in the PNPLA3(148MM/148MI) compared with the PNPLA3(148II) group. Obese and 'nonobese' groups had similar PNPLA3 genotypes, but the obese subjects were insulin-resistant. Liver fat was similarly increased in obese and PNPLA3(148MM/148MI) groups. Relative concentrations of TAGs in the obese subjects versus nonobese displayed multiple changes. These closely resembled those between obese subjects with NAFLD but without PNPLA3(I148M) versus those with the I148M variant and NAFLD. The etiology of NAFLD influences circulating TAG profiles. 'PNPLA3 NAFLD' is associated with a relative deficiency of TAGs, supporting the idea that the I148M variant impedes intrahepatocellular lipolysis rather than stimulates TAG synthesis. 'Obese NAFLD' is associated with multiple changes in TAGs, which can be attributed to obesity/insulin resistance rather than increased liver fat content per se.

  15. Kanamycin Sulphate Loaded PLGA-Vitamin-E-TPGS Long Circulating Nanoparticles Using Combined Coating of PEG and Water-Soluble Chitosan

    PubMed Central

    Mustafa, Sanaul

    2017-01-01

    Kanamycin sulphate (KS) is a Mycobacterium tuberculosis protein synthesis inhibitor. Due to its intense hydrophilicity, KS is cleared from the body within 8 h. KS has a very short plasma half-life (2.5 h). KS is used in high concentrations to reach the therapeutic levels in plasma, which results in serious nephrotoxicity/ototoxicity. To overcome aforementioned limitations, the current study aimed to develop KS loaded PLGA-Vitamin-E-TPGS nanoparticles (KS-PLGA-TPGS NPs), to act as an efficient carrier for controlled delivery of KS. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG) to KS-PLGA-TPGS NPs and adsorption of water-soluble chitosan (WSC) (cationic deacetylated chitin) to particle surface, was raised for surface modification of NPs. Surface modified NPs (KS-PEG-WSC NPs) were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetics and in vivo biodistribution following intramuscular administration were investigated. NPs surface charge was close to neutral +3.61 mV and significantly affected by the WSC coating. KS-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long drew-out the blood circulation half-life with resultant reduced kidney sequestration vis-à-vis KS-PLGA-TPGS NPs. The studies, therefore, indicate the successful formulation development of KS-PEG-WSC NPs with reduced frequency of dosing of KS indicating low incidence of nephrotoxicity/ototoxicity. PMID:28352475

  16. Subtidal circulation in a deep-silled fjord: Douglas Channel, British Columbia

    NASA Astrophysics Data System (ADS)

    Wan, Di; Hannah, Charles G.; Foreman, Michael G. G.; Dosso, Stan

    2017-05-01

    Douglas Channel, a deep fjord on the west coast of British Columbia, Canada, is the main waterway in the fjord system that connects the town of Kitimat to Queen Charlotte Sound and Hecate Strait. A 200 m depth sill divides Douglas Channel into an outer and an inner basin. This study examines the low-frequency (from seasonal to meteorological bands) circulation in Douglas Channel from data collected at three moorings deployed during 2013-2015. The deep flows are dominated by a yearly renewal that takes place from May/June to early September. A dense bottom layer with a thickness of 100 m that cascades through the system at the speed of 0.1-0.2 m s-1, which is consistent with gravity currents. Estuarine flow dominates the circulation above the sill depth, and the observed landward net volume flux suggests that it is necessary to include the entire complex channel network to fully understand the estuarine circulation in the system. The influence of the wind forcing on the subtidal circulation is not only at the surface, but also at middepth. The along-channel wind dominates the surface current velocity fluctuations and the sea level response to the wind produces a velocity signal at 100-120 m in the counter-wind direction. Overall, the circulation in the seasonal and the meteorological bands is a mix of estuarine flow, direct wind-driven flow, and the barotropic and baroclinic responses to changes to the surface pressure gradient caused by the wind stress.

  17. Accuracy and reproducibility of the measurement of actively circulating blood volume with an integrated fiberoptic monitoring system.

    PubMed

    Kisch, H; Leucht, S; Lichtwarck-Aschoff, M; Pfeiffer, U J

    1995-05-01

    Bedside monitoring of circulating blood volume has become possible with the introduction of an integrated fiberoptic monitoring system that calculates blood volume from the changes in blood concentration of indocyanine green dye 4 mins after injection. The aim of this investigation was to compare the blood volume estimate of the integrated fiberoptic monitoring system (group 1) with the standard methods of blood volume measurement using Evans blue (group 2), and indocyanine green measured photometrically (group 3). Prospective laboratory study. Animal laboratory of a University's institute for experimental surgery. Eleven anesthetized, paralyzed, and mechanically ventilated piglets. A central venous catheter was used for the injection of the indicator dyes (Evans blue and indocyanine green). A fiberoptic thermistor catheter was advanced into the thoracic aorta. The fiberoptic catheter detects indocyanine green by reflection densitometry for the estimation of blood volume of the integrated fiberoptic monitoring system. Samples for the determination of Evans blue and indocyanine green concentrations were drawn from an arterial catheter in the femoral artery over a period of 17 mins after injection. Measurements were performed during normovolemia, hypovolemia (blood withdrawal of < or = 30 mL/kg), and hypervolemia (retransfusion of the withdrawn blood plus an infusion of 10% hydroxyethyl starch [45 mL/kg]). Linear regression, correlation, and bias were calculated for the comparison of the blood volume estimates by the fiberoptic monitoring system (group 1) vs. the total blood volume estimates using Evans blue (group 2) and indocyanine green (group 3): group 1 = 0.82.group 2-26 mL; r2 = 82.71%; r = .91; n = 40; group 1-group 2 +/- 1 SD = -435 +/- 368 mL; group 1 = 0.79.group 3 + 50 mL; r2 = 74.81%; r = .87; n = 28; group 1-group 3 +/- 1 SD = -506 +/- 374 mL. The results demonstrate that the blood volume estimate of the fiberoptic monitoring system (group 1) correlates closely with the total blood volume measurement using Evans blue (group 2) and indocyanine green (group 3). Trapped indicator in the packed red cell column after centrifugation of the blood samples may account for an overestimation of group 2 and group 3 of approximately 10% to 14%, but there still remains a proportional difference of 10% between group 1 vs. group 2 and vs. group 3. This difference is due to the longer mixing times of group 3 (16 mins) and group 2 (17 mins), during which they are distributed in slowly exchanging blood pools. It seems that the blood volume estimate of the fiberoptic monitoring system (group 1) represents the actively circulating blood volume and may be useful for bedside monitoring.

  18. Verification of RELAP5-3D code in natural circulation loop as function of the initial water inventory

    NASA Astrophysics Data System (ADS)

    Bertani, C.; Falcone, N.; Bersano, A.; Caramello, M.; Matsushita, T.; De Salve, M.; Panella, B.

    2017-11-01

    High safety and reliability of advanced nuclear reactors, Generation IV and Small Modular Reactors (SMR), have a crucial role in the acceptance of these new plants design. Among all the possible safety systems, particular efforts are dedicated to the study of passive systems because they rely on simple physical principles like natural circulation, without the need of external energy source to operate. Taking inspiration from the second Decay Heat Removal system (DHR2) of ALFRED, the European Generation IV demonstrator of the fast lead cooled reactor, an experimental facility has been built at the Energy Department of Politecnico di Torino (PROPHET facility) to study single and two-phase flow natural circulation. The facility behavior is simulated using the thermal-hydraulic system code RELAP5-3D, which is widely used in nuclear applications. In this paper, the effect of the initial water inventory on natural circulation is analyzed. The experimental time behaviors of temperatures and pressures are analyzed. The experimental matrix ranges between 69 % and 93%; the influence of the opposite effects related to the increase of the volume available for the expansion and the pressure raise due to phase change is discussed. Simulations of the experimental tests are carried out by using a 1D model at constant heat power and fixed liquid and air mass; the code predictions are compared with experimental results. Two typical responses are observed: subcooled or two phase saturated circulation. The steady state pressure is a strong function of liquid and air mass inventory. The numerical results show that, at low initial liquid mass inventory, the natural circulation is not stable but pulsated.

  19. Integrated Studies of a Regional Ozone Pollution Synthetically Affected by Subtropical High and Typhoon System in the Yangtze River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Xie, M.; Shu, L.

    2017-12-01

    Severe high ozone (O3) episodes usually have close relations to synoptic systems. A regional continuous O3 pollution episode was detected over the Yangtze River Delta (YRD) region in China during August 7-12, 2013, in which the O3 concentrations in more than half of the cities exceeded the national air quality standard. By means of the observational analysis and the WRF/CMAQ numerical simulation, the characteristics and the essential impact factors of the typical regional O3 pollution are investigated. The observational analysis shows that the atmospheric subsidence dominated by Western Pacific subtropical high plays a crucial role in the formation of high-level O3. In addition, when the YRD cities at the front of Typhoon Utor, the periphery circulation of typhoon system can enhance the downward airflows and cause more serious air pollution. But when the typhoon system weakens the subtropical high, the prevailing southeasterly surface wind leads to the mitigation of the O3 pollution. The Integrated Process Rate (IPR) analysis incorporated in CMAQ is applied to further illustrate the combined influence of subtropical high and typhoon system in this O3 episode. The results show that the vertical diffusion (VDIF) and the gas-phase chemistry (CHEM) are two major contributors to O3 formation. On August 10-11, the cities close to the sea are apparently affected by the typhoon system, with the contribution of VDIF increasing to 28.45 ppb/h in Shanghai and 19.76 ppb/h in Hangzhou. When the YRD region is under the control of the typhoon system, the contribution values of all individual processes decrease to a low level in all cities. These results provide an insight for the O3 pollution synthetically impacted by the Western Pacific subtropical high and the tropical cyclone system.

  20. Blood circulation in the ascidian tunicate Corella inflata (Corellidae)

    PubMed Central

    2016-01-01

    The body of the ascidian tunicate Corella inflata is relatively transparent. Thus, the circulatory system can be visualized by injecting high molecular weight fluorescein labeled dextran into the heart or the large vessels at the ends of the heart without surgery to remove the body wall. In addition, after staining with neutral red, the movement of blood cells can be easily followed to further characterize the circulatory system. The heart is two gently curved concentric tubes extending across the width of the animal. The inner myocardial tube has a partial constriction approximately in the middle. As in other tunicates, the heart is peristaltic and periodically reverses direction. During the branchial phase blood leaves the anterior end of the heart by two asymmetric vessels that connect to the two sides of the branchial basket. Blood then flows in both transverse directions through a complex system of ducts in the basket into large ventral and dorsal vessels which carry blood back to the visceral organs in the posterior of the animal. During the visceral phase blood leaves the posterior end of the heart in two vessels that repeatedly bifurcate and fan into the stomach and gonads. Blood velocity, determined by following individual cells in video frames, is high and pulsatory near the heart. A double peak in velocity at the maximum may be due to the constriction in the middle of the heart tube. Blood velocity progressively decreases with distance from the heart. In peripheral regions with vessels of small diameter blood cells frequently collide with vessel walls and cell motion is erratic. The estimated volume of blood flow during each directional phase is greater than the total volume of the animal. Circulating blood cells are confined to vessels or ducts in the visible parts of the animal and retention of high molecular weight dextran in the vessels is comparable to that seen in vertebrates. These are characteristics of a closed circulatory system. PMID:27994977

Top