Performance Analysis of Joule-Thomson Cooler Supplied with Gas Mixtures
NASA Astrophysics Data System (ADS)
Piotrowska, A.; Chorowski, M.; Dorosz, P.
2017-02-01
Joule-Thomson (J-T) cryo-coolers working in closed cycles and supplied with gas mixtures are the subject of intensive research in different laboratories. The replacement of pure nitrogen by nitrogen-hydrocarbon mixtures allows to improve both thermodynamic parameters and economy of the refrigerators. It is possible to avoid high pressures in the heat exchanger and to use standard refrigeration compressor instead of gas bottles or high-pressure oil free compressor. Closed cycle and mixture filled Joule-Thomson cryogenic refrigerator providing 10-20 W of cooling power at temperature range 90-100 K has been designed and manufactured. Thermodynamic analysis including the optimization of the cryo-cooler mixture has been performed with ASPEN HYSYS software. The paper describes the design of the cryo-cooler and provides thermodynamic analysis of the system. The test results are presented and discussed.
A high- Tc SQUID-based sensor head cooled by a Joule-Thomson cryocooler
NASA Astrophysics Data System (ADS)
Rijpma, A. P.; ter Brake, H. J. M.; de Vries, E.; Nijhof, N.; Holland, H. J.; Rogalla, H.
2002-08-01
The goal of the so-called FHARMON project is to develop a high- Tc SQUID-based magnetometer system for the measurement of fetal heart activity in standard clinical environments. To lower the threshold for the application of this fetal heart monitor, it should be simple to operate. It is, therefore, advantageous to replace the liquid cryogen bath by a closed-cycle refrigerator. For this purpose, we selected a mixed-gas Joule-Thomson cooler; the APD Cryotiger ©. Because of its magnetic interference, the compressor of this closed-cycle cooler will be placed at a distance of ≈2 m from the actual sensor, which is an axial second order gradiometer. The gradiometer is formed by three magnetometers placed on an alumina cylinder, which is connected to the cold head of the cooler. This paper describes the sensor head in detail and reports on test experiments.
US Navy program in small cryocoolers
NASA Technical Reports Server (NTRS)
Nisenoff, M.; Edelsack, E. A.
1983-01-01
A Navy program to develop fractional-watt cryocoolers capable of operating below 10 K is discussed. Several varieties of Stirling coolers were built and are under evaluation. In addition, helium gas compressors designed for use with small, closed cycle Joule-Thomson coolers are under development. An overview of the technical aspects of the program are presented.
Recirculating 1-K-Pot for Pulse-Tube Cryostats
NASA Technical Reports Server (NTRS)
Paine, Christopher T.; Naylor, Bret J.; Prouve, Thomas
2013-01-01
A paper describes a 1-K-pot that works with a commercial pulse tube cooler for astrophysics instrumentation testbeds that require temperatures <1.7 K. Pumped liquid helium-4 cryostats were commonly used to achieve this temperature. However, liquid helium-4 cryostats are being replaced with cryostats using pulse tube coolers. The closed-cycle 1K-pot system for the pulse tube cooler requires a heat exchanger on the pulse tube, a flow restriction, pump-out line, and pump system that recirculates helium-4. The heat exchanger precools and liquefies helium- 4 gas at the 2.5 to 3.5 K pulse tube cold head. This closed-cycle 1-K-pot system was designed to work with commercially available laboratory pulse tube coolers. It was built using common laboratory equipment such as stainless steel tubing and a mechanical pump. The system is self-contained and requires only common wall power to operate. The lift of 15 mW at 1.1 K and base temperature of 0.97 K are provided continuously. The system can be scaled to higher heat lifts of .30 to 50 mW if desired. Ground-based telescopes could use this innovation to improve the efficiency of existing cryo
Shock isolator for diode laser operation on a closed-cycle refrigerator
NASA Technical Reports Server (NTRS)
Jennings, D. E.; Hillman, J. J.
1977-01-01
Closed-cycle helium refrigerators are widely used as coolers for semiconductor diode lasers. These refrigerators pose several difficulties including temperature oscillations due to varying refrigerator capacity during the Solvay cycle, and impact shocks delivered to the diode in the cycle's expansion phase. A shock isolator has been designed to isolate diode lasers from such impact shocks. Slow diode current scans have been made before installation of the shock isolator, with the isolator but no thermal damper, and with both devices. With the isolator and no damper, the diode output frequency oscillated at the refrigerator cycle rate, deviating by plus or minus 40 MHz. Using the isolator and the damper no frequency fluctuation was detected.
Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haihua Zhao; Per F. Peterson
2012-10-01
Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less
NASA Technical Reports Server (NTRS)
Barrett, Michael J.
2003-01-01
Performance expectations of closed-Brayton-cycle heat exchangers to be used in 100-kWe nuclear space power systems were forecast. Proposed cycle state points for a system supporting a mission to three of Jupiter s moons required effectiveness values for the heat-source exchanger, recuperator and rejection exchanger (gas cooler) of 0.98,0.95 and 0.97, respectively. Performance parameters such as number of thermal units (Nm), equivalent thermal conductance (UA), and entropy generation numbers (Ns) varied from 11 to 19,23 to 39 kWK, and 0.019 to 0.023 for some standard heat exchanger configurations. Pressure-loss contributions to entropy generation were significant; the largest frictional contribution was 114% of the heat-transfer irreversibility. Using conventional recuperator designs, the 0.95 effectiveness proved difficult to achieve without exceeding other performance targets; a metallic, plate-fin counterflow solution called for 15% more mass and 33% higher pressure-loss than the target values. Two types of gas-coolers showed promise. Single-pass counterflow and multipass cross-counterflow arrangements both met the 0.97 effectiveness requirement. Potential reliability-related advantages of the cross-countefflow design were noted. Cycle modifications, enhanced heat transfer techniques and incorporation of advanced materials were suggested options to reduce system development risk. Carbon-carbon sheeting or foam proved an attractive option to improve overall performance.
NASA Technical Reports Server (NTRS)
Barrett, Michael J.
2003-01-01
Performance expectations of closed-Brayton-cycle heat exchangers to be used in 100-k We nuclear space power systems were forecast. Proposed cycle state points for a system supporting a mission to three of Jupiter's moons required effectiveness values for the heat-source exchanger, recuperator and rejection exchanger (gas cooler) of 0.98, 0.95, and 0.97, respectively. Performance parameters such as number of thermal units (Ntu), equivalent thermal conductance (UA), and entropy generation numbers (Ns) varied from 11 to 19, 23 to 39 kW/K, and 0.019 to 0.023 for some standard heat exchanger configurations. Pressure-loss contributions to entropy generation were significant; the largest frictional contribution was 114% of the heat transfer irreversibility. Using conventional recuperator designs, the 0.95 effectiveness proved difficult to achieve without exceeding other performance targets; a metallic, plate-fin counterflow solution called for 15% more mass and 33% higher pressure-loss than the target values. Two types of gas-coolers showed promise. Single-pass counterflow and multipass cross-counterflow arrangements both met the 0.97 effectiveness requirement. Potential reliability-related advantages of the cross-counterflow design were noted. Cycle modifications, enhanced heat transfer techniques and incorporation of advanced materials were suggested options to reduce system development risk. Carbon-carbon sheeting or foam proved an attractive option to improve overall performance.
NASA Astrophysics Data System (ADS)
Kagawa, Noboru
A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.
Performance of a miniature mechanically cooled HPGe gamma-spectrometer for space applications
NASA Astrophysics Data System (ADS)
Kondratjev, V.; Pchelintsev, A.; Jakovlevs, O.; Sokolov, A.; Gostilo, V.; Owens, A.
2018-01-01
We report on the development of a miniaturized HPGe gamma-spectrometer for space applications. The instrument is designed around a 158 cm3 intrinsically pure Ge crystal in the closed-end coaxial configuration, cooled by a Thales RM3 miniature Stirling cycle electric cooler. To compensate the noise induced by the mechanical cooler the digital procession of the spectrometric signals with low frequency reject filter (LFR) is applied. The complete spectrometer assembly has a mass of 3.1 kg and consumes less than 10 W under working operation. The spectrometer was tested under a number of operating conditions in a specially designed chamber, which simulates the space environment. With the mechanical cooler switched off, FWHM energy resolutions of 1.5 keV and 2.2 keV were obtained at 122 keV and 1333 keV, respectively, at the nominal operating temperature of 90 K. When the cooler was switched on the energy resolutions degraded to 2.5 keV and 4 keV respectively. However, with the LFR filter switched in, the resolutions improved significantly to 1.8 keV and 2.4 keV.
Microminiature linear split Stirling cryogenic cooler for portable infrared imagers
NASA Astrophysics Data System (ADS)
Veprik, A.; Vilenchik, H.; Riabzev, S.; Pundak, N.
2007-04-01
Novel tactics employed in carrying out military and antiterrorist operations call for the development of a new generation of warfare, among which sophisticated portable infrared (IR) imagers for surveillance, reconnaissance, targeting and navigation play an important role. The superior performance of such imagers relies on novel optronic technologies and maintaining the infrared focal plane arrays at cryogenic temperatures using closed cycle refrigerators. Traditionally, rotary driven Stirling cryogenic engines are used for this purpose. As compared to their military off-theshelf linear rivals, they are lighter, more compact and normally consume less electrical power. Latest technological advances in industrial development of high-temperature (100K) infrared detectors initialized R&D activity towards developing microminiature cryogenic coolers, both of rotary and linear types. On this occasion, split linearly driven cryogenic coolers appear to be more suitable for the above applications. Their known advantages include flexibility in the system design, inherently longer life time, low vibration export and superior aural stealth. Moreover, recent progress in designing highly efficient "moving magnet" resonant linear drives and driving electronics enable further essential reduction of the cooler size, weight and power consumption. The authors report on the development and project status of a novel Ricor model K527 microminiature split Stirling linear cryogenic cooler designed especially for the portable infrared imagers.
Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort
NASA Technical Reports Server (NTRS)
Ensworth, Clint B., III; McKissock, David B.
1998-01-01
NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.
Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Harada, N.
2005-01-01
A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.
Status of power generation experiments in the NASA Lewis closed cycle MHD facility
NASA Technical Reports Server (NTRS)
Sovie, R. J.; Nichols, L. D.
1971-01-01
The design and operation of the closed cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger, heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths, the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. Comparison of this data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.
Hampson’s type cryocoolers with distributed Joule-Thomson effect for mixed refrigerants closed cycle
NASA Astrophysics Data System (ADS)
Maytal, Ben-Zion
2014-05-01
Most previous studies on Joule-Thomson cryocoolers of mixed refrigerants in a closed cycle focus on the Linde kind recuperator. The present study focuses on four constructions of Hampson’s kind miniature Joule-Thomson cryocoolers based on finned capillary tubes. The frictional pressure drop along the tubes plays the role of distributed Joule-Thomson expansion so that an additional orifice or any throttle at the cold end is eliminated. The high pressure tube is a throttle and a channel of recuperation at the same time. These coolers are tested within two closed cycle systems of different compressors and different compositions of mixed coolants. All tests were driven by the same level of discharge pressure (2.9 MPa) while the associated suction pressures and the associated reached temperatures are dependent on each particular cryocooler and on the closed cycle system. The mixture of higher specific cooling capacity cannot reach temperatures below 80 K when driven by the smaller compressor. The other mixture of lower specific cooling capacity driven by the larger compressor reaches lower temperatures. The examined parameters are the cooldown period and the reachable temperatures by each cryocooler.
The Along Track Scanning Radiometer (ATSR) for ERS1
NASA Astrophysics Data System (ADS)
Delderfield, J.; Llewellyn-Jones, D. T.; Bernard, R.; de Javel, Y.; Williamson, E. J.
1986-01-01
The ATSR is an infrared imaging radiometer which has been selected to fly aboard the ESA Remote Sensing Satellite No. 1 (ERS1) with the specific objective of accurately determining global Sea Surface Temperature (SST). Novel features, including the technique of 'along track' scanning, a closed Stirling cycle cooler, and the precision on-board blackbodies are described. Instrument subsystems are identified and their design trade-offs discussed.
High efficiency Brayton cycles using LNG
Morrow, Charles W [Albuquerque, NM
2006-04-18
A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.
Superconducting cable cooling system by helium gas at two pressures
Dean, John W.
1977-01-01
Thermally contacting, oppositely streaming, cryogenic fluid streams in the same enclosure in a closed cycle that changes the fluid from a cool high pressure helium gas to a cooler reduced pressure helium gas in an expander so as to be at different temperature ranges and pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid from a refrigerator at one end of the line as a cool gas at a temperature range T.sub.2 to T.sub.3 in the go leg, then circulating the gas through an expander at the other end of the line where the gas becomes a cooler gas at a reduced pressure and at a reduced temperature T.sub.4 and finally by circulating the cooler gas back again to the refrigerator in a return leg at a temperature range T.sub.4 to T.sub.5, while in thermal contact with the gas in the go leg, and in the same enclosure therewith for compression into a higher pressure gas at T.sub.2 in a closed cycle, where T.sub.2 >T.sub.3 and T.sub.5 >T.sub.4, the fluid leaves the enclosure in the go leg as a gas at its coldest point in the go leg, and the temperature distribution is such that the line temperature decreases along its length from the refrigerator due to the cooling from the gas in the return leg.
Raytheon dual-use long life cryocooler
NASA Astrophysics Data System (ADS)
Kirkconnell, Carl S.; Ross, Bradley A.
2005-05-01
Raytheon has manufactured closed-cycle cryocoolers for both tactical military and space applications for over thirty years. Tactical and space cryocooler technologies have historically been treated as distinct both at Raytheon and throughout the industry. Differing technical requirements, operating lifetimes, and order quantities have driven these types of coolers to dramatically different design approaches and cost levels. For example, a typical space cryocooler system today costs approximately 2M as compared to roughly 10,000 for a tactical cryocooler. However, stimuli from both the tactical and space cooler user communities are driving the markets together. Tactical cryocooler requirements are starting to push towards operating lifetime requirements more characteristic of the space coolers (e.g., 20,000+ hours). Space cryocooler users, in particular Missile Defense Agency, are pushing for substantial cost reduction. In response, Raytheon is developing a low cost space cryocooler with an intended dual-use capability to also serve the tactical marketplace. This cooler leverages proven flexure-suspension technology to achieve long life, and a low cost concentric pulse tube cold head design has been developed that can be packaged into the existing Standard Advanced Dewar Assembly, Type One (SADA-I). The cooler meets or exceeds the SADA-I operational requirements (capacity, efficiency, etc.) as well. For the space-version of the cooler, the electronics cost has been reduced by an estimated 80% versus current designs, largely by approaching the vibration cancellation requirement from a dramatically different perspective. Fabrication of the brassboard expander is nearly complete, and the prototype design is well underway. The design approach, development progress, and proposed applications are presented.
Rankine cycle system and method
Ernst, Timothy C.; Nelson, Christopher R.
2014-09-09
A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.
A 10 deg K triple-expansion Stirling-cycle cryocooler
NASA Technical Reports Server (NTRS)
Newman, W.; Keung, C. S.
1983-01-01
The design of a triple expansion closed cycle Stirling cryocooler optimized for a cooling load of 50 mW at 10 K is described. The cooler was designed with the objectives of low power, low weight, compactness, low mechanical motion, low electromagnetic noise, and low output temperature fluctuations. The design employs a direct drive linear motion piston motor and a triple expansion free displacer. Piston motion is controlled by feedback from an optical position transducer. Mechanical vibrations are attenuated with a passive resonant counterbalance. Electromagnetic noise is attenuated with layered high permeability magnetic shielding. The regenerators move with the displacer within a thin titanium cold finger. The piston and displacer oscillate at 8.33 Hz on bearings and seals of reinforced Teflon. The cooler is designed to provide the desired 50 mW of cooling at 10 K with a power input of less than 100 W. The piston can be driven at a greater stroke to produce up to 200 mW of cooling with an input power of 250 W. A lead and copper cold tip heat exchanger will limit temperature fluctuations to within 0.01 K.
Compact Closed Cycle Brayton System Feasibility Study. Volume I.
1979-08-01
are exposed to cooler 204°C (400’F) gas originating from the power turbine balance piston labyrinth seal . The removal of the turbomachinery from the... seals , leakage of helium from the intercooler to the precooler inlet could occur, and there is a possibility of water mixing with j the turbomachinery...component joints to be sealed . Some leakage is tolerable at inter-component joints within the system as this leakage remains confined within the
Phosphoric and electric utility fuel technology development
NASA Astrophysics Data System (ADS)
Breault, R. D.; Briggs, T. A.; Congdon, J. V.; Gelting, R. L.; Goller, G. J.; Luoma, W. L.; McCloskey, M. W.; Mientek, A. P.; Obrien, J. J.; Randall, S. A.
1985-05-01
Seventeen hundred hours and 11 thermal cycles were accumulated on the second 10 sq ft short stack at 120 psia and 405 F. A subscale cell out from 10 sq ft electrodes in the same batch used for the second 10 sq ft short stack accumulated over 4100 hours with performance conforming close to the E-line goal at 120 psia and 400 F. Over 14,870 hours and 42 thermal cycles were accumulated on the 3.7 sq ft, 30-cell short stack at 120 psia and 405 F. A subscale cell with GSB-18 catalyst completed over 10,000 hours of operation at 120 psia, 400 F. The full-size, 10 sq ft stack containment vessel and reactant gas manifolds were observed. The improved edge seal decreased leakage by more than 50% from the conventional edge seal. Cross-pressure tolerance also improved. Continuous automatic operation of the substrate forming machine was demonstrated by producing substrates at a 50% faster rate with high yields and low material loss. The cooler bonding cycle was significantly reduced by using a cold press in conjunction with the hot press. A lower cost stainless steel tubing is identified that could reduce cooler array cost by up to 50%. Assembly of the automated cell fill and assembly machine is initiated.
NASA Technical Reports Server (NTRS)
Choi, Michael K.
1999-01-01
There was a thermal anomaly of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) radiative cooler cold stage during the cooler outgas phase in flight. With the cooler door in the outgas position and the outgas heaters enabled, the cold stage temperature increased to a maximum of 323 K when the spacecraft was in the sunlight, which was warmer than the 316.3 K upper set point of the outgas heater controller on the cold stage. Also, the outgas heater cycled off when the cold stage was warming up to 323 K. A corrective action was taken before the attitude of the spacecraft was changed during the first week in flight. One orbit before the attitude was changed, the outgas heaters were disabled to cool off the cold stage. The cold stage temperature increase was strongly dependent on the spacecraft roll and yaw. It provided evidence that direct solar radiation entered the gap between the cooler door and cooler shroud. There was a concern that the direct solar radiation could cause polymerization of hydrocarbons, which could contaminate the cooler and lead to a thermal short. After outgas with the cooler door in the outgas position for seven days, the cooler door was changed to the fully open position. With the cooler door fully open, the maximum cold stage temperature was 316.3 K when the spacecraft was in the sunlight, and the duty cycle of the outgas heater in the eclipse was the same as that in the sunlight. It provided more evidence that direct solar radiation had entered the gap between the cooler door and cooler shroud. Cooler outgas continued for seven more days, with the cooler door fully open. The corrective actions had prevented overheating of the cold stage and cold focal plane array (CFPA), which could damage these two components. They also minimized the risk of contamination on the cold stage, which could lead to a thermal short.
NASA Astrophysics Data System (ADS)
Shaffer, James; Dunmire, Howard; Samuels, Raemon; Trively, Martin
1989-12-01
The U.S. Army CECOM Center for Night Vision and Electro-Optics (C2NVEO) is responsible for developing cryogenic coolers for all infrared imaging systems for the Army. C2NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers in fielded Army weapon systems such as: M60A3 and M1 Tanks, Bradley Fighting Vehicle (BFV) System, tube-launched, optically tracked, wire-guided (TOW) Missile System, and Army Attack Helicopters. Currently, there are over 30,000 coolers in fielded systems and several thousand more are added each year. C2NVEO conducts development programs and monitors contractor internal research and development efforts to improve cooler performance such as reliability, audio noise, power consumption, and output vibration. The HD-1045 1/4-Watt Split Stirling Cooler was originally designed and developed by the C2NVEO in the early 1970s as a replacement for the gas bottle/cryostat used on the Manportable Common Thermal Night Sights. To date, however, the HD-1045 cooler has been used in the field in the Integrated Sight Unit (ISU) of the BFV System and is currently being used in the Driver Thermal Viewer (DTV) full scale development program. This document describes and reports the results of reliability testing done on Hughes Temperature Controlled 1/4 Watt split Cycle Cryogenic Coolers (HD-1045 (V)/UA), referred to herein as the coolers.
Split-Stirling-cycle displacer linear-electric drive
NASA Technical Reports Server (NTRS)
Ackermann, R. A.; Bhate, S. K.; Byrne, D. V.
1983-01-01
The retrofit of a 1/4-W split-Stirling cooler with a linear driven on the displacer was achieved and its performance characterized. The objective of this work was to demonstrate that a small linear motor could be designed to meet the existing envelope specifications of the cooler and that an electric linear drive on the displacer could improve the cooler's reliability and performance. The paper describes the characteristics of this motor and presents cooler test results.
20 K continuous cycle sorption coolers for the Planck flight mission
NASA Technical Reports Server (NTRS)
Bhandari, P.; Prina, M.; Bowman, R. C., Jr.; Paine, C.; Pearson, D.; Nash, A.
2003-01-01
In this paper we present the level of maturity of the hydrogen sorption cooler technology at JPL by describing the design and how it has been validated at the subsystem and system levels. In addition, we will describe how such systems could be advantageously used for other space missions with similar needs and cooler attributes.
Reliability Growth of Tactical Coolers at CMC Electronics Cincinnati: 1/5-Watt Cooler Test Report
NASA Astrophysics Data System (ADS)
Kuo, D. T.; Lody, T. D.
2004-06-01
CMC Electronics Cincinnati (CMC) is conducting a reliability growth program to extend the life of tactical Stirling-cycle cryocoolers. The continuous product improvement processes consist of testing production coolers to failure, determining the root cause, incorporating improvements and verification. The most recent life data for the 1/5-Watt Cooler (Model B512B) is presented with a discussion of leading root causes and potential improvements. The mean time to failure (MTTF) life of the coolers was found to be 22,552 hours with the root cause of failure attributed to the accumulation of methane and carbon dioxide in the cooler and the wear of the piston.
Micro-Stirling Active Cooling Module (MS/ACM) for DoD Electronics Systems
2012-03-01
MS/ACM uses miniaturized versions of components we have already developed for space-based cryocoolers for the MDA, AFRL, and NASA. Stirling...overcoming the technical challenges. Finally we describe the wide range of applications for Stirling-cycle coolers, cryocoolers , and generators...Applications: Figure 5 indicates the wide range of applications can benefit from our Stirling-cycle cooler, cryocooler , and generator technologies
Refurbishment of the cryogenic coolers for the Skylab earth resources experiment package
NASA Technical Reports Server (NTRS)
Smithson, J. C.; Luksa, N. C.
1975-01-01
Skylab Earth Resources Experiment Package (EREP) experiments, S191 and S192, required a cold temperature reference for operation of a spectrometer. This cold temperature reference was provided by a subminiature Stirling cycle cooler. However, the failure of the cooler to pass the qualification test made it necessary for additional cooler development, refurbishment, and qualification. A description of the failures and the cause of these failures for each of the coolers is presented. The solutions to the various failure modes are discussed along with problems which arose during the refurbishment program. The rationale and results of various tests are presented. The successful completion of the cryogenic cooler refurbishment program resulted in four of these coolers being flown on Skylab. The system operation during the flight is presented.
TurboBrayton Cryocooler: A Flight Worthy and Promising Future
NASA Technical Reports Server (NTRS)
Gibbon, Judith A.; Swift, Walt L.; Zagarola, Mark V.; DiPirro, Mike; Whitehouse, Paul
1999-01-01
A new development in cryocooler technology, a reverse TurboBrayton cycle cryocooler, developed by Creare, Inc. of Hanover, NH, has now been flight tested. This cooler provides high reliability and long life. With no linear moving components common in current flight cryocoolers, the TurboBrayton cooler requires no active control systems to provide a vibration-free signature. The cooler provides first stage cooling for advanced cryogenic systems and serves as a direct replacement for stored cryogen systems with a longer lifetime. Following a successful flight on STS-95, a TurboBrayton cryocooler will be flown on Hubble Space Telescope (HST) in 2000 to provide renewed refrigeration capability for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The TurboBrayton cycle cooler is a promising technology already being considered for additional flight programs such as Next Generation Space Telescope (NGST) and Constellation X. These future missions require an advanced generation of the cooler that is currently under development to provide cooling at 10K and less. This paper presents an overview of the current generation cooler with recent flight test results and details the current plans and development progress on the next generation TurboBrayton technology for future missions.
Computer program for analysis of split-Stirling-cycle cryogenic coolers
NASA Technical Reports Server (NTRS)
Brown, M. T.; Russo, S. C.
1983-01-01
A computer program for predicting the detailed thermodynamic performance of split-Stirling-cycle refrigerators has been developed. The mathematical model includes the refrigerator cold head, free-displacer/regenerator, gas transfer line, and provision for modeling a mechanical or thermal compressor. To allow for dynamic processes (such as aerodynamic friction and heat transfer) temperature, pressure, and mass flow rate are varied by sub-dividing the refrigerator into an appropriate number of fluid and structural control volumes. Of special importance to modeling of cryogenic coolers is the inclusion of real gas properties, and allowance for variation of thermo-physical properties such as thermal conductivities, specific heats and viscosities, with temperature and/or pressure. The resulting model, therefore, comprehensively simulates the split-cycle cooler both spatially and temporally by reflecting the effects of dynamic processes and real material properties.
Reliability Testing on the CTI-Cryogenic 1 Watt Integral Cooler (HD- 1033C/UA)
1989-09-01
SUBJECT TERMS (Continue on reverse if necessary and identify by block numbe) FIELD GROUP SUB- GROUP Cryocooler, Stirling Cycle, Cryogenics 19, ABSTRCT...the Army. C2NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers... controlled high/low temperature chamber. * A microprocessor which was programmed to automatically cycle the temperature in the chamber in accordance
NASA Astrophysics Data System (ADS)
Kondratjev, V.; Gostilo, V.; Owens, anb A.
2017-08-01
We present the results of an investigation into the detrimental effects that electromechanical coolers can have on the spectral performance of compact, large volume HPGe spectrometers for space applications. Both mechanical vibration and electromagnetic pickup effects were considered, as well as a comparative assessment between three miniature Stirling cycle coolers—two Ricor model K508 coolers and one Thales model RM3 cooler. In spite of the limited number of coolers tested, the following conclusions can be made. There are significant differences in the vibration characteristics not only between the various types of cooler but also between coolers of the same type. It was also found that compared to the noise induced by mechanical vibrations, electromagnetic interference emanating from the embedded controllers does not significantly impact the energy resolution of detectors.
High-Performance Computing Data Center Water Usage Efficiency |
cooler-an advanced dry cooler that uses refrigerant in a passive cycle to dissipate heat-was installed at efficiency-using wet cooling when it's hot and dry cooling when it's not. Learn more about NREL's partnership
Characterization of a Two-Stage Pulse Tube Cooler for Space Applications
NASA Astrophysics Data System (ADS)
Orsini, R.; Nguyen, T.; Colbert, R.; Raab, J.
2010-04-01
A two-stage long-life, low mass and efficient pulse tube cooler for space applications has been developed and acceptance tested for flight applications. This paper presents the data collected on four flight coolers during acceptance testing. Flight acceptance test of these cryocoolers includes thermal performance mapping over a range of reject temperatures, launch vibration testing and thermal cycling testing. Designed conservatively for a 10-year life, the coolers are required to provide simultaneous cooling powers at 95 K and 180 K while rejecting to 300 K with less than 187 W input power to the electronics. The total mass of each cooler and electronics system is 8.7 kg. The radiation-hardened and software driven control electronics provides cooler control functions which are fully re-configurable in orbit. These functions include precision temperature control to better than 100 mK p-p. This 2 stage cooler has heritage to the 12 Northrop Grumman Aerospace Systems (NGAS) coolers currently on orbit with 2 operating for more than 11.5 years.
High-reliable linear cryocoolers and miniaturization developments at Thales Cryogenics
NASA Astrophysics Data System (ADS)
van der Weijden, H.; Benschop, A.; v. D. Groep, W.; Willems, D.; Mullie, J.
2010-04-01
Thales Cryogenics (TCBV) has an extensive background in delivering long life cryogenic coolers for military, civil and space programs. This cooler range is based on two main compressor concepts: close tolerance contact seals (UP) and flexure bearing (LSF/LPT) coolers. Main difference between these products is the Mean Time To Failure (MTTF). In this paper an overview of lifetime parameters will be listed versus the impact in the different cooler types. Also test results from both the installed base and the Thales Cryogenics test lab will be presented. New developments at Thales Cryogenics regarding compact long lifetime coolers will be outlined. In addition new developments for miniature linear cooler drive electronics with high temperature stability and power density will be described.
Further two-dimensional code development for Stirling space engine components
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.
1990-01-01
The development of multidimensional models of Stirling engine components is described. Two-dimensional parallel plate models of an engine regenerator and a cooler were used to study heat transfer under conditions of laminar, incompressible oscillating flow. Substantial differences in the nature of the temperature variations in time over the cycle were observed for the cooler as contrasted with the regenerator. When the two-dimensional cooler model was used to calculate a heat transfer coefficient, it yields a very different result from that calculated using steady-flow correlations. Simulation results for the regenerator and the cooler are presented.
Regeneration experiments below 10K in a regenerative-cycle cryocooler
NASA Technical Reports Server (NTRS)
Sager, R. E.; Paulson, D. N.
1983-01-01
At temperatures below 10K, regenerative cycle cryocoolers are limited by regeneration losses in the helium working fluid which result from the decreasing heat capacity of the regenerating material and the increasing density of helium. Experiments examining several approaches to improving the low-temperature regeneration in a four-stage regenerative cycle cooler constructed primarily of fiberglass materials are discussed. Using an interchangeable fourth stage, the experiments included configurations with multiple regeneration passages, and a static helium volume for increased heat capacity. Experiments using helium-3 as the working fluid and a Malone stage are planned. Results indicate that, using these techniques, it should be possible to construct a regenerative cycle cooler which will operate below 6K.
Life and Reliability Characteristics of TurboBrayton Coolers
NASA Technical Reports Server (NTRS)
Breedlove, Jeff J.; Zagarola, Mark; Nellis, Greg; Dolan, Frank; Swift, Walt; Gibbon, Judith; Obenschain, Arthur F. (Technical Monitor)
2000-01-01
Wear and internal contaminants are two of the primary factors that influence reliable, long-life operation of turbo-Brayton cryocoolers. This paper describes tests that have been conducted and methods that have been developed for turbo-Brayton components and systems to assure reliable operation. The turbomachines used in these coolers employ self-acting gas bearings to support the miniature high-speed shafts, thus providing vibration-free operation. Because the bearings are self-acting, rubbing contact occurs during initial start-up and shutdown of the machines. Bearings and shafts are designed to endure multiple stop/start cycles without producing particles or surface features that would impair the proper operation of the machines. Test results are presented for a variety of turbomachines used in these systems. The tests document extended operating life and start/stop cycling behavior for machines over a range of time and temperature scales. Contaminants such as moisture and other residual gas impurities can be a source of degraded operation if they freeze out in sufficient quantities to block flow passages or if they mechanically affect the operation of the machines. A post-fabrication bakeout procedure has been successfully used to reduce residual internal contamination to acceptable levels in a closed cycle system. The process was developed during space qualification tests on the NICMOS cryocooler. Moisture levels were sampled over a six-month time interval confirming the effectiveness of the technique. A description of the bakeout procedure is presented.
Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moisseytsev, A.; Sienicki, J. J.; Lv, Q.
Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO 2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO 2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO 2 Brayton cycle is that it enablesmore » dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately« less
Joule-Thomson valves for long term service in space cryocoolers
NASA Technical Reports Server (NTRS)
Lester, J. M.; Benedict, B.
1985-01-01
Joule-Thomson valves for small cryocoolers have throttling passages on the order of 0.1 millimeter in diameter. Consequently, they can become plugged easily and stop the operation of the cooler. Plugging can be caused by solid particles, liquids or gases. Plugging is usually caused by the freezing of contaminant gases from the process stream. In small open loop coolers and in closed loop coolers where periodic maintenance is allowed, the problem is overcome by using careful assembly techniques, pure process gases, warm filters and cold adsorbers. A more thorough approach is required for closed loop cryocoolers which must operate unattended for long periods. This paper presents the results of an effort to solve this problem. The causes of plugging are examined, and various ways to eliminate plugging are discussed. Finally, the development of a J-T defroster is explained. It is concluded that a combination of preventive measures and a defroster will reduce the chance of cooler failure by plugging to such a degree that J-T coolers can be used for long term space missions.
Large format 15μm pitch XBn detector
NASA Astrophysics Data System (ADS)
Karni, Yoram; Avnon, Eran; Ben Ezra, Michael; Berkowitz, Eyal; Cohen, Omer; Cohen, Yossef; Dobromislin, Roman; Hirsh, Itay; Klin, Olga; Klipstein, Philip; Lukomsky, Inna; Nitzani, Michal; Pivnik, Igor; Rozenberg, Omer; Shtrichman, Itay; Singer, Michael; Sulimani, Shay; Tuito, Avi; Weiss, Eliezer
2014-06-01
Over the past few years, a new type of High Operating Temperature (HOT) photon detector has been developed at SCD, which operates in the blue part of the MWIR atmospheric window (3.4 - 4.2 μm). This window is generally more transparent than the red part of the MWIR window (4.4 - 4.9 μm), and thus is especially useful for mid and long range applications. The detector has an InAsSb active layer and is based on the new "XBn" device concept, which eliminates Generation-Recombination dark current and enables operation at temperatures of 150K or higher, while maintaining excellent image quality. Such high operating temperatures reduce the cooling requirements of Focal Plane Array (FPA) detectors dramatically, and allow the use of a smaller closed-cycle Stirling cooler. As a result, the complete Integrated Detector Cooler Assembly (IDCA) has about 60% lower power consumption and a much longer lifetime compared with IDCAs based on standard InSb detectors and coolers operating at 77K. In this work we present a new large format IDCA designed for 150K operation. The 15 μm pitch 1280×1024 FPA is based on SCD's XBn technology and digital Hercules ROIC. The FPA is housed in a robust Dewar and is integrated with Ricor's K508N Stirling cryo-cooler. The IDCA has a weight of ~750 gram and its power consumption is ~ 5.5 W at a frame rate of 100Hz. The Mean Time to Failure (MTTF) of the IDCA is more than 20,000 hours, greatly facilitating 24/7 operation.
Cold-tip off-state conduction loss of miniature Stirling cycle cryocoolers
NASA Technical Reports Server (NTRS)
Kotsubo, V.; Johnson, D. L.; Ross, R. G., Jr.
1991-01-01
For redundant miniature Stirling-cycle cryocoolers in space applications, the off-state heat conduction down the coldfinger of one cooler is a parasitic heat load on the other coolers. At JPL, a heat flow transducer specifically designed to measure this load has been developed, and measurements have been performed on the coldfinger of a British Aerospace 80 K Stirling cooler with the tip temperature ranging between 40 and 170 K. Measurements have also been made using a transient warmup technique, where the warmup rates of the coldtip under various applied heat loads are used to determine the static conduction load. There is a difference between the results of these two methods, and these differences are discussed with regard to the applicability of the transient warmup method to a nonoperating coldfinger.
Design and Off-design Performance of 100 Kwe-class Brayton Power Conversion Systems
NASA Technical Reports Server (NTRS)
Johnson, Paul K.; Mason, Lee S.
2005-01-01
The NASA Glenn Research Center in-house computer model Closed Cycle Engine Program (CCEP) was used to explore the design trade space and off-design performance characteristics of 100 kWe-class recuperated Closed Brayton Cycle (CBC) power conversion systems. Input variables for a potential design point included the number of operating units (1, 2, 4), cycle peak pressure (0.5, 1, 2 MPa), and turbo-alternator shaft speed (30, 45, 60 kRPM). The design point analysis assumed a fixed turbine inlet temperature (1150 K), compressor inlet temperature (400 K), working-fluid molecular weight (40 g/mol), compressor pressure ratio (2.0), recuperator effectiveness (0.95), and a Sodium-Potassium (NaK) pumped-loop radiator. The design point options were compared on the basis of thermal input power, radiator area, and mass. For a nominal design point with defined Brayton components and radiator area, off-design cases were examined by reducing turbine inlet temperature (as low as 900 K), reducing shaft speed (as low as 50% of nominal), and circulating a percentage (up to 20%) of the compressor exit flow back to the gas cooler. The off-design examination sought approaches to reduce thermal input power without freezing the radiator.
Microsystem Cooler Concept Developed and Being Fabricated
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
2005-01-01
A patented microsystem cooler concept has been developed by the NASA Glenn Research Center. It incorporates diaphragm actuators to produce the Stirling refrigeration cycle within a planar configuration compatible with the thermal management of electronics, sensors, optical and radiofrequency systems, microarrays, and other microsystems. The microsystem cooler is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Johns Hopkins University Applied Physics Laboratory is conducting development testing and fabrication of a prototype under a grant from Glenn.
Vibration-free stirling cryocooler for high definition microscopy
NASA Astrophysics Data System (ADS)
Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.
2009-12-01
The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi-axes suppression of the residual wideband vibration, thermo-conductive vibration isolation struts and soft vibration mounts. The attainable performance of the resulting vibration free linear Stirling cryocooler (Ricor model K535-ULV) is evaluated through a full-scale experimentation.
Development of advanced fuel cell system, phase 2
NASA Technical Reports Server (NTRS)
Handley, L. M.; Meyer, A. P.; Bell, W. F.
1973-01-01
A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.
The laboratory astrophysics facility at University College
NASA Astrophysics Data System (ADS)
Hyland, A. R.; Smith, R. G.; Robinson, G.
A laboratory astrophysics facility for the study of the terrestrial analogues of interstellar dust grains is being developed in the Physics Department, University College, Australian Defence Force Academy. The facility consists of a gas handling system for the preparation of samples, a closed-cycle cooler and specimen chamber, and a Fourier Transform Infrared (FTIR) Spectrometer capable of high resolution (0.3/cm) and high sensitivity measurements, currently from 1-25 microns. The layout and construction of the laboratory are described, and the proposed initial experimental program aimed at determining the optical constants of ices, over a wide wavelength range for comparison with astronomical observations, is discussed.
Design and Off-Design Performance of 100 kWe-Class Brayton Power Conversion Systems
NASA Technical Reports Server (NTRS)
Johnson, Paul K.; Mason, Lee S.
2005-01-01
The NASA Glenn Research Center in-house computer model Closed Cycle Engine Program (CCEP) was used to explore the design trade space and off-design performance characteristics of 100 kWe-class recuperated Closed Brayton Cycle (CBC) power conversion systems. Input variables for a potential design point included the number of operating units (1, 2, 4), cycle peak pressure (0.5, 1, 2 MPa), and turbo-alternator shaft speed (30, 45, 60 kRPM). The design point analysis assumed a fixed turbine inlet temperature (1150 K), compressor inlet temperature (400 K), helium-xenon working-fluid molecular weight (40 g/mol), compressor pressure ratio (2.0), recuperator effectiveness (0.95), and a Sodium-Potassium (NaK) pumped-loop radiator. The design point options were compared on the basis of thermal input power, radiator area, and mass. For a nominal design point with defined Brayton components and radiator area, off-design cases were examined by reducing turbine inlet temperature (as low as 900 K), reducing shaft speed (as low as 50 percent of nominal), and circulating a percentage (up to 20 percent) of the compressor exit flow back to the gas cooler. The off-design examination sought approaches to reduce thermal input power without freezing the radiator.
Design and Off-Design Performance of 100 kWe-Class Brayton Power Conversion Systems
NASA Astrophysics Data System (ADS)
Johnson, Paul K.; Mason, Lee S.
2005-02-01
The NASA Glenn Research Center in-house computer model Closed Cycle Engine Program (CCEP) was used to explore the design trade space and off-design performance characteristics of 100 kWe-class recuperated Closed Brayton Cycle (CBC) power conversion systems. Input variables for a potential design point included the number of operating units (1, 2, 4), cycle peak pressure (0.5, 1, 2 MPa), and turbo-alternator shaft speed (30,45, 60 kRPM). The design point analysis assumed a fixed turbine inlet temperature (1150 K), compressor inlet temperature (400 K), helium-xenon working-fluid molecular weight (40 g/mol), compressor pressure ratio (2.0), recuperator effectiveness (0.95), and a Sodium-Potassium (NaK) pumped-loop radiator. The design point options were compared on the basis of thermal input power, radiator area, and mass. For a nominal design point with defined Brayton components and radiator area, off-design cases were examined by reducing turbine inlet temperature (as low as 900 K), reducing shaft speed (as low as 50% of nominal), and circulating a percentage (up to 20%) of the compressor exit flow back to the gas cooler. The off-design examination sought approaches to reduce thermal input power without freezing the radiator.
Materials, Turbomachinery and Heat Exchangers for Supercritical CO2 Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark; Nellis, Greg; Corradini, Michael
2012-10-19
The objective of this project is to produce the necessary data to evaluate the performance of the supercritical carbon dioxide cycle. The activities include a study of materials compatibility of various alloys at high temperatures, the heat transfer and pressure drop in compact heat exchanger units, and turbomachinery issues, primarily leakage rates through dynamic seals. This experimental work will serve as a test bed for model development and design calculations, and will help define further tests necessary to develop high-efficiency power conversion cycles for use on a variety of reactor designs, including the sodium fast reactor (SFR) and very high-temperaturemore » gas reactor (VHTR). The research will be broken into three separate tasks. The first task deals with the analysis of materials related to the high-temperature S-CO{sub 2} Brayton cycle. The most taxing materials issues with regard to the cycle are associated with the high temperatures in the reactor side heat exchanger and in the high-temperature turbine. The system could experience pressures as high as 20MPa and temperatures as high as 650°C. The second task deals with optimization of the heat exchangers required by the S-CO{sub 2} cycle; the S-CO{sub 2} flow passages in these heat exchangers are required whether the cycle is coupled with a VHTR or an SFR. At least three heat exchangers will be required: the pre-cooler before compression, the recuperator, and the heat exchanger that interfaces with the reactor coolant. Each of these heat exchangers is unique and must be optimized separately. The most challenging heat exchanger is likely the pre-cooler, as there is only about a 40°C temperature change but it operates close to the CO{sub 2} critical point, therefore inducing substantial changes in properties. The proposed research will focus on this most challenging component. The third task examines seal leakage through various dynamic seal designs under the conditions expected in the S-CO{sub 2} cycle, including supercritical, choked, and two-phase flow conditions.« less
Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Harada, Nobuhiro
2011-01-01
Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.
MEMS Stirling Cooler Development Update
NASA Technical Reports Server (NTRS)
Moran, Matthew E.; Wesolek, Danielle
2003-01-01
This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.
Northrop Grumman HEC flight coaxial cryocoolers performance
NASA Astrophysics Data System (ADS)
Nguyen, T.; Russo, J.; Basel, G.; Chi, D.; Abelson, L.
2018-05-01
The Northrop Grumman Aerospace Systems (NGAS) has expanded the cryocooler product line to include a single stage High Efficiency Cryocooler (HEC) cooler with a coaxial pulse tube cold head that operates at temperatures down to 45K. The HEC coaxial pulse tube cooler has been adopted by several customers, and has completed acceptance testing to meet program flight requirements. The NGAS TRL 9 HEC is a pulse tube cryocooler with a flexure bearing compressor which has been delivered for a number of flight payloads that are currently operating in space. To date, NGAS has delivered space cryocoolers in several configurations including single stage with a linear cold head and two stage with both linear and coaxial cold heads. The new HEC coaxial cooler uses the same TRL9 HEC compressor with a passive pulse tube cold head, to maintain the flight heritage of the HEC linear cooler. In this paper, we present the flight acceptance test data of the HEC coaxial cryocooler, which includes thermal performance, launch vibration and thermal cycling. The HEC coaxial cooler has demonstrated excellent performance in family with the flight qualified HEC linear cooler. The HEC coaxial cooler provides users with additional flexibility in selecting the cold head configuration to meet their particular applications.
NASA Astrophysics Data System (ADS)
Filis, Avishai; Bar Haim, Zvi; Pundak, Nachman; Broyde, Ramon
2009-05-01
Novel compact and low power consuming cooled infrared thermal imagers as used in gyro-stabilized payloads of miniature unmanned aerial vehicles, Thermal small arms sights and tactical night vision goggles often rely on integral rotary micro-miniature closed cycle Stirling cryogenic engines. Development of EPI Antimonides technology and optimization of MCT technology allowed decreasing in order of magnitudes the level of dark current in infrared detectors thus enabling an increase in the optimal focal plane temperature in excess of 95K while keeping the same radiometric performances as achieved at 77K using regular technologies. Maintaining focal plane temperature in the range of 95K to 110K instead of 77K improves the efficiency of Stirling thermodynamic cycle thus enlarging cooling power and enabling the development of a mini micro cooler similar to RICOR's K562S model which is three times smaller, lighter and more compact than a standard tactical cryocooler like RICOR's K508 model. This cooler also features a new type of ball bearings and internal components which were optimized to fit tight bulk constraints and maintain the required life span, while keeping a low level of vibration and noise signature. Further, the functions of management the brushless DC motor and temperature stabilization are delivered by the newly developed high performance sensorless digital controller. By reducing Dewar Detector thermal losses and increasing the focal plane temperature, longer life time operation is expected as was proved with RICOR's K508 model. Resulting from this development, the RICOR K562S model cryogenic engine consumes 1.2 - 3.0 WDC while operating in the closed loop mode and maintaining the typical focal plane arrays at 200-100K. This makes it compatible with very compact battery packages allowing further reduction of the overall thermal imager weight thus making it comparable with the compatible uncooled infrared thermal imager relying on a microbolometer detector in terms of power consumption and bulk.
ATS-F radiant cooler contamination test in a hydrazine thruster exhaust
NASA Technical Reports Server (NTRS)
Chirivella, J. E.
1973-01-01
A test was conducted under simulated space conditions to determine the potential thermal degradation of the ATS-F radiant cooler from any contaminants generated by a 0.44-N(0.1-lbf) hydrazine thruster. The radiant cooler, a 0.44-N(0.1-lbf)hydrazine engine, and an aluminum plate simulating the satellite interface were assembled to simulate their flight configuration. The cooler was provided with platinum sensors for measuring temperature, and its surfaces were instrumented with six quartz crystal microbalance units (QCM) to measure contaminant mass deposits. The complete assembly was tested in the molecular sink vacuum facility (Molsink) at the Jet Propulsion Laboratory. This was the first time that a radiant cooler and a hydrazine engine were tested together in a very-high-vacuum space simulator, and this test was the first successful measurement of detectable deposits from hydrazine rocket engine plumes in a high vacuum. The engine was subjected to an accelerated duty cycle of 1 pulse/min, and after 2-hr of operation, the QCMs began to shift in frequency. The tests continued for several days and, although there was considerable activity in the QCMs, the cooler never experienced thermal degradation.
Mechanically-reattachable liquid-cooled cooling apparatus
Arney, Susanne; Cheng, Jen-Hau; Kolodner, Paul R; Kota-Venkata, Krishna-Murty; Scofield, William; Salamon, Todd R; Simon, Maria E
2013-09-24
An apparatus comprising a rack having a row of shelves, each shelf supporting an electronics circuit board, each one of the circuit boards being manually removable from the shelve supporting the one of the circuit boards and having a local heat source thereon. The apparatus also comprises a cooler attached to the rack and being able to circulate a cooling fluid around a channel forming a closed loop. The apparatus further comprises a plurality of heat conduits, each heat conduit being located over a corresponding one of the circuit boards and forming a path to transport heat from the local heat source of the corresponding one of the circuit boards to the cooler. Each heat conduit is configured to be manually detachable from the cooler or the circuit board, without breaking a circulation pathway of the fluid through the cooler.
NASA Technical Reports Server (NTRS)
Beach, Duane E.
2003-01-01
High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.
Mitsubishi thermal imager using the 512 x 512 PtSi focal plane arrays
NASA Astrophysics Data System (ADS)
Fujino, Shotaro; Miyoshi, Tetsuo; Yokoh, Masataka; Kitahara, Teruyoshi
1990-01-01
MITSUBISHI THERMAL IMAGER model IR-5120A is high resolution and high sensitivity infrared television imaging system. It was exhibited in SPIE'S 1988 Technical Symposium on OPTICS, ELECTRO-OPTICS, and SENSORS, held at April 1988 Orlando, and acquired interest of many attendants of the symposium for it's high performance. The detector is a Platinium Silicide Charge Sweep Device (CSD) array containing more than 260,000 individual pixels manufactured by Mitsubishi Electric Co. The IR-5120A consists of a Camera Head. containing the CSD, a stirling cycle cooler and support electronics, and a Camera Control Unit containing the pixel fixed pattern noise corrector, video controllor, cooler driver and support power supplies. The stirling cycle cooler built into the Camera Head is used for keeping CSD temperature of approx. 80K with the features such as light weight, long life of more than 2000 hours and low acoustical noise. This paper describes an improved Thermal Imager, with more light weight, compact size and higher performance, and it's design philosophy, characteristics and field image.
Thermoelectric Coolers with Sintered Silver Interconnects
NASA Astrophysics Data System (ADS)
Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin
2014-06-01
The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.
Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A.
The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed onmore » a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-16
... addition, the requestor/petitioner shall provide a brief explanation of the bases for the contention and a... trip, various pumps and coolers to start, and various valves to open and close), Containment Isolation (closes valves to isolate the Reactor Building interior from the environment), Steam isolation (close all...
Development of thermal energy storage units for spacecraft cryogenic coolers
NASA Technical Reports Server (NTRS)
Richter, R.; Mahefkey, E. T.
1980-01-01
Thermal Energy Storage Units were developed for storing thermal energy required for operating Vuilleumier cryogenic space coolers. In the course of the development work the thermal characteristics of thermal energy storage material was investigated. By three distinctly different methods it was established that ternary salts did not release fusion energy as determined by ideality at the melting point of the eutectic salt. Phase change energy was released over a relatively wide range of temperature with a large change in volume. This strongly affects the amount of thermal energy that is available to the Vuilleumier cryogenic cooler at its operating temperature range and the amount of thermal energy that can be stored and released during a single storage cycle.
Cryocoolers developments at Thales Cryogenics enabling compact remote sensing
NASA Astrophysics Data System (ADS)
Benschop, A.; van de Groep, W.; Mullié, J.; Willems, D.; Clesca, O.; Griot, R.; Martin, J.-Y.
2010-10-01
Thales Cryogenics (TCBV) has an extensive background in developing and delivering long-life cryogenic coolers for military, civil and space programs. This cooler range is based on three main compressor concepts: rotary compressors (RM), linear close tolerance contact seals (UP), and linear flexure bearing (LSF/LPT) compressors. The main differences - next to the different conceptual designs - between these products are their masses and Mean Time To Failure (MTTF) and the availability prediction of a single unit. New developments at Thales Cryogenics enabling compact long lifetime coolers - with an MTTF up to 50.000 hrs - will be outlined. In addition new developments for miniature cooler drive electronics with high temperature stability and power density will be described. These new cooler developments could be of particular interest for space missions where lower costs and mass are identified as important selection criteria. The developed compressors are originally connected to Stirling cold fingers that can directly be interfaced to different sizes of available dewars. Next to linear coolers, Thales Cryogenics has compact rotary coolers in its product portfolio. Though having a higher exported vibration level and a more limited MTTF of around 8.000 to 10.000 hours, their compactness and high efficiency could provide a good alternative for compact cooling of sensors in specific space missions. In this paper an overview of lifetime parameters will be listed versus the impact in the different cooler types. Tests results from both the installed base and the Thales Cryogenics test lab will be presented as well. Next to this differences in operational use for the different types of coolers as well as the outlook for further developments will be discussed.
Design and Operation of the RHIC 80-K Cooler
NASA Astrophysics Data System (ADS)
Nicoletti, A.; Reuter, A.; Sidi-Yekhlef, A.; Talty, P.; Quimby, E.
2004-06-01
A stand-alone cryogenic system designed to maintain the magnets of the Relativistic Heavy Ion Collider (RHIC) at between 80 and 100 K during accelerator shutdown periods has been conceived and designed at Brookhaven National Laboratory and built by PHPK Technologies of Columbus, Ohio. Since most thermal contraction occurs above this temperature, this unit, referred to as the 80-K Cooler, will eliminate the stresses associated with thermal cycling. The cooling system will provide the necessary refrigeration by circulating cooled helium gas at approximately 1500 kPA through the RHIC heat shields and magnets. This helium is cooled by heat exchange with liquid nitrogen and circulated via three cold centrifugal pumps. The nominal delivered cooling capacity required to maintain the magnets at temperature is approximately 36 kW, primarily intercepted at the heat shield. The system also has separate heat exchangers for use as a pre-cooler from room temperature to 82 K. Selection of sextant or sextants for pre-cooling is designed into the RHIC cryogenic distribution system. Topics covered include Cooler design decisions, details of the Cooler as built, integration into the existing RHIC cryogenic system and initial operating experience.
NASA Astrophysics Data System (ADS)
Zhang, Cun-quan; Zhong, Cheng
2015-03-01
The concept of a new type of pneumatically-driven split-Stirling-cycle cryocooler with clearance-phase-adjustor is proposed. In this implementation, the gap between the phase-adjusting part and the cylinder of the spring chamber is used, instead of dry friction acting on the pneumatically-driven rod to control motion damping of the displacer and to adjust the phase difference between the compression piston and displacer. It has the advantages of easy damping adjustment, low cost, and simplified manufacturing and assembly. A theoretical model has been established to simulate its dynamic performance. The linear compressor is modeled under adiabatic conditions, and the displacement of the compression piston is experimentally rectified. The working characteristics of the compressor motor and the principal losses of cooling, including regenerator inefficiency loss, solid conduction loss, shuttle loss, pump loss and radiation loss, are taken into account. The displacer motion was modeled as a single-degree-of-freedom (SDOF) forced system. A set of governing equations can be solved numerically to simulate the cooler's performance. The simulation is useful for understanding the physical processes occurring in the cooler and for predicting the cooler's performance.
NASA Astrophysics Data System (ADS)
Yu, Dongshan; Liang, Xuejie; Wang, Jingwei; Li, Xiaoning; Nie, Zhiqiang; Liu, Xingsheng
2017-02-01
A novel marco channel cooler (MaCC) has been developed for packaging high power diode vertical stacked (HPDL) lasers, which eliminates many of the issues in commercially-available copper micro-channel coolers (MCC). The MaCC coolers, which do not require deionized water as coolant, were carefully designed for compact size and superior thermal dissipation capability. Indium-free packaging technology was adopted throughout product design and fabrication process to minimize the risk of solder electromigration and thermal fatigue at high current density and long pulse width under QCW operation. Single MaCC unit with peak output power of up to 700W/bar at pulse width in microsecond range and 200W/bar at pulse width in millisecond range has been recorded. Characteristic comparison on thermal resistivity, spectrum, near filed and lifetime have been conducted between a MaCC product and its counterpart MCC product. QCW lifetime test (30ms 10Hz, 30% duty cycle) has also been conducted with distilled water as coolant. A vertical 40-MaCC stack product has been fabricated, total output power of 9 kilowatts has been recorded under QCW mode (3ms, 30Hz, 9% duty cycle).
Integral finned heater and cooler for stirling engines
Corey, John A.
1984-01-01
A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.
Gas Bearing Implementation of Small Cryocooler Compressor
NASA Astrophysics Data System (ADS)
Kuo, D. T.; Loc, A. S.; Hanes, M.
2006-04-01
In order to reduce the life-cycle cost of systems that use cryocoolers, it is necessary to extend the operating life of the cooler beyond what is currently available for tactical military applications. Several approaches have been used to increase life such as flexure bearing and gas bearing support. It was determined that a gas bearing system offered a novel and cost effective approach for our products. This paper presents the implementation of a gas bearing system into the miniature cryocooler compressor. The theoretical analyses used to design the gas bearing system will be discussed and empirical data comparing the performance between the baseline and gas bearing coolers will be presented. A life test program is being undertaken to verify the life characteristics of the gas bearing cooler and the results will be summarized and published at a later date.
The Planck Sorption Cooler: Using Metal Hydrides to Produce 20 K
NASA Technical Reports Server (NTRS)
Pearson, David P.; Bowman, R.; Prina, M.; Wilson, P.
2006-01-01
The Jet Propulsion Laboratory has built and delivered two continuous closed cycle hydrogen Joule-Thomson (JT) cryocoolers for the ESA Planck mission, which will measure the anisotropy in the cosmic microwave background. The metal hydride compressor consists of six sorbent beds containing LaNi4.78Sn0.22 alloy and a low pressure storage bed of the same material. Each sorbent bed contains a separate gas-gap heat switch that couples or isolates the bed with radiators during the compressor operating cycle. ZrNiHx hydride is used in this heat switch. The Planck compressor produces hydrogen gas at a pressure of 48 Bar by heating the hydride to approx.450 K. This gas passes through a cryogenic cold end consisting of a tube-in-tube heat exchanger, three pre-cooling stages to bring the gas to nominally 52 K, a JT value to expand the gas into the two-phase regime at approx.20 K, and two liquid - vapor heat exchangers that must remove 190 and 646 mW of heat respectively.
Digital control of magnetic bearings in a cryogenic cooler
NASA Technical Reports Server (NTRS)
Feeley, J.; Law, A.; Lind, F.
1990-01-01
This paper describes the design of a digital control system for control of magnetic bearings used in a spaceborne cryogenic cooler. The cooler was developed by Philips Laboratories for the NASA Goddard Space Flight Center. Six magnetic bearing assemblies are used to levitate the piston, displacer, and counter-balance of the cooler. The piston and displacer are driven by linear motors in accordance with Stirling cycle thermodynamic principles to produce the desired cooling effect. The counter-balance is driven by a third linear motor to cancel motion induced forces that would otherwise be transmitted to the spacecraft. An analog control system is currently used for bearing control. The purpose of this project is to investigate the possibilities for improved performance using digital control. Areas for potential improvement include transient and steady state control characteristics, robustness, reliability, adaptability, alternate control modes, size, weight, and cost. The present control system is targeted for the Intel 80196 microcontroller family. The eventual introduction of application specific integrated circuit (ASIC) technology to this problem may produce a unique and elegant solution both here and in related industrial problems.
Microsystem Cooler Development
NASA Technical Reports Server (NTRS)
Moran, Matthew E.; Wesolek, Danielle M.; Berhane, Bruk T.; Rebello, Keith J.
2004-01-01
A patented microsystem Stirling cooler is under development with potential application to electronics, sensors, optical and radio frequency (RF) systems, microarrays, and other microsystems. The microsystem Stirling cooler is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include: two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines; and a micro-regenerator that stores and releases thermal energy to the working gas during the Stirling cycle. The use of diaphragms eliminates frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were custom fabricated for initial evaluation: two constructed of porous ceramic, and one made of multiple layers of nickel and photoresist in an offset grating pattern. An additional regenerator was prepared with a random stainless steel fiber matrix commonly used in existing Stirling machines for comparison to the custom fabricated regenerators. The candidate regenerators were tested in a piezoelectric-actuated test apparatus designed to simulate the Stirling refrigeration cycle. In parallel with the regenerator testing, electrostatically-driven comb-drive diaphragm actuators for the prototype device have been designed for deep reactive ion etching (DRIE) fabrication.
SAFARI engineering model 50 mK cooler
NASA Astrophysics Data System (ADS)
Duband, L.; Duval, J. M.; Luchier, N.
2014-11-01
SAFARI is an infrared instrument developed by a European based consortium to be flown in SPICA, a Japanese led mission. The SAFARI detectors are transition edge sensors (TES) and require temperatures down to 50 mK for their operation. For that purpose we have developed a hybrid architecture based on the combination of a 300 mK sorption stage and a small adiabatic demagnetization stage. An engineering model has been designed to provide net heat lifts of 0.4 and 14 μW respectively at 50 and 300 mK, with an overall cycle duration of 48 h and a duty cycle objective of over 75%. The cooler is self-contained, fits in a volume of 156 × 312 × 182 mm and is expected to weigh 5.1 kg. It has been designed to withstand static loads of 120 g and a random vibration level of 21 g RMS.
Alternative backing up pump for turbomolecular pumps
Myneni, Ganapati Rao
2003-04-22
As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.
Cryo Cooler Induced Micro-Vibration Disturbances to the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Jedrich, Nick; Zimbelman, Darrell; Turczyn, Mark; Sills, Joel; Voorhees, Carl; Clapp, Brian; Brumfield, Mark (Technical Monitor)
2002-01-01
This paper presents an overview of the Hubble Space Telescope (HST) Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (MCC) system, a description of the micro-vibration characterization testing performed, and a discussion of the simulated performance. The NCC is a reverse Brayton cycle system that employs micro turbo-machinery to provide cooling to the NICMOS instrument. Extensive testing was conducted to quantify the expected on-orbit disturbances caused by the micro turbo-machinery and provide input to a flexible-body dynamic simulation to demonstrate compliance with the HST 7 milli-arcsecond root mean square jitter requirement.
Lightweight Magnetic Cooler With a Reversible Circulator
NASA Technical Reports Server (NTRS)
Chen, Weibo; McCormick, John
2011-01-01
A design of a highly efficient and lightweight space magnetic cooler has been developed that can continuously provide remote/distributed cooling at temperatures in the range of 2 K with a heat sink at about 15 K. The innovative design uses a cryogenic circulator that enables the cooler to operate at a high cycle frequency to achieve a large cooling capacity. The ability to provide remote/distributed cooling not only allows flexible integration with a payload and spacecraft, but also reduces the mass of the magnetic shields needed. The active magnetic regenerative refrigerator (AMRR) system is shown in the figure. This design mainly consists of two identical magnetic regenerators surrounded by their superconducting magnets and a reversible circulator. Each regenerator also has a heat exchanger at its warm end to reject the magnetization heat to the heat sink, and the two regenerators share a cold-end heat exchanger to absorb heat from a cooling target. The circulator controls the flow direction, which cycles in concert with the magnetic fields, to facilitate heat transfer. Helium enters the hot end of the demagnetized column, is cooled by the refrigerant, and passes into the cold-end heat exchanger to absorb heat. The helium then enters the cold end of the magnetized column, absorbing heat from the refrigerant, and enters the hot-end heat exchanger to reject the magnetization heat. The efficient heat transfer in the AMRR allows the system to operate at a relatively short cycle period to achieve a large cooling power. The key mechanical components in the magnetic cooler are the reversible circulator and the magnetic regenerators. The circulator uses non-contacting, self-acting gas bearings and clearance seals to achieve long life and vibration- free operation. There are no valves or mechanical wear in this circulator, so the reliability is predicted to be very high. The magnetic regenerator employs a structured bed configuration. The core consists of a stack of thin GGG disks alternating with thin polymer insulating films. The structured bed reduces flow resistance in the regenerator and therefore the pumping work by the cryogenic circulator. This magnetic cooler will enable cryogenic detectors for sensing infrared, x-ray, gamma-ray, and submillimeter radiation in future science satellites, as well as the detector systems in the Constellation-X (Con-X) and the Single Aperture Far-Infrared observatory (SAFIR). Scientific ap p - lica tions for this innovation include cooling for x-ray micro calorimeter spectrometers used for microanalysis, cryogenic particle detectors, and superconducting tunnel junction de tectors for biomolecule mass spectrometry. The cooler can be scaled to provide very large cooling capacities at very low temperatures, ideal for liquid helium and liquid hydrogen productions.
Controlled rate cooling of fungi using a stirling cycle freezer.
Ryan, Matthew J; Kasulyte-Creasey, Daiva; Kermode, Anthony; San, Shwe Phue; Buddie, Alan G
2014-01-01
The use of a Stirling cycle freezer for cryopreservation is considered to have significant advantages over traditional methodologies including N2 free operation, application of low cooling rates, reduction of sample contamination risks and control of ice nucleation. The study assesses the suitability of an 'N2-free' Stirling Cycle controlled rate freezer for fungi cryopreservation. In total, 77 fungi representing a broad taxonomic coverage were cooled using the N2 free cooler following a cooling rate of -1 degrees C min(-1). Of these, 15 strains were also cryopreserved using a traditional 'N2 gas chamber' controlled rate cooler and a comparison of culture morphology and genomic stability against non-cryopreserved starter cultures was undertaken. In total of 75 fungi survived cryopreservation, only a recalcitrant Basidiomycete and filamentous Chromist failed to survive. No changes were detected in genomic profile after preservation, suggesting that genomic function is not adversely compromised as a result of using 'N2 free' cooling. The results demonstrate the potential of 'N2-free' cooling for the routine cryopreservation of fungi in Biological Resource Centres.
Characterization testing of Lockheed Martin high-power micro pulse tube cryocooler
NASA Astrophysics Data System (ADS)
McKinley, I. M.; Hummel, C. D.; Johnson, D. L.; Rodriguez, J. I.
2017-12-01
This paper describes the thermal vacuum, microphonics, magnetics, and radiation testing and results of a Lockheed Martin high-power micro pulse tube cryocooler. The thermal performance of the microcooler was measured in vacuum for heat reject temperatures between 185 and 300 K. The cooler was driven with a Chroma 61602 AC power source for input powers ranging from 10 to 60 W and drive frequency between 115 and 140 Hz during thermal performance testing. The optimal drive frequency was dependent on both input power and heat reject temperature. In addition, the microphonics of the cooler were measured with the cooler driven by Iris Technologies LCCE-2 and HP-LCCE drive electronics for input powers ranging from 10 to 60 W and drive frequency between 135 and 145 Hz. The exported forces were strongly dependent on input power while only weakly dependent on the drive frequency. Moreover, the exported force in the compressor axis was minimized by closed loop control with the HP-LCCE. The cooler also survived a 500 krad radiation dose while being continuously operated with 30 W of input power at 220 K heat rejection temperature in vacuum. Finally, the DC and AC magnetic fields around the cooler were measured at various locations.
Calculations of air cooler for new subsonic wind tunnel
NASA Astrophysics Data System (ADS)
Rtishcheva, A. S.
2017-10-01
As part of the component development of TsAGI’s new subsonic wind tunnel where the air flow velocity in the closed test section is up to 160 m/sec hydraulic and thermal characteristics of air cooler are calculated. The air cooler is one of the most important components due to its highest hydraulic resistance in the whole wind tunnel design. It is important to minimize its hydraulic resistance to ensure the energy efficiency of wind tunnel fans and the cost-cutting of tests. On the other hand the air cooler is to assure the efficient cooling of air flow in such a manner as to maintain the temperature below 40 °C for seamless operation of measuring equipment. Therefore the relevance of this project is driven by the need to develop the air cooler that would demonstrate low hydraulic resistance of air and high thermal effectiveness of heat exchanging surfaces; insofar as the cooling section must be given up per unit time with the amount of heat Q=30 MW according to preliminary evaluations. On basis of calculation research some variants of air cooler designs are proposed including elliptical tubes, round tubes, and lateral plate-like fins. These designs differ by the number of tubes and plates, geometrical characteristics and the material of finned surfaces (aluminium or cooper). Due to the choice of component configurations a high thermal effectiveness is achieved for finned surfaces. The obtained results form the basis of R&D support in designing the new subsonic wind tunnel.
Thermal energy storage evaluation and life testing
NASA Astrophysics Data System (ADS)
Richter, R.
1983-01-01
Two thermal energy storage (TES) units which were built under a previous contract were tested with a Hi-Cap Vuilleumier cryogenic cooler in the facility of the Hughes Aircraft Corporation. The objective of the program was the evaluation of the behavior of the TES units as well as the determination of the temperature history of the three cold stages of the Vuilleumier cryogenic cooler during cyclic charging and discharging of the TES units. The test results have confirmed that thermal energy storage can provide the necessary thermal power to the hot cylinders of the Vuilleumier cryogenic cooler at the required operating temperatures. Thereby the continuous cooling capability of the cooler during an eclipse when no electrical power is available is being assured. The cold stage temperature amplitudes during a complete charge discharge cycle of the TES units were only about 10% of the amplitudes which were observed when the Hi-Cap Vuilleumier cryogenic cooler was operating without thermal energy storage backup in a simulated orbit of 54 minutes sun exposure and 18 minutes eclipse time. The themal conductivity of the molten thermal energy storage salt was apparently only a fraction of the thermal conductivity which had been assumed for the prediction of the upper heater temperatures. A redesign of the heater temperatures below 1480 degrees F which is now required for full charging of the TES units within 54 minutes with the present heater design.
Linear-drive cryocoolers for the Department of Defense standard advanced dewar assembly (SADA)
NASA Astrophysics Data System (ADS)
Tate, Garin S.
2005-05-01
The Standard Advanced Dewar Assembly (SADA) is the critical module in the Department of Defense (DoD) standardization of scanning second-generation thermal imaging systems. The DoD has established a family of SADAs to fulfill a range of performance requirements for various platforms. The SADA consists of the Infrared Focal Plane Array (IRFPA), Dewar, Command & Control Electronics (C&CE), and the cryogenic cooler, and is used in platforms such as the Apache helicopter, the M1A2 Abrams main battle tank, the M2 Bradley Infantry Fighting Vehicle, and the Javelin Command Launch Unit (CLU). In support of the family of SADAs, the DoD defined a complementary family of tactical linear drive cryocoolers. The Stirling cycle linear drive cryocoolers are utilized to cool the Infrared Focal Plane Arrays (IRFPAs) in the SADAs. These coolers are required to have low input power, a quick cool-down time, low vibration output, low audible noise, and a higher reliability than currently fielded rotary coolers. These coolers must also operate in a military environment with its inherent high vibration level and temperature extremes. This paper will (1) outline the characteristics of each cryocooler, (2) present the status and results of qualification tests, (3) present the status of production efforts, and (4) present the status of efforts to increase linear drive cooler reliability.
On-Orbit Performance of the TES Pulse Tube Cryocooler System and the Instrument - Six Years in Space
NASA Technical Reports Server (NTRS)
Rodriguez, J. I.; Na-Nakornpanom, A.
2011-01-01
The Tropospheric Emission Spectrometer (TES) instrument pulse tube cryocoolers began operation 36 days after launch of the NASA Earth Observing System (EOS) Aura spacecraft on July 15, 2004. TES is designed with four infrared Mercury Cadmium Telluride focal plane arrays in two separate housings cooled by a pair of Northrup Grumman Aerospace Systems (NGAS) single-stage pulse tube cryocoolers. The instrument also makes use of a two-stage passive cooler to cool the optical bench. The instrument is a high-resolution infrared imaging Fourier transform spectrometer with 3.3-15.4 micron spectral coverage. After four weeks of outgassing, the instrument optical bench and focal planes were cooled to their operating temperatures to begin science operations. During the early months of the mission, ice contamination of the cryogenic surfaces including the focal planes led to increased cryocooler loads and the need for periodic decontamination cycles. After a highly successful 5 years of continuous in-space operations, TES was granted a 2 year extension. This paper reports on the TES cryogenic system performance including the two-stage passive cooler. After a brief overview of the cryogenic design, the paper presents detailed data on the highly successful space operation of the pulse tube cryocoolers and instrument thermal design over the past six years since the original turn-on in 2004. The data shows the cryogenic contamination decreased substantially to where decontamination cycles are now performed every six months. The cooler stroke required for constant-temperature operation has not increased indicating near-constant cooler efficiency and the instrument's thermal design has also provided a nearly constant heat rejection sink. At this time TES continues to operate in space providing important Earth science data.
Survey of Cooling Options for Application in a Low-TC Squid System for Fetal Magnetocardiography
NASA Astrophysics Data System (ADS)
Rijpma, A. P.; Uzunbajakau, S.; ter Brake, H. J. M.; Peters, M. J.; Rogalla, H.
2004-06-01
As part of the development of a low-Tc SQUID-based magnetometer system for measuring fetal heart activity, the means of cooling is evaluated. To lower the threshold for the clinical application of this fetal heart monitor, it should be simple to operate. It is, therefore, deemed necessary to replace the liquid helium by a closed-cycle refrigerator. In this paper, the requirements with respect to the cryogenic system are defined. These include operating temperature (4 K), temperature stability (<0.2 K), cooling power (>0.1 W) and requirements on magnetic and mechanical interference. The paper also reviews the most relevant options for the realization of the cryogenic system. After comparison, we selected a 4-K mechanical cooler. To reduce the interference, it is placed at several meters from the magnetometer. The cooling power is to be transferred by circulation of helium.
Aerospace Applications Of High Temperature Superconductivity
NASA Astrophysics Data System (ADS)
Anderson, W. W.
1988-05-01
The existence of superconductors with TcOOK (which implies device operating temper-atures the order of Top ≍45K) opens up a variety of potential applications within the aerospace/defense industry. This is partly due to the existence of well developed cooler technologies to reach this temperature regime and partly due to the present operation of some specialized components at cryogenic temperatures. In particular, LWIR focal planes may operate at 10K with some of the signal processing electronics at an intermediate temperature of 40K. Addition of high Tc superconducting components in the latter system may be "free" in the sense of additional system complexity required. The established techniques for cooling in the 20K to 50K temperature regime are either open cycle, expendable material (stored gas with Joule-Thomson expansion, liquid cryogen or solid cryogen) or mechanical refrigerators (Stirling cycle, Brayton cycle or closed cycle Joule-Thomson). The high Tc materials may also contribute to the development of coolers through magnetically levitated bearings or providing the field for a stage of magnetic refrigeration. The discovery of materials with Tc, 90K has generated a veritable shopping list of applications. The superconductor properties which are of interest for applications are (1) zero resistance, (2) Meissner effect, (3) phase coherence and (4) existence of an energy gap. The zero resistance property is significant in the development of high field magnets requiring neglible power to maintain the field. In addition to the publicized applications to rail guns and electromagnetic launcher, we can think of space born magnets for charged particle shielding or whistler mode propagation through a plasma sheath. Conductor losses dominate attenuation and dispersion in microstrip transmission lines. While the surface impedance of a superconductor is non vanishing, significant improvements in signal transmission may be obtained. The Meissner effect may be utilized for some magnetic shielding applications but the penetration depth and high frequency effects will have to be considered. Phase coherence forms the basis for Josephson junction devices which, in turn are used for mixers, detectors and parametric amplifiers in the microwave/millimeter wave regime and for A/D converters, sampling and switching circuits and voltage standards in electronics. The energy gap has been the basis of optical and IR detection through modulation of the order parameter (or gap energy) by generation of quasi particles.
Estimation of the Thermodynamic Efficiency of a Solid-State Cooler Based on the Multicaloric Effect
NASA Astrophysics Data System (ADS)
Starkov, A. S.; Pakhomov, O. V.; Rodionov, V. V.; Amirov, A. A.; Starkov, I. A.
2018-03-01
The thermodynamic efficiency of using the multicaloric effect (μCE) in solid-state cooler systems has been studied in comparison to single-component caloric effects. This approach is illustrated by example of the Brayton cycle for μCE and magnetocaloric effect (MCE). Based on the results of experiments with Fe48Rh52-PbZr0.53Ti0.47O3 two-layer ferroic composite, the temperature dependence of the relative efficiency is determined and the temperature range is estimated in which the μCE is advantageous to MCE. The proposed theory of μCE is compared to experimental data.
Mitigation of Syngas Cooler Plugging and Fouling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bockelie, Michael J.
This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling ofmore » the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better understanding of deposit formation mechanisms; • performing Techno-Economic-Analysis for a representative IGCC plant to investigate the impact on plant economics, in particular the impacts on the Cost of Electricity (COE), due to plant shutdowns caused by syngas cooler plugging and fouling and potential benefits to plant economics of developing strategies to mitigate syngas cooler fouling; and • performing modeling and pilot scale tests to investigate the potential benefits of using a sorbent (fuel additive) to capture the vaporized metals that result in syngas cooler fouling. All project milestones for BP 1 and BP 2 were achieved. DOE was provided a briefing on our accomplishments in BP1 and BP2 and our proposed plans for Budget Period 3 (BP 3). Based on our research the mitigation technology selected to investigate in BP 3 was the use of a sorbent that can be injected into the gasifier with the fuel slurry to capture vaporized metals that lead to the deposit formation in the syngas cooler. The work effort proposed for BP 3 would have focused on addressing concerns raised by gasification industry personnel for the impacts on gasifier performance of sorbent injection, so that at the end of BP 3 the use of sorbent injection would be at “pre-commercial” stage and ready for use in a Field Demonstration that could be funded by industry or DOE. A Budget Continuation Application (BCA) was submitted to obtain funding for BP3 DOE but DOE chose to not fund the proposed BP3 effort.« less
Life test result of Ricor K529N 1watt linear cryocooler
NASA Astrophysics Data System (ADS)
Nachman, Ilan; Veprik, Alexander; Pundak, Nachman
2007-04-01
The authors summarize the results of the accelerated life testing of the Ricor type K529N 1 Watt linear split Stirling cooler. The test was conducted in the period 2003-2006, during which the cooler accumulated in excess of 27,500 working hours at an elevated ambient temperature, which is equivalent to 45,000 hours at normal ambient conditions, and performed about 7,500 operational cycles including cooldown and steady-state phases. The cryocooler performances were assessed through the cooldown time and power consumption; no visible degradation in performances was observed. After the cooler failure and the compressor disassembling, an electrical short was discovered in the driving coil. The analysis has shown that the wire insulating varnish was not suitable for such elevated temperatures. It is important to note that the cooler under test was taken from the earliest engineering series; in the later manufacturing line military grade wire with high temperature insulation was used, no customer complaints have been recorded in this instance Special attention was paid to the thorough examination of the technical condition of the critical components of the cooler interior. In particular, dynamic piston-cylinder seal, flying leads, internal O-rings and driving coil were examined in the compressor. As to the cold head, we focused on studying the conditions of the dynamic bushing-plunger seal, O-rings and displacer-regenerator. In addition, a leak test was performed to assess the condition of the metallic crushed seals. From the analysis, the authors draw the conclusion that the cooler design is adequate for long life performance (in excess of 20,000 working hours) applications.
James Webb Space Telescope Mid Infra-Red Instrument Pulse-Tube Cryocooler Electronics
NASA Technical Reports Server (NTRS)
Harvey, D.; Flowers, T.; Liu, N.; Moore, K.; Tran, D.; Valenzuela, P.; Franklin, B.; Michaels, D.
2013-01-01
The latest generation of long life, space pulse-tube cryocoolers require electronics capable of controlling self-induced vibration down to a fraction of a newton and coldhead temperature with high accuracy down to a few kelvin. Other functions include engineering diagnostics, heater and valve control, telemetry and safety protection of the cryocooler subsystem against extreme environments and operational anomalies. The electronics are designed to survive the thermal, vibration, shock and radiation environment of launch and orbit, while providing a design life in excess of 10 years on-orbit. A number of our current generation high reliability radiation-hardened electronics units are in various stages of integration on several space flight payloads. This paper describes the features and performance of our latest flight electronics designed for the pulse-tube cryocooler that is the pre-cooler for a closed cycle Joule-Thomson cooler providing 6K cooling for the James Webb Space Telescope (JWST) Mid Infra-Red Instrument (MIRI). The electronics is capable of highly accurate temperature control over the temperature range from 4K to 15K. Self-induced vibration is controlled to low levels on all harmonics up to the 16th. A unique active power filter controls peak-to-peak reflected ripple current on the primary power bus to a very low level. The 9 kg unit is capable of delivering 360W continuous power to NGAS's 3-stage pulse-tube High-Capacity Cryocooler (HCC).
NASA Astrophysics Data System (ADS)
Schmidt, V.; Lehrach, A.
2017-07-01
The Jülich Electric Dipole moment Investigations (JEDI) collaboration in Julich is preparing a direct EDM measurement of protons and deuterons first at the storage ring COSY (COoler SYnchrotron) and later at a dedicated storage ring. Ensuring a precise measurement, various beam and spin manipulating effects have to be considered and investigated. A distortion of the closed orbit is one of the major sources for systematic uncertainties. Therefore misalignments of magnets and residual power supply oscillations are simulated using the MAD-X code in order to analyse their effect on the orbit. The underlying model for all simulations includes the dipoles, quadrupoles and sextupoles at COSY as well as the corrector magnets and BPMs (Beam Position Monitors). Since most sextupoles are only used during beam extraction, the sextupole strengths are set to zero resulting in a linear machine. The optics is adjusted in a way that the dispersion is zero in the straight sections. The closed orbit studies are performed for deuterons with a momentum of 970 MeV/c.
Demonstration of active vibration control on a stirling-cycle cryocooler testbed
NASA Technical Reports Server (NTRS)
Johnson, Bruce G.; Flynn, Frederick J.; Gaffney, Monique S.; Johnson, Dean L.; Ross, Ronald G., Jr.
1992-01-01
SatCon Technology Corporation has demonstrated excellent vibration reduction performance using active control on the JPL Stirling-cycle cryocooler testbed. The authors address the use of classical narrowband feedback control to meet the cryocooler vibration specifications using one cryocooler in a self-cancellation configuration. Similar vibration reduction performance was obtained using a cryocooler back-to-back configuration by actively controlling a reaction mass actuator that was used to mimic the second cooler.
Thermal electron-tunneling devices as coolers and amplifiers
NASA Astrophysics Data System (ADS)
Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo
2016-02-01
Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices.
Thermal electron-tunneling devices as coolers and amplifiers
Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo
2016-01-01
Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices. PMID:26893109
A Mechanical Cryogenic Cooler for the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Jedrich, Nicholas; Zimbelman, Darell; Swift, Walter; Dolan, Francis; Brumfield, Mark (Technical Monitor)
2002-01-01
This paper presents a description of the Hubble Space Telescope (HST) Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (NCC), the cutting edge technology involved, its evolution, performance, and future space applications. The NCC is the primary hardware component of the NICMOS Cooling System comprised of the NCC, an Electronics Support Module, a Capillary Pumped Loop/Radiator, and associated interface harnessing. The system will be installed during extravehicular activities on HST during Servicing Mission 3B scheduled for launch in February 2002. The NCC will be used to revive the NICMOS instrument, which experienced a reduced operational lifetime due to an internal thermal short in its dewar structure, and restore HST scientific infrared capability to operational status. The NCC is a state-of-the-art reverse Turbo-Brayton cycle cooler employing gas bearing micro turbo machinery, driven by advanced power conversion electronics, operating at speeds up to 7300 revolutions per second (rps) to remove heat from the NICMOS instrument.
Insidious Risk of Severe Mycobacterium chimaera Infection in Cardiac Surgery Patients.
Chand, Meera; Lamagni, Theresa; Kranzer, Katharina; Hedge, Jessica; Moore, Ginny; Parks, Simon; Collins, Samuel; Del Ojo Elias, Carlos; Ahmed, Nada; Brown, Tim; Smith, E Grace; Hoffman, Peter; Kirwan, Peter; Mason, Brendan; Smith-Palmer, Alison; Veal, Philip; Lalor, Maeve K; Bennett, Allan; Walker, James; Yeap, Alicia; Isidro Carrion Martin, Antonio; Dolan, Gayle; Bhatt, Sonia; Skingsley, Andrew; Charlett, André; Pearce, David; Russell, Katherine; Kendall, Simon; Klein, Andrew A; Robins, Stephen; Schelenz, Silke; Newsholme, William; Thomas, Stephanie; Collyns, Tim; Davies, Eleri; McMenamin, Jim; Doherty, Lorraine; Peto, Tim E A; Crook, Derrick; Zambon, Maria; Phin, Nick
2017-02-01
An urgent UK investigation was launched to assess risk of invasive Mycobacterium chimaera infection in cardiothoracic surgery and a possible association with cardiopulmonary bypass heater-cooler units following alerts in Switzerland and The Netherlands. Parallel investigations were pursued: (1) identification of cardiopulmonary bypass-associated M. chimaera infection through national laboratory and hospital admissions data linkage; (2) cohort study to assess patient risk; (3) microbiological and aerobiological investigations of heater-coolers in situ and under controlled laboratory conditions; and (4) whole-genome sequencing of clinical and environmental isolates. Eighteen probable cases of cardiopulmonary bypass-associated M. chimaera infection were identified; all except one occurred in adults. Patients had undergone valve replacement in 11 hospitals between 2007 and 2015, a median of 19 months prior to onset (range, 3 months to 5 years). Risk to patients increased after 2010 from <0.2 to 1.65 per 10000 person-years in 2013, a 9-fold rise for infections within 2 years of surgery (rate ratio, 9.08 [95% CI, 1.81-87.76]). Endocarditis was the most common presentation (n = 11). To date, 9 patients have died. Investigations identified aerosol release through breaches in heater-cooler tanks. Mycobacterium chimaera and other pathogens were recovered from water and air samples. Phylogenetic analysis found close clustering of strains from probable cases. We identified low but escalating risk of severe M. chimaera infection associated with heater-coolers with cases in a quarter of cardiothoracic centers. Our investigations strengthen etiological evidence for the role of heater-coolers in transmission and raise the possibility of an ongoing, international point-source outbreak. Active management of heater-coolers and heightened clinical awareness are imperative given the consequences of infection. © Crown copyright 2016.
Asymmetric effects of cooler and warmer winters on beech phenology last beyond spring
NASA Astrophysics Data System (ADS)
Signarbieux, Constant; Toledano, Ester; Sangines, Paula; Fu, Yongshuo; Schlaepfer, Rodolphe; Buttler, Alexandre; Vitasse, Yann
2017-04-01
In temperate trees, the timing of plant growth onset and cessation affect biogeochemical cycles, water and energy balance. Currently, phenological studies largely focus on specific phenophases and on their responses to warming. How differently spring phenology responds to the warming and cooling, and affects the subsequent phases, has not been well investigated. Here, we exposed saplings of Fagus sylvatica L. to warmer and cooler climate during the winter 2013-2014 by conducting a reciprocal transplant experiment between two elevations (1340 vs. 371 m.a.s.l., ca. 6°C difference) in the Swiss Jura mountains. To test the legacy effects of earlier or later budburst on the budset timing, saplings were moved back to their original elevation shortly after the occurrence of budburst in spring 2014. One degree decrease of air temperature resulted in a delay of 10.9 days in budburst dates, whereas one degree of warming advanced the date by 8.8 days. Interestingly, we found an asymmetric effect of the warmer winter vs. cooler winter on the budset timing in autumn: saplings experiencing a cooler winter showed a delay of 31 days in their budset timing compared to the control, whereas saplings experiencing a warmer winter showed 10 days earlier budset. The dependency of spring over autumn phenophases might be partly explained by the building up of the non-structural carbohydrate storage and suggests that the potential delay in growth cessation due to global warming might be smaller than expected. We did not find a significant correlation in budburst dates between 2014 and 2015, indicating that the legacy effects of the different phenophases might be reset during each winter. Adapting phenological models to the whole annual phenological cycle, and considering the different response to cooling and warming, would improve predictions of tree phenology under future climate warming conditions.
A Peltier-based freeze-thaw device for meteorite disaggregation
NASA Astrophysics Data System (ADS)
Ogliore, R. C.
2018-02-01
A Peltier-based freeze-thaw device for the disaggregation of meteorite or other rock samples is described. Meteorite samples are kept in six water-filled cavities inside a thin-walled Al block. This block is held between two Peltier coolers that are automatically cycled between cooling and warming. One cycle takes approximately 20 min. The device can run unattended for months, allowing for ˜10 000 freeze-thaw cycles that will disaggregate meteorites even with relatively low porosity. This device was used to disaggregate ordinary and carbonaceous chondrite regoltih breccia meteorites to search for micrometeoroid impact craters.
Habitat associations of species show consistent but weak responses to climate
Suggitt, Andrew J.; Stefanescu, Constantí; Páramo, Ferran; Oliver, Tom; Anderson, Barbara J.; Hill, Jane K.; Roy, David B.; Brereton, Tom; Thomas, Chris D.
2012-01-01
Different vegetation types can generate variation in microclimates at local scales, potentially buffering species from adverse climates. To determine if species could respond to such microclimates under climatic warming, we evaluated whether ectothermic species (butterflies) can exploit favourable microclimates and alter their use of different habitats in response to year-to-year variation in climate. In both relatively cold (Britain) and warm (Catalonia) regions of their geographical ranges, most species shifted into cooler, closed habitats (e.g. woodland) in hot years, and into warmer, open habitats (e.g. grassland) in cooler years. Additionally, three-quarters of species occurred in closed habitats more frequently in the warm region than in the cool region. Thus, species shift their local distributions and alter their habitat associations to exploit favourable microclimates, although the magnitude of the shift (approx. 1.3% of individuals from open to shade, per degree Celsius) is unlikely to buffer species from impacts of regional climate warming. PMID:22491762
Wheatley, J.C.; Paulson, D.N.; Allen, P.C.
1983-01-04
A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.
Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.
1983-01-01
A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.
Status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera
NASA Astrophysics Data System (ADS)
Golwala, Sunil R.; Bockstiegel, Clint; Brugger, Spencer; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran; Gao, Jiansong; Gill, Amandeep K.; Glenn, Jason; Hollister, Matthew I.; LeDuc, Henry G.; Maloney, Philip R.; Mazin, Benjamin A.; McHugh, Sean G.; Miller, David; Noroozian, Omid; Nguyen, Hien T.; Sayers, Jack; Schlaerth, James A.; Siegel, Seth; Vayonakis, Anastasios K.; Wilson, Philip R.; Zmuidzinas, Jonas
2012-09-01
We present the status of MUSIC, the MUltiwavelength Sub/millimeter Inductance Camera, a new instrument for the Caltech Submillimeter Observatory. MUSIC is designed to have a 14', diffraction-limited field-of-view instrumented with 2304 detectors in 576 spatial pixels and four spectral bands at 0.87, 1.04, 1.33, and 1.98 mm. MUSIC will be used to study dusty star-forming galaxies, galaxy clusters via the Sunyaev-Zeldovich effect, and star formation in our own and nearby galaxies. MUSIC uses broadband superconducting phased-array slot-dipole antennas to form beams, lumpedelement on-chip bandpass filters to define spectral bands, and microwave kinetic inductance detectors to sense incoming light. The focal plane is fabricated in 8 tiles consisting of 72 spatial pixels each. It is coupled to the telescope via an ambient-temperature ellipsoidal mirror and a cold reimaging lens. A cold Lyot stop sits at the image of the primary mirror formed by the ellipsoidal mirror. Dielectric and metal-mesh filters are used to block thermal infrared and out-ofband radiation. The instrument uses a pulse tube cooler and 3He/ 3He/4He closed-cycle cooler to cool the focal plane to below 250 mK. A multilayer shield attenuates Earth's magnetic field. Each focal plane tile is read out by a single pair of coaxes and a HEMT amplifier. The readout system consists of 16 copies of custom-designed ADC/DAC and IF boards coupled to the CASPER ROACH platform. We focus on recent updates on the instrument design and results from the commissioning of the full camera in 2012.
Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle
NASA Astrophysics Data System (ADS)
Abdellaoui, Ezzaalouni Yathreb; Kairouani, Lakdar Kairouani
2017-03-01
In this work, a new dual-evaporator CO2 transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2 vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.
High-Performance Computing Data Center | Computational Science | NREL
liquid cooling to achieve its very low PUE, then captures and reuses waste heat as the primary heating dry cooler that uses refrigerant in a passive cycle to dissipate heat-is reducing onsite water Measuring efficiency through PUE Warm-water liquid cooling Re-using waste heat from computing components
NASA Astrophysics Data System (ADS)
Flannery, Matthew; Fan, Angie; Desai, Tapan G.
2014-03-01
High powered laser diodes are used in a wide variety of applications ranging from telecommunications to industrial applications. Copper microchannel coolers (MCCs) utilizing high velocity, de-ionized water coolant are used to maintain diode temperatures in the recommended range to produce stable optical power output and control output wavelength. However, aggressive erosion and corrosion attack from the coolant limits the lifetime of the cooler to only 6 months of operation. Currently, gold plating is the industry standard for corrosion and erosion protection in MCCs. However, this technique cannot perform a pin-hole free coating and furthermore cannot uniformly cover the complex geometries of current MCCs involving small diameter primary and secondary channels. Advanced Cooling Technologies, Inc., presents a corrosion and erosion resistant coating (ANCERTM) applied by a vapor phase deposition process for enhanced protection of MCCs. To optimize the coating formation and thickness, coated copper samples were tested in 0.125% NaCl solution and high purity de-ionized (DIW) flow loop. The effects of DIW flow rates and qualities on erosion and corrosion of the ANCERTM coated samples were evaluated in long-term erosion and corrosion testing. The robustness of the coating was also evaluated in thermal cycles between 30°C - 75°C. After 1000 hours flow testing and 30 thermal cycles, the ANCERTM coated copper MCCs showed a corrosion rate 100 times lower than the gold plated ones and furthermore were barely affected by flow rates or temperatures thus demonstrating superior corrosion and erosion protection and long term reliability.
Performance, optimization, and latest development of the SRI family of rotary cryocoolers
NASA Astrophysics Data System (ADS)
Dovrtel, Klemen; Megušar, Franc
2017-05-01
In this paper the SRI family of Le-tehnika rotary cryocoolers is presented (SRI401, SRI423/SRI421 and SRI474). The Stirling coolers cooling power range starts from 0.25W to 0.75W at 77K with available temperature range from 60K to 150K and are fitted to typical dewar detector sizes and powers supply voltages. The DDCA performance optimizing procedure is presented. The procedure includes cooler steady state performance mapping and optimization and cooldown optimization. The current cryogenic performance status and reliability evaluation method and figures are presented on the existing and new units. The latest improved SRI401 demonstrated MTTF close to 25'000 hours and the test is still on going.
Primary Exhaust Cooler at the Propulsion Systems Laboratory
1952-09-21
One of the two primary coolers at the Propulsion Systems Laboratory at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Engines could be run in simulated altitude conditions inside the facility’s two 14-foot-diameter and 24-foot-long test chambers. The Propulsion Systems Laboratory was the nation’s only facility that could run large full-size engine systems in controlled altitude conditions. At the time of this photograph, construction of the facility had recently been completed. Although not a wind tunnel, the Propulsion Systems Laboratory generated high-speed airflow through the interior of the engine. The air flow was pushed through the system by large compressors, adjusted by heating or refrigerating equipment, and de-moisturized by air dryers. The exhaust system served two roles: reducing the density of the air in the test chambers to simulate high altitudes and removing hot gases exhausted by the engines being tested. It was necessary to reduce the temperature of the extremely hot engine exhaust before the air reached the exhauster equipment. As the air flow exited through exhaust section of the test chamber, it entered into the giant primary cooler seen in this photograph. Narrow fins or vanes inside the cooler were filled with water. As the air flow passed between the vanes, its heat was transferred to the cooling water. The cooling water was cycled out of the system, carrying with it much of the exhaust heat.
21 CFR 1250.42 - Water systems; constant temperature bottles.
Code of Federal Regulations, 2014 CFR
2014-04-01
... reconstructed conveyances, water coolers shall be an integral part of the closed system. (d) Water filters if... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water systems; constant temperature bottles. 1250... INTERSTATE CONVEYANCE SANITATION Equipment and Operation of Land and Air Conveyances § 1250.42 Water systems...
21 CFR 1250.42 - Water systems; constant temperature bottles.
Code of Federal Regulations, 2012 CFR
2012-04-01
... reconstructed conveyances, water coolers shall be an integral part of the closed system. (d) Water filters if... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water systems; constant temperature bottles. 1250... INTERSTATE CONVEYANCE SANITATION Equipment and Operation of Land and Air Conveyances § 1250.42 Water systems...
Evaporative cooler including one or more rotating cooler louvers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, David W
An evaporative cooler may include an evaporative cooler housing with a duct extending therethrough, a plurality of cooler louvers with respective porous evaporative cooler pads, and a working fluid source conduit. The cooler louvers are arranged within the duct and rotatably connected to the cooler housing along respective louver axes. The source conduit provides an evaporative cooler working fluid to the cooler pads during at least one mode of operation.
Solar tower power plant using a particle-heated steam generator: Modeling and parametric study
NASA Astrophysics Data System (ADS)
Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan
2016-05-01
Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.
Superconducting cable cooling system by helium gas and a mixture of gas and liquid helium
Dean, John W.
1977-01-01
Thermally contacting, oppositely streaming cryogenic fluid streams in the same enclosure in a closed cycle that changes from a cool high pressure helium gas to a cooler reduced pressure helium fluid comprised of a mixture of gas and boiling liquid so as to be near the same temperature but at different pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid in a go leg from a refrigerator at one end of the line as a high pressure helium gas near the normal boiling temperature of helium; then circulating the gas through an expander at the other end of the line where the gas becomes a mixture of reduced pressure gas and boiling liquid at its boiling temperature; then by circulating the mixture in a return leg that is separated from but in thermal contact with the gas in the go leg and in the same enclosure therewith; and finally returning the resulting low pressure gas to the refrigerator for compression into a high pressure gas at T.sub.2 is a closed cycle, where T.sub.1 >T.sub.2, the temperature distribution is such that the line temperature is nearly constant along its length from the refrigerator to the expander due to the boiling of the liquid in the mixture. A heat exchanger between the go and return lines removes the gas from the liquid in the return leg while cooling the go leg.
Buccola, Norman L.
2017-05-31
Green Peter and Foster Dams on the Middle and South Santiam Rivers, Oregon, have altered the annual downstream water temperature profile (cycle). Operation of the dams has resulted in cooler summer releases and warmer autumn releases relative to pre-dam conditions, and that alteration can hinder recovery of various life stages of threatened spring-run Chinook salmon (Oncorhyncus tshawytscha) and winter steelhead (O. mykiss). Lake level management and the use of multiple outlets from varying depths at the dams can enable the maintenance of a temperature regime more closely resembling that in which the fish evolved by releasing warm surface water during summer and cooler, deeper water in the autumn. At Green Peter and Foster Dams, the outlet configuration is such that temperature control is often limited by hydropower production at the dams. Previously calibrated CE-QUAL-W2 water temperature models of Green Peter and Foster Lakes were used to simulate the downstream thermal effects from hypothetical structures and modified operations at the dams. Scenarios with no minimum power production requirements allowed some releases through shallower and deeper outlets (summer and autumn) to achieve better temperature control throughout the year and less year-to-year variability in autumn release temperatures. Scenarios including a hypothetical outlet floating 1 meter below the lake surface resulted in greater ability to release warm water during summer compared to existing structures. Later in Autumn (October 15–December 31), a limited amount of temperature control was realized downstream from Foster Dam by scenarios limited to operational changes with existing structures, resulting in 15-day averages within 1.0 degree Celsius of current operations.
NASA Technical Reports Server (NTRS)
Gully, Willy; Herrero, Fred (Technical Monitor)
2001-01-01
The report summarizes experimental and theoretical work on an Oxford type Stirling Cycle mechanical precooler operating in the temperature range of 13-20 degrees Kelvin. It includes measurements of the thermal losses of particle regenerators made from lead, and rare earth and rare earth alloys in an operating three stage cryocooler. A 6 K hybrid cooler is designed using the technical information gathered on regenerator performance.
NASA Astrophysics Data System (ADS)
Brezgin, V. I.; Brodov, Yu M.; Kultishev, A. Yu
2017-11-01
The report presents improvement methods review in the fields of the steam turbine units design and operation based on modern information technologies application. In accordance with the life cycle methodology support, a conceptual model of the information support system during life cycle main stages (LC) of steam turbine unit is suggested. A classifying system, which ensures the creation of sustainable information links between the engineer team (manufacture’s plant) and customer organizations (power plants), is proposed. Within report, the principle of parameterization expansion beyond the geometric constructions at the design and improvement process of steam turbine unit equipment is proposed, studied and justified. The report presents the steam turbine unit equipment design methodology based on the brand new oil-cooler design system that have been developed and implemented by authors. This design system combines the construction subsystem, which is characterized by extensive usage of family tables and templates, and computation subsystem, which includes a methodology for the thermal-hydraulic zone-by-zone oil coolers design calculations. The report presents data about the developed software for operational monitoring, assessment of equipment parameters features as well as its implementation on five power plants.
Perkins, Kiran M; Lawsin, Adrian; Hasan, Nabeeh A; Strong, Michael; Halpin, Alison L; Rodger, Rachael R; Moulton-Meissner, Heather; Crist, Matthew B; Schwartz, Suzanne; Marders, Julia; Daley, Charles L; Salfinger, Max; Perz, Joseph F
2016-10-14
In the spring of 2015, investigators in Switzerland reported a cluster of six patients with invasive infection with Mycobacterium chimaera, a species of nontuberculous mycobacterium ubiquitous in soil and water. The infected patients had undergone open-heart surgery that used contaminated heater-cooler devices during extracorporeal circulation (1). In July 2015, a Pennsylvania hospital also identified a cluster of invasive nontuberculous mycobacterial infections among open-heart surgery patients. Similar to the Swiss report, a field investigation by the Pennsylvania Department of Health, with assistance from CDC, used both epidemiologic and laboratory evidence to identify an association between invasive Mycobacterium avium complex, including M. chimaera, infections and exposure to contaminated Stöckert 3T heater-cooler devices, all manufactured by LivaNova PLC (formerly Sorin Group Deutschland GmbH) (2). M. chimaera was described as a distinct species of M. avium complex in 2004 (3). The results of the field investigation prompted notification of approximately 1,300 potentially exposed patients.* Although heater-cooler devices are used to regulate patients' blood temperature during cardiopulmonary bypass through water circuits that are closed, these reports suggest that aerosolized M. chimaera from the devices resulted in the invasive infections (1,2). The Food and Drug Administration (FDA) and CDC have issued alerts regarding the need to follow updated manufacturer's instructions for use of the devices, evaluate the devices for contamination, remain vigilant for new infections, and continue to monitor reports from the United States and overseas (2).
USDA-ARS?s Scientific Manuscript database
In plants, the endoplasmic reticulum (ER)-localized omega-3 fatty acid desaturases (Fad3s) increase the production of polyunsaturated fatty acids at cooler temperatures, but the FAD3 genes themselves are typically not upregulated during this adaptive response. Here, we expressed two closely related ...
Hot melt adhesive attachment pad
NASA Technical Reports Server (NTRS)
Fox, R. L.; Frizzill, A. W.; Little, B. D.; Progar, D. J.; Coultrip, R. H.; Couch, R. H.; Gleason, J. R.; Stein, B. A.; Buckley, J. D.; St.clair, T. L. (Inventor)
1984-01-01
A hot melt adhesive attachment pad for releasably securing distinct elements together is described which is particularly useful in the construction industry or a spatial vacuum environment. The attachment pad consists primarily of a cloth selectively impregnated with a charge of hot melt adhesive, a thermo-foil heater, and a thermo-cooler. These components are securely mounted in a mounting assembly. In operation, the operator activates the heating cycle transforming the hot melt adhesive to a substantially liquid state, positions the pad against the attachment surface, and activates the cooling cycle solidifying the adhesive and forming a strong, releasable bond.
NASA Astrophysics Data System (ADS)
Bádenas, Beatriz; Aurell, Marc; Armendáriz, Maider; Rosales, Idoia; García-Ramos, José Carlos; Piñuela, Laura
2012-12-01
A combined sedimentological, lithological and chemostratigraphical (Mg/Ca, δ13C, δ18O) analysis of the Lower Pliensbachian marl-limestone platform successions exposed along the Asturias coastline (northern Spain) has resulted in the characterization of high-frequency cycles. The highest-order sedimentary cycles (i.e. elementary cycles) are centimeter- to deciemeter-thick alternations of bioclastic and muddy laminated/burrowed facies, which do not match the marl-limestone couplets. They encompass three sedimentary stages: deposition from storm-density currents (bioclastic facies), dominant lateral advection of continental terrigenous mud accumulated on to an oxygen-deficient seafloor (laminated facies), and recovery of bottom oxygenation involving the burrowing of laminated sediments (burrowed facies). The close match between the number of elementary cycles recorded during the Jamesoni Subzone in Asturias and Yorkshire (Northern England) gives support to the idea of the influence of a regional climatic factor (i.e. millennial-scale cyclicity). Decimeter- to meter-scale cycles formed by bundles of elementary cycles are thought to record orbitally driven climatic changes (precession or obliquity, depending on the time calibration considered). Lower hemicycles of bundles are dominated by marls/calcareous mudstones, with decreasing burrowing and eventual preservation of laminated facies. They formed during humid periods, which controlled an increase in freshwater and terrigenous input to the platform and quasi-estuarine circulation promoting bottom-anoxia. Upper hemicycles of bundles are dominated by burrowed and bioclastic limestones, thought to be formed under arid conditions with anti-estuarine circulation and an increase of shallow carbonate production and offshore resedimentation. Chemostratigraphic data from belemnites recorded in the muddy laminated and burrowed facies indicate that significant concomitant shifts in δ13C and δ18O occurred during the lower hemicycles of bundles (i.e., humid periods). Isotopic shifts are interpreted as reflecting changes in the balance between the proximity of the terrestrial sources, the local incursion of deeper cooler waters, the storage of organic matter within sediments, and the re-cycling of organic matter, due to long-term relative sea-level rise.
14 CFR 25.1107 - Inter-coolers and after-coolers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand any vibration...
14 CFR 25.1107 - Inter-coolers and after-coolers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand any vibration...
14 CFR 29.1107 - Inter-coolers and after-coolers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand the vibration...
14 CFR 25.1107 - Inter-coolers and after-coolers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand any vibration...
14 CFR 29.1107 - Inter-coolers and after-coolers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand the vibration...
14 CFR 25.1107 - Inter-coolers and after-coolers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand any vibration...
14 CFR 29.1107 - Inter-coolers and after-coolers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand the vibration...
14 CFR 29.1107 - Inter-coolers and after-coolers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand the vibration...
14 CFR 29.1107 - Inter-coolers and after-coolers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1107 Inter-coolers and after-coolers. Each inter-cooler and after-cooler must be able to withstand the vibration...
Air Force Research Laboratory Spacecraft Cryocooler Endurance Evaluation Facility Closing Report
NASA Astrophysics Data System (ADS)
Armstrong, J.; Martin, K. W.; Fraser, T.
2015-12-01
The Air Force Research Laboratory (AFRL) Spacecraft Component Thermal Research Group has been devoted to evaluating lifetime performance of space cryocooler technology for over twenty years. Long-life data is essential for confirming design lifetimes for space cryocoolers. Continuous operation in a simulated space environment is the only accepted method to test for degradation. AFRL has provided raw data and detailed evaluations to cryocooler developers for advancing the technology, correcting discovered deficiencies, and improving cryocooler designs. At AFRL, units of varying design and refrigeration cycles were instrumented in state-of-the-art experiment stands to provide spacelike conditions and were equipped with software data acquisition to track critical cryocooler operating parameters. This data allowed an assessment of the technology's ability to meet the desired lifetime and documented any long-term changes in performance. This paper will outline a final report of the various flight cryocoolers tested in our laboratory. The data summarized includes the seven cryocoolers tested during 2014-2015. These seven coolers have a combined total of 433,326 hours (49.5 years) of operation.
Tunable diode-laser heterodyne spectrometer for remote observations near 8 microns
NASA Technical Reports Server (NTRS)
Glenar, D.; Kostiuk, T.; Jennings, D. E.; Buhl, D.; Mumma, M. J.
1982-01-01
A diode-laser-based, ultrahigh resolution IR heterodyne spectrometer for laboratory and field use has been developed for operation between 7.5 and 8.5 microns. The local oscillator is a PbSe tunable diode laser kept continuously at operating temperatures of 12-60 K using a closed-cycle cooler. The laser output frequency is controlled and stabilized using a high-precision diode current supply, constant temperature controller, and a shock isolator mounted between the refrigerator cold tip and the diode mount. The system largely employs reflecting optics to minimize losses from internal reflection and absorption and to eliminate chromatic effects. Spectral analysis of the diode-laser output between 0 and 1 GHz reveals excess noise at many diode current settings, which limits the IR spectral regions over which useful heterodyne operation can be achieved. Observations have been made of atmospheric N2O, O3, and CH4 between 1170 and 1200/cm, using both a single-frequency swept IF channel and a 64-channel RF spectral line receiver with a total IF coverage of 1600 MHz.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.
2009-01-01
A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, OH. This is a closed-cycle system that incorporates an electrically heated reactor core module, turbo alternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.
2010-01-01
A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.
McElroy, Matthew T
2014-01-01
Physiological function in ectotherms is tightly linked to body temperature. As a result, the thermal sensitivity of physiological function may evolve to optimize fitness across different thermal environments. One hypothesis for the evolution of thermal sensitivity, coadaptation, predicts that optimal temperatures for performance should evolve to match the temperatures that an organism experiences in nature. Another hypothesis, countergradient variation, posits that genetic variation can compensate for decreased performance in cool environments, leading to physiological phenotypes that do not track environmental temperatures. On Mo'orea, French Polynesia, thermal ecology and physiology were studied in two morphologically similar skinks that differ in habitat use. Previous studies show that Emoia impar tends to inhabit closed-canopy and interior habitats that are cooler compared to those inhabited by Emoia cyanura, but these differences had not been quantified on Mo'orea. The goal of this study was to determine whether this pattern of habitat partitioning exists on Mo'orea and relates to interspecific differences in thermal physiology and to evaluate whether the evolution of thermal sensitivity supports coadaptation or countergradient variation. I found that E. impar inhabits closed-canopy habitats with cooler substrates and with higher altitudes compared to habitats of E. cyanura. Although the two species do not differ significantly in critical thermal minimum, E. impar has a significantly lower preferred body temperature and critical thermal maximum than does E. cyanura. Despite a preference for cooler habitats and temperatures, E. impar has a warmer optimal temperature for sprint speed and sprints faster than E. cyanura at all temperatures, which supports the countergradient model of thermal adaptation. These results are robust to three different curve-fitting functions and support the view that generalist/specialist trade-offs do not universally constrain the evolution of performance curves.
U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenblatt, Jeffery B.; Young, Scott J.; Yang, Hung-Chia
Amazon Mechanical Turk was used, for the first time, to collect statistically representative survey data from U.S. households on the presence, number, type and usage of refrigerators, freezers, and various “miscellaneous” refrigeration products (wine/beverage coolers, residential icemakers and non-vapor compression refrigerators and freezers), along with household and demographic information. Such products have been poorly studied to date, with almost no information available about shipments, stocks, capacities, energy use, etc. A total of 9,981 clean survey responses were obtained from five distinct surveys deployed in 2012. General refrigeration product survey responses were weighted to demographics in the U.S. Energy Information Administration’smore » Residential Energy Consumption Survey 2009 dataset. Miscellaneous refrigeration product survey responses were weighted according to demographics of product ownership found in the general refrigeration product surveys. Model number matching for a portion of miscellaneous refrigeration product responses allowed validation of refrigeration product characteristics, which enabled more accurate estimates of the penetrations of these products in U.S. households. We estimated that there were 12.3±1.0 million wine/beverage coolers, 5.5(–3.5,+3.2) million residential icemakers and 4.4(–2.7,+2.3) million non-vapor compression refrigerators in U.S. households in 2012. (All numerical results are expressed with ranges indicating the 95% confidence interval.) No evidence was found for the existence of non-vapor compression freezers. Moreover, we found that 15% of wine/beverage coolers used vapor compression cooling technology, while 85% used thermoelectric cooling technology, with the vast majority of thermoelectric units having capacities of less than 30 wine bottles (approximately 3.5 cubic feet). No evidence was found for the existence of wine/beverage coolers with absorption cooling technology. Additionally, we estimated that there were 3.6±1.0 million hybrid refrigerator-wine/beverage coolers and 0.9±0.5 million hybrid freezer-wine/beverage coolers in U.S. households. We also obtained estimates of miscellaneous refrigeration product capacities, lifetimes, purchase and installation costs, repair frequencies and costs, and maintenance costs. For wine/beverage coolers, we also obtained information on the penetration of built-in units, AC/DC operating capability, the use of internal lights, and distributions of door opening frequencies. This information is essential to develop detailed estimates of national energy usage and life-cycle costs, and would be helpful in obtaining information on other plug-load appliances. Additional information not highlighted in the main report was presented in Appendices.« less
U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenblatt, Jeffery B.; Young, Scott J.; Yang, Hung-Chia
Amazon Mechanical Turk was used, for the first time, to collect statistically representative survey data from U.S. households on the presence, number, type and usage of refrigerators, freezers, and various “miscellaneous” refrigeration products (wine/beverage coolers, residential icemakers and non-vapor compression refrigerators and freezers), along with household and demographic information. Such products have been poorly studied to date, with almost no information available about shipments, stocks, capacities, energy use, etc. A total of 9,820 clean survey responses were obtained from four distinct surveys deployed in 2012. General refrigeration product survey responses were weighted to demographics in the U.S. Energy Information Administration’smore » Residential Energy Consumption Survey 2009 dataset. Miscellaneous refrigeration product survey responses were weighted according to demographics of product ownership found in the general refrigeration product surveys. Model number matching for a portion of miscellaneous refrigeration product responses allowed validation of refrigeration product characteristics, which enabled more accurate estimates of the penetrations of these products in U.S. households. We estimated that there were 12.3±1.0 million wine/beverage coolers, 5.5(–3.5,+3.2) million residential icemakers and 2.9(–2.5,+4.5) million non-vapor compression refrigerators in U.S. households in 2012. (All numerical results are expressed with ranges indicating the 95% confidence interval.) No evidence was found for the existence of non-vapor compression freezers. Moreover, we found that 15% of wine/beverage coolers used vapor compression cooling technology, while 85% used thermoelectric cooling technology, with the vast majority of thermoelectric units having capacities of less than 30 wine bottles (approximately 3.5 cubic feet). No evidence was found for the existence of wine/beverage coolers with absorption cooling technology. Additionally, we estimated that there were 3.6±1.0 million hybrid refrigerator-wine/beverage coolers and 0.9±0.5 million hybrid freezer-wine/beverage coolers in U.S. households. We also obtained estimates of miscellaneous refrigeration product capacities, lifetimes, purchase and installation costs, repair frequencies and costs, and maintenance costs. For wine/beverage coolers, we also obtained information on the penetration of built-in units, AC/DC operating capability, the use of internal lights, and distributions of door opening frequencies. This information is essential to develop detailed estimates of national energy usage and life-cycle costs, and would be helpful in obtaining information on other plug-load appliances. Additional information not highlighted in the main report was presented in Appendices.« less
Pulse tube cryocooler for IR applications
NASA Astrophysics Data System (ADS)
Korf, H.; Ruhlich, I.; Mai, M.; Thummes, G.
2005-05-01
Pulse tube cryocoolers (PTC) can be regarded as the next step in the development of the Stirling cooler. The major advantage vs. the Stirling cooler is the omission of any moving part in the cold head, resulting in significantly increased MTTF. Further advantages are higher mechanical robustness and stability and the potential for cost reduction. AIM developed PTC's for several years in close cooperation with the University of Giessen. As a recent result at AIM, Coaxial PTC cold head are available within the outline dimension of typical IR Stirling cold head of 13mm diameter. The achieved performance data are comparable to the serial data of the Stirling cold head. This PTC cold head is designed to be operated in the orifice mode without a double inlet which is known to cause instabilities. Technical details and performance data represent the current technical status at AIM.
Structural changes in the hot Algol OGLE-LMC-DPV-097 and its disc related to its long cycle
NASA Astrophysics Data System (ADS)
Garcés L, J.; Mennickent, R. E.; Djurašević, G.; Poleski, R.; Soszyński, I.
2018-06-01
Double Periodic Variables (DPVs) are hot Algols showing a long photometric cycle of uncertain origin. We report the discovery of changes in the orbital light curve of OGLE-LMC-DPV-097 which depend on the phase of its long photometric cycle. During the ascending branch of the long cycle the brightness at the first quadrature is larger than during the second quadrature, during the maximum of the long cycle the brightness is basically the same at both quadratures, during the descending branch the brightness at the second quadrature is larger than during the first quadrature, and during the minimum of the long cycle the secondary minimum disappears. We model the light curve at different phases of the long cycle and find that the data are consistent with changes in the properties of the accretion disc and two disc spots. The disc's size and temperature change with the long-cycle period. We find a smaller and hotter disc at minimum, and larger and cooler disc at maximum. The spot temperatures, locations, and angular sizes also show variability during the long cycle.
Cryogenic Propellant Long-term Storage With Zero Boil-off
NASA Technical Reports Server (NTRS)
Hedayat, A.; Hastings, L. J.; Sims, J.; Plachta, D. W.
2001-01-01
Significant boil-off losses of cryogenic propellant storage systems in long-duration space mission applications result in additional propellant and large tanks. The zero boil-off (ZBO) concept consists of an active cryo-cooling system integrated with traditional passive thermal insulation. The potential mass reductions with the ZBO concept are Substantial; therefore, further exploration through technology programs has been initiated within NASA. A large-scale demonstration of the ZBO concept has been devised utilizing the Marshall Space Flight Center (MSFC) Multipurpose Hydrogen Test Bed (MHTB) along with a cryo-cooler unit. The cryo-cooler with the MHTB and spraybar recirculation/mixer system in a manner that enables thermal energy removal at a rate that equals the total tank heat leak. The liquid hydrogen is withdrawn from the tank, passed through a heat exchanger, and then the chilled liquid is sprayed back into the tank through a spraybar. The test series will be performed over a 30-40 day period. Tests will be conducted at multiple fill levels and various mixer operational cycles to demonstrate concept viability and to provide benchmark data to be used in analytical model development. In this paper. analytical models for heat flows through the MHTB tank, cryo-cooler performance. and spraybar performance will be presented.
CFD modeling of thermoelectric generators in automotive EGR-coolers
NASA Astrophysics Data System (ADS)
Högblom, Olle; Andersson, Ronnie
2012-06-01
A large amount of the waste heat in the exhaust gases from diesel engines is removed in the exhaust gas recirculation (EGR) cooler. Introducing a thermoelectric generator (TEG) in an EGR cooler requires a completely new design of the heat exchanger. To accomplish that a model of the TEG-EGR system is required. In this work, a transient 3D CFD model for simulation of gas flow, heat transfer and power generation has been developed. This model allows critical design parameters in the TEG-EGR to be identified and design requirements for the systems to be specified. Besides the prediction of Seebeck, Peltier, Thomson and Joule effects, the simulations also give detailed insight to the temperature gradients in the gas-phase and inside the thermoelectric (TE) elements. The model is a very valuable tool to identify bottlenecks, improve design, select optimal TE materials and operating conditions. The results show that the greatest heat transfer resistance is located in the gas phase and it is critical to reduce this in order to achieve a large temperature difference over the thermoelectric elements without compromising on the maximum allowable pressure drop in the system. Further results from an investigation of the thermoelectric performance during a vehicle test cycle is presented.
Lifetime test and heritage on orbit of coolers for space use
NASA Astrophysics Data System (ADS)
Narasaki, Katsuhiro; Tsunematsu, Shoji; Ootsuka, Kiyomi; Kanao, Kenichi; Okabayashi, Akinobu; Mitsuda, Kazuhisa; Murakami, Hiroshi; Nakagawa, Takao; Kikuchi, Kenichi; Sato, Ryota; Sugita, Hiroyuki; Sato, Youichi; Murakami, Masahide; Kobayashi, Masanori
2012-04-01
This report describes the results and operating status of ground lifetime testing and achievements on orbit of coolers for space use. Ground lifetime tests of coolers of three types were conducted to demonstrate their long life and reliability. Three single-stage Stirling coolers were tested for 89,016, 71,871 and 68,273 h from 1998, a two-stage Stirling cooler was tested for 72,906 h, and a 4-K class cooler with a two-stage Stirling cooler and a Joule-Thomson cooler was tested for over 2.5 years. After lifetime tests were completed, a few coolers were investigated to determine the cause of the cooling performance degradation. Additionally, the filled gas of the coolers was analyzed. These coolers have shown good results on orbit. Three single-stage Stirling coolers were carried on the X-ray astronomical satellite "SUZAKU" (launched in July 2005), Japanese lunar polar orbiter "KAGUYA" (launched in September 2007), and the Japanese Venus Climate Orbiter "AKATSUKI" (launched in June 2010). Two units of a two-stage Stirling cooler were carried on the infrared astronomical satellite "AKARI" launched in February 2006. A 4-K class cooler was carried on the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) aboard the Japanese Experiment Module (JEM) of the International Space Station (ISS). SMILES was launched in September 2009.
Multidimensional computer simulation of Stirling cycle engines
NASA Technical Reports Server (NTRS)
Hall, C. A.; Porsching, T. A.; Medley, J.; Tew, R. C.
1990-01-01
The computer code ALGAE (algorithms for the gas equations) treats incompressible, thermally expandable, or locally compressible flows in complicated two-dimensional flow regions. The solution method, finite differencing schemes, and basic modeling of the field equations in ALGAE are applicable to engineering design settings of the type found in Stirling cycle engines. The use of ALGAE to model multiple components of the space power research engine (SPRE) is reported. Videotape computer simulations of the transient behavior of the working gas (helium) in the heater-regenerator-cooler complex of the SPRE demonstrate the usefulness of such a program in providing information on thermal and hydraulic phenomena in multiple component sections of the SPRE.
High Efficiency, Low Power Thermoelectric Coolers.
1979-01-01
NA~ 2 1128- ak ~iI I " N --- -- ... .I S/ I’ 7 I fir- 114 -- ; I ’ I J tf1 NN N .’i M i 29 MOM___I p ~p. .* S S I I Ii N *0 - i. - -i - -Y...compression seal. 3.4.2 Evacuate tube. 3.4.3 Close off vacuum valve after thirty minutes. 3.4.4 With the torch, carefully melt the contents of the tube...tube of material is cool enough to hold with the hand, close vacuum valve and use the torch to seal the tube about 2 inches above the top of the
High power laser diodes at 14xx nm wavelength range for industrial and medical applications
NASA Astrophysics Data System (ADS)
Telkkälä, Jarkko; Boucart, Julien; Krejci, Martin; Crum, Trevor; Lichtenstein, Norbert
2014-03-01
We report on the development of the latest generation of high power laser diodes at 14xx nm wavelength range suitable for industrial applications such as plastics welding and medical applications including acne treatment, skin rejuvenation and surgery. The paper presents the newest chip generation developed at II-VI Laser Enterprise, increasing the output power and the power conversion efficiency while retaining the reliability of the initial design. At an emission wavelength around 1440 nm we applied the improved design to a variety of assemblies exhibiting maximum power values as high as 7 W for broad-area single emitters. For 1 cm wide bars on conductive coolers and for bars on active micro channel coolers we have obtained 50 W and 72 W in continuous wave (cw) operation respectively. The maximum power measured for a 1 cm bar operated with 50 μs pulse width and 0.01% duty cycle was 184 W, demonstrating the potential of the chip design for optimized cooling. Power conversion efficiency values as high as 50% for a single emitter device and over 40% for mounted bars have been demonstrated, reducing the required power budget to operate the devices. Both active and conductive bar assembly configurations show polarization purity greater than 98%. Life testing has been conducted at 95 A, 50% duty cycle and 0.5 Hz hard pulsed operation for bars which were soldered to conductive copper CS mounts using our hard solder technology. The results after 5500 h, or 10 million "on-off" cycles show stable operation.
NASA Astrophysics Data System (ADS)
Porter, D. F.; Springer, S. R.; Padman, L.; Fricker, H. A.; Bell, R. E.
2017-12-01
The upper layers of the Southern Ocean where it meets the Antarctic ice sheet undergoes a large seasonal cycle controlled by surface radiation and by freshwater fluxes, both of which are strongly influenced by sea ice. In regions where seasonal sea ice and icebergs limit use of ice-tethered profilers and conventional moorings, autonomous profiling floats can sample the upper ocean. The deployment of seven Apex floats (by sea) and six ALAMO floats (by air) provides unique upper ocean hydrographic data in the Ross Sea close to the Ross Ice Shelf front. A novel choice of mission parameters - setting parking depth deeper than the seabed - limits their drift, allowing us to deploy the floats close to the ice shelf front, while sea ice avoidance algorithms allow the floats to to sample through winter under sea ice. Hydrographic profiles show the detailed development of the seasonal mixed layer close to the Ross front, and interannual variability of the seasonal mixed layer and deeper water masses on the central Ross Sea continental shelf. After the sea ice breakup in spring, a warm and fresh surface mixed layer develops, further warming and deepening throughout the summer. The mixed layer deepens, with maximum temperatures exceeding 0ºC in mid-February. By March, the surface energy budget becomes negative and sea ice begins to form, creating a cold, saline and dense surface layer. Once these processes overcome the stable summer stratification, convection erodes the surface mixed layer, mixing some heat downwards to deeper layers. There is considerable interannual variability in the evolution and strength of the surface mixed layer: summers with shorter ice-free periods result in a cooler and shallower surface mixed layer, which accumulates less heat than the summers with longer ice-free periods. Early ice breakup occurred in all floats in 2016/17 summer, enhancing the absorbed solar flux leading to a warmer surface mixed layer. Together, these unique measurements from autonomous profilers provide insight into the hydrographic state of the Ross Sea at the start of the spring period of sea-ice breakup, and how ocean mixing and sea ice interact to initiate the summer open-water season.
Numerical thermal analyses of heat exchangers for the stirling engine application
NASA Technical Reports Server (NTRS)
Kannapareddy, Mohan Raj
1995-01-01
The Regenerator, Cooler and Heater for the NASA Space Power Research Engine (SPRE) have been analyzed in detail for laminar, incompressible and oscillatory flow conditions. Each component has been analyzed independently and in detail with the regenerator being modeled as two-parallel-plates channel with a solid wall. The ends of the channel are exposed to two reservoir maintained at different temperature thus providing an axial temperature gradient along the channel. The cooler and heater components have been modeled as circular pipes with isothermal walls. Two different types of thermal boundary conditions have been investigated for the cooler and heater, namely, symmetric and asymmetric temperature inflow. In symmetric temperature inflow the flow enters the channel with the same temperature in throughout the velocity cycle whereas, in asymmetric temperature inflow the flow enters with a different temperature in each half cycle. The study was conducted over a wide range of Maximum Reynolds number (RE(max) varying from 75 to 60000, Valensi number (Va) from 2.5 to 800, and relative amplitude of fluid displacement (A(sub r) from 0.357 to 1.34. A two dimensional Finite volume method based on the SIMPLE algorithm was used to solve the governing partial differential equations. Post processing programs were developed to effectively describe the heat transfer mechanism under oscillatory flows. The computer code was validated by comparing with existing analytical solutions for oscillating flows. The thermal field have been studied with the help of temperature contour and three dimensional plots. The instantaneous friction factor, wall heat flux and heat transfer coefficient have been examined. It has been concluded that in general, the frictional factor and heat transfer coefficient are higher under oscillatory flow conditions when the Valensi number is high. Also, the thermal efficiency decreases for lower A(r) values. Further, the usual steady state definition for the heat transfer coefficient does not seem to be valid.
Corey, Emily; Linnansaari, Tommi; Cunjak, Richard A; Currie, Suzanne
2017-01-01
The frequency of extreme thermal events in temperate freshwater systems is expected to increase alongside global surface temperature. The Miramichi River, located in eastern Canada, is a prominent Atlantic salmon ( Salmo salar ) river where water temperatures can exceed the proposed upper thermal limit for the species (~27°C). Current legislation closes the river to recreational angling when water temperatures exceed 20°C for two consecutive nights. We aimed to examine how natural thermal variation, representative of extreme high thermal events, affected the thermal tolerance and physiology of wild, juvenile Atlantic salmon. We acclimated fish to four thermal cycles, characteristic of real-world thermal conditions while varying daily thermal minima (16°C, 18°C, 20°C or 22°C) and diel thermal fluctuation (e.g. Δ5°C-Δ9°C). In each cycling condition, we assessed the role that thermal minima played on the acute thermal tolerance (critical thermal maximum, (CTMax)), physiological (e.g. heat shock protein 70 (HSP70), ubiquitin) and energetic (e.g. hepatic glycogen, blood glucose and lactate) status of juvenile Atlantic salmon throughout repeated thermal cycles. Exposure to 16-21°C significantly increased CTMax (+0.9°C) compared to a stable acclimation temperature (16°C), as did exposure to diel thermal fluctuations of 18-27°C, 20-27°C and 22-27°C, yet repeated exposure provided no further increases in acute thermal tolerance. In comparison to the reference condition (16-21°C), consecutive days of high temperature cycling with different thermal minima resulted in significant increases in HSP70 and ubiquitin, a significant decrease in liver glycogen, and no significant cumulative effect on either blood glucose or lactate. However, comparison between thermally taxed treatments suggested the diel thermal minima had little influence on the physiological or energetic response of juvenile salmon, despite the variable thermal cycling condition. Our results suggest that relatively cooler night temperatures in the summer months may play a limited role in mitigating physiological stress throughout warm diel cycle events.
Functioning efficiency of intermediate coolers of multistage steam-jet ejectors of steam turbines
NASA Astrophysics Data System (ADS)
Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Zhelonkin, N. V.; Murmanskii, I. B.
2017-03-01
Designs of various types of intermediate coolers of multistage ejectors are analyzed and thermal effectiveness and gas-dynamic resistance of coolers are estimated. Data on quantity of steam condensed from steam-air mixture in stage I of an ejector cooler was obtained on the basis of experimental results. It is established that the amount of steam condensed in the cooler constitutes 0.6-0.7 and is almost independent of operating steam pressure (and, consequently, of steam flow) and air amount in steam-air mixture. It is suggested to estimate the amount of condensed steam in a cooler of stage I based on comparison of computed and experimental characteristics of stage II. Computation taking this hypothesis for main types of mass produced multistage ejectors into account shows that 0.60-0.85 of steam amount should be condensed in stage I of the cooler. For ejectors with "pipe-in-pipe" type coolers (EPO-3-200) and helical coolers (EO-30), amount of condensed steam may reach 0.93-0.98. Estimation of gas-dynamic resistance of coolers shows that resistance from steam side in coolers with built-in and remote pipe bundle constitutes 100-300 Pa. Gas-dynamic resistance of "pipein- pipe" and helical type coolers is significantly higher (3-6 times) compared with pipe bundle. However, performance by "dry" (atmospheric) air is higher for ejectors with relatively high gas-dynamic resistance of coolers than those with low resistance at approximately equal operating flow values of ejectors.
Collins Cryocooler Design for Zero-Boil Storage of Liquid Hydrogen and Oxygen in Space
NASA Astrophysics Data System (ADS)
Segado, M. A.; Hannon, C. L.; Brisson, J. G.
2010-04-01
Several models of multi-stage cryocoolers are developed for zero-boil-off storage of liquid hydrogen and oxygen in space. The thermodynamic cycles are based on a modified Collins cycle being developed by MIT and AMTI, and each configuration is optimized for maximum efficiency by varying the mass flows, heat exchanger UA distribution, and other variables where applicable, subject to the required heat loads of 100 W at 100 K and 20 W at 25 K. By using double expanders connected in series with the heat loads in one or more stages of the cooler, we were able to achieve predicted efficiency gains of 10-24% over single expander designs.
A large-format imager for the SkyMapper Survey Telescope
NASA Astrophysics Data System (ADS)
Granlund, A.; Conroy, P. G.; Keller, S. C.; Oates, A. P.; Schmidt, B.; Waterson, M. F.; Kowald, E.; Dawson, M. I.
2006-06-01
The Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) at Mt Stromlo Observatory is developing a wide-field Cassegrain Imager for the new 1.3m SkyMapper Survey Telescope under construction for Siding Spring Observatory, NSW, Australia. The Imager features a fast-readout, low-noise 268 Million pixel CCD mosaic that provides a 5.7 square degree field of view. Given the close relative sizes of the telescope and Imager, the work is proceeding in close collaboration with the telescope's manufacturer, Electro Optics Systems Pty Ltd (Canberra, Australia). The design of the SkyMapper Imager focal plane is based on E2V (Chelmsford, UK) deep depletion CCDs. These devices have 2048 x 4096 15 micron pixels, and provide a 91% filling factor in our mosaic configuration of 4 x 8 chips. In addition, the devices have excellent quantum efficiency from 300nm-950nm, near perfect cosmetics, and low-read noise, making them well suited to the all-sky ultraviolet through near-IR Southern Sky Survey to be conducted by the telescope. The array will be controlled using modified versions of the new IOTA controllers being developed for Pan-STARRS by Onaka and Tonry et al. These controllers provide a cost effective, low-volume, high speed solution for our detector read-out requirements. The system will have an integrated 6-filter exchanger, and Shack-Hartmann optics, and will be cooled by closed-cycle helium coolers. This paper will present the specifications, and opto-mechanical and detector control design of the SkyMapper Imager, including the test results of the detector characterisation and manufacturing progress.
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
NASA Technical Reports Server (NTRS)
Glenar, D.; Kostiuk, T.; Jennings, D. E.; Mumma, M. J.
1980-01-01
A diode laser based IR heterodyne spectrometer for laboratory and field use was developed for high efficiency operation between 7.5 and 8.5 microns. The local oscillator is a PbSSe tunable diode laser kept continuously at operating temperatures of 12-60 K using a closed cycle cooler. The laser output frequency is controlled and stabilized using a high precision diode current supply, constant temperature controller, and a shock isolator mounted between the refrigerator cold tip and the diode mount. Single laser modes are selected by a grating placed in the local oscillator beam. The system employs reflecting optics throughout to minimize losses from internal reflection and absorption, and to eliminate chromatic effects. Spectral analysis of the diode laser output between 0 and 1 GHz reveals excess noise at many diode current settings, which limits the infrared spectral regions over which useful heterodyne operation can be achieved. System performance has been studied by making heterodyne measurements of etalon fringes and several Freon 13 (CF3Cl) absorption lines against a laboratory blackbody source. Preliminary field tests have also been performed using the Sun as a source.
Design of a 2-mm Wavelength KIDs Prototype Camera for the Large Millimeter Telescope
NASA Astrophysics Data System (ADS)
Velázquez, M.; Ferrusca, D.; Castillo-Dominguez, E.; Ibarra-Medel, E.; Ventura, S.; Gómez-Rivera, V.; Hughes, D.; Aretxaga, I.; Grant, W.; Doyle, S.; Mauskopf, P.
2016-08-01
A new camera is being developed for the Large Millimeter Telescope (Sierra Negra, México) by an international collaboration with the University of Massachusetts, the University of Cardiff, and Arizona State University. The camera is based on kinetic inductance detectors (KIDs), a very promising technology due to their sensitivity and especially, their compatibility with frequency domain multiplexing at microwave frequencies allowing large format arrays, in comparison with other detection technologies for mm-wavelength astronomy. The instrument will have a 100 pixels array of KIDs to image the 2-mm wavelength band and is designed for closed cycle operation using a pulse tube cryocooler along with a three-stage sub-kelvin 3He cooler to provide a 250 mK detector stage. RF cabling is used to readout the detectors from room temperature to 250 mK focal plane, and the amplification stage is achieved with a low-noise amplifier operating at 4 K. The readout electronics will be based on open-source reconfigurable open architecture computing hardware in order to perform real-time microwave transmission measurements and monitoring the resonance frequency of each detector, as well as the detection process.
Rabanus, D; Graf, U U; Philipp, M; Ricken, O; Stutzki, J; Vowinkel, B; Wiedner, M C; Walther, C; Fischer, M; Faist, J
2009-02-02
We demonstrate for the first time the closure of an electronic phase lock loop for a continuous-wave quantum cascade laser (QCL) at 1.5 THz. The QCL is operated in a closed cycle cryo cooler. We achieved a frequency stability of better than 100 Hz, limited by the resolution bandwidth of the spectrum analyser. The PLL electronics make use of the intermediate frequency (IF) obtained from a hot electron bolometer (HEB) which is downconverted to a PLL IF of 125 MHz. The coarse selection of the longitudinal mode and the fine tuning is achieved via the bias voltage of the QCL. Within a QCL cavity mode, the free-running QCL shows frequency fluctuations of about 5 MHz, which the PLL circuit is able to control via the Stark-shift of the QCL gain material. Temperature dependent tuning is shown to be nonlinear, and of the order of -16 MHz/K. Additionally we have used the QCL as local oscillator (LO) to pump an HEB and perform, again for the first time at 1.5 THz, a heterodyne experiment, and obtain a receiver noise temperature of 1741 K.
Could Ultracool Dwarfs Have Sun-Like Activity?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-11-01
Solar-like stars exhibit magnetic cycles; our Sun, for instance, displays an 11-year period in its activity, manifesting as cyclic changes in radiation levels, the number of sunspots and flares, and ejection of solar material. Over the span of two activity cycles, the Suns magnetic field flips polarity and then returns to its original state.An artists illustration comparing the Sun to TRAPPIST-1, an ultracool dwarf star known to host several planets. [ESO]But what about the magnetic behavior of objects near the cooler end of the stellar main sequence do they exhibit similar activity cycles?Effects of a Convecting InteriorDwarf stars have made headlines in recent years due to their potential to harbor exoplanets. Because these cooler stars have lower flux levels compared to the Sun, their habitable zones lie much closer to the stars. The magnetic behavior of these stars is therefore important to understand: could ultracool dwarfs exhibit solar-like activity cycles that would affect planets with close orbits?The differences in internal structure between different mass stars. Ultracool dwarfs have fully convective interiors. [www.sun.org]Theres a major difference between ultracool dwarfs (stars of spectral type higher than M7 and brown dwarfs) and Sun-like stars: their internal structures. Sun-like stars have a convective envelope that surrounds a radiative core. The interiors of cool, low-mass objects, on the other hand, are fully convective.Based on theoretical studies of how magnetism is generated in stars, its thought that the fully convective interiors of ultracool dwarfs cant support large-scale magnetic field formation. This should prevent these stars from exhibiting activity cycles like the Sun. But recent radio observations of dwarf stars have led scientist Matthew Route (ITaP Research Computing, Purdue University) to question these models.A Reversing Field?During observations of the brown dwarf star J1047+21 in 20102011, radio flares were detected with emission primarily polarized in a single direction. The dwarfs flares in late 2013, however, all showed polarization in the opposite direction. Could this be an indication that J1047+21 has a stable, global dipolar field that flipped polarity in between the two sets of observations? If so, this could mean that the star has a magnetic cycle similar to the Suns.Artists impression showing the relative sizes and colors of the Sun, a red dwarf (M-dwarf), a hotter brown dwarf (L-dwarf), a cool brown dwarf (T-dwarf) similar to J1047+21, and the planet Jupiter [Credit: NASA/IPAC/R. Hurt (SSC)]Inspired by this possibility, Route conducted an investigation of the long-term magnetic behavior of all known radio-flaring ultracool dwarfs, a list of 14 stars. Using polarized radio emission measurements, he found that many of his targets exhibited similar polarity flips, which he argues is evidence that these dwarfs are undergoing magnetic field reversals on roughly decade-long timescales, analogous to those reversals that occur in the Sun.If this is indeed true, then we need to examine our models of how magnetic fields are generated in stars: the interface between the radiative and convective layers may not be necessary to produce large-scale magnetic fields. Understanding this process is certainly an important step in interpreting the potential habitability of planets around ultracool dwarfs.CitationMatthew Route 2016 ApJL 830 L27. doi:10.3847/2041-8205/830/2/L27
Multi-stage circulating fluidized bed syngas cooling
Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang
2016-10-11
A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.
NASA Astrophysics Data System (ADS)
van der Weijden, H.; Benschop, T.; van de Groep, W.; Willems, D.
2011-06-01
Thales Cryogenics (TCBV) has an extensive background in delivering long-life cryogenic coolers for military, civil and space programs. During the last years many technical improvements have increased the lifetime of coolers resulting in significantly higher MTTF's. Lifetime endurance tests are used to validate these performance increases. An update will be given on lifetime test of a selection of TCBV's coolers. MTTF figures indicate the statistical average lifetimes for a large population of coolers. However, for the user of IR camera's and spectrometers a detailed view on the performance of an individual cooler and the possible impact of its performance degradation during its lifetime is very important. Thales Cryogenics is developing Cooler Diagnostic Software (CDS), which can be implemented in the firmware of its DSP based cooler drive electronics. With this implemented software the monitoring of the main cooler parameters during the lifetime in the equipment will be possible, including the prediction of the expected cooler performance availability. Based on this software it will be possible to analyze the status of the cooler inside the equipment and, supported by the lifetime knowledge at Thales Cryogenics, make essential choices on the maintenance of equipment and the replacement of coolers. In the paper, we will give an overview of potential situations in which such a predictive algorithm can be used. We will present the required interaction with future users to make an optimal interaction and interpretation of the generated data possible.
40 CFR Table 3 to Subpart Aaaaa of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2014 CFR
2014-07-01
.... All new or existing lime kilns and their associated lime coolers (kilns/coolers) PM emissions must not exceed 0.12 lb/tsf for all existing kilns/coolers with dry controls, 0.60 lb/tsf for existing kilns/coolers with wet scrubbers, 0.10 lb/tsf for all new kilns/coolers, or a weighted average calculated...
40 CFR Table 3 to Subpart Aaaaa of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2012 CFR
2012-07-01
.... All new or existing lime kilns and their associated lime coolers (kilns/coolers) PM emissions must not exceed 0.12 lb/tsf for all existing kilns/coolers with dry controls, 0.60 lb/tsf for existing kilns/coolers with wet scrubbers, 0.10 lb/tsf for all new kilns/coolers, or a weighted average calculated...
40 CFR Table 3 to Subpart Aaaaa of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
.... All new or existing lime kilns and their associated lime coolers (kilns/coolers) PM emissions must not exceed 0.12 lb/tsf for all existing kilns/coolers with dry controls, 0.60 lb/tsf for existing kilns/coolers with wet scrubbers, 0.10 lb/tsf for all new kilns/coolers, or a weighted average calculated...
40 CFR Table 3 to Subpart Aaaaa of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
.... All new or existing lime kilns and their associated lime coolers (kilns/coolers) PM emissions must not exceed 0.12 lb/tsf for all existing kilns/coolers with dry controls, 0.60 lb/tsf for existing kilns/coolers with wet scrubbers, 0.10 lb/tsf for all new kilns/coolers, or a weighted average calculated...
40 CFR Table 3 to Subpart Aaaaa of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2013 CFR
2013-07-01
.... All new or existing lime kilns and their associated lime coolers (kilns/coolers) PM emissions must not exceed 0.12 lb/tsf for all existing kilns/coolers with dry controls, 0.60 lb/tsf for existing kilns/coolers with wet scrubbers, 0.10 lb/tsf for all new kilns/coolers, or a weighted average calculated...
Update on MTTF figures for linear and rotary coolers of Thales Cryogenics
NASA Astrophysics Data System (ADS)
van de Groep, W.; van der Weijden, H.; van Leeuwen, R.; Benschop, T.; Cauquil, J. M.; Griot, R.
2012-06-01
Thales Cryogenics has an extensive background in delivering linear and rotary coolers for military, civil and space programs. During the last years several technical improvements have increased the lifetime of all Thales coolers resulting in significantly higher Mean Time To Failure (MTTF) figures. In this paper not only updated MTTF values for most of the products in our portfolio will be presented but also the methodology used to come to these reliability figures will be explained. The differences between rotary and linear coolers will be highlighted including the different failure modes influencing the lifetime under operational conditions. These updated reliability figures are based on extensive test results for both rotary and linear coolers as well as Weibull analysis, failure mode identifications, various types of lifetime testing and field results of operational coolers. The impact of the cooler selection for typical applications will be outlined. This updated reliability approach will enable an improved tradeoff for cooler selection in applications where MTTF and a correct reliability assessment is key. Improbing on cooler selection and an increased insight in cooler reliability will result in a higher uptime and operability of equipment, less risk on unexpected failures and lower costs of ownership.
Preliminary design for a reverse Brayton cycle cryogenic cooler
NASA Technical Reports Server (NTRS)
Swift, Walter L.
1993-01-01
A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.
Preliminary design for a reverse Brayton cycle cryogenic cooler
NASA Astrophysics Data System (ADS)
Swift, Walter L.
1993-12-01
A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.
The effect of engine operating conditions on exhaust gas recirculation cooler fouling
Lance, Michael J.; Mills, Zachary G.; Seylar, Joshua C.; ...
2018-05-17
Exhaust gas recirculation (EGR) cooler fouling occurs when particulate matter (PM) and hydrocarbons (HC) in diesel exhaust form a deposit on the walls of the EGR cooler through thermophoresis and condensation. To better understand the mechanisms controlling deposit formation and removal and how operating conditions can affect cooler performance, 20 identical tube-in-shell EGR coolers with sinusoidal fins were fouled using a 5-factor, 3-level experimental design. The deposit thickness was measured using two methods: (1) epoxy-mounting and polishing cooler cross-sections and comparing deposit thicknesses on the primary (outer tube) to the secondary (fins) heat transfer surfaces, and (2) milling tube sectionsmore » such that the surface of a fin could be observed and measuring the deposit thickness across the fin using a 3D profilometer. Near the cooler inlet, high inlet gas temperatures reduced deposit thickness by promoting mud-cracking and spallation. Near the middle of the cooler, the flow rate had the largest impact on the deposit thickness through the effect on residence time of the PM. The HC concentration along with flow rate had the largest effects near the cooler outlet where the lower temperatures allows for more HC condensation. Furthermore, these insights into how engine operating conditions influence the development of fouling layers in EGR coolers learned through this study will aid in the development of more fouling resistant coolers in the future.« less
The effect of engine operating conditions on exhaust gas recirculation cooler fouling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lance, Michael J.; Mills, Zachary G.; Seylar, Joshua C.
Exhaust gas recirculation (EGR) cooler fouling occurs when particulate matter (PM) and hydrocarbons (HC) in diesel exhaust form a deposit on the walls of the EGR cooler through thermophoresis and condensation. To better understand the mechanisms controlling deposit formation and removal and how operating conditions can affect cooler performance, 20 identical tube-in-shell EGR coolers with sinusoidal fins were fouled using a 5-factor, 3-level experimental design. The deposit thickness was measured using two methods: (1) epoxy-mounting and polishing cooler cross-sections and comparing deposit thicknesses on the primary (outer tube) to the secondary (fins) heat transfer surfaces, and (2) milling tube sectionsmore » such that the surface of a fin could be observed and measuring the deposit thickness across the fin using a 3D profilometer. Near the cooler inlet, high inlet gas temperatures reduced deposit thickness by promoting mud-cracking and spallation. Near the middle of the cooler, the flow rate had the largest impact on the deposit thickness through the effect on residence time of the PM. The HC concentration along with flow rate had the largest effects near the cooler outlet where the lower temperatures allows for more HC condensation. Furthermore, these insights into how engine operating conditions influence the development of fouling layers in EGR coolers learned through this study will aid in the development of more fouling resistant coolers in the future.« less
Dynamics of Eastern Boundary Currents and Their Effects on Sound Speed Structure
2006-06-01
Canary Current System (NCCS) off Morocco and the Iberian Peninsula , and the Leeuwin Current System (LCS) off Western Australia. These systems...Africa and the Iberian Peninsula . This system is considered a classical EBC and marks the closing eastern boundary of the North Atlantic Gyre...with several narrow filaments of cooler water extending off the coast of the Iberian Peninsula (Fiuza and Sousa, 1989) and Cape Ghir in northwest Africa
Crustal subsidence, seismicity, and structure near Medicine Lake Volcano, California
Dzurisin, D.; Donnelly-Nolan, J. M.; Evans, J.R.; Walter, S.R.
1991-01-01
The pattern of historical ground deformation, seismicity, and crustal structure near Medicine Lake volcano illustrates a close relation between magmatism and tectonism near the margin of the Cascade volcanic chain and the Basin and Range tectonic province. Subsidence occurs mainly by aseismic creep within 25km of the summit, where the crust has been heated and weakened by intrusions, and by normal faulting during episodic earthquake swarms in surrounding, cooler terrain. -from Authors
40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by...
40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by...
40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by...
40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by...
Experimental results on MgB2 used as ADR magnetic shields, and comparison to NbTi
NASA Astrophysics Data System (ADS)
Prouvé, T.; Duval, J. M.; Luchier, N.; D'escrivan, S.
2014-11-01
Adiabatic Demagnetization Refrigerator (ADR) is an efficient way to obtain sub-Kelvin temperatures in space environments. The SAFARI instrument for the Japanese spaceborne SPICA mission features detectors which will be cooled down to 50 mK. This cooling will be done by a hybrid cooler comprising a 300 mK sorption stage and a 50 mK ADR stage. For this cooler and ADR in general, the main contribution to the overall mass is in the magnetic system and particularly in the magnetic shielding required to keep the stray field within acceptable values. In order to reduce this mass, superconducting materials can be used as active magnetic shields thanks to un-attenuated eddy currents generated while ramping the magnet current. In this way they could reduce the need of heavy ferromagnetic material shields and increase the shielding efficiency to reach very low parasitic values. In the framework of SAFARI we have built a numerical model of a superconductor magnetic shield. The good results regarding the weight gain lead us to an experimental confirmation. In this paper we present an experimental study on MgB2 and NbTi superconducting materials. 2 pairs of rings of typical diameter of 80 mm have been tested using a superconducting magnet matching closely the dimensions of the SAFARI ADR cooler. The magnetic shielding measurements have been compared to a numerical model.
NASA Technical Reports Server (NTRS)
Kittel, Peter; Feller, Jeff; Roach, Pat; Kashani, Ali; Helvensteijn, Ben
2004-01-01
Many planetary and Earth science missions require cooling to increase sensitivity and reduce thermal noise of detectors, for preserving high Isp propellants, or for protecting instruments from hostile environments. For space applications, such cooling requires reliable, efficient, long-life coolers that are relatively compact, lightweight, and have low vibration. We have developed and are developing coolers that meet these requirements over a wide range of temperatures. These include pulse tube coolers cooling from 300 K to below 6 K, a magnetic cooler cooling from 10 K to 2 K, a 3He sorption cooler cooling from 2 K to 0.3 K and a helium dilution cooler cooling from 0.3 K to 0.05 K. Details of these coolers and their advantages are presented.
40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by-product recovery plants. ...
Radiant coolers - Theory, flight histories, design comparisons and future applications
NASA Technical Reports Server (NTRS)
Donohoe, M. J.; Sherman, A.; Hickman, D. E.
1975-01-01
Radiant coolers have been developed for application to the cooling of infrared detectors aboard NASA earth observation systems and as part of the Defense Meteorological Satellite Program. The prime design constraints for these coolers are the location of the cooler aboard the satellite and the satellite orbit. Flight data from several coolers indicates that, in general, design temperatures are achieved. However, potential problems relative to the contamination of cold surfaces are also revealed by the data. A comparison among the various cooler designs and flight performances indicates design improvements that can minimize the contamination problem in the future.
NASA Technical Reports Server (NTRS)
Brown, D. H.; Corman, J. C.
1976-01-01
Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.
Electronics and Sensor Cooling with a Stirling Cycle for Venus Surface Mission
NASA Technical Reports Server (NTRS)
Mellott, Ken
2004-01-01
The inhospitable ambient surface conditions of Venus, with a 450 C temperature and 92 bar pressure, may likely require any extended-duration surface exploratory mission to incorporate some type of cooling for probe electronics and sensor devices. A multiple-region Venus mission study was completed at NASA GRC in December of 2003 that resulted in the preliminary design of a kinematically-driven, helium charged, Stirling cooling cycle with an estimated over-all COP of 0.376 to lift 100 watts of heat from a 200 C cold sink temperature and reject it at a hot sink temperature of 500 C. This paper briefly describes the design process and also describes and summarizes key features of the kinematic, Stirling cooler preliminary design concept.
7 CFR 58.510 - Rooms and compartments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...
7 CFR 58.510 - Rooms and compartments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...
7 CFR 58.510 - Rooms and compartments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...
7 CFR 58.510 - Rooms and compartments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...
7 CFR 58.510 - Rooms and compartments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...
Tactical versus space cryocoolers: a comparision
NASA Astrophysics Data System (ADS)
Arts, R.; Mullié, J.; Leenders, H.; de Jonge, G.; Benschop, T.
2017-05-01
In recent years, several space cryocooler developments have been performed in parallel at Thales Cryogenics. On one end of the spectrum are research programmes such as the ESA-funded 30-50 K system developed in cooperation with CEA and Absolut System and the LPT6510 cooler developed in cooperation with Absolut System. On the other end of the spectrum are commercial designs adapted for space applications, such as the LPT9310 commercial coolers delivered for JPL's ECOSTRESS instrument and the LSF9199/30 SADA-compatible cooler delivered for various space programmes at Sofradir. In this paper, an overview is presented of the latest developments regarding these coolers. Initial performance results of the 30-50K cooler are discussed, pending developments for the LPT6510 cooler are presented, and the synergies between COTS and space are reviewed, such as design principles from space coolers being applied to an upgraded variant of the COTS LPT9310, as well as design principles from COTS coolers being applied to the LPT6510 for improved manufacturability.
Update on Thales flexure bearing coolers and drive electronics
NASA Astrophysics Data System (ADS)
Willems, D.; Benschop, T.; v. d. Groep, W.; Mullié, J.; v. d. Weijden, H.; Tops, M.
2009-05-01
Thales Cryogenics has a long background in delivering cryogenic coolers with an MTTF far above 20.000 hrs for military, civil and space programs. Developments in these markets required continuous update of the flexure bearing cooler portfolio for new and emerging applications. The cooling requirements of new application have not only their influence on the size of the compressor, cold finger and cooling technology used but also on the integration and control of the cooler in the application. Thales Cryogenics developed a compact Cooler Drive Electronics based on DSP technology that could be used for driving linear flexure bearing coolers with extreme temperature stability and with additional diagnostics inside the CDE. This CDE has a wide application and can be modified to specific customer requirements. During the presentation the latest developments in flexure bearing cooler technology will be presented both for Stirling and Pulse Tube coolers. Also the relation between the most important recent detector requirements and possible available solutions on cryocooler level will be presented.
RICOR K527 highly reliable linear cooler: applications and model overview
NASA Astrophysics Data System (ADS)
Riabzev, Sergey; Nachman, Ilan; Levin, Eli; Perach, Adam; Vainshtein, Igor; Gover, Dan
2017-05-01
The K527 linear cooler was developed in order to meet the requirements of reliability, cooling power needs and versatility for a wide range of applications such as hand held, 24/7 and MWS. During the recent years the cooler was incorporated in variety of systems. Some of these systems can be sensitive to vibrations which are induced from the cooler. In order to reduce those vibrations significantly, a Tuned Dynamic Absorber (TDA) was added to the cooler. Other systems, such as the MWS type, are not sensitive to vibrations, but require a robust cooler in order to meet the high demand for environmental vibration and temperature. Therefore various mounting interfaces are designed to meet system requirements. The latest K527 version was designed to be integrated with the K508 cold finger, in order to give it versatility to standard detectors that are already designed and available for the K508 cooler type. The reliability of the cooler is of a high priority. In order to meet the 30,000 working hours target, special design features were implemented. Eight K527 coolers have passed the 19,360 working hours without degradations, and are still running according to our expectations.
Development trends in IR detector coolers
NASA Astrophysics Data System (ADS)
Mai, M.; Rühlich, I.; Wiedmann, Th.; Rosenhagen, C.
2009-05-01
For different IR application specific cooler requirements are needed to achieve best performance on system level. Handheld applications require coolers with highest efficiency and lowest weight. For application with continuous operation, i.e. border surveillance or homeland security, a very high MTTF is mandatory. Space applications additionally require extremely high reliability. In other application like fighter aircraft sufficient cooling capacity even at extreme high reject temperatures has to be provided. Meeting all this requirements within one cooler design is technically not feasible. Therefore, different coolers designs like integral rotary, split rotary or split linear are being employed. The use of flexure bearings supporting the driving mechanism has generated a new sub-group for the linear coolers; also, the coolers may either use a motor with moving magnet or with moving coil. AIM has mainly focussed on long life linear cooler technology and therefore developed a series of moving magnet flexure bearing compressors which meets MTTF's exceeding 20,000h (up to 50,000h with a Pulse-Tube coldfinger). These compressors have a full flexure bearing support on both sides of the driving mechanism. Cooler designs are being compared in regard to characteristic figures as described above.
Coolers development for the ATHENA X-IFU cryogenic chain
NASA Astrophysics Data System (ADS)
Duband, L.; Charles, I.; Duval, J.-M.
2014-07-01
The hot and energetic universe has been selected by ESA as the science theme for the L2 mission with a planned launch in 2028. The Athena mission is one the potential mission concept for the next X-rays generation satellite. One of the instruments of this mission is the X-ray Integral Field Unit (X-IFU) which provides spatially resolved high resolution spectroscopy. This low temperature instrument requires high detector sensitivity that can only be achieved using 50 mK cooling. To obtain this temperature level, a careful design of the cryostat and of the cooling chain comprising different stages in cascade is needed. CEA has undertaken development in various areas to contribute to this cryochain including pulse tube coolers and sub-Kelvin coolers. This paper will describe the status of our different cooler developments. High temperature two stage pulse tube can be used for thermal shields cooling, 15 K pulse tube cooler for 2 K JT precooling and 4 K pulse tube cooler for a potential direct cooling of the sub-kelvin cooler. The 50 mK temperature is achieved using a sub-kelvin cooler comprising an adsorption cooler linked to an ADR stage. This elegant solution gives way to a light, compact and reliable cooler which has been validated in the SPICA/SAFARI project. Modified solutions are also under study to accommodate alternative design.
Control of DC gas flow in a single-stage double-inlet pulse tube cooler
NASA Astrophysics Data System (ADS)
Wang, C.; Thummes, G.; Heiden, C.
The use of double-inlet mode in the pulse tube cooler opens up a possibility of DC gas flow circulating around the regenerator and pulse tube. Numerical analysis shows that effects of DC flow in a single-stage pulse tube cooler are different in some aspects from that in a 4 K pulse tube cooler. For highest cooler efficiency, DC flow should be compensated to a small value, i.e. DC flow over average AC flow at regenerator inlet should be in the range -0.0013 to +0.00016. Dual valves with reversed asymmetric geometries were used for the double-inlet bypass to control the DC flow in this paper. The experiment, performed in a single-stage double-inlet pulse tube cooler, verified that the cooler performance can be significantly improved by precisely controlling the DC flow.
5. RW Meyer Sugar Mill: 18761889. Two sugar coolers ca. ...
5. RW Meyer Sugar Mill: 1876-1889. Two sugar coolers ca. 1880. View: After the concentrated syrup flowed out of the sorghum pan, it cooled and crystallized in these iron sugar coolers. After the sugar syrup was granulated and cooled it was dug out of the coolers and fed into the centrifugals. The Meyer Mill purchased twelve coolers between 1878 and 1881 costing between $35 and $45 each. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Duffie, J A; Beckman, W A
1976-01-16
We have adequate theory and engineering capability to design, install, and use equipment for solar space and water heating. Energy can be delivered at costs that are competitive now with such high-cost energy sources as much fuel-generated, electrical resistance heating. The technology of heating is being improved through collector developments, improved materials, and studies of new ways to carry out the heating processes. Solar cooling is still in the experimental stage. Relatively few experiments have yielded information on solar operation of absorption coolers, on use of night sky radiation in locations with clear skies, on the combination of a solar-operated Rankine engine and a compression cooler, and on open cycle, humidification-dehumidification systems. Many more possibilities for exploration exist. Solar cooling may benefit from collector developments that permit energy delivery at higher temperatures and thus solar operation of additional kinds of cycles. Improved solar cooling capability can open up new applications of solar energy, particularly for larger buildings, and can result in markets for retrofitting existing buildings. Solar energy for buildings can, in the next decade, make a significant contribution to the national energy economy and to the pocketbooks of many individual users. very large-aggregate enterprises in manufacture, sale, and installation of solar energy equipment can result, which can involve a spectrum of large and small businesses. In our view, the technology is here or will soon be at hand; thus the basic decisions as to whether the United States uses this resource will be political in nature.
Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2008-01-01
A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.
40 CFR 63.9652 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... cooler vent stack and gravity conveyor gallery vents designed to remove heat and water vapor from the... traveling grate, a rotary kiln, and an annular cooler. The grate kiln indurating furnace begins at the point... the hardened pellets exit the cooler. The atmospheric pellet cooler vent stack is not included as part...
7 CFR 58.412 - Coolers or curing rooms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 3 2012-01-01 2012-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...
40 CFR 63.1345 - Standards for clinker coolers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards for clinker coolers. 63.1345... and Operating Limits § 63.1345 Standards for clinker coolers. (a) No owner or operator of a new or existing clinker cooler at a facility which is a major source subject to the provisions of this subpart...
40 CFR 63.9652 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... cooler vent stack and gravity conveyor gallery vents designed to remove heat and water vapor from the... traveling grate, a rotary kiln, and an annular cooler. The grate kiln indurating furnace begins at the point... the hardened pellets exit the cooler. The atmospheric pellet cooler vent stack is not included as part...
40 CFR 63.9652 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... cooler vent stack and gravity conveyor gallery vents designed to remove heat and water vapor from the... traveling grate, a rotary kiln, and an annular cooler. The grate kiln indurating furnace begins at the point... the hardened pellets exit the cooler. The atmospheric pellet cooler vent stack is not included as part...
40 CFR 63.9652 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... cooler vent stack and gravity conveyor gallery vents designed to remove heat and water vapor from the... traveling grate, a rotary kiln, and an annular cooler. The grate kiln indurating furnace begins at the point... the hardened pellets exit the cooler. The atmospheric pellet cooler vent stack is not included as part...
7 CFR 58.412 - Coolers or curing rooms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...
7 CFR 58.412 - Coolers or curing rooms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...
7 CFR 58.412 - Coolers or curing rooms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...
40 CFR 63.9652 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... cooler vent stack and gravity conveyor gallery vents designed to remove heat and water vapor from the... traveling grate, a rotary kiln, and an annular cooler. The grate kiln indurating furnace begins at the point... the hardened pellets exit the cooler. The atmospheric pellet cooler vent stack is not included as part...
7 CFR 58.412 - Coolers or curing rooms.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Coolers or curing rooms. 58.412 Section 58.412....412 Coolers or curing rooms. Coolers or curing rooms where cheese is held for curing or storage shall... times. The shelves shall be kept clean and dry. This does not preclude the maintenance of suitable...
Velocity Measurements for a Solar Active Region Fan Loop from Hinode/EIS Observations
NASA Astrophysics Data System (ADS)
Young, P. R.; O'Dwyer, B.; Mason, H. E.
2012-01-01
The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s-1 up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physically disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of "strands"—one cooler and downflowing, the other hotter and stationary—is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 × 109 cm-3 at the loop base, to 5.0 × 108 cm-3 at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s-1 in Fe XII λ195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s-1 at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.
VELOCITY MEASUREMENTS FOR A SOLAR ACTIVE REGION FAN LOOP FROM HINODE/EIS OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, P. R.; O'Dwyer, B.; Mason, H. E.
2012-01-01
The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s{sup -1} up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physicallymore » disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of 'strands'-one cooler and downflowing, the other hotter and stationary-is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 Multiplication-Sign 10{sup 9} cm{sup -3} at the loop base, to 5.0 Multiplication-Sign 10{sup 8} cm{sup -3} at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s{sup -1} in Fe XII {lambda}195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s{sup -1} at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.« less
Guzek, J.C.; Lujan, R.A.
1984-01-01
Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.
The Proposed 2 MeV Electron Cooler for COSY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietrich, Juergen; Parkhomchuk, Vasily V.; Reva, Vladimir B.
2006-03-20
The design, construction and installation of a 2 MeV electron cooling system for COSY is proposed to further boost the luminosity even with strong heating effects of high-density internal targets. In addition the design of the 2 MeV electron cooler for COSY is intended to test some new features of the high energy electron cooler for HESR at GSI. The design of the 2 MeV electron cooler will be accomplished in cooperation with the Budker Institute of Nuclear Physics in Novosibirsk, Russia. Starting with the boundary conditions of the existing electron cooler at COSY the requirements and a first generalmore » scheme of the 2 MeV electron cooler are described.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
..., clinker coolers, raw material dryers, and open clinker piles? 63.1343 Section 63.1343 Protection of... What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles? (a..., clinker cooler, and raw material dryer. All dioxin D/F, HCl, and total hydrocarbon (THC) emission limits...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., clinker coolers, raw material dryers, and open clinker storage piles? 63.1343 Section 63.1343 Protection... Limits § 63.1343 What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker... associated with that kiln, clinker cooler, raw material dryer, and open clinker storage pile. All D/F, HCl...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., clinker coolers, raw material dryers, and open clinker storage piles? 63.1343 Section 63.1343 Protection... Limits § 63.1343 What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker... associated with that kiln, clinker cooler, raw material dryer, and open clinker storage pile. All D/F, HCl...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., clinker coolers, raw material dryers, and open clinker piles? 63.1343 Section 63.1343 Protection of... What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles? (a..., clinker cooler, and raw material dryer. All dioxin D/F, HCl, and total hydrocarbon (THC) emission limits...
Technology Assessment of Gasses Useful as Coolants in Open Cycle Joule-Thomson Cyrostat Coolers
1989-09-30
t By ,1 3 T’’ i LIST OF TABLES TABLE TITLE PAGE 3-1 List of Refrigerants Not Acceptable 6-7 B.P. > -78"C at 1 Atmosphere Pressure 3-2 List of...criteria consisted of six steps as follows: 1 1. The boiling point at one atmosphere pressure must be less than - 100 degrees Centigrade, (’C...is inside the seeker head covered by a dome which is normally pressurized to one (1) atmosphere and as the gas flows to cool the detector, the gas
Step-wise extinctions at the Cretaceous-Tertiary boundary and their climatic implications
NASA Technical Reports Server (NTRS)
Maurrasse, Florentin J-M. R.
1988-01-01
A comparative study of planktonic foraminifera and radiolarian assemblages from the Cretaceous-Tertiary (K-T) boundary section of the Beloc Formation in the southern Peninsula of Haiti, and the lowermost Danian sequence of the Micara Formation in southern Cuba reveals a remarkable pattern of step-wise extinctions. This pattern is consistent in both places despite the widely different lithologies of the two formations. Because of a step-wise extinction and the delayed disappearance of taxa known to be more representative of cooler water realms, it is inferred that a cooling trend which characterized the close of the Maastrichtian and the onset of the Tertiary had the major adverse effect on the existing biota. Although repetitive lithologic and faunal fluctuations throughout the Maastrichtian sediments found at Deep Sea Drilling Project (DSDP) site 146/149 in the Caribbean Sea indicate variations reminiscent of known climatically induced cycles in the Cenozoic, rapid biotic succession appears to have taken place during a crisis period of a duration greater than 2 mission years. Widespread and abundant volcanic activities recorded in the Caribbean area during the crisis period gives further credence to earlier contention that intense volcanism may have played a major role in exhacerbating pre-existing climatic conditions during that time.
Assessment of the impact of climate shifts on malaria transmission in the Sahel.
Bomblies, Arne; Eltahir, Elfatih A B
2009-09-01
Climate affects malaria transmission through a complex network of causative pathways. We seek to evaluate the impact of hypothetical climate change scenarios on malaria transmission in the Sahel by using a novel mechanistic, high spatial- and temporal-resolution coupled hydrology and agent-based entomology model. The hydrology model component resolves individual precipitation events and individual breeding pools. The impact of future potential climate shifts on the representative Sahel village of Banizoumbou, Niger, is estimated by forcing the model of Banizoumbou environment with meteorological data from two locations along the north-south climatological gradient observed in the Sahel--both for warmer, drier scenarios from the north and cooler, wetter scenarios from the south. These shifts in climate represent hypothetical but historically realistic climate change scenarios. For Banizoumbou climatic conditions (latitude 13.54 N), a shift toward cooler, wetter conditions may dramatically increase mosquito abundance; however, our modeling results indicate that the increased malaria transmissibility is not simply proportional to the precipitation increase. The cooler, wetter conditions increase the length of the sporogonic cycle, dampening a large vectorial capacity increase otherwise brought about by increased mosquito survival and greater overall abundance. Furthermore, simulations varying rainfall event frequency demonstrate the importance of precipitation patterns, rather than simply average or time-integrated precipitation, as a controlling factor of these dynamics. Modeling results suggest that in addition to changes in temperature and total precipitation, changes in rainfall patterns are very important to predict changes in disease susceptibility resulting from climate shifts. The combined effect of these climate-shift-induced perturbations can be represented with the aid of a detailed mechanistic model.
What do we do, if some of the MICE magnets can't be kept cold using the two-stage coolers?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Michael A.
2011-01-26
Tests of the spectrometer solenoids have not been encouraging in terms of keeping the magnets cold using three 1.5 W (at 4.2 K) coolers. The spectrometer solenoids are being rebuilt with additional cooling capacity at 4.2 K. It is hoped that there will be sufficient 4.2 K cooling to keep the magnets cold. The spectrometer solenoids can be kept cold using liquid helium (up to a boil-off of 20 liters per day). This option does not apply for the other magnets in the MICE cooling channel, because there is not enough liquid helium storage within the magnet cold mass. Itmore » is important that the MICE collaboration ask the question, “How do we keep the MICE cooling channel magnets cold, if there isn’t sufficient cooling from the 4.2 K coolers?” This report discusses the cooling requirements at both 40 K and 4.2 K for all three types of MICE cooling channel magnets. This report discusses the steps that must be taken in the magnet fabrication to permit the magnets to be cooled using a small (20 to 40 W) external 4.2 K Claude cycle refrigerator. One must also ask the question as to whether there is enough excess capacity in the decay solenoid refrigerator to cool some of the MICE magnets. A plan for cooling the magnets using a Linde 1400 series refrigerator is presented. A plan for increasing the 4.4 K refrigeration from the existing decay solenoid refrigerator is also presented.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
...—Temperature Conditions Internal Temperatures (cooled space within the envelope) Cooler Dry Bulb Temperature 35...) Freezer and Cooler Dry Bulb Temperatures 75 °F. Subfloor Temperatures Freezer and Cooler Dry Bulb...,int,dp = dry-bulb air temperature internal to the cooler or freezer, °F, as prescribed in Table A.1...
Code of Federal Regulations, 2013 CFR
2013-01-01
...—Temperature Conditions Internal Temperatures (cooled space within the envelope) Cooler Dry Bulb Temperature 35...) Freezer and Cooler Dry Bulb Temperatures 75 °F. Subfloor Temperatures Freezer and Cooler Dry Bulb...,int,dp = dry-bulb air temperature internal to the cooler or freezer, °F, as prescribed in Table A.1...
Hybrid Stars and Coronal Evolution
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Dupree, Andrea K.
2004-01-01
This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, TrA (K2 11-111). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars.
NASA Astrophysics Data System (ADS)
1999-07-01
The International Cryogenic Engineering Conferences (ICEC) are held biennially and are medium-scale events (a few hundred participants) involving a wide range of cryogenic specialists. The Proceedings of the 17th Conference reflects this range clearly, comprising four sections. The first, and shortest, presents the texts of (some of) the plenary invited papers and covers topics ranging from `The first collection of liquid hydrogen' to `The application of bulk high-temperature superconductors'. Then follow three sections of approximately equal length (250--300 pages each) covering, respectively, refrigeration, superconductivity and cryogenics. The rapid recent development of closed cycle refrigerators is reflected in the content of the first section and is a firm indicator that the topic of cryogenic engineering is spreading out from its current twin, but limited, areas of the research laboratory and the large-scale particle or energy research facility. Expansion into both industry, commerce and medicine is apparent, as is the provision of facilities for other technologies (for example, high-field magnets for NMR, extending to 1 GHz). Later in this volume some of these future applications are described. The Kleemenko cycle, as lucidly explained by Bill Little, consists of a development of the Joule--Thomson expansion technique for cooling in which the expansion and cooling of a single component gas is replaced by the expansion and cooling of a mixture of gas and liquid phase. Pulse tube coolers now come in a variety of forms and sizes, in single stage and double stage forms, providing a lowest temperature so far of around 2 K with 2 stages or 20 K with a single stage. The ability of this design is to reduce mechanical vibration levels well below those achievable with conventional Gifford--McMahon or Stirling cycle coolers and this volume includes a review of developments of these types, as well as a number of research papers setting out the leading edge of developments. The range of scale of the refrigeration described is extreme, ranging from a 10 mW sorption cooler at 80 K for a detector application, to the 20 kW of cooling required at 1.8 K for the Large Hadron Collider. The following section contains a variety of mainly high-current applications of superconductivity where low-Tc and high-Tc coil and cable designs co-exist side by side in apparent harmony even though the scale and sophistication of the former still exceed the latter by at least an order of magnitude in general. In the final section thermal properties and control techniques for cryogenic systems and large magnet or detector facilities jockey for attention with applications of extremely sensitive thermometry. It is traditional to regard frequency as the most precisely determined physical quantity but this notion begins to be challenged when a magnetic susceptibility thermometer is reported which allows 10-12 K sensitivity at an operating temperature of 2 K. I have one criticism of this volume, which suffers somewhat from a problem which is quite widespread in conference proceedings. Unfortunately, not all of the plenary speakers have supplied full manuscript texts of their talks. Thus it is rather frustrating to be presented in the contents list with titles as tantalizing as `Liquid hydrogen---technology for vehicles' or `High-temperature superconductors in power engineering', to find that a brief abstract only serves to emphasize what delights one is missing, since the full text has not been included. But overall this volume reflects the huge range of capabilities and applications of cryogenic engineering and contains a great deal of interest to the researcher or user of superconductors. John Gallop National Physics Laboratory, UK
Assessment of Drinking Water Quality from Bottled Water Coolers
FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar
2014-01-01
Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769
On the development of co-axial miniature pulse tube coolers for space applications
NASA Astrophysics Data System (ADS)
Zhou, Y.; Liang, J. T.; Zhu, W. Q.; Cai, J. H.; Ju, Y. L.
2002-05-01
Cryocoolers for cooling infrared sensors in space applications require high reliability, long lifetime, low power and minimum weight. In this paper we report work on a miniature pulse tube cooler specifically designed for such applications. A series of engineering model co-axial miniature pulse tube coolers with a flexure bearing linear compressor of 1 cc swept volume have been designed and fabricated in our laboratory. A theoretical model is established based on the analyses of thermodynamic and hydrodynamic behaviors of oscillatory flows in regenerator, for performance prediction, optimization and as a rough guide in the early stages of system design. An experimental apparatus, including a hot wire anemometer, has been set up to study the flow resistance of regenerators under oscillatory flow conditions. The co-axial, multi-bypass, and symmetric nozzle structure has been used in the coolers. We will present here the performance of two sizes of coolers with 9 mm and 8 mm diameter of cold fingers. The 9 mm cooler currently provides 500 mW net cooling power at 80 K with input power of 47 W, and the 8 mm cooler, provides 450 mW at 80 K with 51 W input power with a 65% efficient compressor. The cold fingers of our co-axial pulse tube coolers have the similar size of miniature Stirling coolers and are the only one that could meet the geometry specifications of the Standard Advance Dewar Assembly (SADA) for thermal imaging systems in most military applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Table A.1—Temperature Conditions Internal Temperatures (cooled space within the envelope) Cooler Dry... the envelope) Freezer and Cooler Dry Bulb Temperatures 75 °F. Subfloor Temperatures Freezer and Cooler... prescribed in Table A.1; and TDB,int,dp = dry-bulb air temperature internal to the cooler or freezer, °F, as...
Air Liquide's pulse tube cryocooler systems for space applications
NASA Astrophysics Data System (ADS)
Trollier, T.; Tanchon, J.; Rey, J. C.; Ravex, A.; Buquet, J.
2009-05-01
Thanks to important development efforts completed internally and with the European Space Agency (ESA) funding, Air Liquide Advanced Technology Division (AL/DTA) is now in position to propose two Pulse Tube cooler systems in the 40-80K temperature range for coming Earth Observation missions such as Meteosat Third Generation (MTG), SIFTI, etc... The Miniature Pulse Tube Cooler (MPTC) is lifting up to 2.47W@80K with 50W maximal compressor input power and 10°C rejection temperature. The weight is 2.8 kg. The Large Pulse Tube Cooler (LPTC) is providing 2.3W@50K for 160W input power and 10°C rejection temperature. This product is weighing 5.1 kg. The two pulse tube coolers thermo-mechanical units are qualified against environmental constraints as per ESA ECSS-E-30. They are both using dual opposed pistons flexure bearing compressor with moving magnet linear motors in order to ensure very high lifetime. The associated Cooler Drive Electronics is also an important aspect specifically regarding the active control of the cooler thermo-mechanical unit during the launch phase and the active reduction of the vibrations induced by the compressor (partly supported by the French Agency CNES). This paper details the presentation of the two Pulse Tube Coolers together with the Cooler Drive Electronics aspects.
Low Temperature Regenerators for Zero Boil-Off Liquid Hydrogen Pulse Tube Cryocoolers
NASA Technical Reports Server (NTRS)
Salerno, Louis J.; Kashani, Ali; Helvensteijn, Ben; Kittel, Peter; Arnoldm James O. (Technical Monitor)
2002-01-01
Recently, a great deal of attention has been focused on zero boil-off (ZBO) propellant storage as a means of minimizing the launch mass required for long-term exploration missions. A key component of ZBO systems is the cooler. Pulse tube coolers offer the advantage of zero moving mass at the cold head, and recent advances in lightweight, high efficiency cooler technology have paved the way for reliable liquid oxygen (LOx) temperature coolers to be developed which are suitable for flight ZBO systems. Liquid hydrogen (LH2) systems, however, are another matter. For ZBO liquid hydrogen systems, cooling powers of 1-5 watts are required at 20 K. The final development from tier for these coolers is to achieve high efficiency and reliability at lower operating temperatures. Most of the life-limiting issues of flight Stirling and pulse tube coolers are associated with contamination, drive mechanisms, and drive electronics. These problems are well in hand in the present generation coolers. The remaining efficiency and reliability issues reside with the low temperature regenerators. This paper will discuss advances to be made in regenerators for pulse tube LH2 ZBO coolers, present some historical background, and discuss recent progress in regenerator technology development using alloys of erbium.
Air liquide's space pulse tube cryocooler systems
NASA Astrophysics Data System (ADS)
Trollier, T.; Tanchon, J.; Buquet, J.; Ravex, A.
2017-11-01
Thanks to important development efforts completed with ESA funding, Air Liquide Advanced Technology Division (AL/DTA), is now in position to propose two Pulse Tube cooler systems in the 40-80K temperature range for coming Earth Observation missions such as Meteosat Third Generation (MTG), SIFTI, etc… The Miniature Pulse Tube Cooler (MPTC) is lifting up to 2.47W@80K with 50W compressor input power and 10°C rejection temperature. The weight is 2.8 kg. The Large Pulse Tube Cooler (LPTC) is providing 2.3W@50K for 160W input power and 10°C rejection temperature. This product is weighing 5.1 kg. The two pulse tube coolers thermo-mechanical units are qualified against environmental constraints as per ECSS-E-30. They are both using dual opposed pistons flexure bearing compressor with moving magnet linear motors in order to ensure very high lifetime. The associated Cooler Drive Electronics is also an important aspect specifically regarding the active control of the cooler thermo-mechanical unit during the launch phase and the active reduction of the vibrations induced by the compressor (partly supported by the French Agency CNES). This paper details the presentation of the two Pulse Tube Coolers together with the Cooler Drive Electronics aspects.
Novel packaging for CW and QCW diode laser modules for operation with high power and duty cycles
NASA Astrophysics Data System (ADS)
Fassbender, Wilhelm; Lotz, Jens; Kissel, Heiko; Biesenbach, Jens
2018-02-01
Continuous wave (CW) and quasi-continuous wave (QCW) operated diode laser bars and arrays have found a wide range of industrial, medical, scientific, military and space applications with a broad variety in wavelength, pulse energy, pulse duration and beam quality. Recent applications require even higher power, duty cycles and power density. The heat loss will be dissipated by conductive cooling or liquid cooling close to the bars. We present the latest performance and reliability data of two novel high-brightness CW and QCW arrays of customized and mass-production modules, in compact and robust industry design for operation with high power and high duty cycles. All designs are based on single diode packages consisting of 10mm laser bars, soft or hard soldered between expansion matched submounts. The modular components cover a wide span of designs which differ basically in water/conduction (active/passive) cooled, single, linear (horizontal and vertical) arranged designs, as well as housed and unhoused modules. The different assembling technologies of active and passive cooled base plates affect the heat dissipation and therefore the reachable power at different QCW operating conditions, as well as the lifetime. As an example, a package consisting of 8 laser diodes, connected to a 28.8*13.5*7.0mm3 DCB (direct copper bonded) submount, passively or actively cooled is considered. This design is of particular interest for mobile applications seamless module to module building system, with an infinite number of laser bars at 1.7mm pitch. Using 940nm bars we can reach an optical output power per bar of 450W at 25°C base plate temperature with 10Hz, 1.2% duty cycle and 1.2ms pulse duration. As an additional example, micro channel coolers can be vertically stacked up to 50 diodes with a 1,15mm pitch. This design is suitable for all applications, demanding also compactness and light weight and high power density. Using near infrared bars and others, we can reach an optical output power of 250W per bar at 25°C coolant temperature at CW operation.
NASA Technical Reports Server (NTRS)
1975-01-01
The design, fabrication, and testing of a radiative cooler are described. This cooler is an engineering model suitable for bench testing in the laboratory as a part of the 10-micrometer wavelength engineering model receiver, and conforms to the standard radiative cooler configuration, except that the inner stage and its support system were redesigned to accommodate the larger, heavier SAT detector. This radiative cooler will cool the detector to cryogenic temperature levels when the receiver is in a space environment or in a suitable thermal vacuum chamber. Equipment specifications are given along with the results of thermal tests, vibration tests, and electrical integrity tests.
NASA Astrophysics Data System (ADS)
Tward, E.; Nguyen, T.; Godden, J.; Toma, G.
2004-06-01
A high capacity miniature pulse tube cooler for space that is scaled from the High Efficiency Cryocooler (HEC) is being developed. The low mass (1.5 kg) integral pulse tube cryocooler can provide large cooling power over a wide temperature range (e.g., 5 W at 95 K). The cooler is designed to be compatible with the existing HEC flight electronics. A small back-to-back flexure compressor drives a pulse tube cold head which is integrated with the compressor. The cooler has been tested with both linear and coaxial cold heads. A description of the cooler and its performance in both linear and coaxial cold head versions is presented.
High frequency two-stage pulse tube cryocooler with base temperature below 20 K
NASA Astrophysics Data System (ADS)
Yang, L. W.; Thummes, G.
2005-02-01
High frequency (30-50 Hz) multi-stage pulse tube coolers that are capable of reaching temperatures close to 20 K or even lower are a subject of recent research and development activities. This paper reports on the design and test of a two-stage pulse tube cooler which is driven by a linear compressor with nominal input power of 200 W at an operating frequency of 30-45 Hz. A parallel configuration of the two pulse tubes is used with the warm ends of the pulse tubes located at ambient temperature. For both stages, the regenerator matrix consists of a stack of stainless steel screen. At an operating frequency of 35 Hz and with the first stage at 73 K a lowest stationary temperature of 19.6 K has been achieved at the second stage. The effects of input power, frequency, average pressure, and cold head orientation on the cooling performance are also reported. An even lower no-load temperature can be expected from the use of lead or other regenerator materials of high heat capacity in the second stage.
Thermo-Electron Ballistic Coolers or Heaters
NASA Technical Reports Server (NTRS)
Choi, Sang H.
2003-01-01
Electronic heat-transfer devices of a proposed type would exploit some of the quantum-wire-like, pseudo-superconducting properties of single-wall carbon nanotubes or, optionally, room-temperature-superconducting polymers (RTSPs). The devices are denoted thermo-electron ballistic (TEB) coolers or heaters because one of the properties that they exploit is the totally or nearly ballistic (dissipation or scattering free) transport of electrons. This property is observed in RTSPs and carbon nanotubes that are free of material and geometric defects, except under conditions in which oscillatory electron motions become coupled with vibrations of the nanotubes. Another relevant property is the high number density of electrons passing through carbon nanotubes -- sufficient to sustain electron current densities as large as 100 MA/square cm. The combination of ballistic motion and large current density should make it possible for TEB devices to operate at low applied potentials while pumping heat at rates several orders of magnitude greater than those of thermoelectric devices. It may also enable them to operate with efficiency close to the Carnot limit. In addition, the proposed TEB devices are expected to operate over a wider temperature range
Advanced ceramic coating development for industrial/utility gas turbine applications
NASA Technical Reports Server (NTRS)
Andersson, C. A.; Lau, S. K.; Bratton, R. J.; Lee, S. Y.; Rieke, K. L.; Allen, J.; Munson, K. E.
1982-01-01
The effects of ceramic coatings on the lifetimes of metal turbine components and on the performance of a utility turbine, as well as of the turbine operational cycle on the ceramic coatings were determined. When operating the turbine under conditions of constant cooling flow, the first row blades run 55K cooler, and as a result, have 10 times the creep rupture life, 10 times the low cycle fatigue life and twice the corrosion life with only slight decreases in both specific power and efficiency. When operating the turbine at constant metal temperature and reduced cooling flow, both specific power and efficiency increases, with no change in component lifetime. The most severe thermal transient of the turbine causes the coating bond stresses to approach 60% of the bond strengths. Ceramic coating failures was studied. Analytic models based on fracture mechanics theories, combined with measured properties quantitatively assessed both single and multiple thermal cycle failures which allowed the prediction of coating lifetime. Qualitative models for corrosion failures are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keung, C.; Patt, P.J.; Starr, M.
A second-generation, Stirling-cycle cryocooler (cryogenic refrigerator) for space applications, with a cooling capacity of 5 watts at 65 K, was recently completed. The refrigerator, called the Prototype Model, was designed with a goal of 5 year life with no degradation in cooling performance. The free displacer and free piston of the refrigerator are driven directly by moving-magnet linear motors with the moving elements supported by active magnetic bearings. The use of clearance seals and the absence of outgassing material in the working volume of the refrigerator enable long-life operation with no deterioration in performance. Fiber-optic sensors detect the radial positionmore » of the shafts and provide a control signal for the magnetic bearings. The frequency, phase, stroke, and offset of the compressor and expander are controlled by signals from precision linear position sensors (LVDTs). The vibration generated by the compressor and expander is cancelled by an active counter balance which also uses a moving-magnet linear motor and magnetic bearings. The driving signal for the counter balance is derived from the compressor and expander position sensors which have wide bandwidth for suppression of harmonic vibrations. The efficiency of the three active members, which operate in a resonant mode, is enhanced by a magnetic spring in the expander and by gas springs in the compressor and counterbalance. The cooling was achieved with a total motor input power of 139 watts. The magnetic-bearing stiffness was significantly increased from the first-generation cooler to accommodate shuttle launch vibrations.« less
NASA Technical Reports Server (NTRS)
Keung, C.; Patt, P. J.; Starr, M.; Sweet, R. C.; Bourdillon, L. A.; Figueroa, R.; Hartmann, M.; Mcfarlane, R.
1990-01-01
A second-generation, Stirling-cycle cryocooler (cryogenic refrigerator) for space applications, with a cooling capacity of 5 watts at 65 K, was recently completed. The refrigerator, called the Prototype Model, was designed with a goal of 5 year life with no degradation in cooling performance. The free displacer and free piston of the refrigerator are driven directly by moving-magnet linear motors with the moving elements supported by active magnetic bearings. The use of clearance seals and the absence of outgassing material in the working volume of the refrigerator enable long-life operation with no deterioration in performance. Fiber-optic sensors detect the radial position of the shafts and provide a control signal for the magnetic bearings. The frequency, phase, stroke, and offset of the compressor and expander are controlled by signals from precision linear position sensors (LVDTs). The vibration generated by the compressor and expander is cancelled by an active counter balance which also uses a moving-magnet linear motor and magnetic bearings. The driving signal for the counter balance is derived from the compressor and expander position sensors which have wide bandwidth for suppression of harmonic vibrations. The efficiency of the three active members, which operate in a resonant mode, is enhanced by a magnetic spring in the expander and by gas springs in the compressor and counterbalance. The cooling was achieved with a total motor input power of 139 watts. The magnetic-bearing stiffness was significantly increased from the first-generation cooler to accommodate shuttle launch vibrations.
A Possible Cause of the Diminished Solar Wind During the Solar Cycle 23 - 24 Minimum
NASA Astrophysics Data System (ADS)
Liou, Kan; Wu, Chin-Chun
2016-12-01
Interplanetary magnetic field and solar wind plasma density observed at 1 AU during Solar Cycle 23 - 24 (SC-23/24) minimum were significantly smaller than those during its previous solar cycle (SC-22/23) minimum. Because the Earth's orbit is embedded in the slow wind during solar minimum, changes in the geometry and/or content of the slow wind region (SWR) can have a direct influence on the solar wind parameters near the Earth. In this study, we analyze solar wind plasma and magnetic field data of hourly values acquired by Ulysses. It is found that the solar wind, when averaging over the first (1995.6 - 1995.8) and third (2006.9 - 2008.2) Ulysses' perihelion ({˜} 1.4 AU) crossings, was about the same speed, but significantly less dense ({˜} 34 %) and cooler ({˜} 20 %), and the total magnetic field was {˜} 30 % weaker during the third compared to the first crossing. It is also found that the SWR was {˜} 50 % wider in the third ({˜} 68.5^deg; in heliographic latitude) than in the first ({˜} 44.8°) solar orbit. The observed latitudinal increase in the SWR is sufficient to explain the excessive decline in the near-Earth solar wind density during the recent solar minimum without speculating that the total solar output may have been decreasing. The observed SWR inflation is also consistent with a cooler solar wind in the SC-23/24 than in the SC-22/23 minimum. Furthermore, the ratio of the high-to-low latitude photospheric magnetic field (or equatorward magnetic pressure force), as observed by the Mountain Wilson Observatory, is smaller during the third than the first Ulysses' perihelion orbit. These findings suggest that the smaller equatorward magnetic pressure at the Sun may have led to the latitudinally-wider SRW observed by Ulysses in SC-23/24 minimum.
Surface tension confined liquid cryogen cooler
NASA Technical Reports Server (NTRS)
Castles, Stephen H. (Inventor); Schein, Michael E. (Inventor)
1989-01-01
A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.
Development of a space qualified Surface Tension Confined Liquid Cryogen Cooler (STCLCC)
NASA Technical Reports Server (NTRS)
Castles, Stephen H.; Schein, Michael E.
1988-01-01
The Surface Tension Confined Liquid Cryogen Cooler (STCLCC), a new type of cryogenic cooler which is being developed by the NASA-GSFC for spaceflight payloads, is described. The STCLCC will be capable of maintaining instrumentation within the temperature range of 10-120 K and will allow liquid cryogens to be flown in space without the risk of liquid being entrained in the vent gas. A low-density open-cell material in the STCLCC acts as a 'sponge', with the surface tension trapping the liquid cryogen within its pores and keeping the liquid away from the cooler's vent during launch, zero-g operations, and landing. It is emphasized that the STCLCC concept is amenable to a wide variety of applications, whenever a passive low-cost cooler is required or when the on-orbit service of a cooler would increase a mission's lifetime.
Miniature Long-life Space Cryocoolers
NASA Technical Reports Server (NTRS)
Tward, E.
1993-01-01
TRW has designed, built, and tested a miniature integral Stirling cooler and a miniature pulse tube cooler intended for long-life space application. Both efficient, low-vibration coolers were developed for cooling IR sensors to temperatures as low as 50 K on lightsats. The vibrationally balanced nonwearing design Stirling cooler incorporates clearance seals maintained by flexure springs for both the compressor and the drive displacer. The design achieved its performance goal of 0.25 W at 65 K for an input power to the compressor of 12 W. The cooler recently passed launch vibration tests prior to its entry into an extended life test and its first scheduled flight in 1995. The vibrationally balanced, miniature pulse tube cooler intended for a 10-year long-life space application incorporates a flexure bearing compressor vibrationally balanced by a motor-controlled balancer and a completely passive pulse tube cold head.
Ngas Multi-Stage Coaxial High Efficiency Cooler (hec)
NASA Astrophysics Data System (ADS)
Nguyen, T.; Toma, G.; Jaco, C.; Raab, J.
2010-04-01
This paper presents the performance data of the single and two-stage High Efficiency Cooler (HEC) tested with coaxial cold heads. The single stage coaxial cold head has been optimized to operate at temperatures of 40 K and above. The two-stage parallel cold head configuration has been optimized to operate at 30 K and above and provides a long-life, low mass and efficient two-stage version of the Northrop Grumman Aerospace Systems (NGAS) flight qualified single stage HEC cooler. The HEC pulse tube cryocoolers are the latest generation of flight coolers with heritage to the 12 Northrop Grumman Aerospace Systems (NGAS) coolers currently on orbit with 2 operating for more than 11.5 years. This paper presents the performance data of the one and two-stage versions of this cooler under a wide range of heat rejection temperature, cold head temperature and input power.
Performance Testing of a Lightweight, High Efficiency 95 K Cryocooler
NASA Technical Reports Server (NTRS)
Salerno, Lou; Kittel, P.; Kashani, A.; Helvensteijn, B. P. M.; Tward, E.; Arnold, Jim A. (Technical Monitor)
2001-01-01
Performance data are presented for a flight-like, lightweight, high efficiency pulse tube cryogenic cooler. The cooler has a mass of less than 4.0 kg, and an efficiency of 12 W/W, which is 18% of Carnot at 95 K, nearly double the efficiency of previous cooler designs, The mass of the cooler has been reduced by approximately a factor of three. The design point cooling power is 10 watts at 95 K at a heat rejection temperature of 300 K. The no-load temperature is 45 K. The compressor is built by Hymatic Engineering, UK, and is of a horizontally opposed piston design using flexure bearings. The vertical pulse tube is built by TRW with the heat exchanger or cold block located approximately mid-way along the tube. The final assembly and integration is also performed by TRW. The inertance tube and dead volume are contained within one of the compressor end caps. The cooler was developed by TRW under a joint NASA-DOD program, and has a goal of 10 yr operating lifetime. Potential NASA applications will focus on using coolers of this type in Zero boil off (ZBO) cryogen storage topologies for next generation launch vehicles. Zero boil off systems will feature significant reductions in tank size and Initial Mass to Low Earth Orbit (IMLEO), thereby significantly reducing the cost of access to space, and enabling future missions. The coolers can be used directly in liquid oxygen (LOx) or liquid methane ZBO systems, as shield coolers in liquid hydrogen tanks, or as first stage coolers in two-stage liquid hydrogen (LH2) ZBO cooler systems. Finally, the coolers could find applications in exploration missions where either propellants or breathable oxygen are extracted from the planetary atmosphere using a Sabatier or similar process. The gases could then be liquefied for storage either directly in return vehicle propellant tanks or on the planetary surface. Data presented were taken with the cooler operating in a vacuum of 10 (exp -5) torr, at controlled rejection temperatures from 300 K down to 275 K using a cold water heat exchanger bolted to the cooler. Heat loads were varied between 0.5 W and 15 W by supplying current to a 50 omega resistor mounted on a copper cold plate which was bolted to the cooler cold block. Silicon diodes mounted on both the cold plate and the heat exchanger provided accurate temperature measurement to within plus or minus 0.25 K and plus or minus 0.5 K respectively, up to 100 K with plus or minus 1% accuracy above 100 K. Input power to the compressor was limited to 180 W, corresponding to a maximum stroke of 80%.
PLC-controlled cryostats for the BlackGEM and MeerLICHT detectors
NASA Astrophysics Data System (ADS)
Raskin, Gert; Morren, Johan; Pessemier, Wim; Bloemen, Steven; Klein-Wolt, Marc; Roelfsema, Ronald; Groot, Paul; Aerts, Conny
2016-08-01
BlackGEM is an array of telescopes, currently under development at the Radboud University Nijmegen and at NOVA (Netherlands Research School for Astronomy). It targets the detection of the optical counterparts of gravitational waves. The first three BlackGEM telescopes are planned to be installed in 2018 at the La Silla observatory (Chile). A single prototype telescope, named MeerLICHT, will already be commissioned early 2017 in Sutherland (South Africa) to provide an optical complement for the MeerKAT radio array. The BlackGEM array consists of, initially, a set of three robotic 65-cm wide-field telescopes. Each telescope is equipped with a single STA1600 CCD detector with 10.5k x 10.5k 9-micron pixels that covers a 2.7 square degrees field of view. The cryostats for housing these detectors are developed and built at the KU Leuven University (Belgium). The operational model of BlackGEM requires long periods of reliable hands-off operation. Therefore, we designed the cryostats for long vacuum hold time and we make use of a closed-cycle cooling system, based on Polycold PCC Joule-Thomson coolers. A single programmable logic controller (PLC) controls the cryogenic systems of several BlackGEM telescopes simultaneously, resulting in a highly reliable, cost-efficient and maintenance-friendly system. PLC-based cryostat control offers some distinct advantages, especially for a robotic facility. Apart of temperature monitoring and control, the PLC also monitors the vacuum quality, the power supply and the status of the PCC coolers (compressor power consumption and temperature, pressure in the gas lines, etc.). Furthermore, it provides an alarming system and safe and reproducible procedures for automatic cool down and warm up. The communication between PLC and higher-level software takes place via the OPC-UA protocol, offering a simple to implement, yet very powerful interface. Finally, a touch-panel display on the PLC provides the operator with a user-friendly and robust technical interface. In this contribution, we present the design of the BlackGEM cryostats and of the PLC-based control system.
MEMS based shock pulse detection sensor for improved rotary Stirling cooler end of life prediction
NASA Astrophysics Data System (ADS)
Hübner, M.; Münzberg, M.
2018-05-01
The widespread use of rotary Stirling coolers in high performance thermal imagers used for critical 24/7 surveillance tasks justifies any effort to significantly enhance the reliability and predictable uptime of those coolers. Typically the lifetime of the whole imaging device is limited due to continuous wear and finally failure of the rotary compressor of the Stirling cooler, especially due to failure of the comprised bearings. MTTF based lifetime predictions, even based on refined MTTF models taking operational scenario dependent scaling factors into account, still lack in precision to forecast accurately the end of life (EOL) of individual coolers. Consequently preventive maintenance of individual coolers to avoid failures of the main sensor in critical operational scenarios are very costly or even useless. We have developed an integrated test method based on `Micro Electromechanical Systems', so called MEMS sensors, which significantly improves the cooler EOL prediction. The recently commercially available MEMS acceleration sensors have mechanical resonance frequencies up to 50 kHz. They are able to detect solid borne shock pulses in the cooler structure, originating from e.g. metal on metal impacts driven by periodical forces acting on moving inner parts of the rotary compressor within wear dependent slack and play. The impact driven transient shock pulse analyses uses only the high frequency signal <10kHz and differs therefore from the commonly used broadband low frequencies vibrational analysis of reciprocating machines. It offers a direct indicator of the individual state of wear. The predictive cooler lifetime model based on the shock pulse analysis is presented and results are discussed.
VIBRATORY SPIRAL BLANCHER-COOLER
The objective of the demonstration project was to test the commercial feasibility of the vibratory spiral blancher-cooler, a newly designed steam blancher and air cooler that previous small scale tests showed could reduce the wasteload and energy consumption of preparing vegetabl...
Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2007-01-01
This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.
Study of thermal stability of Cu{sub 2}Se thermoelectric material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohra, Anil, E-mail: anilbohra786@gmail.com; Bhatt, Ranu; Bhattacharya, Shovit
2016-05-23
Sustainability of thermoelectric parameter in operating temperature range is a key consideration factor for fabricating thermoelectric generator or cooler. In present work, we have studied the stability of thermoelectric parameter of Cu{sub 2}Se within the temperature range of 50-800°C. Temperature dependent Seebeck coefficients and electrical resistivity measurement are performed under three continuous thermal cycles. X-ray diffraction pattern shows the presence of mixed cubic-monoclinic Cu{sub 2}Se phase in bare pellet which transforms to pure α-Cu{sub 2}Se phase with repeating thermal cycle. Significant enhancement in Seebeck coefficient and electrical resistivity is observed which may be attributed to (i) Se loss observed inmore » EDS and (ii) the phase transformation from mixed cubic-monoclinic structure to pure monoclinic α-Cu{sub 2}Se phase.« less
Fadeyi, Emmanuel A; Emery, Wanda; Simmons, Julie H; Jones, Mary Rose; Pomper, Gregory J
2017-10-01
The objective was to report a successful implementation of a blood cooler insert and tracking technology with educational initiatives and its effect on reducing red blood cell (RBC) wastage. The blood bank database was used to quantify and categorize total RBC units issued in blood coolers from January 2010 to December 2015 with and without the new inserts throughout the hospital. Radiofrequency identification tags were used with special software to monitor blood cooler tracking. An educational policy on how to handle the coolers was initiated. Data were gathered from the software that provided a real-time location monitoring of the blood coolers with inserts throughout the institution. The implementation of the blood cooler with inserts and tracking device reduced mean yearly RBC wastage by fourfold from 0.64% to 0.17% between 2010 and 2015. The conserved RBCs corresponded to a total cost savings of $167,844 during the 3-year postimplementation period. The implementation of new blood cooler inserts, tracking system, and educational initiatives substantially reduced the mean annual total RBC wastage. The cost to implement this initiative may be small if there is an existing institutional infrastructure to monitor and track hospital equipment into which the blood bank intervention can be adapted when compared to the cost of blood wastage. © 2017 AABB.
NASA Astrophysics Data System (ADS)
Salazar, William
2003-01-01
The Standard Advanced Dewar Assembly (SADA) is the critical module in the Department of Defense (DoD) standardization effort of scanning second-generation thermal imaging systems. DoD has established a family of SADA's to address requirements for high performance (SADA I), mid-to-high performance (SADA II), and compact class (SADA III) systems. SADA's consist of the Infrared Focal Plane Array (IRFPA), Dewar, Command and Control Electronics (C&CE), and the cryogenic cooler. SADA's are used in weapons systems such as Comanche and Apache helicopters, the M1 Abrams Tank, the M2 Bradley Fighting Vehicle, the Line of Sight Antitank (LOSAT) system, the Improved Target Acquisition System (ITAS), and Javelin's Command Launch Unit (CLU). DOD has defined a family of tactical linear drive coolers in support of the family of SADA's. The Stirling linear drive cryo-coolers are utilized to cool the SADA's Infrared Focal Plane Arrays (IRFPAs) to their operating cryogenic temperatures. These linear drive coolers are required to meet strict cool-down time requirements along with lower vibration output, lower audible noise, and higher reliability than currently fielded rotary coolers. This paper will (1) outline the characteristics of each cooler, (2) present the status and results of qualification tests, and (3) present the status and test results of efforts to increase linear drive cooler reliability.
Experimental investigation of the deformable mirror with bidirectional thermal actuators.
Huang, Lei; Ma, Xingkun; Gong, Mali; Bian, Qi
2015-06-29
A deformable mirror with actuators of thermoelectric coolers (TECs) is introduced in this paper. Due to the bidirectional thermal actuation property of the TEC, both upward and downward surface control is available for the DM. The response functions of the actuators are investigated. A close-loop wavefront control experiment is performed too, where the defocus and the astigmatism were corrected. The results reveal that there is a promising prospect for the novel design to be used in corrections of static aberrations, such as in the Inertial Confinement Fusion (ICF).
150K - 200K miniature pulse tube cooler for micro satellites
NASA Astrophysics Data System (ADS)
Chassaing, Clément; Butterworth, James; Aigouy, Gérald; Daniel, Christophe; Crespin, Maurice; Duvivier, Eric
2014-01-01
Air Liquide is working with the CNES and Steel électronique in 2013 to design, manufacture and test a Miniature Pulse Tube Cooler (MPTC) to cool infrared detectors for micro-satellite missions. The cooler will be particularly adapted to the needs of the CNES MICROCARB mission to study atmospheric Carbon Dioxide which presents absorption lines in the thermal near infrared, at 1.6 μm and 2.0 μm. The required cooler temperature is from 150 to 200K with cooling power between 1 and 3 watts. The overall electrical power budget including electronics is less than 20W with a 288-300K rejection temperature. Particular attention is therefore paid to optimizing overall system efficiency. The active micro vibration reduction system and thermal control systems already developed for the Air Liquide Large Pulse Tube Cooler (LPTC) are currently being implemented into a new high efficiency electronic architecture. The presented work concerns the new cold finger and electronic design. The cooler uses the compressor already developed for the 80K Miniature Pulse Tube Cryocooler. This Pulse Tube Cooler addresses the requirements of space missions where extended continuous operating life time (>5 years), low mass and low micro vibration levels are critical.
Development of muon ring coolers, neutrino factories and supersymmetric Higgs factory
NASA Astrophysics Data System (ADS)
Cline, David B.
2003-08-01
Over the past few years or so a key new development is the invention of ring coolers for muon cooling. In particular, these rings demonstrate robust cooling of the longitudinal phase space. We discuss the quadrupole or UCLA ring cooler and the prospects to make this a final cooler to reduce the transceiver emittance to the value required for a mu+mu- collider. This will lead to a Higgs factory for the A0/H0 in supersymmetry models.
Development of Muon Ring Coolers, Neutrino Factories and Supersymmetric Higgs Factory
NASA Astrophysics Data System (ADS)
Cline, David B.
2002-12-01
Over the past few years or so a key new development is the invention of Ring Coolers for muon cooling. In particular these rings demonstrate robust cooling of the longitudinal phase space. We discuss the Quadrupole or UCLA Ring Cooler and the prospects to make this a final cooler to reduce the tranceiver emittance to the value required for a μ+ μ- collider. This will lead to a Higgs Factory for the A0/H0 in supersymmetry models.
A mechanically driven switch for decoupling cryocoolers
NASA Astrophysics Data System (ADS)
van der Laan, M. T. G.; Tax, R.; Ten Kate, H. H. J.; van de Klundert, L. J. M.
A superconductive magnet system solely cooled by thermal conduction and two Gifford-McMahon cryocoolers has been developed. One cooler is redundant to obtain reliable and serviceable operation. The magnet operates at a temperature of 12 K. In order to reduce the heat flux into the system when one cooler is out of service, two thermal switches were developed with the following features. In both cases, thermal contact is made by pressing two or more pieces of metal against each other. The first switch is a lathe-chuck type and consists of three metal pieces symmetrically arranged around a metal bar. They are simultaneously pushed in a radial direction thus making mechanical and thermal contact. The second is a bench-vise type. A metal bar is clamped between two metal jaws by means of the action of a screw driven by an external torque. In both cases, relatively fast switching is possible. The thermal resistance obtained in the on-state was better than 0.5 W/K, and in the off-state at least a factor of 1000 less. Thermal and mechanical cycling appeared to have no large influence on the switch performance.
Development of a cryogenic all-silicon telescope (CAIT)
NASA Astrophysics Data System (ADS)
McCarter, Douglas R.; McCarter, Eloise; Paquin, Roger
2012-09-01
Mankind loves space and is drawn to explore its vastness. Existing space telescopes routinely encounter data losses and delayed data collections during the constantly changing temperature and load disruptions of space missions. The harsh environment of space thermal cycles and spacecraft motion loads create unwanted activity such as spacecraft slew, acquisition slew, and temperature induced blur. In order to compensate for the low performance of the materials currently used for telescope optics, engineers and designers are using costly on-board coolers, mechanical actuators, and deformed mirrors, for example, with limited success. However, Zero-defect Single Crystal Silicon (SCSi) can perform in space environments without coolers, actuators, and other such devices because SCSi is not ductile and is homogeneous and therefore is not subject to creep, and will not jitter, or blur during operations. To take advantage of the unique advantages of Zero-defect SCSi, we are developing and fabricating a Cryostable All-Silicon Imaging Telescope (CAIT). In this paper, we will discuss the basis for selecting SCSi for our space telescope design, the status of the CAIT design and fabrication progress, and compare SCSi thermal and strength properties with other typical space optical materials.
Turbo-Brayton cryocooler technology for low-temperature space applications
NASA Astrophysics Data System (ADS)
Zagarola, Mark V.; Breedlove, Jeffrey F.; McCormick, John A.; Swift, Walter L.
2003-03-01
High performance, low temperature cryocoolers are being developed for future space-borne telescopes and instruments. To meet mission objectives, these coolers must be compact, lightweight, have low input power, operate reliably for 5-10 years, and produce no disturbances that would affect the pointing accuracy of the instruments. This paper describes progress in the development of turbo-Brayton cryocoolers addressing cooling in the 5 K to 20 K temperature range for loads of up to 300 mW. The key components for these cryocoolers are the miniature, high-speed turbomachines and the high performance recuperative heat exchangers. The turbomachines use gas-bearings to support the low mass, high speed rotors, resulting in negligible vibration and long life. Precision fabrication techniques are used to produce the necessary micro-scale geometric features that provide for high cycle efficiencies at these reduced sizes. Turbo-Brayton cryocoolers for higher temperatures and loads have been successfully developed for space applications. For efficient operation at low temperatures and capacities, advances in the core technologies have been pursued. Performance test results of a new, low poer compressor will be presented, and early cryogenic test results on a low temperature expansion turbine will be discussed. Projections for several low temperature cooler configurations are summarized.
NASA Astrophysics Data System (ADS)
Tan, Ming; Wang, Xiuzhen; Hao, Yanming; Deng, Yuan
2017-06-01
It was found that phonons/electrons are less scattered along (1 1 1)-preferred Cu nanowires than in ordinary structure films and that the interface of Cu nanowires electrode and thermoelectric materials are more compatible. Here highly ordered, high-crystal-quality, high-density Cu nanowire array was successfully fabricated by a magnetron sputtering method. The Cu nanowire array was successfully incorporated using mask-assisted deposition technology as electrodes for thin-film thermoelectric coolers, which would greatly improve electrical/thermal transport and enhance performance of micro-coolers. The cooling performance of the micro-cooler with Cu nanowire array electrode is over 200% higher than that of the cooler with ordinary film electrode.
Vibration characterization and control of miniature Stirling-cycle cryocoolers for space application
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.; Johnson, D. L.; Kotsubo, V.
1991-01-01
This paper provides a summary overview of the vibration characteristics of split Stirling cryocoolers of the Oxford type and describes means being developed to achieve vibration levels consistent with the exacting requirements of sensitive infrared spectrometer instruments currently under development for NASA applications. A key emphasis of the paper is on exploring both active and passive means of reducing the residual upper harmonics of the drive frequency that remain with nulled back-to-back compressor and displacer units. Vibration supression results, measured with JPL's unique six-DOF force dynamometer, are presented for an 80 K Stirling cooler.
Oscillating-Coolant Heat Exchanger
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.; Blosser, Max L.; Camarda, Charles J.
1992-01-01
Devices useful in situations in which heat pipes inadequate. Conceptual oscillating-coolant heat exchanger (OCHEX) transports heat from its hotter portions to cooler portions. Heat transported by oscillation of single-phase fluid, called primary coolant, in coolant passages. No time-averaged flow in tubes, so either heat removed from end reservoirs on every cycle or heat removed indirectly by cooling sides of channels with another coolant. Devices include leading-edge cooling devices in hypersonic aircraft and "frost-free" heat exchangers. Also used in any situation in which heat pipe used and in other situations in which heat pipes not usable.
Cryogenic Heat Pipe Experiment (CRYOHP)
NASA Technical Reports Server (NTRS)
Mcintosh, Roy
1992-01-01
The objective of the CRYOHP experiment is to conduct a shuttle experiment that demonstrates the reliable operation of two oxygen heat pipes in microgravity. The experiment will perform the following tasks: (1) demonstrate startup of the pipes from the supercritical state; (2) measure the heat transport capacity of the pipes; (3) measure evaporator and condenser film coefficients; and (4) work shuttle safety issues. The approach for the experiment is as follows: (1) fly two axially grooved oxygen heat pipes attached to mechanical stirling cycle tactical coolers; (2) integrate experiment in hitch-hiker canister; and (3) fly on shuttle and control from ground.
The Along Track Scanning Radiometer (ATSR) - Orbital performance and future developments
NASA Astrophysics Data System (ADS)
Sandford, M. C. W.; Edwards, T.; Mutlow, C. T.; Delderfield, J.; Llewellyn-Jones, D. T.
1992-08-01
The Along-Track Scanning Radiometer (ATSR), a new kind of infrared radiometer which is intended to make sea surface temperature measurements with an absolute accuracy of +/- 0.5 K averaged over cells of 0.5 deg in latitude, is discussed. The ATSR employs four detectors centered at 12, 11, 3.7, and 1.6 microns. The noise performance thermal performance, and Stirling cycle cooler performance of the ATSR on ERS-1 are examined along with 3.7 micron channel results. The calibration, structure, and data handling of the ATSRs planned for ERS-2 and for the POEM mission are examined.
Summary of the research and development effort on the supercritical CO2 cycle
NASA Astrophysics Data System (ADS)
Fraas, A. P.
1981-06-01
The supercritical CO2 cycle has the advantage over a conventional closed cycle gas turbine in that the compression work phase of the cycle can be carried out close to the critical point and hence aerodynamic losses in the compressor are reduced and the cycle efficiency increased for a given turbine inlet temperature. However, the practicable turbine inlet temperature is reduced by permissible stresses in the heater tubes because the peak pressure in the cycle must be approx. 260 atm in order to have the compression process take place close to the critical point of the working fluid. The high system pressure also makes the capital cost of the heat exchangers and gas piping higher than that for a conventional closed cycle gas turbine. Further, the waste heat from the cycle must be rejected at too low a temperature for it to be useful for industrial process heat or for district heating systems.
Reduced Microbial Resilience after a 17-Year Climate Gradient Transplant Experiment
NASA Astrophysics Data System (ADS)
Bailey, V. L.; Fansler, S.; Bond-Lamberty, B. P.; Liu, C.; Smith, J. L.; Bolton, H.
2012-12-01
In 1994, a reciprocal soil transplant experiment was initiated between two elevations (310 m, warmer and drier, and 844 m, cooler and wetter) on Rattlesnake Mountain in southeastern Washington, USA. The original experiment sought to detect whether the microbial and biochemical dynamics developed under cool, moist conditions would be destabilized under hot, dry conditions. In March 2012 we resampled the original transplanted soils, control cores transplanted in situ, and native soils from each elevation, to study longer-term changes in microbial community composition, soil C and N dynamics, and soil physical structure. These resampled cores were randomly assigned to climate-control chambers simulating the diurnal conditions at either the lower or upper sites. We monitored respiration over 100 days, and couple these data with biogeochemical analyses conducted at time-zero, and at the end of the experiment, to examine the consequences of long-term climate change on microbial C cycling under new environmental stresses. All soil types incubated respired more C while in the simulated hotter, drier climate compared with the cooler, moister condition, except for those that had been transplanted from the lower elevation to the upper elevation in 1994, which actually respired less when returned to this, their original climate. These soils also exhibited almost no temperature sensitivity (Q10=1.07, 13-33 °C). Soils incubated in the cooler, moister chamber had greater N-acetylglucosaminidase and β-glucosidase potentials, suggesting that while loss of C as carbon dioxide respiration is reduced under these conditions, internal cycling of C may be enhanced. Ribosomal intergenic spacer analysis was used to fingerprint the bacterial community of all of these soils to identify possible high-level shifts in community composition in the 0-5, 5-10, and deeper depths in these soils. These results suggest that climate change has significantly altered the C dynamics in these soils, and that even after 17 years of adaptation, the soil microbial communities have not recovered to a condition similar to their new environment. These soils also appear to have lost some of their resilience to subsequent climate perturbations, raising more general questions of how current climate change will affect the capacity of soils to buffer against future, different perturbations.
46 CFR 56.50-96 - Keel cooler installations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-96 Keel cooler installations. (a) Keel... forming part of the tube and satisfies all of the following: (i) The cooler structure is fabricated from...
Investigation of the effect of pressure increasing in condensing heat-exchanger
NASA Astrophysics Data System (ADS)
Murmanskii, I. B.; Aronson, K. E.; Brodov, Yu M.; Galperin, L. G.; Ryabchikov, A. Yu.; Brezgin, D. V.
2017-11-01
The effect of pressure increase was observed in steam condensation in the intermediate coolers of multistage steam ejector. Steam pressure increase for ejector cooler amounts up to 1.5 kPa in the first ejector stage, 5 kPa in the second and 7 kPa in the third one. Pressure ratios are equal to 2.0, 1.3 and 1.1 respectively. As a rule steam velocities at the cooler inlets do not exceed 40…100 m/s and are subsonic in all regimes. The report presents a computational model that describes the effect of pressure increase in the cooler. The steam entering the heat exchanger tears the drops from the condensate film flowing down vertical tubes. At the inlet of heat exchanger the steam flow capturing condensate droplets forms a steam-water mixture in which the sound velocity is significantly reduced. If the flow rate of steam-water mixture in heat exchanger is greater than the sound velocity, there occurs a pressure shock in the wet steam. On the basis of the equations of mass, momentum and energy conservation the authors derived the expressions for calculation of steam flow dryness degree before and after the shock. The model assumes that droplet velocity is close to the velocity of the steam phase (slipping is absent); drops do not come into thermal interaction with the steam phase; liquid phase specific volume compared to the volume of steam is neglected; pressure shock is calculated taking into account the gas-dynamic flow resistance of the tube bundle. It is also assumed that the temperature of steam after the shock is equal to the saturation temperature. The calculations have shown that the rise of steam pressure and temperature in the shock results in dryness degree increase. For calculated flow parameters the velocity value before the shock is greater than the sound velocity. Thus, on the basis of generally accepted physics knowledge the computational model has been formulated for the effect of steam pressure rise in the condensing heat exchanger.
Thermal Strap And Cushion For Thermoelectric Cooler
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Petrick, S. Walter; Bard, Steven
1991-01-01
Inexpensive cushioning strap proposed for use as thermal contact between thermoelectric cooler and device to be cooled, such as laser diode, infrared detector, or charge-coupled device for imaging. Provides high thermal conductance while minimizing thermal and mechanical stresses on thermoelectric cooler. Used as alternative to flexible thermal strap made of silver.
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
7 CFR 58.128 - Equipment and utensils.
Code of Federal Regulations, 2012 CFR
2012-01-01
... contact surfaces of all utensils and equipment such as holding tanks, pasteurizers, coolers, vats... discharge a clean dry can and cover and shall be kept properly timed in accordance with the instructions of..., signature or initials of operator. (i) Surface coolers. Surface coolers shall be equipped with hinged or...
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
46 CFR 56.50-80 - Lubricating-oil systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... coolers on steam driven machinery shall be provided with two separate means of circulating water through the coolers. (d) For internal combustion engine installations, the requirements of paragraphs (b) and... provided for circulating coolant on those engines on which oil coolers are fitted. One of those means must...
7 CFR 58.128 - Equipment and utensils.
Code of Federal Regulations, 2014 CFR
2014-01-01
... contact surfaces of all utensils and equipment such as holding tanks, pasteurizers, coolers, vats... discharge a clean dry can and cover and shall be kept properly timed in accordance with the instructions of..., signature or initials of operator. (i) Surface coolers. Surface coolers shall be equipped with hinged or...
150K - 200K miniature pulse tube cooler for micro satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassaing, Clément; Butterworth, James; Aigouy, Gérald
Air Liquide is working with the CNES and Steel électronique in 2013 to design, manufacture and test a Miniature Pulse Tube Cooler (MPTC) to cool infrared detectors for micro-satellite missions. The cooler will be particularly adapted to the needs of the CNES MICROCARB mission to study atmospheric Carbon Dioxide which presents absorption lines in the thermal near infrared, at 1.6 μm and 2.0 μm. The required cooler temperature is from 150 to 200K with cooling power between 1 and 3 watts. The overall electrical power budget including electronics is less than 20W with a 288-300K rejection temperature. Particular attention ismore » therefore paid to optimizing overall system efficiency. The active micro vibration reduction system and thermal control systems already developed for the Air Liquide Large Pulse Tube Cooler (LPTC) are currently being implemented into a new high efficiency electronic architecture. The presented work concerns the new cold finger and electronic design. The cooler uses the compressor already developed for the 80K Miniature Pulse Tube Cryocooler. This Pulse Tube Cooler addresses the requirements of space missions where extended continuous operating life time (>5 years), low mass and low micro vibration levels are critical.« less
Bacteriological quality of drinking water from dispensers (coolers) and possible control measures.
Baumgartner, Andreas; Grand, Marius
2006-12-01
Three water dispensers (coolers) were bacteriologically monitored over a period of 3 months to evaluate their hygienic status. For this purpose, 174 samples of chilled and unchilled water were analyzed for levels of mesophilic aerobic bacteria and the presence of Escherichia coli and enterococci in 100-ml samples, and the presence of Pseudomonas aeruginosa in 10- and 100-ml samples. Additionally, 12 samples from 20-liter plastic bottles of spring water used to supply the coolers and 36 samples of 12 different brands of noncarbonated bottled mineral water were similarly analyzed. Water from the coolers yielded aerobic plate counts of 3 to 5 log CFU/ml with a geometric mean of 3.86 log CFU/ml, whereas water from the 20-liter bottles had a mean aerobic plate count of 3.3 log CFU/ml. Aerobic plate counts for noncarbonated mineral waters were generally lower (13 samples, < 10 CFU/ml; 6 samples, 10 to 10(2) CFU/ml; 13 samples, 10(2) to 10(3) CFU/ml; 3 samples, 10(3) to 10(4) CFU/ ml; 1 sample, 2 x 10(4) CFU/ml). Although occasional professional cleaning of the coolers did not affect the aerobic plate count, P. aeruginosa was successfully eliminated 2 weeks after cleaning, with only one cooler becoming recolonized. Neither E. coli nor enterococci was found in any of the water samples tested. However, P. aeruginosa was identified in three (25%) of twelve 100-ml samples from 20-liter bottles of spring water; a similar frequency of 24.1% was seen for water samples from coolers. Overall, 35 (21.6%) of 162 water samples (10 ml) from coolers also yielded P. aeruginosa, suggesting potential growth of P. aeruginosa in the dispensers. Pulsed-field gel electrophoresis typing and antibiotic susceptibility testing found 19 P. aeruginosa isolates from the coolers and bottles to be identical, indicating that a single strain originated from the bottled water rather than the surroundings of the coolers. Because P. aeruginosa can cause serious nosocomial infections, its spread should be strictly controlled in institutions caring for vulnerable people such as hospitals and nursing homes. Consequently, in keeping with legal requirement for bottled spring and mineral water in Switzerland, it is also advisable that P. aeruginosa be absent in 100-ml samples of cooler water.
Closed-cycle gas dynamic laser design investigation
NASA Technical Reports Server (NTRS)
Ketch, G. W.; Young, W. E.
1977-01-01
A conceptual design study was made of a closed cycle gas-dynamic laser to provide definition of the major components in the laser loop. The system potential application is for long range power transmission by way of high power laser beams to provide satellite propulsion energy for orbit changing or station keeping. A parametric cycle optimization was conducted to establish the thermodynamic requirements for the system components. A conceptual design was conducted of the closed cycle system and the individual components to define physical characteristics and establish the system size and weight. Technology confirmation experimental demonstration programs were outlined to develop, evaluate, and demonstrate the technology base needed for this closed cycle GDL system.
Calorimetric thermal-vacuum performance characterization of the BAe 80 K space cryocooler
NASA Technical Reports Server (NTRS)
Kotsubo, V. Y.; Johnson, D. L.; Ross, R. G., Jr.
1992-01-01
A comprehensive characterization program is underway at JPL to generate test data on long-life, miniature Stirling-cycle cryocoolers for space application. The key focus of this paper is on the thermal performance of the British Aerospace (BAe) 80 K split-Stirling-cycle cryocooler as measured in a unique calorimetric thermal-vacuum test chamber that accurately simulates the heat-transfer interfaces of space. Two separate cooling fluid loops provide precise individual control of the compressor and displacer heatsink temperatures. In addition, heatflow transducers enable calorimetric measurements of the heat rejected separately by the compressor and displacer. Cooler thermal performance has been mapped for coldtip temperatures ranging from below 45 K to above 150 K, for heatsink temperatures ranging from 280 K to 320 K, and for a wide variety of operational variables including compressor-displacer phase, compressor-displacer stroke, drive frequency, and piston-displacer dc offset.
Effects of wind application on thermal perception and self-paced performance.
Teunissen, L P J; de Haan, A; de Koning, J J; Daanen, H A M
2013-07-01
Physiological and perceptual effects of wind cooling are often intertwined and have scarcely been studied in self-paced exercise. Therefore, we aimed to investigate (1) the independent perceptual effect of wind cooling and its impact on performance and (2) the responses to temporary wind cooling during self-paced exercise. Ten male subjects completed four trials involving 15 min standardized incremental intensity cycling, followed by a 15-km self-paced cycling time trial. Three trials were performed in different climates inducing equivalent thermal strain: hot humid with wind (WIND) and warm humid (HUMID) and hot dry (DRY) without wind. The fourth trial (W3-12) was equal to HUMID, except that wind cooling was unexpectedly provided during kilometers 3-12. Physiological, perceptual and performance parameters were measured. Subjects felt generally cooler during the WIND than the HUMID and DRY trials, despite similar heart rate, rectal and skin temperatures and a WBGT of ~4 °C higher. The cooler thermal sensation was not reflected in differences in thermal comfort or performance. Comparing W3-12 to HUMID, skin temperature was 1.47 ± 0.43 °C lower during the wind interval, leading to more favorable ratings of perceived exertion, thermal sensation and thermal comfort. Overall, power output was higher in the W3-12 than the HUMID-trial (256 ± 29 vs. 246 ± 22 W), leading to a 67 ± 48 s faster finish time. In conclusion, during self-paced exercise in the heat, wind provides immediate and constant benefits in physiological strain, thermal perception and performance. Independent of physiological changes, wind still provides a greater sensation of coolness, but does not impact thermal comfort or performance.
Economic analysis of condensers for water recovery in steam injected gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Paepe, M.; Huvenne, P.; Dick, E.
1998-07-01
Steam injection cycles are interesting for small power ranges because of the high efficiency and the relatively low investment costs. A big disadvantage is the consumption of water by the cycle. Water recovery is seldom realized in industrial practice. In this paper an analysis of the technical and economical possibilities of water recovery by condensation of water out of the exhaust gases is made. Three gas turbines are considered : the Kawasaki M1A-13CC (2.3 MWe), the Allison 501KH (6.8 MWe) and the General Electric LM1600 (17 MWe). For every gas turbine two types of condensers are designed. In the watermore » cooled condenser finned tubes are used to cool the exhaust gases, flowing at the outside of the tubes. The water itself flows at the inside of the tubes and is cooled by a water to air cooler. In the air cooled condenser the exhaust gases flow at the inside of the tubes and the cooling air at the outside. The investment costs of the condensers is compared to the costs of the total installation. The investment costs are relatively smaller if the produced power goes up. The water cooled condenser with water to air cooler is cheaper than the air cooled condenser. Using a condenser results in higher exploitation costs due to the fans and pumps. It is shown that the air cooled condenser has lower exploitation costs than the water cooled one. Pay back time of the total installation does not significantly vary compared to the installation without recovery. Water prices are determined for which water recovery is profitable. For the water cooled condenser the turning point lies at 2.2 Euro/m; for the air cooled condenser this is 0.6 Euro/m.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... Pollutants: Plywood and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood...
Code of Federal Regulations, 2013 CFR
2013-07-01
... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... Pollutants: Plywood and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood...
Code of Federal Regulations, 2014 CFR
2014-07-01
... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... Pollutants: Plywood and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood...
Code of Federal Regulations, 2011 CFR
2011-07-01
... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood product...
Code of Federal Regulations, 2010 CFR
2010-07-01
... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... and Composite Wood Products Initial Compliance Requirements § 63.2267 Initial compliance demonstration for a reconstituted wood product press or board cooler. If you operate a reconstituted wood product...
Experimental investigation on the miniature mixed refrigerant cooler driven by a mini-compressor
NASA Astrophysics Data System (ADS)
Chen, Gaofei; Gong, Maoqiong; Wu, Yinong
2018-05-01
Three miniature Joule-Thomson cryogenic coolers and a testing set up were built to investigate the cooling performance in this work. Shell-and-tube heat exchanger and plate fin heat exchangers with rectangular micro channels were designed to achieve high specific surface area. The main processing technology of micro mixed refrigerant cooler (MMRC) was described. The design and fabrication processing of the plate fin heat exchangers were also described. The new developed micro plate-fin type heat exchanger shows high compactness with the specific heat surface larger than 1.0x104 m2/m3. The results of experimental investigations on miniature mixed refrigerant J-T cryogenic coolers driven by a Mini-Compressor were discussed. The performance evaluation and comparison of the three coolers was made to find out the features for each type of cooler. Expressions of refrigeration coefficient and exergy efficiency were pointed out. No-load temperature of about 112 K, and the cooling power of 4.0W at 118K with the input power of 120W is achieved. The exergy efficiency of the SJTC is 5.14%.
Hagos, Samson M.; Zhang, Chidong; Feng, Zhe; ...
2016-09-19
Influences of the diurnal cycle of convection on the propagation of the Madden-Julian Oscillation (MJO) across the Maritime Continent (MC) are examined using cloud-permitting regional model simulations and observations. A pair of ensembles of control (CONTROL) and no-diurnal cycle (NODC) simulations of the November 2011 MJO episode are performed. In the CONTROL simulations, the MJO signal is weakened as it propagates across the MC, with much of the convection stalling over the large islands of Sumatra and Borneo. In the NODC simulations, where the incoming shortwave radiation at the top of the atmosphere is maintained at its daily mean value,more » the MJO signal propagating across the MC is enhanced. Examination of the surface energy fluxes in the simulations indicates that in the presence of the diurnal cycle, surface downwelling shortwave radiation in CONTROL simulations is larger because clouds preferentially form in the afternoon. Furthermore, the diurnal co-variability of surface wind speed and skin temperature results in a larger sensible heat flux and a cooler land surface in CONTROL compared to NODC simulations. Here, an analysis of observations indicates that the modulation of the downwelling shortwave radiation at the surface by the diurnal cycle of cloudiness negatively projects on the MJO intraseasonal cycle and therefore disrupts the propagation of the MJO across the MC.« less
Numerical study on interaction of local air cooler with stratified hydrogen cloud in a large vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Z.; Andreani, M.
2012-07-01
Within the framework of the ERCOSAM project, planning calculations are performed to examine sensitivity parameters that can affect the break-up (erosion) of a helium layer by mitigation devices (i.e., cooler, spray, or Passive Autocatalytic Recombiner - PAR). This paper reports the GOTHIC analysis results for the cooler tests to be performed in the PANDA facility. The cooler elevation and geometry, helium layer thickness, steam distribution in the vessel, and the vessel geometry (inter-connected multi-compartments versus a single volume) on the erosion process as well as the cooling capacity are studied. This analysis is valuable because only a limited number ofmore » conditions will be examined in the planned experiments. The study provides a useful understanding of the interaction of a cooler with a stratified atmosphere. (authors)« less
Cool down time optimization of the Stirling cooler
NASA Astrophysics Data System (ADS)
Xia, M.; Chen, X. P.; Y Li, H.; Gan, Z. H.
2017-12-01
The cooling power is one of the most important performances of a Stirling cooler. However, in some special fields, the cool down time is more important. It is a great challenge to improve the cool down time of the Stirling cooler. A new split Stirling linear cryogenic cooler SCI09H was designed in this study. A new structure of linear motor is used in the compressor, and the machine spring is used in the expander. In order to reduce the cool down time, the stainless-steel mesh of regenerator is optimized. The weight of the cooler is 1.1 kg, the cool down time to 80K is 2 minutes at 296K with a 250J thermal mass, the cooling power is 1.1W at 80K, and the input power is 50W.
Nielsen, Conny; Winther, Conni L; Thomsen, Philip K; Andreasen, Jan J
2017-09-01
Since 2014, several infections with non-tuberculous mycobacteria (NTM) belonging to the species Mycobacterium ( M.) chimaera have been associated with the use of heater-cooler devices during on-pump cardiothoracic surgery both in European countries and the United States of America. Infections have been detected after surgery, with a delay of a few months and up to five years. Bacterial contamination of heater-cooler devices has also been described without any associated infections. In many centres, it has been a challenging task to eliminate NTM from the heater-cooler devices in order to reduce the risk to patients. In this case-report, we describe how we managed to achieve negative cultures for M. chimaera by changing the cleaning procedure of the Sorin Group Heater-Cooler System with three tanks.
Mid Infrared Instrument cooler subsystem test facility overview
NASA Astrophysics Data System (ADS)
Moore, B.; Zan, J.; Hannah, B.; Chui, T.; Penanen, K.; Weilert, M.
2017-12-01
The Cryocooler for the Mid Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) provides cooling at 6.2K on the instrument interface. The cooler system design has been incrementally documented in previous publications [1][2][3][4][5]. It has components that traverse three primary thermal regions on JWST: Region 1, approximated by 40K; Region 2, approximated by 100K; and Region 3, which is at the allowable flight temperatures for the spacecraft bus. However, there are several sub-regions that exist in the transition between primary regions and at the heat reject interfaces of the Cooler Compressor Assembly (CCA) and Cooler Control Electronics Assembly (CCEA). The design and performance of the test facility to provide a flight representative thermal environment for acceptance testing and characterization of the complete MIRI cooler subsystem are presented.
EVALUATION OF PERSONAL COOLING DEVICES FOR A ...
The study investigated the use of personal coolers to increase worker productivity and safety while working at elevated, ambient temperatures cleaning up dioxin contaminated soil.^The study included laboratory tests to measure the thermal characteristics of the chemical protective clothing worn and the performance of ice vest and vortex personal coolers.^In addition, field tests were conducted at a dioxin clean-up site to evaluate the performance of these two types of personal coolers.^The use of personal coolers was found to be an effective method of reducing the risk of heat stress.^In addition, workers were able to work continuously in hot weather without following the procedure normally used to decrease heat stress, i.e., working one hour followed by one hour of resting.^Both types of personal coolers were acceptable for the task being performed. information
Evaluation of BAUER K220 High Pressure Breathing Air Compressor
1990-03-01
switch , intermediate 6 Inter-cooler lstf2nd stage pressure lst/2nd stage 7 Inter-cooler 2nd/3rd stage 25 Pressure switch , intermediate 8 Inter-cooler...3rd/4th stage pressure 2nd/3rd stage 9 After-cooler 26 Pressure switch , intermediate 10 Inter-filter 2nd/3rd stage pressure 3rd/4th stage 11 Inter...filter 3rd/4th stage 27 Temperature switch 4th stage 12 Oil and water separator 28 Final pressure switch . 13 Safety valve 1st stage 29 3/2-way solenoid
Adaptive Vibration Reduction Controls for a Cryocooler With a Passive Balancer
NASA Technical Reports Server (NTRS)
Kopasakis, George; Cairelli, James E.; Traylor, Ryan M.
2001-01-01
In this paper an adaptive vibration reduction control (AVRC) design is described for a Stirling cryocooler combined with a passive balancer. The AVRC design was based on a mass-spring model of the cooler and balancer, and the AVRC algorithm described in this paper was based on an adaptive binary search. Results are shown comparing the baseline uncontrolled cooler with no balancer, the cooler with the balancer, and, finally, the cooler with the balancer and the AVRC. The comparison shows that it may be possible to meet stringent vibration reduction requirements without an active balancer.
Cooling the Origins Space Telescope
NASA Technical Reports Server (NTRS)
Dipirro, M.; Canavan, E.; Fantano, L.
2017-01-01
The NASA Astrophysics Division has commissioned 4 studies for consideration by the 2020 Decadal Survey to be the next flagship mission following WFIRST (Wide Field Infrared Survey Telescope). One of the four studies is the Origins Space Telescope (OST), which will cover wavelengths from 6 microns to 600 microns. To perform at the level of the zodiacal, galactic, and cosmic background, the telescope must be cooled to 4 degrees Kelvin. 4 degrees Kelvin multi-stage mechanical cryocoolers will be employed along with a multilayer sunshield/thermal shield to achieve this temperature with a manageable parasitic heat load. Current state-of-the-art cryocoolers can achieve close to 4 degrees Kelvin, providing about 50 megawatts of cooling at 4 degrees Kelvin with an input power of 500 watts. Multiple coolers at this power level will be used in parallel. These coolers also provide extra cooling power at intermediate temperature stages of 15-20 degrees Kelvin and 50-70 degrees Kelvin . This upper stage cooling will be used to limit the heat conducted to 4 degrees Kelvin . The multi-layer sunshield will limit the radiated thermal energy to the 4 degrees Kelvin volume. This paper will describe the architecture of the cryogenic system for OST along with preliminary thermal models.
Forced heat loss from body surface reduces heat flow to body surface.
Berman, A
2010-01-01
Heat stress is commonly relieved by forced evaporation from body surfaces. The mode of heat stress relief by heat extraction from the periphery is not clear, although it reduces rectal temperature. Radiant surface temperature (Ts) of the right half of the body surface was examined by thermovision in 4 lactating Holstein cows (30 kg of milk/d) during 7 repeated cycles of forced evaporation created by 30s of wetting followed by 4.5 min of forced airflow. Wetting was performed by an array of sprinklers (0.76 m(3)/h), and forced airflow (>3m/s velocity) over the right side of the body surface was produced by fans mounted at a height of 3m above the ground. Sprinkling wetted the hind legs, rump, and chest, but not the lower abdomen side, front legs, or neck. The animals were maintained in shade at an air temperature of 28 degrees C and relative humidity of 47%. Coat thickness was 1 to 2mm, so Ts closely represented skin temperature. Mean Ts of 5 x 20cm areas on the upper and lower hind and front legs, rump, chest, abdomen side, and neck were obtained by converting to temperature their respective gray intensity in single frames obtained at 10-s intervals. Little change occurred in Ts during the first wetting (0.1+/-0.6 degrees C), but it decreased rapidly thereafter (1.6+/-0.6 degrees C in the fifth wetting). The Ts also decreased, to a smaller extent, in areas that remained dry (0.7+/-1.0 degrees C). In all body sites, a plateau in Ts was reached by 2 min after wetting. The difference between dry and wet areas in the first cooling cycle was approximately 1.2 degrees C. The Ts of different body areas decreased during consecutive cooling cycles and reached a plateau by 3 cooling cycles in dry sites (front leg, neck, abdomen side), by 5 cooling cycles in the hind leg, and 7 cooling cycles in the rump and chest. The reduction in mean Ts produced by 7 cycles was 4.0 to 6.0 degrees C in wetted areas and 1.6 to 3.7 degrees C in sites that were not wetted. Initial rectal temperature was 38.9+/-0.1 degrees C; it remained unchanged during first 5 cooling cycles, decreased by 0.1 degrees C after 7 cooling cycles, and decreased to 38.4+/-0.06 degrees C after 8 to 10 cooling cycles, with no additional subsequent decrease. The concomitant reduction in Ts in dry and wet areas suggests an immediate vasoconstrictor response associated with heat extraction and later development of a cooler body shell. The reduction in rectal temperature represents a response involving transfer of heat from the body core to the body shell. This response mode requires consideration in settings of heat stress relief. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Advanced technology cogeneration system conceptual design study: Closed cycle gas turbines
NASA Technical Reports Server (NTRS)
Mock, E. A. T.; Daudet, H. C.
1983-01-01
The results of a three task study performed for the Department of Energy under the direction of the NASA Lewis Research Center are documented. The thermal and electrical energy requirements of three specific industrial plants were surveyed and cost records for the energies consumed were compiled. Preliminary coal fired atmospheric fluidized bed heated closed cycle gas turbine and steam turbine cogeneration system designs were developed for each industrial plant. Preliminary cost and return-on-equity values were calculated and the results compared. The best of the three sites was selected for more detailed design and evaluation of both closed cycle gas turbine and steam turbine cogeneration systems during Task II. Task III involved characterizing the industrial sector electrical and thermal loads for the 48 contiguous states, applying a family of closed cycle gas turbine and steam turbine cogeneration systems to these loads, and conducting a market penetration analysis of the closed cycle gas turbine cogeneration system.
NASA Technical Reports Server (NTRS)
Oseid, Kirk Leroi
1995-01-01
Unsteady flow is present in man, machine and nature. The flow of blood in arteries and capillaries in the human body is pulsatile-composed of a mean flow superposed with an oscillating component. The tides that wash in and out of rivers, harbors and estuaries are unsteady flows with very long periods of oscillation. Many engineering devices employ pulsatile and oscillating flow. Pulsating flow is defined here as a periodic flow with a net displacement of fluid over each flow cycle. Oscillating flow is defined as a period flow with a zero mean over each cycle. The subject of this thesis is oscillating flow and heat transfer in pipes which make up the heater and cooler sections of the NASA Space Power Research Engine (SPRE) currently under development. This engine uses the Stirling cycle as the thermal energy converter in a power plant for future space applications. The information presented in this thesis will of course be applicable to the design of many types of machinery which employ oscillating flow and heat transfer.
40 CFR Table 4 to Subpart Aaaaa of... - Requirements for Performance Tests
Code of Federal Regulations, 2013 CFR
2013-07-01
... lime kiln and each associated lime cooler, if there is a separate exhaust to the atmosphere from the associated lime cooler Select the location of the sampling port and the number of traverse ports Method 1 or... each associated lime cooler, if there is a separate exhaust to the atmosphere from the associated lime...
40 CFR Table 4 to Subpart Aaaaa of... - Requirements for Performance Tests
Code of Federal Regulations, 2011 CFR
2011-07-01
... lime kiln and each associated lime cooler, if there is a separate exhaust to the atmosphere from the associated lime cooler Select the location of the sampling port and the number of traverse ports Method 1 or... each associated lime cooler, if there is a separate exhaust to the atmosphere from the associated lime...
40 CFR Table 4 to Subpart Aaaaa of... - Requirements for Performance Tests
Code of Federal Regulations, 2014 CFR
2014-07-01
... lime kiln and each associated lime cooler, if there is a separate exhaust to the atmosphere from the associated lime cooler Select the location of the sampling port and the number of traverse ports Method 1 or... each associated lime cooler, if there is a separate exhaust to the atmosphere from the associated lime...
40 CFR Table 4 to Subpart Aaaaa of... - Requirements for Performance Tests
Code of Federal Regulations, 2010 CFR
2010-07-01
... lime kiln and each associated lime cooler, if there is a separate exhaust to the atmosphere from the associated lime cooler Select the location of the sampling port and the number of traverse ports Method 1 or... each associated lime cooler, if there is a separate exhaust to the atmosphere from the associated lime...
40 CFR Table 4 to Subpart Aaaaa of... - Requirements for Performance Tests
Code of Federal Regulations, 2012 CFR
2012-07-01
... lime kiln and each associated lime cooler, if there is a separate exhaust to the atmosphere from the associated lime cooler Select the location of the sampling port and the number of traverse ports Method 1 or... each associated lime cooler, if there is a separate exhaust to the atmosphere from the associated lime...
Small high cooling power space cooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, T. V.; Raab, J.; Durand, D.
The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the adventmore » of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.« less
Thermal performance of the CrIS passive cryocooler
NASA Astrophysics Data System (ADS)
Ghaffarian, B.; Kohrman, R.; Magner, A.
2006-02-01
The configuration, performance, and test validation of a passive radiant cooler for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Crosstrack Infrared Sounder (CrIS) Instrument are presented. The cooler is required to provide cryogenic operation of IR focal planes. The 11 kg device, based on prior ITT Industries Space Systems Division coolers, requires virtually no power. It uses multiple thermally isolated cooling stages, each with an independent cryoradiator, operating at successively colder temperatures. The coldest stage, with a controlled set point at 81 K, cools a longwave IR (LWIR) focal plane. An intermediate stage, with a 98 K control point, cools detectors operating in MWIR and SWIR spectral regions. The warmest stage includes a fixed, integral earth shield that limits the thermal load from the earth in the NPOESS Operational Low-earth Orbiting (LEO) orbit. A study of the thermal balance and loads analysis used to evaluate the predicted cooler performance is discussed. High performance margins have been retained throughout the cooler development, fabrication and test phases of the program. The achievable in-orbit temperatures for this cooler are anticipated to be 73 K for the LWIR cooling stage and 91 K for the midwave IR (MWIR)/shortwave IR (SWIR) stage. Test results from two iterations of thermal vacuum verification testing are presented. Lessons learned from the first test, which failed to produce the predicted performance are included. The thermal model of the cooler and test configuration was used to identify deficiencies in the test targets resulting in unexpected heat loads. Corrective action was implemented to remove the heat leaks and a second test verified both the cooler performance and the correlation of the detailed thermal model.
NASA Technical Reports Server (NTRS)
1992-01-01
Silver ionization water purification technology was originally developed for Apollo spacecraft. It was later used to cleanse swimming pools and has now been applied to industrial cooling towers and process coolers. Sensible Technologies, Inc. has added two other technologies to the system, which occupies only six square feet. It is manufactured in three capacities, and larger models are custom built on request. The system eliminates scale, corrosion, algae, bacteria and debris, and because of the NASA technology, viruses and waterborne bacteria are also destroyed. Applications include a General Motors cooling tower, amusement parks, ice manufacture and a closed-loop process cooling system.
Evaluation of personal cooling devices for dioxin clean-up operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, W.T.; Goldman, R.F.
1988-09-07
The study investigated the use of personal coolers to increase worker productivity and safety while working at elevated, ambient temperatures cleaning up dioxin contaminated soil. The study included laboratory tests to measure the thermal characteristics of the chemical protective clothing worn and the performance of ice vest and vortex personal coolers. In addition, field tests were conducted at a dioxin clean-up site to evaluate the performance of these two types of personal coolers. The use of personal coolers was found to be an effective method of reducing the risk of heat stress. In addition, workers were able to work continuouslymore » in hot weather without following the procedure normally used to decrease heat stress, i.e., working one hour followed by one hour of resting. Both types of personal coolers were acceptable for the task being performed.« less
Closed cycle ion exchange method for regenerating acids, bases and salts
Dreyfuss, Robert M.
1976-01-01
A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.
High resolution 1280×1024, 15 μm pitch compact InSb IR detector with on-chip ADC
NASA Astrophysics Data System (ADS)
Nesher, O.; Pivnik, I.; Ilan, E.; Calalhorra, Z.; Koifman, A.; Vaserman, I.; Oiknine Schlesinger, J.; Gazit, R.; Hirsh, I.
2009-05-01
Over the last decade, SCD has developed and manufactured high quality InSb Focal Plane Arrays (FPAs), which are currently used in many applications worldwide. SCD's production line includes many different types of InSb FPA with formats of 320x256, 480x384 and 640x512 elements and with pitch sizes in the range of 15 to 30 μm. All these FPAs are available in various packaging configurations, including fully integrated Detector-Dewar-Cooler Assemblies (DDCA) with either closed-cycle Sterling or open-loop Joule-Thomson coolers. With an increasing need for higher resolution, SCD has recently developed a new large format 2-D InSb detector with 1280x1024 elements and a pixel size of 15μm. The InSb 15μm pixel technology has already been proven at SCD with the "Pelican" detector (640x512 elements), which was introduced at the Orlando conference in 2006. A new signal processor was developed at SCD for use in this mega-pixel detector. This Readout Integrated Circuit (ROIC) is designed for, and manufactured with, 0.18 μm CMOS technology. The migration from 0.5 to 0.18 μm CMOS technology supports SCD's roadmap for the reduction of pixel size and power consumption and is in line with the increasing demand for improved performance and on-chip functionality. Consequently, the new ROIC maintains the same level of performance and functionality with a 15 μm pitch, as exists in our 20 μm-pitch ROICs based on 0.5μm CMOS technology. Similar to Sebastian (SCD ROIC with A/D on chip), this signal processor also includes A/D converters on the chip and demonstrates the same level of performance, but with reduced power consumption. The pixel readout rate has been increased up to 160 MHz in order to support a high frame rate, resulting in 120 Hz operation with a window of 1024×1024 elements at ~130 mW. These A/D converters on chip save the need for using 16 A/D channels on board (in the case of an analog ROIC) which would operate at 10 MHz and consume about 8Watts A Dewar has been designed with a stiffened detector support to withstand harsh environmental conditions with a minimal contribution to the heat load of the detector. The combination of the 0.18μm-based low power CMOS technology for the ROIC and the stiffening of the detector support within the Dewar has enabled the use of the Ricor K508 cryo-cooler (0.5 W). This has created a high-resolution detector in a very compact package. In this paper we present the basic concept of the new detector. We will describe its construction and will present electrical and radiometric characterization results.
Code of Federal Regulations, 2011 CFR
2011-07-01
... other than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw and finish mills, and open clinker piles. 63.1345 Section 63.1345 Protection of Environment... for affected sources other than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed...
Code of Federal Regulations, 2010 CFR
2010-07-01
... than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw...; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw and finish mills. The owner or operator of each new or existing raw material, clinker, or finished product...
Monolithically Integrated Fiber Optic Coupler
2013-01-14
tilted Bragg gratings 24 are thermoelectric coolers (TECs) 30 that can modify the pitch of the tilted Bragg gratings 24, thereby changing their...reflective properties at specific wavelengths to provide tunability. Heating or cooling by thermoelectric coolers 30 causes expansion or contraction of...of a different wavelength of light. While thermoelectric coolers are preferred, devices 30 can be any reversible cooling/heating device that is
[Growth inhibition of Vibrio parahaemolyticus in seafood by tabletop dry ice cooler].
Maruyama, Yumi; Kimura, Bon; Fujii, Tateo; Tokunaga, Yoshinori; Matsubayashi, Megumi; Aikawa, Yasushi
2005-10-01
Tabletop dry ice coolers (three types; dome model, cap model and tripod model), which are used in kitchens and hotel banquet halls to refrigerate fresh seafood, were investigated to determine whether growth of Vibrio parahaemolyticus was inhibited by their use. On TSA plates containing 1.8% NaCl and fresh seafood (fillets of squid, pink shrimp and yellowtail), V. parahaemolyticus (O3:K6, TDH+) inoculated at 4 to 5 log CFU/sample and left at ambient temperature (25 degrees C) grew by 1.0 to 2.8 orders in 4 hours. In contrast, with tabletop coolers no significant increase in viable count occurred in 3 to 4 hours, confirming that tabletop coolers inhibited the growth of V. parahaemolyticus. The temperature in each tabletop cooler was kept below 10 degrees C for 80 to 135 min, though the CO2 gas concentration in them remained high for only a short time (0 to 75 min). It was presumed that the refrigeration function mainly contributed to growth inhibition. Our results indicate that tabletop dry ice coolers are helpful for prevention of food-borne disease due to V. parahaemolyticus in food-service locations, such as kitchens and banquet halls.
Blind vortex tube as heat-rejecting heat exchanger for pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Mitchell, M. P.; Fabris, D.; Sweeney, R. O.
2002-05-01
This project integrated several unusual design features in a coaxial pulse tube cooler driven by a G-M compressor. Design objectives were simplification of construction and validation of innovative components to replace screens. The MS*2 Stirling Cycle Code was used to develop the thermodynamic design of the cooler. The primary innovation being investigated is the vortex tube that serves as both the orifice and the heat-rejecting heat exchanger at the warm end of the pulse tube. The regenerator is etched stainless steel foil with a developmental etch pattern. The cold heat exchanger is a copper cup with axial slits in its wall. Flow straightening in the cold end of the pulse tube is accomplished in traditional fashion with screens, but flow in the warm end of the pulse tube passes through a diffuser nozzle that is an extension of the cold throat of the vortex tube. The G-M compressor is rated at 2 kW. The custom-built rotary valve permits operation at speeds up to about 12 Hz. A series of adjustments over a period of about 7 months improved cooling performance by an average of almost 20 K per month. A no-load temperature of 65 K has been achieved. Experimental apparatus and results of this patented device [1,2] are described.
Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers
NASA Technical Reports Server (NTRS)
Monson, D. J.
1976-01-01
Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.
NASA Technical Reports Server (NTRS)
1986-01-01
Composite Consulation Concepts, Inc.'s Chemo-cooler, a scalp cooling system based on NASA space suit technology, prevents hair loss in patients undergoing chemotherapy. A head covering is placed over plastic tubing through which cold water is circulated from a cylinder. A controller monitors time and temperature. With chemo-cooler, 63% of patients lost almost no hair; 9% suffered only moderate hair loss. The technique was commercialized by an ex-NASA employee.
The coal-fired gas turbine locomotive - A new look
NASA Technical Reports Server (NTRS)
Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.
1983-01-01
Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.
An analysis of hydrogen production via closed-cycle schemes. [thermochemical processings from water
NASA Technical Reports Server (NTRS)
Chao, R. E.; Cox, K. E.
1975-01-01
A thermodynamic analysis and state-of-the-art review of three basic schemes for production of hydrogen from water: electrolysis, thermal water-splitting, and multi-step thermochemical closed cycles is presented. Criteria for work-saving thermochemical closed-cycle processes are established, and several schemes are reviewed in light of such criteria. An economic analysis is also presented in the context of energy costs.
Preliminary design trade-offs for a multi-mission stored cryogen cooler
NASA Technical Reports Server (NTRS)
Sherman, A.
1978-01-01
Preliminary design studies were performed for a multi-mission solid cryogen cooler having a wide range of application for both the shuttle sortie and free flyer missions. This multi-mission cooler (MMC) is designed to be utilized with various solid cryogens to meet a wide range of instrument cooling from 10 K (with solid hydrogen) to 90 K. The baseline cooler utilizes two stages of solid cryogen and incorporates an optional, higher temperature third stage which is cooled by either a passive radiator or a thermoelectric cooler. The MMC has an interface which can accommodate a wide variety of instrument configurations. A shrink fit adapter is incorporated which allows a drop-in instrument integration. The baseline design provides cooling of approximately 1 watt over a 60 to 100 K temperature range and about 0.5 watts from 15 to 60 K for a one year lifetime. For low cooling loads and with use of the optional radiator shield, cooling lifetimes as great as 8 years are predicted.
Solar Powered Automobile Interior Climate Control System
NASA Technical Reports Server (NTRS)
Howard, Richard T. (Inventor)
2003-01-01
There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.
Performance of the natural cooler to keep the freshness of vegetables and fruits in Medan City
NASA Astrophysics Data System (ADS)
Sitorus, T. B.; Ambarita, H.; Ariani, F.; Sitepu, T.
2018-02-01
One application in a direct evaporative cooling system was a natural cooler. The advantages of this system were not using the electrical energy and so far also environmentally. This research aims to obtain a performance analysis of the natural cooler as a store for vegetables and fruits in Medan city. The materials for natural cooler consists of teak wood and gunny. This study makes experiments during seven days in the open air. The parameter measurement on the weather was using HOBO devices and to record the temperature changes for vegetables or even fruits is using its acquisition data. The results showed that the maximum efficiency of the natural cooler could be obtained for 43.79% in the average air temperature of 30.51°C, the air humidity average is 85.12% with average solar radiation of 183.98 W/m2. Experimental data were showing that the condition of freshness on vegetables or even on fruits was heavily influenced by weather conditions.
Report to the Congress on the Strategic Defense Initiative 1990
1990-05-01
thermoacoustic drivers, pulse tube coolers, and sorption coolers. High efficiency is 7-4 I Technology Base expected from the magnetic cooler work, currently in...generated by SDI research, the degree to which certain types of defensive systems discourage an adversary from attempting to overwhelm them with additional...energy interceptor that has replaced earlier approaches. Nevertheless, development of an earlier approach known as SBI (referring to a specific type of
CFD analysis of turboprop engine oil cooler duct for best rate of climb condition
NASA Astrophysics Data System (ADS)
Kalia, Saurabh; CA, Vinay; Hegde, Suresh M.
2016-09-01
Turboprop engines are widely used in commuter category airplanes. Aircraft Design bureaus routinely conduct the flight tests to confirm the performance of the system. The lubrication system of the engine is designed to provide a constant supply of clean lubrication oil to the engine bearings, the reduction gears, the torque-meter, the propeller and the accessory gearbox. The oil lubricates, cools and also conducts foreign material to the oil filter where it is removed from further circulation. Thus a means of cooling the engine oil must be provided and a suitable oil cooler (OC) and ducting system was selected and designed for this purpose. In this context, it is relevant to study and analyse behaviour of the engine oil cooler system before commencing actual flight tests. In this paper, the performance of the oil cooler duct with twin flush NACA inlet housed inside the nacelle has been studied for aircraft best rate of climb (ROC) condition using RANS based SST K-omega model by commercial software ANSYS Fluent 13.0. From the CFD analysis results, it is found that the mass flow rate captured and pressure drop across the oil cooler for the best ROC condition is meeting the oil cooler manufacturer requirements thus, the engine oil temperature is maintained within prescribed limits.
NASA Astrophysics Data System (ADS)
Wang, Boxue; Jia, Yangtao; Zhang, Haoyu; Jia, Shiyin; Liu, Jindou; Wang, Weifeng; Liu, Xingsheng
2018-02-01
An insulation micro-channel cooling (IMCC) has been developed for packaging high power bar-based vertical stack and horizontal array diode lasers, which eliminates many issues caused in its congener packaged by commercial copper formed micro-channel cooler(MCC), such as coefficient of thermal expansion (CTE) mismatch between cooler and diode laser bar, high coolant quality requirement (DI water) and channel corrosion and electro-corrosion induced by DI water if the DI-water quality is not well maintained The IMCC cooler separates water flow route and electrical route, which allows tap-water as coolant without electro-corrosion and therefore prolongs cooler lifetime dramatically and escalated the reliability of these diode lasers. The thickness of ceramic and copper in an IMCC cooler is well designed to minimize the CTE mismatch between laser bar and cooler, consequently, a very low "SMILE" of the laser bar can be achieved for small fast axis divergence after collimation. In additional, gold-tin hard solder bonding technology was also developed to minimize the risk of solder electromigration at high current density and thermal fatigue under hard-pulse operation mode. Testing results of IMCC packaged diode lasers are presented in this report.
Development of the LSF95xx 2nd generation flexure bearing coolers
NASA Astrophysics Data System (ADS)
Mullie, J. C.; Bruins, P. C.; Benschop, T.; Meijers, M.
2005-05-01
Thales Cryogenics has been working on high reliability cryocoolers since 1997. During this period two cooler series have been developed, the LSF91xx series for cooling powers up to 3W at 80K and the LSF93xx series for cooling powers up to 8W at 80K. As a result of several design improvements, it was possible to decrease the length and mass of our flexure-bearing coolers. These improvements have been applied in the new LSF95xx series. With the length and mass reduction, the LSF95xx complies with the SADA II specification with respect to envelope and mass. Based on this, Thales Cryogenics is the first manufacturer offering a full flexure-bearing supported cooler that fits within the SADA II envelope. By using a moving magnet configuration in all our flexure-bearing coolers, the risk with respect to contamination problems due to out-gassing has been diminished because the coils are not part of the helium circuit. Furthermore, all connections in the LSF95xx are laser-welded, which means that there is no additional locking required inside the cooler. By using a different magnet design, no magnet segments have to be glued together, which decreases the risk of out-gassing and increases the reliability even more. This paper describes the trade-offs that have been considered in the design phase, and gives a detailed overview of the test results, the status of the qualification program and the resulting specification of the LSF95xx cooler series.
Ball Aerospace Long Life, Low Temperature Space Cryocoolers
NASA Astrophysics Data System (ADS)
Glaister, D. S.; Gully, W.; Marquardt, E.; Stack, R.
2004-06-01
This paper describes the development, qualification, characterization testing and performance at Ball Aerospace of long life, low temperature (from 4 to 35 K) space cryocoolers. For over a decade, Ball has built long life (>10 year), multi-stage Stirling and Joule-Thomson (J-T) cryocoolers for space applications, with specific performance and design features for low temperature operation. As infrared space missions have continually pushed for operation at longer wavelengths, the applications for these low temperature cryocoolers have increased. The Ball cryocooler technologies have culminated in the flight qualified SB235 Cryocooler and the in-development 6 K NASA/JPL ACTDP (Advanced Cryocooler Technology Development Program) Cryocooler. The SB235 and its model derivative SB235E are 2-stage coolers designed to provide simultaneous cooling at 35 K (typically, for Mercury Cadmium Telluride or MCT detectors) and 100 K (typically, for the optics) and were baselined for the Raytheon SBIRS Low Track Sensor. The Ball ACTDP cooler is a hybrid Stirling/J-T cooler that has completed its preliminary design with an Engineering Model to be tested in 2005. The ACTDP cooler provides simultaneous cooling at 6 K (typically, for either doped Si detectors or as a sub-Kelvin precooler) and 18 K (typically, for optics or shielding). The ACTDP cooler is under development for the NASA JWST (James Webb Space Telescope), TPF (Terrestrial Planet Finder), and Con-X (Constellation X-Ray) missions. Both the SB235 and ACTDP Coolers are highly leveraged off previous Ball space coolers including multiple life test and flight units.
Intermediate Fidelity Closed Brayton Cycle Power Conversion Model
NASA Technical Reports Server (NTRS)
Lavelle, Thomas M.; Khandelwal, Suresh; Owen, Albert K.
2006-01-01
This paper describes the implementation of an intermediate fidelity model of a closed Brayton Cycle power conversion system (Closed Cycle System Simulation). The simulation is developed within the Numerical Propulsion Simulation System architecture using component elements from earlier models. Of particular interest, and power, is the ability of this new simulation system to initiate a more detailed analysis of compressor and turbine components automatically and to incorporate the overall results into the general system simulation.
Conceptual design of closed Brayton cycle for coal-fired power generation
NASA Technical Reports Server (NTRS)
Shah, R. P.; Corman, J. C.
1977-01-01
The objectives to be realized in developing a closed cycle gas turbine are (1) to exploit high temperature gas turbine technology while maintaining a working fluid which is free from combustion gas contamination, (2) to achieve compact turbo-equipment designs through pressurization of the working fluid, and (3) to obtain relatively simple cycle configurations. The technical/economic performance of a specific closed cycle gas turbine system was evaluated through the development of a conceptual plant and system design. This energy conversion system is designed for electric utility service and to utilize coal directly in an environmentally acceptable manner.
The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.
2017-01-01
The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.
An Investigation of Certain Thermodynamic Losses in Minature Cryocoolers
2005-01-17
enable efficiencies to be increased not just in Stirling type coolers, but also in pulse tubes and linear alternators...theoretical work which will enable efficiencies to be increased not just in Stirling type coolers, but also in pulse tubes and linear alternators. 4 1...Investigation of how these losses scale to a geometry closer to that in a full Stirling or pulse tube cooler. This will involve the addition of a
Cryogenic Eyesafer Laser Optimization for Use Without Liquid Nitrogen
2014-02-01
liquid cryogens. This calls for optimal performance around 125–150 K—high enough for reasonably efficient operation of a Stirling cooler. We...state laser system with an optimum operating temperature somewhat higher—ideally 125–150 K—can be identified, then a Stirling cooler can be used to...needed to optimize laser performance in the desired temperature range. This did not include actual use of Stirling coolers, but rather involved both
Modeling of Hydrate Formation Mode in Raw Natural Gas Air Coolers
NASA Astrophysics Data System (ADS)
Scherbinin, S. V.; Prakhova, M. Yu; Krasnov, A. N.; Khoroshavina, E. A.
2018-05-01
Air cooling units (ACU) are used at all the gas fields for cooling natural gas after compressing. When using ACUs on raw (wet) gas in a low temperature condition, there is a danger of hydrate plug formation in the heat exchanging tubes of the ACU. To predict possible hydrate formation, a mathematical model of the air cooler thermal behavior used in the control system shall adequately calculate not only gas temperature at the cooler's outlet, but also a dew point value, a temperature at which condensation, as well as the gas hydrate formation point, onsets. This paper proposes a mathematical model allowing one to determine the pressure in the air cooler which makes hydrate formation for a given gas composition possible.
Micro-cooler enhancements by barrier interface analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen, A.; Dunn, G. M.; Glover, J.
A novel gallium arsenide (GaAs) based micro-cooler design, previously analysed both experimentally and by an analytical Heat Transfer (HT) model, has been simulated using a self-consistent Ensemble Monte Carlo (EMC) model for a more in depth analysis of the thermionic cooling in the device. The best fit to the experimental data was found and was used in conjunction with the HT model to estimate the cooler-contact resistance. The cooling results from EMC indicated that the cooling power of the device is highly dependent on the charge distribution across the leading interface. Alteration of this charge distribution via interface extensions onmore » the nanometre scale has shown to produce significant changes in cooler performance.« less
Development and fabrication of an advanced liquid cooling garment
NASA Technical Reports Server (NTRS)
Hixon, C. W.
1978-01-01
A tube/fin concept liquid cooling garment head cooler was developed, fabricated and delivered to NASA-ARC. The head cooler was fabricated from polyurethane film which sandwiches the transport fluid tubing and a thermally conductive fin material. The head cooler garment is sewn to form a skull cap and covered with a comfort liner. In addition, two Neonate heating garments were fabricated and supplied to NASA for further finishing and use in medical tests. The resulting garment is flexible, elastic and conforms to the head comfortably. Tests on a tube/fin element of identical construction as the head cooler demonstrated good thermal effectiveness. Use of commercially available materials and development of relatively simple fabrication techniques give the potential for a low garment cost.
Reliability enhancement of common module systems
NASA Astrophysics Data System (ADS)
Schellenberger, Gisbert; Ruehlich, Ingo; Korf, Herbert; Petrie, Juergen J.; Muenter, Rolf
2004-08-01
Several thousands of 1st Gen IR Systems operated by Integral Stirling Cooler HD1033 are still in service worldwide. Replacing the HD 1033 Stirling by a Linear Drive Cooler will result in a significant reliability enhancement of these IR system of about a factor of three. These attempts had been unsuccessful in the past due to excessive EMI noise induced by the linear cooler compressor. So a main goal for such a development is the elimination of various EMI distortions in the IR system by EMI filtering and shielding. Additionally, the synchronization of the cooler power to the predominant scanning frequency of the IR system significantly improves the image quality. Technical details of the solution, MTTF data and performance data are described in detail.
Developments in TurboBrayton Technology for Low Temperature Applications
NASA Technical Reports Server (NTRS)
Swift, W. L.; Zagarola, M. V.; Nellis, G. F.; McCormick, J. A.; Gibbon, Judy
1999-01-01
A single stage reverse Brayton cryocooler using miniature high-speed turbomachines recently completed a successful space shuttle test flight demonstrating its capabilities for use in cooling the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope (HST). The NICMOS CryoCooler (NCC) is designed for a cooling load of about 8 W at 65 K, and comprises a closed loop cryocooler coupled to an independent cryogenic circulating loop. Future space applications involve instruments that will require 5 mW to 200 mW of cooling at temperatures between 4 K and 10 K. This paper discusses the extension of Turbo-Brayton technology to meet these requirements.
A continuous dry 300 mK cooler for THz sensing applications.
Klemencic, G M; Ade, P A R; Chase, S; Sudiwala, R; Woodcraft, A L
2016-04-01
We describe and demonstrate the automated operation of a novel cryostat design that is capable of maintaining an unloaded base temperature of less than 300 mK continuously, without the need to recycle the gases within the final cold head, as is the case for conventional single shot sorption pumped (3)He cooling systems. This closed dry system uses only 5 l of (3)He gas, making this an economical alternative to traditional systems where a long hold time is required. During testing, a temperature of 365 mK was maintained with a constant 20 μW load, simulating the cooling requirement of a far infrared camera.
NASA Astrophysics Data System (ADS)
Ault, Timothy M.
The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low-level waste volumes slightly favor the closed uranium option, although uncertainties are significant in both cases. The high-level waste properties (radioactivity, decay heat, and ingestion radiotoxicity) all significantly favor the closed fuel cycle options (especially the closed thorium option), but an alternative measure of key fission product inventories that drive risk in a repository slightly favors the uranium fuel cycles due to lower production of iodine-129. Resource requirements are much lower for the closed fuel cycle options and are relatively similar between thorium and uranium. In additional to the steady-state results, a variety of potential transition pathways are considered for both uranium and thorium fuel cycle end-states. For dose, low-level waste, and fission products contributing to repository risk, the differences among transition impacts largely reflected the steady-state differences. However, the HLW properties arrived at a distinctly opposite result in transition (strongly favoring uranium, whereas thorium was strongly favored at steady-state), because used present-day fuel is disposed without being recycled given that uranium-233, rather than plutonium, is the primarily fissile nuclide at the closed thorium fuel cycle's steady-state. Resource consumption was the only metric was strongly influenced by the specific transition pathway selected, favoring those pathways that more quickly arrived at steady-state through higher breeding ratio assumptions regardless of whether thorium or uranium was used.
NASA Astrophysics Data System (ADS)
Zhang, L. M.; Hu, J. Y.; Wu, Z. H.; Luo, E. C.; Xu, J. Y.; Bi, T. J.
2015-07-01
This article introduces a multi-stage heat-driven thermoacoustic cryocooler capable of reaching cooling capacity about 1 kW at liquefied natural gas temperature range without any moving mechanical parts. The cooling system consists of an acoustically resonant double-acing traveling wave thermoacoustic heat engine and three identical pulse tube coolers. Unlike other traditional traveling wave thermoacoustic heat engines, the acoustically resonant double-acting thermoacoustic heat engine is a closed-loop configuration consists of three identical thermoacoustic conversion units. Each pulse tube cooler is bypass driven by one thermoacoustic heat engine unit. The device is acoustically completely symmetric and therefore "self-matching" for efficient traveling-wave thermoacoustic conversion. In the experiments, with 7 MPa helium gas as working gas, when the heating temperature reaches 918 K, total cooling capacity of 0.88 kW at 110 K is obtained with a resonant frequency of about 55 Hz. When the heating temperature is 903 K, a maximum total cooling capacity at 130 K of 1.20 kW is achieved, with a thermal-to-cold exergy efficiency of 8%. Compared to previously developed heat-driven thermoacoustic cryocoolers, this device has higher thermal efficiency and higher power density. It shows a good prospect of application in the field of natural gas liquefaction and recondensation.
Identification of Mycobacterium chimaera in heater-cooler units in China.
Zhang, Xiaoxia; Lin, Ji; Feng, Yu; Wang, Xiaohui; McNally, Alan; Zong, Zhiyong
2018-05-18
A global outbreak of infections due to Mycobacterium chimaera has been linked to the LivaNova (formerly Sorin) 3 T heater-cooler units (HCUs). We performed a study to investigate M. chimaera from HCUs in China. Water samples were collected from all 3 T HCUs (n = 5) at our hospital in May 2017. Mycobacteria isolates were subjected to genome sequencing using the HiSeq X10 Sequencer. Species were identified based on average nucleotide identity with M. chimaera type strain DSM 44623 T . Paired-end reads of all M. chimaera genomes were retrieved from the SRA database and, together with our isolates, were mapped against the chromosome of M. chimaera reference strain ZUERICH-1 to call SNPs. Mycobacteria grew from three HCUs manufactured in 2009 but not from the two in 2016. The three isolates were identified as M. chimaera and differed from each other by 4 to 6 SNPs, and from ZUERICH-1 by 7 to 10 SNPs. The three isolates belonged to the subgroup 1.1 and were most closely related to strains of the subgroup 1.1 from HCUs or patients in Europe, Australia/New Zealand and USA, suggesting the same common source. This is the first report of M. chimaera from HCUs in China.
Reducing Noise in the MSU Daily Lower-Tropospheric Global Temperature Dataset
NASA Technical Reports Server (NTRS)
Christy, John R.; Spencer, Roy W.; McNider, Richard T.
1996-01-01
The daily global-mean values of the lower-tropospheric temperature determined from microwave emissions measured by satellites are examined in terms of their signal, noise, and signal-to-noise ratio. Daily and 30-day average noise estimates are reduced by almost 50% and 35%. respectively, by analyzing and adjusting (if necessary) for errors due to 1) missing data, 2) residual harmonics of the annual cycle unique to particular satellites, 3) lack of filtering, and 4) spurious trends. After adjustments, the decadal trend of the lower-tropospheric global temperature from January 1979 through February 1994 becomes -0.058 C. or about 0.03 C per decade cooler than previously calculated.
Reducing Noise in the MSU Daily Lower-Tropospheric Global Temperature Dataset
NASA Technical Reports Server (NTRS)
Christy, John R.; Spencer, Roy W.; McNider, Richard T.
1995-01-01
The daily global-mean values of the lower-tropospheric temperature determined from microwave emissions measured by satellites are examined in terms of their signal, noise, and signal-to-noise ratio. Daily and 30-day average noise estimates are reduced by, almost 50% and 35%, respectively, by analyzing and adjusting (if necessary) for errors due to (1) missing data, (2) residual harmonics of the annual cycle unique to particular satellites, (3) lack of filtering, and (4) spurious trends. After adjustments, the decadal trend of the lower-tropospheric global temperature from January 1979 through February 1994 becomes -0.058 C, or about 0.03 C per decade cooler than previously calculated.
Tropopause inversion layer and water vapour
NASA Astrophysics Data System (ADS)
Peinke, Isabel; Reutter, Philipp; Hoor, Peter; Spichtinger, Peter
2013-04-01
The tropopause inversion layer (TIL) is a phenomenon located close to the tropopause, characterized by an enhanced static stability (N2) right above the temperature inversion of the tropopause and by its adjacent minima. There is low understanding of formation and maintenance of the TIL, but different hypotheses exist. On one hand, the balanced dynamic in this region has an important impact on the evolution and sustainment of the TIL. On the other hand, the radiative effects of ozone and water vapor near the tropopause might play an important role for the formation and maintenance of the TIL. We use high resolution radiosonde data over the Meteorological Observatory Lindenberg, Germany for the period February 2000 to April 2001 to investigate the impact of water vapor on the TIL. Starting from the mean profiles, we analyze the main features of the tropopause and the TIL. As it is known from the literature, we find a stronger TIL in summer compared to winter. However, our results show a complementary behavior in the seasonal cycle of the tropopause height and the TIL strength. The influence of the relative humidity over ice (RHi) on the TIL was also investigated. We show that high values of RHi lead to a cooler tropopause temperature and an enhanced strength of the TIL. This means that the maximum of the static stability is higher for high values of RHi and the adjacent minima are smaller than for low values of RHi.
Johnston, James D.; Tuttle, Steven C.; Nelson, Morgan C.; Bradshaw, Rebecca K.; Hoybjerg, Taylor G.; Johnson, Julene B.; Kruman, Bryce A.; Orton, Taylor S.; Cook, Ryan B.; Eggett, Dennis L.; Weber, K. Scott
2016-01-01
Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan–Apr) and summer (July–Sept), 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction. PMID:26808528
Johnston, James D; Tuttle, Steven C; Nelson, Morgan C; Bradshaw, Rebecca K; Hoybjerg, Taylor G; Johnson, Julene B; Kruman, Bryce A; Orton, Taylor S; Cook, Ryan B; Eggett, Dennis L; Weber, K Scott
2016-01-01
Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan-Apr) and summer (July-Sept), 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction.
The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America
Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.
2018-02-26
Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Chao, Winston C.; Walker, G. K.
1992-01-01
The influence of a cumulus convection scheme on the simulated atmospheric circulation and hydrologic cycle is investigated by means of a coarse version of the GCM. Two sets of integrations, each containing an ensemble of three summer simulations, were produced. The ensemble sets of control and experiment simulations are compared and differentially analyzed to determine the influence of a cumulus convection scheme on the simulated circulation and hydrologic cycle. The results show that cumulus parameterization has a very significant influence on the simulation circulation and precipitation. The upper-level condensation heating over the ITCZ is much smaller for the experiment simulations as compared to the control simulations; correspondingly, the Hadley and Walker cells for the control simulations are also weaker and are accompanied by a weaker Ferrel cell in the Southern Hemisphere. Overall, the difference fields show that experiment simulations (without cumulus convection) produce a cooler and less energetic atmosphere.
The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.
Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less
Solar activities and Climate change hazards
NASA Astrophysics Data System (ADS)
Hady, A. A., II
2014-12-01
Throughout the geological history of Earth, climate change is one of the recurrent natural hazards. In recent history, the impact of man brought about additional climatic change. Solar activities have had notable effect on palaeoclimatic changes. Contemporary, both solar activities and building-up of green-house gases effect added to the climatic changes. This paper discusses if the global worming caused by the green-house gases effect will be equal or less than the global cooling resulting from the solar activities. In this respect, we refer to the Modern Dalton Minimum (MDM) which stated that starting from year 2005 for the next 40 years; the earth's surface temperature will become cooler than nowadays. However the degree of cooling, previously mentioned in old Dalton Minimum (c. 210 y ago), will be minimized by building-up of green-house gases effect during MDM period. Regarding to the periodicities of solar activities, it is clear that now we have a new solar cycle of around 210 years. Keywords: Solar activities; solar cycles; palaeoclimatic changes; Global cooling; Modern Dalton Minimum.
NASA Technical Reports Server (NTRS)
Aronson, Albert Irving (Inventor)
1977-01-01
A three stage passive cooler for use in a spacecraft for cooling an infra-red detector includes a detector mounting cold plate for mounting the detector directly to the telescope optics. The telescope optics collect and direct the infra-red radiation from the earth, for example, to the infra-red detector, and are mounted directly to the spacecraft. The remaining stages of the cooler are mounted with thermal insulators to each other and to the spacecraft at separate locations from the detector mounting cold plate.
Study of a solid hydrogen cooler for spacecraft instruments and sensors
NASA Astrophysics Data System (ADS)
Sherman, A.
1980-08-01
The results of tests and studies to investigate the utilization of solid hydrogen for cooling of spacecraft instruments and sensors are presented. The results are presented in two sections; the first describing the tests in which an existing single stage solid cooler was filled and tested with solid hydrogen and the second which describes the analysis and design of a catalytic converter which will be tested in the vent line of the cooler.
Study of a solid hydrogen cooler for spacecraft instruments and sensors
NASA Technical Reports Server (NTRS)
Sherman, A.
1980-01-01
The results of tests and studies to investigate the utilization of solid hydrogen for cooling of spacecraft instruments and sensors are presented. The results are presented in two sections; the first describing the tests in which an existing single stage solid cooler was filled and tested with solid hydrogen and the second which describes the analysis and design of a catalytic converter which will be tested in the vent line of the cooler.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S. S., E-mail: sukti@iigs.iigm.res.in; Sekar Iyengar, A. N.
It is observed that the presence of a minority component of cooler electrons in a three component plasma plays a deterministic role in the evolution of solitary waves, double layers, or the newly discovered structures called supersolitons. The inclusion of the cooler component of electrons in a single electron plasma produces sharp increase in nonlinearity in spite of a decrease in the overall energy of the system. The effect maximizes at certain critical value of the number density of the cooler component (typically 15%–20%) giving rise to a hump in the amplitude variation profile. For larger amplitudes, the hump leadsmore » to a forbidden region in the ambient cooler electron concentration which dissociates the overall existence domain of solitary wave solutions in two distinct parameter regime. It is observed that an inclusion of the cooler component of electrons as low as < 1% affects the plasma system significantly resulting in compressive double layers. The solution is further affected by the cold to hot electron temperature ratio. In an adequately hotter bulk plasma (i.e., moderately low cold to hot electron temperature ratio), the parameter domain of compressive double layers is bounded by a sharp discontinuity in the corresponding amplitude variation profile which may lead to supersolitons.« less
Johnston, J D; Kruman, B A; Nelson, M C; Merrill, R M; Graul, R J; Hoybjerg, T G; Tuttle, S C; Myers, S J; Cook, R B; Weber, K S
2017-09-01
Residential endotoxin exposure is associated with protective and pathogenic health outcomes. Evaporative coolers, an energy-efficient type of air conditioner used in dry climates, are a potential source of indoor endotoxins; however, this association is largely unstudied. We collected settled dust biannually from four locations in homes with evaporative coolers (n=18) and central air conditioners (n=22) in Utah County, Utah (USA), during winter (Jan-Apr) and summer (Aug-Sept), 2014. Dust samples (n=281) were analyzed by the Limulus amebocyte lysate test. Housing factors were measured by survey, and indoor temperature and relative humidity measures were collected during both seasons. Endotoxin concentrations (EU/mg) were significantly higher in homes with evaporative coolers from mattress and bedroom floor samples during both seasons. Endotoxin surface loads (EU/m 2 ) were significantly higher in homes with evaporative coolers from mattress and bedroom floor samples during both seasons and in upholstered furniture during winter. For the nine significant season-by-location comparisons, EU/mg and EU/m 2 were approximately three to six times greater in homes using evaporative coolers. A plausible explanation for these findings is that evaporative coolers serve as a reservoir and distribution system for Gram-negative bacteria or their cell wall components in homes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evidence for a spike in mantle carbon outgassing during the Ediacaran period
NASA Astrophysics Data System (ADS)
Paulsen, Timothy; Deering, Chad; Sliwinski, Jakub; Bachmann, Olivier; Guillong, Marcel
2017-12-01
Long-term cycles in Earth's climate are thought to be primarily controlled by changes in atmospheric CO2 concentrations. Changes in carbon emissions from volcanic activity can create an imbalance in the carbon cycle. Large-scale changes in volcanic activity have been inferred from proxies such as the age abundance of detrital zircons, but the magnitude of carbon emissions depends on the style of volcanism as well as the amount. Here we analyse U-Pb age and trace element data of detrital zircons from Antarctica and compare the results with the global rock record. We identify a spike in CO2-rich carbonatite and alkaline magmatism during the Ediacaran period. Before the Ediacaran, secular cooling of the mantle and the advent of cooler subduction regimes promoted the sequestration of carbon derived from decarbonation of subducting oceanic slabs in the mantle. We infer that subsequent magmatism led to the extensive release of carbon that may at least in part be recorded in the Shuram-Wonoka carbon isotope excursion. We therefore suggest that this pulse of alkaline volcanism reflects a profound reorganization of the Neoproterozoic deep and surface carbon cycles and promoted planetary warming before the Cambrian radiation.
Split Stirling linear cryogenic cooler for a new generation of high temperature infrared imagers
NASA Astrophysics Data System (ADS)
Veprik, A.; Zechtzer, S.; Pundak, N.
2010-04-01
Split linear cryocoolers find use in a variety of infrared equipment installed in airborne, heliborne, marine and vehicular platforms along with hand held and ground fixed applications. An upcoming generation of portable, high-definition night vision imagers will rely on the high-temperature infrared detectors, operating at elevated temperatures, ranging from 95K to 200K, while being able to show the performance indices comparable with these of their traditional 77K competitors. Recent technological advances in industrial development of such high-temperature detectors initialized attempts for developing compact split Stirling linear cryogenic coolers. Their known advantages, as compared to the rotary integral coolers, are superior flexibility in the system packaging, constant and relatively high driving frequency, lower wideband vibration export, unsurpassed reliability and aural stealth. Unfortunately, such off-the-shelf available linear cryogenic coolers still cannot compete with rotary integral rivals in terms of size, weight and power consumption. Ricor developed the smallest in the range, 1W@95K, linear split Stirling cryogenic cooler for demanding infrared applications, where power consumption, compactness, vibration, aural noise and ownership costs are of concern.
Evidence for Solar-Cycle Forcing and Secular Variation in the Armagh Observatory Temperature Record
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
1998-01-01
A prominent feature of previous long-term temperature studies has been the appearance of warming since the 1880s, this often being taken as evidence for anthropogenic-induced global warming. In this investigation, the long-term, annual, mean temperature record (1844-1992) of the Armagh Observatory (Armagh, North Ireland), a set of temperature data based on maximum and minimum thermometers that predates the 1880s and correlates well with northern hemispheric and global standards, is examined for evidence of systematic variation, in particular, as related to solar-cycle forcing and secular variation. Indeed, both appear to be embedded within the Armagh data. Removal of these effects, each contributing about 8% to the overall reduction in variance, yields residuals that are randomly distributed. Application of the 10-year moving average to the residuals, furthermore, strongly suggests that the behavior of the residuals is episodic, inferring that (for extended periods of time) temperatures at Armagh sometimes were warmer or cooler (than expected), while at other times they were stable. Comparison of cyclic averages of annual mean temperatures against the lengths of the associated Hale cycles (i.e., the length of two, sequentially numbered, even-odd sunspot cycle pairs) strongly suggests that the temperatures correlate inversely (r = -0.886 at less than 2% level of significance) against the length of the associated Hale cycle. Because sunspot cycle 22 ended in 1996, the present Hale cycle probably will be shorter than average, implying that temperatures at Armagh over this Hale cycle will be warmer (about 9.31 q 0.23 C at the 90% confidence level) than average (= 9.00 C).
The basic features of a closed fuel cycle without fast reactors
NASA Astrophysics Data System (ADS)
Bobrov, E. A.; Alekseev, P. N.; Teplov, P. S.
2017-01-01
In this paper the basic features of a closed fuel cycle with thermal reactors are considered. The three variants of multiple Pu and U recycling in VVER reactors was investigated. The comparison of MOX and REMIX fuel approaches for closed fuel cycle with thermal reactors is presented. All variants make possible to recycle several times the total amount of Pu and U obtained from spent fuel. The reported study was funded by RFBR according to the research project № 16-38-00021
Isotope Exchange in Oxide Catalyst
NASA Technical Reports Server (NTRS)
Hess, Robert V.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M., Jr.; Hoyt, Ronald F.; Upchurch, Billy T.; Brown, Kenneth G.
1987-01-01
Replacement technique maintains level of CO2/18 in closed-cycle CO2 lasers. High-energy, pulsed CO2 lasers using rare chemical isotopes must be operated in closed cycles to conserve gas. Rare isotopes operated in closed cycles to conserve gas. Rare isotopes as CO2/18 used for improved transmission of laser beam in atmosphere. To maintain laser power, CO2 must be regenerated, and O2 concentration kept below few tenths of percent. Conditions achieved by recombining CO and O2.
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine.... (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and contamination correction. (v) NOX humidity...
Integrated exhaust gas recirculation and charge cooling system
Wu, Ko-Jen
2013-12-10
An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.
MM T for linear resonant cooler. Volume 1. Final report, October 1984-September 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, R.; Silvestro, J.
1988-02-16
The three-fold objectives of this contract were to: (1) enhance the producibility and performance of the prototype cooler design developed in a prior contract, (b) qualify the design to the target specification in the contract (basically the HD1045/UA B2 specification amended for 2,500 hour MTTF and low audible noise), and (c) develop and demonstrate a pilot production facility for the cooler. Technical difficulties and cost growth related to objectives (a) and (b) above precluded accomplishing (c) as part of this contract's activities. Nevertheless, performance within or exceeding all major requirements has been demonstrated, and the company is currently producing themore » cooler for use on a U.S. Air Force airborne IR system.« less
Variants of closing the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.; Tsibulskiy, S. V.
2015-12-01
Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.
Design of catalytic monoliths for closed-cycle carbon dioxide lasers
NASA Technical Reports Server (NTRS)
Herz, R. K.; Guinn, K.; Goldblum, S.; Noskowski, E.
1989-01-01
Pulsed carbon dioxide (CO2) lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers in hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalyst and design methods for implementation of catalysts in CO2 laser systems. A monolith catalyst section model and associated design computer program, LASCAT, are presented to assist in the design of a monolith catalyst section of a closed cycle CO2 laser system. Using LASCAT,the designer is able to specify a number of system parameters and determine the monolith section performance. Trade-offs between the catalyst activity, catalyst dimensions, monolith dimensions, pressure drop, O2 conversion, and other variables can be explored and adjusted to meet system design specifications. An introduction describes a typical closed-cycle CO2 system, and indicates some advantages of a closed cycle laser system over an open cycle system and some advantages of monolith support over other types of supports. The development and use of a monolith catalyst model is presented. The results of a design study and a discussion of general design rules are given.
14 CFR 25.1107 - Inter-coolers and after-coolers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1107 Inter..., inertia, and air pressure load to which it would be subjected in operation. Exhaust System ...
ERIC Educational Resources Information Center
Firth, Ian
1971-01-01
Presents experiments, models, and interpretations of reports that hot water begins to freeze faster than cooler water. Preliminary conclusions show that the surface area, side wall cooling, evaporation, and environment are the most important parameters. (DS)
Inspecting the MIRI Cryocooler
2016-06-13
Technicians inspect a component of the cryocooler for the Mid-Infrared Instrument, or MIRI, part of NASA's James Webb Space Telescope. This photo was taken after the cooler had completed testing, and was taken out of the test chamber in preparation for being placed into its shipping container. The cooler was shipped to the Northrop Grumman Aerospace Systems facility in Redondo Beach, California, on May 26, 2016. There, the cooler will be attached to the body of the Webb telescope. http://photojournal.jpl.nasa.gov/catalog/PIA20686
Fermilab 4.3-MeV Electron Cooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagaitsev, Sergei; Prost, Lionel; Shemyakin, Alexander
The Recycler Electron Cooler (REC) was the first cooler working at a relativistic energy (gamma = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. After introducing the physics of electron cooling and the REC system, this paper describes measurements carried out to tune the electron beam and optimize its cooling properties. In particular, we discuss the cooling strategy adopted for maximizing the collider integrated luminosity.
Cryogenic testing of Planck sorption cooler test facility
NASA Technical Reports Server (NTRS)
Zhang, B.; Pearson, D.; Borders, J.; Franklin, B.; Prina, M.; Hardy, J.; Crumb, D.
2004-01-01
A test facility has been upgraded in preparation for testing of two hydrogen sorption cryocoolers operating at 18/20 K. these sorption coolers are currently under development at the Jet Propulsion Laboratory. This work summarizes the scope of the test facility upgrade, including design for cryogenic cooling power delivery, system thermal management, insulation schemes, and data acquisition techniques. Ground support equipment for the sorption coolers, structural features of the test chamber, and the vacuum system involved for system testing will also be described in detail.
51. VIEW OF CRUSHER ADDITION FROM EAST. SHOWS BAKER COOLER ...
51. VIEW OF CRUSHER ADDITION FROM EAST. SHOWS BAKER COOLER AT LOWER LEFT, AND FOUNDATIONS FOR ROD MILL BETWEEN COOLER AND STEPHENS-ADAMSON INCLINED BUCKET ELEVATOR. THE BELT CONVEYOR TO RIGHT OF ELEVATOR FED ELEVATOR FROM ROD MILL. 100-TON ORE BIN AND DUST COLLECTOR IS BEHIND FRAMING BENT. NOTE CONVEYOR EMERGING FROM BOTTOM OF ORE BIN, THIS AND THE INCLINED ELEVATOR FED THE SYMONS SCREEN (MISSING). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
SPICA sub-Kelvin cryogenic chains
NASA Astrophysics Data System (ADS)
Duband, L.; Duval, J. M.; Luchier, N.; Prouve, T.
2012-04-01
SPICA, a Japanese led mission, is part of the JAXA future science program and is planned for launch in 2018. SPICA will perform imaging and spectroscopic observations in the mid- and far-IR waveband, and is developing instrumentation spanning the 5-400 μm range. The SPICA payload features several candidate instruments, some of them requiring temperature down to 50 mK. This is currently the case for SAFARI, a core instrument developed by a European-based consortium, and BLISS proposed by CALTECH/JPL in the US. SPICA's distinctive feature is to actively cool its telescope to below 6 K. In addition, SPICA is a liquid cryogen free satellite and all the cooling will be provided by radiative cooling (L2 orbit) down to 30 K and by mechanical coolers for lower temperatures. The satellite will launch warm and slowly equilibrate to its operating temperatures once in orbit. This warm launch approach makes it possible to eliminate a large liquid cryogen tank and to use the mass saved to launch a large diameter telescope (3.2 m). This 4 K cooled telescope significantly reduces its own thermal radiation, offering superior sensitivity in the infrared region. The cryogenic system that enables this warm launch/cooled telescope concept is a key issue of the mission. This cryogenic chain features a number of cooling stages comprising passive radiators, Stirling coolers and several Joule Thomson loops, offering cooling powers at typically 20, 4.5, 2.5 and 1.7 K. The SAFARI and BLISS detectors require cooling to temperatures as low as 50 mK. The instrument coolers will be operated from these heat sinks. They are composed of a small demagnetization refrigerator (ADR) pre cooled by either a single or a double sorption cooler, respectively for SAFARI and BLISS. The BLISS cooler maintains continuous cooling at 300 mK and thus suppresses the thermal equilibrium time constant of the large focal plane. These hybrid architectures allow designing low weight coolers able to reach 50 mK. Because the sorption cooler has extremely low mass for a sub-Kelvin cooler, it allows the stringent mass budget to be met. These concepts are discussed in this paper.
Iterative LQG Controller Design Through Closed-Loop Identification
NASA Technical Reports Server (NTRS)
Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.
1996-01-01
This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.
Glacial Inception and Carbon Cycle in CCSM4
NASA Astrophysics Data System (ADS)
Jochum, M.; Bailey, D. A.; Fasullo, J.; Kay, J. E.; Levis, S.; Lindsay, K. T.; Moore, J. K.; Otto-Bliesner, B. L.; Peacock, S.
2010-12-01
CCSM4 with ocean and land ecosystem and freely evolving atmospheric carbondioxide is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115.000 years ago features significantly cooler northern high latitudes, but only moderately cooler southern high latitudes. This asymmetry is explained by the sea-ice/snow albedo feedback; the MOC is almost unchanged. Most importantly, there is a substantial build up of snow cover on Baffin Island and North Canada - the origins of the Laurentide Ice Sheet. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds of the same order. However, the differences in global net air-sea carbon fluxes are small, and provide no support for the hypothesis that the solubility pump is responsible for the intial drawdown of atmospheric CO2 during a glacial inception. This surprising result is due to several effects, two of which stand out: Firstly, colder SST leads to higher solubility, but also to increased sea-ice concentration, which blocks air-sea exchange; and secondly, the weakening of the Southern Ocean winds that is predicted by some idealized studies occurs only in part of the basin, and is compensated by stronger winds in other parts.
NASA Astrophysics Data System (ADS)
Alsih, Abdulkareem; Flavel, Richard; McGrath, Gavan
2017-04-01
This study presents experimental results investigating spatial patterns of infiltration and evaporation in heterogeneous water repellent media. Infrared camera measurements and 3D X-ray computed tomography imaging was performed across wet-dry cycles on glass beads with engineered patches of water repellence. The imaging revealed spatial variability in infiltration and the redistribution of water in the media resulting in differences in relative evaporation rates during drying. It appears that the spatial organization of the heterogeneity play a role in the breakdown of water repellence at the interface of the two media. This suggests a potential mechanism for self-organization of repellency spatial patterns in field soils. At the interface between wettable and water repellent beads a lateral drying front propagates towards the wettable beads from the repellent beads. During this drying the relative surface temperatures change from a relatively cooler repellent media surface to a relatively cooler wettable media surface indicating the changes in evaporative water loss between the beads of varying water repellence. The lateral drying front was confirmed using thermography in a small-scale model of glass beads with chemically induced repellence and then subjected to 3D X-ray imaging. Pore-scale imaging identified the hydrology at the interface of the two media and at the drying front giving insights into the physics of water flow in water repellent soil.
Taking the heat: thermoregulation in Asian elephants under different climatic conditions.
Weissenböck, Nicole M; Arnold, Walter; Ruf, Thomas
2012-02-01
Some mammals indigenous to desert environments, such as camels, cope with high heat load by tolerating an increase in body temperature (T (b)) during the hot day, and by dissipating excess heat during the cooler night hours, i.e., heterothermy. Because diurnal heat storage mechanisms should be favoured by large body size, we investigated whether this response also exists in Asian elephants when exposed to warm environmental conditions of their natural habitat. We compared daily cycles of intestinal T (b) of 11 adult Asian elephants living under natural ambient temperatures (T (a)) in Thailand (mean T (a) ~ 30°C) and in 6 Asian elephants exposed to cooler conditions (mean T (a) ~ 21°C) in Germany. Elephants in Thailand had mean daily ranges of T (b) oscillations (1.15°C) that were significantly larger than in animals kept in Germany (0.51°C). This was due to both increased maximum T (b) during the day and decreased minimum T (b) at late night. Elephant's minimum T (b) lowered daily as T (a) increased and hence entered the day with a thermal reserve for additional heat storage, very similar to arid-zone ungulates. We conclude that these responses show all characteristics of heterothermy, and that this thermoregulatory strategy is not restricted to desert mammals, but is also employed by Asian elephants.
46 CFR 128.420 - Keel cooler installations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ENGINEERING: EQUIPMENT AND SYSTEMS Design Requirements for Specific Systems § 128.420 Keel cooler...-metallic hose-clamps may be used at machinery connections if— (1) The clamps are of a corrosion-resistant...
7 CFR 58.311 - Coolers and freezers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58... further processing. Coolers and freezers shall be kept clean, orderly, free from insects, rodents, and...
7 CFR 58.311 - Coolers and freezers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58... further processing. Coolers and freezers shall be kept clean, orderly, free from insects, rodents, and...
7 CFR 58.311 - Coolers and freezers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58... further processing. Coolers and freezers shall be kept clean, orderly, free from insects, rodents, and...
7 CFR 58.311 - Coolers and freezers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58... further processing. Coolers and freezers shall be kept clean, orderly, free from insects, rodents, and...
7 CFR 58.311 - Coolers and freezers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Rooms and Compartments § 58... further processing. Coolers and freezers shall be kept clean, orderly, free from insects, rodents, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasch, James Jay
A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.
Fitness: Stay Safe during Hot-Weather Exercise
... you're used to exercising indoors or in cooler weather, take it easy at first when you ... loosefitting clothing helps sweat evaporate and keeps you cooler. Avoid dark colors, which can absorb heat. If ...
Ceramic 3D printed Joule Thomson mini cryocooler intended for HOT IR detectors
NASA Astrophysics Data System (ADS)
Shapiro, A.; Fraiman, L.; Parahovnik, A.
2017-05-01
Joule Thomson (JT) Cryocooler is a well-known technology which is widely used in research and industry. The cooling effect is achieved by isenthalpic expansion of the cooling gas in an orifice. A JT cooler has two basic components: a counter flow heat exchanger and an orifice. Due to the fact that the cooler has no moving parts and contains relatively simple components it is a great candidate for miniaturization, and realization with the new additive manufacturing technologies. In the current work we discuss the implementation of 3D ceramic printing as a possible fabrication technology for a JT cooler intended for cooling IR detectors operated at temperature of about 150K. In this paper we present a comprehensive analysis including coolant considerations, heat transfer calculations and realization of the cooler.
Reliability improvements on Thales RM2 rotary Stirling coolers: analysis and methodology
NASA Astrophysics Data System (ADS)
Cauquil, J. M.; Seguineau, C.; Martin, J.-Y.; Benschop, T.
2016-05-01
The cooled IR detectors are used in a wide range of applications. Most of the time, the cryocoolers are one of the components dimensioning the lifetime of the system. The cooler reliability is thus one of its most important parameters. This parameter has to increase to answer market needs. To do this, the data for identifying the weakest element determining cooler reliability has to be collected. Yet, data collection based on field are hardly usable due to lack of informations. A method for identifying the improvement in reliability has then to be set up which can be used even without field return. This paper will describe the method followed by Thales Cryogénie SAS to reach such a result. First, a database was built from extensive expertizes of RM2 failures occurring in accelerate ageing. Failure modes have then been identified and corrective actions achieved. Besides this, a hierarchical organization of the functions of the cooler has been done with regard to the potential increase of its efficiency. Specific changes have been introduced on the functions most likely to impact efficiency. The link between efficiency and reliability will be described in this paper. The work on the two axes - weak spots for cooler reliability and efficiency - permitted us to increase in a drastic way the MTTF of the RM2 cooler. Huge improvements in RM2 reliability are actually proven by both field return and reliability monitoring. These figures will be discussed in the paper.
Flexure bearing compressor in the one watt linear (OWL) envelope
NASA Astrophysics Data System (ADS)
Rühlich, I.; Mai, M.; Wiedmann, Th.; Rosenhagen, C.
2007-04-01
For high performance IR detectors the split linear cooler is a preferred solution. High reliability, low induced vibration and low audible noise are major benefits of such coolers. Today, most linear coolers are qualified for MTTF of 8,000h or above. It is a strong customer desire to further reduce the maintenance costs on system level with significantly higher cooler lifetime. Increased cooler MTTF figures are also needed for IR applications with high lifetime requirements like missile warning applications, border surveillance or homeland security applications. AIM developed a Moving Magnet Flexure Bearing compressor to meet a MTTF of minimum 20,000h. The compressor has a full flexure bearing support on both sides of the driving mechanism. In the assembly process of the compressor an automated alignment process is used to achieve the necessary accuracy. Thus, side-forces on the pistons are minimized during operation, which significantly reduces the wear-out. In order to reduce the outgassing potential most of the internal junctions are welded and the use of all non-metallic components is minimized. The outline dimensions comply with the SADA2 requirements in length and diameter. Further, when operated with a 1/2" SADA type coldfinger, the cooler meets all specified performance data for SADA2. The compressor can be combined with different Stirling type coldfingers and also with the AIM Pulse Tube coldfinger, which gives increased lifetime potential up to 50,000h MTTF. Technical details and performance data of the new compressor are shown.
NASA Technical Reports Server (NTRS)
Beecher, D. T.
1976-01-01
Nine advanced energy conversion concepts using coal or coal-derived fuels are summarized. They are; (1) open-cycle gas turbines, (2) combined gas-steam turbine cycles, (3) closed-cycle gas turbines, (4) metal vapor Rankine topping, (5) open-cycle MHD; (6) closed-cycle MHD; (7) liquid-metal MHD; (8) advanced steam; and (9) fuel cell systems. The economics, natural resource requirements, and performance criteria for the nine concepts are discussed.
Closed-Cycle Hydrogen-Oxygen Regenerative Fuel Cell at the NASA Glenn Research Center-An Update
NASA Technical Reports Server (NTRS)
Bents, David J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.
2008-01-01
The closed cycle hydrogen-oxygen proton exchange membrane (PEM) regenerative fuel cell (RFC) at the NASA Glenn Research Center has demonstrated multiple back-to-back contiguous cycles at rated power and round-trip efficiencies up to 52 percent. It is the first fully closed cycle RFC ever demonstrated. (The entire system is sealed; nothing enters or escapes the system other than electrical power and heat.) During fiscal year fiscal year (FY) FY06 to FY07, the system s numerous modifications and internal improvements focused on reducing parasitic power, heat loss, and noise signature; increasing its functionality as an unattended automated energy storage device; and in-service reliability.
Qualification campaign of the 50 mK hybrid sorption-ADR cooler for SPICA/SAFARI
NASA Astrophysics Data System (ADS)
Duval, J.-M.; Duband, L.; Attard, A.
2015-12-01
SAFARI (SpicA FAR-infrared Instrument) is an infrared instrument planned to be part of the SPICA (SPace Infrared telescope for Cosmology and Astrophysics) Satellite. It will offer high spectral resolution in the 30 - 210 μm frequency range. SAFARI will benefit from the cold telescope of SPICA and to obtain the required detectors sensitivity, a temperature of 50 mK is required. This temperature is reached thanks to the use of a hybrid sorption - ADR (Adiabatic Demagnetization Refrigerator) cooler presented here. This cooler provides respectively 14 μW and 0.4 μW of cooling power at 300 mK and 50 mK. The cooler is planned to advantageously use two thermal interfaces of the instrument at 1.8 and 4.9 K. One of the challenges discussed in this paper is the low power available at each intercept. A dedicated laboratory electronic is being designed based on previous development with a particular focus on the 50 mK readout. Temperature regulation at 50 mK is also discussed. This cooler has been designed following flight constraints and will reach a high TRL, including mechanical and environmental tests at the end of the on-going qualification campaign.
Cascade pulse-tube cryocooler using a displacer for efficient work recovery
NASA Astrophysics Data System (ADS)
Xu, Jingyuan; Hu, Jianying; Hu, Jiangfeng; Luo, Ercang; Zhang, Limin; Gao, Bo
2017-09-01
Expansion work is generally wasted as heat in a pulse-tube cryocooler and thus represents an obstacle to obtaining higher Carnot efficiency. Recovery of this dissipated power is crucial to improvement of these cooling systems, particularly when the cooling temperature is not very low. In this paper, an efficient cascade cryocooler that is capable of recovering acoustic power is introduced. The cryocooler is composed of two coolers and a displacer unit. The displacer, which fulfills both phase modulation and power transmission roles, is sandwiched in the structure by the two coolers. This means that the expansion work from the first stage cooler can then be used by the second stage cooler. The expansion work of the second stage cooler is much lower than the total input work and it is thus not necessary to recover it. Analyses and experiments were conducted to verify the proposed configuration. At an input power of 1249 W, the cascade cryocooler achieved its highest overall relative Carnot efficiency of 37.2% and a cooling power of 371 W at 130 K. When compared with the performance of a traditional pulse-tube cryocooler, the cooling efficiency was improved by 32%.
Extended SWIR imaging sensors for hyperspectral imaging applications
NASA Astrophysics Data System (ADS)
Weber, A.; Benecke, M.; Wendler, J.; Sieck, A.; Hübner, D.; Figgemeier, H.; Breiter, R.
2016-05-01
AIM has developed SWIR modules including FPAs based on liquid phase epitaxy (LPE) grown MCT usable in a wide range of hyperspectral imaging applications. Silicon read-out integrated circuits (ROIC) provide various integration and readout modes including specific functions for spectral imaging applications. An important advantage of MCT based detectors is the tunable band gap. The spectral sensitivity of MCT detectors can be engineered to cover the extended SWIR spectral region up to 2.5μm without compromising in performance. AIM developed the technology to extend the spectral sensitivity of its SWIR modules also into the VIS. This has been successfully demonstrated for 384x288 and 1024x256 FPAs with 24μm pitch. Results are presented in this paper. The FPAs are integrated into compact dewar cooler configurations using different types of coolers, like rotary coolers, AIM's long life split linear cooler MCC030 or extreme long life SF100 Pulse Tube cooler. The SWIR modules include command and control electronics (CCE) which allow easy interfacing using a digital standard interface. The development status and performance results of AIM's latest MCT SWIR modules suitable for hyperspectral systems and applications will be presented.
NASA Astrophysics Data System (ADS)
Jang, Sang-Hoon; Hwang, Se-Joon; Park, Sang-Ki; Choi, Kap-Seung; Kim, Hyung-Man
2012-06-01
Developing an effective method of reducing nitrogen oxide emissions is an important goal in diesel engine research. The use of cooled exhaust gas recirculation has been considered one of the most effective techniques of reducing nitrogen oxide. However, since the combustion characteristics in a diesel engine involves high temperature and load, the amount of particulate matter emission tends to increase, and there is a trade-off between the amount of nitrogen oxide and particulate matter emissions. In the present study, engine dynamometer experiments are performed to investigate the effects of particulate matter fouling on the heat exchange characteristics of wave fin type exhaust gas recirculation coolers that have four cases of two wave pitch and three fin pitch lengths. To optimize the fin and wave pitches of the EGR cooler, the exhaust gas temperature, pressure drop and heat exchange effectiveness are compared. The experimental results show that the exhaust gas recirculation cooler with a fin pitch of 3.6 mm and a wave pitch of 8.8 mm exhibits better heat exchange characteristics and smaller particulate matter fouling effect than the other coolers.
High duty cycle hard soldered kilowatt laser diode arrays
NASA Astrophysics Data System (ADS)
Klumel, Genady; Karni, Yoram; Oppenheim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom
2010-02-01
High-brightness laser diode arrays operating at a duty cycle of 10% - 20% are in ever-increasing demand for the optical pumping of solid state lasers and directed energy applications. Under high duty-cycle operation at 10% - 20%, passive (conductive) cooling is of limited use, while micro-coolers using de-ionized cooling water can considerably degrade device reliability. When designing and developing actively-cooled collimated laser diode arrays for high duty cycle operation, three main problems should be carefully addressed: an effective local and total heat removal, a minimization of packaging-induced and operational stresses, and high-precision fast axis collimation. In this paper, we present a novel laser diode array incorporating a built-in tap water cooling system, all-hard-solder bonded assembly, facet-passivated high-power 940 nm laser bars and tight fast axis collimation. By employing an appropriate layout of water cooling channels, careful choice of packaging materials, proper design of critical parts, and active optics alignment, we have demonstrated actively-cooled collimated laser diode arrays with extended lifetime and reliability, without compromising their efficiency, optical power density, brightness or compactness. Among the key performance benchmarks achieved are: 150 W/bar optical peak power at 10% duty cycle, >50% wallplug efficiency and <1° collimated fast axis divergence. A lifetime of >0.5 Ghots with <2% degradation has been experimentally proven. The laser diode arrays have also been successfully tested under harsh environmental conditions, including thermal cycling between -20°C and 40°C and mechanical shocks at 500g acceleration. The results of both performance and reliability testing bear out the effectiveness and robustness of the manufacturing technology for high duty-cycle laser arrays.
Ruddock, Alan D; Tew, Garry A; Purvis, Alison J
2017-07-01
The purpose of this study was to quantify physiological and perceptual responses to hand immersion in water during recumbent cycling in a hot environment. Seven physically active males (body mass 79.8 ± 6.3 kg; stature 182 ± 5 cm; age 23 ± 3 years) immersed their hands in 8, 14 and 34°C water whilst cycling at an intensity (W) equivalent to 50% [Formula: see text]O 2peak for 60 min in an environmental chamber (35°C, 50% relative humidity). 8 and 14°C water attenuated an increase in body temperature, and lowered cardiorespiratory and skin blood flow demands. These effects were considered to be practically beneficial (standardised effect size > 0.20). There was a tendency for 8 and 14°C to extend exercise duration versus 34°C (>7%). Heart rate, intestinal, mean skin and mean body temperature were less in 8°C compared to 14°C; these differences were considered practically beneficial. Augmented heat loss at the palm-water surface might enable cooler blood to return to the body and limit physiological strain. These findings provide a mechanistic basis for continuous hand cooling and indicate that endurance exercise in hot environments could be improved using this method. Future research should investigate its effectiveness during cycling and running performance.
9 CFR 354.221 - Rooms and compartments.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Coolers and freezers. Coolers and freezers of adequate size and capacity shall be provided to reduce the... ventilated. (e) Storage and supply rooms. The storage and supply rooms shall be in good repair, kept dry, and...
9 CFR 354.221 - Rooms and compartments.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Coolers and freezers. Coolers and freezers of adequate size and capacity shall be provided to reduce the... ventilated. (e) Storage and supply rooms. The storage and supply rooms shall be in good repair, kept dry, and...
9 CFR 354.221 - Rooms and compartments.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Coolers and freezers. Coolers and freezers of adequate size and capacity shall be provided to reduce the... ventilated. (e) Storage and supply rooms. The storage and supply rooms shall be in good repair, kept dry, and...
9 CFR 354.221 - Rooms and compartments.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Coolers and freezers. Coolers and freezers of adequate size and capacity shall be provided to reduce the... ventilated. (e) Storage and supply rooms. The storage and supply rooms shall be in good repair, kept dry, and...
9 CFR 354.221 - Rooms and compartments.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Coolers and freezers. Coolers and freezers of adequate size and capacity shall be provided to reduce the... ventilated. (e) Storage and supply rooms. The storage and supply rooms shall be in good repair, kept dry, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moisseytsev, A.; Sienicki, J. J.
2009-07-01
Analyses of supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle performance have largely settled on the recompression supercritical cycle (or Feher cycle) incorporating a flow split between the main compressor downstream of heat rejection, a recompressing compressor providing direct compression without heat rejection, and high and low temperature recuperators to raise the effectiveness of recuperation and the cycle efficiency. Alternative cycle layouts have been previously examined by Angelino (Politecnico, Milan), by MIT (Dostal, Hejzlar, and Driscoll), and possibly others but not for sodium-cooled fast reactors (SFRs) operating at relatively low core outlet temperature. Thus, the present authors could not be suremore » that the recompression cycle is an optimal arrangement for application to the SFR. To ensure that an advantageous alternative layout has not been overlooked, several alternative cycle layouts have been investigated for a S-CO{sub 2} Brayton cycle coupled to the Advanced Burner Test Reactor (ABTR) SFR preconceptual design having a 510 C core outlet temperature and a 470 C turbine inlet temperature to determine if they provide any benefit in cycle performance (e.g., enhanced cycle efficiency). No such benefits were identified, consistent with the previous examinations, such that attention was devoted to optimizing the recompression supercritical cycle. The effects of optimizing the cycle minimum temperature and pressure are investigated including minimum temperatures and/or pressures below the critical values. It is found that improvements in the cycle efficiency of 1% or greater relative to previous analyses which arbitrarily fixed the minimum temperature and pressure can be realized through an optimal choice of the combination of the minimum cycle temperature and pressure (e.g., for a fixed minimum temperature there is an optimal minimum pressure). However, this leads to a requirement for a larger cooler for heat rejection which may impact the tradeoff between efficiency and capital cost. In addition, for minimum temperatures below the critical temperature, a lower heat sink temperature is required the availability of which is dependent upon the climate at the specific plant site.« less
Engine Air Intake Manifold Having Built In Intercooler
Freese, V, Charles E.
2000-09-12
A turbocharged V type engine can be equipped with an exhaust gas recirculation cooler integrated into the intake manifold, so as to achieve efficiency, cost reductions and space economization improvements. The cooler can take the form of a tube-shell heat exchanger that utilizes a cylindrical chamber in the air intake manifold as the heat exchanger housing. The intake manifold depends into the central space formed by the two banks of cylinders on the V type engine, such that the central space is effectively utilized for containing the manifold and cooler.
Transient Air Infiltration/Exfiltration in Walk-In Coolers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faramarzi, Ramin; Navaz, H. K.; Kamensky, K.
Walk-in coolers are room-sized, insulated, and refrigerated compartments for food product storage. Walk-ins have areas equal or below 280 m2 (3,000 ft2), and are classified either as coolers operating above 0 degrees C (32 degrees F) (medium-temperature) to store fresh fruit, vegetables, and dairy products, or freezers that operate below 0 degrees C (32 degrees F) (low-temperature) to meet health and safety standards of frozen food products. Walk-ins are typically found in restaurants as well as small- and medium-to-large grocery stores or supermarkets.
USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.
Weaver, H.L.; Campbell, G.S.
1985-01-01
Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.
Market Assessment and Commercialization Strategy for the Radial Sandia Cooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Shandross, Richard; Weintraub, Daniel
This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.
Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Terry A.; Kariya, Harumichi Arthur; Leick, Michael T.
This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air - bearing supported rotating heat - sink impeller. The project included ba seline performance testing of a residential refrigerator, analysis and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was achieved in a 60% smaller volume package. The improved modeling parameters can now be used to guide more optimized designs and more accurately predict performance.
Micro-Scale Avionics Thermal Management
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
2001-01-01
Trends in the thermal management of avionics and commercial ground-based microelectronics are converging, and facing the same dilemma: a shortfall in technology to meet near-term maximum junction temperature and package power projections. Micro-scale devices hold the key to significant advances in thermal management, particularly micro-refrigerators/coolers that can drive cooling temperatures below ambient. A microelectromechanical system (MEMS) Stirling cooler is currently under development at the NASA Glenn Research Center to meet this challenge with predicted efficiencies that are an order of magnitude better than current and future thermoelectric coolers.
Performance and Mass Modeling Subtleties in Closed-Brayton-Cycle Space Power Systems
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Johnson, Paul K.
2005-01-01
Contents include the following: 1. Closed-Brayton-cycle (CBC) thermal energy conversion is one available option for future spacecraft and surface systems. 2. Brayton system conceptual designs for milliwatt to megawatt power converters have been developed 3. Numerous features affect overall optimized power conversion system performance: Turbomachinery efficiency. Heat exchanger effectiveness. Working-fluid composition. Cycle temperatures and pressures.
76 FR 59392 - Notice of Intent To Grant Exclusive Patent License; Enhanced Energy Group, LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-26
... inventions, and they are covered by U.S. Patent No. 7,926,275: Closed Brayton Cycle Direct Contact Reactor/ Storage Tank With Chemical Scrubber.//U.S. Patent No. 7,926,276: Closed Cycle Brayton Propulsion System With Direct Heat Transfer.//U.S. Patent No. 7,937,930: Semiclosed Brayton Cycle Power System With...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, M. A.; Pan, H.; Preece, R. M.
2014-01-29
Two 2.7-m long solenoid magnets with a cold mass of 1400 kg were fabricated in between 2007 and 2010. The magnet cryostat outside diameter is ∼1.4 meters and the cryostat length is ∼2.73 meters. The magnet warm bore is 0.4 meters. The magnet was designed to be cooled using three 1.5 W two-stage coolers. In both magnets, three coolers could not keep the cryostat filled with liquid helium. The temperatures of the shield and the tops of the HTS leads were too warm. A 140 W single stage cooler was added to magnet 2 to cool the HTS leads, themore » shield and the cold mass support intercepts. When the magnet 2 was retested in 2010, the net cooling at 4.2 K was −1.5 W with first-stage temperatures of the four coolers at ∼42 K. The tops of the HTS leads were <50 K, but the shield and cold mass support intercepts remained too warm. The solenoid cryostat and shield were modified during 2011 and 2012 to reduce the 4.2 K heat load and increase the cooling. This magnet was tested in 2012, with five 1.5 W two-stage coolers and the single stage cooler. The changes made in the magnet are described in this report. As a result of the cryostat and shield changes, and adding 3.0 W of cooling at 4.2 K, the net 4.2 K cooling changed from −1.6 W to +5.0 W. About half of the change in net cooling to this magnet was due changes that reduced the shield temperature. This report demonstrates the importance of running the shield cold (∼40 K) and reducing the heat loads from all sources on both the shield and the cold mass.« less
Forecasting Weather on Distant Worlds
NASA Technical Reports Server (NTRS)
2007-01-01
An artist's conception shows a gas-giant planet orbiting very close to its parent star, creating searingly hot conditions on the planet's surface. New research suggests that for three such planets lying from 50 to 150 light-years from Earth, strong winds thousands of miles per hour mix the atmosphere so that the temperature is relatively uniform from the permanently light side to the permanently dark side. This illustration represents an infrared view of a planetary system, in which brightness indicates warmer temperatures. For example, the bright band around the equator of the planet denotes warmer temperatures on both the dark and sunlit sides. The planet's poles, shown in darker colors, would be cooler.Emittance measurements in low energy ion storage rings
NASA Astrophysics Data System (ADS)
Hunt, J. R.; Carli, C.; Resta-López, J.; Welsch, C. P.
2018-07-01
The development of the next generation of ultra-low energy antiproton and ion facilities requires precise information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic measurement faces several challenges: non-zero dispersion, non-Gaussian beam distributions due to effects of the electron cooler and various systematic errors such as closed orbit offsets and inaccurate rms momentum spread estimation. In addition, diffusion processes, such as intra-beam scattering might lead to emittance overestimates. Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects, and present simulation results for the case of ELENA.
A continuous dry 300 mK cooler for THz sensing applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemencic, G. M., E-mail: Georgina.Klemencic@astro.cf.ac.uk; Ade, P. A. R.; Sudiwala, R.
We describe and demonstrate the automated operation of a novel cryostat design that is capable of maintaining an unloaded base temperature of less than 300 mK continuously, without the need to recycle the gases within the final cold head, as is the case for conventional single shot sorption pumped {sup 3}He cooling systems. This closed dry system uses only 5 l of {sup 3}He gas, making this an economical alternative to traditional systems where a long hold time is required. During testing, a temperature of 365 mK was maintained with a constant 20 μW load, simulating the cooling requirement ofmore » a far infrared camera.« less
AIRS pulse tube cooler system-level and in-space performance comparison
NASA Technical Reports Server (NTRS)
Ross, R. G.
2002-01-01
This paper presents the derivation of the test and analysis techniques as well as the measured system-level performance of the flight AIRS coolers during instrument-level, spacecraft-level, and in-space operation.
10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Walk-in Coolers and Walk-in Freezers § 431.302...; however the terms do not include products designed and marketed exclusively for medical, scientific, or...
Note: Sub-Kelvin refrigeration with dry-coolers on a rotating system.
Oguri, S; Ishitsuka, H; Choi, J; Kawai, M; Tajima, O
2014-08-01
We developed a cryogenic system on a rotating table that achieves sub-Kelvin conditions. The cryogenic system consists of a helium sorption cooler and a pulse tube cooler in a cryostat mounted on a rotating table. Two rotary-joint connectors for electricity and helium gas circulation enable the coolers to be operated and maintained with ease. We performed cool-down tests under a condition of continuous rotation at 20 rpm. We obtained a temperature of 0.23 K with a holding time of more than 24 h, thus complying with catalog specifications. We monitored the system's performance for four weeks; two weeks with and without rotation. A few-percent difference in conditions was observed between these two states. Most applications can tolerate such a slight difference. The technology developed is useful for various scientific applications requiring sub-Kelvin conditions on rotating platforms.
Control methods and systems for indirect evaporative coolers
Woods, Jason; Kozubal, Erik
2015-09-22
A control method for operating an indirect evaporative cooler to control temperature and humidity. The method includes operating an airflow control device to provide supply air at a flow rate to a liquid desiccant dehumidifier. The supply air flows through the dehumidifier and an indirect evaporative cooler prior to exiting an outlet into a space. The method includes operating a pump to provide liquid desiccant to the liquid desiccant dehumidifier and sensing a temperature of an airstream at the outlet of the indirect evaporative cooler. The method includes comparing the temperature of the airstream at the outlet to a setpoint temperature at the outlet and controlling the pump to set the flow rate of the liquid desiccant. The method includes sensing space temperature, comparing the space temperature with a setpoint temperature, and controlling the airflow control device to set the flow rate of the supply air based on the comparison.
NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Cairelli, James E.; Swec, Diane M.; Doeberling, Thomas J.; Lakatos, Thomas F.; Madi, Frank J.
1992-01-01
Free-piston Stirling power converters are candidates for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve the converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. Experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics are described. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.
NASA Astrophysics Data System (ADS)
Sauber, J. M.; Freymueller, J. T.; Han, S. C.; Davis, J. L.; Ruppert, N. A.
2016-12-01
In southern Alaska surface deformation and gravimetric change are associated with the seismic cycle as well as a strong seasonal cycle of snow accumulation and melt and a variable rate of glacier mass wastage. Numerical modeling of the solid Earth response to cryosphere change on a variety of temporal and spatial scales plays a critical role in supporting the interpretation of time-variable gravity and other geodetic data. In this study we calculate the surface displacements and stresses associated with variable spatial and temporal cryospheric loading and unloading in south-central coastal Alaska. A challenging aspect of estimating the response of the solid Earth to short-term (months to 102 years) regional cryospheric fluctuations is choosing the rock mechanics constitutive laws appropriate to this region. Here we report calculated differences in the predicted surface displacements and stresses during the GRACE time period (2002 to present). Broad-scale, GRACE-derived estimates of cryospheric mass change, along with independent snow melt onset/refreeze timing, snow depth and annual glacier wastage estimates from a variety of methods, were used to approximate the magnitude and timing of cryospheric load changes. We used the CIG finite element code PyLith to enable input of spatially complex surface loads. An as example of our evaluation of the influence of variable short-term surface loads, we calculated and contrasted the predicted surface displacements and stresses for a cooler than average and higher precipitation water year (WY12) versus a warmer than average year (WY05). Our calculation of these comparative stresses is motivated by our earlier empirical evaluation of the influence of short-term cryospheric fluctuations on the background seismic rate between 1988-2006 (Sauber and Ruppert, 2008). During the warmer than average years between 2002-2006 we found a stronger seasonal dependency in the frequency of small tectonic events in the Icy Bay region relative to cooler years. To date, we have focused our 3-D modeling on changes in the thickness of the primarily elastic layer and we also varied the Maxwell viscoelastic relaxation times for the lower crust and upper mantle. We anticipate exploring the influence of transient rheologies and testing alternate 3-D rheological structures.
NASA Astrophysics Data System (ADS)
Rosner, Guenther
2007-05-01
The Facility for Antiproton and Ion Research, FAIR, is a new particle accelerator facility to be built at the GSI site in Germany. The research at FAIR will cover a wide range of topics in nuclear and hadron physics, high density plasma and atomic physics, and applications in condensed matter physics and biology. A 1.1 km circumference double ring of rapidly cycling 100 and 300 Tm synchrotrons, will be FAIR's central accelerator system. It will be used to produce, inter alia, high intensity secondary beams of antiprotons and short-lived radioactive nuclei. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experiments are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.
Effect of volatile removal during molding on the properties of two phenolic-fiber composites
NASA Technical Reports Server (NTRS)
Price, H. L.; Lucy, M. H.
1974-01-01
A comparison has been made of the effect of three volatile-removing techniques during molding on the properties of phenolic-fiber composites. The first technique involved heating the molding compound from one side, initiating the volatile-producing reactions, and driving these volatiles through the compound toward the cooler side. The second technique involved the application of a vacuum to the molding cavity before and during the cure cycle. The third technique was a combination of the first two. These techniques were used in the compression molding of phenolic-asbestos and phenolic-glass composites. The effects of both the individual and combined techniques on the mechanical, thermal, and sorption properties of the composites are reported.
The X-ray Spectrometer - A cryogenic instrument on the Advanced X-ray Astrophysics Facility
NASA Technical Reports Server (NTRS)
Breon, Susan R.; Hopkins, Richard A.; Nieczkoski, Stephen J.
1991-01-01
The X-ray Spectrometer (XRS) is an instrument on the Advanced X-ray Astrophysics Facility (AXAF), the third of NASA's Great Observatories scheduled for launch in 1998. The XRS detectors have a resolution of approximately 10 eV over the range 0.3 - 10 keV. To achieve this resolution, the detectors are maintained at or below 0.1 Kelvin using an adiabatic demagnetization refrigerator inside a superfluid helium dewar. In addition, split-Stirling-cycle mechanical coolers are used to extend the anticipated on-orbit helium lifetime to a minimum of 4 years. This paper describes the challenges of developing this hybrid cryogenic system and presents an overview of the current design of the system.
On feasibility of a closed nuclear power fuel cycle with minimum radioactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F., E-mail: Tsibulskiy-VF@nrcki.ru
2015-12-15
Practical implementation of a closed nuclear fuel cycle implies solution of two main tasks. The first task is creation of environmentally acceptable operating conditions of the nuclear fuel cycle considering, first of all, high radioactivity of the involved materials. The second task is creation of effective and economically appropriate conditions of involving fertile isotopes in the fuel cycle. Creation of technologies for management of the high-level radioactivity of spent fuel reliable in terms of radiological protection seems to be the hardest problem.
Low vibration microminiature split Stirling cryogenic cooler for infrared aerospace applications
NASA Astrophysics Data System (ADS)
Veprik, A.; Zechtzer, S.; Pundak, N.; Kirkconnel, C.; Freeman, J.; Riabzev, S.
2011-06-01
The operation of the thermo-mechanical unit of a cryogenic cooler may originate a resonant excitation of the spacecraft frame, optical bench or components of the optical train. This may result in degraded functionality of the inherently vibration sensitive space-borne infrared imager directly associated with the cooler or neighboring instrumentation typically requiring a quiet micro-g environment. The best practice for controlling cooler induced vibration relies on the principle of active momentum cancellation. In particular, the pressure wave generator typically contains two oppositely actuated piston compressors, while the single piston expander is counterbalanced by an auxiliary active counter-balancer. Active vibration cancellation is supervised by a dedicated DSP feed-forward controller, where the error signals are delivered by the vibration sensors (accelerometers or load cells). This can result in oversized, overweight and overpriced cryogenic coolers with degraded electromechanical performance and impaired reliability. The authors are advocating a reliable, compact, cost and power saving approach capitalizing on the combined application of a passive tuned dynamic absorber and a low frequency vibration isolator. This concept appears to be especially suitable for low budget missions involving mini and micro satellites, where price, size, weight and power consumption are of concern. The authors reveal the results of theoretical study and experimentation on the attainable performance using a fullscale technology demonstrator relying on a Ricor model K527 tactical split Stirling cryogenic cooler. The theoretical predictions are in fair agreement with the experimental data. From experimentation, the residual vibration export is quite suitable for demanding wide range of aerospace applications. The authors give practical recommendations on heatsinking and further maximizing performance.
Abundant Cool Magnesium-Rich Pyroxene Crystals in Comet Hale-Bopp
NASA Technical Reports Server (NTRS)
Wooden, D. H.
1999-01-01
Modeling of the observed dust emission from Comet Hale-Bopp over a large range of heliocentric distances (2.8 AU - 0.93 AU -1.7 AU) led to the discovery of Mg-rich pyroxene crystals in the coma These pyroxene crystals are apparent in the 10 micron spectrum only when the comet is close to perihelion (r(sub h) = 1.2 AU) because they are cooler than the other silicate minerals. The pyroxene crystals are cooler than the other species because of their high Mg-content. They do not absorb as efficiently as the other silicate minerals. Given the same high Mg content of Mg/(Mg + Fe) = 0.9, radiative equilibrium computations show that pyroxene crystals are expected to be 150 K cooler than olivine crystals. The pyroxene crystals are also about 10x more abundant than the other silicate mineral species. Their high Mg content and relatively large abundance are in agreement with the preponderance of pyroxene interplanetary dust particles (IDPs) and the recent reanalysis of the PUMA-I flyby of Comet Halley. Before Hale-Bopp, only olivine crystals were detected spectroscopically in comets, probably because the pyroxene crystals are less optically active, hence significantly cooler and harder to detect in contrast to the warmer silicate species. Determining the relative abundances of silicate minerals depends on their Mg contents. If the pyroxene crystals in Comet Hale-Bopp are solar nebula condensates, then they probably had to form during the early FU Orionis epoch when the inner disk was hot enough and be transported out to the region of formation of icy planetesimals without being reheated. Reheating events appear to reincorporate Fe back into the crystals or form Fe-rich rims, which are not consistent with the high-Mg-content crystals. The condensation of Mg-rich pyroxene crystals is expected from solar nebula thermal equilibrium computations. However, their subsequent transport to the outer solar nebula unaltered has yet to be theoretically demonstrated. The discovery of Mg-rich crystals in Comet Hale-Bopp and in AGB stars opens the possibility that these crystals are relic interstellar grains. One-third of IDPs have been shown to have significant deuterium enrichments, thus indicating that they contain presolar material. By spectroscopic analogy to IDPs the Mg-rich pyroxene crystals in Comet Hale-Bopp may be presolar grains. If so, then the comet contains largely ISM silicates. ISM grains may have been the dominant source of dust in the outer early solar nebula.
Coronal Structures in Cool Stars: XMM-NEWTON Hybrid Stars and Coronal Evolution
NASA Technical Reports Server (NTRS)
Dupree, Andrea K.; Mushotzky, Richard (Technical Monitor)
2003-01-01
This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Beta Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, alpha TrA (K2 II-III). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars. We are attempting to determine if this model of coronal evolution is correct by using XMM-NEWTON RGS spectra for the 2 targets we were allocated through the Guest Observer program.
Sub-millikelvin stabilization of a closed cycle cryocooler.
Dubuis, Guy; He, Xi; Božović, Ivan
2014-10-01
Intrinsic temperature oscillations (with the amplitude up to 1 K) of a closed cycle cryocooler are stabilized by a simple thermal damping system. It employs three different materials with different thermal conductivity and specific heat at various temperatures. The amplitude of oscillations of the sample temperature is reduced to less than 1 mK, in the temperature range from 4 K to 300 K, while the cooling power is virtually undiminished. The damping system is small, inexpensive, can be retrofitted to most existing closed cycle cryocoolers, and may improve measurements of any temperature-sensitive physics properties.
NASA Technical Reports Server (NTRS)
Amos, D. J.; Fentress, W. K.; Stahl, W. F.
1976-01-01
Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.
Sub-millikelvin stabilization of a closed cycle cryocooler
Dubuis, Guy; He, Xi; Božović, Ivan
2014-10-03
In this study, intrinsic temperature oscillations (with the amplitude up to 1 K) of a closed cycle cryocooler are stabilized by a simple thermal damping system. It employs three different materials with different thermal conductivity and capacity at various temperatures. The amplitude of oscillations of the sample temperature is reduced to less than 1 mK, in the temperature range from 4 K to 300 K, while the cooling power is virtually undiminished. The damping system is small, inexpensive, can be retrofitted to most existing closed cycle cryocoolers, and may improve measurements of any temperature-sensitive physics properties.
NASA Technical Reports Server (NTRS)
Linsky, J. L.
1986-01-01
Major advances in our understanding of non-radiative heating and other activity in stars cooler than T sub eff = 10,000K has occured in the last few years. This observational evidence is reviewed and the trends that are now becoming apparent are discussed. The evidence for non-radiatively heated outer atmospheric layers (chromospheres, transition regions, and coronae) in dwarf stars cooler than spectral type A7, in F and G giants, pre-main sequence stars, and close bindary systems is unambiguous, as is the evidence for chromospheres in the K and M giants and supergiants. The existence of non-radiative heating in the outer layers of the A stars remains undetermined despite repeated searches at all wavelengths. Two important trends in the data are the decrease in plasma emission measure with age on the main sequence and decreasing rotational velocity. Variability and atmospheric inhomogeneity are commonly seen, and there is considerable evidence that magnetic fields define the geometry and control the energy balance in the outer atmospheric layers. In addition, the microwave observations imply that non-thermal electrons are confined in coronal magnetic flux tubes in at least the cool dwarfs and RS CVn systems. The chromospheres in the K and M giants and supergiants are geometrically extended, as are the coronae in the RS CVn systems and probably also in other stars.
Arroyo, Mary T K; Dudley, Leah S; Jespersen, Gus; Pacheco, Diego A; Cavieres, Lohengrin A
2013-12-01
How high-alpine plants confront stochastic conditions for animal pollination is a critical question. We investigated the effect of temperature on potential flower longevity (FL) measured in pollinator-excluded flowers and actual FL measured in pollinated flowers in self-incompatible Oxalis compacta and evaluated if plastically prolonged potential FL can ameliorate slow pollination under cool conditions. Pollinator-excluded and hand-pollinated flowers were experimentally warmed with open-top chambers (OTCs) on a site at 3470 m above sea level (asl). Flower-specific temperatures, and pollinator-excluded and open-pollination flower life-spans were measured at six alpine sites between 3100 and 3470 m asl. Fruit set was analyzed in relation to inferred pollination time. Warming reduced potential FL. Variable thermal conditions across the alpine landscape predicted potential and actual FL; flower senescence was pollination-regulated. Actual FL and potential FL were coupled. Prolonged potential FL generally increased fruit set under cooler conditions. Plastic responses permit virgin flowers of O. compacta to remain open longer under cooler temperatures, thereby ameliorating slow pollination, and to close earlier when pollination tends to be faster under warmer conditions. Plastic potential FL provides adaptive advantages in the cold, thermally variable alpine habitat, and has important implications for reproductive success in alpine plants in a warming world. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
... 140 vermouth, sweet Vermouth, dry 3 105 vermouth, dry Cocktails Martini 3.5 140 martini Manhattan 3.5 164 manhattan Daiquiri 4 122 daiquiri Whiskey sour 3 122 whiskey sour Margarita Cocktail 4 168 margarita cocktail Coolers 6 150 coolers Monthly Total Calories Yearly Total ...
Particle Cooler/Generator Module in the MRM1
2014-01-13
ISS038-E-029764 (13 Jan. 2014) --- Russian cosmonaut Oleg Kotov, Expedition 38 commander, sets up the Particle Cooler/Generator Module for the Kaplya-2 experiment in the Rassvet Mini-Research Module 1 (MRM1) of the International Space Station.
Simulations of space charge neutralization in a magnetized electron cooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerity, James; McIntyre, Peter M.; Bruhwiler, David Leslie
Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build-up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs.
Conduction cooling systems for linear accelerator cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kephart, Robert
A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.
Thermal properties and heat transfer coefficients in cryogenic cooling
NASA Astrophysics Data System (ADS)
Biddulph, M. W.; Burford, R. P.
This paper considers two aspects of the design of the cooling stage of the process known as cryogenic recycling. This process uses liquid nitrogen to embrittle certain materials before grinding and subsequent separation. It is being increasingly used in materials recycling. A simple method of establishing thermal diffusivity values of materials of interest by using cooling curves is described. These values are important for effective cooler design. In addition values of convective heat transfer coefficient have been determined in an operating inclined, rotating cylindrical cooler operating on scrap car tyres. These will also be useful for cooler design methods.
Visscher, Tommy L S; van Hal, Wendy C W; Blokdijk, Lobke; Seidell, Jaap C; Renders, Carry M; Bemelmans, Wanda J E
2010-01-01
The aim of this pilot study was to investigate the feasibility and effectiveness of placing water coolers on sugar-sweetened beverage sales at secondary schools (age 12-18 years) in the city of Zwolle, the Netherlands. Six schools, hosting 5,866 pupils, were divided in three intervention and three control schools. In the intervention schools, water coolers were placed in the canteen. Hidden observations were performed in one school to study the intervention's feasibility, and school personnel was interviewed. Beverage sales were monitored before and during the intervention. After the intervention period, 366 class 1 and 2 pupils completed a questionnaire about their drinking habits (response rate 81%). Placement of water coolers appeared to be a feasible intervention at secondary schools. However, it did not affect sales of sugar-sweetened beverages at schools. Although mean intake of sugar-sweetened beverages at school was high, more than 500 ml/day for boys, and more than 250 ml/day for girls, only a minority of these quantities was purchased at school. We conclude that placing water coolers as a single-issue intervention in secondary school canteens should not be prioritized in the combat against obesity. Copyright 2010 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Veprik, A.; Zechtzer, S.; Pundak, N.; Kirkconnell, C.; Freeman, J.; Riabzev, S.
2011-06-01
Cryogenic coolers are often used in modern spacecraft in conjunction with sensitive electronics and sensors of military, commercial and scientific instrumentation. The typical space requirements are: power efficiency, low vibration export, proven reliability, ability to survive launch vibration/shock and long-term exposure to space radiation. A long-standing paradigm of exclusively using "space heritage" equipment has become the standard practice for delivering high reliability components. Unfortunately, this conservative "space heritage" practice can result in using outdated, oversized, overweight and overpriced cryogenic coolers and is becoming increasingly unacceptable for space agencies now operating within tough monetary and time constraints. The recent trend in developing mini and micro satellites for relatively inexpensive missions has prompted attempts to adapt leading-edge tactical cryogenic coolers for suitability in the space environment. The primary emphasis has been on reducing cost, weight and size. The authors are disclosing theoretical and practical aspects of a collaborative effort to develop a space qualified cryogenic refrigerator system based on the tactical cooler model Ricor K527 and the Iris Technology radiation hardened Low Cost Cryocooler Electronics (LCCE). The K27/LCCE solution is ideal for applications where cost, size, weight, power consumption, vibration export, reliability and time to spacecraft integration are of concern.
Fuel cell system shutdown with anode pressure control
Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.
2002-01-01
A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.
NASA Astrophysics Data System (ADS)
Hollister, Matthew I.; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; LeDuc, Henry G.; Maloney, Philip R.; Mazin, Benjamin A.; Nguyen, Hien Trong; Noroozian, Omid; Sayers, Jack; Schlaerth, James; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip; Zmuidzinas, Jonas
2010-07-01
MUSIC (Multicolor Submillimeter kinetic Inductance Camera) is a new facility instrument for the Caltech Submillimeter Observatory (Mauna Kea, Hawaii) developed as a collaborative effect of Caltech, JPL, the University of Colorado at Boulder and UC Santa Barbara, and is due for initial commissioning in early 2011. MUSIC utilizes a new class of superconducting photon detectors known as microwave kinetic inductance detectors (MKIDs), an emergent technology that offers considerable advantages over current types of detectors for submillimeter and millimeter direct detection. MUSIC will operate a focal plane of 576 spatial pixels, where each pixel is a slot line antenna coupled to multiple detectors through on-chip, lumped-element filters, allowing simultaneously imaging in four bands at 0.86, 1.02, 1.33 and 2.00 mm. The MUSIC instrument is designed for closed-cycle operation, combining a pulse tube cooler with a two-stage Helium-3 adsorption refrigerator, providing a focal plane temperature of 0.25 K with intermediate temperature stages at approximately 50, 4 and 0.4 K for buffering heat loads and heat sinking of optical filters. Detector readout is achieved using semi-rigid coaxial cables from room temperature to the focal plane, with cryogenic HEMT amplifiers operating at 4 K. Several hundred detectors may be multiplexed in frequency space through one signal line and amplifier. This paper discusses the design of the instrument cryogenic hardware, including a number of features unique to the implementation of superconducting detectors. Predicted performance data for the instrument system will also be presented and discussed.
Elvert, Marcus; Pohlman, John; Becker, Kevin W.; Gaglioti, Benjamin V.; Hinrichs, Kai-Uwe; Wooller, Matthew J.
2016-01-01
Arctic lakes and wetlands contribute a substantial amount of methane to the contemporary atmosphere, yet profound knowledge gaps remain regarding the intensity and climatic control of past methane emissions from this source. In this study, we reconstruct methane turnover and environmental conditions, including estimates of mean annual and summer temperature, from a thermokarst lake (Lake Qalluuraq) on the Arctic Coastal Plain of northern Alaska for the Holocene by using source-specific lipid biomarkers preserved in a radiocarbon-dated sediment core. Our results document a more prominent role for methane in the carbon cycle when the lake basin was an emergent fen habitat between ~12,300 and ~10,000 cal yr BP, a time period closely coinciding with the Holocene Thermal Maximum (HTM) in North Alaska. Enhanced methane turnover was stimulated by relatively warm temperatures, increased moisture, nutrient supply, and primary productivity. After ~10,000 cal yr BP, a thermokarst lake with abundant submerged mosses evolved, and through the mid-Holocene temperatures were approximately 3°C cooler. Under these conditions, organic matter decomposition was attenuated, which facilitated the accumulation of submerged mosses within a shallower Lake Qalluuraq. Reduced methane assimilation into biomass during the mid-Holocene suggests that thermokarst lakes are carbon sinks during cold periods. In the late-Holocene from ~2700 cal yr BP to the most recent time, however, temperatures and carbon deposition rose and methane oxidation intensified, indicating that more rapid organic matter decomposition and enhanced methane production could amplify climate feedback via potential methane emissions in the future.
In Search of Sun-Climate Connection Using Solar Irradiance Measurements and Climate Records
NASA Technical Reports Server (NTRS)
Kiang, Richard K.; Kyle, H. Lee
2000-01-01
The Earth's temperature has risen approximately 0.5 degree-C in the last 150 years. Because the atmospheric concentration of carbon dioxide has increased nearly 30% since the industrial revolution, a common conjecture, supported by various climate models, is that anthropogenic greenhouse gases have contributed to global warming. Another probable factor for the warming is the natural variation of solar irradiance. Although the variation is as small as 0.1 % it is hypothesized that it contributes to part of the temperature rise. Warmer or cooler ocean temperature at one part of the Globe may manifest as abnormally wet or dry weather patterns some months or years later at another part of the globe. Furthermore, the lower atmosphere can be affected through its coupling with the stratosphere, after the stratospheric ozone absorbs the ultraviolet portion of the solar irradiance. In this paper, we use wavelet transforms based on Morlet wavelet to analyze the time-frequency properties in several datasets, including the Radiation Budget measurements, the long-term total solar irradiance time series, the long-term temperature at two locations for the North and the South Hemisphere. The main solar cycle, approximately 11 years, are identified in the long-term total solar irradiance time series. The wavelet transform of the temperature datasets show annual cycle but not the solar cycle. Some correlation is seen between the length of the solar cycle extracted from the wavelet transform and the North Hemisphere temperature time series. The absence of the 11-year cycle in a time series does not necessarily imply that the geophysical parameter is not affected by the solar cycle; rather it simply reflects the complex nature of the Earth's response to climate forcings.
Improvement of cooldown time of LSF9599 flexure-bearing SADA cooler
NASA Astrophysics Data System (ADS)
Mullié, Jeroen; vd Groep, Willem; Bruins, Peter; Benschop, Tonny; de Koning, Arjan; Dam, Jacques
2006-05-01
Thales Cryogenics has presented the LSF 9599 SADA II flexure cooler in 2005. Based on Thales' well-known moving magnet flexure technology, the LSF 9599 complies with the SADA II specification with respect to performance, envelope and mass. Being the first manufacturer offering a full flexure-bearing supported cooler that fits within the SADA II envelope, Thales Cryogenics has been selected in several new (military) programs with their LSF coolers. For many of these new programs, the cooldown time requirements are more stringent than in the past, whereas at the same time size, complexity and thus thermal mass of the infrared sensor tends to increase. In order to respond to the need created by the combination of these trends, Thales Cryogenics started a development program to optimize cryogenic performance of the LSF 9599 cooler. The main goal for the development program is to reduce the cooldown time, while maintaining the SADA II compatible interface, and maintaining the robustness and proven reliability of the cooler. Within these constraints, the regenerator was further optimized using among others the experience with mixed-gauze regenerators obtained from our pulse tube research. Using the mixed gauze approach, the heat storage capacity of the regenerator is adapted as a function of the temperature profile over the regenerator, thus giving the optimum balance between heat storage capacity and pressure drop. A novel way of constructing the regenerator further decreases shuttle heat losses and other thermal losses in the regenerator. This paper describes the first results of the trade-offs and gives an overview of impact on cooldown times and efficiency figures achieved after the regenerator and displacer optimization.
Ricor's Nanostar water vapor compact cryopump: applications and model overview
NASA Astrophysics Data System (ADS)
Harris, Rodney S.; Nachman, Ilan; Tauber, Tomer; Kootzenko, Michael; Barak, Boris; Aminov, Eli; Gover, Dan
2017-05-01
Ricor Systems has developed a compact, single stage cryopump that fills the gap where GM and other type cryopumps can't fit in. Stirling cycle technology is highly efficient and is the primary cryogenic technology for use in IR, SWIR, HOT FPA, and other IR detector technology in military, security, and aerospace applications. Current GM based dual stage cryopumps have been the legacy type water vapor pumping system for more than 50 years. However, the typically large cryopanel head, compressor footprint, and power requirements make them not cost and use effective for small, tabletop evaporation / sputtering systems, portable analysis systems, and other systems requiring small volume vacuum creation from medium, high, and UHV levels. This single stage cryopump works well in-line with diffusion and molecular turbopumps. Studies have shown effective cooperation with non-evaporable getter technology as well for UHV levels. Further testing in this area are ongoing. Temperatures created by Stirling cycle cryogenic coolers develop a useful temperature range of 40 to 150K. Temperatures of approximately 100 K are sufficient to condense water and all hydrocarbons oil vapors.
Testing of a Miniature Loop Heat Pipe Using a Thermal Electrical Cooler for Temperature Control
NASA Technical Reports Server (NTRS)
Ku, Jentung; Jeong, Soeng-II; Butler, Dan
2004-01-01
This paper describes the design and testing of a miniature LHP having a 7 mm O.D. evaporator with an integral CC. The vapor line and liquid line are made of 1.6mm stainless steel tubing. The evaporator and the CC are connected on the outer surface by a copper strap and a thermoelectric (TEC) is installed on the strap. The TEC is used to control the CC temperature by applying an electrical current for heating or cooling. Tests performed in ambient included start-up, power cycle, sink temperature cycle, and CC temperature control using TEC. The LHP demonstrated very robust operation in all tests where the heat load varied between 0.5W and 1OOW, and the sink temperature varied between 243K and 293K. The heat leak from the evaporator to the CC was extremely small. The TEC was able to control the CC temperature within +/-0.3K under all test conditions, and the required control heater power was less than 1W.
Oestrous behaviour of Holstein cows during cooler and hotter tropical seasons.
Rodtian, P; King, G; Subrod, S; Pongpiachan, P
1996-12-02
Seasonal effects on post-partum ovarian activity, duration and intensity of sexual behaviour were determined for Holstein dairy cattle imported from a temperate climate into a tropical region. Animals were observed continuously during the cooler (temperature-humidity index (THI) < 25) and hotter (THI > 25) seasons for 2 years. They were restricted to a cement footing in the hotter season observation period in Year 1, but had access to both concrete and dirt footing during all other seasons. Sequential milk progesterone profiles provided an indication of when follicular phases occurred, and recorded sexual behaviour was compared with these to determine if oestrous signs accompanied ovulations. Most cows had normal ovarian cycles and ovulated regularly during both seasons, but quiet ovulations occurred with greater frequency during the hotter times of the year (P < 0.05). Demonstrations of sexual behaviour were affected by choice of footing rather than season. The actual time when cows stood passively and allowed herdmates to complete mounting ranged from 5.1 +/- 0.7 to 5.8 +/- 1 h with access to exercise yards and cement or dirt footing, but declined to only 1.3 +/- 1.1 h when animals were confined to cement (P < 0.05). Similarly, the total duration of oestrus and mean number of interactions were significantly (P < 0.05) reduced during the observation period conducted with cows confined to concrete footing. These findings further emphasize that the duration of oestrus in dairy cows in considerably shorter than the commonly quoted 18 h.
NASA Astrophysics Data System (ADS)
Filis, Avishai; Pundak, Nachman; Barak, Moshe; Porat, Ze'ev; Jaeger, Mordechai
2011-06-01
The growing demand for EO applications that work around the clock 24hr/7days a week, such as in border surveillance systems, emphasizes the need for a highly reliable cryocooler having increased operational availability and decreased integrated system Life Cycle (ILS) cost. In order to meet this need RICOR has developed a new rotary Stirling cryocooler, model K508N, intended to double the K508's operating MTTF achieving 20,000 operating MTTF hours. The K508N employs RICOR's latest mechanical design technologies such as optimized bearings and greases, bearings preloading, advanced seals, laser welded cold finger and robust design structure with increased natural frequency compared to the K508 model. The cooler enhanced MTTF was demonstrated by a Validation and Verification (V&V) plan comprising analytical means and a comparative accelerated life test between the standard K508 and the K508N models. Particularly, point estimate and confidence interval for the MTTF improvement factor where calculated periodically during and after the test. The (V&V) effort revealed that the K508N meets its MTTF design goal. The paper will focus on the technical and engineering aspects of the new design. In addition it will discuss the market needs and expectations, investigate the reliability data of the present reference K508 model; and report the accelerate life test data and the statistical analysis methodology as well as its underlying assumptions and results.
Using Thermoelectric Coolers to Enhance Loop Heat Pipe Performance
NASA Technical Reports Server (NTRS)
Ku, Jentung; Butler, Dan; Ottenstein, Laura; Birur, Gajanana
2005-01-01
Contents include the following: Loop Heat Pipe (LHP) operating temperature. LHP start-up issues. How Thermoelectric Cooler (TECs) can enhance LHP performance: start-up; operating temperature control. Experimental studies: LHP with one evaporator and one condenser; LHP with two evaporators and two condensers. Conclusion.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., manufactured, handled, packaged or stored (except dry storage of packaged finished products and supplies) or in... materials not regularly used. (1) Coolers and freezers. Coolers and freezers where dairy products are stored shall be clean, reasonably dry and maintained at the proper uniform temperature and humidity to...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., manufactured, handled, packaged or stored (except dry storage of packaged finished products and supplies) or in... materials not regularly used. (1) Coolers and freezers. Coolers and freezers where dairy products are stored shall be clean, reasonably dry and maintained at the proper uniform temperature and humidity to...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., manufactured, handled, packaged or stored (except dry storage of packaged finished products and supplies) or in... materials not regularly used. (1) Coolers and freezers. Coolers and freezers where dairy products are stored shall be clean, reasonably dry and maintained at the proper uniform temperature and humidity to...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., manufactured, handled, packaged or stored (except dry storage of packaged finished products and supplies) or in... materials not regularly used. (1) Coolers and freezers. Coolers and freezers where dairy products are stored shall be clean, reasonably dry and maintained at the proper uniform temperature and humidity to...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., manufactured, handled, packaged or stored (except dry storage of packaged finished products and supplies) or in... materials not regularly used. (1) Coolers and freezers. Coolers and freezers where dairy products are stored shall be clean, reasonably dry and maintained at the proper uniform temperature and humidity to...
ERIC Educational Resources Information Center
Deeson, Eric
1971-01-01
Reports a verification that hot water begins to freeze sooner than cooler water. Includes the investigations that lead to the conclusions that convection is a major influence, water content may have some effect, and the melting of the ice under the container makes no difference on the experimental results. (DS)
61. VIEW FROM NORTHEAST OF LAUNDER FROM BAKER COOLER TO ...
61. VIEW FROM NORTHEAST OF LAUNDER FROM BAKER COOLER TO MILLING. LAUNDER PIERCES THE SOUTH FOUNDATION WALL BETWEEN MILL SOLUTION TANKS No. 1 AND No. 2. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
High temperature desulfurization of synthesis gas
Najjar, Mitri S.; Robin, Allen M.
1989-01-01
The hot process gas stream from the partial oxidation of sulfur-containing heavy liquid hydrocarbonaceous fuel and/or sulfur-containing solid carbonaceous fuel comprising gaseous mixtures of H.sub.2 +CO, sulfur-containing gases, entrained particulate carbon, and molten slag is passed through the unobstructed central passage of a radiant cooler where the temperature is reduced to a temperature in the range of about 1800.degree. F. to 1200.degree. F. From about 0 to 95 wt. % of the molten slag and/or entrained material may be removed from the hot process gas stream prior to the radiant cooler with substantially no reduction in temperature of the process gas stream. In the radiant cooler, after substantially all of the molten slag has solidified, the sulfur-containing gases are contacted with a calcium-containing material to produce calcium sulfide. A partially cooled stream of synthesis gas, reducing gas, or fuel gas containing entrained calcium sulfide particulate matter, particulate carbon, and solidified slag leaves the radiant cooler containing a greatly reduced amount of sulfur-containing gases.
Richter, H; Greiner-Bär, M; Pavlov, S G; Semenov, A D; Wienold, M; Schrottke, L; Giehler, M; Hey, R; Grahn, H T; Hübers, H-W
2010-05-10
We report on the development of a compact, easy-to-use terahertz radiation source, which combines a quantum-cascade laser (QCL) operating at 3.1 THz with a compact, low-input-power Stirling cooler. The QCL, which is based on a two-miniband design, has been developed for high output and low electrical pump power. The amount of generated heat complies with the nominal cooling capacity of the Stirling cooler of 7 W at 65 K with 240 W of electrical input power. Special care has been taken to achieve a good thermal coupling between the QCL and the cold finger of the cooler. The whole system weighs less than 15 kg including the cooler and power supplies. The maximum output power is 8 mW at 3.1 THz. With an appropriate optical beam shaping, the emission profile of the laser is fundamental Gaussian. The applicability of the system is demonstrated by imaging and molecular-spectroscopy experiments. (c) 2010 Optical Society of America.
Progress in Development of a Miniature Pulse Tube Cooler for Space Applications
NASA Astrophysics Data System (ADS)
Gibson, A. S.; Hunt, R.; Charles, I.; Duband, L.; Crook, M. R.; Orlowska, A. H.; Bradshaw, T. W.; Linder, M.
2004-06-01
A pulse tube cryocooler is under development for high-reliability spacecraft applications. Recent developments in the assembly and verification of a Miniature Pulse Tube Cooler (MPTC) are presented, including the latest data from the test program. Details of advances related to the compressor, pulse tube and electronics are discussed. The pulse tube cooler achieves high efficiency, optimised through an extensive process of breadboard testing and analysis and is now approaching a more mature Engineering Model (EM) status. A representative pulse tube cold finger has been verified with respect to design changes incorporated following the breadboard test phase. Mass, heat lift and parasitic losses have been improved. A mechanical system mass of 3.1 kg has been achieved. Cold finger tests have demonstrated the ability of the pulse tube to lift 1.5 W at 80 K and to reach <50 K for a PV-work of 25 W. The useful range of operation for the cooler extends below 60 K, where test results indicate 600 mW of heat lift capability.
NASA Technical Reports Server (NTRS)
Kimball, Mark O.; Shirron, Peter J.
2011-01-01
An adiabatic demagnetization refrigerator (ADR) is a solid-state cooler capable of achieving sub-Kelvin temperatures. It neither requires moving parts nor a density gradient in a working fluid making it ideal for use in space-based instruments. The flow of energy through the cooler is controlled by heat switches that allow heat transfer when on and isolate portions of the cooler when off. One type of switch uses helium gas as the switching medium. In the off state the gas is adsorbed in a getter thus breaking the thermal path through the switch. To activate the switch, the getter is heated to release helium into the switch body allowing it to complete the thermal path. A getter that has a small heat capacity and low thermal conductance to the body of the switch requires low-activation power. The cooler benefits from this in two ways: shorter recycle times and higher efficiency. We describe such a design here.
Effects of polyethylene film wrap on cooler shrink and the microbial status of beef carcasses.
Sampaio, Guilherme S L; Pflanzer-Júnior, Sérgio B; Roça, Roberto de O; Casagrande, Leandro; Bedeschi, Elaine A; Padovani, Carlos R; Miguel, Giulianna Z; Santos, Carolina T; Girão, Lucio V C; Miranda, Zander B; Franco, Robson M
2015-02-01
The present study evaluated the use of polyethylene film wrapping of beef half carcasses and its effects on cooler shrink, cooling characteristics and microbial status of the half carcasses. Film wrapping reduced cooler shrink by 55.2%, 43.1%, 36.0% and 30% after 24, 48, 72 and 96 h of cooling, respectively, compared to the unwrapped half carcasses, whereas the surface water activity showed no significant differences among the time periods. The wrapped half carcasses had a lower cooling rate and higher surface and internal temperatures. The highest values of the aerobic mesophiles, Staphylococcus aureus and Enterobacteriaceae were found in the half carcasses wrapped in film. No significant differences were found in the values of Escherichia coli. The polyethylene film was effective in reducing cooler shrink; however, it caused a delay in cooling, thereby enabling greater microbial occurrences and counts and impairing the hygienic and sanitary conditions of the carcasses, which may be an impediment to the practical application of this technology.
NASA Astrophysics Data System (ADS)
Kwon, Seong-Cheol; Jeon, Young-Hyeon; Oh, Hyun-Ung
2017-10-01
In this study, the primary design objective is to develop a passive isolator that can guarantee structural safety of the cooler assembly in a launch vibration environment without a launch locking mechanism, while effectively isolating the cooler-induced micro-jitter during the on-orbit operation of the cooler. To achieve the design objective, we focused on the utilization of characteristics of the hyperelastic shape memory effects. The major advantage of the isolator is that the micro-jitter isolation performance is much less sensitive to the aligned position of the isolator in comparison with the conventional isolator. Moreover, implementation of an additional 0g compensation device during a satellite level on-ground test, such as a jitter measurement test, is not required. In this study, the basic characteristics of the isolator were measured using the torque test and free vibration test. The micro-jitter attenuation capability and position sensitivity of the proposed isolator design were validated by the micro-jitter measurement test.
NASA Astrophysics Data System (ADS)
Zorbas, K.; Hatzikraniotis, E.; Paraskevopoulos, K. M.; Kyratsi, Th.
2010-01-01
In recent years, thermoelectricity sees rapidly increasing usages in applications like portable refrigerators, beverage coolers, electronic component coolers etc. when used as Thermoelectric Cooler (TEC), and Thermoelectric Generators (TEG) which make use of the Seebeck effect in semiconductors for the direct conversion of heat into electrical energy and is of particular interest for systems of highest reliability or for waste heat recovery. In this work, we examine the performance of commercially available TEC and TEG. A prototype TEC-refrigerator has been designed, modeled and constructed for in-car applications. Additionally, a TEG was made, in order to measure the gained power and efficiency. Furthermore, a TEG module was tested on a small size car (Toyota Starlet, 1300 cc), in order to measure the gained power and efficiency for various engine loads. With the use of a modeling approach, we evaluated the thermal contact resistances and their influence on the final device efficiency.
NASA Technical Reports Server (NTRS)
Kimball, Mark O.; Shirron, Peter J.
2011-01-01
An adiabatic demagnetization refrigerator (ADR) is a solid-state cooler capable of achieving sub-Kelvin temperatures. It neither requires moving parts nor a density gradient in a working fluid making it ideal for use in space-based instruments. The flow of energy through the cooler is controlled by heat switches that allow heat transfer when on and isolate portions of the cooler when off. One type of switch uses helium gas as the switching medium. In the off state the gas is adsorbed in a getter thus breaking the thermal path through the switch. To activate the switch, the getter is heated to release helium into the switch body allowing it to complete the thermal path. A getter that has a small heat capacity and low thermal conductance to the body of the switch requires low-activation power. The cooler benefits from this in two ways: shorter recycle times and higher efficiency. We describe such a design here.
Development of miniature moving magnet cryocooler SX040
NASA Astrophysics Data System (ADS)
Rühlich, I.; Mai, M.; Rosenhagen, C.; Schreiter, A.; Möhl, C.
2011-06-01
State of the art high performance cooled IR systems need to have more than just excellent E/O performance. Minimum size weight and power (SWaP) are the design goals to meet our forces' mission requirements. Key enabler for minimum SWaP of IR imagers is the operation temperature of the focal plane array (FPA) employed. State of the art MCT or InAsSb nBn technology has the potential to rise the FPA temperature from 77 K to 130-150 K (high operation temperature HOT) depending on the specific cut-off wavelength. Using a HOT FPA will significantly lower SWaP and keep those parameters finally dominated by the employed cryocooler. Therefore compact high performance cryocoolers are mandatory. For highest MTTF life AIM developed its Flexure Bearing Moving Magnet product family "SF". Such coolers achieve more than 20000 h MTTF with Stirling type expander and more than 5 years MTTF life with Pulse Tube coldfinger (like for Space applications). To keep the high lifetime potential but to significantly improve SWaP AIM is developing its "SX" type cooler family. The new SX040 cooler incorporates a highly efficient dual piston Moving Magnet driving mechanism resulting in very compact compressor of less than 100mm length. The cooler's high lifetime is also achieved by placing the coils outside the helium vessel as usual for moving magnet motors. The mating ¼" expander is extremely compact with less than 63 mm length. This allows a total dewar length from optical window to expander warm end of less than 100 mm even for large cold shields. The cooler is optimized for HOT detectors with operating temperatures exceeding 95 K. While this kind of cooler is the perfect match for many applications, handheld sights or targeting devices for the dismounted soldier are even more challenging with respect to SWaP. AIM therefore started to develop an even smaller cooler type with single piston and balancer. This paper gives an overview on the development of this new compact cryocooler. Technical details and performance data will be shown.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
...The Energy Policy and Conservation Act of 1975 (EPCA), as amended, prescribes energy conservation standards for various consumer products and certain commercial and industrial equipment, including walk-in coolers and walk-in freezers. EPCA also requires the U.S. Department of Energy (DOE) to determine whether more-stringent, amended standards would be technologically feasible and economically justified, and would save a significant amount of energy. In this notice, DOE proposes amended energy conservation standards for walk-in coolers and walk-in freezers. The notice also announces a public meeting to receive comment on these proposed standards and associated analyses and results.
Cycle of a closed gas-turbine plant with a gas-dynamic energy-separation device
NASA Astrophysics Data System (ADS)
Leontiev, A. I.; Burtsev, S. A.
2017-09-01
The efficiency of closed gas-turbine space-based plants is analyzed. The weight-size characteristics of closed gas-turbine plants are shown in many respects as determined by the refrigerator-radiator parameters. The scheme of closed gas-turbine plants with a gas-dynamic temperature-stratification device is proposed, and a calculation model is developed. This model shows that the cycle efficiency decreases by 2% in comparison with that of the closed gas-turbine plants operating by the traditional scheme with increasing temperature at the output from the refrigerator-radiator by 28 K and decreasing its area by 13.7%.
NASA Astrophysics Data System (ADS)
Watanabe, Masakazu; Fujita, Shigeru; Tanaka, Takashi; Kubota, Yasubumi; Shinagawa, Hiroyuki; Murata, Ken T.
2018-01-01
We perform numerical modeling of the interchange cycle in the magnetosphere-ionosphere convection system for oblique northward interplanetary magnetic field (IMF). The interchange cycle results from the coupling of IMF-to-lobe reconnection and lobe-to-closed reconnection. Using a global magnetohydrodynamic simulation code, for an IMF clock angle of 20° (measured from due north), we successfully reproduced the following features of the interchange cycle. (1) In the ionosphere, for each hemisphere, there appears a reverse cell circulating exclusively in the closed field line region (the reciprocal cell). (2) The topology transition of the magnetic field along a streamline near the equatorial plane precisely represents the magnetic flux reciprocation during the interchange cycle. (3) Field-aligned electric fields on the interplanetary-open separatrix and on the open-closed separatrix are those that are consistent with IMF-to-lobe reconnection and lobe-to-closed reconnection, respectively. These three features prove the existence of the interchange cycle in the simulated magnetosphere-ionosphere system. We conclude that the interchange cycle does exist in the real solar wind-magnetosphere-ionosphere system. In addition, the simulation revealed that the reciprocal cell described above is not a direct projection of the diffusion region as predicted by the "vacuum" model in which diffusion is added a priori to the vacuum magnetic topology. Instead, the reciprocal cell is a consequence of the plasma convection system coupled to the so-called NBZ ("northward
Paleoclimatological analysis of Late Eocene core, Manning Formation, Brazos County, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yancey, T.; Elsik, W.
1994-09-01
A core of the basal part of the Manning Formation was drilled to provide a baseline for paleoclimate analysis of the expanded section of siliciclastic sediments of late Eocene age in the outcrop belt. The interdeltaic Jackson Stage deposits of this area include 20+ cyclic units containing both lignite and shallow marine sediments. Depositional environments can be determined with precision and the repetitive nature of cycles allows comparisons of the same environment throughout, effectively removing depositional environment as a variable in interpretation of climate signal. Underlying Yegua strata contain similar cycles, providing 35+ equivalent environmental transacts within a 6 m.y.more » time interval of Jackson and Yegua section, when additional cores are taken. The core is from a cycle deposited during maximum flooding of the Jackson Stage, with deposits ranging from shoreface (carbonaceous) to midshelf, beyond the range of storm sand deposition. Sediments are leached of carbonate, but contain foram test linings, agglutinated forams, fish debris, and rich assemblages of terrestrial and marine palynomorphs. All samples examined contain marine dinoflagellates, which are most abundant in transgressive and maximum flood zones, along with agglutinated forams and fish debris. This same interval contains two separate pulses of reworked palynomorphs. The transgressive interval contains Glaphyrocysta intricata, normally present in Yegua sediments. Pollen indicates fluctuating subtropical to tropical paleoclimates, with three short cycles of cooler temperatures, indicated by abundance peaks of alder pollen (Alnus) in transgressive, maximum flood, and highstand deposits.« less
Generational differences in response to desiccation stress in the desert moss Tortula inermis.
Stark, Lloyd R; Oliver, Melvin J; Mishler, Brent D; McLetchie, D Nicholas
2007-01-01
Active growth in post-embryonic sporophytes of desert mosses is restricted to the cooler, wetter months. However, most desert mosses have perennial gametophytes. It is hypothesized that these life history patterns are due, in part, to a reduced desiccation tolerance for sporophytes relative to gametophytes. Gametophytes with attached post-embryonic sporophytes of Tortula inermis (early seta elongation phenophase) were exposed to two levels of desiccation stress, one rapid-dry cycle and two rapid-dry cycles, then moistened and allowed to recover, resume development, and/or regenerate for 35 d in a growth chamber. Gametophytes tolerated the desiccation treatments well, with 93 % survival through regenerated shoot buds and/or protonemata. At the high stress treatment, a significantly higher frequency of burned leaves and browned shoots occurred. Sporophytes were far more sensitive to desiccation stress, with only 23 % surviving after the low desiccation stress treatment, and 3 % surviving after the high desiccation stress treatment. While the timing of protonemal production and sporophytic phenophases was relatively unaffected by desiccation stress, shoots exposed to one rapid-dry cycle produced shoots more rapidly than shoots exposed to two rapid-dry cycles. It is concluded that sporophytes of Tortula inermis are more sensitive to rapid drying than are maternal gametophytes, and that sporophyte abortion in response to desiccation results from either reduced desiccation tolerance of sporophytes relative to gametophytes, or from a termination of the sporophyte on the part of the gametophyte in response to stress.
Energy-efficient regenerative liquid desiccant drying process
Ko, Suk M.; Grodzka, Philomena G.; McCormick, Paul O.
1980-01-01
This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.
Derbenev, Yaroslav S.; Zhang, Yuhong
2014-12-01
Cooling of proton and ion beams is essential for achieving high luminosities (up to above 10 34 cm -2s -1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); themore » other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less
The Effect of Magnetic Field on HTS Leads What Happens when thePower Fails at RAL?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Michael A.
2007-02-14
The key to being able to operate the MICE superconducting solenoids on small coolers is the use of high temperature superconducting (HTS) leads between the first stage of the cooler and the magnet, which operates at around 4.2 K. Because MICE magnets are not shielded, all of the MICE magnets have a stray magnetic field in the region where the coolers and the HTS leads are located. The behavior of the HTS leads in a magnetic field depends strongly on the HTS material used for the leads and the temperature of the cooler first stage temperature. The HTS leads canmore » be specified to operate at the maximum current for the magnet. This report shows how the HTS leads can be specified for use the MICE magnets. MICE magnets take from 1.3 hours (the tracker solenoids) to 3.7 hours (the coupling magnet) to charge to the highest projected operating currents. If the power fails, the cooler and the upper ends of the HTS leads warm up. The question is how one can discharge the magnet to protect the HTS leads without quenching the MICE magnets. This report describes a method that one can use to protect the HTS leads in the event of a power failure at the Rutherford Appleton Laboratory (RAL).« less
Jericho, K W; O'Laney, G; Kozub, G C
1998-10-01
To enhance food safety and keeping quality, beef carcasses are cooled immediately after leaving the slaughter floor. Within hazard analysis and critical control point (HACCP) systems, this cooling process needs to be monitored by the industry and verified by regulatory agencies. This study assessed the usefulness of the temperature-function integration technique (TFIT) for the verification of the hygienic adequacy of two cooling processes for beef carcasses at one abattoir. The cooling process passes carcasses through a spray cooler for at least 17 h and a holding cooler for at least 7 h. The TFIT is faster and cheaper than culture methods. For spray cooler 1, the Escherichia coli generations predicted by TFIT for carcass surfaces (pelvic and shank sites) were compared to estimated E. coli counts from 120 surface excision samples (rump, brisket, and sacrum; 5 by 5 by 0.2 cm) before and after cooling. Counts of aerobic bacteria, coliforms, and E. coli were decreased after spray cooler 1 (P < or = 0.001). The number of E. coli generations (with lag) at the pelvic site calculated by TFIT averaged 0.85 +/- 0.19 and 0.15 +/- 0.04 after emerging from spray coolers 1 and 2, respectively. The TFIT (with lag) was considered convenient and appropriate for the inspection service to verify HACCP systems for carcass cooling processes.
Kinmonth-Schultz, Hannah A; Tong, Xinran; Lee, Jae; Song, Young Hun; Ito, Shogo; Kim, Soo-Hyung; Imaizumi, Takato
2016-07-01
Day length and ambient temperature are major stimuli controlling flowering time. To understand flowering mechanisms in more natural conditions, we explored the effect of daily light and temperature changes on Arabidopsis thaliana. Seedlings were exposed to different day/night temperature and day-length treatments to assess expression changes in flowering genes. Cooler temperature treatments increased CONSTANS (CO) transcript levels at night. Night-time CO induction was diminished in flowering bhlh (fbh)-quadruple mutants. FLOWERING LOCUS T (FT) transcript levels were reduced at dusk, but increased at the end of cooler nights. The dusk suppression, which was alleviated in short vegetative phase (svp) mutants, occurred particularly in younger seedlings, whereas the increase during the night continued over 2 wk. Cooler temperature treatments altered the levels of FLOWERING LOCUS M-β (FLM-β) and FLM-δ splice variants. FT levels correlated strongly with flowering time across treatments. Day/night temperature changes modulate photoperiodic flowering by changing FT accumulation patterns. Cooler night-time temperatures enhance FLOWERING BHLH (FBH)-dependent induction of CO and consequently increase CO protein. When plants are young, cooler temperatures suppress FT at dusk through SHORT VEGETATIVE PHASE (SVP) function, perhaps to suppress precocious flowering. Our results suggest day length and diurnal temperature changes combine to modulate FT and flowering time. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Gulevsky, V. A.; Shatsky, V. P.; Osipov, E. I.; Menzhulova, A. S.
2018-03-01
For cooling the air environment of industrial premises water-evaporating air, conditioners are being increasingly applied. The simplicity of their construction, ecological safety and low power consumption distinguish them from the coolers of other types. Cooling the processed air is due to the loss of energy for the evaporation of moisture from the surface of the water-wetted plates that form air channels. As a result of this process, cooled air is often saturated with moisture, which limits the possibilities for the operation of the coolers of this type. In these cases, more complex coolers of indirect principle without such drawback should be applied. The most effective modification of indirect cooling is the installation of recuperative principle units. The paper presents a mathematical model of heat-mass transfer in such water-evaporating coolers. The scheme of realization of this model based on an iterative algorithm of solution of the system of finite–difference linear equations that takes into account longitudinal and transverse thermal conductivity of the heat transfer plates is suggested. The possibility of obtaining the optimal values of the redistribution of the main and auxiliary air flows through the substantiation of the aerodynamic resistance of the output grid is proved. This allows refusing the inclusion in the additional system cooling fan unit for discharging an auxiliary stream of air.
Facility for Antiproton and Ion Research, FAIR, at the GSI site
NASA Astrophysics Data System (ADS)
Rosner, Guenther
2006-11-01
FAIR is a new large-scale particle accelerator facility to be built at the GSI site in Germany. The research pursued at FAIR will cover a wide range of topics in nuclear and hadron physics, as well as high density plasma physics, atomic and antimatter physics, and applications in condensed matter physics and biology. The working horse of FAIR will be a 1.1km circumference double ring of rapidly cycling 100 and 300Tm synchrotrons, which will be used to produce high intensity secondary beams of short-lived radioactive ions or antiprotons. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experimental facilities are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.
MEMS Device Being Developed for Active Cooling and Temperature Control
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
2001-01-01
High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.
Coefficient of performance of Stirling refrigerators
NASA Astrophysics Data System (ADS)
E Mungan, Carl
2017-09-01
Stirling coolers transfer heat in or out of the working fluid during all four stages of their operation, and their coefficient of performance depends on whether the non-isothermal heat exchanges are performed reversibly or irreversibly. Both of these possibilities can in principle be arranged. Notably, if the working fluid is an ideal gas, the input of energy in the form of heat during one isochoric step is equal in magnitude to the output during the other isochoric step in the cycle. The theoretical performance of the fridge can then attain the reversible Carnot limit if a regenerator is used, which is a high heat capacity material through which the gas flows. Various Stirling refrigerator configurations are analysed in this article at a level of presentation suitable for an introductory undergraduate thermodynamics course.
Surface temperatures and temperature gradient features of the US Gulf Coast waters
NASA Technical Reports Server (NTRS)
Huh, O. K.; Rouse, L. J., Jr.; Smith, G. W.
1977-01-01
Satellite thermal infrared data on the Gulf of Mexico show that a seasonal cycle exists in the horizontal surface temperature structure. In the fall, the surface temperatures of both coastal and deep waters are nearly uniform. With the onset of winter, atmospheric cold fronts, which are accompanied by dry, low temperature air and strong winds, draw heat from the sea. A band of cooler water forming on the inner shelf expands, until a thermal front develops seaward along the shelf break between the cold shelf waters and the warmer deep waters of the Gulf. Digital analysis of the satellite data was carried out in an interactive mode using a minicomputer and software. A time series of temperature profiles illustrates the temporal and spatial changes in the sea-surface temperature field.
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Molod, A.
1988-01-01
The influence of surface albedo and evapotranspiration anomalies that could result from the hypothetical semiarid vegetation over North Africa on its July circulation and rainfall is examined using the Goddard Laboratory for Atmospheres GCM. It is shown that increased soil moisture and its dependent evapotranspiration produces a cooler and moister PBL over North Africa that is able to support enhanced moist convection and rainfall in Sahel and southern Sahara. It is found that lower surface albedo yields even higher moist static energy in the PBL and enhances the local moist convection and rainfall. Modifying the rain-evaporation parameterization in the model produces changes in the hydrological cycle and rainfall anomalies in distant regions. The effects of different falling rain parameterizations are discussed.
HD 129333: The Sun in its infancy
NASA Technical Reports Server (NTRS)
Dorren, J. David; Guinan, Edward F.
1994-01-01
HD 129333 is a remarkable young, nearby solar-type G star which offers a unique opportunity of studying the properties of the Sun at a time very shortly after in arrived on the main sequence. Its space motion suggest that it is a member of the Pleiades moving group, with an age of approximately 70 Myr; its lithium abundance is consistent with this. HD 129333 has the highest level of Ca II emission of any G star which is not a member of a close binary. Our observations in 1983 showed it to have low-amplitude (5%) light variations implying a rotation period of about 2.7 days, or about 10 times faster than the Sun. Modeling of the photometric variations on the assumption that they are due to starspots yields a spot temperature about 500 K cooler than the photosphere, and a coverage of about 6% of the stellar surface area. ROSAT observations in 1990 revealed the star to be an X-ray source, with an X-ray luminosity in the 0.2 to 2.4 keV range about 300 times that of the Sun. We have used International Ultraviolet Explorer (IUE) observations in conjuction with ground-based photometry to examine the magnetic activity of this star. The IUE emission-line fluxes reveal a level of chromospheric activity 3 to 20 times greater than the Sun's. The transition-region activity is 20 to 100 times that of the Sun. The activity level of HD 129333 is consistent with the Skumanich law relating activity to age, and with the rotation-activity relation, although it may be near saturation level. This star can yield valuable information about the magnetic dynamo of the young Sun, as well as about stellar dynamos in general. The 1988 IUE observations covered four phases of its rotational cycle. A phase dependence of the Mg II h and k emission flux suggests a close association of chromospheric plages with starspot regions at that time. Systematic variations in the mean brightness of HD 129333 between 1983 and 1993, and in the UV emission fluxes, indicate the presence of an activity cycle of an estimated 12 years' duration. HD 129333 is the first solar-type star other than RS CVn binaries for which luminosity variations provide evidence for a spot cycle. Unlike the Sun, which is brighter at activity maximum HD 129333 appears to be fainter when more heavily spotted. Although evolutionary models for the Sun suggest that it was about 30% less luminous at age 70 Myr, they give no information about the UV flux. Accordingly, we have used the 1988 IUE observations of HD 129333 to construct a model spectrum of the infant Sun, which can be used to provide a quantitative estimate of the UV flux in the early solar system.
Energy Conservation for Low-Income Households: The Evaporative Cooler Experience.
ERIC Educational Resources Information Center
Ridge, Richard S.
1988-01-01
An econometric analysis, using a research design based on the nonequivalent control group (NECG), assessed the effectiveness of a program offering free evaporative coolers to low-income families owning air conditioners. The NECG controls for serious threats to internal validity, except for self-selection. The program successfully reduced energy…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-15
... DEPARTMENT OF ENERGY 10 CFR Part 431 [Docket No. EERE-2008-BT-STD-0015] RIN 1904-AB86 Energy... preliminary analysis for walk-in coolers and walk-in freezers, and provide docket number EERE-2008-BT-STD-0015...
40 CFR 63.1357 - Temporary, conditioned exemption from particulate matter and opacity standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the Portland Cement Manufacturing Industry Other § 63.1357 Temporary, conditioned exemption from... applicable to cement kilns and clinker coolers. (2) Any permit or other emissions or operating parameter or other limitation on workplace practices that are applicable to cement kilns and clinker coolers to...
40 CFR 63.1357 - Temporary, conditioned exemption from particulate matter and opacity standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the Portland Cement Manufacturing Industry Other § 63.1357 Temporary, conditioned exemption from... applicable to cement kilns and clinker coolers. (2) Any permit or other emissions or operating parameter or other limitation on workplace practices that are applicable to cement kilns and clinker coolers to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... cement. Clinker cooler means equipment into which clinker product leaving the kiln is placed to be cooled... system in a portland cement production process where a dry kiln system is integrated with the raw mill so... construction after May 6, 2009, for purposes of determining the applicability of the kiln, clinker cooler and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... other materials to form cement. Clinker cooler means equipment into which clinker product leaving the... kiln or coal mills using exhaust gases from the clinker cooler are not an in-line coal mill. In-line kiln/raw mill means a system in a portland cement production process where a dry kiln system is...
Code of Federal Regulations, 2012 CFR
2012-07-01
... cement. Clinker cooler means equipment into which clinker product leaving the kiln is placed to be cooled... system in a portland cement production process where a dry kiln system is integrated with the raw mill so... construction after May 6, 2009, for purposes of determining the applicability of the kiln, clinker cooler and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...
76 FR 13973 - United States Warehouse Act; Processed Agricultural Products Licensing Agreement
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... license for the processed agricultural products that are stored in climate controlled, cooler, and freezer..., and dry beans. Warehouse operators voluntarily agree to be licensed, observe the rules for licensing... program for processed agricultural products that are stored in climate controlled, cooler, and freezer...
Code of Federal Regulations, 2014 CFR
2014-07-01
... other materials to form cement. Clinker cooler means equipment into which clinker product leaving the... kiln or coal mills using exhaust gases from the clinker cooler are not an in-line coal mill. In-line kiln/raw mill means a system in a portland cement production process where a dry kiln system is...
Code of Federal Regulations, 2010 CFR
2010-07-01
... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... cement by either the wet or dry process. (b) Bypass means any system that prevents all or a portion of the kiln or clinker cooler exhaust gases from entering the main control device and ducts the gases... cooler emissions. (c) Bypass stack means the stack that vents exhaust gases to the atmosphere from the...
46 CFR 169.607 - Keel cooler installations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...
46 CFR 169.607 - Keel cooler installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...
46 CFR 169.607 - Keel cooler installations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...
46 CFR 169.607 - Keel cooler installations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...