Sample records for closed drift paths

  1. path integral approach to closed form pricing formulas in the Heston framework.

    NASA Astrophysics Data System (ADS)

    Lemmens, Damiaan; Wouters, Michiel; Tempere, Jacques; Foulon, Sven

    2008-03-01

    We present a path integral approach for finding closed form formulas for option prices in the framework of the Heston model. The first model for determining option prices was the Black-Scholes model, which assumed that the logreturn followed a Wiener process with a given drift and constant volatility. To provide a realistic description of the market, the Black-Scholes results must be extended to include stochastic volatility. This is achieved by the Heston model, which assumes that the volatility follows a mean reverting square root process. Current applications of the Heston model are hampered by the unavailability of fast numerical methods, due to a lack of closed-form formulae. Therefore the search for closed form solutions is an essential step before the qualitatively better stochastic volatility models will be used in practice. To attain this goal we outline a simplified path integral approach yielding straightforward results for vanilla Heston options with correlation. Extensions to barrier options and other path-dependent option are discussed, and the new derivation is compared to existing results obtained from alternative path-integral approaches (Dragulescu, Kleinert).

  2. Multi-criteria optimization of chassis parameters of Nissan 200 SX for drifting competitions

    NASA Astrophysics Data System (ADS)

    Maniowski, M.

    2016-09-01

    The work objective is to increase performance of Nissan 200sx S13 prepared for a quasi-static state of drifting on a circular path with given constant radius (R=15 m) and tyre-road friction coefficient (μ = 0.9). First, a high fidelity “miMA” multibody model of the vehicle is formulated. Then, a multicriteria optimization problem is solved with one of the goals to maximize a stable drift angle (β) of the vehicle. The decision variables contain 11 parameters of the vehicle chassis (describing the wheel suspension stiffness and geometry) and 2 parameters responsible for a driver steering and accelerator actions, that control this extreme closed-loop manoeuvre. The optimized chassis setup results in the drift angle increase by 14% from 35 to 40 deg.

  3. Stormtime transport of ring current and radiation belt ions

    NASA Technical Reports Server (NTRS)

    Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.

    1993-01-01

    This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative ions equally spaced in drift time around the steady-state drift shell of interest (L equivalent to 3), we have estimated (from both our forward and our time-reversed simulations) the time-integrated radial-diffusion coefficients D(sup sim)(sub LL) for particles having selected values of mu approximately greater than 15 MeV/G. The results agree surprisingly well with the predictions (D(sup ql)(sub LL)) of quasilinear radial diffusion theory, despite the rather brief duration (approximately 3 hrs) of our model storm and despite the extreme variability (with frequency) of the spectral-density function that characterizes the applied electric field during our model storm. As expected, the values of D(sup sim)(sub LL) deduced (respectively) from our forward and time-reversed simulations agree even better with each other and with D(sup sim)(sub LL) when the impulse amplitudes which characterize the individual substorms of our model storm are systematically reduced.

  4. Comparison of Lyman-alpha and LI-COR infrared hygrometers for airborne measurement of turbulent fluctuations of water vapour

    NASA Astrophysics Data System (ADS)

    Lampert, Astrid; Hartmann, Jörg; Pätzold, Falk; Lobitz, Lennart; Hecker, Peter; Kohnert, Katrin; Larmanou, Eric; Serafimovich, Andrei; Sachs, Torsten

    2018-05-01

    To investigate if the LI-COR humidity sensor can be used as a replacement of the Lyman-alpha sensor for airborne applications, the measurement data of the Lyman-alpha and several LI-COR sensors are analysed in direct intercomparison flights on different airborne platforms. One vibration isolated closed-path and two non-isolated open-path LI-COR sensors were installed on a Dornier 128 twin engine turbo-prop aircraft. The closed-path sensor provided absolute values and fluctuations of the water vapour mixing ratio in good agreement with the Lyman-alpha. The signals of the two open-path sensors showed considerable high-frequency noise, and the absolute value of the mixing ratio was observed to drift with time in this vibrational environment. On the helicopter-towed sensor system Helipod, with very low vibration levels, the open-path LI-COR sensor agreed very well with the Lyman-alpha sensor over the entire frequency range up to 3 Hz. The results show that the LI-COR sensors are well suited for airborne measurements of humidity fluctuations, provided that a vibrationless environment is given, and this turns out to be more important than close sensor spacing.

  5. Ionospheric Plasma Drift Analysis Technique Based On Ray Tracing

    NASA Astrophysics Data System (ADS)

    Ari, Gizem; Toker, Cenk

    2016-07-01

    Ionospheric drift measurements provide important information about the variability in the ionosphere, which can be used to quantify ionospheric disturbances caused by natural phenomena such as solar, geomagnetic, gravitational and seismic activities. One of the prominent ways for drift measurement depends on instrumentation based measurements, e.g. using an ionosonde. The drift estimation of an ionosonde depends on measuring the Doppler shift on the received signal, where the main cause of Doppler shift is the change in the length of the propagation path of the signal between the transmitter and the receiver. Unfortunately, ionosondes are expensive devices and their installation and maintenance require special care. Furthermore, the ionosonde network over the world or even Europe is not dense enough to obtain a global or continental drift map. In order to overcome the difficulties related to an ionosonde, we propose a technique to perform ionospheric drift estimation based on ray tracing. First, a two dimensional TEC map is constructed by using the IONOLAB-MAP tool which spatially interpolates the VTEC estimates obtained from the EUREF CORS network. Next, a three dimensional electron density profile is generated by inputting the TEC estimates to the IRI-2015 model. Eventually, a close-to-real situation electron density profile is obtained in which ray tracing can be performed. These profiles can be constructed periodically with a period of as low as 30 seconds. By processing two consequent snapshots together and calculating the propagation paths, we estimate the drift measurements over any coordinate of concern. We test our technique by comparing the results to the drift measurements taken at the DPS ionosonde at Pruhonice, Czech Republic. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  6. A statistical study of ion pitch-angle distributions

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Mcentire, R. W.; Lui, A. T. Y.; Krimigis, S. M.

    1987-01-01

    Preliminary results of a statistical study of energetic (34-50 keV) ion pitch-angle distributions (PADs) within 9 Re of earth provide evidence for an orderly pattern consistent with both drift-shell splitting and magnetopause shadowing. Normal ion PADs dominate the dayside and inner magnetosphere. Butterfly PADs typically occur in a narrow belt stretching from dusk to dawn through midnight, where they approach within 6 Re of earth. While those ion butterfly PADs that typically occur on closed drift paths are mainly caused by drift-shell splitting, there is also evidence for magnetopause shadowing in observations of more frequent butterfly PAD occurrence in the outer magnetosphere near dawn than dusk. Isotropic and gradient boundary PADs terminate the tailward extent of the butterfly ion PAD belt.

  7. Extensive electron transport and energization via multiple, localized dipolarizing flux bundles

    NASA Astrophysics Data System (ADS)

    Gabrielse, Christine; Angelopoulos, Vassilis; Harris, Camilla; Artemyev, Anton; Kepko, Larry; Runov, Andrei

    2017-05-01

    Using an analytical model of multiple dipolarizing flux bundles (DFBs) embedded in earthward traveling bursty bulk flows, we demonstrate how equatorially mirroring electrons can travel long distances and gain hundreds of keV from betatron acceleration. The model parameters are constrained by four Time History of Events and Macroscale Interactions during Substorms satellite observations, putting limits on the DFBs' speed, location, and magnetic and electric field magnitudes. We find that the sharp, localized peaks in magnetic field have such strong spatial gradients that energetic electrons ∇B drift in closed paths around the peaks as those peaks travel earthward. This is understood in terms of the third adiabatic invariant, which remains constant when the field changes on timescales longer than the electron's drift timescale: An energetic electron encircles a sharp peak in magnetic field in a closed path subtending an area of approximately constant flux. As the flux bundle magnetic field increases the electron's drift path area shrinks and the electron is prevented from escaping to the ambient plasma sheet, while it continues to gain energy via betatron acceleration. When the flux bundles arrive at and merge with the inner magnetosphere, where the background field is strong, the electrons suddenly gain access to previously closed drift paths around the Earth. DFBs are therefore instrumental in transporting and energizing energetic electrons over long distances along the magnetotail, bringing them to the inner magnetosphere and energizing them by hundreds of keV.Plain Language SummaryScientists have wondered how narrow flow channels in space could transport and energize electrons enough before the electrons escape the channel. They also wondered how narrow, localized magnetic field peaks (and their electric fields) contribute to electron energization in comparison to wide, large-scale electromagnetic fields. We show that it is actually because these fields are so localized that the electrons are transported closer toward Earth. Because of the rules that govern an electron's motion, electrons get trapped circling around the localized magnetic field peak and cannot escape the flow channel. As the peak travels earthward, it takes the electrons along with it and energizes the electrons along the way. When multiple peaks follow each other, they all contribute to a longer energization signature. The magnetic field peaks can also pileup when they hit the strong magnetic field closer to Earth, creating a bigger, longer magnetic field signature. It once again appears that great things come in small packages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3406241','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3406241"><span>Characterization of a Dynamic String Method for the Construction of Transition Pathways in Molecular Reactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Johnson, Margaret E.; Hummer, Gerhard</p> <p>2012-01-01</p> <p>We explore the theoretical foundation of different string methods used to find dominant reaction pathways in high-dimensional configuration spaces. Pathways are assessed by the amount of reactive flux they carry and by their orientation relative to the committor function. By examining the effects of transforming between different collective coordinates that span the same underlying space, we unmask artificial coordinate dependences in strings optimized to follow the free energy gradient. In contrast, strings optimized to follow the drift vector produce reaction pathways that are significantly less sensitive to reparameterizations of the collective coordinates. The differences in these paths arise because the drift vector depends on both the free energy gradient and the diffusion tensor of the coarse collective variables. Anisotropy and position dependence of diffusion tensors arise commonly in spaces of coarse variables, whose generally slow dynamics are obtained by nonlinear projections of the strongly coupled atomic motions. We show here that transition paths constructed to account for dynamics by following the drift vector will (to a close approximation) carry the maximum reactive flux both in systems with isotropic position dependent diffusion, and in systems with constant but anisotropic diffusion. We derive a simple method for calculating the committor function along paths that follow the reactive flux. Lastly, we provide guidance for the practical implementation of the dynamic string method. PMID:22616575</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28314235','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28314235"><span>Primary and secondary pesticide drift profiles from a peach orchard.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zivan, Ohad; Bohbot-Raviv, Yardena; Dubowski, Yael</p> <p>2017-06-01</p> <p>Atmospheric drift is considered a major loss path of pesticide from target areas, but there is still a large gap of knowledge regarding this complex phenomenon. Pesticide drift may occur during application (Primary drift) and after it (Secondary drift). The present study focuses on primary and secondary drift from ground applications in peach orchard (tree height of 3 m), under Mediterranean climate. Detailed and prolonged vertical drift profiles at close proximity to orchard are presented, together with detailed measurements of key meteorological parameters. The effect of volatility on drift was also studied by simultaneously applying two pesticides that differ in their volatility. Drifting airborne pesticides were detected both during and after applications at sampling distances of 7 and 20 m away from orchard edge. Concentrations ranged between hundreds ng m -3 to a few μg m -3 and showed clear decrease with time and with upwind conditions. Almost no decline in concentrations with height was observed up to thrice canopy height (i.e., 10 m). These homogeneous profiles indicate strong mixing near orchard and are in line with the unstable atmospheric conditions that prevailed during measurements. While air concentrations during pesticide application were higher than after it, overall pesticide load drifted from the orchard during primary and secondary drift are comparable. To the best of our knowledge this is the first work to show such large vertical dispersion and long duration of secondary drift following ground application in orchards. The obtained information indicates that secondary drift should not be neglected in exposure and environmental impact estimations. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JGRA..107.1224K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JGRA..107.1224K"><span>Multistep Dst development and ring current composition changes during the 4-6 June 1991 magnetic storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kozyra, J. U.; Liemohn, M. W.; Clauer, C. R.; Ridley, A. J.; Thomsen, M. F.; Borovsky, J. E.; Roeder, J. L.; Jordanova, V. K.; Gonzalez, W. D.</p> <p>2002-08-01</p> <p>The 4-6 June 1991 magnetic storm, which occurred during solar maximum conditions, is analyzed to investigate two observed features of magnetic storms that are not completely understood: (1) the mass-dependent decay of the ring current during the early recovery phase and (2) the role of preconditioning in multistep ring current development. A kinetic ring current drift-loss model, driven by dynamic fluxes at the nightside outer boundary, was used to simulate this storm interval. A strong partial ring current developed and persisted throughout the main and early recovery phases. The majority of ions in the partial ring current make one pass through the inner magnetosphere on open drift paths before encountering the dayside magnetopause. The ring current exhibited a three-phase decay in this storm. A short interval of charge-exchange loss constituted the first phase of the decay followed by a classical two-phase decay characterized by an abrupt transition between two very different decay timescales. The short interval dominated by charge-exchange loss occurred because an abrupt northward turning of the interplanetary magnetic field (IMF) trapped ring current ions on closed trajectories, and turned-off sources and ``flow-out'' losses. If this had been the end of the solar wind disturbance, decay timescales would have gradually lengthened as charge exchange preferentially removed the short-lived species; a distinctive two-phase decay would not have resulted. However, the IMF turned weakly southward, drift paths became open, and a standard two-phase decay ensued as the IMF rotated slowly northward again. As has been shown before, a two-phase decay is produced as open drift paths are converted to closed in a weakening convection electric field, driving a transition from the fast flow-out losses associated with the partial ring current to the slower charge-exchange losses associated with the trapped ring current. The open drift path geometry during the main phase and during phase 1 of the two-phase decay has important consequences for the evolution of ring current composition and for preconditioning issues. In this particular storm, ring current composition changes measured by the Combined Release and Radiation Effects Satellite (CRRES) during the main and recovery phase of the storm resulted largely from composition changes in the plasma sheet transmitted into the inner magnetosphere along open drift paths as the magnetic activity declined. Possible preconditioning elements were investigated during the multistep development of this storm, which was driven by the sequential arrival of three southward IMF Bz intervals of increasing peak strength. In each case, previous intensifications (preexisting ring currents) were swept out of the magnetosphere by the enhanced convection associated with the latest intensification and did not act as a significant preconditioning element. However, plasma sheet characteristics varied significantly between subsequent intensifications, altering the response of the magnetosphere to the sequential solar wind drivers. A denser plasma sheet (ring current source population) appeared during the second intensification, compensating for the weaker IMF Bz at this time and producing a minimum pressure-corrected Dst* value comparable to the third intensification (driven by stronger IMF Bz but a lower density plasma sheet source). The controlling influence of the plasma sheet dynamics on the ring current dynamics and its role in altering the inner magnetospheric response to solar wind drivers during magnetic storms adds a sense of urgency to understanding what processes produce time-dependent responses in the plasma sheet density, composition, and temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..4311484F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..4311484F"><span>Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.</p> <p>2016-11-01</p> <p>We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1351235-drift-paths-ions-composing-multiple-nose-spectral-structures-near-inner-edge-plasma-sheet','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1351235-drift-paths-ions-composing-multiple-nose-spectral-structures-near-inner-edge-plasma-sheet"><span>Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; ...</p> <p>2016-11-05</p> <p>Here in this paper, we present a case study of the H +, He +, and O + multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of thesemore » ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1351235','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1351235"><span>Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.</p> <p></p> <p>Here in this paper, we present a case study of the H +, He +, and O + multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of thesemore » ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960034343','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960034343"><span>Wide Angle, Single Screen, Gridded Square-Loop Frequency Selective Surface for Diplexing Two Closely Separated Frequency Bands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, Te-Kao (Inventor)</p> <p>1996-01-01</p> <p>The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMEP22A..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMEP22A..07B"><span>Effects of near-bed turbulence and micro-topography on macroinvertebrate movements across contrasting gravel-bed surfaces (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buffin-Belanger, T. K.; Rice, S. P.; Reid, I.; Lancaster, J.</p> <p>2009-12-01</p> <p>Fluvial habitats can be described from a series of physical variables but to adequately address the habitat quality it becomes necessary to develop an understanding that combines the physical variables with the behaviour of the inhabitating organisms. The hypothesis of flow refugia provide a rational that can explain the persistence of macroinvertebrate communities in gravel-bed rivers when spates occur. The movement behaviour of macroinvertebrates is a key element to the flow refugia hypothesis, but little is known about how local near-bed turbulence and bed microtopography may affect macroinvertebrate movements. We reproduced natural gravel-bed substrates with contrasting gravel bed textures in a large flume where we were able to document the movement behaviour of the cased caddisfly Potamophylax latipennis for a specific discharge. The crawling paths and drift events of animals were analysed from video recordings. Characteristics of movements differ from one substrate to another. The crawling speed is higher for the small grain-size substrates but the mean travel distance remains approximately the same between substrates. For each substrate, the animals tended to follow consistent paths across the surface. The number of drift events and mean distance drifted is higher for the small grain-size substrate. ADV measurements close to the boundary allow detailed characterisation of near-bed hydraulic variables, including : skewness coefficients, TKE, UV correlation coefficients and integral time scales from autocorrelation analysis. For these variables, the vertical patterns of turbulence parameters are similar between the substrates but the amplitude of the average values and standard errors vary significantly. The spatial distribution of this variability is considered in relation to the crawling paths. It appears that the animals tend to crawl within areas of the substrate where low flow velocities and low turbulent kinetic energies are found, while sites that insects avoided were characterised by higher elevations, velocities and turbulence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP42A..06F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP42A..06F"><span>Ted Irving's early contributions to paleomagnetism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frankel, H. R.</p> <p>2014-12-01</p> <p>Edward (Ted) Irving (1927 - 2014) was one of the most deeply and widely respected paleomagnetists, making significant contributions to the field throughout his career which spanned six decades. Restricting attention to the first decade of his career, the 1950s, he discovered from work on the Torridonian (1951-1953) that fine-grained red sandstones were generally suitable for paleomagnetic work (1951-1952). He rediscovered (1951) that paleomagnetism could be used to test continental drift, and initiated (1951) the first paleomagnetic test of whether India had drifted northward relative to Asia and argued (1954) that it had. He also made significant contributions to the first APW path for Great Britain (Creer, Irving, and Runcorn, 1954). He was the first to draw two APW paths to explain results from Great Britain and North America (1956) and to use paleomagnetism and paleoclimatology together to argue for continental drift (1954, 1956). With Ron Green, his first student, he first APW path for Australia (1958). He was the first to invoke axial rotations to explain away an apparent anomaly with an APW path (1959). His work on the Torridonian led to the first description of stratigraphically sequential reversals in sedimentary rocks. Moreover, his 1959 superb review of the paleomagnetic support for continental drift was instrumental in Hess's becoming a continental drifter before he came up with the idea of seafloor spreading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28821587','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28821587"><span>Drift-Induced Selection Between Male and Female Heterogamety.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Veller, Carl; Muralidhar, Pavitra; Constable, George W A; Nowak, Martin A</p> <p>2017-10-01</p> <p>Evolutionary transitions between male and female heterogamety are common in both vertebrates and invertebrates. Theoretical studies of these transitions have found that, when all genotypes are equally fit, continuous paths of intermediate equilibria link the two sex chromosome systems. This observation has led to a belief that neutral evolution along these paths can drive transitions, and that arbitrarily small fitness differences among sex chromosome genotypes can determine the system to which evolution leads. Here, we study stochastic evolutionary dynamics along these equilibrium paths. We find non-neutrality, both in transitions retaining the ancestral pair of sex chromosomes, and in those creating a new pair. In fact, substitution rates are biased in favor of dominant sex determining chromosomes, which fix with higher probabilities than mutations of no effect. Using diffusion approximations, we show that this non-neutrality is a result of "drift-induced selection" operating at every point along the equilibrium paths: stochastic jumps off the paths return with, on average, a directional bias in favor of the dominant segregating sex chromosome. Our results offer a novel explanation for the observed preponderance of dominant sex determining genes, and hint that drift-induced selection may be a common force in standard population genetic systems. Copyright © 2017 by the Genetics Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H53G1552R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H53G1552R"><span>Spatiotemporal Heterogeneity of Dissolved Organic Carbon in Waters and Soils in a Snow-dominated Headwater Catchment: Investigations at Reynolds Creek Critical Zone Observatory, Owyhee County, Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Radke, A. G.; Godsey, S.; Lohse, K. A.; Huber, D. P.; Patton, N. R.; Holbrook, S.</p> <p>2017-12-01</p> <p>The non-uniform distribution of precipitation in snowmelt-driven systems—the result of blowing and drifting snow—is a primary driver of spatial heterogeneity in vegetative communities and soil development. Snowdrifts may increase bedrock weathering below them, creating deeper soils and the potential for greater fracture flow. These snowdrift areas are also commonly more productive than the snow-starved, scoured areas where wind has removed snow. Warming-induced changes in the fraction of precipitation falling as snow, and therefore subject to drifting, may significantly affect carbon dynamics on multiple timescales. The focus of this study is to understand the coupled hydrological and carbon dynamics in a heterogeneous, drift-dominated watershed. We seek to determine the paths of soil water and groundwater in a small headwater catchment (Reynolds Mountain East, Reynolds Creek Critical Zone Observatory, Idaho, USA). Additionally, we anticipate quantifying the flux of dissolved organic carbon through these paths, and relate this to zones of greater vegetative productivity. We deduce likely flowpaths through a combination of soil water, groundwater, and precipitation characterization. Along a transect running from a snowdrift to the stream, we measure hydrometric and hydrochemical signatures of flow throughout the snowmelt period and summer. We then use end-member-mixing analysis to interpret flowpaths in light of inferred subsurface structure derived from drilling and electrical resistance tomography transects. Preliminary results from soil moisture sensors suggest that increased bedrock weathering creates pathways by which snowmelt bypasses portions of the soil, further increasing landscape heterogeneity. Further analysis will identify seasonal changes in carbon sourcing for this watershed, but initial indications are that spring streamwater is sourced primarily from soil water, with close associations between soil carbon and DOC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA095865','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA095865"><span>Restrike Particle Beam Experiments on a Dense Plasma Focus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1980-11-30</p> <p>differentially pumped drift tube as shown in Figure 1. However, even the lOI of gas pressure in the drift space is sufficient to establish an equilibrium...pumped drift tube concept are five-fold: 1) Lower energy attenuation of the beam by neutral gas 2) Lower lateral spread of the beam caused by multiple...relatively low gas pressure through the use of a differentially pumped drift tube . The path makes it possible to observe ion energies to considerably lower</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100002821','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100002821"><span>Electro-Optical Modulator Bias Control Using Bipolar Pulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farr, William; Kovalik, Joseph</p> <p>2007-01-01</p> <p>An improved method has been devised for controlling the DC bias applied to an electro-optical crystal that is part of a Mach-Zehnder modulator that generates low-duty-cycle optical pulses for a pulse-position modulation (PPM) optical data-communication system. In such a system, it is desirable to minimize the transmission of light during the intervals between pulses, and for this purpose, it is necessary to maximize the extinction ratio of the modulator (the ratio between the power transmitted during an "on" period and the power transmitted during an "off" period). The present method is related to prior dither error feedback methods, but unlike in those methods, there is no need for an auxiliary modulation subsystem to generate a dithering signal. Instead, as described below, dither is effected through alternation of the polarity of the modulation signal. The upper part of Figure 1 schematically depicts a Mach-Zehnder modulator. The signal applied to the electro-optical crystal consists of a radio-frequency modulating pulse signal, VRF, superimposed on a DC bias Vbias. Maximum extinction occurs during the off (VRF = 0) period if Vbias is set at a value that makes the two optical paths differ by an odd integer multiple of a half wavelength so that the beams traveling along the two paths interfere destructively at the output beam splitter. Assuming that the modulating pulse signal VRF has a rectangular waveform, maximum transmission occurs during the "on" period if the amplitude of VRF is set to a value, V , that shifts the length of the affected optical path by a half wavelength so that now the two beams interfere constructively at the output beam splitter. The modulating pulse signal is AC-coupled from an amplifier to the electro-optical crystal. Sometimes, two successive pulses occur so close in time that the operating point of the amplifier drifts, one result being that there is not enough time for the signal level to return to ground between pulses. Also, the difference between the optical-path lengths can drift with changes in temperature and other spurious effects. The effects of both types of drift are suppressed in the present method, in which one takes advantage of the fact that when Vbias is set at the value for maximum extinction, equal-magnitude positive and negative pulses applied to the electro-optical crystal produce equal output light pulses.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li class="active"><span>1</span></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_1 --> <div id="page_2" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="21"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18394893','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18394893"><span>Wind selection and drift compensation optimize migratory pathways in a high-flying moth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chapman, Jason W; Reynolds, Don R; Mouritsen, Henrik; Hill, Jane K; Riley, Joe R; Sivell, Duncan; Smith, Alan D; Woiwod, Ian P</p> <p>2008-04-08</p> <p>Numerous insect species undertake regular seasonal migrations in order to exploit temporary breeding habitats [1]. These migrations are often achieved by high-altitude windborne movement at night [2-6], facilitating rapid long-distance transport, but seemingly at the cost of frequent displacement in highly disadvantageous directions (the so-called "pied piper" phenomenon [7]). This has lead to uncertainty about the mechanisms migrant insects use to control their migratory directions [8, 9]. Here we show that, far from being at the mercy of the wind, nocturnal moths have unexpectedly complex behavioral mechanisms that guide their migratory flight paths in seasonally-favorable directions. Using entomological radar, we demonstrate that free-flying individuals of the migratory noctuid moth Autographa gamma actively select fast, high-altitude airstreams moving in a direction that is highly beneficial for their autumn migration. They also exhibit common orientation close to the downwind direction, thus maximizing the rectilinear distance traveled. Most unexpectedly, we find that when winds are not closely aligned with the moth's preferred heading (toward the SSW), they compensate for cross-wind drift, thus increasing the probability of reaching their overwintering range. We conclude that nocturnally migrating moths use a compass and an inherited preferred direction to optimize their migratory track.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150006908&hterms=chao&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D30%26Ntt%3Dchao','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150006908&hterms=chao&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D30%26Ntt%3Dchao"><span>Current-Sensitive Path Planning for an Underactuated Free-Floating Ocean Sensorweb</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dahl, Kristen P.; Thompson, David R.; McLaren, David; Chao, Yi; Chien, Steve</p> <p>2011-01-01</p> <p>This work investigates multi-agent path planning in strong, dynamic currents using thousands of highly under-actuated vehicles. We address the specific task of path planning for a global network of ocean-observing floats. These submersibles are typified by the Argo global network consisting of over 3000 sensor platforms. They can control their buoyancy to float at depth for data collection or rise to the surface for satellite communications. Currently, floats drift at a constant depth regardless of the local currents. However, accurate current forecasts have become available which present the possibility of intentionally controlling floats' motion by dynamically commanding them to linger at different depths. This project explores the use of these current predictions to direct float networks to some desired final formation or position. It presents multiple algorithms for such path optimization and demonstrates their advantage over the standard approach of constant-depth drifting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3627115','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3627115"><span>Predictability of spatio-temporal patterns in a lattice of coupled FitzHugh–Nagumo oscillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Grace, Miriam; Hütt, Marc-Thorsten</p> <p>2013-01-01</p> <p>In many biological systems, variability of the components can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In pioneering work in the late 1990s, it was hypothesized that a drift of cellular parameters (along a ‘developmental path’), together with differences in cell properties (‘desynchronization’ of cells on the developmental path) can establish self-organized spatio-temporal patterns (in their example, spiral waves of cAMP in a colony of Dictyostelium discoideum cells) starting from a homogeneous state. Here, we embed a generic model of an excitable medium, a lattice of diffusively coupled FitzHugh–Nagumo oscillators, into a developmental-path framework. In this minimal model of spiral wave generation, we can now study the predictability of spatio-temporal patterns from cell properties as a function of desynchronization (or ‘spread’) of cells along the developmental path and the drift speed of cell properties on the path. As a function of drift speed and desynchronization, we observe systematically different routes towards fully established patterns, as well as strikingly different correlations between cell properties and pattern features. We show that the predictability of spatio-temporal patterns from cell properties contains important information on the pattern formation process as well as on the underlying dynamical system. PMID:23349439</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770017095','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770017095"><span>Adiabatic particle motion in a nearly drift-free magnetic field: Application to the geomagnetic tail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stern, D. P.</p> <p>1977-01-01</p> <p>The guiding center motion of particles in a nearly drift free magnetic field is analyzed in order to investigate the dependence of mean drift velocity on equatorial pitch angle, the variation of local drift velocity along the trajectory, and other properties. The mean drift for adiabatic particles is expressed by means of elliptic integrals. Approximations to the twice-averaged Hamiltonian W near z = O are derived, permitting simple representation of drift paths if an electric potential also exists. In addition, the use of W or of expressions for the longitudinal invariant allows the derivation of the twice averaged Liouville equation and of the corresponding Vlasov equation. Bounce times are calculated (using the drift-free approximation), as are instantaneous guiding center drift velocities, which are then used to provide a numerical check on the formulas for the mean drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996SPIE.2895..505Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996SPIE.2895..505Z"><span>Closed-loop fiber optic gyroscope with homodyne detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Yong; Qin, BingKun; Chen, Shufen</p> <p>1996-09-01</p> <p>Interferometric fiber optic gyroscope (IFOG) has been analyzed with autocontrol theory in this paper. An open-loop IFOG system is not able to restrain the bias drift, but a closed-loop IFOG system can do it very well using negative feedback in order to suppress zero drift. The result of our theoretic analysis and computer simulation indicate that the bias drift of a closed-loop system is smaller than an open- loop one.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599974-transport-characteristics-passing-fast-ions-produced-nonlocal-overlapping-drift-island-surfaces-magnetic-island-surfaces','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599974-transport-characteristics-passing-fast-ions-produced-nonlocal-overlapping-drift-island-surfaces-magnetic-island-surfaces"><span>The transport characteristics of passing fast ions produced by nonlocal overlapping of drift island surfaces and magnetic island surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cao, Jinjia; Gong, Xueyu, E-mail: gongxueyu-usc@163.com; Xiang, Dong</p> <p></p> <p>The structure of the drift-island surface of passing fast ions (PFIs) is investigated in the presence of the resonant interaction with a magnetic island. Two overlapping regions of the drift-island surface and the magnetic island surface are found, one corresponding to local overlapping region and the other to non-local one. Here, the word “nonlocal” denotes that the resonances in the core plasma can have effects on the PFIs near the plasma boundary, while the “local” represents that the PFIs just near the resonant location are influenced. The nonlocal overlapping constructs a transport path along which the PFIs can become losses.more » There are three kinds of drift-island surfaces to join in forming the transport paths. A pitch angle region, which is called pitch angle gap, is found near the plasma boundary, where the drift-island surface cannot be formed and few PFIs are lost. The pitch-angle selective features of PFI losses are obtained by analyzing the three kinds of drift-island surfaces. The coupling between the crowd drift island surfaces and the collision can induce the prompt losses of PFIs and rapidly slowing down of PFI energy. The time of the prompt losses and the slowing down rate are calculated. Qualitatively, the theoretical results are in well agreement with the experimental observations in ASDEX Upgrade [M. García-Muñoz et al., Nucl. Fusion 47, L10 (2007)].« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA342572','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA342572"><span>Spacecraft Interactions Studies with a 1 Kw Class Closed-Drift Hall Thruster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1998-01-31</p> <p>Closed Drift Hall thruster plume with spacecraft surfaces and systems. Two basic interaction modes were investigated: (1) the influence of the plume...Spectrometer (MBMS) capable of discerning both the mass and energy of Hall thruster plume species, and the ion acoustic wave probe to measure the drift velocity of the plume plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4990712','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4990712"><span>Variational principles for stochastic fluid dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Holm, Darryl D.</p> <p>2015-01-01</p> <p>This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations. PMID:27547083</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.996a2014B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.996a2014B"><span>On the physics of electron transfer (drift) in the substance: about the reason of “abnormal” fast transfer of electrons in the plasma of tokamak and at known Bohm’s diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boriev, I. A.</p> <p>2018-03-01</p> <p>An analysis of the problem of so-called “abnormal” fast transfer of electrons in tokamak plasma, which turned out much faster than the result of accepted calculation, is given. Such transfer of hot electrons leads to unexpectedly fast destruction of the inner tokamak wall with ejection of its matter in plasma volume, what violates a condition of plasma confinement for controlled thermonuclear fusion. It is shown, taking into account real physics of electron drift in the gas (plasma) and using the conservation law for momentum of electron transfer (drift), that the drift velocity of elastically scattered electrons should be significantly greater than that of accepted calculation. The reason is that the relaxation time of the momentum of electron transfer, to which the electron drift velocity is proportional, is significantly greater (from 16 up to 4 times) than the electron free path time. Therefore, generally accepted replacement of the relaxation time, which is unknown a priori, by the electron free path time, leads to significant (16 times for thermal electrons) underestimation of electron drift velocity (mobility). This result means, that transfer of elastically (and isotropically) scattered electrons in the gas phase should be so fast, and corresponds to multiplying coefficient (16), introduced by D. Bohm to explain the observed by him “abnormal” fast diffusion of electrons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmEn.142..264K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmEn.142..264K"><span>Estimating drift of airborne pesticides during orchard spraying using active Open Path FTIR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kira, Oz; Linker, Raphael; Dubowski, Yael</p> <p>2016-10-01</p> <p>The use of pesticides is important to ensure food security around the world. Unfortunately, exposure to pesticides is harmful to human health and the environment. This study suggests using active Open Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for monitoring and characterizing pesticide spray drift, which is one of the transfer mechanisms that lead to inhalation exposure to pesticides. Experiments were conducted in a research farm with two fungicides (Impulse and Bogiron), which were sprayed in the recommended concentration of ∼0.1%w in water, using a tractor-mounted air-assisted sprayer. The ability to detect and characterize the pesticide spray drift was tested in three types of environments: fallow field, young orchard, and mature orchard. During all spraying experiments the spectral signature of the organic phase of the pesticide solution was identified. Additionally, after estimating the droplets' size distribution using water sensitive papers, the OP-FTIR measurements enabled the estimation of the droplets load in the line of sight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5886520','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5886520"><span>Natural locomotion based on a reduced set of inertial sensors: Decoupling body and head directions indoors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Diaz-Estrella, Antonio; Reyes-Lecuona, Arcadio; Langley, Alyson; Brown, Michael; Sharples, Sarah</p> <p>2018-01-01</p> <p>Inertial sensors offer the potential for integration into wireless virtual reality systems that allow the users to walk freely through virtual environments. However, owing to drift errors, inertial sensors cannot accurately estimate head and body orientations in the long run, and when walking indoors, this error cannot be corrected by magnetometers, due to the magnetic field distortion created by ferromagnetic materials present in buildings. This paper proposes a technique, called EHBD (Equalization of Head and Body Directions), to address this problem using two head- and shoulder-located magnetometers. Due to their proximity, their distortions are assumed to be similar and the magnetometer measurements are used to detect when the user is looking straight forward. Then, the system corrects the discrepancies between the estimated directions of the head and the shoulder, which are provided by gyroscopes and consequently are affected by drift errors. An experiment is conducted to evaluate the performance of this technique in two tasks (navigation and navigation plus exploration) and using two different locomotion techniques: (1) gaze-directed mode (GD) in which the walking direction is forced to be the same as the head direction, and (2) decoupled direction mode (DD) in which the walking direction can be different from the viewing direction. The obtained results show that both locomotion modes show similar matching of the target path during the navigation task, while DD’s path matches the target path more closely than GD in the navigation plus exploration task. These results validate the EHBD technique especially when allowing different walking and viewing directions in the navigation plus exploration tasks, as expected. While the proposed method does not reach the accuracy of optical tracking (ideal case), it is an acceptable and satisfactory solution for users and is much more compact, portable and economical. PMID:29621298</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NIMPB.392...31K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NIMPB.392...31K"><span>Pulsed electron beam propagation in gases under pressure of 6.6 kPa in drift tube</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Poloskov, A. V.</p> <p>2017-02-01</p> <p>This paper presents the results of an investigation of pulsed electron beam transport propagated in a drift tube filled with different gases (He, H2, N2, Ar, SF6, and CO2). The total pressure in the drift tube was 6.6 kPa. The experiments were carried out using a TEA-500 pulsed electron accelerator. The electron beam was propagated in the drift tube composed of two sections equipped with reverse current shunts. Under a pressure of 6.6 kPa, the maximum value of the electron beam charge closed on the walls of the drift tube was recorded when the beam was propagated in hydrogen and carbon dioxide. The minimum value of the electron beam charge closed on the walls of the drift tube was recorded for sulfur hexafluoride. The visualization of the pulsed electron beam energy losses onto the walls of the drift chamber was carried out using radiation-sensitive film.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhPl...24j3517S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhPl...24j3517S"><span>Analytic non-Maxwellian electron velocity distribution function in a Hall discharge plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shagayda, Andrey; Tarasov, Alexey</p> <p>2017-10-01</p> <p>The electron velocity distribution function in the low-pressure discharges with the crossed electric and magnetic fields, which occur in magnetrons, plasma accelerators, and Hall thrusters with a closed electron drift, is not Maxwellian. A deviation from equilibrium is caused by a large electron mean free path relative to the Larmor radius and the size of the discharge channel. In this study, we derived in the relaxation approximation the analytical expression of the electron velocity distribution function in a weakly ionized Lorentz plasma with the crossed electric and magnetic fields in the presence of the electron density and temperature gradients in the direction of the electric field. The solution was obtained in the stationary approximation far from boundary surfaces, when diffusion and mobility are determined by the classical effective collision frequency of electrons with ions and atoms. The moments of the distribution function including the average velocity, the stress tensor, and the heat flux were calculated and compared with the classical hydrodynamic expressions. It was shown that a kinetic correction to the drift velocity stems from a contribution of the off-diagonal component of the stress tensor. This correction becomes essential if the drift velocity in the crossed electric and magnetic fields would be comparable to the thermal velocity of electrons. The electron temperature has three different components at a nonzero effective collision frequency and two different components in the limit when the collision frequency tends to zero. It is shown that, in the presence of ionization collisions, the components of the heat flux have additives that are not related to the temperature gradient, and arise because of the electron drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1376424','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1376424"><span>Operational Performance Risk Assessment in Support of A Supervisory Control System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Denning, Richard S.; Muhlheim, Michael David; Cetiner, Sacit M.</p> <p></p> <p>Supervisory control system (SCS) is developed for multi-unit advanced small modular reactors to minimize human interventions in both normal and abnormal operations. In SCS, control action decisions made based on probabilistic risk assessment approach via Event Trees/Fault Trees. Although traditional PRA tools are implemented, their scope is extended to normal operations and application is reversed; success of non-safety related system instead failure of safety systems this extended PRA approach called as operational performance risk assessment (OPRA). OPRA helps to identify success paths, combination of control actions for transients and to quantify these success paths to provide possible actions without activatingmore » plant protection system. In this paper, a case study of the OPRA in supervisory control system is demonstrated within the context of the ALMR PRISM design, specifically power conversion system. The scenario investigated involved a condition that the feed water control valve is observed to be drifting to the closed position. Alternative plant configurations were identified via OPRA that would allow the plant to continue to operate at full or reduced power. Dynamic analyses were performed with a thermal-hydraulic model of the ALMR PRISM system using Modelica to evaluate remained safety margins. Successful recovery paths for the selected scenario are identified and quantified via SCS.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1413738','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1413738"><span>Electron Attenuation Measurement using Cosmic Ray Muons at the MicroBooNE LArTPC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meddage, Varuna</p> <p>2017-10-01</p> <p>The MicroBooNE experiment at Fermilab uses liquid argon time projection chamber (LArTPC) technology to study neutrino interactions in argon. A fundamental requirement for LArTPCs is to achieve and maintain a low level of electronegative contaminants in the liquid to minimize the capture of drifting ionization electrons. The attenuation time for the drifting electrons should be long compared to the maximum drift time, so that the signals from particle tracks that generate ionization electrons with long drift paths can be detected efficiently. In this talk we present MicroBooNE measurement of electron attenuation using cosmic ray muons. The result yields a minimummore » electron 1/e lifetime of 18 ms under typical operating conditions, which is long compared to the maximum drift time of 2.3 ms.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21960629','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21960629"><span>MESSENGER observations of transient bursts of energetic electrons in Mercury's magnetosphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ho, George C; Krimigis, Stamatios M; Gold, Robert E; Baker, Daniel N; Slavin, James A; Anderson, Brian J; Korth, Haje; Starr, Richard D; Lawrence, David J; McNutt, Ralph L; Solomon, Sean C</p> <p>2011-09-30</p> <p>The MESSENGER spacecraft began detecting energetic electrons with energies greater than 30 kilo-electron volts (keV) shortly after its insertion into orbit about Mercury. In contrast, no energetic protons were observed. The energetic electrons arrive as bursts lasting from seconds to hours and are most intense close to the planet, distributed in latitude from the equator to the north pole, and present at most local times. Energies can exceed 200 keV but often exhibit cutoffs near 100 keV. Angular distributions of the electrons about the magnetic field suggest that they do not execute complete drift paths around the planet. This set of characteristics demonstrates that Mercury's weak magnetic field does not support Van Allen-type radiation belts, unlike all other planets in the solar system with internal magnetic fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008BASIP..25...34B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008BASIP..25...34B"><span>Discovery of remarkable subpulse drifting pattern in PSR B0818-41</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhattacharyya, B.; Gupta, Y.; Gil, J.; Sendyk, M.</p> <p></p> <p>The study of pulsars showing systematic subpulse drift patterns provides important clues for understanding of pulsar emission mechanism. Pulsars with wide profiles provide extra insights because of the presence of multiple drift bands (e.g PSR B0826-34). We report the discovery of a remarkable subpulse drift pattern in a relatively less studied wide profile pulsar, PSR B0818-41, using the GMRT. We find simultaneous occurrence of three drift regions with two drift rates, an inner region with steeper apparent drift rate flanked on each side by a region of slower apparent drift rate. Furthermore, the two closely spaced drift regions always maintain a constant phase relationship. These unique drift properties seen for this pulsar is very rare. We interpret that the observed drift pattern is created by intersection of our line of sight (LOS) with two conal rings in a inner LOS (negative beta) geometry. We argue that the carousel rotation periodicity (P_4) and the number of sparks (N_sp) are the same for the rings and claim that P_4 is close to the measured P_3. Based on our analysis results and interpretations, we simulate the radiation from B0818-41. The simulations support our interpretations and reproduce the average profile and the observed drift pattern. The results of our study show that PSR B0818-41 is a powerful system to explore the pulsar radio emission mechanism, the implications of which are also discussed in our work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750008281','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750008281"><span>The collisional drift mode in a partially ionized plasma. [in the F region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hudson, M. K.; Kennel, C. F.</p> <p>1974-01-01</p> <p>The structure of the drift instability was examined in several density regimes. Let sub e be the total electron mean free path, k sub z the wave-vector component along the magnetic field, and the ratio of perpendicular ion diffusion to parallel electron streaming rates. At low densities (k sub z lambda 1) the drift mode is isothermal and should be treated kineticly. In the finite heat conduction regime square root of m/M k sub z Lambda sub 1) the drift instability threshold is reduced at low densities and increased at high densities as compared to the isothermal threshold. Finally, in the energy transfer limit (k sub z kambda sub e square root of m/M) the drift instability behaves adiabatically in a fully ionized plasma and isothermally in a partially ionized plasma for an ion-neutral to Coulomb collision frequency ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770016278','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770016278"><span>Development of a drift-correction procedure for a direct-reading spectrometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chapman, G. B., II; Gordon, W. A.</p> <p>1977-01-01</p> <p>A procedure which provides automatic correction for drifts in the radiometric sensitivity of each detector channel in a direct-reading emission spectrometer is described. Such drifts are customarily controlled by the regular analyses of standards, which provide corrections for changes in the excitational, optical, and electronic components of the instrument. This standardization procedure, however, corrects for the optical and electronic drifts. It is a step that must be taken if the time, effort, and cost of processing standards is to be minimized. This method of radiometric drift correction uses a 1,000-W tungsten-halogen reference lamp to illuminate each detector through the same optical path as that traversed during sample analysis. The responses of the detector channels to this reference light are regularly compared with channel response to the same light intensity at the time of analytical calibration in order to determine and correct for drift. Except for placing the lamp in position, the procedure is fully automated and compensates for changes in spectral intensity due to variations in lamp current. A discussion of the implementation of this drift-correction system is included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/864941','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/864941"><span>Method for closing a drift between adjacent in situ oil shale retorts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hines, Alex E.</p> <p>1984-01-01</p> <p>A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7205091','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7205091"><span>Light beam frequency comb generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Priatko, G.J.; Kaskey, J.A.</p> <p>1992-11-24</p> <p>A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics. 2 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868558','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868558"><span>Light beam frequency comb generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Priatko, Gordon J.; Kaskey, Jeffrey A.</p> <p>1992-01-01</p> <p>A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29361685','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29361685"><span>Glass Polarization Induced Drift of a Closed-Loop Micro-Accelerometer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Wu; He, Jiangbo; Yu, Huijun; Peng, Bei; He, Xiaoping</p> <p>2018-01-20</p> <p>The glass polarization effects were introduced in this paper to study the main cause of turn-on drift phenomenon of closed-loop micro-accelerometers. The glass substrate underneath the sensitive silicon structure underwent a polarizing process when the DC bias voltage was applied. The slow polarizing process induced an additional electrostatic field to continually drag the movable mass block from one position to another so that the sensing capacitance was changed, which led to an output drift of micro-accelerometers. This drift was indirectly tested by experiments and could be sharply reduced by a shielding layer deposited on the glass substrate because the extra electrical filed was prohibited from generating extra electrostatic forces on the movable fingers of the mass block. The experimental results indicate the average magnitude of drift decreased about 73%, from 3.69 to 0.99 mV. The conclusions proposed in this paper showed a meaningful guideline to improve the stability of micro-devices based on silicon-on-glass structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5793661','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5793661"><span>Glass Polarization Induced Drift of a Closed-Loop Micro-Accelerometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>He, Jiangbo; Yu, Huijun; Peng, Bei; He, Xiaoping</p> <p>2018-01-01</p> <p>The glass polarization effects were introduced in this paper to study the main cause of turn-on drift phenomenon of closed-loop micro-accelerometers. The glass substrate underneath the sensitive silicon structure underwent a polarizing process when the DC bias voltage was applied. The slow polarizing process induced an additional electrostatic field to continually drag the movable mass block from one position to another so that the sensing capacitance was changed, which led to an output drift of micro-accelerometers. This drift was indirectly tested by experiments and could be sharply reduced by a shielding layer deposited on the glass substrate because the extra electrical filed was prohibited from generating extra electrostatic forces on the movable fingers of the mass block. The experimental results indicate the average magnitude of drift decreased about 73%, from 3.69 to 0.99 mV. The conclusions proposed in this paper showed a meaningful guideline to improve the stability of micro-devices based on silicon-on-glass structures. PMID:29361685</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900064041&hterms=movement+Brownian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmovement%2BBrownian','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900064041&hterms=movement+Brownian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmovement%2BBrownian"><span>Transition density of one-dimensional diffusion with discontinuous drift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, Weijian</p> <p>1990-01-01</p> <p>The transition density of a one-dimensional diffusion process with a discontinuous drift coefficient is studied. A probabilistic representation of the transition density is given, illustrating the close connections between discontinuities of the drift and Brownian local times. In addition, some explicit results are obtained based on the trivariate density of Brownian motion, its occupation, and local times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM21A2556O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM21A2556O"><span>Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oimatsu, S.; Masahito, N.; Takahashi, K.; Yamamoto, K.; Keika, K.; Kletzing, C.; MacDowall, R. J.; Smith, C.; Mitchell, D. G.</p> <p>2017-12-01</p> <p>Poloidal Pc4 wave and proton flux oscillation due to the drift-bounce resonance are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux modulation is observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of poloidal Pc4 wave. We estimate the resonant energy to be 120 keV for pitch angle (α) of 20º-40º or 140º-160º, and 170-180 keV for α=40º-60º or 120º-140º. The drift-bounce resonance theory gives the resonant energy of 110-120 keV, which is consistent with the observation for small α (or large α when α≥90º), but slightly higher than the observation for large α (or small α when α≥90º). We consider that this discrepancy of the resonant energy is due to the drift shell splitting. In order to examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) in both outbound and inbound paths. Results showed positive gradient in both paths, which means that the energy is transferred from the protons to the wave. During the appearance of poloidal Pc4 wave, the Dst* index shows a sudden increase of 6.7 nT. We estimate the total energy loss of the ring current from the recovery of the Dst* index and the variation of proton flux by the drift-bounce resonance. The estimated energy loss is almost comparable for both cases. Therefore, we suggest that the energy transfer from the ring current protons to the wave via the drift-bounce resonance cause the increase of Dst* index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JGR...10120629B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JGR...10120629B"><span>Cleavage of a Gulf of Mexico Loop Current eddy by a deep water cyclone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biggs, D. C.; Fargion, G. S.; Hamilton, P.; Leben, R. R.</p> <p>1996-09-01</p> <p>Eddy Triton, an anticyclonic eddy shed by the Loop Current in late June 1991, drifted SW across the central Gulf of Mexico in the first 6 months of 1992, along the ``southern'' of the three characteristic drift paths described by Vukovich and Crissman [1986] from their analyses of 13 years of advanced very high resolution radiometer sea surface temperature data. An expendable bathythermograph (XBT) and conductivity-temperature-depth (CTD) transect of opportunity through Triton at eddy age 7 months in January 1992 found that eddy interior stood 23 dyn. cm higher than periphery; this gradient drove an anticyclonic swirl transport of 9-10 Sv relative to 800 dbar. At eddy age 9-10 months and while this eddy was in deep water near 94°W, it interacted with a mesoscale cyclonic circulation and was cleaved into two parts. The major (greater dynamic centimeters) piece drifted NW to end up in the ``eddy graveyard'' in the NW corner of the gulf, while the minor piece drifted SW and reached the continental margin of the western gulf off Tuxpan. This southern piece of Eddy Triton then turned north to follow the 2000-m isobath to about 24°N and later coalesced with what remained of the major fragment. Because Eddy Triton's cleavage took place just before the start of marine mammals (GulfCet) and Louisiana-Texas physical oceanography (LATEX) field programs, the closely spaced CTD, XBT, and air dropped XBT (AXBT) data that were gathered on the continental margin north of 26°N in support of these programs allow a detailed look at the northern margin of the larger fragment of this eddy. Supporting data from the space-borne altimeters on ERS 1 and TOPEX/POSEIDON allow us to track both pieces of Eddy Triton in the western Gulf and follow their spin down in dynamic height, coalescence, and ultimate entrainment in January 1993 into another anticyclonic eddy (Eddy U).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/24560','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/24560"><span>Propeller wash effects on spray drift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Steven J. Thompson; Alvin R. Womac; Joseph Mulrooney; Sidney Deck</p> <p>2005-01-01</p> <p>for aerial spray application, there is some question if off-target drift (both near and far) is influenced by which boom is spraying and the direction of propeller wash rotation. This information may be useful when switching off one boom close to a field boundary. The effect of alternate boom switching and propeller wash direction on aerial spray drift from a turbine-...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=307440&Lab=NRMRL&keyword=law&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=307440&Lab=NRMRL&keyword=law&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Eddy covariance measurements in complex terrain with a new fast response, closed-path analyzer: spectral characteristics and cross-system comparisons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>In recent years, a new class of enclosed, closed-path gas analyzers suitable for eddy covariance applications has come to market, designed to combine the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path syst...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993EOSTr..74..193E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993EOSTr..74..193E"><span>Bottle appeal drifts across the Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ebbesmeyer, Curtis; Ingraham, W. James, Jr.; McKinnon, Richard; Okubo, Akira; Wang, Dong-Ping; Strickland, Richard; Willing, Peter</p> <p></p> <p>Pacific drift currents were used by a group of oceanographers to estimate the path of a drift bottle that was found on a beach of Barkley Sound in Vancouver Island by Richard Strickland on June 10, 1990. The Chinese rice wine bottle, which remained unopened until December 18, 1991, contained six leaflets, one appealing for the release of China's well-known dissident, Wei Jingsheng. The bottle was one of thousands set adrift as part of a propaganda effort from the islands of Quemoy and Matsu off mainland China shortly after Wei was sentenced in 1979 to 15 years in prison (see Figure 1 for locations). Wei was in poor health and still in prison when the bottle made its way across the Pacific Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP42A..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP42A..03H"><span>Ted Irving and the Precambrian continental drift of (within?) the Canadian Shield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoffman, P. F.</p> <p>2014-12-01</p> <p>Ted Irving was no stranger to the Precambrian when he began paleomagnetic studies in the Canadian Shield (CS) that would dominate his research in the early and mid-1970's. Twenty years before, his graduate work on billion-year-old strata in Scotland established paleomagnetic methodologies applicable to sedimentary rocks generally. In 1958, he and Ronald Green presented an 'Upper Proterozoic' APW path from Australia as evidence for pre-Carboniferous drift relative to Europe and North America (the poles actually range in age from 1.2 to 2.7 Ga). His first published CS poles were obtained from the Franklin LIP of the Arctic platform and demonstrate igneous emplacement across the paleoequator. Characteristically, his 1971 poles are statistically indistinguishable from the most recent grand mean paleopole of 2009. His main focus, however, was on the question of Precambrian continental drift. He compared APW paths with respect to Laurentia with those obtained from other Precambrian shields, and he compared APW paths from different tectonic provinces within the CS. He was consistently antagonistic to the concept of a single long-lived Proterozoic supercontinent, but he was on less certain ground regarding motions within the CS due to inadequate geochronology. With Ron Emslie, he boldly proposed rapid convergence between parts of the Grenville Province and Interior Laurentia (IL) ~1.0 Ga. This was controversial given the uncertain ages of multiple magnetic components in high-grade metamorphic rocks. With John McGlynn and John Park, he developed a Paleoproterozoic APW path for the Slave Province from mafic dikes and red clastics, encompassing the time of consolidation of IL during 2.0-1.8 Ga orogenesis. Before 1980, he constructed Paleoproterozoic APW paths for IL as a whole, finding little evidence for significant internal displacement. He recognized that the Laurentian APW path describes a series of straight tracks linked by hairpins, the latter corresponding in age to major orogenic events. He did not ascribe any hairpin to collisional orogenesis within IL, outward facing margins excluded, nor any track to true polar wander. After 1980, however, he argued that existing poles were too poorly dated to rule out interior plate motions. Irving was a strict empiricist who fearlessly went where his data led him, and no farther.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/23666','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/23666"><span>Iowa's cooperative snow fence program.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2005-06-01</p> <p>While we cant keep it from blowing, there are ways to influence the wind that carries tons : of blowing and drifting snow. Periodically, severe winter storms will create large snow : drifts that close roads and driveways, isolate farmsteads and in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16057953','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16057953"><span>Continental drift before 1900.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rupke, N A</p> <p>1970-07-25</p> <p>The idea that Francis Bacon and other seventeenth and eighteenth century thinkers first conceived the notion of continental drift does not stand up to close scrutiny. The few authors who expressed the idea viewed the process as a catastrophic event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/864481','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/864481"><span>High power linear pulsed beam annealer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Strathman, Michael D.; Sadana, Devendra K.; True, Richard B.</p> <p>1983-01-01</p> <p>A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6039366','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6039366"><span>High power linear pulsed beam annealer. [Patent application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Strathman, M.D.; Sadana, D.K.; True, R.B.</p> <p>1980-11-26</p> <p>A high power pulsed electron beam system for annealing semiconductors is comprised of an electron gun having a heated cathode, control grid and focus ring for confining the pulsed beam of electrons to a predetermined area, and a curved drift tube. The drift tube and an annular Faraday shield between the focus ring and the drift tube are maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring, thereby eliminating space charge limitations on the emission of electrons from said gun. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube. The magnetic field produced by the coil around the curved tube imparts motion to electrons in a spiral path for shallow penetration of the electrons into a target. It also produces a scalloped profile of the electron beam. A second drift tube spaced a predetermined distance from the curved tube is positioned with its axis aligned with the axis of the first drift tube. The second drift tube and the target holder are maintained at a reference voltage between the cathode voltage and the curved tube voltage to decelerate the electrons. A second coil surrounding the second drift tube, maintains the electron beam focused about the axis of the second drift tube. The magnetic field of the second coil comprises the electron beam to the area of the semiconductor on the target holder.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26764765','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26764765"><span>Currency target-zone modeling: An interplay between physics and economics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lera, Sandro Claudio; Sornette, Didier</p> <p>2015-12-01</p> <p>We study the performance of the euro-Swiss franc exchange rate in the extraordinary period from September 6, 2011 to January 15, 2015 when the Swiss National Bank enforced a minimum exchange rate of 1.20 Swiss francs per euro. Within the general framework built on geometric Brownian motions and based on the analogy between Brownian motion in finance and physics, the first-order effect of such a steric constraint would enter a priori in the form of a repulsive entropic force associated with the paths crossing the barrier that are forbidden. Nonparametric empirical estimates of drift and volatility show that the predicted first-order analogy between economics and physics is incorrect. The clue is to realize that the random-walk nature of financial prices results from the continuous anticipation of traders about future opportunities, whose aggregate actions translate into an approximate efficient market with almost no arbitrage opportunities. With the Swiss National Bank's stated commitment to enforce the barrier, traders' anticipation of this action leads to a vanishing drift together with a volatility of the exchange rate that depends on the distance to the barrier. This effect is described by Krugman's model [P. R. Krugman, Target zones and exchange rate dynamics, Q. J. Econ. 106, 669 (1991)]. We present direct quantitative empirical evidence that Krugman's theoretical model provides an accurate description of the euro-Swiss franc target zone. Motivated by the insights from the economic model, we revise the initial economics-physics analogy and show that, within the context of hindered diffusion, the two systems can be described with the same mathematics after all. Using a recently proposed extended analogy in terms of a colloidal Brownian particle embedded in a fluid of molecules associated with the underlying order book, we derive that, close to the restricting boundary, the dynamics of both systems is described by a stochastic differential equation with a very small constant drift and a linear diffusion coefficient. As a side result, we present a simplified derivation of the linear hydrodynamic diffusion coefficient of a Brownian particle close to a wall.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvE..92f2828L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvE..92f2828L"><span>Currency target-zone modeling: An interplay between physics and economics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lera, Sandro Claudio; Sornette, Didier</p> <p>2015-12-01</p> <p>We study the performance of the euro-Swiss franc exchange rate in the extraordinary period from September 6, 2011 to January 15, 2015 when the Swiss National Bank enforced a minimum exchange rate of 1.20 Swiss francs per euro. Within the general framework built on geometric Brownian motions and based on the analogy between Brownian motion in finance and physics, the first-order effect of such a steric constraint would enter a priori in the form of a repulsive entropic force associated with the paths crossing the barrier that are forbidden. Nonparametric empirical estimates of drift and volatility show that the predicted first-order analogy between economics and physics is incorrect. The clue is to realize that the random-walk nature of financial prices results from the continuous anticipation of traders about future opportunities, whose aggregate actions translate into an approximate efficient market with almost no arbitrage opportunities. With the Swiss National Bank's stated commitment to enforce the barrier, traders' anticipation of this action leads to a vanishing drift together with a volatility of the exchange rate that depends on the distance to the barrier. This effect is described by Krugman's model [P. R. Krugman, Target zones and exchange rate dynamics, Q. J. Econ. 106, 669 (1991), 10.2307/2937922]. We present direct quantitative empirical evidence that Krugman's theoretical model provides an accurate description of the euro-Swiss franc target zone. Motivated by the insights from the economic model, we revise the initial economics-physics analogy and show that, within the context of hindered diffusion, the two systems can be described with the same mathematics after all. Using a recently proposed extended analogy in terms of a colloidal Brownian particle embedded in a fluid of molecules associated with the underlying order book, we derive that, close to the restricting boundary, the dynamics of both systems is described by a stochastic differential equation with a very small constant drift and a linear diffusion coefficient. As a side result, we present a simplified derivation of the linear hydrodynamic diffusion coefficient of a Brownian particle close to a wall.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3431116','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3431116"><span>Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>McLaren, James D.</p> <p>2012-01-01</p> <p>A migrating bird’s response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival. PMID:22936843</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22936843','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22936843"><span>Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McLaren, James D; Shamoun-Baranes, Judy; Bouten, Willem</p> <p>2012-09-01</p> <p>A migrating bird's response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1340793-achieving-high-resolution-ion-mobility-separations-using-traveling-waves-compact-multiturn-structures-lossless-ion-manipulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1340793-achieving-high-resolution-ion-mobility-separations-using-traveling-waves-compact-multiturn-structures-lossless-ion-manipulations"><span>Achieving High Resolution Ion Mobility Separations Using Traveling Waves in Compact Multiturn Structures for Lossless Ion Manipulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hamid, Ahmed M.; Garimella, Sandilya V. B.; Ibrahim, Yehia M.</p> <p></p> <p>We report on ion mobility separations (IMS) achievable using traveling waves in a Structures for Lossless Ion Manipulations (TW-SLIM) module having a 44-cm path length and sixteen 90º turns. The performance of the TW-SLIM module was evaluated for ion transmission, and ion mobility separations with different RF, TW parameters and SLIM surface gaps in conjunction with mass spectrometry. In this work TWs were created by the transient and dynamic application of DC potentials. The TW-SLIM module demonstrated highly robust performance and the ion mobility resolution achieved even with sixteen close spaced turns was comparable to a similar straight path TW-SLIMmore » module. We found an ion mobility peak capacity of ~ 31 and peak generation rate of 780 s-1 for TW speeds of <210 m/s using the current multi-turn TW-SLIM module. The separations achieved for isomers of peptides and tetrasaccharides were found to be comparable to those from a ~ 0.9-m drift tube-based IMS-MS platform operated at the same pressure (4 torr). The combined attributes of flexible design, low voltage requirements and lossless ion transmission through multiple turns for the present TW-SLIM module provides a basis for SLIM devices capable of achieving much greater ion mobility resolutions via greatly extended ion path lengths and compact serpentine designs that do not significantly impact the instrumentation profile, a direction described in a companion manuscript.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA16570.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA16570.html"><span>Windblown Sand from the Rocknest Drift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-12-03</p> <p>NASA Mars rover Curiosity acquired close-up views of sands in the Rocknest wind drift to document the nature of the material that the rover scooped, sieved and delivered to the CheMin and SAM instruments in October and November 2012.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003DPS....35.4505M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003DPS....35.4505M"><span>Simulations of Jovian Vortices: Sensitivity to Vertical Shear below the Cloud Tops.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morales-Juberías, R.; Dowling, T. E.; Palotai, Cs. J.</p> <p>2003-05-01</p> <p>We have multiple, detailed observations of individual spots drifting with different velocities at different latitudes within a given shear zone. We also have indications from modeling Jupiter's White Ovals that the drift rates of anticyclones and cyclones are influenced by the structure of the atmosphere below the cloud tops. Therefore, it should be possible to combine such observations with modeling to learn about the abyssal circulation. We are investigating the influence the vertical wind shear has on jovian vortices with two versions of the EPIC atmospheric model, the original pure-isentropic-coordinate model and the new hybrid-coordinate model that transitions smoothly to a pressure-based coordinate where the atmosphere becomes nearly neutrally stratified and the potential temperature ceases to be a useful coordinate. The hybrid model allows us to achieve significantly greater depth and vertical resolution, and so gain more sensitivity to the baroclinic effects of the vertical shear of the zonal wind. There are technical issues that arise with the hybrid, in particular it is more challenging to introduce a balanced vortex since there is no simple streamfunction like the Montgomery streamfunction used in the isentropic-coordinate case. Our scientific goal is to reproduce the observed interactions of cyclones with anticyclones. For example, previous to the final merger of White Ovals BE and FA, the cyclonic vortex between them, which appeared to act as a merger inhibitor---a common occurrance when two White Ovals drifted close to each other---was pulled out of the triple system by the nearby transit of the Great Red Spot, thereby leaving a free path for BE and FA to merge. We will present our latest results on anticyclone-cyclone interactions and the influence of the abyssal circulation. This research is funded by NASA's Planetary Atmospheres and EPSCoR programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRA..116.6215J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRA..116.6215J"><span>A statistical study of the inner edge of the electron plasma sheet and the net convection potential as a function of geomagnetic activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, F.; Kivelson, M. G.; Walker, R. J.; Khurana, K. K.; Angelopoulos, V.; Hsu, T.</p> <p>2011-06-01</p> <p>A widely accepted explanation of the location of the inner edge of the electron plasma sheet and its dependence on electron energy is based on drift motions of individual particles. The boundary is identified as the separatrix between drift trajectories linking the tail to the dayside magnetopause (open paths) and trajectories closed around the Earth. A statistical study of the inner edge of the electron plasma sheet using THEMIS Electrostatic Analyzer plasma data from November 2007 to April 2009 enabled us to examine this model. Using a dipole magnetic field and a Volland-Stern electric field with shielding, we find that a steady state drift boundary model represents the average location of the electron plasma sheet boundary and reflects its variation with the solar wind electric field in the local time region between 21:00 and 06:00, except at high activity levels. However, the model does not reproduce the observed energy dispersion of the boundaries. We have also used the location of the inner edge of the electron plasma sheet to parameterize the potential drop of the tail convection electric field as a function of solar wind electric field (Esw) and geomagnetic activity. The range of Esw examined is small because the data were acquired near solar minimum. For the range of values tested (meaningful statistics only for Esw < 2 mV/m), reasonably good agreement is found between the potential drop of the tail convection electric field inferred from the location of the inner edge and the polar cap potential drop calculated from the model of Boyle et al. (1997).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26835637','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26835637"><span>Analysis of dead zone sources in a closed-loop fiber optic gyroscope.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chong, Kyoung-Ho; Choi, Woo-Seok; Chong, Kil-To</p> <p>2016-01-01</p> <p>Analysis of the dead zone is among the intensive studies in a closed-loop fiber optic gyroscope. In a dead zone, a gyroscope cannot detect any rotation and produces a zero bias. In this study, an analysis of dead zone sources is performed in simulation and experiments. In general, the problem is mainly due to electrical cross coupling and phase modulation drift. Electrical cross coupling is caused by interference between modulation voltage and the photodetector. The cross-coupled signal produces spurious gyro bias and leads to a dead zone if it is larger than the input rate. Phase modulation drift as another dead zone source is due to the electrode contamination, the piezoelectric effect of the LiNbO3 substrate, or to organic fouling. This modulation drift lasts for a short or long period of time like a lead-lag filter response and produces gyro bias error, noise spikes, or dead zone. For a more detailed analysis, the cross-coupling effect and modulation phase drift are modeled as a filter and are simulated in both the open-loop and closed-loop modes. The sources of dead zone are more clearly analyzed in the simulation and experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RaSc...51.1263C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RaSc...51.1263C"><span>A technique for inferring zonal irregularity drift from single-station GNSS measurements of intensity (S4) and phase (σφ) scintillations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrano, Charles S.; Groves, Keith M.; Rino, Charles L.; Doherty, Patricia H.</p> <p>2016-08-01</p> <p>The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross-correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory-Scintillation Network Decision Aid (AFRL-SCINDA) network operates a small number of very high frequency (VHF) spaced-receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL-SCINDA network (25-30) and the Low-Latitude Ionospheric Sensor Network (35-50), but the receivers are too widely separated from each other for cross-correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single-station GNSS measurements of S4, σφ, and the propagation geometry. Unlike the spaced-receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σφ to S4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced-receiver measurements of zonal irregularity drift obtained from the AFRL-SCINDA network. While the spaced-receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCoPh.346...49S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCoPh.346...49S"><span>A transformed path integral approach for solution of the Fokker-Planck equation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Subramaniam, Gnana M.; Vedula, Prakash</p> <p>2017-10-01</p> <p>A novel path integral (PI) based method for solution of the Fokker-Planck equation is presented. The proposed method, termed the transformed path integral (TPI) method, utilizes a new formulation for the underlying short-time propagator to perform the evolution of the probability density function (PDF) in a transformed computational domain where a more accurate representation of the PDF can be ensured. The new formulation, based on a dynamic transformation of the original state space with the statistics of the PDF as parameters, preserves the non-negativity of the PDF and incorporates short-time properties of the underlying stochastic process. New update equations for the state PDF in a transformed space and the parameters of the transformation (including mean and covariance) that better accommodate nonlinearities in drift and non-Gaussian behavior in distributions are proposed (based on properties of the SDE). Owing to the choice of transformation considered, the proposed method maps a fixed grid in transformed space to a dynamically adaptive grid in the original state space. The TPI method, in contrast to conventional methods such as Monte Carlo simulations and fixed grid approaches, is able to better represent the distributions (especially the tail information) and better address challenges in processes with large diffusion, large drift and large concentration of PDF. Additionally, in the proposed TPI method, error bounds on the probability in the computational domain can be obtained using the Chebyshev's inequality. The benefits of the TPI method over conventional methods are illustrated through simulations of linear and nonlinear drift processes in one-dimensional and multidimensional state spaces. The effects of spatial and temporal grid resolutions as well as that of the diffusion coefficient on the error in the PDF are also characterized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070023652&hterms=Diode&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DDiode','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070023652&hterms=Diode&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DDiode"><span>JMR Noise Diode Stability and Recalibration Methodology after Three Years On-Orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brown, Shannon; Desai, Shailen; Keihm, Stephen; Ruf, Christopher</p> <p>2006-01-01</p> <p>The Jason Microwave Radiometer (JMR) is included on the Jason-1 ocean altimeter satellite to measure the wet tropospheric path delay (PD) experienced by the radar altimeter signal. JMR is nadir pointing and measures the radiometric brightness temperature (T(sub B)) at 18.7, 23.8 and 34.0 GHz. JMR is a Dicke radiometer and it is the first radiometer to be flown in space that uses noise diodes for calibration. Therefore, monitoring the long term stability of the noise diodes is essential. Each channel has three redundant noise diodes which are individually coupled into the antenna signal to provide an estimate of the gain. Two significant jumps in the JMR path delays, relative to ground truth, were observed around 300 and 700 days into the mission. Slow drifts in the retrieved products were also evident over the entire mission. During a recalibration effort, it was determined that a single set of calibration coefficients was not able to remove the calibration jumps and drifts, suggesting that there was a change in the hardware and time dependent coefficients would be required. To facilitate the derivation of time dependent coefficients, an optimal estimation based calibration system was developed which iteratively determines that set of calibration coefficients which minimize the RMS difference between the JMR TBs and on-Earth hot and cold absolute references. This optimal calibration algorithm was used to fine tune the front end path loss coefficients and derive a time series of the JMR noise diode brightness temperatures for each of the nine diodes. Jumps and drifts, on the order of 1% to 2%, are observed among the noise diodes in the first three years on-orbit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e002128.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e002128.html"><span>Al Basrah, Iraq</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Al Basrah, Iraq Sensor: L7 ETM+ Acquisition Date: April 4, 2003 Path/Row: 166/39 Lat/Long: 30.486/47.811 Smoke drifts south in this image of Al Basrah, located in southeastern Iraq. The green circles from the center to the left of the image represent irrigated crops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985JATP...47..685B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985JATP...47..685B"><span>Volcanic eruption induced WWVB transmission path interruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buckmaster, H. A.; Hansen, C. H.</p> <p>1985-07-01</p> <p>It is reported that the 60 kHz transmission of WWVB from Fort Collins, Colorado, was not received in Calgary, Alberta, Canada, for about 11 h from 1109 UT to 2153 UT on July 23, 1980. It is suggested that this transmission path interruption is correlated with the 15 km height ash cloud due to the July 22, 1980 volcanic eruption of Mount St. Helens as it drifted eastward interrupting both the ground- and first hop sky-wave paths and that this ash cloud is the source of the conductivity and/or ionization necessary to produce this interruption. Small phase retardations are also reported which could be correlated with other Mount St. Helens volcanic events during May-July 1980.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AMT....10...35B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AMT....10...35B"><span>HAI, a new airborne, absolute, twin dual-channel, multi-phase TDLAS-hygrometer: background, design, setup, and first flight data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Schiller, Cornelius; Krämer, Martina; Ebert, Volker</p> <p>2017-01-01</p> <p>The novel Hygrometer for Atmospheric Investigation (HAI) realizes a unique concept for simultaneous gas-phase and total (gas-phase + evaporated cloud particles) water measurements. It has been developed and successfully deployed for the first time on the German HALO research aircraft. This new instrument combines direct tunable diode laser absorption spectroscopy (dTDLAS) with a first-principle evaluation method to allow absolute water vapor measurements without any initial or repetitive sensor calibration using a reference gas or a reference humidity generator. HAI contains two completely independent dual-channel (closed-path, open-path) spectrometers, one at 1.4 and one at 2.6 µm, which together allow us to cover the entire atmospheric H2O range from 1 to 40 000 ppmv with a single instrument. Both spectrometers each comprise a separate, wavelength-individual extractive, closed-path cell for total water (ice and gas-phase) measurements. Additionally, both spectrometers couple light into a common open-path cell outside of the aircraft fuselage for a direct, sampling-free, and contactless determination of the gas-phase water content. This novel twin dual-channel setup allows for the first time multiple self-validation functions, in particular a reliable, direct, in-flight validation of the open-path channels. During the first field campaigns, the in-flight deviations between the independent and calibration-free channels (i.e., closed-path to closed-path and open-path to closed-path) were on average in the 2 % range. Further, the fully autonomous HAI hygrometer allows measurements up to 240 Hz with a minimal integration time of 1.4 ms. The best precision is achieved by the 1.4 µm closed-path cell at 3.8 Hz (0.18 ppmv) and by the 2.6 µm closed-path cell at 13 Hz (0.055 ppmv). The requirements, design, operation principle, and first in-flight performance of the hygrometer are described and discussed in this work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhRvS..14f2802R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhRvS..14f2802R"><span>Model-independent and fast determination of optical functions in storage rings via multiturn and closed-orbit data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riemann, Bernard; Grete, Patrick; Weis, Thomas</p> <p>2011-06-01</p> <p>Multiturn (or turn-by-turn) data acquisition has proven to be a new source of direct measurements for Twiss parameters in storage rings. On the other hand, closed-orbit measurements are a long-known tool for analyzing closed-orbit perturbations with conventional beam position monitor (BPM) systems and are necessarily available at every storage ring. This paper aims at combining the advantages of multiturn measurements and closed-orbit data. We show that only two multiturn BPMs and four correctors in one localized drift space in the storage ring (diagnostic drift) are sufficient for model-independent and absolute measuring of β and φ functions at all BPMs, including the conventional ones, instead of requiring all BPMs being equipped with multiturn electronics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22047237-pumping-eccentricity-exoplanets-tidal-effect','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22047237-pumping-eccentricity-exoplanets-tidal-effect"><span>PUMPING THE ECCENTRICITY OF EXOPLANETS BY TIDAL EFFECT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Correia, Alexandre C. M.; Boue, Gwenaeel; Laskar, Jacques, E-mail: correia@ua.pt</p> <p>2012-01-10</p> <p>Planets close to their host stars are believed to undergo significant tidal interactions, leading to a progressive damping of the orbital eccentricity. Here we show that when the orbit of the planet is excited by an outer companion, tidal effects combined with gravitational interactions may give rise to a secular increasing drift on the eccentricity. As long as this secular drift counterbalances the damping effect, the eccentricity can increase to high values. This mechanism may explain why some of the moderate close-in exoplanets are observed with substantial eccentricity values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034337','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034337"><span>Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Detto, Matteo; Verfaillie, Joseph; Anderson, Frank; Xu, Liukang; Baldocchi, Dennis</p> <p>2011-01-01</p> <p>Closed- and open-path methane gas analyzers are used in eddy covariance systems to compare three potential methane emitting ecosystems in the Sacramento-San Joaquin Delta (CA, USA): a rice field, a peatland pasture and a restored wetland. The study points out similarities and differences of the systems in field experiments and data processing. The closed-path system, despite a less intrusive placement with the sonic anemometer, required more care and power. In contrast, the open-path system appears more versatile for a remote and unattended experimental site. Overall, the two systems have comparable minimum detectable limits, but synchronization between wind speed and methane data, air density corrections and spectral losses have different impacts on the computed flux covariances. For the closed-path analyzer, air density effects are less important, but the synchronization and spectral losses may represent a problem when fluxes are small or when an undersized pump is used. For the open-path analyzer air density corrections are greater, due to spectroscopy effects and the classic Webb–Pearman–Leuning correction. Comparison between the 30-min fluxes reveals good agreement in terms of magnitudes between open-path and closed-path flux systems. However, the scatter is large, as consequence of the intensive data processing which both systems require.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00759&hterms=Pink+eyes&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DPink%2Beyes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00759&hterms=Pink+eyes&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DPink%2Beyes"><span>First look at rock & soil properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1997-01-01</p> <p>The earliest survey of spectral properties of the rocks and soils surrounding Pathfinder was acquired as a narrow strip covering the region just beyond the where the rover made its egress from the lander. The wavelength filters used, all in the binocular camera's right eye, cover mainly visible wavelengths. These data reveal at least five kinds of rocks and soil in the immediate vicinity of the lander. All of the spectra are ratioed to the mean spectrum of bright red drift to highlight the differences. Different occurrences of drift (pink spectra) are closely similar. Most of the rocks (black spectra) have a dark gray color, and are both darker and less red than the drift, suggesting less weathering. Typical soils (green spectra) are intermediate in properties to the rocks and drift. Both these data and subsequent higher resolution images show that the typical soil consists of a mixture of drift and small dark gray particles resembling the rock. However, two other kinds of materials are significantly different from the rocks and drift. Pinkish or whitish pebbles and crusts on some of the rocks (blue spectra) are brighter in blue light and darker in near-infrared light than is the drift, and they lack the spectral characteristics closely associated with iron minerals. Dark red soils in the lee of several rocks are about as red as the drift, but consistently darker. The curvature in the spectrum at visible wavelengths suggests either more ferric iron minerals than in the drift or a larger particle size.<p/>Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DPPBP8007K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DPPBP8007K"><span>Effects of density gradient caused by multi-pulsing CHI on two-fluid flowing equilibria of spherical torus plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kanki, T.; Nagata, M.</p> <p>2014-10-01</p> <p>Two-fluid dynamo relaxation is examined to understand sustainment mechanism of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The steeper density gradient between the central open flux column (OFC) and closed flux regions by applying the second CHI pulse is observed to cause not only the <emph type="bold-italic">E</emph> × <emph type="bold-italic">B</emph> drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The purpose of this study is to investigate the effects of the steep change in the density gradient on the ST equilibria by using the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region while it remains a diamagnetic profile in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region. Here, the negative ion flow velocity is the opposite direction to the toroidal current. The poloidal ion flow velocity between the OFC and closed flux regions is increased, because the ion diamagnetic drift velocity is changed in the same direction as the <emph type="bold-italic">E</emph> × <emph type="bold-italic">B</emph> drift velocity through the steeper ion pressure gradient. As a result, the strong shear flow and the paramagnetic toroidal field are generated in the closed flux region. Here, the ion flow velocity is the same direction as the poloidal current. The radial electric field shear between the OFC and closed flux regions is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The two-fluid effect is significant there due to the ion diamagnetic effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1994/4204/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1994/4204/report.pdf"><span>Hydrogeology and ground-water flow of the drift and Platteville aquifer system, St Louis Park, Minnesota</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lindgren, R.J.</p> <p>1995-01-01</p> <p>Model simulations indicate that vertical ground-water flow from the drift aquifers and from the Platteville aquifer to underlying bedrock aquifers is greatest through bedrock valleys. The convergence of flow paths near bedrock valleys and the greater volume of water moving through the valleys would likely result in both increased concentrations and greater vertical movement of contaminants in areas underlain by bedrock valleys as compared to areas not underlain by bedrock valleys. Model results also indicate that field measurements of hydraulic head might not help locate discontinuities in confining units and additional test drilling to locate discontinuities might be necessary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA631964','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA631964"><span>Snow Drift Management: Summit Station Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-05-01</p> <p>that about 25% of the estimated snow that the wind transports to Summit each winter is deposited and forms drifts, mostly in close proxim- ity to...the structures. This analysis demonstrates that weather data ( wind speed and direction) and a transport analysis can aid in estimating the vol- ume of...23 Appendix A: Wind Roses</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22014917','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22014917"><span>Marine debris from the Oregon Dungeness crab fishery recovered in the Northwestern Hawaiian Islands: identification and oceanic drift paths.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ebbesmeyer, Curtis C; Ingraham, W J; Jones, Jason A; Donohue, Mary J</p> <p>2012-01-01</p> <p>Two Dungeness crab trap tags and floats lost off the State of Oregon, USA during the 2006-2007 fishing season were recovered 4years later in the Northwestern Hawaiian Islands (NWHI): on Lisianski Island on July 15, 2010; and on Kure Atoll on December 10, 2010. This is the first documented recovery of marine debris from Oregon fisheries in the NWHI. We simulate the oceanic drift tracks of the derelict fishing gear with the Ocean Surface Current Simulator (OSCURS) model using estimated loss dates in Oregon based on interviews with the crab trap owners and known recovery sites and dates in the NWHI. These data confirm the US Pacific Northwest as a source of marine debris deposited in the NWHI and provide enhanced understanding of the oceanic drift pathways of marine debris in the North Pacific Ocean. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820016409','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820016409"><span>Electric thruster research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaufman, H. R.; Robinson, R. S.</p> <p>1981-01-01</p> <p>The multipole discharge chamber of an electrostatic ion thruster is discussed. No reductions in discharge losses were obtained, despite repeated demonstration of anode potentials more positive than the bulk of the discharge plasma. The penalty associated with biased anode operation was reduced as the magnetic integral above the biased anodes was increased. The hollow cathode is discussed. The experimental configuration of the Hall current thruster had a uniform field throughout the ion generation and acceleration regions. To obtain reliable ion generation, it was necessary to reduce the magnetic field strength, to the point where excessive electron backflow was required to establish ion acceleration. The theoretical study of ion acceleration with closed electron drift paths resulted in two classes of solutions. One class has the continuous potential variation in the acceleration region that is normally associated with a Hall current accelerator. The other class has an almost discontinuous potential step near the anode end of the acceleration region. This step includes a significant fraction of the total acceleration potential difference.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9446E..0VB','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9446E..0VB"><span>Phase compensation with fiber optic surface profile acquisition and reconstruction system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bo, En; Duan, Fajie; Feng, Fan; Lv, Changrong; Xiao, Fu; Huang, Tingting</p> <p>2015-02-01</p> <p>A fiber-optic sinusoidal phase modulating (SPM) interferometer was proposed for the acquisition and reconstruction of three-dimensional (3-D) surface profile. Sinusoidal phase modulation was induced by controlling the injection current of light source. The surface profile was constructed on the basis of fringe projection. Fringe patterns are vulnerable to external disturbances such as mechanical vibration and temperature fluctuation, which cause phase drift in the interference signal and decrease measuring accuracy. A closed-loop feedback phase compensation system was built. In the subsystem, the initial phase of the interference signal, which was caused by the initial optical path difference between interference arms, could be demodulated using phase generated carrier (PGC) method and counted out using coordinated rotation digital computer (CORDIC) , then a compensation voltage was generated for the PZT driver. The bias value of external disturbances superimposed on fringe patterns could be reduced to about 50 mrad, and the phase stability for interference fringes was less than 6 mrad. The feasibility for real-time profile measurement has been verified.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1159261-mobility-resolved-ion-selection-uniform-drift-field-ion-mobility-spectrometry-mass-spectrometry-dynamic-switching-structures-lossless-ion-manipulations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1159261-mobility-resolved-ion-selection-uniform-drift-field-ion-mobility-spectrometry-mass-spectrometry-dynamic-switching-structures-lossless-ion-manipulations"><span>Mobility-Resolved Ion Selection in Uniform Drift Field Ion Mobility Spectrometry/Mass Spectrometry: Dynamic Switching in Structures for Lossless Ion Manipulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Webb, Ian K.; Garimella, Sandilya V. B.; Tolmachev, Aleksey V.; ...</p> <p>2014-09-15</p> <p>A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a “Tee” configuration and allows switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be deflected to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 torr. In the “dynamic mode” we show that mobility-selected ions can be switched intomore » the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. Ultimately, this development also provides the basis for e.g. the selection of specific mobilities for storage and accumulation, and key modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...635435A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...635435A"><span>Disentangling the stochastic behavior of complex time series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anvari, Mehrnaz; Tabar, M. Reza Rahimi; Peinke, Joachim; Lehnertz, Klaus</p> <p>2016-10-01</p> <p>Complex systems involving a large number of degrees of freedom, generally exhibit non-stationary dynamics, which can result in either continuous or discontinuous sample paths of the corresponding time series. The latter sample paths may be caused by discontinuous events - or jumps - with some distributed amplitudes, and disentangling effects caused by such jumps from effects caused by normal diffusion processes is a main problem for a detailed understanding of stochastic dynamics of complex systems. Here we introduce a non-parametric method to address this general problem. By means of a stochastic dynamical jump-diffusion modelling, we separate deterministic drift terms from different stochastic behaviors, namely diffusive and jumpy ones, and show that all of the unknown functions and coefficients of this modelling can be derived directly from measured time series. We demonstrate appli- cability of our method to empirical observations by a data-driven inference of the deterministic drift term and of the diffusive and jumpy behavior in brain dynamics from ten epilepsy patients. Particularly these different stochastic behaviors provide extra information that can be regarded valuable for diagnostic purposes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27618056','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27618056"><span>Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ilyas, Muhammad; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok</p> <p>2016-09-09</p> <p>Pedestrian navigation systems (PNS) using foot-mounted MEMS inertial sensors use zero-velocity updates (ZUPTs) to reduce drift in navigation solutions and estimate inertial sensor errors. However, it is well known that ZUPTs cannot reduce all errors, especially as heading error is not observable. Hence, the position estimates tend to drift and even cyclic ZUPTs are applied in updated steps of the Extended Kalman Filter (EKF). This urges the use of other motion constraints for pedestrian gait and any other valuable heading reduction information that is available. In this paper, we exploit two more motion constraints scenarios of pedestrian gait: (1) walking along straight paths; (2) standing still for a long time. It is observed that these motion constraints (called "virtual sensor"), though considerably reducing drift in PNS, still need an absolute heading reference. One common absolute heading estimation sensor is the magnetometer, which senses the Earth's magnetic field and, hence, the true heading angle can be calculated. However, magnetometers are susceptible to magnetic distortions, especially in indoor environments. In this work, an algorithm, called magnetic anomaly detection (MAD) and compensation is designed by incorporating only healthy magnetometer data in the EKF updating step, to reduce drift in zero-velocity updated INS. Experiments are conducted in GPS-denied and magnetically distorted environments to validate the proposed algorithms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015229','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015229"><span>A Standard Law for the Equatorward Drift of the Sunspot Zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hathaway, David H.</p> <p>2012-01-01</p> <p>The latitudinal location of the sunspot zones in each hemisphere is determined by calculating the centroid position of sunspot areas for each solar rotation from May 1874 to June 2012. When these centroid positions are plotted and analyzed as functions of time from each sunspot cycle maximum there appears to be systematic differences in the positions and equatorward drift rates as a function of sunspot cycle amplitude. If, instead, these centroid positions are plotted and analyzed as functions of time from each sunspot cycle minimum then most of the differences in the positions and equatorward drift rates disappear. The differences that remain disappear entirely if curve fitting is used to determine the starting times (which vary by as much as 8 months from the times of minima). The sunspot zone latitudes and equatorward drift measured relative to this starting time follow a standard path for all cycles with no dependence upon cycle strength or hemispheric dominance. Although Cycle 23 was peculiar in its length and the strength of the polar fields it produced, it too shows no significant variation from this standard. This standard law, and the lack of variation with sunspot cycle characteristics, is consistent with Dynamo Wave mechanisms but not consistent with current Flux Transport Dynamo models for the equatorward drift of the sunspot zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3323590','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3323590"><span>Multi-Dimensional, Mesoscopic Monte Carlo Simulations of Inhomogeneous Reaction-Drift-Diffusion Systems on Graphics-Processing Units</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vigelius, Matthias; Meyer, Bernd</p> <p>2012-01-01</p> <p>For many biological applications, a macroscopic (deterministic) treatment of reaction-drift-diffusion systems is insufficient. Instead, one has to properly handle the stochastic nature of the problem and generate true sample paths of the underlying probability distribution. Unfortunately, stochastic algorithms are computationally expensive and, in most cases, the large number of participating particles renders the relevant parameter regimes inaccessible. In an attempt to address this problem we present a genuine stochastic, multi-dimensional algorithm that solves the inhomogeneous, non-linear, drift-diffusion problem on a mesoscopic level. Our method improves on existing implementations in being multi-dimensional and handling inhomogeneous drift and diffusion. The algorithm is well suited for an implementation on data-parallel hardware architectures such as general-purpose graphics processing units (GPUs). We integrate the method into an operator-splitting approach that decouples chemical reactions from the spatial evolution. We demonstrate the validity and applicability of our algorithm with a comprehensive suite of standard test problems that also serve to quantify the numerical accuracy of the method. We provide a freely available, fully functional GPU implementation. Integration into Inchman, a user-friendly web service, that allows researchers to perform parallel simulations of reaction-drift-diffusion systems on GPU clusters is underway. PMID:22506001</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4325980-drive-electrostatic-plasma-oscillations-closed-electron-drift-accelerator','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4325980-drive-electrostatic-plasma-oscillations-closed-electron-drift-accelerator"><span>Drive electrostatic plasma oscillations in a closed electron drift accelerator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Morozov, A.I.; Nevrovskii, V.A.; Smirnov, V.A.</p> <p>1973-09-01</p> <p>The present work describes and experimental investigation of the perturbations created in the plasma of a closed electron drift accelerator (CEDA) by a time-varying potential applied to an electrode in the plasma. In particular, the driven electrostatic oscillations are in phase over the entire volume of the channel and the attenuation of the signal amplitude is sensitive to the direction of the electron flux in the accelerator. Certain aspects of the propagation of the harmonic signals and pulses in the plasma are established. A substantial drop in signal amplitude occurs between the electrode and the plasma. (auth)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DPPG12123K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DPPG12123K"><span>Two-fluid equilibrium transition during multi-pulsing CHI in spherical torus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kanki, T.; Nagata, M.</p> <p>2015-11-01</p> <p>Two-fluid dynamo current drive has been studied to achieve a quasi-steady sustainment and good confinement of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The density gradient, poloidal flow shear, and radial electric shear enhanced by applying the second CHI pulse is observed around the separatrix in the high field side to cause not only the ExB drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The two-fluid equilibrium transition during the M-CHI in the ST is investigated by modelling the M-CHI in the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region due to the increase of the poloidal electron flow velocity in the central open flux column (OFC) region, while the diamagnetic profile is kept in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region due to the increase in the drift velocity and the Hall effect. As the ion diamagnetic drift velocity is changed in the same direction as the ExB drift velocity around the separatrix in the high field side through the negative ion pressure gradient there, the poloidal ion flow velocity is increased in the OFC region, enhancing the flow shear. The radial electric field shear around the separatrix is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The density is decreased in the closed flux region according to the generalized Bernoulli law and its negative gradient around the separatrix steepens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9839E..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9839E..08S"><span>Amplifying the helicopter drift in a conformal HMD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmerwitz, Sven; Knabl, Patrizia M.; Lueken, Thomas; Doehler, Hans-Ullrich</p> <p>2016-05-01</p> <p>Helicopter operations require a well-controlled and minimal lateral drift shortly before ground contact. Any lateral speed exceeding this small threshold can cause a dangerous momentum around the roll axis, which may cause a total roll over of the helicopter. As long as pilots can observe visual cues from the ground, they are able to easily control the helicopter drift. But whenever natural vision is reduced or even obscured, e.g. due to night, fog, or dust, this controllability diminishes. Therefore helicopter operators could benefit from some type of "drift indication" that mitigates the influence of a degraded visual environment. Generally humans derive ego motion by the perceived environmental object flow. The visual cues perceived are located close to the helicopter, therefore even small movements can be recognized. This fact was used to investigate a modified drift indication. To enhance the perception of ego motion in a conformal HMD symbol set the measured movement was used to generate a pattern motion in the forward field of view close or on the landing pad. The paper will discuss the method of amplified ego motion drift indication. Aspects concerning impact factors like visualization type, location, gain and more will be addressed. Further conclusions from previous studies, a high fidelity experiment and a part task experiment, will be provided. A part task study will be presented that compared different amplified drift indications against a predictor. 24 participants, 15 holding a fixed wing license and 4 helicopter pilots, had to perform a dual task on a virtual reality headset. A simplified control model was used to steer a "helicopter" down to a landing pad while acknowledging randomly placed characters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSED24B1669S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSED24B1669S"><span>Student-Teacher-Researcher Collaboration through NOAA's Adopt A Drifter Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanitski, D.; Cronin, M. F.; Malan, N.; Ansorge, I. J.; Beal, L. M.; Hermes, J. C.; Lumpkin, R.; Dolk, S.</p> <p>2016-02-01</p> <p>NOAA scientists and students in South Africa and the USA performed oceanographic experiments by deploying two surface drifting buoys in the Agulhas Current east of South Africa with the intent to determine the direction and path of each drifter's movement. The drifters were provided by the Global Drifter Program and the education component supported by the NOAA Adopt A Drifter Program (ADP). In a "surface dispersion" experiment, students in the classes that co-adopted the pair of surface drifters developed hypotheses about the drifters' paths, including whether they might drift into the Atlantic, Indian, Southern, or Pacific Oceans. They hypothesized why, when, and where the two drifters would separate. As part of the ADP, the collaborating schools tracked the drifters together via the internet. Several months after the drifters were deployed, a NOAA researcher discussed the surprising results with the collaborating students and teachers, including K-12 school children in George, Western Cape and Mossel Bay, South Africa and Bethesda, Maryland USA. One drifter pair had an interesting path. Although deployed in the center of the Agulhas Current, the pair became entrained in a submesoscale cyclonic vortex that formed as the jet flowed across the continental shelf break. The submesoscale vortex (with the drifter pair) then separated from the jet and leaked into the Atlantic Ocean. The eddy was visible in high-resolution satellite images of the sea surface temperature, but was not resolved in satellite altimetry fields. As discussed in a paper led by University of Cape Town graduate student Neil Malan currently under review, this implies that estimates of Agulhas leakage may be underestimated as they do not include this new pathway provided by submesoscale cyclonic vortices. Data from the adopted drifting buoys contribute to the Global Drifter Program, a component of the Global Ocean Observing System, and can be viewed from the NOAA Adopt a Drifter Program tracking page.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22622242-estimator-relative-entropy-rate-path-measures-stochastic-differential-equations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22622242-estimator-relative-entropy-rate-path-measures-stochastic-differential-equations"><span>An estimator for the relative entropy rate of path measures for stochastic differential equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Opper, Manfred, E-mail: manfred.opper@tu-berlin.de</p> <p>2017-02-01</p> <p>We address the problem of estimating the relative entropy rate (RER) for two stochastic processes described by stochastic differential equations. For the case where the drift of one process is known analytically, but one has only observations from the second process, we use a variational bound on the RER to construct an estimator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12671420','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12671420"><span>Postural stability of preoperative acoustic neuroma patients assessed by sway magnetometry: are they unsteady?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Collins, Melanie M; Johnson, Ian J M; Clifford, Elaine; Birchall, John P; O'Donoghue, Gerald M</p> <p>2003-04-01</p> <p>The objective was to evaluate the preoperative postural stability of acoustic neuroma patients using sway magnetometry. Prospective two-center study. Fifty-one patients (mean age, 53 years) diagnosed with unilateral acoustic neuroma on magnetic resonance imaging at two tertiary referral centers were studied. Preoperatively, each patient had sway patterns (with eyes open and with eyes closed, and standing on foam) recorded for 120 seconds by sway magnetometry. Path length for 30 seconds was calculated. The Romberg coefficient (path length with eyes open divided by path length with eyes closed) was calculated. Forty-four percent of patients had abnormal path lengths with eyes open, and 49% with eyes closed. The Romberg coefficients were significantly lower than normal (P <.001; 95% CI, 0.19-0.87). Mean Romberg coefficient was 0.59 (normal value = 0.73), and all patients had a coefficient of less than 1. Half of preoperative acoustic neuroma patients are unsteady, exhibiting abnormal sway patterns based on path length measurements. The increase in sway path length demonstrable in normal subjects with eyes closed was significantly exaggerated in patients with acoustic neuroma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.119y8101D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.119y8101D"><span>Filament Tension and Phase Locking of Meandering Scroll Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dierckx, Hans; Biktasheva, I. V.; Verschelde, H.; Panfilov, A. V.; Biktashev, V. N.</p> <p>2017-12-01</p> <p>Meandering spiral waves are often observed in excitable media such as the Belousov-Zhabotinsky reaction and cardiac tissue. We derive a theory for drift dynamics of meandering rotors in general reaction-diffusion systems and apply it to two types of external disturbances: an external field and curvature-induced drift in three dimensions. We find two distinct regimes: with small filament curvature, meandering scroll waves exhibit filament tension, whose sign determines the stability and drift direction. In the regimes of strong external fields or meandering motion close to resonance, however, phase locking of the meander pattern is predicted and observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29917229','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29917229"><span>Digest: Local adaptation at close quarters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schmidt, Chloé; Garroway, Colin</p> <p>2018-06-19</p> <p>Although the theory of how gene flow and genetic drift interact with local adaptation is well understood, few empirical studies have examined this process. Hämälä et al. (2018) present evidence that adaptive divergence between populations of Arabidopsis lyrata can persist in the face of relatively high levels of gene flow and drift. Maintaining divergence despite gene flow and drift has important implications for understanding adaptive responses of populations in response to human-driven environmental change. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29303350','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29303350"><span>Filament Tension and Phase Locking of Meandering Scroll Waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dierckx, Hans; Biktasheva, I V; Verschelde, H; Panfilov, A V; Biktashev, V N</p> <p>2017-12-22</p> <p>Meandering spiral waves are often observed in excitable media such as the Belousov-Zhabotinsky reaction and cardiac tissue. We derive a theory for drift dynamics of meandering rotors in general reaction-diffusion systems and apply it to two types of external disturbances: an external field and curvature-induced drift in three dimensions. We find two distinct regimes: with small filament curvature, meandering scroll waves exhibit filament tension, whose sign determines the stability and drift direction. In the regimes of strong external fields or meandering motion close to resonance, however, phase locking of the meander pattern is predicted and observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5038733','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5038733"><span>Drift Reduction in Pedestrian Navigation System by Exploiting Motion Constraints and Magnetic Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ilyas, Muhammad; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok</p> <p>2016-01-01</p> <p>Pedestrian navigation systems (PNS) using foot-mounted MEMS inertial sensors use zero-velocity updates (ZUPTs) to reduce drift in navigation solutions and estimate inertial sensor errors. However, it is well known that ZUPTs cannot reduce all errors, especially as heading error is not observable. Hence, the position estimates tend to drift and even cyclic ZUPTs are applied in updated steps of the Extended Kalman Filter (EKF). This urges the use of other motion constraints for pedestrian gait and any other valuable heading reduction information that is available. In this paper, we exploit two more motion constraints scenarios of pedestrian gait: (1) walking along straight paths; (2) standing still for a long time. It is observed that these motion constraints (called “virtual sensor”), though considerably reducing drift in PNS, still need an absolute heading reference. One common absolute heading estimation sensor is the magnetometer, which senses the Earth’s magnetic field and, hence, the true heading angle can be calculated. However, magnetometers are susceptible to magnetic distortions, especially in indoor environments. In this work, an algorithm, called magnetic anomaly detection (MAD) and compensation is designed by incorporating only healthy magnetometer data in the EKF updating step, to reduce drift in zero-velocity updated INS. Experiments are conducted in GPS-denied and magnetically distorted environments to validate the proposed algorithms. PMID:27618056</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7553B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7553B"><span>Tracing the drift of MH370 debris throughout the Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biastoch, Arne; Durgadoo, Jonathan V.; Rühs, Siren</p> <p>2017-04-01</p> <p>On 8 March 2014, a missing Boeing 777 of Malaysia Airlines (MH370) disappeared from radar screens. Since then, extensive search efforts aim to find the missing plane in the southeastern Indian Ocean. Starting with a flaperon washed up at La Réunion in July 2015, several pieces of debris were found at different shores at islands and African coasts in the southwestern Indian Ocean. Ocean currents were examined to understand the drift paths of debris throughout the Indian Ocean, and in consequence to identify the location of MH370. Here we present a series of Lagrangian analyses in which we follow particles representing virtual pieces of debris advected in an operational high-resolution ocean model. Of particular importance is the lare-scale influence of surface waves through Stokes drift. Large number of particles are analysed in statistical approaches to provide most likely starting locations. Different pieces of debris are combined to refine probability maps of their joint start positions. Forward vs. backward advection approaches are compared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150007941','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150007941"><span>Energetic Particles Dynamics in Mercury's Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.</p> <p>2013-01-01</p> <p>We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980000253','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980000253"><span>Kuiper Belt Objects Along the Pluto-Express Path</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jewitt, David (Principal Investigator)</p> <p>1997-01-01</p> <p>The science objective of this work is to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto Express. Our hope is that we will find a Kuiper Belt object or objects close enough that a spacecraft flyby will be possible. If we find a suitable object, the science yield of Pluto Express will be substantially enhanced. The density of objects in the Kuiper Belt is such that we are reasonably likely to find an object close enough to the flight path that on-board gas thrusters can effect a close encounter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM41E2545M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM41E2545M"><span>The plasmasheet H+ and O+ contribution on the storm time ring current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mouikis, C.; Bingham, S.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.</p> <p>2015-12-01</p> <p>The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes and Cluster observations to determine the contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. Using the Volland-Stern model with a dipole magnetic field together with the identification of the observed energy cutoffs in the particle spectra, we specify the pressure contributed by H+ and O+ populations that are on open drift paths vs. the pressure contributed by the trapped populations, for different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L~2 and their pressure compares to the local magnetic field pressure as deep as L~3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22660962-generalized-two-component-model-solar-wind-turbulence-ab-initio-diffusion-mean-free-paths-drift-lengthscales-cosmic-rays','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22660962-generalized-two-component-model-solar-wind-turbulence-ab-initio-diffusion-mean-free-paths-drift-lengthscales-cosmic-rays"><span>A GENERALIZED TWO-COMPONENT MODEL OF SOLAR WIND TURBULENCE AND AB INITIO DIFFUSION MEAN-FREE PATHS AND DRIFT LENGTHSCALES OF COSMIC RAYS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wiengarten, T.; Fichtner, H.; Kleimann, J.</p> <p>2016-12-10</p> <p>We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results frommore » the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121..327T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121..327T"><span>Antarctic icebergs distributions 1992-2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tournadre, J.; Bouhier, N.; Girard-Ardhuin, F.; Rémy, F.</p> <p>2016-01-01</p> <p>Basal melting of floating ice shelves and iceberg calving constitute the two almost equal paths of freshwater flux between the Antarctic ice cap and the Southern Ocean. The largest icebergs (>100 km2) transport most of the ice volume but their basal melting is small compared to their breaking into smaller icebergs that constitute thus the major vector of freshwater. The archives of nine altimeters have been processed to create a database of small icebergs (<8 km2) within open water containing the positions, sizes, and volumes spanning the 1992-2014 period. The intercalibrated monthly ice volumes from the different altimeters have been merged in a homogeneous 23 year climatology. The iceberg size distribution, covering the 0.1-10,000 km2 range, estimated by combining small and large icebergs size measurements follows well a power law of slope -1.52 ± 0.32 close to the -3/2 laws observed and modeled for brittle fragmentation. The global volume of ice and its distribution between the ocean basins present a very strong interannual variability only partially explained by the number of large icebergs. Indeed, vast zones of the Southern Ocean free of large icebergs are largely populated by small iceberg drifting over thousands of kilometers. The correlation between the global small and large icebergs volumes shows that small icebergs are mainly generated by large ones breaking. Drifting and trapping by sea ice can transport small icebergs for long period and distances. Small icebergs act as an ice diffuse process along large icebergs trajectories while sea ice trapping acts as a buffer delaying melting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1975/0619/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1975/0619/report.pdf"><span>Surface current observatons--Beaufort Sea, 1972</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barnes, Peter; Garlow, Richard</p> <p>1975-01-01</p> <p>Sediment transport via water and ice in the Beaufort Sea off northern Alaska is related to the movement of the surficial waters. As development proceeds along the north slope of alaska, a knowledge of the potential drift trajectories of water, ice, sediment and pollutants will be needed. In an attempt to better define the probable paths and rates of transport, 4200 surface drift cards were dropped during the U.S. Coast Guard WEBSEC cruise of August and September, 1972. The results of this release are the subject of this report. Because the data presented here will be used primarily by those interested in solving problems of transport, the emphasis has been placed on data presentation rather than a detailed analysis of the circulation. (Sinha-OEIS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007MNRAS.377L..10B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007MNRAS.377L..10B"><span>Discovery of a remarkable subpulse drift pattern in PSR B0818-41</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhattacharyya, B.; Gupta, Y.; Gil, J.; Sendyk, M.</p> <p>2007-05-01</p> <p>We report the discovery of a remarkable subpulse drift pattern in the relatively less-studied wide profile pulsar B0818-41 using high-sensitivity Giant Metrewave Radio Telescope (GMRT) observations. We find simultaneous occurrences of three drift regions with two different drift rates: an inner region with steeper apparent drift rate flanked on each side by a region of slower apparent drift rate. Furthermore, these closely spaced drift bands always maintain a constant phase relationship. Though these drift regions have significantly different values for the measured P2, the measured P3 value is the same and equal to 18.3P1. We interpret the unique drift pattern of this pulsar as being created by the intersection of our line of sight (LOS) with two conal rings on the polar cap of a fairly aligned rotator (inclination angle α ~ 11°), with an `inner' LOS geometry (impact angle ). We argue that both rings have the same values for the carousel rotation periodicity P4 and the number of sparks Nsp. We find that Nsp is 19-21 and show that it is very likely that P4 is the same as the measured P3, making it a truly unique pulsar. We present results from simulations of the radiation pattern using the inferred parameters, which support our interpretations and reproduce the average profile as well as the observed features in the drift pattern quite well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990032238&hterms=pluto&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dpluto','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990032238&hterms=pluto&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dpluto"><span>Kuiper Belt Objects Along the Pluto Express Path</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jewitt, David C.</p> <p>1998-01-01</p> <p>The science objective of this work was to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto-Kuiper Express. Currently, launch is scheduled for 2004 with a flight time of about 1 decade. Early identification of post-Pluto targets is important for mission design and orbit refinement. An object or objects close enough to the flight path can be visited and studied at high resolution, using only residual gas in the thrusters to affect a close encounter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599038-collisional-transport-across-magnetic-field-drift-fluid-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599038-collisional-transport-across-magnetic-field-drift-fluid-models"><span>Collisional transport across the magnetic field in drift-fluid models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Madsen, J., E-mail: jmad@fysik.dtu.dk; Naulin, V.; Nielsen, A. H.</p> <p>2016-03-15</p> <p>Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation timesmore » using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...612L...5O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...612L...5O"><span>Formation of the terrestrial planets in the solar system around 1 au via radial concentration of planetesimals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru K.; Morbidelli, Alessandro</p> <p>2018-05-01</p> <p>Context. No planets exist inside the orbit of Mercury and the terrestrial planets of the solar system exhibit a localized configuration. According to thermal structure calculation of protoplanetary disks, a silicate condensation line ( 1300 K) is located around 0.1 au from the Sun except for the early phase of disk evolution, and planetesimals could have formed inside the orbit of Mercury. A recent study of disk evolution that includes magnetically driven disk winds showed that the gas disk obtains a positive surface density slope inside 1 au from the central star. In a region with positive midplane pressure gradient, planetesimals undergo outward radial drift. Aims: We investigate the radial drift of planetesimals and type I migration of planetary embryos in a disk that viscously evolves with magnetically driven disk winds. We show a case in which no planets remain in the close-in region. Methods: Radial drifts of planetesimals are simulated using a recent disk evolution model that includes effects of disk winds. The late stage of planet formation is also examined by performing N-body simulations of planetary embryos. Results: We demonstrate that in the middle stage of disk evolution, planetesimals can undergo convergent radial drift in a magnetorotational instability (MRI)-inactive disk, in which the pressure maximum is created, and accumulate in a narrow ring-like region with an inner edge at 0.7 au from the Sun. We also show that planetary embryos that may grow from the narrow planetesimal ring do not exhibit significant type I migration in the late stage of disk evolution. Conclusions: The origin of the localized configuration of the terrestrial planets of the solar system, in particular the deficit of close-in planets, can be explained by the convergent radial drift of planetesimals in disks with a positive pressure gradient in the close-in region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPA43A2181M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPA43A2181M"><span>Community Air Monitoring for Pesticide Drift Using Pesticide Action Network's (PAN) Drift Catcher</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marquez, E.</p> <p>2016-12-01</p> <p>Community air monitoring projects for pesticides in the air have been conducted by PAN in collaboration with community members and locally based groups engaged around pesticide issues. PAN is part of an international network working to promote a just, thriving food system and replace the use of hazardous pesticides with ecologically sound alternatives. The Drift Catcher is an air-monitoring device with a design based on the California Air Resource Board's air monitoring equipment, and has been used in community-based projects in 11 states. Observations of pesticide drift made by community members cannot always be confirmed by regulatory agencies—if an inspection is made hours or days after a drift incident, the evidence may no longer be present. The Drift Catcher makes it possible to collect scientific evidence of pesticide drift in areas where people live, work, and play. One of the most recent Drift Catcher projects was done in California, in partnership with the Safe Strawberry Coalition and led by the statewide coalition Californians for Pesticide Reform. The data were used to support a call for stronger mitigation rules for the fumigant chloropicrin and to support a campaign asking for stronger pesticide rules to protect children attending school in close proximity to agricultural fields. The Drift Catcher data are used by organizers and community members to engage policymakers with the intention of making policy change on a local and/or statewide level. On the national level, PAN's Drift Catcher data has helped win regulatory recognition of volatilization drift for pesticides other than fumigants. Lessons learned from conducting community-based research projects will also be discussed. PAN is also currently assessing other community-based monitoring tools, such as community surveys and drift questionnaires that may allow communities to collect data that can also support the campaign work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26998325','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26998325"><span>Random noise can help to improve synchronization of excimer laser pulses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mingesz, Róbert; Barna, Angéla; Gingl, Zoltán; Mellár, János</p> <p>2016-02-01</p> <p>Recently, we have reported on a compact microcontroller-based unit developed to accurately synchronize excimer laser pulses (Mingesz et al. 2012 Fluct. Noise Lett. 11, 1240007 (doi:10.1142/S021947751240007X)). We have shown that dithering based on random jitter noise plus pseudorandom numbers can be used in the digital control system to radically reduce the long-term drift of the laser pulse from the trigger and to improve the accuracy of the synchronization. In this update paper, we present our new experimental results obtained by the use of the delay-controller unit to tune the timing of a KrF excimer laser as an addition to our previous numerical simulation results. The hardware was interfaced to the laser using optical signal paths in order to reduce sensitivity to electromagnetic interference and the control algorithm tested by simulations was applied in the experiments. We have found that the system is able to reduce the delay uncertainty very close to the theoretical limit and performs well in real applications. The simple, compact and flexible system is universal enough to also be used in various multidisciplinary applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RScI...87j5119Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RScI...87j5119Z"><span>A long time low drift integrator with temperature control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Donglai; Yan, Xiaolan; Zhang, Enchao; Pan, Shimin</p> <p>2016-10-01</p> <p>The output of an operational amplifier always contains signals that could not have been predicted, even with knowledge of the input and an accurately determined closed-loop transfer function. These signals lead to integrator zero-drift over time. A new type of integrator system with a long-term low-drift characteristic has therefore been designed. The integrator system is composed of a temperature control module and an integrator module. The aluminum printed circuit board of the integrator is glued to a thermoelectric cooler to maintain the electronic components at a stable temperature. The integration drift is automatically compensated using an analog-to-digital converter/proportional integration/digital-to-analog converter control circuit. Performance testing in a standard magnet shows that the proposed integrator, which has an integration time constant of 10 ms, has a low integration drift (<5 mV) over 1000 s after repeated measurements. The integrator can be used for magnetic flux measurements in most tokamaks and in the wire rope nondestructive test.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41C..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41C..01A"><span>SAPS and SAID: Differences and implications on modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, P. C.; Landry, R. G.</p> <p>2017-12-01</p> <p>Large subauroral electric fields/ion drifts associated with geomagnetic activity and known as Polarization Jets [Galperin et al., 1973] or subauroral ion drifts (SAID) [Spiro et al., 1978] have been reported by a number of researchers over the years starting in the early 1970s. They are latitudinally narrow ( 1 - 3°), are primarily located between the late afternoon and early morning sectors, are extended several hours in magnetic local time, and have westward drifts that can exceed 5000 m/s. Foster et al., [2002] used Millstone Hill radar data to derive a statistical model of the subauroral ion drifts and coined the term SAPS (Subauroral Polarization Streams) to identify the sometimes broad region of subauroral drifts that the SAID are embedded within. While both are located in the subauroral region and closely associated with ionospheric conductivity and the region 2 field-aligned currents, they are in reality separate phenomena. We investigate this difference, their production mechanisms, and the implications for modeling them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27802726','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27802726"><span>A long time low drift integrator with temperature control.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Donglai; Yan, Xiaolan; Zhang, Enchao; Pan, Shimin</p> <p>2016-10-01</p> <p>The output of an operational amplifier always contains signals that could not have been predicted, even with knowledge of the input and an accurately determined closed-loop transfer function. These signals lead to integrator zero-drift over time. A new type of integrator system with a long-term low-drift characteristic has therefore been designed. The integrator system is composed of a temperature control module and an integrator module. The aluminum printed circuit board of the integrator is glued to a thermoelectric cooler to maintain the electronic components at a stable temperature. The integration drift is automatically compensated using an analog-to-digital converter/proportional integration/digital-to-analog converter control circuit. Performance testing in a standard magnet shows that the proposed integrator, which has an integration time constant of 10 ms, has a low integration drift (<5 mV) over 1000 s after repeated measurements. The integrator can be used for magnetic flux measurements in most tokamaks and in the wire rope nondestructive test.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=presentation+AND+Electronics&pg=6&id=EJ825946','ERIC'); return false;" href="https://eric.ed.gov/?q=presentation+AND+Electronics&pg=6&id=EJ825946"><span>The Relation between Relaxation Time, Mean Free Path, Collision Time and Drift Velocity--Pitfalls and a Proposal for an Approach Illustrating the Essentials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Jakoby, Bernhard</p> <p>2009-01-01</p> <p>The collision model is frequently introduced to describe electronic conductivity in solids. Depending on the chosen approach, the introduction of the collision time can lead to erroneous results for the average velocity of the electrons, which enters the expression for the electrical conductivity. In other textbooks, correct results are obtained…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AAS...22914621S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AAS...22914621S"><span>Testbed Demonstration of Low Order Wavefront Sensing and Control Technology for WFIRST Coronagraph</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Fang; Balasubramanian, K.; Cady, E.; Kern, B.; Lam, R.; Mandic, M.; Patterson, K.; Poberezhskiy, I.; Shields, J.; Seo, J.; Tang, H.; Truong, T.; Wilson, D.</p> <p>2017-01-01</p> <p>NASA’s WFIRST-AFTA Coronagraph will be capable of directly imaging and spectrally characterizing giant exoplanets similar to Neptune and Jupiter, and possibly even super-Earths, around nearby stars. To maintain the required coronagraph performance in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The LOWFS/C will use the rejected stellar light to sense and suppress the telescope pointing drift and jitter as well as low order wavefront errors due to the changes in thermal loading of the telescope and the rest of the observatory. The LOWFS/C uses a Zernike phase contrast wavefront sensor with the phase shifting disk combined with the stellar light rejecting occulting mask, a key concept to minimize the non-common path error. Developed as a part of the Dynamic High Contrast Imaging Testbed (DHCIT), the LOWFS/C subsystem also consists of an Optical Telescope Assembly Simulator (OTA-S) to generate the realistic line-of-sight (LoS) drift and jitter as well as low order wavefront error from WFIRST-AFTA telescope’s vibration and thermal drift. The entire LOWFS/C subsystem have been integrated, calibrated, and tested in the Dynamic High Contrast Imaging Testbed. In this presentation we will show the results of LOWFS/C performance during the dynamic coronagraph tests in which we have demonstrated that LOWFS/C is able to maintain the coronagraph contrast with the presence of WFIRST like line-of-sight drift and jitter as well as low order wavefront drifts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.8196E..22X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.8196E..22X"><span>Design of motion adjusting system for space camera based on ultrasonic motor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Kai; Jin, Guang; Gu, Song; Yan, Yong; Sun, Zhiyuan</p> <p>2011-08-01</p> <p>Drift angle is a transverse intersection angle of vector of image motion of the space camera. Adjusting the angle could reduce the influence on image quality. Ultrasonic motor (USM) is a new type of actuator using ultrasonic wave stimulated by piezoelectric ceramics. They have many advantages in comparison with conventional electromagnetic motors. In this paper, some improvement was designed for control system of drift adjusting mechanism. Based on ultrasonic motor T-60 was designed the drift adjusting system, which is composed of the drift adjusting mechanical frame, the ultrasonic motor, the driver of Ultrasonic Motor, the photoelectric encoder and the drift adjusting controller. The TMS320F28335 DSP was adopted as the calculation and control processor, photoelectric encoder was used as sensor of position closed loop system and the voltage driving circuit designed as generator of ultrasonic wave. It was built the mathematic model of drive circuit of the ultrasonic motor T-60 using matlab modules. In order to verify the validity of the drift adjusting system, was introduced the source of the disturbance, and made simulation analysis. It designed the control systems of motor drive for drift adjusting system with the improved PID control. The drift angle adjusting system has such advantages as the small space, simple configuration, high position control precision, fine repeatability, self locking property and low powers. It showed that the system could accomplish the mission of drift angle adjusting excellent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2387D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2387D"><span>Ocean circulation drifts in multi-millennial climate simulations: the role of salinity corrections and climate feedbacks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dentith, Jennifer E.; Ivanovic, Ruza F.; Gregoire, Lauren J.; Tindall, Julia C.; Smith, Robin S.</p> <p>2018-05-01</p> <p>Low-resolution, complex general circulation models (GCMs) are valuable tools for studying the Earth system on multi-millennial timescales. However, slowly evolving salinity drifts can cause large shifts in climatic and oceanic regimes over thousands of years. We test two different schemes for neutralising unforced salinity drifts in the FAMOUS GCM: surface flux correction and volumetric flux correction. Although both methods successfully maintain a steady global mean salinity, local drifts and subsequent feedbacks promote cooling (≈ 4 °C over 6000 years) and freshening (≈ 2 psu over 6000 years) in the North Atlantic Ocean, and gradual warming (≈ 0.2 °C per millennium) and salinification (≈ 0.15 psu per millennium) in the North Pacific Ocean. Changes in the surface density in these regions affect the meridional overturning circulation (MOC), such that, after several millennia, the Atlantic MOC (AMOC) is in a collapsed state, and there is a strong, deep Pacific MOC (PMOC). Furthermore, the AMOC exhibits a period of metastability, which is only identifiable with run lengths in excess of 1500 years. We also compare simulations with two different land surface schemes, demonstrating that small biases in the surface climate may cause regional salinity drifts and significant shifts in the MOC (weakening of the AMOC and the initiation then invigoration of PMOC), even when the global hydrological cycle has been forcibly closed. Although there is no specific precursor to the simulated AMOC collapse, the northwest North Pacific and northeast North Atlantic are important areas that should be closely monitored for trends arising from such biases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1047/kp/kp11/of2007-1047kp11.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1047/kp/kp11/of2007-1047kp11.pdf"><span>Antarctica and global paleogeography: from Rodinia, rhrough Gondwanaland and Pangea, to the birth of the Southern Ocean and the opening of gateways</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Torsvik, T.H.; Gaina, C.; Redfield, T.F.</p> <p>2007-01-01</p> <p>Neoproterozoic Rodinia reconstructions associate East Antarctica (EANT) with cratonic Western Australia. By further linking EANT to both Gondwana and Pangea with relative plate circuits, a Synthetic Apparent Polar Wander (SAPW) path for EANT is calculated. This path predicts that EANT was located at tropical to subtropical southerly latitudes from ca. 1 Ga to 420 Ma. Around 400 Ma and again at 320 Ma, EANT underwent southward drift. Ca. 250 Ma Antarctica voyaged briefly north but headed south again ca. 200 Ma. Since 75 Ma EANT became surrounded by spreading centers and has remained extremely stable. Although paleomagnetic data of the blocks that embrace West Antarctica are sparse, we attempt to model their complex kinematics since the Mesozoic. Together with the SAPW path and a revised circum-Antarctic seafloor spreading history we construct a series of new paleogeographic maps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1402659','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1402659"><span>Effects of ULF waves on local and global energetic particles: Particle energy and species dependences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, L. Y.; Yu, J.; Cao, J. B.</p> <p></p> <p>After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402659-effects-ulf-waves-local-global-energetic-particles-particle-energy-species-dependences','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402659-effects-ulf-waves-local-global-energetic-particles-particle-energy-species-dependences"><span>Effects of ULF waves on local and global energetic particles: Particle energy and species dependences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Li, L. Y.; Yu, J.; Cao, J. B.; ...</p> <p>2016-11-05</p> <p>After 06:13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (|δB| ≥ 15 nT) in the Pc4–Pc5 wave band (1.6–9 mHz) near the noon geosynchronous orbit (6.6 RE). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (≥75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in themore » wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (≥225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (<225 keV) and protons (75–400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. Furthermore, the global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (≥225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of “ Dst effect” and substorm injection.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22597656-note-autocollimation-ultra-high-resolution-stability-using-telephoto-objective-together-optical-enlargement-beam-drift-compensation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22597656-note-autocollimation-ultra-high-resolution-stability-using-telephoto-objective-together-optical-enlargement-beam-drift-compensation"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhu, Fan, E-mail: zf5016@126.com; Center of Ultra-precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin 150080; Tan, Xinran</p> <p></p> <p>An autocollimation (AC) setup with ultra-high resolution and stability for micro-angle measurement is presented. The telephoto objective, which is characterized in long focal length at a compact structure size, and the optical enlargement unit, which can magnify the image displacement to improve its measurement resolution and accuracy, are used to obtain an ultra-high measurement resolution of the AC. The common-path beam drift compensation is used to suppress the drift of measurement results, which is evident in the high-resolution AC, thus to obtain a high measurement stability. Experimental results indicate that an effective resolution of better than 0.0005 arc sec (2.42more » nrad) over a measurement range of ±30 arc sec and a 2-h stability of 0.0061 arc sec (29.57 nrad) can be achieved.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1016399','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1016399"><span>Determination of time zero from a charged particle detector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Green, Jesse Andrew [Los Alamos, NM</p> <p>2011-03-15</p> <p>A method, system and computer program is used to determine a linear track having a good fit to a most likely or expected path of charged particle passing through a charged particle detector having a plurality of drift cells. Hit signals from the charged particle detector are associated with a particular charged particle track. An initial estimate of time zero is made from these hit signals and linear tracks are then fit to drift radii for each particular time-zero estimate. The linear track having the best fit is then searched and selected and errors in fit and tracking parameters computed. The use of large and expensive fast detectors needed to time zero in the charged particle detectors can be avoided by adopting this method and system.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880059429&hterms=Magnetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DMagnetic%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880059429&hterms=Magnetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DMagnetic%2Benergy"><span>Influence of the interplanetary magnetic field orientation on polar cap ion trajectories - Energy gain and drift effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Delcourt, D. C.; Horwitz, J. L.; Swinney, K. R.</p> <p>1988-01-01</p> <p>The influence of the interplanetary magnetic field (IMF) orientation on the transport of low-energy ions injected from the ionosphere is investigated using three-dimensional particle codes. It is shown that, unlike the auroral zone outflow, the ions originating from the polar cap region exhibit drastically different drift paths during southward and northward IMF. During southward IMF orientation, a 'two-cell' convection pattern prevails in the ionosphere, and three-dimensional simulations of ion trajectories indicate a preferential trapping of the light ions H(+) in the central plasma sheet, due to the wide azimuthal dispersion of the heavy ions, O(+). In contrast, for northward IMF orientation, the 'four-cell' potential distribution predicted in the ionosphere imposes a temporary ion drift toward higher L shells in the central polar cap. In this case, while the light ions can escape into the magnetotail, the heavy ions can remain trapped, featuring more intense acceleration (from a few electron volts up to the keV range) followed by precipitation at high invariant latitudes, as a consequence of their further travel into the tail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23094935','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23094935"><span>Improved momentum-transfer theory for ion mobility. 1. Derivation of the fundamental equation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Siems, William F; Viehland, Larry A; Hill, Herbert H</p> <p>2012-11-20</p> <p>For the first time the fundamental ion mobility equation is derived by a bottom-up procedure, with N real atomic ion-atomic neutral collisions replaced by N repetitions of an average collision. Ion drift velocity is identified as the average of all pre- and postcollision velocities in the field direction. To facilitate velocity averaging, collisions are sorted into classes that "cool" and "heat" the ion. Averaging over scattering angles establishes mass-dependent relationships between pre- and postcollision velocities for the cooling and heating classes, and a combined expression for drift velocity is obtained by weighted addition according to relative frequencies of the cooling and heating encounters. At zero field this expression becomes identical to the fundamental low-field ion mobility equation. The bottom-up derivation identifies the low-field drift velocity as 3/4 of the average precollision ion velocity in the field direction and associates the passage from low-field to high-field conditions with the increasing dominance of "cooling" collisions over "heating" collisions. Most significantly, the analysis provides a direct path for generalization to fields of arbitrary strength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21847950','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21847950"><span>[Monitoring "green tide" in the Yellow Sea and the East China Sea using multi-temporal and multi-source remote sensing images].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xing, Qian-Guo; Zheng, Xiang-Yang; Shi, Ping; Hao, Jia-Jia; Yu, Ding-Feng; Liang, Shou-Zhen; Liu, Dong-Yan; Zhang, Yuan-Zhi</p> <p>2011-06-01</p> <p>Landsat-TM (Theme Mapper) and EOS (Earth Observing System)-MODIS (MODerate resolution Imaging Spectrora-diometer) Terra/Aqua images were used to monitor the macro-algae (Ulva prolifera) bloom since 2007 at the Yellow Sea and the East China Sea. At the turbid waters of Northern Jiangsu Shoal, there is strong spectral mixing behavior, and satellite images with finer spatical resolution are more effective in detection of macro-algae patches. Macro-algae patches were detected by the Landsat images for the first time at the Sheyang estuary where is dominated by very turbid waters. The MODIS images showed that the macro-algae from the turbid waters near the Northern Jiangsu Shoal drifted southwardly in the early of May and affected the East China Sea waters; with the strengthening east-asian Summer Monsoon, macro-algae patches mainly drifted in a northward path which was mostly observed at the Yellow Sea. Macro-algae patches were also found to drift eastwardly towards the Korea Peninsular, which are supposed to be driven by the sea surface wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJWC.17507043O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJWC.17507043O"><span>Path optimization method for the sign problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohnishi, Akira; Mori, Yuto; Kashiwa, Kouji</p> <p>2018-03-01</p> <p>We propose a path optimization method (POM) to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t)(f ɛ R) and by optimizing f(t) to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23683209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23683209"><span>Numerical verification of bounce-harmonic resonances in neoclassical toroidal viscosity for tokamaks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Kimin; Park, Jong-Kyu; Boozer, Allen H</p> <p>2013-05-03</p> <p>This Letter presents the first numerical verification for the bounce-harmonic (BH) resonance phenomena of the neoclassical transport in a tokamak perturbed by nonaxisymmetric magnetic fields. The BH resonances were predicted by analytic theories of neoclassical toroidal viscosity (NTV), as the parallel and perpendicular drift motions can be resonant and result in a great enhancement of the radial momentum transport. A new drift-kinetic δf guiding-center particle code, POCA, clearly verified that the perpendicular drift motions can reduce the transport by phase-mixing, but in the BH resonances the motions can form closed orbits and particles radially drift out fast. The POCA calculations on resulting NTV torque are largely consistent with analytic calculations, and show that the BH resonances can easily dominate the NTV torque when a plasma rotates in the perturbed tokamak and therefore, is a critical physics for predicting the rotation and stability in the International Thermonuclear Experimental Reactor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=test+AND+locomotor&pg=4&id=EJ734721','ERIC'); return false;" href="https://eric.ed.gov/?q=test+AND+locomotor&pg=4&id=EJ734721"><span>Self-Motion Perception during Locomotor Recalibration: More than Meets the Eye</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Durgin, Frank H.; Pelah, Adar; Fox, Laura F.; Lewis, Jed; Kane, Rachel; Walley, Katherine A.</p> <p>2005-01-01</p> <p>Do locomotor after effects depend specifically on visual feedback? In 7 experiments, 116 college students were tested, with closed eyes, at stationary running or at walking to a previewed target after adaptation, with closed eyes, to treadmill locomotion. Subjects showed faster inadvertent drift during stationary running and increased distance…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.4181H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.4181H"><span>Effects of Geomagnetic Storms on the Postsunset Vertical Plasma Drift in the Equatorial Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Chao-Song</p> <p>2018-05-01</p> <p>It has been observed that geomagnetic storms cause suppression of the occurrence of equatorial spread F or plasma bubbles in the evening sector. In this study, we use ion drift data measured by the Communication/Navigation Outage Forecasting System satellite over 6 years (2008-2014) to derive the dependence of the vertical ion drift at the prereversal enhancement peak on the strength of magnetic storms (the Dst index). It is found that the average vertical ion drift does not change much for Dst in the range between 0 and -60 nT but decreases approximately linearly with the increasing magnitude of Dst for Dst < -60 nT. The net decrease in the average vertical ion drift is 30 m/s when Dst changes from -60 to -90 nT. This result is derived when the ion drift data during the storm main phase are excluded, so the decrease of the vertical ion drift is caused by storm time disturbance dynamo. A possible interpretation of this phenomenon is that geomagnetic activity must be strong enough (e.g., Dst < -60 nT) so disturbance winds can reach the equatorial region and change plasma drifts there. The storm time disturbance dynamo becomes dominant in the equatorial ionospheric dynamics near the end of the storm main phase, 4.7 hr after the storm onset. The postsunset vertical ion drift is significantly decreased during the early stage of the storm recovery phase but becomes almost fully recovered when Dst increases close to -60 nT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4712810','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4712810"><span>Fishing for drifts: detecting buoyancy changes of a top marine predator using a step-wise filtering method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gordine, Samantha Alex; Fedak, Michael; Boehme, Lars</p> <p>2015-01-01</p> <p>ABSTRACT In southern elephant seals (Mirounga leonina), fasting- and foraging-related fluctuations in body composition are reflected by buoyancy changes. Such buoyancy changes can be monitored by measuring changes in the rate at which a seal drifts passively through the water column, i.e. when all active swimming motion ceases. Here, we present an improved knowledge-based method for detecting buoyancy changes from compressed and abstracted dive profiles received through telemetry. By step-wise filtering of the dive data, the developed algorithm identifies fragments of dives that correspond to times when animals drift. In the dive records of 11 southern elephant seals from South Georgia, this filtering method identified 0.8–2.2% of all dives as drift dives, indicating large individual variation in drift diving behaviour. The obtained drift rate time series exhibit that, at the beginning of each migration, all individuals were strongly negatively buoyant. Over the following 75–150 days, the buoyancy of all individuals peaked close to or at neutral buoyancy, indicative of a seal's foraging success. Independent verification with visually inspected detailed high-resolution dive data confirmed that this method is capable of reliably detecting buoyancy changes in the dive records of drift diving species using abstracted data. This also affirms that abstracted dive profiles convey the geometric shape of drift dives in sufficient detail for them to be identified. Further, it suggests that, using this step-wise filtering method, buoyancy changes could be detected even in old datasets with compressed dive information, for which conventional drift dive classification previously failed. PMID:26486362</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1394293-sol-effects-pedestal-structure-diii-discharges','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1394293-sol-effects-pedestal-structure-diii-discharges"><span>SOL effects on the pedestal structure in DIII-D discharges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sontag, Aaron C.; Chen, Xi; Canik, John; ...</p> <p>2017-05-24</p> <p>SOLPS analysis explains the differences in pedestal structure associated with different ion ∇B drift directions in DIII-D. Core transport models predict that fusion power scales roughly as the square of the pressure at the top of the pedestal, so understanding the effects that determine pedestal structure in steady-state operational scenarios is important to projecting scenarios developed in DIII-D to ITER and other devices. Both experiments and modeling indicate that scrape off layer (SOL) conditions are important in optimizing the pedestal structure for high-beta steady-state scenarios. The SOLPS code is used to provide interpretive analysis of the pedestal and SOL tomore » examine the nature of flows and fueling on the pedestal structure including the effects of drifts in the fluid model. This analysis shows that flows driven by the ion ∇B drift are outward when this drift is toward the x-point in a single-null divertor configuration (favorable ∇B direction for reduced H-mode power threshold), and inward when the drift is away from the x-point (unfavorable ∇B direction). It is hypothesized that these flows decrease the density gradient in the pedestal in the favorable direction, thereby stabilizing the kinetic ballooning mode (KBM) and increasing the pedestal width. Comparisons of pedestal structures in similarly shaped DIII-D steady-state plasmas confirm this change, showing increased density pedestal width and lower peak density and lower separatrix density with the favorable drift direction. The pedestal temperature is higher in the lower density case, resulting in an increased pedestal pressure, which indicates that the increased particle flux does not significantly degrade energy confinement. Modeling of cases with constant ∇B drift direction but changing between the more open lower divertor and more closed upper divertor show that there is increased fueling inside the pedestal with the more open geometry. As a result, the pedestal fueling rate for both attached and detached cases is always lower with more closed divertor geometry than in any cases with more open geometry.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1394293','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1394293"><span>SOL effects on the pedestal structure in DIII-D discharges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sontag, Aaron C.; Chen, Xi; Canik, John</p> <p></p> <p>SOLPS analysis explains the differences in pedestal structure associated with different ion ∇B drift directions in DIII-D. Core transport models predict that fusion power scales roughly as the square of the pressure at the top of the pedestal, so understanding the effects that determine pedestal structure in steady-state operational scenarios is important to projecting scenarios developed in DIII-D to ITER and other devices. Both experiments and modeling indicate that scrape off layer (SOL) conditions are important in optimizing the pedestal structure for high-beta steady-state scenarios. The SOLPS code is used to provide interpretive analysis of the pedestal and SOL tomore » examine the nature of flows and fueling on the pedestal structure including the effects of drifts in the fluid model. This analysis shows that flows driven by the ion ∇B drift are outward when this drift is toward the x-point in a single-null divertor configuration (favorable ∇B direction for reduced H-mode power threshold), and inward when the drift is away from the x-point (unfavorable ∇B direction). It is hypothesized that these flows decrease the density gradient in the pedestal in the favorable direction, thereby stabilizing the kinetic ballooning mode (KBM) and increasing the pedestal width. Comparisons of pedestal structures in similarly shaped DIII-D steady-state plasmas confirm this change, showing increased density pedestal width and lower peak density and lower separatrix density with the favorable drift direction. The pedestal temperature is higher in the lower density case, resulting in an increased pedestal pressure, which indicates that the increased particle flux does not significantly degrade energy confinement. Modeling of cases with constant ∇B drift direction but changing between the more open lower divertor and more closed upper divertor show that there is increased fueling inside the pedestal with the more open geometry. As a result, the pedestal fueling rate for both attached and detached cases is always lower with more closed divertor geometry than in any cases with more open geometry.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.8187E..0MS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.8187E..0MS"><span>Turbulence effects in a horizontal propagation path close to ground: implications for optics detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sjöqvist, Lars; Allard, Lars; Gustafsson, Ove; Henriksson, Markus; Pettersson, Magnus</p> <p>2011-11-01</p> <p>Atmospheric turbulence effects close to ground may affect the performance of laser based systems severely. The variations in the refractive index along the propagation path cause effects such as beam wander, intensity fluctuations (scintillations) and beam broadening. Typical geometries of interest for optics detection include nearly horizontal propagation paths close to the ground and up to kilometre distance to the target. The scintillations and beam wander affect the performance in terms of detection probability and false alarm rate. Of interest is to study the influence of turbulence in optics detection applications. In a field trial atmospheric turbulence effects along a 1 kilometre horizontal propagation path were studied using a diode laser with a rectangular beam profile operating at 0.8 micrometer wavelength. Single-path beam characteristics were registered and analysed using photodetectors arranged in horizontal and vertical directions. The turbulence strength along the path was determined using a scintillometer and single-point ultrasonic anemometers. Strong scintillation effects were observed as a function of the turbulence strength and amplitude characteristics were fitted to model distributions. In addition to the single-path analysis double-path measurements were carried out on different targets. Experimental results are compared with existing theoretical turbulence laser beam propagation models. The results show that influence from scintillations needs to be considered when predicting performance in optics detection applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ECSS..202..164B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ECSS..202..164B"><span>Nearshore drift dynamics of natural versus artificial seagrass wrack</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baring, Ryan J.; Fairweather, Peter G.; Lester, Rebecca E.</p> <p>2018-03-01</p> <p>Drifting macrophytes such as seagrass and macroalgae are commonly found washed ashore on sandy beaches but few studies have investigated the drift trajectories of macrophytes whilst near to the coast. This is the first study to investigate the surface drifting of small clumps of seagrass released at various distances from shore, across multiple days with contrasting wind and tidal conditions, in a large gulf in southern Australia. Natural and artificial radio-tagged seagrass units generally travelled in the same directions as tides but trajectories were variable across sampling days and when tagged units were released at different distances from shore. Natural and artificial units diverged from each other particularly on days when wind speeds increased but generally drifted in the same direction and ended up within close proximity to each other at the 6-h endpoint. During calm conditions, tagged seagrass units drifted with tides for 0.25-5 km and, during one sampling day when wind speeds increased, drifted for >5 km over the 6-h time period. Only tagged units that were released closest to shore stranded on sandy beaches within the six hours of observation, so it would be difficult to predict the eventual stranding location on shorelines for macrophytes released further offshore. This study provides evidence of the variability of macrophyte drift dynamics near to coastlines. Acknowledging this variability is essential for further understanding of the ecological significance of allochthonous material arriving at shorelines, which should be integrated into future research and management of sandy-beach ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MART38012B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MART38012B"><span>Controlling qubit drift by recycling error correction syndromes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blume-Kohout, Robin</p> <p>2015-03-01</p> <p>Physical qubits are susceptible to systematic drift, above and beyond the stochastic Markovian noise that motivates quantum error correction. This parameter drift must be compensated - if it is ignored, error rates will rise to intolerable levels - but compensation requires knowing the parameters' current value, which appears to require halting experimental work to recalibrate (e.g. via quantum tomography). Fortunately, this is untrue. I show how to perform on-the-fly recalibration on the physical qubits in an error correcting code, using only information from the error correction syndromes. The algorithm for detecting and compensating drift is very simple - yet, remarkably, when used to compensate Brownian drift in the qubit Hamiltonian, it achieves a stabilized error rate very close to the theoretical lower bound. Against 1/f noise, it is less effective only because 1/f noise is (like white noise) dominated by high-frequency fluctuations that are uncompensatable. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187992','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187992"><span>Deleterious effects of net clogging on the quantification of stream drift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Muehlbauer, Jeffrey D.; Kennedy, Theodore A.; Copp, Adam J.; Sabol, Thomas</p> <p>2017-01-01</p> <p>Drift studies are central to stream and river ecological research. However, a fundamental aspect of quantifying drift — how net clogging affects the accuracy of results — has been widely ignored. Utilizing approaches from plankton and suspended sediment studies in oceanography and hydrology, we examined the rate and dynamics of net clogging across a range of conditions. We found that nets clog nonlinearly over time and that suspended solid concentrations and net mesh size exerted a strong effect on clogging rates. Critically, net clogging introduced unpredictable biases in resultant data due to the inaccuracies in water volume estimates introduced by progressive clogging. This renders the widespread approach to linearly “correct” for clogging inadequate. Using a meta-analysis of 77 drift studies spanning 25 years, we demonstrate that the detrimental effects of net clogging are routinely unappreciated, even though the results of most of these studies were likely affected by clogging. We close by describing an approach for avoiding net clogging, which will increase the accuracy and reproducibility of results in future freshwater, lotic drift studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28525940','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28525940"><span>Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Garcerá, Cruz; Moltó, Enrique; Chueca, Patricia</p> <p>2017-12-01</p> <p>Only a portion of the water volume sprayed is deposited on the target when applying plant protection products with air-assisted axial-fan airblast sprayers in high growing crops. A fraction of the off-target losses deposits on the ground, but droplets also drift away from the site. This work aimed at assessing the spray distribution to different compartments (tree canopy, ground and air) during pesticide applications in a Mediterranean citrus orchard. Standard cone nozzles (Teejet D3 DC35) and venturi drift reducing nozzles (Albuz TVI 80 03) were compared. Applications were performed with a conventional air-assisted sprayer, with a spray volume of around 3000lha -1 in a Navel orange orchard. Brilliant Sulfoflavine (BSF) was used as a tracer. Results showed that only around 46% of the applied spray was deposited on the target trees and around 4% of the spray was deposited on adjacent trees from adjoining rows independently of the nozzle type. Applications with standard nozzles produced more potential airborne spray drift (23%) than those with the drift reducing nozzles (17%) but fewer direct losses to the ground (22% vs. 27%). Indirect losses (sedimenting spray drift) to the ground of adjacent paths were around 7-9% in both cases. The important data set of spray distribution in the different compartments around sprayed orchard (air, ground, vegetation) generated in this work is highly useful as input source of exposure to take into account for the risk assessment in Mediterranean citrus scenario. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PlPhR..43..486K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PlPhR..43..486K"><span>On the longitudinal distribution of electric field in the acceleration zones of plasma accelerators and thrusters with closed electron drift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, V. P.</p> <p>2017-04-01</p> <p>The long-term experience in controlling the electric field distribution in the discharge gaps of plasma accelerators and thrusters with closed electron drift and the key ideas determining the concepts of these devices and tendencies of their development are analyzed. It is shown that an electrostatic mechanism of ion acceleration in plasma by an uncompensated space charge of the cloud of magnetized electrons "kept" to the magnetic field takes place in the acceleration zones and that the electric field distribution can be controlled by varying the magnetic field in the discharge gap. The role played by the space charge makes the mechanism of ion acceleration in this type of thrusters is fundamentally different from the acceleration mechanism operating in purely electrostatic thrusters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23910767','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23910767"><span>Bulimic symptoms and the social withdrawal syndrome.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rotenberg, Ken J; Bharathi, Carla; Davies, Helen; Finch, Tom</p> <p>2013-08-01</p> <p>One hundred and thirty-seven undergraduates (81 females; mean age = 21 years-10 months) completed the Bulimic SEDS subscale and standardized measures of trust beliefs in close others (mother, father, and friend), disclosure to them, and loneliness. Structural Equation Modelling yielded: (1) a negative path between Bulimic Symptoms and trust beliefs, (2) a positive path between trust beliefs and disclosure, (3) a negative path between trust beliefs and loneliness, and (4) a negative path between disclosure and loneliness. As expected, trust beliefs statistically mediated the relations between Bulimic Symptoms and both disclosure and loneliness and disclosure statistically mediated the relation between trust beliefs and loneliness. The findings supported the conclusion that individuals with bulimia nervosa are prone to the social withdrawal syndrome comprising a coherent and integrated pattern of low trust beliefs in close others, low disclosure to close others, and high loneliness. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24216807','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24216807"><span>Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qibo, Feng; Bin, Zhang; Cunxing, Cui; Cuifang, Kuang; Yusheng, Zhai; Fenglin, You</p> <p>2013-11-04</p> <p>A simple method for simultaneously measuring the 6DOF geometric motion errors of the linear guide was proposed. The mechanisms for measuring straightness and angular errors and for enhancing their resolution are described in detail. A common-path method for measuring the laser beam drift was proposed and it was used to compensate the errors produced by the laser beam drift in the 6DOF geometric error measurements. A compact 6DOF system was built. Calibration experiments with certain standard measurement meters showed that our system has a standard deviation of 0.5 µm in a range of ± 100 µm for the straightness measurements, and standard deviations of 0.5", 0.5", and 1.0" in the range of ± 100" for pitch, yaw, and roll measurements, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....14090V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....14090V"><span>Effect of climate change on marine ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vikebo, F. B.; Sundby, S.; Aadlandsvik, B.; Fiksen, O.</p> <p>2003-04-01</p> <p>As a part of the INTEGRATION project, headed by Potsdam Institute for Climate Impact Research, funded by the German Research Council, the impact of climate change scenarios on marine fish populations will be addressed on a spesific population basis and will focus on fish populations in the northern North Atlantic with special emphasis on cod. The approach taken will mainly be a modelling study supported by analysis of existing data on fish stocks and climate. Through down-scaling and nesting techniques, various climate change scenarios with reduced THC in the North Atlantic will be investigated with higher spatial resolution for selected shelf areas. The hydrodynamical model used for the regional ocean modeling is ROMS (http://marine.rutgers.edu/po/models/roms/). An individual based model will be implemented into the larval drift module to simulate growth of the larvae along the drift paths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRD..119.5583P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRD..119.5583P"><span>Intercomparison of field measurements of nitrous acid (HONO) during the SHARP campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pinto, J. P.; Dibb, J.; Lee, B. H.; Rappenglück, B.; Wood, E. C.; Levy, M.; Zhang, R.-Y.; Lefer, B.; Ren, X.-R.; Stutz, J.; Tsai, C.; Ackermann, L.; Golovko, J.; Herndon, S. C.; Oakes, M.; Meng, Q.-Y.; Munger, J. W.; Zahniser, M.; Zheng, J.</p> <p>2014-05-01</p> <p>Because of the importance of HONO as a radical reservoir, consistent and accurate measurements of its concentration are needed. As part of SHARP (Study of Houston Atmospheric Radical Precursors), time series of HONO were obtained by six different measurement techniques on the roof of the Moody Tower at the University of Houston. Techniques used were long path differential optical absorption spectroscopy (DOAS), stripping coil-visible absorption photometry (SC-AP), long path absorption photometry (LOPAP®), mist chamber/ion chromatography (MC-IC), quantum cascade-tunable infrared laser differential absorption spectroscopy (QC-TILDAS), and ion drift-chemical ionization mass spectrometry (ID-CIMS). Various combinations of techniques were in operation from 15 April through 31 May 2009. All instruments recorded a similar diurnal pattern of HONO concentrations with higher median and mean values during the night than during the day. Highest values were observed in the final 2 weeks of the campaign. Inlets for the MC-IC, SC-AP, and QC-TILDAS were collocated and agreed most closely with each other based on several measures. Largest differences between pairs of measurements were evident during the day for concentrations < 100 parts per trillion (ppt). Above 200 ppt, concentrations from the SC-AP, MC-IC, and QC-TILDAS converged to within about 20%, with slightly larger discrepancies when DOAS was considered. During the first 2 weeks, HONO measured by ID-CIMS agreed with these techniques, but ID-CIMS reported higher values during the afternoon and evening of the final 4 weeks, possibly from interference from unknown sources. A number of factors, including building related sources, likely affected measured concentrations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27764890','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27764890"><span>Developmental dysplasia of the hip: A computational biomechanical model of the path of least energy for closed reduction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zwawi, Mohammed A; Moslehy, Faissal A; Rose, Christopher; Huayamave, Victor; Kassab, Alain J; Divo, Eduardo; Jones, Brendan J; Price, Charles T</p> <p>2017-08-01</p> <p>This study utilized a computational biomechanical model and applied the least energy path principle to investigate two pathways for closed reduction of high grade infantile hip dislocation. The principle of least energy when applied to moving the femoral head from an initial to a final position considers all possible paths that connect them and identifies the path of least resistance. Clinical reports of severe hip dysplasia have concluded that reduction of the femoral head into the acetabulum may occur by a direct pathway over the posterior rim of the acetabulum when using the Pavlik harness, or by an indirect pathway with reduction through the acetabular notch when using the modified Hoffman-Daimler method. This computational study also compared the energy requirements for both pathways. The anatomical and muscular aspects of the model were derived using a combination of MRI and OpenSim data. Results of this study indicate that the path of least energy closely approximates the indirect pathway of the modified Hoffman-Daimler method. The direct pathway over the posterior rim of the acetabulum required more energy for reduction. This biomechanical analysis confirms the clinical observations of the two pathways for closed reduction of severe hip dysplasia. The path of least energy closely approximated the modified Hoffman-Daimler method. Further study of the modified Hoffman-Daimler method for reduction of severe hip dysplasia may be warranted based on this computational biomechanical analysis. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1799-1805, 2017. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915070P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915070P"><span>Controls on late Holocene drift-sand dynamics: the role of people and climate on inland aeolian activity in the Netherlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pierik, Harm Jan; Van Lanen, Rowin; Gouw-Bouman, Marjolein; Groenewoudt, Bert; Wallinga, Jakob; Hoek, Wim</p> <p>2017-04-01</p> <p>Holocene drift-sand activity is commonly linked directly to either population pressure (via agricultural activity) or to climate change (e.g. storminess). In the Pleistocene sand areas of the Netherlands small-scale Holocene aeolian activity occurred since the Neolithic, whereas large scale drift-sand activity started during the Middle Ages (especially after AD 1000. This last phase coincides with the intensification of farming and demographic pressure, but is also commonly associated with a colder climate and enhanced storminess. This raises the question to what extent drift-sand activity can be attributed to human activities or to natural forcing factors. In this study we compare the spatial and chronological patterns of drift-sand occurrence for four characteristic Pleistocene sand regions in the Netherlands. For this, we compiled a new supra-regional overview of dates related to drift-sand activity (14C, OSL, archaeological and historical), that we compared with existing national soil maps, historical-route networks, and vegetation and climate reconstructions. Results show a steady occurrence of aeolian activity between 1000 BC and AD 1000, interrupted by remarkable dip in aeolian activity around 2000 BP, probably caused by changing land-use practices or by lower storminess. It is evident that human pressure on the landscape was most influential on initiating sand drifting: this is supported by more frequent occurrence close to routes and the uninterrupted increase in drift-sand activity after ca AD 1000 during periods of high population density and large-scale deforestation. Once triggered by human activities, the drift-sand development was probably further enhanced several centuries later during the cold and more stormy Little Ice Age (AD 1570-1900).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B23A0388H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B23A0388H"><span>Solution for Minimizing Surface Heating Effect for Fast Open-Path CO2 Flux Measurements in Cold Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hupp, J. R.; Burba, G. G.; McDermitt, D. K.; Anderson, D. J.; Eckles, R. D.</p> <p>2010-12-01</p> <p>Open-path design of the high speed gas analyzers is a well-established configuration widely used for measurements of CO2 fluxes and concentrations. This configuration has advantages and deficiencies. Advantages include excellent frequency response, long-term stability, low sensitivity to window contamination, low-power pump-free operation, and infrequent calibration requirements. Deficiencies include susceptibility to precipitation and icing, and a potential need for instrument surface heating correction in extremely cold environments. In spite of the deficiencies, open-path measurements often provide data coverage that would not have been possible using traditional closed-path approach. Data loss from precipitation and icing may not always be prevented for the open-path instruments, while heating effect does not pose a problem for CO2 flux in warm environments. Even in cold environments, the impact of heating on CO2 flux is much smaller than other well-known effects, such as Webb-Pearman-Leuning terms, or frequency response corrections for closed-path analyzers. Nonetheless, instrument surface heating effect in cold environments could be addressed scientifically, via developing the theoretical corrections, and instrumentally, via measuring fast integrated air temperature in the optical path, or via enclosing the open-path instrument into a low-power short-intake design. Here we provide an alternative way to minimize or eliminate open-path heating effect, achieved by minimizing or eliminating the temperature gradient between the instrument surface and ambient air. Open-path low temperature controlled design is discussed in comparison with two other approaches (e.g., traditional open-path design and closed-path design) in terms of their field performance for Eddy Covariance flux measurements in the cold. This study presents field data from a new open-path CO2/H2O gas analyzer, LI-7500A, based on the LI-7500 model modified to produce substantially less heat during extremely cold conditions. Two regiments of the temperature control for internal electronics were examined across a wide range of temperatures: (i) the traditional control temperature of about 30oC, and (ii) new regiment controlling parts of internal electronics at 5oC. When new 5oC regiment was activated, the following changes were observed: heat dissipation from the surface reduced several folds, surface-to-air temperature gradients reduced 2-50 times; and the number of false uptake hours were reduced by 3.5 times, to the same level as a closed-path standard. Significant advantage of the new regiment was also observed in the magnitude of CO2 fluxes, especially in cold weather below -10oC. At such cold temperatures, CO2 fluxes from a 30oC controlled LI-7500 were 19% below those of the closed-path standard, while fluxes from a 5oC controlled LI-7500A were, on average, within 1% of the standard. These are strong experimental evidence that open-path instrument heating can be substantially reduced or eliminated via such simple hardware based solution. This allows continued and expanded use of this ultimately lowest-power remote solution for fast gas measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3039454','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3039454"><span>Model error in covariance structure models: Some implications for power and Type I error</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Coffman, Donna L.</p> <p>2010-01-01</p> <p>The present study investigated the degree to which violation of the parameter drift assumption affects the Type I error rate for the test of close fit and power analysis procedures proposed by MacCallum, Browne, and Sugawara (1996) for both the test of close fit and the test of exact fit. The parameter drift assumption states that as sample size increases both sampling error and model error (i.e. the degree to which the model is an approximation in the population) decrease. Model error was introduced using a procedure proposed by Cudeck and Browne (1992). The empirical power for both the test of close fit, in which the null hypothesis specifies that the Root Mean Square Error of Approximation (RMSEA) ≤ .05, and the test of exact fit, in which the null hypothesis specifies that RMSEA = 0, is compared with the theoretical power computed using the MacCallum et al. (1996) procedure. The empirical power and theoretical power for both the test of close fit and the test of exact fit are nearly identical under violations of the assumption. The results also indicated that the test of close fit maintains the nominal Type I error rate under violations of the assumption. PMID:21331302</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23297706','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23297706"><span>Sea lice levels on wild Atlantic salmon, Salmo salar L., returning to the coast of Ireland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jackson, D; Kane, F; O'Donohoe, P; Mc Dermott, T; Kelly, S; Drumm, A; Newell, J</p> <p>2013-03-01</p> <p>The sea lice population structure, prevalence and intensity of Lepeophtheirus salmonis have been studied over a period extending from 2004 to 2011. Infestation data were collected from the interceptor drift net fishery from 2004 until it was closed in 2006. From 2010, data were collected from the inshore draft net fishery. In all, 34 samples from the drift and draft net fisheries have been analysed to date. Prevalence of infestation with L. salmonis regularly approached 100% in samples of hosts recovered from the offshore drift net fishery. Abundance was variable both within and between years with a maximum mean abundance of 25.8 lice per fish recorded in 2004. The population structure of L. salmonis on hosts recovered in the inshore and estuarine draft net fisheries was different from that observed in the more offshore drift net samples. There is clear evidence of recent infestation with L. salmonis in the draft net samples. © 2013 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24329210','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24329210"><span>Weak-noise limit of a piecewise-smooth stochastic differential equation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Yaming; Baule, Adrian; Touchette, Hugo; Just, Wolfram</p> <p>2013-11-01</p> <p>We investigate the validity and accuracy of weak-noise (saddle-point or instanton) approximations for piecewise-smooth stochastic differential equations (SDEs), taking as an illustrative example a piecewise-constant SDE, which serves as a simple model of Brownian motion with solid friction. For this model, we show that the weak-noise approximation of the path integral correctly reproduces the known propagator of the SDE at lowest order in the noise power, as well as the main features of the exact propagator with higher-order corrections, provided the singularity of the path integral associated with the nonsmooth SDE is treated with some heuristics. We also show that, as in the case of smooth SDEs, the deterministic paths of the noiseless system correctly describe the behavior of the nonsmooth SDE in the low-noise limit. Finally, we consider a smooth regularization of the piecewise-constant SDE and study to what extent this regularization can rectify some of the problems encountered when dealing with discontinuous drifts and singularities in SDEs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599970-overestimation-mach-number-due-probe-shadow','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599970-overestimation-mach-number-due-probe-shadow"><span>Overestimation of Mach number due to probe shadow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gosselin, J. J.; Thakur, S. C.; Tynan, G. R.</p> <p>2016-07-15</p> <p>Comparisons of the plasma ion flow speed measurements from Mach probes and laser induced fluorescence were performed in the Controlled Shear Decorrelation Experiment. We show the presence of the probe causes a low density geometric shadow downstream of the probe that affects the current density collected by the probe in collisional plasmas if the ion-neutral mean free path is shorter than the probe shadow length, L{sub g} = w{sup 2} V{sub drift}/D{sub ⊥}, resulting in erroneous Mach numbers. We then present a simple correction term that provides the corrected Mach number from probe data when the sound speed, ion-neutral mean free path,more » and perpendicular diffusion coefficient of the plasma are known. The probe shadow effect must be taken into account whenever the ion-neutral mean free path is on the order of the probe shadow length in linear devices and the open-field line region of fusion devices.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPT10066J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPT10066J"><span>What sets the minimum tokamak scrape-off layer width?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joseph, Ilon</p> <p>2016-10-01</p> <p>The heat flux width of the tokamak scrape-off layer is on the order of the poloidal ion gyroradius, but the ``heuristic drift'' physics model is still not completely understood. In the absence of anomalous transport, neoclassical transport sets the minimum width. For plateau collisionality, the ion temperature width is set by qρi , while the electron temperature width scales as the geometric mean q(ρeρi) 1 / 2 and is close to qρi in magnitude. The width is enhanced because electrons are confined by the sheath potential and have a much longer time to radially diffuse before escaping to the wall. In the Pfirsch-Schluter regime, collisional diffusion increases the width by the factor (qR / λ) 1 / 2 where qR is the connection length and λ is the mean free path. This qualitatively agrees with the observed transition in the scaling law for detached plasmas. The radial width of the SOL electric field is determined by Spitzer parallel and ``neoclassical'' radial electric conductivity and has a similar scaling to that for thermal transport. Prepared under US DOE contract DE-AC52-07NA27344.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP43A3619W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP43A3619W"><span>Amalgamation of East Eurasia Since Late Paleozoic: Constraints from the Apparent Polar Wander Paths of the Major China Blocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, L.; Kravchinsky, V. A.; Potter, D. K.</p> <p>2014-12-01</p> <p>It has been a longstanding challenge in the last few decades to quantitatively reconstruct the paleogeographic evolution of East Eurasia because of its great tectonic complexities. As the core region, the major China cratons including North China Block, South China Block and Tarim Block hold the key clues for the understanding of the amalgamation history, tectonic activities and biological affinity among the component blocks and terranes in East Eurasia. Compared with the major Gondwana and Laurentia plates, however, the apparent polar wander paths of China are not well constrained due to the outdated paleomagnetic database and relatively loose pole selection process. With the recruitment of the new high-fidelity poles published in the last decade, the rejection of the low quality data and the strict implementation of Voo's grading scheme, we build an updated paleomagnetic database for the three blocks from which three types of apparent polar wander paths (APWP) are computed. Version 1 running mean paths are constructed during the pole selection and compared with those from the previous publications. Version 2 running mean and spline paths with different sliding time windows are computed from the thoroughly examined poles to find the optimal paths with the steady trend, reasonable speed for the polar drift and plate rotation. The spline paths are recommended for the plate reconstructions, however, considering the poor data coverage during certain periods. Our new China APWPs, together with the latest European reference path, the geological, geochronological and biological evidence from the studied Asian plates allow us to reevaluate the paleogeographic and tectonic history of East Eurasia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoPh..293...62K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoPh..293...62K"><span>Oscillations and Waves in Radio Source of Drifting Pulsation Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karlický, Marian; Rybák, Ján; Bárta, Miroslav</p> <p>2018-04-01</p> <p>Drifting pulsation structures (DPSs) are considered to be radio signatures of the plasmoids formed during magnetic reconnection in the impulsive phase of solar flares. In the present paper we analyze oscillations and waves in seven examples of drifting pulsation structures, observed by the 800 - 2000 MHz Ondřejov Radiospectrograph. For their analysis we use a new type of oscillation maps, which give us much more information as regards processes in DPSs than that in previous analyses. Based on these oscillation maps, made from radio spectra by the wavelet technique, we recognized quasi-periodic oscillations with periods ranging from about 1 to 108 s in all studied DPSs. This strongly supports the idea that DPSs are generated during a fragmented magnetic reconnection. Phases of most the oscillations in DPSs, especially for the period around 1 s, are synchronized ("infinite" frequency drift) in the whole frequency range of DPSs. For longer periods in some DPSs we found that the phases of the oscillations drift with the frequency drift in the interval from -17 to +287 MHz s^{-1}. We propose that these drifting phases can be caused (a) by the fast or slow magnetosonic waves generated during the magnetic reconnection and propagating through the plasmoid, (b) by a quasi-periodic structure in the plasma inflowing to the reconnection forming a plasmoid, and (c) by a quasi-periodically varying reconnection rate in the X-point of the reconnection close to the plasmoid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4199645','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4199645"><span>ION ACCELERATOR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Bell, J.S.</p> <p>1959-09-15</p> <p>An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5618938','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5618938"><span>Age-related epigenetic drift and phenotypic plasticity loss: implications in prevention of age-related human diseases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Yuanyuan; Tollefsbol, Trygve O</p> <p>2016-01-01</p> <p>Aging is considered as one of the most important developmental processes in organisms and is closely associated with global deteriorations of epigenetic markers such as aberrant methylomic patterns. This altered epigenomic state, referred to ‘epigenetic drift’, reflects deficient maintenance of epigenetic marks and contributes to impaired cellular and molecular functions in aged cells. Epigenetic drift-induced abnormal changes during aging are scantily repaired by epigenetic modulators. This inflexibility in the aged epigenome may lead to an age-related decline in phenotypic plasticity at the cellular and molecular levels due to epigenetic drift. This perspective aims to provide novel concepts for understanding epigenetic effects on the aging process and to provide insights into epigenetic prevention and therapeutic strategies for age-related human disease. PMID:27882781</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005NIMPB.235..519S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005NIMPB.235..519S"><span>Development of electron beam ion source for nanoprocess using highly charged ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sakurai, Makoto; Nakajima, Fumiharu; Fukumoto, Takunori; Nakamura, Nobuyuki; Ohtani, Shunsuke; Mashiko, Shinro; Sakaue, Hiroyuki</p> <p>2005-07-01</p> <p>Highly charged ion is useful to produce nanostructure on various materials, and is key tool to realize single ion implantation technique. On such demands for the application to nanotechnology, we have designed an electron bean ion source. The design stresses on the volume of drift tubes where highly charged ions are confined and the efficiency of ion extraction from the drift tube through collector electrode in order to obtain intense ion beam as much as possible. The ion source uses a discrete superconducting magnet cooled by a closed-cycle refrigerator in order to reduce the running costs and to simplify the operating procedures. The electrodes of electron gun, drift tubes, and collector are enclosed in ultrahigh vacuum tube that is inserted into the bore of the magnet system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA13C4018C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA13C4018C"><span>On the Longitudinal Morphology of Zonal Irregularity Drift Measured using Networks of GPS Scintillation Monitors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrano, C. S.; Groves, K. M.; Valladares, C. E.; Delay, S. H.</p> <p>2014-12-01</p> <p>A complete characterization of field-aligned ionospheric irregularities responsible for the scintillation of satellite signals includes not only their spectral properties (power spectral strength, spectral index, anisotropy ratio, and outer-scale) but also their horizontal drift velocity. From a system impacts perspective, the horizontal drift velocity is important in that it dictates the rate of signal fading and also, to an extent, the level of phase fluctuations encountered by the receiver. From a physics perspective, studying the longitudinal morphology of zonal irregularity may lead to an improved understanding of the F region dynamo and regional electrodynamics at low latitudes. The irregularity drift at low latitudes is predominantly zonal and is most commonly measured by cross-correlating observations of satellite signals made by a pair of closely-spaced antennas. The AFRL-SCINDA network operates a small number of VHF spaced-antenna systems at low latitude stations for this purpose. A far greater number of GPS scintillation monitors are operated by AFRL-SCINDA (25-30) and the Low Latitude Ionospheric Sensor Network (35-50), but the receivers are situated too far apart to monitor the drift using cross-correlation techniques. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory (Rino, Radio Sci., 1979) to infer the zonal irregularity drift from single-station GPS measurements of S4, sigma-phi, and the propagation geometry alone. Unlike the spaced-receiver technique, this technique requires assumptions for the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment show that the ratio of sigma-phi to S4 is less sensitive to these parameters than it is to the zonal drift, and hence the zonal drift can be estimated with reasonable accuracy. In this talk, we first validate the technique using spaced VHF-antenna measurements of zonal irregularity drift from the AFRL-SCINDA network. Next, we discuss preliminary results from our investigation into the longitudinal morphology of zonal irregularity drift using the AFRL-SCINDA and LISN networks of GPS scintillation monitors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11.1707L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11.1707L"><span>Method to characterize directional changes in Arctic sea ice drift and associated deformation due to synoptic atmospheric variations using Lagrangian dispersion statistics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lukovich, Jennifer V.; Geiger, Cathleen A.; Barber, David G.</p> <p>2017-07-01</p> <p>A framework is developed to assess the directional changes in sea ice drift paths and associated deformation processes in response to atmospheric forcing. The framework is based on Lagrangian statistical analyses leveraging particle dispersion theory which tells us whether ice drift is in a subdiffusive, diffusive, ballistic, or superdiffusive dynamical regime using single-particle (absolute) dispersion statistics. In terms of sea ice deformation, the framework uses two- and three-particle dispersion to characterize along- and across-shear transport as well as differential kinematic parameters. The approach is tested with GPS beacons deployed in triplets on sea ice in the southern Beaufort Sea at varying distances from the coastline in fall of 2009 with eight individual events characterized. One transition in particular follows the sea level pressure (SLP) high on 8 October in 2009 while the sea ice drift was in a superdiffusive dynamic regime. In this case, the dispersion scaling exponent (which is a slope between single-particle absolute dispersion of sea ice drift and elapsed time) changed from superdiffusive (α ˜ 3) to ballistic (α ˜ 2) as the SLP was rounding its maximum pressure value. Following this shift between regimes, there was a loss in synchronicity between sea ice drift and atmospheric motion patterns. While this is only one case study, the outcomes suggest similar studies be conducted on more buoy arrays to test momentum transfer linkages between storms and sea ice responses as a function of dispersion regime states using scaling exponents. The tools and framework developed in this study provide a unique characterization technique to evaluate these states with respect to sea ice processes in general. Application of these techniques can aid ice hazard assessments and weather forecasting in support of marine transportation and indigenous use of near-shore Arctic areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1437247','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1437247"><span>Estimation of network path segment delays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nichols, Kathleen Marie</p> <p></p> <p>A method for estimation of a network path segment delay includes determining a scaled time stamp for each packet of a plurality of packets by scaling a time stamp for each respective packet to minimize a difference of at least one of a frequency and a frequency drift between a transport protocol clock of a host and a monitoring point. The time stamp for each packet is provided by the transport protocol clock of the host. A corrected time stamp for each packet is determined by removing from the scaled time stamp for each respective packet, a temporal offset betweenmore » the transport protocol clock and the monitoring clock by minimizing a temporal delay variation of the plurality of packets traversing a segment between the host and the monitoring point.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2047.6073D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2047.6073D"><span>Energetic Electron Acceleration, Injection, and Transport in Mercury's Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Baker, D. N.; Lawrence, D. J.</p> <p>2018-05-01</p> <p>Electrons are accelerated in Mercury’s magnetotail by dipolarization events, flux ropes, and magnetic reconnection directly. Following energization, these electrons are injected close to Mercury where they drift eastward in Shabansky-like orbits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090032090','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090032090"><span>Estimating Transmitted-Signal Phase Variations for Uplink Array Antennas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Paal, Leslie; Mukai, Ryan; Vilntrotter, Victor; Cornish, Timothy; Lee, Dennis</p> <p>2009-01-01</p> <p>A method of estimating phase drifts of microwave signals distributed to, and transmitted by, antennas in an array involves the use of the signals themselves as phase references. The method was conceived as part of the solution of the problem of maintaining precise phase calibration required for proper operation of an array of Deep Space Network (DSN) antennas on Earth used for communicating with distant spacecraft at frequencies between 7 and 8 GHz. The method could also be applied to purely terrestrial phased-array radar and other radio antenna array systems. In the DSN application, the electrical lengths (effective signal-propagation path lengths) of the various branches of the system for distributing the transmitted signals to the antennas are not precisely known, and they vary with time. The variations are attributable mostly to thermal expansion and contraction of fiber-optic and electrical signal cables and to a variety of causes associated with aging of signal-handling components. The variations are large enough to introduce large phase drifts at the signal frequency. It is necessary to measure and correct for these phase drifts in order to maintain phase calibration of the antennas. A prior method of measuring phase drifts involves the use of reference-frequency signals separate from the transmitted signals. A major impediment to accurate measurement of phase drifts over time by the prior method is the fact that although DSN reference-frequency sources separate from the transmitting signal sources are stable and accurate enough for most DSN purposes, they are not stable enough for use in maintaining phase calibrations, as required, to within a few degrees over times as long as days or possibly even weeks. By eliminating reliance on the reference-frequency subsystem, the present method overcomes this impediment. In a DSN array to which the present method applies (see figure), the microwave signals to be transmitted are generated by exciters in a signal-processing center, then distributed to the antennas via optical fibers. At each antenna, the signals are used to drive a microwave power-amplifier train, the output of which is coupled to the antenna for transmission. A small fraction of the power-amplifier-train output is sent back to the signal-processing center along another optical fiber that is part of the same fiber-optic cable used to distribute the transmitted signal to the antenna. In the signal-processing center, the signal thus returned from each antenna is detected and its phase is compared with the phase of the signal sampled directly from the corresponding exciter. It is known, from other measurements, that the signal-propagation path length from the power-amplifier-train output port to the phase center of each antenna is sufficiently stable and, hence, that sampling the signal at the power-amplifier-train output port suffices for the purpose of characterizing the phase drift of the transmitted signal at the phase center of the antenna</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25370658','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25370658"><span>Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca</p> <p>2014-11-01</p> <p>A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories. The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum. An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and -20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (<10 mT) parallel to the x-ray tube electric field in addition to the orthogonal field does not affect the electrostatic correction technique. However, rotation of the x-ray tube by 30° toward the MR bore increases the parallel magnetic field magnitude (∼72 mT). The presence of this larger parallel field along with the orthogonal field leads to incomplete correction. Monte Carlo simulations demonstrate that the mean energy of the x-ray spectrum is not noticeably affected by the electrostatic correction, but the output flux is reduced by 7.5%. The maximum orthogonal magnetic field magnitude that can be compensated for using the proposed design is 65 mT. Larger orthogonal field magnitudes cannot be completely compensated for because a pure electrostatic approach is limited by the dielectric strength of the vacuum inside the x-ray tube insert. The electrostatic approach also suffers from limitations when there are strong magnetic fields in both the orthogonal and parallel directions because the electrons prefer to stay aligned with the parallel magnetic field. These challenging field conditions can be addressed by using a hybrid correction approach that utilizes both active shielding coils and biasing electrodes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4209011','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4209011"><span>Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca</p> <p>2014-01-01</p> <p>Purpose: A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories. Methods: The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum. Results: An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and −20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (<10 mT) parallel to the x-ray tube electric field in addition to the orthogonal field does not affect the electrostatic correction technique. However, rotation of the x-ray tube by 30° toward the MR bore increases the parallel magnetic field magnitude (∼72 mT). The presence of this larger parallel field along with the orthogonal field leads to incomplete correction. Monte Carlo simulations demonstrate that the mean energy of the x-ray spectrum is not noticeably affected by the electrostatic correction, but the output flux is reduced by 7.5%. Conclusions: The maximum orthogonal magnetic field magnitude that can be compensated for using the proposed design is 65 mT. Larger orthogonal field magnitudes cannot be completely compensated for because a pure electrostatic approach is limited by the dielectric strength of the vacuum inside the x-ray tube insert. The electrostatic approach also suffers from limitations when there are strong magnetic fields in both the orthogonal and parallel directions because the electrons prefer to stay aligned with the parallel magnetic field. These challenging field conditions can be addressed by using a hybrid correction approach that utilizes both active shielding coils and biasing electrodes. PMID:25370658</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19318065','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19318065"><span>Masticatory path pattern during mastication of chewing gum with regard to gender difference.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kobayashi, Yoshinori; Shiga, Hiroshi; Arakawa, Ichiro; Yokoyama, Masaoki; Nakajima, Kunihisa</p> <p>2009-01-01</p> <p>To clarify the masticatory path patterns of the mandibular incisal point during mastication of softened chewing gum with regard to gender difference. One hundred healthy subjects (50 males and 50 females) were asked to chew softened chewing gum on one side at a time (right side and left side) and the movement of the mandibular incisal point was recorded using MKG K6I. After a catalog of path patterns was made, the movement path was classified into one of the pattern groups, and then the frequency of each pattern was investigated. A catalog of path patterns consisting of the three types of opening path (op1, linear or concave path; op2, path toward the chewing side after toward the non-working side; op3, convex path) and two types of closing path (cl1, convex path; cl2, concave path) was made. The movement path was classified into one of seven patterns, with six patterns being from the catalog and a final extra pattern in which the opening and closing paths crossed. The most common pattern among the subjects was Pattern I, followed by Patterns III, II, IV, V, VII, and VI, in that order. The majority of cases, 149 (74.5%) of 200 cases, showed either Pattern I (op1 and cl1) or Pattern III (op2 and cl1). There was no significant difference between the two genders in the frequency of each pattern. The movement path could be classified into seven patterns and no gender-related difference was found in the frequency of each pattern.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840051830&hterms=Ms+Multiple&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DMs%2BMultiple','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840051830&hterms=Ms+Multiple&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DMs%2BMultiple"><span>Direct multiple path magnetospheric propagation - A fundamental property of nonducted VLF waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sonwalkar, V. S.; Bell, T. F.; Helliwell, R. A.; Inan, U. S.</p> <p>1984-01-01</p> <p>An elongation of 20-200 ms, attributed to closely spaced multiple propagation paths between the satellite and the ground, is noted in well defined pulses observed by the ISEE 1 satellite in nonducted whistler mode signals from the Siple Station VLF transmitter. Electric field measurements show a 2 to 10 dB amplitude variation in the observed amplitude fading pattern which is also consistent with direct multiple path propagation. The results obtained for two cases, one outside and one inside the plasmapause, establish that the direct signals transmitted from the ground arrive almost simultaneously at any point in the magnetosphere along two or more closely spaced direct ray paths. It is also shown that multiple paths can be explained by assuming field-aligned irregularities, and the implications of these results for nonducted wave-particle interaction in the magnetosphere are discussed. For reasonable parameters of nonducted, multiple path propagation, a cyclotron-resonant electron will experience a wave Doppler broadening of a few tens to a few hundreds of Hz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ChPhB..25b7306Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ChPhB..25b7306Y"><span>A uniform doping ultra-thin SOI LDMOS with accumulation-mode extended gate and back-side etching technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan-Hui, Zhang; Jie, Wei; Chao, Yin; Qiao, Tan; Jian-Ping, Liu; Peng-Cheng, Li; Xiao-Rong, Luo</p> <p>2016-02-01</p> <p>A uniform doping ultra-thin silicon-on-insulator (SOI) lateral-double-diffused metal-oxide-semiconductor (LDMOS) with low specific on-resistance (Ron,sp) and high breakdown voltage (BV) is proposed and its mechanism is investigated. The proposed LDMOS features an accumulation-mode extended gate (AG) and back-side etching (BE). The extended gate consists of a P- region and two diodes in series. In the on-state with VGD > 0, an electron accumulation layer is formed along the drift region surface under the AG. It provides an ultra-low resistance current path along the whole drift region surface and thus the novel device obtains a low temperature distribution. The Ron,sp is nearly independent of the doping concentration of the drift region. In the off-state, the AG not only modulates the surface electric field distribution and improves the BV, but also brings in a charge compensation effect to further reduce the Ron,sp. Moreover, the BE avoids vertical premature breakdown to obtain high BV and allows a uniform doping in the drift region, which avoids the variable lateral doping (VLD) and the “hot-spot” caused by the VLD. Compared with the VLD SOI LDMOS, the proposed device simultaneously reduces the Ron,sp by 70.2% and increases the BV from 776 V to 818 V. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176069 and 61376079).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/46134','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/46134"><span>Eddy covariance measurements with a new fast-response, enclosed-path analyzer: Spectral characteristics and cross-system comparisons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>K. Novick; J. Walker; W.S. Chan; A. Schmidt; C. Sobek; J.M. Vose</p> <p>2013-01-01</p> <p>A new class of enclosed path gas analyzers suitable for eddy covariance applications combines the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path systems (good spectral response, low power requirements), and permits estimates of instantaneous gas mixing ratio. Here, the extent to which these...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/919410','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/919410"><span>Detection of Instrumental Drifts in the PEP II LER BPM System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wittmer, W.; Fisher, A.S.; Martin, D.J.</p> <p>2007-11-07</p> <p>During the last PEP-II run a major goal was to bring the Low-Energy Ring optics as close as possible to the design. A large number of BPMs exhibited sudden artificial jumps that interfered with this effort. The source of the majority of these jumps had been traced to the filter-isolator boxes (FIBs) near the BPM buttons. A systematic approach to find and repair the failing units had been developed and implemented. Despite this effort, the instrumental orbit jumps never completely disappeared. To trace the source of this behavior a test setup, using a spare Bergoz MX-BPM processor (kindly provided bymore » SPEAR III at SSRL), was connected in parallel to various PEP-II BPM processors. In the course of these measurements a slow instrumental orbit drift was found which was clearly not induced by a moving positron beam. Based on the size of the system and the limited time before PEP-II closes in Oct.2008, an accelerator improvement project was initiated to install BERGOZ BPM-MX processors close to all sextupoles.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25856883','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25856883"><span>[Further study on possibility of diffusion of Oncomelania hupensis with water in river channels of the east route of South-to-North Water Diversion Project].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Yi-Xin; Hang, De-Rong; Tang, Hong-Ping; Sun, Dao-Kuan; Zhou, Can-Hua; Gao, Jin-Bin; Zheng, Bo; Hu, Gui-Quan; Li, Qian; Huang, Yong-Jun; She, Guang-Song; Ren, Zhi-Yuan</p> <p>2014-12-01</p> <p>To study the drifting law of floats and potential risks of Oncomelania hupensis diffusion in the water diversion rivers of the east route of South-to-North Water Diversion Project. The O. hupensis snails in the river channels were monitored by the salvage method and snail luring method with rice straw curtains, and the diffusion possibility of snails along with water was assessed through the drift test of floats with GPS. In the flood seasons from 2006 to 2013, totally 8 338.0 kg of floats were salvaged, and 2 100 rice straw curtains were put into water in the Li Canal and Jinbao shipping channel, but no Oncomelania snails were found. The drift test of floats with GPS before water diversion showed that the flow velocity on water surface (northbound) was 0.45 m/s, the average drift velocity of the floats was 0.56 - 0.60 m/s, and the average drift distances each time were 999.70 - 1 995.50 m in the Gaoshui River section, while there were no obvious drift in Jinbao shipping channel section. During the water diversion period, the flow velocity on water surface (northbound) was 0.45 m/s, the average drift velocity of the floats was 0.35 - 0.41m/s, and the average drift distances each time were 1 248.06 -1 289.44 m in the Gaoshui River, while in Jinbao shipping channel section, the flow velocity on water surface was 0.28 m/s, the average drift velocity of the floats was 0.25 - 0.27 m/s, and the average drift distances each time were 477.76 - 496.38 m. The drift test showed that the floats gradually closed to the river bank as affected by water flow, wind direction and ship waves, when blocked by the reeds, water plants or other obstacles, and they would stopped and could not continue to drift without outside help. There are no Oncomelania snails found in the river channels of the east route of South-to-North Water Diversion Project. The drifting distance of the floating debris along with the water is restricted by the flow rate and shore environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.4031G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.4031G"><span>Triggered emissions close to the proton gyrofrequency seen by Cluster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grison, Benjamin; Pickett, Jolene; Omura, Yoshiharu; Santolik, Ondrej; Decreau, Pierrette; Masson, Arnaud; Engebretson, Mark; Cornilleau-Wehrlin, Nicole; Robert, Patrick; Dandouras, Iannis</p> <p></p> <p>Electromagnetic ion cyclotron (EMIC) triggered emissions have been recently observed onboard the Cluster spacecraft close to the plasmapause in the equatorial region of the magnetosphere. These waves appear as "risers": electromagnetic structures that have a positive frequency drift with time, i.e., the EMIC analogue of rising frequency whistler mode triggered emissions and chorus waves. In our first results concerning the emission process based on a single event, these risers have the following properties: they propagate away from the direction of the magnetic equator, they have elliptical left-handed polarization corresponding to the transverse Alfven mode, and frequency drifts of about 30 mHz/s. These risers are not common in the Cluster data set. Nevertheless a few other events were found with similar properties. Another interesting preliminary result is the existence of risers with a polarization opposite that of the EMIC triggered emissions and which correspond to the fast magnetosonic mode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910062756&hterms=Open+Field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DOpen%2BField','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910062756&hterms=Open+Field&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DOpen%2BField"><span>Sondrestrom radar measurements of the reconnection electric field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>De La Beaujardiere, O.; Lyons, L. R.; Friis-Christensen, E.</p> <p>1991-01-01</p> <p>The possibility of using Sondrestrom incoherent radar scatter to estimate the rate of solar-wind energy transfer is examined by using plasma-velocity measurements in the separatrix reference frame. The separatrix is the boundary between open and closed field lines, and its orientation is deduced from all-sky images. The radar observations are used to determine the separatrix location and the ionospheric plasma drift. Measurements of the reconnection electric field in the midnight sector for one night are taken, revealing that the field is less than 15 mV/m during the time of local polar-cap extension. During polar-cap contraction the field range is 30-40 mV/m, and these periods correspond to substorm expansive phases. The limitations associated with measuring ionospheric plasma drift, the boundary orientation, and boundary location are enumerated. The measurements in the experimental case demonstrate the possibility of plasma transfer from closed to open field lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870025029&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870025029&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dquasi%2Bparticle"><span>A model of impulsive acceleration and transport of energetic particles in Mercury's magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baker, D. N.; Simpson, J. A.; Eraker, J. H.</p> <p>1986-01-01</p> <p>A qualitative model of substorm processes in the Mercury magnetosphere is presented based on Mariner 10 observations obtained in 1974-1975. The model is predicated on close analogies observed with the terrestrial case. Particular emphasis is given to energetic particle phenomena as observed by Mariner on March 29, 1974. The suggestion is supported that energetic particles up to about 500 keV are produced by strong induced electric fields at 3 to about 6 Mercury radii in the Hermean tail in association with substorm neutral line formation. The bursts of energetic particles produced are, in this model, subsequently confined on closed field lines near Mercury and drift adiabatically on quasi-trapped orbits for many tens of seconds. Such gradient and curvature drift of the particles can explain prominent periodicities of 5-10 s seen in the Mariner for greater than 170-keV electron flux profiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhRvE..78a6101L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhRvE..78a6101L"><span>Path integral approach to closed-form option pricing formulas with applications to stochastic volatility and interest rate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemmens, D.; Wouters, M.; Tempere, J.; Foulon, S.</p> <p>2008-07-01</p> <p>We present a path integral method to derive closed-form solutions for option prices in a stochastic volatility model. The method is explained in detail for the pricing of a plain vanilla option. The flexibility of our approach is demonstrated by extending the realm of closed-form option price formulas to the case where both the volatility and interest rates are stochastic. This flexibility is promising for the treatment of exotic options. Our analytical formulas are tested with numerical Monte Carlo simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870002597','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870002597"><span>LANDSAT-D program. Volume 2: Ground segment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1984-01-01</p> <p>Raw digital data, as received from the LANDSAT spacecraft, cannot generate images that meet specifications. Radiometric corrections must be made to compensate for aging and for differences in sensitivity among the instrument sensors. Geometric corrections must be made to compensate for off-nadir look angle, and to calculate spacecraft drift from its prescribed path. Corrections must also be made for look-angle jitter caused by vibrations induced by spacecraft equipment. The major components of the LANDSAT ground segment and their functions are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM13F..01F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM13F..01F"><span>Van Allen Probes Observations of Radiation Belt Acceleration associated with Solar Wind Shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foster, J. C.; Wygant, J. R.; Baker, D. N.</p> <p>2017-12-01</p> <p>During a moderate solar wind shock event on 8 October 2013 the twin Van Allen Probes spacecraft observed the shock-induced electric field in the dayside magnetosphere and the response of the electron populations across a broad range of energies. Whereas other mechanisms populating the radiation belts close to Earth (L 3-5) take place on time scales of months (diffusion) or hours (storm and substorm effects), acceleration during shock events occurs on a much faster ( 1 minute) time scale. During this event the dayside equatorial magnetosphere experienced a strong dusk-dawn/azimuthal component of the electric field of 1 min duration. This shock-induced pulse accelerates radiation belt electrons for the length of time they are exposed to it creating "quasi-periodic pulse-like" enhancements in the relativistic (2 - 6 MeV) electron flux. Electron acceleration occurs on a time scale that is a fraction of their orbital drift period around the Earth. Those electrons whose drift velocity closely matches the azimuthal phase velocity of the shock-induced pulse stay in the accelerating wave as it propagates tailward and receive the largest increase in energy. Relativistic electron gradient drift velocities are energy-dependent, selecting a preferred range of energies (3-4 MeV) for the strongest enhancement. The time scale for shock acceleration is short with respect to the electron drift period ( 5 min), but long with respect to bounce and gyro periodicities. As a result, the third invariant is broken and the affected electron populations are displaced earthward experiencing an adiabatic energy gain. At radial distances tailward of the peak in phase space density, the impulsive inward displacement of the electron population produces a decrease in electron flux and a sequence of gradient drifting "negative holes".Dual spacecraft coverage of the 8 October 2013 event provided a before/after time sequence documenting shock effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/686859-observations-precipitable-water-vapor-fluctuations-convective-boundary-layer-via-microwave-interferometry','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/686859-observations-precipitable-water-vapor-fluctuations-convective-boundary-layer-via-microwave-interferometry"><span>Observations of precipitable water vapor fluctuations in convective boundary layer via microwave interferometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shao, X.M.; Carlos, R.C.; Kirkland, M.W.</p> <p>1999-07-01</p> <p>At microwave frequencies, each centimeter of precipitable water vapor (PWV) causes about 6.45 cm of extra electrical path length relative to the {open_quotes}dry{close_quotes} air. The fluctuations of the water vapor dominate the changes of the effective path length through the atmosphere in a relatively short time period of a few hours. In this paper we describe a microwave interferometer developed for water vapor investigations and present the observation results. The interferometer consists of 10 antennas along two orthogonal 400-m arms that form many baselines (antenna pairs) ranging from 100 to 400 m. All the antennas receive a common CW signalmore » (11.7 GHz) from a geostationary television satellite, and phase differences between pairs of antennas are measured. The phase differences reflect the column-integrated water vapor differences from the top of the atmosphere to the spatially separated antennas at the ground. The interferometric, baseline-differential measurements allow us to study the statistical properties of the PWV fluctuations, as well as the turbulent activity of the convective boundary layer (CBL). Structure function analysis of the interferometer measurements shows good agreement with results obtained from the Very Large Array (VLA) and with a theoretical model developed for radio astronomical very long baseline interferometry (VLBI), reported previously by other investigators. The diurnally varying structure constant correlates remarkably well with the combination of the latent and sensible heat fluxes measured simultaneously from a 10-m meteorological tower. The average drift velocity of the PWV over the interferometer was also derived from the measurements. The derived velocity agrees well during the morning hours with the wind measured by an anemometer at the center of the interferometer. {copyright} 1999 American Geophysical Union« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1023179-thioarsenides-case-long-range-lewis-acid-base-directed-van-der-waals-interactions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1023179-thioarsenides-case-long-range-lewis-acid-base-directed-van-der-waals-interactions"><span>Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gibbs, Gerald V.; Wallace, Adam F.; Downs, R. T.</p> <p>2011-04-01</p> <p>Electron density distributions, bond paths, Laplacian and local energy density properties have been calculated for a number of As4Sn (n = 3,4,5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis base regions) with aligned regions of locally depleted electron density (Lewis acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for severalmore » other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long range Lewis acid-base directed van der Waals interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP51E1175B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP51E1175B"><span>Cenozoic Circulation History of the North Atlantic Ocean From Seismic Stratigraphy of the Newfoundland Ridge Drift Complex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boyle, P. R.; Romans, B.; Norris, R. D.; Tucholke, B. E.; Swift, S. A.; Sexton, P. F.</p> <p>2014-12-01</p> <p>In the North Atlantic Ocean, contour-following bottom currents have eroded regional unconformities and deposited contourite drifts that exceed two km in thickness and extend for 100s of km. The character of deep-water masses that are conveyed through ocean basins by such currents influence global heat transfer and ocean-atmosphere partitioning of CO2. The Newfoundland Ridge Drift Complex lies directly under the modern Deep Western Boundary Current southeast of Newfoundland, close to the site of overturning in the northwest Atlantic Ocean and at the intersection of the warm Gulf Stream and cool Labrador surface currents. To the south are regions of the western North Atlantic basin that are influenced by southern- as well as northern-sourced bottom waters. Here, we document the evolution of North Atlantic deep-water circulation by seismic-stratigraphic analysis of the long-lived and areally extensive Newfoundland Ridge Drift Complex. IODP Expedition 342 boreholes provide age control on seismic units, allowing sedimentation patterns to be placed in a temporal framework. We find three major phases of sedimentation: pre-contourite drift (~115-50 Ma), active contourite drift (~50-2.6 Ma), and late-contourite drift (~2.6-0 Ma). Bottom-current-controlled deposition of terrigenous-rich sediment began at ~50 Ma, which correlates to the onset of a long-term global cooling trend. A further change in deep circulation near the Eocene-Oligocene transition (~30 Ma) is indicated by more focused drift sedimentation with greatly increased accumulation rates and stratal architecture dominated by mud waves. At ~2.6 Ma to present the axis of drift accumulation shifted markedly towards shallower water depths, corresponding with the onset of Northern Hemisphere ice sheets. We discuss how these reorganizations of deep circulation correlate with results of other North Atlantic seismic stratigraphic studies to the north and south.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B41C0452G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B41C0452G"><span>Impact of different eddy covariance sensors and set-up on the annual balance of CO2 and fluxes of CH4 and latent heat in the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodrich, J. P.; Zona, D.; Gioli, B.; Murphy, P.; Burba, G. G.; Oechel, W. C.</p> <p>2015-12-01</p> <p>Expanding eddy covariance measurements of CO2 and CH4 fluxes in the Arctic is critical for refining the global C budget. Continuous measurements are particularly challenging because of the remote locations, low power availability, and extreme weather conditions. The necessity for tailoring instrumentation at different sites further complicates the interpretation of results and may add uncertainty to estimates of annual CO2 budgets. We investigated the influence of different sensor combinations on FCO2, latent heat (LE), and FCH4, and assessed the differences in annual FCO2 estimated with different instrumentation at the same sites. Using data from four sites across the North Slope of Alaska, we resolved FCO2 and FCH4 to within 5% using different combinations of open- and closed-path gas analyzers and within 10% using heated and non-heated anemometers. A continuously heated anemometer increased data coverage relative to non-heated anemometers while resulting in comparable annual FCO2, despite over-estimating sensible heat fluxes by 15%. We also implemented an intermittent heating strategy whereby activation only when ice or snow blockage of the transducers was detected. This resulted in comparable data coverage (~ 60%) to the continuously heated anemometer, while avoiding potential over-estimation of sensible heat and gas fluxes. We found good agreement in FCO2 and FCH4 from two closed-path and one open-path gas analyzer, despite the need for large spectral corrections of closed-path fluxes and density and temperature corrections to open-path sensors. However, data coverage was generally greater when using closed-path, especially during cold seasons (36-40% vs 10-14% for the open path), when fluxes from Arctic regions are particularly uncertain and potentially critical to annual C budgets. Measurement of Arctic LE remains a challenge due to strong attenuation along sample tubes, even when heated, that could not be accounted for with spectral corrections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25424866','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25424866"><span>Illusory body-ownership entails automatic compensative movement: for the unified representation between body and action.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Asai, Tomohisa</p> <p>2015-03-01</p> <p>The sense of body-ownership involves the integration of vision and somatosensation. In the rubber hand illusion (RHI), watching a rubber hand being stroked for a short time synchronously as one's own unseen hand is also stroked causes the observers to attribute the rubber hand to their own body. The RHI may elicit proprioceptive drift: The observers' sense of their own hand's location drifts toward the external proxy hand. The current experiments examined the possibility of observing, not the proprioceptive drift, but the actual drift "movement" during RHI induction. The participants' hand, located on horizontally movable board, tended to move toward the rubber hand only while they observed synchronous visuo-tactile stimulation. Furthermore, even when the participants' hand was located on a fixed, unmovable board (that is, the conventional RHI paradigm), participants automatically administered the force toward the rubber hand. These findings suggest that since awareness of our own body and action are fundamental to self-consciousness, these components of "minimal self" are closely related and integrated into "one agent" with a unified awareness of the body and action.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JGR...101.2321B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JGR...101.2321B"><span>The character of drift spreading of artificial plasma clouds in the middle-latitude ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blaunstein, N.</p> <p>1996-02-01</p> <p>Nonlinear equations describing the evolution of plasma clouds with real initial sizes, along and across the geomagnetic field B, which drift in the ionosphere in the presence of an ambient electric field and a neutral wind have been solved and analysed. An ionospheric model close to the real conditions of the middle-latitude ionosphere is introduced, taking into account the altitude dependence of the transport coefficients and background ionospheric plasma. The striation of the initial plasma cloud into a cluster of plasmoids, stretched along the field B, is obtained. The process of dispersive splitting of the initial plasma cloud can be understood in terms of gradient drift instability (GDI) as a most probable striation mechanism. The dependence of the characteristic time of dispersive splitting on the value of the ambient electric field, the initial plasma disturbance in the cloud and its initial sizes was investigated. The stretching criterion, necessary for the plasma cloud's striation is obtained. The possibility of the drift stabilization effect arising from azimuthal drift velocity shear, obtained by Drake et al. [1988], is examined for various parameters of the barium cloud and the background ionospheric conditions. A comparison with experimental data on the evolution of barium clouds in rocket experiments at the height of the lower ionosphere is made.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SuMi...75..796Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SuMi...75..796Q"><span>Design of a 1200-V ultra-thin partial SOI LDMOS with n-type buried layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qiao, Ming; Wang, Yuru; Li, Yanfei; Zhang, Bo; Li, Zhaoji</p> <p>2014-11-01</p> <p>A novel 1200-V ultra-thin partial silicon-on-insulator (PSOI) lateral double-diffusion metal oxide semiconductor (LDMOS) with n-type buried (n-buried) layer (NBL PSOI LDMOS) is proposed in this paper. The new PSOI LDMOS features an n-buried layer underneath the n-type drift (n-drift) region close to the source side, providing a large conduction region for majority carriers and a silicon window to improve self-heating effect (SHE). A combination of uniform and linear variable doping (ULVD) profile is utilized in the n-drift region, which alleviates the inherent tradeoff between specific on-resistance (Ron,sp) and breakdown voltage (BV). With the n-drift region length of 80 μm, the NBL PSOI LDMOS obtains a high BV of 1243 V which is improved by around 105 V in comparison to the conventional SOI LDMOS with linear variable doping (LVD) profile for the n-drift region (LVD SOI LDMOS). Besides, the 1200-V NBL PSOI LDMOS has a lower maximum temperature (Tmax) of 333 K at a power (P) of 1 mW/μm which is reduced by around 61 K. Meanwhile, Ron,sp and Tmax of the NBL PSOI LDMOS are lower than those of the conventional LVD SOI LDMOS for a wide range of BV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26651633','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26651633"><span>Recurrent noise-induced phase singularities in drifting patterns.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Clerc, M G; Coulibaly, S; del Campo, F; Garcia-Nustes, M A; Louvergneaux, E; Wilson, M</p> <p>2015-11-01</p> <p>We show that the key ingredients for creating recurrent traveling spatial phase defects in drifting patterns are a noise-sustained structure regime together with the vicinity of a phase transition, that is, a spatial region where the control parameter lies close to the threshold for pattern formation. They both generate specific favorable initial conditions for local spatial gradients, phase, and/or amplitude. Predictions from the stochastic convective Ginzburg-Landau equation with real coefficients agree quite well with experiments carried out on a Kerr medium submitted to shifted optical feedback that evidence noise-induced traveling phase slips and vortex phase-singularities.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA41A2362M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA41A2362M"><span>Finite Difference modeling of VLF Propagation in the Earth-Ionosphere Waveguide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marshall, R. A.; Wallace, T.; Turbe, M.</p> <p>2016-12-01</p> <p>Very-low-frequency (VLF, 3—30 kHz) waves can propagate efficiently in the waveguide formed by the Earth and the D-region ionosphere. vVariation in the signals monitored by a stationary receiver can be attributed to variations in the lower ionosphere. As such, these signals are used to monitor the D-region ionosphere in daytime and nighttime. However, the use of VLF transmitter signals to quantitatively diagnose the D-region ionosphere is complicated by i) the propagation of many modes in the waveguide, and their interference, and ii) the effect of the ionosphere along the entire path on the receiver signal at a single location. In this paper, we compare the modeled phase and amplitude of VLF signals using three methods: a Finite-Difference Time-Domain (FDTD) model, a Finite-Difference Frequency-Domain (FDFD) model, and the Long-Wave Prediction Capability (LWPC) model, which has been the method de rigueur since the 1970s. While LWPC solves mode propagation and coupling in the anisotropic waveguide, the FD methods directly solve for electric and magnetic fields from Maxwell's equations on a finite-difference grid. Thus, FD methods provide greater freedom to vary the physical inputs of the model, limited only by the spatial resolution, but at the expense of computation time. We compare the simulated amplitude and phase of these models by running them with identical physical inputs. In this work we compare both i) the absolute amplitude and phase trends as a function of distance, and ii) the magnitude of amplitude and phase variations for given ionosphere changes. Modeling results show that FDTD and FDFD simulations track the amplitude and phase as a function of distance very closely when compared to LWPC. Phase drift due to numerical dispersion is observed at large distances, of a few tens of degrees per 1000 km. These phase drifts increase quadratically with frequency, as expected from numerical dispersion in FD methods. In fact, the phase drift can be mostly removed by applying a simple Richardson extrapolation. After extrapolating, FDTD and LWPC differences can be mapped to a phase velocity difference of <0.07%. When we compare phase changes due to ionospheric variations (Figure 1), we find that all three models show similar magnitudes of phase changes, to within 20%, and similar trends with frequency.­­­</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA096341','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA096341"><span>Slant Path Low Visibility Atmospheric Conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1980-09-01</p> <p>situation. a) An optical propagation slant test path , of a length over which infrared transmissometer measurements can be made that are in a magnitude...transmission measure - ments which are close to 100% and therefore do not accurately relate to absolute transmissivity. A path which is too long will result in...is available for measurement of backscatter cross section along the chosen transmissometer path . 3. Rough Cross Cut of the Works unde Contract in</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21824845','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21824845"><span>Incremental learning of concept drift in nonstationary environments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Elwell, Ryan; Polikar, Robi</p> <p>2011-10-01</p> <p>We introduce an ensemble of classifiers-based approach for incremental learning of concept drift, characterized by nonstationary environments (NSEs), where the underlying data distributions change over time. The proposed algorithm, named Learn(++). NSE, learns from consecutive batches of data without making any assumptions on the nature or rate of drift; it can learn from such environments that experience constant or variable rate of drift, addition or deletion of concept classes, as well as cyclical drift. The algorithm learns incrementally, as other members of the Learn(++) family of algorithms, that is, without requiring access to previously seen data. Learn(++). NSE trains one new classifier for each batch of data it receives, and combines these classifiers using a dynamically weighted majority voting. The novelty of the approach is in determining the voting weights, based on each classifier's time-adjusted accuracy on current and past environments. This approach allows the algorithm to recognize, and act accordingly, to the changes in underlying data distributions, as well as to a possible reoccurrence of an earlier distribution. We evaluate the algorithm on several synthetic datasets designed to simulate a variety of nonstationary environments, as well as a real-world weather prediction dataset. Comparisons with several other approaches are also included. Results indicate that Learn(++). NSE can track the changing environments very closely, regardless of the type of concept drift. To allow future use, comparison and benchmarking by interested researchers, we also release our data used in this paper. © 2011 IEEE</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4330388-final-report-development-geographic-position-locator-gpl-volume-data-reduction-a3fix-subroutine','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4330388-final-report-development-geographic-position-locator-gpl-volume-data-reduction-a3fix-subroutine"><span>Final report on the development of the geographic position locator (GPL). Volume 12. Data reduction A3FIX: subroutine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Niven, W.A.</p> <p></p> <p>The long-term position accuracy of an inertial navigation system depends primarily on the ability of the gyroscopes to maintain a near-perfect reference orientation. Small imperfections in the gyroscopes cause them to drift slowly away from their initial orientation, thereby producing errors in the system's calculations of position. The A3FIX is a computer program subroutine developed to estimate inertial navigation system gyro drift rates with the navigator stopped or moving slowly. It processes data of the navigation system's position error to arrive at estimates of the north- south and vertical gyro drift rates. It also computes changes in the east--west gyromore » drift rate if the navigator is stopped and if data on the system's azimuth error changes are also available. The report describes the subroutine, its capabilities, and gives examples of gyro drift rate estimates that were computed during the testing of a high quality inertial system under the PASSPORT program at the Lawrence Livermore Laboratory. The appendices provide mathematical derivations of the estimation equations that are used in the subroutine, a discussion of the estimation errors, and a program listing and flow diagram. The appendices also contain a derivation of closed form solutions to the navigation equations to clarify the effects that motion and time-varying drift rates induce in the phase-plane relationships between the Schulerfiltered errors in latitude and azimuth snd between the Schulerfiltered errors in latitude and longitude. (auth)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Social+AND+Welfare&pg=7&id=EJ1085066','ERIC'); return false;" href="https://eric.ed.gov/?q=Social+AND+Welfare&pg=7&id=EJ1085066"><span>Germany's ECEC Workforce: A Difficult Path to Professionalisation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Rauschenbach, Thomas; Riedel, Birgit</p> <p>2016-01-01</p> <p>In a European comparison, the childcare profession in Germany has taken a distinct path of development which is closely interwoven with the history of early childhood education and care (ECEC) in general. Institutional choices critical to this path are the assignment of childcare as part of social welfare, the pursuit of a maternalist tradition in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960001996','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960001996"><span>Stormtime ring current and radiation belt ion transport: Simulations and interpretations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lyons, Larry R.; Gorney, David J.; Chen, Margaret W.; Schulz, Michael</p> <p>1995-01-01</p> <p>We use a dynamical guiding-center model to investigate the stormtime transport of ring current and radiation-belt ions. We trace the motion of representative ions' guiding centers in response to model substorm-associated impulses in the convection electric field for a range of ion energies. Our simple magnetospheric model allows us to compare our numerical results quantitatively with analytical descriptions of particle transport, (e.g., with the quasilinear theory of radial diffusion). We find that 10-145-keV ions gain access to L approximately 3, where they can form the stormtime ring current, mainly from outside the (trapping) region in which particles execute closed drift paths. Conversely, the transport of higher-energy ions (approximately greater than 145 keV at L approximately 3) turns out to resemble radial diffusion. The quasilinear diffusion coefficient calculated for our model storm does not vary smoothly with particle energy, since our impulses occur at specific (although randomly determined) times. Despite the spectral irregularity, quasilinear theory provides a surprisingly accurate description of the transport process for approximately greater than 145-keV ions, even for the case of an individual storm. For 4 different realizations of our model storm, the geometric mean discrepancies between diffusion coefficients D(sup sim, sub LL) obtained from the simulations and the quasilinear diffusion coefficient D(sup ql, sub LL) amount to factors of 2.3, 2.3, 1.5, and 3.0, respectively. We have found that these discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) can be reduced slightly by invoking drift-resonance broadening to smooth out the sharp minima and maxima in D(sup ql, sub LL). The mean of the remaining discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) for the 4 different storms then amount to factors of 1.9, 2.1, 1.5, and 2.7, respectively. We find even better agreement when we reduce the impulse amplitudes systematically in a given model storm (e.g., reduction of all the impulse amplitudes by half reduces the discrepancy factor by at least its square root) and also when we average our results over an ensemble of 20 model storms (agreement is within a factor of 1.2 without impulse-amplitude reduction). We use our simulation results also to map phase-space densities f in accordance with Liouville's theorem. We find that the stormtime transport of approximately greater than 145-keV ions produces little change in f-bar the drift-averaged phase-space density on any drift shell of interest. However, the stormtime transport produces a major enhancement from the pre-storm phase-space density at energies approximately 30-145 keV, which are representative of the stormtime ring current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12..935R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12..935R"><span>Impact of rheology on probabilistic forecasts of sea ice trajectories: application for search and rescue operations in the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabatel, Matthias; Rampal, Pierre; Carrassi, Alberto; Bertino, Laurent; Jones, Christopher K. R. T.</p> <p>2018-03-01</p> <p>We present a sensitivity analysis and discuss the probabilistic forecast capabilities of the novel sea ice model neXtSIM used in hindcast mode. The study pertains to the response of the model to the uncertainty on winds using probabilistic forecasts of ice trajectories. neXtSIM is a continuous Lagrangian numerical model that uses an elasto-brittle rheology to simulate the ice response to external forces. The sensitivity analysis is based on a Monte Carlo sampling of 12 members. The response of the model to the uncertainties is evaluated in terms of simulated ice drift distances from their initial positions, and from the mean position of the ensemble, over the mid-term forecast horizon of 10 days. The simulated ice drift is decomposed into advective and diffusive parts that are characterised separately both spatially and temporally and compared to what is obtained with a free-drift model, that is, when the ice rheology does not play any role in the modelled physics of the ice. The seasonal variability of the model sensitivity is presented and shows the role of the ice compactness and rheology in the ice drift response at both local and regional scales in the Arctic. Indeed, the ice drift simulated by neXtSIM in summer is close to the one obtained with the free-drift model, while the more compact and solid ice pack shows a significantly different mechanical and drift behaviour in winter. For the winter period analysed in this study, we also show that, in contrast to the free-drift model, neXtSIM reproduces the sea ice Lagrangian diffusion regimes as found from observed trajectories. The forecast capability of neXtSIM is also evaluated using a large set of real buoy's trajectories and compared to the capability of the free-drift model. We found that neXtSIM performs significantly better in simulating sea ice drift, both in terms of forecast error and as a tool to assist search and rescue operations, although the sources of uncertainties assumed for the present experiment are not sufficient for complete coverage of the observed IABP positions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5140054','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5140054"><span>Different Evolutionary Paths to Complexity for Small and Large Populations of Digital Organisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2016-01-01</p> <p>A major aim of evolutionary biology is to explain the respective roles of adaptive versus non-adaptive changes in the evolution of complexity. While selection is certainly responsible for the spread and maintenance of complex phenotypes, this does not automatically imply that strong selection enhances the chance for the emergence of novel traits, that is, the origination of complexity. Population size is one parameter that alters the relative importance of adaptive and non-adaptive processes: as population size decreases, selection weakens and genetic drift grows in importance. Because of this relationship, many theories invoke a role for population size in the evolution of complexity. Such theories are difficult to test empirically because of the time required for the evolution of complexity in biological populations. Here, we used digital experimental evolution to test whether large or small asexual populations tend to evolve greater complexity. We find that both small and large—but not intermediate-sized—populations are favored to evolve larger genomes, which provides the opportunity for subsequent increases in phenotypic complexity. However, small and large populations followed different evolutionary paths towards these novel traits. Small populations evolved larger genomes by fixing slightly deleterious insertions, while large populations fixed rare beneficial insertions that increased genome size. These results demonstrate that genetic drift can lead to the evolution of complexity in small populations and that purifying selection is not powerful enough to prevent the evolution of complexity in large populations. PMID:27923053</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JSemi..35c4011Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JSemi..35c4011Y"><span>An L-shaped low on-resistance current path SOI LDMOS with dielectric field enhancement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ye, Fan; Xiaorong, Luo; Kun, Zhou; Yuanhang, Fan; Yongheng, Jiang; Qi, Wang; Pei, Wang; Yinchun, Luo; Bo, Zhang</p> <p>2014-03-01</p> <p>A low specific on-resistance (Ron,sp) SOI NBL TLDMOS (silicon-on-insulator trench LDMOS with an N buried layer) is proposed. It has three features: a thin N buried layer (NBL) on the interface of the SOI layer/buried oxide (BOX) layer, an oxide trench in the drift region, and a trench gate extended to the BOX layer. First, on the on-state, the electron accumulation layer forms beside the extended trench gate; the accumulation layer and the highly doping NBL constitute an L-shaped low-resistance conduction path, which sharply decreases the Ron,sp. Second, in the y-direction, the BOX's electric field (E-field) strength is increased to 154 V/μm from 48 V/μm of the SOI Trench Gate LDMOS (SOI TG LDMOS) owing to the high doping NBL. Third, the oxide trench increases the lateral E-field strength due to the lower permittivity of oxide than that of Si and strengthens the multiple-directional depletion effect. Fourth, the oxide trench folds the drift region along the y-direction and thus reduces the cell pitch. Therefore, the SOI NBL TLDMOS structure not only increases the breakdown voltage (BV), but also reduces the cell pitch and Ron,sp. Compared with the TG LDMOS, the NBL TLDMOS improves the BV by 105% at the same cell pitch of 6 μm, and decreases the Ron,sp by 80% at the same BV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1261441-modeling-advanced-bwr-fuel-designs-nrc-fuel-depletion-codes-parcs-paths','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1261441-modeling-advanced-bwr-fuel-designs-nrc-fuel-depletion-codes-parcs-paths"><span>The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ward, Andrew; Downar, Thomas J.; Xu, Y.; ...</p> <p>2015-04-22</p> <p>The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JKPS...72..669X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JKPS...72..669X"><span>Fishbone Oscillations in the Experimental Advanced Superconductivity Tokamak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Li-Qing; Hu, Li-Qun; Yuan, Yi; Li, Ying-Ying; Zhong, Guo-Qiang; Liu, Hai-Qing; Chen, Kai-Yun; Shi, Tong-Hui; Duan, Yan-Min</p> <p>2018-03-01</p> <p>A fishbone oscillation was observed in the neutral beam injection plasma at Experimental Advanced Superconductivity Tokamak (EAST). This m = 1/n = 1 ( m, n: poloidal, toroidal mode numbers, respectively) typical internal kink mode travels in the ion-diamagnetism direction in the poloidal section with a rotation speed close to the ion diamagnetic drift frequency. A high thermal plasma beta and high amounts of energetic ions are necessary for the mode to develop. Fishbone oscillations can expel heavy impurities in the core, which favors sustaining a high-performance plasma. The born frequency of the fishbone oscillation is the ion diamagnetic drift frequency and the chirping down of the frequency during the initial growth phase is the result of a drop in iondiamagnetic drift frequency. The excitation energy is thought to be due to the thermal plasma pressure gradient; however, the development of a fishbone oscillation is related to energetic ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhD...50P5103A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhD...50P5103A"><span>Effects of carrier concentrations on the charge transport properties in monolayer silicene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abidin, B. I.; Yeoh, K. H.; Ong, D. S.; Yong, T. K.</p> <p>2017-10-01</p> <p>Using analytical band Monte Carlo approach, we have carried out a systematic study on the effects of carrier concentrations on the steady-state and transient electron transports that occur within a monolayer silicene. In particular, we have observed the following: First at steady-state, the electron mobility reduces with higher carrier concentrations. Secondly, in the transient regime we found that the drift velocity overshoot can be controlled by varying the carrier concentrations. We uncover that at carrier concentration of 1  ×  1013 cm-2, the drift velocity overshoot can reach up to 3.8  ×  107 cm s-1 which is close to the steady-state drift velocity saturation of graphene. Thirdly, the distance of the velocity over shoot can be further extended with higher carrier concentrations. Our findings could be useful and can be used as benchmark for future development of nanoscale silicene based devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14683056','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14683056"><span>Drift-wave turbulence and zonal flow generation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Balescu, R</p> <p>2003-10-01</p> <p>Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the evolution of the distribution function of wave packets (quasiparticles) characterized by position x and wave vector k. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation describing coupled diffusion processes in x and k spaces. General forms of the diffusion coefficients are obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory approximation, a method recently developed for an accurate measure of the important trapping phenomena of particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.930a2048I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.930a2048I"><span>The Time Window Vehicle Routing Problem Considering Closed Route</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irsa Syahputri, Nenna; Mawengkang, Herman</p> <p>2017-12-01</p> <p>The Vehicle Routing Problem (VRP) determines the optimal set of routes used by a fleet of vehicles to serve a given set of customers on a predefined graph; the objective is to minimize the total travel cost (related to the travel times or distances) and operational cost (related to the number of vehicles used). In this paper we study a variant of the predefined graph: given a weighted graph G and vertices a and b, and given a set X of closed paths in G, find the minimum total travel cost of a-b path P such that no path in X is a subpath of P. Path P is allowed to repeat vertices and edges. We use integer programming model to describe the problem. A feasible neighbourhood approach is proposed to solve the model</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811274S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811274S"><span>Wind slab formation in snow: experimental setup and first results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sommer, Christian; Lehning, Michael; Fierz, Charles</p> <p>2016-04-01</p> <p>The formation of wind-hardened surface layers, also known as wind slabs or wind crusts, is studied. Better knowledge about which processes and parameters are important will lead to an improved understanding of the mass balances in polar and alpine areas. It will also improve snow-cover models (i.e. SNOWPACK) as well as the forecast of avalanche danger. A ring-shaped wind tunnel has been built and instrumented. The facility is ring-shaped to simulate an infinitely long snow surface (infinite fetch). A SnowMicroPen (SMP) is used to measure the snow hardness. Other sensors measure environmental conditions such as wind velocity, air temperature, air humidity, the temperature of the snow and of the snow surface. A camera is used to detect drifting particles and to measure the Specific Surface Area (SSA) at the snow surface via near-infrared photography. First experiments indicate that mechanical fragmentation followed by sintering is the most efficient process to harden the surface. The hardness increased rapidly during drifting snow events, but only slowly or not at all when the wind speed was kept below the threshold for drifting snow. With drifting, the penetration resistance increased from the original 0.07 N to around 0.3 N in about an hour. Without drifting, a slow, further increase in resistance was observed. In about six hours, the hardness of the top 1-2 cm increased to 0.5 N. During this eight-hour experiment consisting of about two hours with intermittent drifting and six hours without drifting, the density at the surface increased from 66 kg/m3 to around 170 kg/m3. In the unaffected region close to the ground, the density increased from 100 kg/m3 to 110 kg/m3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26735492','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26735492"><span>Olfaction Contributes to Pelagic Navigation in a Coastal Shark.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nosal, Andrew P; Chao, Yi; Farrara, John D; Chai, Fei; Hastings, Philip A</p> <p>2016-01-01</p> <p>How animals navigate the constantly moving and visually uniform pelagic realm, often along straight paths between distant sites, is an enduring mystery. The mechanisms enabling pelagic navigation in cartilaginous fishes are particularly understudied. We used shoreward navigation by leopard sharks (Triakis semifasciata) as a model system to test whether olfaction contributes to pelagic navigation. Leopard sharks were captured alongshore, transported 9 km offshore, released, and acoustically tracked for approximately 4 h each until the transmitter released. Eleven sharks were rendered anosmic (nares occluded with cotton wool soaked in petroleum jelly); fifteen were sham controls. Mean swimming depth was 28.7 m. On average, tracks of control sharks ended 62.6% closer to shore, following relatively straight paths that were significantly directed over spatial scales exceeding 1600 m. In contrast, tracks of anosmic sharks ended 37.2% closer to shore, following significantly more tortuous paths that approximated correlated random walks. These results held after swimming paths were adjusted for current drift. This is the first study to demonstrate experimentally that olfaction contributes to pelagic navigation in sharks, likely mediated by chemical gradients as has been hypothesized for birds. Given the similarities between the fluid three-dimensional chemical atmosphere and ocean, further research comparing swimming and flying animals may lead to a unifying paradigm explaining their extraordinary navigational abilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27139650','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27139650"><span>Far off-resonance laser frequency stabilization using multipass cells in Faraday rotation spectroscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Quan, Wei; Li, Yang; Li, Rujie; Shang, Huining; Fang, Zishan; Qin, Jie; Wan, Shuangai</p> <p>2016-04-01</p> <p>We propose a far off-resonance laser frequency stabilization method by using multipass cells in Rb Faraday rotation spectroscopy. Based on the detuning equation, if multipass cells with several meters optical path length are used in the conventional Faraday spectroscopy, the detuning of the lock point can be extended much further from the alkali metal resonance. A plate beam splitter was used to generate two different Faraday signals at the same time. The transmitted optical path length was L=50  mm and the reflected optical path length was 2L=100  mm. When the optical path length doubled, the detuning of the lock points moved further away from the atomic resonance. The temperature dependence of the detuning of the lock point was also analyzed. A temperature-insensitive lock point was found near resonance when the cell temperature was between 110°C and 130°C. We achieved an rms fluctuation of 0.9 MHz/23 h at a detuning of 0.5 GHz. A frequency drift of 16 MHz/h at a detuning of -5.6  GHz and 4 MHz/h at a detuning of -5.2  GHz were also obtained for the transmitted and reflected light Faraday signal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816601S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816601S"><span>Methane fluxes above the Hainich forest by True Eddy Accumulation and Eddy Covariance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siebicke, Lukas; Gentsch, Lydia; Knohl, Alexander</p> <p>2016-04-01</p> <p>Understanding the role of forests for the global methane cycle requires quantifying vegetation-atmosphere exchange of methane, however observations of turbulent methane fluxes remain scarce. Here we measured turbulent fluxes of methane (CH4) above a beech-dominated old-growth forest in the Hainich National Park, Germany, and validated three different measurement approaches: True Eddy Accumulation (TEA, closed-path laser spectroscopy), and eddy covariance (EC, open-path and closed-path laser spectroscopy, respectively). The Hainich flux tower is a long-term Fluxnet and ICOS site with turbulent fluxes and ecosystem observations spanning more than 15 years. The current study is likely the first application of True Eddy Accumulation (TEA) for the measurement of turbulent exchange of methane and one of the very few studies comparing open-path and closed-path eddy covariance (EC) setups side-by-side. We observed uptake of methane by the forest during the day (a methane sink with a maximum rate of 0.03 μmol m-2 s-1 at noon) and no or small fluxes of methane from the forest to the atmosphere at night (a methane source of typically less than 0.01 μmol m-2 s-1) based on continuous True Eddy Accumulation measurements in September 2015. First results comparing TEA to EC CO2 fluxes suggest that True Eddy Accumulation is a valid option for turbulent flux quantifications using slow response gas analysers (here CRDS laser spectroscopy, other potential techniques include mass spectroscopy). The TEA system was one order of magnitude more energy efficient compared to closed-path eddy covariance. The open-path eddy covariance setup required the least amount of user interaction but is often constrained by low signal-to-noise ratios obtained when measuring methane fluxes over forests. Closed-path eddy covariance showed good signal-to-noise ratios in the lab, however in the field it required significant amounts of user intervention in addition to a high power consumption. We conclude, based on preliminary evidence, that the Hainich forest acted as a moderate net sink for methane during the investigation. This supports earlier findings from chamber measurements at the Hainich forest site and is similar to findings from other forest sites. Our observations will be continued through 2016 and beyond to provide longer-term methane flux time series spanning entire seasons. However, the current data set already provides a basis for further consolidating methods of measurements and analysis of turbulent methane fluxes using eddy covariance and true eddy accumulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1361955-serpentine-ultralong-path-extended-routing-super-high-resolution-traveling-wave-ion-mobility-ms-using-structures-lossless-ion-manipulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1361955-serpentine-ultralong-path-extended-routing-super-high-resolution-traveling-wave-ion-mobility-ms-using-structures-lossless-ion-manipulations"><span>Serpentine Ultralong Path with Extended Routing (SUPER) High Resolution Traveling Wave Ion Mobility-MS using Structures for Lossless Ion Manipulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Deng, Liulin; Webb, Ian K.; Garimella, Sandilya V. B.</p> <p></p> <p>Ion mobility (IM) separations have a broad range of analytical applications, but insufficient resolution limits many applications. Here we report on traveling wave (TW) ion mobility (IM) separations in a Serpentine Ultra-long Path with Extended Routing (SUPER) Structures for Lossless Ion Manipulations (SLIM) module in conjunction with mass spectrometry (MS). The extended routing utilized multiple passes was facilitated by the introduction of a lossless ion switch at the end of the ion path that either directed ions to the MS detector or to another pass through the serpentine separation region, providing theoretically unlimited TWIM path lengths. Ions were confined inmore » the SLIM by rf fields in conjunction with a DC guard bias, enabling essentially lossless TW transmission over greatly extended paths (e.g., ~1094 meters over 81 passes through the 13.5 m serpentine path). In this multi-pass SUPER TWIM provided resolution approximately proportional to the square root of the number of passes (or path length). More than 30-fold higher IM resolution for Agilent tuning mix m/z 622 and 922 ions (~340 vs. ~10) was achieved for 40 passes compared to commercially available drift tube IM and other TWIM-based platforms. An initial evaluation of the isomeric sugars Lacto-N-hexaose and Lacto-N-neohexaose showed the isomeric structures to be baseline resolved, and a new conformational feature for Lacto-N-neohexaose was revealed after 9 passes. The new SLIM SUPER high resolution TWIM platform has broad utility in conjunction with MS and is expected to enable a broad range of previously challenging or intractable separations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1425913','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1425913"><span>Funnel for localizing biological cell placement and arrangement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Soscia, David; Benett, William J.; Mukerjee, Erik V.</p> <p>2018-03-06</p> <p>The present disclosure relates to a funnel apparatus for channeling cells onto a plurality of distinct, closely spaced regions of a seeding surface. The funnel apparatus has a body portion having an upper surface and a lower surface. The body portion forms a plurality of flow paths, at least one of which is shaped to have a decreasing cross-sectional area from the upper surface to the lower surface. The flow paths are formed at the lower surface to enable cells deposited into the flow paths at the upper surface of the funnel apparatus to be channeled into a plurality ofmore » distinct, closely spaced regions on the seeding surface positioned adjacent the lower surface.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18723207','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18723207"><span>Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry</p> <p>2008-11-01</p> <p>A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial pattern of airborne spray drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18..535D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18..535D"><span>The impact of nonuniform sampling on stratospheric ozone trends derived from occultation instruments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Damadeo, Robert P.; Zawodny, Joseph M.; Remsberg, Ellis E.; Walker, Kaley A.</p> <p>2018-01-01</p> <p>This paper applies a recently developed technique for deriving long-term trends in ozone from sparsely sampled data sets to multiple occultation instruments simultaneously without the need for homogenization. The technique can compensate for the nonuniform temporal, spatial, and diurnal sampling of the different instruments and can also be used to account for biases and drifts between instruments. These problems have been noted in recent international assessments as being a primary source of uncertainty that clouds the significance of derived trends. Results show potential <q>recovery</q> trends of ˜ 2-3 % decade-1 in the upper stratosphere at midlatitudes, which are similar to other studies, and also how sampling biases present in these data sets can create differences in derived recovery trends of up to ˜ 1 % decade-1 if not properly accounted for. Limitations inherent to all techniques (e.g., relative instrument drifts) and their impacts (e.g., trend differences up to ˜ 2 % decade-1) are also described and a potential path forward towards resolution is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3932B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3932B"><span>An anomalous CO2 uptake measured over asphalt surface by open-path eddy-covariance system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bogoev, Ivan; Santos, Eduardo</p> <p>2017-04-01</p> <p>Measurements of net ecosystem exchange of CO2 in desert environments made by Wohlfahrt et al. (2008) and Ma (2014) indicate strong CO2 sink. The results of these studies have been challenged by Schlesinger (2016) because the rates of the CO2 uptake are incongruent with the increase of biomass in the vegetation and accumulation of organic and inorganic carbon in the soil. Consequently, the accuracy of the open-path eddy-covariance systems in arid and semi-arid ecosystems has been questioned. A new technology merging the sensing paths of the gas analyzer and the sonic anemometer has recently been developed. This integrated open-path system allows a direct measurement of CO2 mixing ratio in the open air and has the potential to improve the quality of the temperature related density and spectroscopic corrections by synchronously measuring the sensible heat flux in the optical path of the gas analyzer. We evaluate the performance and the accuracy of this new sensor over a large parking lot with an asphalt surface where the water vapor and CO2 fluxes are expected to be low and the interfering sensible heat fluxes are above 200 Wm-2. For independent CO2 flux reference measurements, we use a co-located closed-path analyzer with a short intake tube and a standalone sonic anemometer. We compare energy and carbon dioxide fluxes between the open- and the closed-path systems. During periods with sensible heat flux above 100 W m-2, the open-path system reports an apparent CO2 uptake of 0.02 mg m-2 s-1, while the closed-path system consistently measures a more acceptable upward flux of 0.015 mg m-2 s-1. We attribute this systematic bias to inadequate fast-response temperature compensation of absorption-line broadening effects. We demonstrate that this bias can be eliminated by using the humidity-corrected fast-response sonic temperature to compensate for the abovementioned spectroscopic effects in the open-path analyzer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8662584','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8662584"><span>Predatory Dinosaurs from the Sahara and Late Cretaceous Faunal Differentiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sereno; Dutheil; Iarochene; Larsson; Lyon; Magwene; Sidor; Varricchio; Wilson</p> <p>1996-05-17</p> <p>Late Cretaceous (Cenomanian) fossils discovered in the Kem Kem region of Morocco include large predatory dinosaurs that inhabited Africa as it drifted into geographic isolation. One, represented by a skull approximately 1.6 meters in length, is an advanced allosauroid referable to the African genus Carcharodontosaurus. Another, represented by a partial skeleton with slender proportions, is a new basal coelurosaur closely resembling the Egyptian genus Bahariasaurus. Comparisons with Cretaceous theropods from other continents reveal a previously unrecognized global radiation of carcharodontosaurid predators. Substantial geographic differentiation of dinosaurian faunas in response to continental drift appears to have arisen abruptly at the beginning of the Late Cretaceous.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860037061&hterms=VALLADARES&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DVALLADARES','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860037061&hterms=VALLADARES&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DVALLADARES"><span>Scintillations associated with bottomside sinusoidal irregularities in the equatorial F region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Basu, S.; Basu, S.; Valladares, C. E.; Dasgupta, A.; Whitney, H. E.</p> <p>1986-01-01</p> <p>Multisatellite scintillation observations and spaced receiver drift measurements are presented for a category of equatorial F region plasma irregularities characterized by nearly sinusoidal waveforms in the ion number density. The observations were made at Huancayo, Peru, and the measurements at Ancon, Peru, associated with irregularities observed by the Atmospheric-Explorer-E satellite on a few nights in December 1979. Utilizing ray paths to various geostationary satellites, it was found that the irregularities grow and decay almost simultaneously in long-lived patches extending at least 1000 km in the east-west direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-201404290016HQ.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-201404290016HQ.html"><span>NASA Exploration Forum: Human Path to Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-04-29</p> <p>Robert Lightfoot, NASA Associate Adminstrator, delivers closing remarks at an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15893364','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15893364"><span>Metsulfuron spray drift reduces fruit yield of hawthorn (Crataegus monogyna L.).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kjaer, Christian; Strandberg, Morten; Erlandsen, Mogens</p> <p>2006-03-01</p> <p>This study was carried out to investigate whether spray drift of metsulfuron has a potential to negatively affect hawthorn (Crataegus monogyna) hedgerows near agricultural fields. For this purpose four doses of metsulfuron ranging from 5% to 40% of the field dose (4 g metsulfuron per hectare) were sprayed on trees in seven different hawthorn hedgerows. The actual deposition on the leaves was measured by means of a tracer (glycine). Spraying was conducted both at the bud stage and at early flowering. Leaves, flowers, green berries and mature berries were harvested and the number and weight of each were measured. The spraying at the bud stage caused a highly significant reduction in number and dry weight of berries, whereas it had no effects on leaf and flower production. The berry reduction was close to 100% at actual depositions relevant for spray drift under normal conditions. Spraying at early flowering also significantly reduced berries although the effect was smaller than for the spraying at bud stage. The early flower stage spraying caused no reduction in number and size of leaves. The possible ecological consequence is that metsulfuron spray drift from agricultural fields has a potential to reduce the amount of berries available for frugivorous birds in nearby hedgerows. A potential need for regulatory measures to reduce herbicide spray drift to hedgerows situated near agricultural fields with herbicide use is also indicated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10792590','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10792590"><span>Kinematics of the human mandible for different head postures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Visscher, C M; Huddleston Slater, J J; Lobbezoo, F; Naeije, M</p> <p>2000-04-01</p> <p>The influence of head posture on movement paths of the incisal point (IP) and of the mandibular condyles during free open-close movements was studied. Ten persons, without craniomandibular or cervical spine disorders, participated in the study. Open close mandibular movements were recorded with the head in five postures, viz., natural head posture, forward head posture, military posture, and lateroflexion to the right and to the left side, using the Oral Kinesiologic Analysis System (OKAS-3D). This study showed that in a military head posture, the opening movement path of the incisal point is shifted anteriorly relative to the path in a natural head posture. In a forward head posture, the movement path is shifted posteriorly whereas during lateroflexion, it deviates to the side the head has moved to. Moreover, the intra-articular distance in the temporomandibular joint during closing is smaller with the head in military posture and greater in forward head posture, as compared to the natural head posture. During lateroflexion, the intra-articular distance on the ipsilateral side is smaller. The influence of head posture upon the kinematics of the mandible is probably a manifestation of differences in mandibular loading in the different head postures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760040857&hterms=gain+function&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dgain%2Bfunction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760040857&hterms=gain+function&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dgain%2Bfunction"><span>An empirical relationship for path diversity gain. [earth-space microwave propagation attenuation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hodge, D. B.</p> <p>1976-01-01</p> <p>Existing 15.3 and 16 GHz path diversity gain data for earth-space propagation paths are used to generate an empirical relationship for diversity gain as a function of terminal separation distance and single terminal fade depth. The agreement between the resulting closed form expression and the data is within 0.75 dB in all cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B33C0668S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B33C0668S"><span>A Novel Low-Power, High-Performance, Zero-Maintenance Closed-Path Trace Gas Eddy Covariance System with No Water Vapor Dilution or Spectroscopic Corrections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sargent, S.; Somers, J. M.</p> <p>2015-12-01</p> <p>Trace-gas eddy covariance flux measurement can be made with open-path or closed-path analyzers. Traditional closed-path trace-gas analyzers use multipass absorption cells that behave as mixing volumes, requiring high sample flow rates to achieve useful frequency response. The high sample flow rate and the need to keep the multipass cell extremely clean dictates the use of a fine-pore filter that may clog quickly. A large-capacity filter cannot be used because it would degrade the EC system frequency response. The high flow rate also requires a powerful vacuum pump, which will typically consume on the order of 1000 W. The analyzer must measure water vapor for spectroscopic and dilution corrections. Open-path analyzers are available for methane, but not for nitrous oxide. The currently available methane analyzers have low power consumption, but are very large. Their large size degrades frequency response and disturbs the air flow near the sonic anemometer. They require significant maintenance to keep the exposed multipass optical surfaces clean. Water vapor measurements for dilution and spectroscopic corrections require a separate water vapor analyzer. A new closed-path eddy covariance system for measuring nitrous oxide or methane fluxes provides an elegant solution. The analyzer (TGA200A, Campbell Scientific, Inc.) uses a thermoelectrically-cooled interband cascade laser. Its small sample-cell volume and unique sample-cell configuration (200 ml, 1.5 m single pass) provide excellent frequency response with a low-power scroll pump (240 W). A new single-tube Nafion® dryer removes most of the water vapor, and attenuates fluctuations in the residual water vapor. Finally, a vortex intake assembly eliminates the need for an intake filter without adding volume that would degrade system frequency response. Laboratory testing shows the system attenuates the water vapor dilution term by more than 99% and achieves a half-power band width of 3.5 Hz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA05573&hterms=fine+dust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfine%2Bdust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA05573&hterms=fine+dust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dfine%2Bdust"><span>Drifts of Dust or Something Else?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>While the interior and far walls of the crater dubbed 'Bonneville' can be seen in the background, the dominant foreground features in this 180-degree navigation camera mosaic are the wind-deposited drifts of dust or sand. NASA's Mars Exploration Rover Spirit completed this mosaic on sol 71, March 15, 2004, from its newest location at the rim of 'Bonneville' crater. <p/> Scientists are interested in these formations in part because they might give insight into the processes that formed some of the material within the crater. Thermal emission measurements by the rover indicate that the dark material just below the far rim of this crater is spectrally similar to rocks that scientists have analyzed along their journey to this location. They want to know why this soil-like material has a spectrum that more closely resembles rocks rather than other soils examined so far. The drifts seen in the foreground of this mosaic might have the answer. Scientists hypothesize that these drifts might consist of wind-deposited particles that are the same as the dark material found against the back wall of the crater. If so, Spirit may spend time studying the material and help scientists understand why it is different from other fine-grained material seen at Gusev. <p/> The drifts appear to be lighter in color than the dark material deposited on the back wall of the crater. They might be covered by a thin deposit of martian dust, or perhaps the drift is like other drifts seen during Spirit's journey and is just a collection of martian dust. <p/> To find out, Spirit will spend some of sol 72 digging its wheels into the drift to uncover its interior. After backing up a bit, Spirit will use the panoramic camera and miniature thermal emission spectrometer to analyze the scuffed area. If the interior material has a similar spectrum to the dark deposit in the crater, then Spirit will most likely stay here a little longer to study the drift with the instruments on its robotic arm. If the material is uniform - that is, dusty all the way down, Spirit will most likely move off to another target.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19953149','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19953149"><span>Closed-loop carrier-envelope phase stabilization with an acousto-optic programmable dispersive filter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Forget, N; Canova, L; Chen, X; Jullien, A; Lopez-Martens, R</p> <p>2009-12-01</p> <p>We demonstrate arbitrary carrier-envelope (CE) phase control of femtosecond laser pulses by an acousto-optic programmable dispersive filter (AOPDF), with an accuracy better than pi/100 at a repetition rate of 1 kHz. We also demonstrate, for the first time to the best of our knowledge, 15 Hz closed-loop CE phase stabilization using an AOPDF inside a 1 kHz chirped pulse amplifier to correct for slow CE phase drifts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/2333/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/2333/report.pdf"><span>Tritium migration from a low-level radioactive-waste disposal site near Chicago, Illinois</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nicholas, J.R.; Healy, R.W.</p> <p>1988-01-01</p> <p>This paper describes the results of a study to determine the geologic and hydrologic factors that control migration of tritium from a closed, low-level radioactive-waste disposal site. The disposal site, which operated from 1943 to mid1949, contains waste generated by research activities at the world's first nuclear reactors. Tritium has migrated horizontally at least 1,300 feet northward in glacial drift and more than 650 feet in the underlying dolomite. Thin, gently sloping sand layers in an otherwise clayey glacial drift are major conduits for ground-water flow and tritium migration in a perched zone beneath the disposal site. Tritium concentrations in the drift beneath the disposal site exceed 100,000 nanocuries per liter. Regional horizontal joints in the dolomite are enlarged by solution and are the major conduits for ground-water flow and tritium migration in the dolomite. A weathered zone at the top of the dolomite also is a pathway for tritium migration. The maximum measured tritium concentration in the dolomite is 29.4 nanocuries per liter. Fluctuations of tritium concentration in the dolomite are the result of dilution by seasonal recharge from the drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4907591','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4907591"><span>Transformation of BCC and B2 High Temperature Phases to HCP and Orthorhombic Structures in the Ti-Al-Nb System. Part II: Experimental TEM Study of Microstructures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bendersky, L. A.; Boettinger, W. J.</p> <p>1993-01-01</p> <p>Possible transformation paths that involve no long range diffusion and their corresponding microstructural details were predicted by Bendersky, Roytburd, and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 561 (1993)] for Ti-Al-Nb alloys cooled from the high temperature BCC/B2 phase field into close-packed orthorhombic or hexagonal phase fields. These predictions were based on structural and symmetry relations between the known phases. In the present paper experimental TEM results show that two of the predicted transformation paths are indeed followed for different alloy compositions. For Ti-25Al-12.5Nb (at%), the path includes the formation of intermediate hexagonal phases, A3 and DO19, and subsequent formation of a metastable domain structure of the low-temperature O phase. For alloys close to Ti-25Al-25Nb (at%), the path involves an intermediate B19 structure and subsequent formation of a translational domain structure of the O phase. The path selection depends on whether B2 order forms in the high temperature cubic phase prior to transformation to the close-packed structure. The paper also analyzes the formation of a two-phase modulated microstructure during long term annealing at 700 °C. The structure forms by congruent ordering of the DO19 phase to the O phase, and then reprecipitation of the DO19 phase, possibly by a spinodal mechanism. The thermodynamics underlying the path selection and the two-phase formation are also discussed. PMID:28053488</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000095575&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000095575&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DGlobal%2Bwarming"><span>Global Warming Estimation from MSU: Correction for Drift and Calibration Errors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Einaudi, Franco (Technical Monitor)</p> <p>2000-01-01</p> <p>Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have about 7am/7pm orbital geometry) and afternoon satellites (NOAA 7, 9, 11 and 14 that have about 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error. We find we can decrease the global temperature trend by about 0.07 K/decade. In addition there are systematic time dependent errors present in the data that are introduced by the drift in the satellite orbital geometry arises from the diurnal cycle in temperature which is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observations made in the MSU Ch 1 (50.3 GHz) support this approach. The error is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the errors on the global temperature trend. In one path the entire error is placed in the am data while in the other it is placed in the pm data. Global temperature trend is increased or decreased by about 0.03 K/decade depending upon this placement. Taking into account all random errors and systematic errors our analysis of MSU observations leads us to conclude that a conservative estimate of the global warming is 0. 11 (+-) 0.04 K/decade during 1980 to 1998.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010067274','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010067274"><span>X-33 LH2 Tank Failure Investigation Findings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Niedermeyer, M.</p> <p>2001-01-01</p> <p>The X-33 liquid hydrogen tank failure investigation found the following: (1) The inner skin microcracked and hydrogen infiltrated into it; (2) The cracks grew larger under pressure; (3) When pressure was removed, the cracks closed slightly; (4) When the tank was drained and warmed, the cracks closed and blocked the leak path; (5) Foreign object debris (FOD) and debond areas provided an opportunity for a leak path; and (6) There is still hydrogen in the other three lobes today.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4174538','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4174538"><span>APPARATUS FOR ARC WELDING</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Lingafelter, J.W.</p> <p>1960-04-01</p> <p>An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995ApOpt..34.4373M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995ApOpt..34.4373M"><span>Stray magnetic-field response of linear birefringent optical current sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacDougall, Trevor W.; Hutchinson, Ted F.</p> <p>1995-07-01</p> <p>It is well known that the line integral, describing Faraday rotation in an optical medium, reduces to zero at low frequencies for a closed path that does not encircle a current source. If the closed optical path possesses linear birefringence in addition to Faraday rotation, the cumulative effects on the state of polarization result in a response to externally located current-carrying conductors. This effect can induce a measurable error of the order of 0.3% during certain steady-state operating conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........73S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........73S"><span>Kilometer-Spaced GNSS Array for Ionospheric Irregularity Monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Yang</p> <p></p> <p>This dissertation presents automated, systematic data collection, processing, and analysis methods for studying the spatial-temporal properties of Global Navigation Satellite Systems (GNSS) scintillations produced by ionospheric irregularities at high latitudes using a closely spaced multi-receiver array deployed in the northern auroral zone. The main contributions include 1) automated scintillation monitoring, 2) estimation of drift and anisotropy of the irregularities, 3) error analysis of the drift estimates, and 4) multi-instrument study of the ionosphere. A radio wave propagating through the ionosphere, consisting of ionized plasma, may suffer from rapid signal amplitude and/or phase fluctuations known as scintillation. Caused by non-uniform structures in the ionosphere, intense scintillation can lead to GNSS navigation and high-frequency (HF) communication failures. With specialized GNSS receivers, scintillation can be studied to better understand the structure and dynamics of the ionospheric irregularities, which can be parameterized by altitude, drift motion, anisotropy of the shape, horizontal spatial extent and their time evolution. To study the structuring and motion of ionospheric irregularities at the sub-kilometer scale sizes that produce L-band scintillations, a closely-spaced GNSS array has been established in the auroral zone at Poker Flat Research Range, Alaska to investigate high latitude scintillation and irregularities. Routinely collecting low-rate scintillation statistics, the array database also provides 100 Hz power and phase data for each channel at L1/L2C frequency. In this work, a survey of seasonal and hourly dependence of L1 scintillation events over the course of a year is discussed. To efficiently and systematically study scintillation events, an automated low-rate scintillation detection routine is established and performed for each day by screening the phase scintillation index. The spaced-receiver technique is applied to cross-correlated phase and power measurements from GNSS receivers. Results of horizontal drift velocities and anisotropy ellipses derived from the parameters are shown for several detected events. Results show the possibility of routinely quantifying ionospheric irregularities by drifts and anisotropy. Error analysis on estimated properties is performed to further evaluate the estimation quality. Uncertainties are quantified by ensemble simulation of noise on the phase signals carried through to the observations of the spaced-receiver linear system. These covariances are then propagated through to uncertainties on drifts. A case study of a single scintillating satellite observed by the array is used to demonstrate the uncertainty estimation process. The distributed array is used in coordination with other measuring techniques such as incoherent scatter radar and optical all-sky imagers. These scintillations are correlated with auroral activity, based on all-sky camera images. Measurements and uncertainty estimates made over a 30-minute period are made and compared to a collocated incoherent scatter radar, and show good agreement in horizontal drift speed and direction during periods of scintillation for cases when the characteristic velocity is less than the drift velocity. The methods demonstrated are extensible to other zones and other GNSS arrays of varying size, number, ground distribution, and transmitter frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFMGP21A0020C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFMGP21A0020C"><span>IODP Expedition 303 (North Atlantic): Excursions and Reversals in the Brunhes and Matuyama Chrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Channell, J. E.; Mazaud, A.; Stoner, J. S.</p> <p>2005-12-01</p> <p>The primary objective of IODP Expedition 303 (Sept.-Nov., 2004) was to recover complete and continuous records of Pliocene-Quaternary millennial-scale environmental and geomagnetic variability, and place these records into high-resolution isotopic and magnetic stratigraphies (including relative paleointensity). Some of the Exp. 303 site locations (Orphan Knoll, Eirik and Gardar Drifts, and DSDP Site 609) have already been instrumental in developing marine records of suborbital climate variability for the last climate cycle, and the goal of Exp. 303 was to extend the records back through the Quaternary and into the Pliocene. High mean sedimentation rates (15-20 cm/ky) at sites located on Orphan Knoll (Site U1302/3), Eirik Drift (Sites U1305 and U1306) and Gardar Drift (Site U1304) have resulted in shipboard records of excursions and reversals in the Brunhes and Matuyama Chrons. Site U1308 (DSDP Site 609) has lower mean sedimentation rate (7.9 cm/kyr) and extends the record into the Gauss Chron to ~3.1 Ma. Initial u-channel magnetic data support the existence of a number of polarity excursions in the Matuyama Chron, but only a single polarity excursion (Iceland Basin Event) has so far been observed in the Brunhes Chron. The Matuyama-Brunhes (M-B) polarity reversal yields virtual geomagnetic polar (VGP) paths that are reminiscent of those recovered from the northern Gardar and Bjorn drifts during ODP Leg 162. VGP clusters in the South Atlantic and off NE Asia accompany a Pacific loop, in what appears to be a repetitive but complex pattern for the M-B transition recorded in 9 holes from three Exp. 303 North Atlantic sites.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1627L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1627L"><span>Occurrence Locations, Dipole Tilt Angle Effects, and Plasma Cloud Drift Paths of Polar Cap Neutral Density Anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, C. S.; Sutton, E. K.; Huang, C. Y.; Cooke, D. L.</p> <p>2018-02-01</p> <p>Polar cap neutral density anomaly (PCNDA) with large mass density enhancements over the background has been frequently observed in the polar cap during magnetic storms. By tracing field lines to the magnetosphere from the polar ionosphere, we divide the polar cap into two regions, an open field line (OFL) region with field lines connecting to the magnetopause boundary and a distant tail field line (TFL) region threaded with magnetotail lobe field lines. A statistical study of neutral density observed by the Challenging Minisatellite Payload satellite during major magnetic storms with Dst < -100 from July 2001 to 2006 indicates that over 85% of density anomalies were detected in the TFL region, at about 18° to 25° equatorward the center of the OFL region. PCNDAs were frequently accompanied by plasma clouds with peak density greater than 105 #/cm3. Modeling of plasma cloud drift paths suggests that plasma clouds originating in the dayside ionosphere could convect through the OFL region following the zero-potential line and reach the PCNDA locations. Plasma clouds could become stagnate in the TFL region, allowing a long duration of collisions with the neutral gas and possibly contributing to heating of PCNDAs. The PCNDA observations are interpreted as evidence that traveling atmospheric disturbance could be generated in the nightside polar cap. From the PCNDA size and speed of sound at 400 km, we derive an initial energy deposition duration for producing traveling atmospheric disturbance in the range from 0.5 to 2.5 hr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750000095','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750000095"><span>Simple and effective method to lock buoy position to ocean currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vachon, W. A.; Dahlen, J. M.</p> <p>1975-01-01</p> <p>Window-shade drogue, used with drifting buoys to keep them moving with current at speed as close to that of current as possible, has drag coefficient of 1.93 compared to maximum of 1.52 for previous drogues. It is remarkably simple to construct, use, and store.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.474.3090O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.474.3090O"><span>Diffusion-plus-drift models for the mass leakage from centrifugal magnetospheres of magnetic hot-stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Owocki, Stanley P.; Cranmer, Steven R.</p> <p>2018-03-01</p> <p>In the subset of luminous, early-type stars with strong, large-scale magnetic fields and moderate to rapid rotation, material from the star's radiatively driven stellar wind outflow becomes trapped by closed magnetic loops, forming a centrifugally supported, corotating magnetosphere. We present here a semi-analytic analysis of how this quasi-steady accumulation of wind mass can be balanced by losses associated with a combination of an outward, centrifugally driven drift in the region beyond the Kepler co-rotation radius, and an inward/outward diffusion near this radius. We thereby derive scaling relations for the equilibrium spatial distribution of mass, and the associated emission measure for observational diagnostics like Balmer line emission. We discuss the potential application of these relations for interpreting surveys of the emission line diagnostics for OB stars with centrifugally supported magnetospheres. For a specific model of turbulent field-line-wandering rooted in surface motions associated with the iron opacity bump, we estimate values for the associated diffusion and drift coefficients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4752937','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4752937"><span>Spatially-global integration of closed, fragmented contours by finding the shortest-path in a log-polar representation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kwon, TaeKyu; Agrawal, Kunal; Li, Yunfeng; Pizlo, Zygmunt</p> <p>2015-01-01</p> <p>Finding the occluding contours of objects in real 2D retinal images of natural 3D scenes is done by determining, which contour fragments are relevant, and the order in which they should be connected. We developed a model that finds the closed contour represented in the image by solving a shortest path problem that uses a log-polar representation of the image; the kind of representation known to exist in area V1 of the primate cortex. The shortest path in a log-polar representation favors the smooth, convex and closed contours in the retinal image that have the smallest number of gaps. This approach is practical because finding a globally-optimal solution to a shortest path problem is computationally easy. Our model was tested in four psychophysical experiments. In the first two experiments, the subject was presented with a fragmented convex or concave polygon target among a large number of unrelated pieces of contour (distracters). The density of these pieces of contour was uniform all over the screen to minimize spatially-local cues. The orientation of each target contour fragment was randomly perturbed by varying the levels of jitter. Subjects drew a closed contour that represented the target’s contour on a screen. The subjects’ performance was nearly perfect when the jitter-level was low. Their performance deteriorated as jitter-levels were increased. The performance of our model was very similar to our subjects’. In two subsequent experiments, the subject was asked to discriminate a briefly-presented egg-shaped object while maintaining fixation at several different positions relative to the closed contour of the shape. The subject’s discrimination performance was affected by the fixation position in much the same way as the model’s. PMID:26241462</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150008358','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150008358"><span>Plasma in Saturn's Nightside Magnetosphere and the Implications for Global Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McAndrews, H.J.; Thomsen, M.F.; Arridge, C.S.; Jackman, C.M.; Wilson, R.J.; Henderson, M.G.; Tokar, R.L.; Khurana, K.K.; Sittler, E. C.; Coates, A.J.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150008358'); toggleEditAbsImage('author_20150008358_show'); toggleEditAbsImage('author_20150008358_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150008358_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150008358_hide"></p> <p>2009-01-01</p> <p>We present a bulk ion flow map from the nightside, equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50RS. The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet. Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low-density population. Flux-tube content is conserved below a limit defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass-release are evaluated using measured densities, angular velocities and magnetic field strength. The results suggest that for the relatively dense ion populations detectable by the ion mass spectrometer (IMS), the condition for flux-tube breakage has not yet been exceeded. However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass-loss and subsequently return to the inner magnetosphere significantly depleted of plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22402680-incorporating-photon-recycling-analytical-drift-diffusion-model-high-efficiency-solar-cells','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22402680-incorporating-photon-recycling-analytical-drift-diffusion-model-high-efficiency-solar-cells"><span>Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lumb, Matthew P.; Naval Research Laboratory, Washington, DC 20375; Steiner, Myles A.</p> <p></p> <p>The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close tomore » the fundamental efficiency limit.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24108620','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24108620"><span>How to Collect National Institute of Standards and Technology (NIST) Traceable Fluorescence Excitation and Emission Spectra.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gilmore, Adam Matthew</p> <p>2014-01-01</p> <p>Contemporary spectrofluorimeters comprise exciting light sources, excitation and emission monochromators, and detectors that without correction yield data not conforming to an ideal spectral response. The correction of the spectral properties of the exciting and emission light paths first requires calibration of the wavelength and spectral accuracy. The exciting beam path can be corrected up to the sample position using a spectrally corrected reference detection system. The corrected reference response accounts for both the spectral intensity and drift of the exciting light source relative to emission and/or transmission detector responses. The emission detection path must also be corrected for the combined spectral bias of the sample compartment optics, emission monochromator, and detector. There are several crucial issues associated with both excitation and emission correction including the requirement to account for spectral band-pass and resolution, optical band-pass or neutral density filters, and the position and direction of polarizing elements in the light paths. In addition, secondary correction factors are described including (1) subtraction of the solvent's fluorescence background, (2) removal of Rayleigh and Raman scattering lines, as well as (3) correcting for sample concentration-dependent inner-filter effects. The importance of the National Institute of Standards and Technology (NIST) traceable calibration and correction protocols is explained in light of valid intra- and interlaboratory studies and effective spectral qualitative and quantitative analyses including multivariate spectral modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1313556-nonlinear-elm-simulations-based-nonideal-peelingballooning-model-using-bout++-code','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1313556-nonlinear-elm-simulations-based-nonideal-peelingballooning-model-using-bout++-code"><span>Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Xu, X. Q.; Dudson, B. D.; Snyder, P. B.; ...</p> <p>2011-09-23</p> <p>A minimum set of equations based on the peeling–ballooning (P–B) model with nonideal physics effects (diamagnetic drift, E × B drift, resistivity and anomalous electron viscosity) is found to simulate pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Linear simulations of P–B modes find good agreement in growth rate and mode structure with ELITE calculations. The influence of the E × B drift, diamagnetic drift, resistivity, anomalous electron viscosity, ion viscosity and parallel thermal diffusivity on P–B modes is being studied; we find that (1) the diamagnetic drift and Emore » × B drift stabilize the P–B mode in a manner consistent with theoretical expectations; (2) resistivity destabilizes the P–B mode, leading to resistive P–B mode; (3) anomalous electron and parallel ion viscosities destabilize the P–B mode, leading to a viscous P–B mode; (4) perpendicular ion viscosity and parallel thermal diffusivity stabilize the P–B mode. With addition of the anomalous electron viscosity under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron perpendicular thermal diffusivity, or the Prandtl number is close to unity, it is found from nonlinear simulations using a realistic high Lundquist number that the pedestal collapse is limited to the edge region and the ELM size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs. The estimated island size is consistent with the size of fast pedestal pressure collapse. In the stable α-zones of ideal P–B modes, nonlinear simulations of viscous ballooning modes or current-diffusive ballooning mode (CDBM) for ITER H-mode scenarios are presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29426158','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29426158"><span>First attempts to obtain a reference drift curve for traditional olive grove's plantations following ISO 22866.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gil, Emilio; Llorens, Jordi; Gallart, Montserrat; Gil-Ribes, Jesús A; Miranda-Fuentes, Antonio</p> <p>2018-06-15</p> <p>The current standard for the field measurements of spray drift (ISO 22866) is the only official standard for drift measurements in field conditions for all type of crops, including bushes and trees. A series of field trials following all the requirements established in the standard were arranged in a traditional olive grove in Córdoba (south of Spain). The aims of the study were to evaluate the applicability of the current standard procedure to the particular conditions of traditional olive trees plantations, to evaluate the critical requirements for performing the tests and to obtain a specific drift curve for such as important and specific crop as olive trees in traditional plantations, considering the enormous area covered by this type of crop all around the world. Results showed that the field trials incur a very complex process due to the particular conditions of the crop and the very precise environmental requirements. Furthermore, the trials offered a very low level of repeatability as the drift values varied significantly from one spray application to the next, with the obtained results being closely related to the wind speed, even when considering the standard minimum value of 1 m·s -1 . The collector's placement with respect to the position of the isolated trees was determined as being critical since this substantially modifies the ground deposit in the first 5 m. Even though, a new drift curve for olive trees in traditional plantation has been defined, giving an interesting tool for regulatory aspects. Conclusions indicated that a deep review of the official standard is needed to allow its application to the most relevant orchard/fruit crops. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3978194','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3978194"><span>Evolution of advertisement calls in African clawed frogs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tobias, Martha L.; Evans, Ben J.; Kelley, Darcy B.</p> <p>2014-01-01</p> <p>Summary For most frogs, advertisement calls are essential for reproductive success, conveying information on species identity, male quality, sexual state and location. While the evolutionary divergence of call characters has been examined in a number of species, the relative impacts of genetic drift or natural and sexual selection remain unclear. Insights into the evolutionary trajectory of vocal signals can be gained by examining how advertisement calls vary in a phylogenetic context. Evolution by genetic drift would be supported if more closely related species express more similar songs. Conversely, a poor correlation between evolutionary history and song expression would suggest evolution shaped by natural or sexual selection. Here, we measure seven song characters in 20 described and two undescribed species of African clawed frogs (genera Xenopus and Silurana) and four populations of X. laevis. We identify three call types — click, burst and trill — that can be distinguished by click number, call rate and intensity modulation. A fourth type is biphasic, consisting of two of the above. Call types vary in complexity from the simplest, a click, to the most complex, a biphasic call. Maximum parsimony analysis of variation in call type suggests that the ancestral type was of intermediate complexity. Each call type evolved independently more than once and call type is typically not shared by closely related species. These results indicate that call type is homoplasious and has low phylogenetic signal. We conclude that the evolution of call type is not due to genetic drift, but is under selective pressure. PMID:24723737</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020044823','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020044823"><span>X-33 LH2 Tank Failure Investigation Findings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Niedermeyer, Melinda; Munafo, Paul (Technical Monitor)</p> <p>2002-01-01</p> <p>This viewgraph presentation gives an overview of the X-33 LH2 tank failure investigation findings. The conclusions of the investigation include the following: (1) the inner skin microcracked and hydrogen infiltrated; (2) the cracks grew larger under pressure; (3) when pressure was removed, the cracks closed slightly; (4) when the tank was drained and warmed, the cracks closed and blocked the leak path; (5) FOD and debond areas provided an opportunity for a leak path; and (6) there is still hydrogen in the the other three lobes today.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002cosp...34E1562B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002cosp...34E1562B"><span>Space Weather Effects on the Dynamics of Equatorial F Region Irregularities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhattacharyya, A.; Basu, S.; Groves, K.; Valladares, C.; Sheehan, R.</p> <p></p> <p>Space weather effects on transionospheric radio waves used for navigation and communication may be divided into two categories depending on the spatial scale size of the ionospheric perturbation produced by such effects. For large-scale (> 10 km) perturbations in the ionospheric plasma density, there are changes in the excess time delay for a radio wave signal, which propagates through the ionosphere, while small scale (< 1 m) structures or irregularities in the ionosphere may give rise tok amplitude and phase scintillations on UHF/L-band radio waves, resulting in loss of data, cycle slips and loss of phase lock for signals used in communication/navigation systems. In the equatorial region, where such effects may be severe, space weather effects on the dynamics of equatorial spread F (ESF) irregularities are studied from two different angles. The first one deals with the effect of magnetic activity on the generation of ESF irregularities by helping or hindering the growth of the Rayleigh Taylor (R-T) instability in the post-sunset equatorial F region. For this purpose, spaced receiver observations of scintillations on a UHF signal transmitted from a geostationary satellite and recorded near the dip equator, are used to establish the `age' of the irregularities. This is necessary because the occurrence of scintillations, particularly in the post midnight period, may also be due to irregularities which drift into the path of the radio wave signal, after having been generated more than 3 hours before the actual observation of scintillations. In order to associate the generation of irregularities with major changes in space weather, a parameter that is a measure of random variations in irregularity drift speed is computed from spaced receiver scintillation data. A large value of this parameter is usually a signature of random variations in irregularity drift due to polarization electric fields associated with freshly generated irregularities. Once these electric fields decay, the irregularities drift with the background plasma. This allows a study of the other effect of space weather on the dynamics of equatorial F region irregularities, viz. magnetically disturbed ionospheric drifts in the equatorial region. The drifts estimated for magnetically quiet days with ESF, within a period of a month, display far less variability than the quiet time variability for non-ESF days, thus making it possible to quantify perturbations in irregularity drift due to disturbance dynamo electric fields and/or prompt penetration of transient magnetospheric electric fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1985/4102/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1985/4102/report.pdf"><span>Ground-water movement and effects of coal strip mining on water quality of high-wall lakes and aquifers in the Macon-Huntsville area, north- central Missouri</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hall, D.C.; Davis, R.E.</p> <p>1986-01-01</p> <p>Glacial drift and Pennsylvanian bedrock were mixed together forming spoil during pre-reclamation strip mining for coal in north-central Missouri. This restructuring of the land increases the porosity of the material, and increases aqueous concentrations of many dissolved constituents. Median sodium and bicarbonate concentrations were slightly greater, calcium 5 times greater, magnesium 6 times greater, manganese 15 times greater, iron 19 times greater, and sulfate 24 times greater in water from spoil than in water from glacial drift. Median potassium concentrations were slightly greater, and chloride concentrations were two times greater in water from glacial drift than in water from spoil. Water types in glacial drift and bedrock were mostly sodium bicarbonate and calcium bicarbonate; in spoil and lakes in the spoil, the water types were mostly calcium sulfate. Median pH values in water from spoil were 6.6, as compared to 7.4 in water from glacial drift and 9.0 in water from bedrock. Neutralization of acid by carbonate rocks causes the moderate pH values in water from spoil; a carbonate system closed to the atmosphere may result in alkaline pH values in bedrock. Transmissivities generally are greatest for spoil, and decrease in the following order: alluvium, glacial drift, and bedrock. Recharge to spoil is from precipitation, lateral flow from glacial drift, and lateral and vertical flow from bedrock. The rate of recharge to the aquifers is unknown, but probably is small. Groundwater discharge from the glacial drift, bedrock, and spoil is to alluvium. The direction of flow generally was from high-wall lakes in the spoil toward East Fork Little Chariton River or South Fork Claybank Creek. Significant differences (95% confidence level) in values and concentrations of aqueous constituents between spoil areas mined at different times (1940, 1952, and 1968) were obtained for pH, calcium, magnesium, manganese, sulfate, chloride, and dissolved solids, but not for iron. These differences are attributed to local variations in the geohydrologic system rather than spoil age. (Lantz-PTT)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/862879','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/862879"><span>Vapor concentration monitor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Bayly, John G.; Booth, Ronald J.</p> <p>1977-01-01</p> <p>An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9547799','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9547799"><span>Psychophysics of reading. XVII. Low-vision performance with four types of electronically magnified text.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Harland, S; Legge, G E; Luebker, A</p> <p>1998-03-01</p> <p>Most people with low vision need magnification to read. Page navigation is the process of moving a magnifier during reading. Modern electronic technology can provide many alternatives for navigating through text. This study compared reading speeds for four methods of displaying text. The four methods varied in their page-navigation demands. The closed-circuit television (CCTV) and MOUSE methods involved manual navigation. The DRIFT method (horizontally drifting text) involved no manual navigation, but did involve both smooth-pursuit and saccadic eye movements. The rapid serial visual presentation (RSVP) method involved no manual navigation, and relatively few eye movements. There were 7 normal subjects and 12 low-vision subjects (7 with central-field loss, CFL group, and 5 with central fields intact, CFI group). The subjects read 70-word passages at speeds that yielded good comprehension. Taking the CCTV reading speed as a benchmark, neither the normal nor low-vision subjects had significantly different speeds with the MOUSE method. As expected from the reduced navigational demands, normal subjects read faster with the DRIFT method (85% faster) and the RSVP method (169%). The CFI group read significantly faster with DRIFT (43%) and RSVP (38%). The CFL group showed no significant differences in reading speed for the four methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19672760','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19672760"><span>Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hewitt, Andrew J; Solomon, Keith R; Marshall, E J P</p> <p>2009-01-01</p> <p>A wind tunnel atomization study was conducted to measure the emission droplet size spectra for water and Glyphos (a glyphosate formulation sold in Colombia) + Cosmo-flux sprays for aerial application to control coca and poppy crops in Colombia. The droplet size spectra were measured in a wind tunnel for an Accu-Flo nozzle (with 16 size 0.085 [2.16 mm] orifices), under appropriate simulated aircraft speeds (up to 333 km/h), using a laser diffraction instrument covering a dynamic size range for droplets of 0.5 to 3,500 microm. The spray drift potential of the glyphosate was modeled using the AGDISP spray application and drift model, using input parameters representative of those occurring in Colombia for typical aerial application operations. The droplet size spectra for tank mixes containing glyphosate and Cosmo-Flux were considerably finer than water and became finer with higher aircraft speeds. The tank mix with 44% glyphosate had a D(v0.5) of 128 microm, while the value at the 4.9% glyphosate rate was 140 microm. These are classified as very fine to fine sprays. Despite being relatively fine, modeling showed that the droplets would not evaporate as rapidly as most similarly sized agricultural sprays because the nonvolatile proportion of the tank mix (active and inert adjuvant ingredients) was large. Thus, longer range drift is small and most drift that does occur will deposit relatively close to the application area. Drift will only occur downwind and, with winds of velocity less than the modeled maximum of 9 km/h, the drift distance would be substantially reduced. Spray drift potential might be additionally reduced through various practices such as the selection of nozzles, tank mix adjuvants, aircraft speeds, and spray pressures that would produce coarser sprays. Species sensitivity distributions to glyphosate were constructed for plants and amphibians. Based on modeled drift and 5th centile concentrations, appropriate no-spray buffer zones (distance from the end of the spray boom as recorded electronically +/-5%) for protection of sensitive plants were 50-120 m for coca spray scenarios and considerably lower for poppy spray scenarios. The equivalent buffer zone for amphibia was 5 m. The low toxicity of glyphosate to humans suggests that these aerial applications are not a concern for human health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..595A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..595A"><span>Sodium Ion Dynamics in the Magnetospheric Flanks of Mercury</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aizawa, Sae; Delcourt, Dominique; Terada, Naoki</p> <p>2018-01-01</p> <p>We investigate the transport of planetary ions in the magnetospheric flanks of Mercury. In situ measurements from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft show evidences of Kelvin-Helmholtz instability development in this region of space, due to the velocity shear between the downtail streaming flow of solar wind originating protons in the magnetosheath and the magnetospheric populations. Ions that originate from the planet exosphere and that gain access to this region of space may be transported across the magnetopause along meandering orbits. We examine this transport using single-particle trajectory calculations in model Magnetohydrodynamics simulations of the Kelvin-Helmholtz instability. We show that heavy ions of planetary origin such as Na+ may experience prominent nonadiabatic energization as they <fi>E</fi> × <fi>B</fi> drift across large-scale rolled up vortices. This energization is controlled by the characteristics of the electric field burst encountered along the particle path, the net energy change realized corresponding to the maximum <fi>E</fi> × <fi>B</fi> drift energy. This nonadiabatic energization also is responsible for prominent scattering of the particles toward the direction perpendicular to the magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PSST...23f5040H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PSST...23f5040H"><span>Effect of electron Monte Carlo collisions on a hybrid simulation of a low-pressure capacitively coupled plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hwang, Seok Won; Lee, Ho-Jun; Lee, Hae June</p> <p>2014-12-01</p> <p>Fluid models have been widely used and conducted successfully in high pressure plasma simulations where the drift-diffusion and the local-field approximation are valid. However, fluid models are not able to demonstrate non-local effects related to large electron energy relaxation mean free path in low pressure plasmas. To overcome this weakness, a hybrid model coupling electron Monte Carlo collision (EMCC) method with the fluid model is introduced to obtain precise electron energy distribution functions using pseudo-particles. Steady state simulation results by a one-dimensional hybrid model which includes EMCC method for the collisional reactions but uses drift-diffusion approximation for electron transport in a fluid model are compared with those of a conventional particle-in-cell (PIC) and a fluid model for low pressure capacitively coupled plasmas. At a wide range of pressure, the hybrid model agrees well with the PIC simulation with a reduced calculation time while the fluid model shows discrepancy in the results of the plasma density and the electron temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900042566&hterms=continental+drift&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcontinental%2Bdrift','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900042566&hterms=continental+drift&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcontinental%2Bdrift"><span>A preliminary estimate of geoid-induced variations in repeat orbit satellite altimeter observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brenner, Anita C.; Beckley, B. D.; Koblinsky, C. J.</p> <p>1990-01-01</p> <p>Altimeter satellites are often maintained in a repeating orbit to facilitate the separation of sea-height variations from the geoid. However, atmospheric drag and solar radiation pressure cause a satellite orbit to drift. For Geosat this drift causes the ground track to vary by + or - 1 km about the nominal repeat path. This misalignment leads to an error in the estimates of sea surface height variations because of the local slope in the geoid. This error has been estimated globally for the Geosat Exact Repeat Mission using a mean sea surface constructed from Geos 3 and Seasat altimeter data. Over most of the ocean the geoid gradient is small, and the repeat-track misalignment leads to errors of only 1 to 2 cm. However, in the vicinity of trenches, continental shelves, islands, and seamounts, errors can exceed 20 cm. The estimated error is compared with direct estimates from Geosat altimetry, and a strong correlation is found in the vicinity of the Tonga and Aleutian trenches. This correlation increases as the orbit error is reduced because of the increased signal-to-noise ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP43A3623E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP43A3623E"><span>Ted Irving's legacy: recent developments on his pioneering work in paleomagnetism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Enkin, R. J.; Opdyke, N. D.; Kent, D. V.; Frankel, H. R.; Evans, D. A.; Geissman, J. W.</p> <p>2014-12-01</p> <p>Edward (Ted) Irving (1927-2014) was one of the principal developers of paleomagnetism and an early champion of continental drift. Through careful multidisciplinary research and with great insight, he pioneered many aspects of paleomagnetism which continue to be actively researched. Irving was convinced of the reality of continental drift by 1954 and provided compelling arguments for its support in his classic 1964 textbook, but thought it would take the rest of his career to convince the rest of the scientific community. With the acceptance of plate tectonics in the late 1960s, he then applied his paleomagnetic tools to study young rocks (mid-ocean ridges), old rocks (the Laurentian shield), and mobile belts (the Appalachians and the Cordillera). In this poster we highlight recent work on several of his methods, results and ideas. Topics will include spherical statistics and paleosecular variation, the geomagnetic polarity time scale and the Kiaman superchron, paleoclimatic tests of paleogeography, compilation of paleomagnetic poles and the definition of apparent polar wander paths, and the paleogeography of cratons (e.g., Pangea) and mobile belts (e.g., Baja BC).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.H51A0308M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.H51A0308M"><span>Vapor Transport Through Fractures and Other High-Permeability Paths: Its Role in the Drift Scale Test at Yucca Mountain, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mukhopadhyay, S.; Tsang, Y. W.</p> <p>2001-12-01</p> <p>Heating unsaturated fractured tuff sets off a series of complicated thermal-hydrological (TH) processes, which result in large-scale redistribution of moisture in the host rock. Moisture redistribution arises from boiling of water near heat sources, transport of vapor away from those heat sources, condensation of that vapor in cooler rock, and subsequent gravity drainage of condensate through fractures. Vapor transport through high-permeability paths, which include both the fractures in the rock and other conduits, contributes to the evolution of these TH processes in two ways. First, the highly permeable natural fractures provide easy passage for vapor away from the heat sources. Second, these fractures and other highly permeable conduits allow vapor (and the associated energy) to escape the rock through open boundaries of the test domain. The overall impact of vapor transport on the evolution of the TH processes can be more easily understood in the context of the Drift Scale Test (DST), the largest ever in situ heater test in unsaturated fractured tuff. The DST, in which a large volume of rock has been heated for four years now, is located in the middle nonlithophysal (Tptpmn) stratigraphic unit of Yucca Mountain, Nevada. The fractured tuff in Tptpmn contains many well-connected fractures. In the DST, heating is provided by nine cannister heaters placed in a five-meter-diameter Heated Drift (HD) and fifty wing heaters installed orthogonal to the axis of the HD. The test has many instrumentation boreholes, some of which are not sealed by packers or grout and may provide passage for vapor and energy. Of these conduits, the boreholes housing the wing heaters are most important for vapor transport because of their proximity to heat sources. While part of the vapor generated by heating moves away from the heat sources through the fractures and condenses elsewhere in the rock, the rest of the vapor, under gas-pressure difference, enters the HD by way of the high-permeability wing heater boreholes and escapes the test block through an open bulkhead that connects the HD to the outside world. We show that this vapor transport makes a significant difference in the validation of numerical models against TH processes in the DST. A huge volume of data, including changes in temperature and saturation of the rock, has been collected from the DST. Sophisticated conceptual and numerical models, based on the TOUGH2 simulator, have been developed to analyze these data and to help develop a better understanding of various aspects of coupled TH processes in unsaturated fractured tuff. In general, these models have predicted a close match between measured and simulated results, indicating a good representation of the underlying physical processes. However, there are subtle differences in the predictions from these models. Of particular interest here are two models: One in which vapor transport was considered through the natural fractures only, and the other in which vapor transport through the boreholes housing the wing heaters was included in addition to that through natural fractures. Direct statistical comparison of simulated and measured temperatures from more than 1,700 sensors yielded a mean error of 3-4oC for the first model, indicating that less heat was retained in the test block than that predicted by the model. On the other hand, a similar statistical comparison yielded a mean error of 1-2oC for the second model, suggesting that inclusion of vapor loss through the boreholes produces results closer to the measured data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2005/5081/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2005/5081/"><span>Augmenting two-dimensional hydrodynamic simulations with measured velocity data to identify flow paths as a function of depth on Upper St. Clair River in the Great Lakes basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Holtschlag, D.J.; Koschik, J.A.</p> <p>2005-01-01</p> <p>Upper St. Clair River, which receives outflow from Lake Huron, is characterized by flow velocities that exceed 7 feet per second and significant channel curvature that creates complex flow patterns downstream from the Blue Water Bridge in the Port Huron, Michigan, and Sarnia, Ontario, area. Discrepancies were detected between depth-averaged velocities previously simulated by a two-dimensional (2D) hydrodynamic model and surface velocities determined from drifting buoy deployments. A detailed ADCP (acoustic Doppler current profiler) survey was done on Upper St. Clair River during July 1–3, 2003, to help resolve these discrepancies. As part of this study, a refined finite-element mesh of the hydrodynamic model used to identify source areas to public water intakes was developed for Upper St. Clair River. In addition, a numerical procedure was used to account for radial accelerations, which cause secondary flow patterns near channel bends. The refined model was recalibrated to better reproduce local velocities measured in the ADCP survey. ADCP data also were used to help resolve the remaining discrepancies between simulated and measured velocities and to describe variations in velocity with depth. Velocity data from ADCP surveys have significant local variability, and statistical processing is needed to compute reliable point estimates. In this study, velocity innovations were computed for seven depth layers posited within the river as the differences between measured and simulated velocities. For each layer, the spatial correlation of velocity innovations was characterized by use of variogram analysis. Results were used with kriging to compute expected innovations within each layer at applicable model nodes. Expected innovations were added to simulated velocities to form integrated velocities, which were used with reverse particle tracking to identify the expected flow path near a sewage outfall as a function of flow depth. Expected particle paths generated by use of the integrated velocities showed that surface velocities in the upper layers tended to originate nearer the Canadian shoreline than velocities near the channel bottom in the lower layers. Therefore, flow paths to U.S. public water intakes located on the river bottom are more likely to be in the United States than withdrawals near the water surface. Integrated velocities in the upper layers are generally consistent with the surface velocities indicated by drifting-buoy deployments. Information in the 2D hydrodynamic model and the ADCP measurements was insufficient to describe the vertical flow component. This limitation resulted in the inability to account for vertical movements on expected flow paths through Upper St. Clair River. A three dimensional hydrodynamic model would be needed to account for these effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26078173','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26078173"><span>Liquid waveguide spectrophotometric measurement of nanomolar ammonium in seawater based on the indophenol reaction with o-phenylphenol (OPP).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hashihama, Fuminori; Kanda, Jota; Tauchi, Ami; Kodama, Taketoshi; Saito, Hiroaki; Furuya, Ken</p> <p>2015-10-01</p> <p>We describe a highly sensitive colorimetric method for the determination of nanomolar concentrations of ammonium in seawater based on the indophenol reaction with o-phenylphenol [(1,1'-biphenyl)-2-ol, abbreviated as OPP]. OPP is available as non-toxic, stable flaky crystals with no caustic odor and has some advantages over phenol in practical use. The method was established by using a gas-segmented continuous flow analyzer equipped with two types of long path liquid waveguide capillary cell, LWCCs (100 cm and 200 cm) and an UltraPath (200 cm), which have inner diameters of 0.55 mm and 2 mm, respectively. The reagent concentrations, flow rates of the pumping tubes, and reaction path and temperature were determined on the basis of a manual indophenol blue method with OPP (Kanda, Water Res. 29 (1995) 2746-2750). The sample mixed with reagents that form indophenol blue dye was measured at 670 nm. Aged subtropical surface water was used as a blank, a matrix of standards, and the carrier. The detection limits of the analytical systems with a 100 cm LWCC, a 200 cm LWCC, and a 200 cm UltraPath were 6, 4, and 4 nM, respectively. These systems had high precision (<4% at 100 nM) and a linear dynamic range up to 200 nM. Non-linear baseline drift did not occur when using the UltraPath system. This is due to the elimination of cell clogging because of the larger inner diameter of the UltraPath compared to the LWCCs. The UltraPath system is thus more suitable for long-term measurements compared with the LWCC systems. The results of the proposed sensitive colorimetry and a conventional colorimetry for the determination of seawater samples showed no significant difference. The proposed analytical systems were applied to underway surface monitoring and vertical observation in the oligotrophic South Pacific. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.U31B..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.U31B..02C"><span>The First Paleomagnetic Polar Wander Path</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Creer, K. M.</p> <p>2004-12-01</p> <p>At the end of 1952, having completed my work on the Cambridge astatic magnetometer, I was motivated to embark on a "Preliminary Paleomagnetic Survey of Rocks from the British Isles" by exciting results obtained by two fellow research students:- Jan Hospers' proposal of the axial dipole hypothesis and Ted Irving's discovery of strongly oblique Pre-Cambrian paleomagnetic directions, substantiated by the oblique Triassic directions obtained by John Clegg's group. Geologists advised me to collect from palaeontologically well dated rock formations. But these turned out to be very weakly magnetized and thereafter I concentrated on purple and dark red coloured rock formations. By the end of July 1954 I had compiled a table of nine Period-mean paleomagnetic directions spanning the last 600 Myr. I passed a copy to Keith Runcorn to include in a talk (co-authors Creer and Irving) scheduled for the August 1954 Rome Assembly of IAGA. Meanwhile, background reading took me to Gutenberg's "Internal Constitution of the Earth (1951)" where I came across (Fig 12) paths of the north pole proposed by Kreichgauer (1902) and by Koppen and Wegener (1924). This prompted me to calculate a paleomagnetic polar wander path. I presented this at the Annual Meeting of the British Association for the Advancement of Science held at Oxford on September 8th. An artist's representation of it was published in Time Magazine of September 24th 1954 where the accompanying text records that I stressed that similar work on other continents would be necessary to distinguish whether the continents had drifted independently or whether the sole mechanism had been polar wander. On my return to Cambridge, Maurice Hill informally suggested that I should indicate precision, so for each pole I calculated semi-major and minor axes of the ellipse of confidence corresponding to the radius of confidence of each mean direction. These were shown in my Ph.D. thesis, where also I calculated a paleomagnetic pole for John Graham's North American Silurian Rose Hill Formation and argued tentatively that it's location, somewhat to the east of the British Silurian pole, is qualitatively consistent withWegnerian drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1414355-performance-micromegas-based-tpc-high-energy-neutron-beam','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1414355-performance-micromegas-based-tpc-high-energy-neutron-beam"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Snyder, L.; Manning, B.; Bowden, N. S.</p> <p></p> <p>The MICROMEGAS (MICRO-MEsh GAseous Structure) charge amplification structure has found wide use in many detection applications, especially as a gain stage for the charge readout of Time Projection Chambers (TPCs). We report on the behavior of a MICROMEGAS TPC when operated in a high-energy (up to 800 MeV) neutron beam. It is found that neutron-induced reactions can cause discharges in some drift gas mixtures that are stable in the absence of the neutron beam. The discharges result from recoil ions close to the MICROMEGAS that deposit high specific ionization density and have a limited diffusion time. And for a binarymore » drift gas, increasing the percentage of the molecular component (quench gas) relative to the noble component and operating at lower pressures generally improves stability.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12927125','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12927125"><span>Clinal patterns of human Y chromosomal diversity in continental Italy and Greece are dominated by drift and founder effects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Di Giacomo, F; Luca, F; Anagnou, N; Ciavarella, G; Corbo, R M; Cresta, M; Cucci, F; Di Stasi, L; Agostiano, V; Giparaki, M; Loutradis, A; Mammi', C; Michalodimitrakis, E N; Papola, F; Pedicini, G; Plata, E; Terrenato, L; Tofanelli, S; Malaspina, P; Novelletto, A</p> <p>2003-09-01</p> <p>We explored the spatial distribution of human Y chromosomal diversity on a microgeographic scale, by typing 30 population samples from closely spaced locations in Italy and Greece for 9 haplogroups and their internal microsatellite variation. We confirm a significant difference in the composition of the Y chromosomal gene pools of the two countries. However, within each country, heterogeneity is not organized along the lines of clinal variation deduced from studies on larger spatial scales. Microsatellite data indicate that local increases of haplogroup frequencies can be often explained by a limited number of founders. We conclude that local founder or drift effects are the main determinants in shaping the microgeographic Y chromosomal diversity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1553...16D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1553...16D"><span>Bayesian parameter estimation for stochastic models of biological cell migration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dieterich, Peter; Preuss, Roland</p> <p>2013-08-01</p> <p>Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1159261-mobility-resolved-ion-selection-uniform-drift-field-ion-mobility-spectrometry-mass-spectrometry-dynamic-switching-structures-lossless-ion-manipulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1159261-mobility-resolved-ion-selection-uniform-drift-field-ion-mobility-spectrometry-mass-spectrometry-dynamic-switching-structures-lossless-ion-manipulations"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Webb, Ian K.; Garimella, Sandilya V. B.; Tolmachev, Aleksey V.</p> <p></p> <p>A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a “Tee” configuration and allows switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be deflected to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 torr. In the “dynamic mode” we show that mobility-selected ions can be switched intomore » the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. Ultimately, this development also provides the basis for e.g. the selection of specific mobilities for storage and accumulation, and key modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985JATP...47.1085T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985JATP...47.1085T"><span>Systematic ionospheric electron density tilts (SITs) at mid-latitudes and their associated HF bearing errors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tedd, B. L.; Strangeways, H. J.; Jones, T. B.</p> <p>1985-11-01</p> <p>Systematic ionospheric tilts (SITs) at midlatitudes and the diurnal variation of bearing error for different transmission paths are examined. An explanation of diurnal variations of bearing error based on the dependence of ionospheric tilt on solar zenith angle and plasma transport processes is presented. The effect of vertical ion drift and the momentum transfer of neutral winds is investigated. During the daytime the transmissions are low and photochemical processes control SITs; however, at night transmissions are at higher heights and spatial and temporal variations of plasma transport processes influence SITs. A HF ray tracing technique which uses a three-dimensional ionospheric model based on predictions to simulate SIT-induced bearing errors is described; poor correlation with experimental data is observed and the causes for this are studied. A second model based on measured vertical-sounder data is proposed. Model two is applicable for predicting bearing error for a range of transmission paths and correlates well with experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930055994&hterms=diffusion+concept&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddiffusion%2Bconcept','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930055994&hterms=diffusion+concept&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddiffusion%2Bconcept"><span>Diffusive shock acceleration - Acceleration rate, magnetic-field direction and the diffusion limit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jokipii, J. R.</p> <p>1992-01-01</p> <p>This paper reviews the concept of diffusive shock acceleration, showing that the acceleration of charged particles at a collisionless shock is a straightforward consequence of the standard cosmic-ray transport equation, provided that one treats the discontinuity at the shock correctly. This is true for arbitrary direction of the upstream magnetic field. Within this framework, it is shown that acceleration at perpendicular or quasi-perpendicular shocks is generally much faster than for parallel shocks. Paradoxically, it follows also that, for a simple scattering law, the acceleration is faster for less scattering or larger mean free path. Obviously, the mean free path can not become too large or the diffusion limit becomes inapplicable. Gradient and curvature drifts caused by the magnetic-field change at the shock play a major role in the acceleration process in most cases. Recent observations of the charge state of the anomalous component are shown to require the faster acceleration at the quasi-perpendicular solar-wind termination shock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890001714','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890001714"><span>Millimeter-wave studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, Kenneth C.</p> <p>1988-01-01</p> <p>Progress on millimeter-wave propagation experiments in Hawaii is reported. A short path for measuring attenuation in rain at 9.6, 28.8, 57.6, and 96.1 GHz is in operation. A slant path from Hilo to the top of Mauna Kea is scheduled. On this path, scattering from rain and clouds that may cause interference for satellites closely spaced in geosynchronous orbit will be measured at the same frequencies at 28.8 and 96.1 GHz. In addition the full transmission matrix will be measured at the same frequencies on the slant path. The technique and equipment used to measure the transmission matrix are described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPU11002K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPU11002K"><span>First Experiments with e-<m:mfenced close="" open="/"><m:mphantom><m:mpadded width="0pt">e-H-</m:mpadded></m:mphantom></m:mfenced> H- Plasmas: Enhanced Mode Damping and Transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kabantsev, A. A.; Thompson, K. A.; Driscoll, C. F.</p> <p>2017-10-01</p> <p>Negative Hydrogen ions are produced and confined in a room-temperature electron plasma, causing enhanced mode damping and particle transport effects. We accumulate an H- charge fraction nH-<m:mfenced close="" open="/"><m:mphantom><m:mpadded width="0pt">nH-ne 20 % </m:mpadded></m:mphantom></m:mfenced> ne 20 % in about 200 seconds, as externally excited H2 molecules undergo dissociative electron attachment in the plasma. The accumulated H- fraction causes a novel algebraic damping of diocotron mode amplitude A(t) , and the damping is coincident with an enhanced outward drift υr of the H- ions. That is, dA <m:mfenced close="" open="/"><m:mphantom><m:mpadded width="0pt"> dA dt = - α </m:mpadded></m:mphantom></m:mfenced> dt = - α , with α nH- *υr . We observe that heating the e-<m:mfenced close="" open="/"><m:mphantom><m:mpadded width="0pt">e-H-</m:mpadded></m:mphantom></m:mfenced> H- plasma terminates the enhanced damping and enhanced centrifugal separation, both of which resume when plasma re-cools by cyclotron radiation at B = 1.2T. Other interesting observations include: (1) enhanced e- cooling from collisions with H- cooled by neutrals; (2) enhanced damping of plasma waves due to e-<m:mfenced close="" open="/"><m:mphantom><m:mpadded width="0pt">e-H-</m:mpadded></m:mphantom></m:mfenced> H- collisional drag; (3) strong exponential damping of diocotron modes in a ``floppy'' nearly-pure H- plasma, created by rapid axial ejection of the electrons. Additional novel drift modes and instabilities are predicted theoretically in such a plasma. Supported by NSF/DoE Partnership Grants PHY-1414570 and DE-SC0008693.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23531709','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23531709"><span>Connectivity in a pond system influences migration and genetic structure in threespine stickleback.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Seymour, Mathew; Räsänen, Katja; Holderegger, Rolf; Kristjánsson, Bjarni K</p> <p>2013-03-01</p> <p>Neutral genetic structure of natural populations is primarily influenced by migration (the movement of individuals and, subsequently, their genes) and drift (the statistical chance of losing genetic diversity over time). Migration between populations is influenced by several factors, including individual behavior, physical barriers, and environmental heterogeneity among populations. However, drift is expected to be stronger in populations with low immigration rate and small effective population size. With the technological advancement in geological information systems and spatial analysis tools, landscape genetics now allows the development of realistic migration models and increased insight to important processes influencing diversity of natural populations. In this study, we investigated the relationship between landscape connectivity and genetic distance of threespine stickleback (Gasterosteus aculeatus) inhabiting a pond complex in Belgjarskógur, Northeast Iceland. We used two landscape genetic approaches (i.e., least-cost-path and isolation-by-resistance) and asked whether gene flow, as measured by genetic distance, was more strongly associated with Euclidean distance (isolation-by-distance) or with landscape connectivity provided by areas prone to flooding (as indicated by Carex sp. cover)? We found substantial genetic structure across the study area, with pairwise genetic distances among populations (DPS) ranging from 0.118 to 0.488. Genetic distances among populations were more strongly correlated with least-cost-path and isolation-by-resistance than with Euclidean distance, whereas the relative contribution of isolation-by-resistance and Euclidian distance could not be disentangled. These results indicate that migration among stickleback populations occurs via periodically flooded areas. Overall, this study highlights the importance of transient landscape elements influencing migration and genetic structure of populations at small spatial scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28554136','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28554136"><span>Differences between the chewing and non-chewing sides of the mandibular first molars and condyles in the closing phase during chewing in normal subjects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tomonari, Hiroshi; Kwon, Sangho; Kuninori, Takaharu; Miyawaki, Shouichi</p> <p>2017-09-01</p> <p>This study aimed to assess differences between the closing paths of the chewing and non-chewing sides of mandibular first molars and condyles during natural mastication, using standardized model food in healthy subjects. Thirty-two healthy young adults (age: 19-25 years; 22 men, 10 women) with normal occlusion and function chewed on standardized gummy jelly. Using an optoelectric jaw-tracking system with six degrees of freedom, we recorded the path of the mandibular first molars and condyles on both sides for 10 strokes during unilateral chewing. Variables were compared between the chewing side and the non-chewing side of first molars and condyles on frontal, sagittal, and horizontal views during the early-, middle- and late-closing phases. On superior/inferior displacements, the chewing side first molar and condyle were positioned superior to those on the non-chewing side during the early- and middle-closing phases. Conversely, the first molar and condyle on the non-chewing side were positioned significantly superior to those on the chewing side during the late-closing phase. On anterior/posterior displacements, the chewing side mandibular first molar and condyle were positioned significantly posterior to those on the non-chewing side throughout all closing phases. Our results showed the differences between the mandibular first molars and condyles on both sides with respect to masticatory path during natural chewing of a model food. These differences can be useful for informing initial diagnostic tests for impaired masticatory function in the clinical environment. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1367091-heat-flux-modeling-using-ion-drift-effects-diii-mode-plasmas-resonant-magnetic-perturbations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1367091-heat-flux-modeling-using-ion-drift-effects-diii-mode-plasmas-resonant-magnetic-perturbations"><span>Heat flux modeling using ion drift effects in DIII-D H-mode plasmas with resonant magnetic perturbations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wingen, Andreas; Schmitz, Oliver; Evans, Todd E.; ...</p> <p>2014-01-01</p> <p>The heat flux patterns measured in low-collisionality DIII-D H-mode plasmas strongly deviate from simultaneously measured CII emission patterns, used as indicator of particle flux, during applied resonant magnetic perturbations. While the CII emission clearly shows typical striations, which are similar to magnetic footprint patterns obtained from vacuum field line tracing, the heat flux is usually dominated by one large peak at the strike point position. The vacuum approximation, which only considers applied magnetic fields and neglects plasma response and plasma effects, cannot explain the shape of the observed heat flux pattern. One possible explanation is the effect of particle drifts.more » This is included in the field line equations and the results are discussed with reference to the measurement. Electrons and ions show di fferent drift motions at thermal energy levels in a guiding center approximation. While electrons hardly deviate from the field lines, ions can drift several centimetres away from field line flux surfaces. A model is presented in which an ion heat flux, based on the ion drift motion from various kinetic energies as they contribute to a thermal Maxwellian distribution, is calculated. The simulated heat flux is directly compared to measurements with a varying edge safety factor q95. This analysis provides evidence for the dominate e ect of high-energy ions in carrying heat from the plasma inside the separatrix to the target. High-energy ions are deposited close to the unperturbed strike line while low-energy ions can travel into the striated magnetic topology.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000083954&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000083954&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DGlobal%2Bwarming"><span>Global Warming Estimation from MSU: Correction for Drift and Calibration Errors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.</p> <p>2000-01-01</p> <p>Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have approximately 7am/7pm orbital geometry) and. afternoon satellites (NOAA 7, 9, 11 and 14 that have approximately 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error eo. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error eo. We find eo can decrease the global temperature trend by approximately 0.07 K/decade. In addition there are systematic time dependent errors ed and ec present in the data that are introduced by the drift in the satellite orbital geometry. ed arises from the diurnal cycle in temperature and ec is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error ed can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observation made in the MSU Ch 1 (50.3 GHz) support this approach. The error ec is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the error ec on the global temperature trend. In one path the entire error ec is placed in the am data while in the other it is placed in the pm data. Global temperature trend is increased or decreased by approximately 0.03 K/decade depending upon this placement. Taking into account all random errors and systematic errors our analysis of MSU observations leads us to conclude that a conservative estimate of the global warming is 0. 11 (+/-) 0.04 K/decade during 1980 to 1998.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1340773-ultra-high-resolution-ion-mobility-separations-utilizing-traveling-waves-serpentine-path-length-structures-lossless-ion-manipulations-module','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1340773-ultra-high-resolution-ion-mobility-separations-utilizing-traveling-waves-serpentine-path-length-structures-lossless-ion-manipulations-module"><span>Ultra-High Resolution Ion Mobility Separations Utilizing Traveling Waves in a 13 m Serpentine Path Length Structures for Lossless Ion Manipulations Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Deng, Liulin; Ibrahim, Yehia M.; Hamid, Ahmed M.</p> <p></p> <p>We report the development and initial evaluation of a 13-m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC and TW electrodes and positioned with a 2.75-mm inter-surface gap. Ions were effective confined between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 “U” turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, TW and RFmore » parameters. After initial optimization the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s-1, respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled e.g., isomeric sugars (Lacto-N-fucopentaose I and Lacto-N-fucopentaose II) to be baseline resolved, and peptides from a albumin tryptic digest much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multi-pass designs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6357383-anomalous-fluxes-plateau-regime-weakly-turbulent-magnetically-confined-plasma','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6357383-anomalous-fluxes-plateau-regime-weakly-turbulent-magnetically-confined-plasma"><span>Anomalous fluxes in the plateau regime for a weakly turbulent, magnetically confined plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Balescu, R.</p> <p>1990-09-01</p> <p>The anomalous particle and heat fluxes, together with the parallel electric current, are determined for a confined plasma in the plateau regime in the presence of weak electrostatic drift-wave turbulence. Proper account is taken of nonstationarity and of the finite ion Larmor radius (FLR). The quasineutrality of the drift-wave fluctuations imposes a consistency condition, by which the evaluation of the anomalous fluxes is closely related to the drift-wave dispersion equation. On the other hand, these fluxes are related to the thermodynamic forces via the poloidal fluxes. For the weak turbulence approximation considered here, a unified formulation of the anomalous transportmore » problem has been obtained, including all aspects of neoclassical theory. The complete set of transport coefficients is calculated and various relations between them are exhibited. It clearly appears, for instance, that the anomalous ion heat flux is a pure FLR effect that vanishes as the Larmor radius goes to zero. The Onsager symmetry is broken for anomalous transport. The Appendix is devoted to a general discussion of the concept of heat flux in turbulent plasmas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1296918','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1296918"><span>Investigations of SPS Orbit Drifts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Drøsdal, Lene; Bracco, Chiara; Cornelis, Karel</p> <p>2014-07-01</p> <p>The LHC is filled from the last pre-injector, the Super Proton Synchrotron (SPS), via two 3 km long transfer lines, TI 2 and TI 8. Over the LHC injection processes, a drift of the beam trajectories has been observed in TI 2 and TI 8, requiring regular correction of the trajectories, in order to ensure clean injection into the LHC. Investigations of the trajectory variations in the transfer lines showed that the main source of short term trajectory drifts are current variations of the SPS extraction septa (MSE). The stability of the power converters has been improved, but the variationsmore » are still present and further improvements are being investigated. The stability over a longer period of time cannot be explained by this source alone. The analysis of trajectory variations shows that there are also slow variations in the SPS closed orbit at extraction. A set of SPS orbit measurements has been saved and analysed. These observations will be used together with simulations and observed field errors to locate the second source of variations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993EOSTr..74..121I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993EOSTr..74..121I"><span>Weddell Sea exploration from ice station</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ice Station Weddell Group of Principal Investigators; Chief Scientists; Gordon, Arnold L.</p> <p></p> <p>On January 18, 1915, the Endurance and Sir Ernest Shackleton and his crew were stranded in the ice of the Weddell Sea and began one of the most famous drifts in polar exploration. Shackleton turned a failure into a triumph by leading all of his team to safety [Shackleton, 1919]. The drift track of the Endurance and the ice floe occupied by her stranded crew after the ship was lost on November 21, 1915, at 68°38.5‧S and 52°26.5‧W, carried the group along the western rim of the Weddell Gyre, representing a rare human presence in this region of perennial sea-ice cover.Seventy-seven years later, in 1992, the first intentional scientific Southern Ocean ice drift station, Ice Station Weddell-1 (ISW-1), was established in the western Weddell Sea by a joint effort of the United States and Russia. ISW-1 followed the track of the Endurance closely (Figure 1) and gathered an impressive array of data in this largely unexplored corner of the Southern Ocean, the western edge of the Weddell Gyre.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AMT....11..489B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AMT....11..489B"><span>Drift-corrected Odin-OSIRIS ozone product: algorithm and updated stratospheric ozone trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bourassa, Adam E.; Roth, Chris Z.; Zawada, Daniel J.; Rieger, Landon A.; McLinden, Chris A.; Degenstein, Douglas A.</p> <p>2018-01-01</p> <p>A small long-term drift in the Optical Spectrograph and Infrared Imager System (OSIRIS) stratospheric ozone product, manifested mostly since 2012, is quantified and attributed to a changing bias in the limb pointing knowledge of the instrument. A correction to this pointing drift using a predictable shape in the measured limb radiance profile is implemented and applied within the OSIRIS retrieval algorithm. This new data product, version 5.10, displays substantially better both long- and short-term agreement with Microwave Limb Sounder (MLS) ozone throughout the stratosphere due to the pointing correction. Previously reported stratospheric ozone trends over the time period 1984-2013, which were derived by merging the altitude-number density ozone profile measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II satellite instrument (1984-2005) and from OSIRIS (2002-2013), are recalculated using the new OSIRIS version 5.10 product and extended to 2017. These results still show statistically significant positive trends throughout the upper stratosphere since 1997, but at weaker levels that are more closely in line with estimates from other data records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/6250','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/6250"><span>Seasonal Abundance of Groud-Occurring Macroarthropods in Forest and Canopy Gaps in the Southern Appalachians</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Cathryn H. Greenberg; T.G. Forrest</p> <p>2003-01-01</p> <p>Arthropods compose a large proportion of biological diversity and play important ecological roles as decomposers, pollinators, predators, prey, and nutrient cyclers. We sampled ground-occurring macroarthropods in intact gaps created by wind disturbance, in salvage-logged gaps, and in closed canopy mature forest (controls) during June 1998-May 1999 using drift fences...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2705457','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2705457"><span>Measuring genetic distances between breeds: use of some distances in various short term evolution models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Laval, Guillaume; SanCristobal, Magali; Chevalet, Claude</p> <p>2002-01-01</p> <p>Many works demonstrate the benefits of using highly polymorphic markers such as microsatellites in order to measure the genetic diversity between closely related breeds. But it is sometimes difficult to decide which genetic distance should be used. In this paper we review the behaviour of the main distances encountered in the literature in various divergence models. In the first part, we consider that breeds are populations in which the assumption of equilibrium between drift and mutation is verified. In this case some interesting distances can be expressed as a function of divergence time, t, and therefore can be used to construct phylogenies. Distances based on allele size distribution (such as (δμ)2 and derived distances), taking a mutation model of microsatellites, the Stepwise Mutation Model, specifically into account, exhibit large variance and therefore should not be used to accurately infer phylogeny of closely related breeds. In the last section, we will consider that breeds are small populations and that the divergence times between them are too small to consider that the observed diversity is due to mutations: divergence is mainly due to genetic drift. Expectation and variance of distances were calculated as a function of the Wright-Malécot inbreeding coefficient, F. Computer simulations performed under this divergence model show that the Reynolds distance [57]is the best method for very closely related breeds. PMID:12270106</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhRvE..85c6106O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhRvE..85c6106O"><span>Spreading paths in partially observed social networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Onnela, Jukka-Pekka; Christakis, Nicholas A.</p> <p>2012-03-01</p> <p>Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22587148','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22587148"><span>Spreading paths in partially observed social networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Onnela, Jukka-Pekka; Christakis, Nicholas A</p> <p>2012-03-01</p> <p>Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000070394&hterms=Administration+Global&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DAdministration%2BGlobal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000070394&hterms=Administration+Global&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DAdministration%2BGlobal"><span>Detecting 1mm/Year Signals in Altimetric Global Sea Level: Effect of Atmospheric Water Vapor and Precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zlotnicki, Victor</p> <p>1999-01-01</p> <p>Several research efforts exist to use Topography Experiment (TOPEX)/ Projet d'Observatorie de Surveillance et d'Etudes Integrees de la Dynamique des Oceans (Poseidon) (T/P) to detect changes in global sea level possibly associated with climate change. This requires much better than 1 mm/yr accuracy, something that none of the instruments in T/P [or the European Remote Sensing (ERS-2) satellite, or the U.S. Navy's Geosat Follow-On (GFO) satellite] were designed for. This work focuses on the ability of the T/P microwave radiometer (TMR) to retrieve the path delay due to atmospheric water vapor along the altimeter's path with accuracy in the time changes below 1 mm/yr on global average. In collaboration with Stephen Keihm of JPL and Christopher Ruf of Pennsylvania State University, we compared TMR path delay (PD) estimates with atmospheric precipitable water (PW) from the Special Sensor Microwave Imager (SSMI) aboard the Defense Meteorological Satellite Program (DMSP) series of satellites for 1992-1998 to selected radiosondes, and we also looked at the brightness temperatures measured by TMR in the lowest 1% of the histogram. The conclusion is that TMR had a slow instrumental drift, associated with the 18-GHz channel, which causes an approximate underestimation of water vapor at a rate equivalent to 1.2 mm/yr in path delay between 1992 and 1996; this effect stopped and no drift is detected in 1997. The same study concluded that there is no detectable scale error (one which is proportional to measured vapor) in TMR. In related work, carried out with graduate student Damien Cailliau, we investigated the relative abilities of TMR, SSMI and the UP dual-frequency radar altimeter to detect rain, relative to a climatology of shipborne observations. Rain is a crucial but poorly measured variable in studies of the climate system, and a dedicated mission, Tropical Rainfall Measuring Mission (TRMM), was recently launched to measure it. However, the climatologies built over the past 10 years used passive radiometers, such as SSMI, or infrared observation from National Oceanic and Atmospheric Administration (NOAA) geostationary satellites. We concluded that the dual-frequency altimeter does an excellent job at retrieving rain on scales much smaller than the passive radiometer, and a better job at retrieving total precipitation (rain as well as snow) at high latitudes. This work improves the sea level observations by allowing better flagging of observations contaminated by rain, and more importantly, provides an alternative way to measure rainfall over the oceans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA577999','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA577999"><span>Converging Towards the Optimal Path to Extinction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-01-01</p> <p>the reproductive rate R0 should be greater than but very close to 1. However, most real diseases have R0 larger than 1.5, which translates into a...can analytically find an expression for the action along the optimal path. The expression for the action is a function of k and the reproductive number...the optimal path for a range of values of the reproductive number R0. In contrast to the prior two examples, here the action must be computed</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23263046','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23263046"><span>Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tao, Lei; Sun, Kang; Khan, M Amir; Miller, David J; Zondlo, Mark A</p> <p>2012-12-17</p> <p>A compact and portable open-path sensor for simultaneous detection of atmospheric N(2)O and CO has been developed with a 4.5 μm quantum cascade laser (QCL). An in-line acetylene (C(2)H(2)) gas reference cell allows for continuous monitoring of the sensor drift and calibration in rapidly changing field environments and thereby allows for open-path detection at high precision and stability. Wavelength modulation spectroscopy (WMS) is used to detect simultaneously both the second and fourth harmonic absorption spectra with an optimized dual modulation amplitude scheme. Multi-harmonic spectra containing atmospheric N(2)O, CO, and the reference C(2)H(2) signals are fit in real-time (10 Hz) by combining a software-based lock-in amplifier with a computationally fast numerical model for WMS. The sensor consumes ~50 W of power and has a mass of ~15 kg. Precision of 0.15 ppbv N(2)O and 0.36 ppbv CO at 10 Hz under laboratory conditions was demonstrated. The sensor has been deployed for extended periods in the field. Simultaneous N(2)O and CO measurements distinguished between natural and fossil fuel combustion sources of N(2)O, an important greenhouse gas with poorly quantified emissions in space and time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=light+AND+rays&pg=4&id=EJ770482','ERIC'); return false;" href="https://eric.ed.gov/?q=light+AND+rays&pg=4&id=EJ770482"><span>Closed Paths of Light Trapped in a Closed Fermat Curve</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dana-Picard, Thierry; Naiman, Aaron</p> <p>2002-01-01</p> <p>Geometric constructions have previously been shown that can be interpreted as rays of light trapped either in polygons or in conics, by successive reflections. The same question, trapping light in closed Fermat curves, is addressed here. Numerical methods are used to study the behaviour of the reflection points of a triangle when the degree of the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MAR.T1008H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MAR.T1008H"><span>A Non-Abelian Geometric Phase for Spin Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>H M, Bharath; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael</p> <p></p> <p>Berry's geometric phase has been used to characterize topological phase transitions. Recent works have addressed the question of whether generalizations of Berry's phase to mixed states can be used to characterize topological phase transitions. Berry's phase is essentially the geometric information stored in the overall phase of a quantum system. Here, we show that geometric information is also stored in the higher order spin moments of a quantum spin system. In particular, we show that when the spin vector of a quantum spin system with a spin 1 or higher is transported along a closed path inside the Bloch ball, the tensor of second moments picks up a geometric phase in the form of an SO(3) operator. Geometrically interpreting this phase is tantamount to defining a steradian angle for closed paths inside the Bloch ball. Typically the steradian angle is defined by projecting the path onto the surface of the Bloch ball. However, paths that pass through the center cannot be projected onto the surface. We show that the steradian angles of all paths, including those that pass through the center can be defined by projecting them onto a real projective plane, instead of a sphere. This steradian angle is equal to the geometric phase picked up by a spin system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3350916','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3350916"><span>Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fettke, Joerg; Leifels, Lydia; Brust, Henrike; Herbst, Karoline; Steup, Martin</p> <p>2012-01-01</p> <p>Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-14C]glucose 1-phosphate, [U-14C]sucrose, [U-14C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-14C]sucrose plus unlabelled equimolar glucose 1-phosphate. 14C-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced 14C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-14C]glucose 1-phosphate or adenosine-[U-14C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro 14C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells. PMID:22378944</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22378944','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22378944"><span>Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fettke, Joerg; Leifels, Lydia; Brust, Henrike; Herbst, Karoline; Steup, Martin</p> <p>2012-05-01</p> <p>Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-¹⁴C]glucose 1-phosphate, [U-¹⁴C]sucrose, [U-¹⁴C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-¹⁴C]sucrose plus unlabelled equimolar glucose 1-phosphate. C¹⁴-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced ¹⁴C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-¹⁴C]glucose 1-phosphate or adenosine-[U-¹⁴C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C¹⁴C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24187292','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24187292"><span>Assist-as-needed path control for the PASCAL rehabilitation robot.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Keller, Urs; Rauter, Georg; Riener, Robert</p> <p>2013-06-01</p> <p>Adults and children with neurological disorders often require rehabilitation therapy to improve their arm motor functions. Complementary to conventional therapy, robotic therapy can be applied. Such robots should support arm movements while assisting only as much as needed to ensure an active participation of the patient. Different control strategies are known to provide arm support to the patient. The path controller is a strategy that helps the patient's arm to stay close to a given path while allowing for temporal and spatial freedom. In this paper, an assist-as-needed path controller is presented that is implemented in the end-effector-based robot PASCAL, which was designed for children with cerebral palsy. The new control approach is a combination of an existing path controller with additional speed restrictions to support, when the arm speed is too slow, and to resist, when the speed is too fast. Furthermore, a target position gain scheduling is introduced in order to reach a target position with a predefined precision as well as an adaptable direction-dependent supportive flux that supports along the path. These path control features were preliminarily tested with a healthy adult volunteer in different conditions. The presented controller covers the range from a completely passive user, who needs full support to an actively performed movement that needs no assistance. In close future, the controller is planned to be used to enable reaching in children as well as in adults and help to increase the intensity of the rehabilitation therapy by assisting the hand movement and by provoking an active participation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20962238','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20962238"><span>Decision time, slow inhibition, and theta rhythm.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smerieri, Anteo; Rolls, Edmund T; Feng, Jianfeng</p> <p>2010-10-20</p> <p>In this paper, we examine decision making in a spiking neuronal network and show that longer time constants for the inhibitory neurons can decrease the reaction times and produce theta rhythm. We analyze the mechanism and find that the spontaneous firing rate before the decision cues are applied can drift, and thereby influence the speed of the reaction time when the decision cues are applied. The drift of the firing rate in the population that will win the competition is larger if the time constant of the inhibitory interneurons is increased from 10 to 33 ms, and even larger if there are two populations of inhibitory neurons with time constants of 10 and 100 ms. Of considerable interest is that the decision that will be made can be influenced by the noise-influenced drift of the spontaneous firing rate over many seconds before the decision cues are applied. The theta rhythm associated with the longer time constant networks mirrors the greater integration in the firing rate drift produced by the recurrent connections over long time periods in the networks with slow inhibition. The mechanism for the effect of slow waves in the theta and delta range on decision times is suggested to be increased neuronal spiking produced by depolarization of the membrane potential on the positive part of the slow waves when the neuron's membrane potential is close to the firing threshold.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/397378-edward-teller-lecture-patience-optimism','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/397378-edward-teller-lecture-patience-optimism"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Miley, G.H.</p> <p></p> <p>Remarks made in the author{close_quote}s acceptance lecture for the 1995 Edward Teller Medal are presented and expanded. Topics covered include research on nuclear-pumped lasers, the first direct e-beam-pumped laser, direct energy conversion and advanced fuel fusion, plus recent work on inertial electrostatic confinement. {open_quote}{open_quote}Patience{close_quote}{close_quote} and {open_quote}{open_quote}optimism{close_quote}{close_quote} are viewed as essential elements needed by scientists following the {open_quote}{open_quote}zig-zag{close_quote}{close_quote} path to fusion energy production. {copyright} {ital 1996 American Institute of Physics.}</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26943881','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26943881"><span>Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Petzoldt, J; Roemer, K E; Enghardt, W; Fiedler, F; Golnik, C; Hueso-González, F; Helmbrecht, S; Kormoll, T; Rohling, H; Smeets, J; Werner, T; Pausch, G</p> <p>2016-03-21</p> <p>Proton therapy is an advantageous treatment modality compared to conventional radiotherapy. In contrast to photons, charged particles have a finite range and can thus spare organs at risk. Additionally, the increased ionization density in the so-called Bragg peak close to the particle range can be utilized for maximum dose deposition in the tumour volume. Unfortunately, the accuracy of the therapy can be affected by range uncertainties, which have to be covered by additional safety margins around the treatment volume. A real-time range and dose verification is therefore highly desired and would be key to exploit the major advantages of proton therapy. Prompt gamma rays, produced in nuclear reactions between projectile and target nuclei, can be used to measure the proton's range. The prompt gamma-ray timing (PGT) method aims at obtaining this information by determining the gamma-ray emission time along the proton path using a conventional time-of-flight detector setup. First tests at a clinical accelerator have shown the feasibility to observe range shifts of about 5 mm at clinically relevant doses. However, PGT spectra are smeared out by the bunch time spread. Additionally, accelerator related proton bunch drifts against the radio frequency have been detected, preventing a potential range verification. At OncoRay, first experiments using a proton bunch monitor (PBM) at a clinical pencil beam have been conducted. Elastic proton scattering at a hydrogen-containing foil could be utilized to create a coincident proton-proton signal in two identical PBMs. The selection of coincident events helped to suppress uncorrelated background. The PBM setup was used as time reference for a PGT detector to correct for potential bunch drifts. Furthermore, the corrected PGT data were used to image an inhomogeneous phantom. In a further systematic measurement campaign, the bunch time spread and the proton transmission rate were measured for several beam energies between 69 and 225 MeV as well as for variable momentum limiting slit openings. We conclude that the usage of a PBM increases the robustness of the PGT method in clinical conditions and that the obtained data will help to create reliable range verification procedures in clinical routine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyD..368...10R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyD..368...10R"><span>Synchronisation under shocks: The Lévy Kuramoto model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roberts, Dale; Kalloniatis, Alexander C.</p> <p>2018-04-01</p> <p>We study the Kuramoto model of identical oscillators on Erdős-Rényi (ER) and Barabasi-Alberts (BA) scale free networks examining the dynamics when perturbed by a Lévy noise. Lévy noise exhibits heavier tails than Gaussian while allowing for their tempering in a controlled manner. This allows us to understand how 'shocks' influence individual oscillator and collective system behaviour of a paradigmatic complex system. Skewed α-stable Lévy noise, equivalent to fractional diffusion perturbations, are considered, but overlaid by exponential tempering of rate λ. In an earlier paper we found that synchrony takes a variety of forms for identical Kuramoto oscillators subject to stable Lévy noise, not seen for the Gaussian case, and changing with α: a noise-induced drift, a smooth α dependence of the point of cross-over of synchronisation point of ER and BA networks, and a severe loss of synchronisation at low values of α. In the presence of tempering we observe both analytically and numerically a dramatic change to the α < 1 behaviour where synchronisation is sustained over a larger range of values of the 'noise strength' σ, improved compared to the α > 1 tempered cases. Analytically we study the system close to the phase synchronised fixed point and solve the tempered fractional Fokker-Planck equation. There we observe that densities show stronger support in the basin of attraction at low α for fixed coupling, σ and tempering λ. We then perform numerical simulations for networks of size N = 1000 and average degree d ¯ = 10. There, we compute the order parameter r as a function of σ for fixed α and λ and observe values of r ≈ 1 over larger ranges of σ for α < 1 and λ ≠ 0. In addition we observe drift of both positive and negative slopes for different α and λ when native frequencies are equal, and confirm a sustainment of synchronisation down to low values of α. We propose a mechanism for this in terms of the basic shape of the tempered stable Lévy densities for various α and how it feeds into Kuramoto oscillator dynamics and illustrate this with examples of specific paths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhyEd..51e4004C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhyEd..51e4004C"><span>Exploring electrical resistance: a novel kinesthetic model helps to resolve some misconceptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cottle, Dan; Marshall, Rick</p> <p>2016-09-01</p> <p>A simple ‘hands on’ physical model is described which displays analogous behaviour to some aspects of the free electron theory of metals. Using it students can get a real feel for what is going on inside a metallic conductor. Ohms Law, the temperature dependence of resistivity, the dependence of resistance on geometry, how the conduction electrons respond to a potential difference and the concepts of mean free path and drift speed of the conduction electrons can all be explored. Some quantitative results obtained by using the model are compared with the predictions of Drude’s free electron theory of electrical conduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913726C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913726C"><span>The network adjustment aimed for the campaigned gravity survey using a Bayesian approach: methodology and model test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Shi; Liao, Xu; Ma, Hongsheng; Zhou, Longquan; Wang, Xingzhou; Zhuang, Jiancang</p> <p>2017-04-01</p> <p>The relative gravimeter, which generally uses zero-length springs as the gravity senor, is still as the first choice in the field of terrestrial gravity measurement because of its efficiency and low-cost. Because the drift rate of instrument can be changed with the time and meter, it is necessary for estimating the drift rate to back to the base or known gravity value stations for repeated measurement at regular hour's interval during the practical survey. However, the campaigned gravity survey for the large-scale region, which the distance of stations is far away from serval or tens kilometers, the frequent back to close measurement will highly reduce the gravity survey efficiency and extremely time-consuming. In this paper, we proposed a new gravity data adjustment method for estimating the meter drift by means of Bayesian statistical interference. In our approach, we assumed the change of drift rate is a smooth function depend on the time-lapse. The trade-off parameters were be used to control the fitting residuals. We employed the Akaike's Bayesian Information Criterion (ABIC) for the estimated these trade-off parameters. The comparison and analysis of simulated data between the classical and Bayesian adjustment show that our method is robust and has self-adaptive ability for facing to the unregularly non-linear meter drift. At last, we used this novel approach to process the realistic campaigned gravity data at the North China. Our adjustment method is suitable to recover the time-varied drift rate function of each meter, and also to detect the meter abnormal drift during the gravity survey. We also defined an alternative error estimation for the inversed gravity value at the each station on the basis of the marginal distribution theory. Acknowledgment: This research is supported by Science Foundation Institute of Geophysics, CEA from the Ministry of Science and Technology of China (Nos. DQJB16A05; DQJB16B07), China National Special Fund for Earthquake Scientific Research in Public Interest (Nos. 201508006; 201508009).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2939580','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2939580"><span>Island biology and morphological divergence of the Skyros wall lizard Podarcis gaigeae: a combined role for local selection and genetic drift on color morph frequency divergence?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2010-01-01</p> <p>Background Patterns of spatial variation in discrete phenotypic traits can be used to draw inferences about the adaptive significance of traits and evolutionary processes, especially when compared to patterns of neutral genetic variation. Population divergence in adaptive traits such as color morphs can be influenced by both local ecology and stochastic factors such as genetic drift or founder events. Here, we use quantitative color measurements of males and females of Skyros wall lizard, Podarcis gaigeae, to demonstrate that this species is polymorphic with respect to throat color, and the morphs form discrete phenotypic clusters with limited overlap between categories. We use divergence in throat color morph frequencies and compare that to neutral genetic variation to infer the evolutionary processes acting on islet- and mainland populations. Results Geographically close islet- and mainland populations of the Skyros wall lizard exhibit strong divergence in throat color morph frequencies. Population variation in throat color morph frequencies between islets was higher than that between mainland populations, and the effective population sizes on the islets were small (Ne:s < 100). Population divergence (FST) for throat color morph frequencies fell within the neutral FST-distribution estimated from microsatellite markers, and genetic drift could thus not be rejected as an explanation for the pattern. Moreover, for both comparisons among mainland-mainland population pairs and between mainland-islet population pairs, morph frequency divergence was significantly correlated with neutral divergence, further pointing to some role for genetic drift in divergence also at the phenotypic level of throat color morphs. Conclusions Genetic drift could not be rejected as an explanation for the pattern of population divergence in morph frequencies. In spite of an expected stabilising selection, throat color frequencies diverged in the islet populations. These results suggest that there is an interaction between selection and genetic drift causing divergence even at a phenotypic level in these small, subdivided populations. PMID:20813033</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960014063','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960014063"><span>Three-dimensional ring current decay model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.</p> <p>1995-01-01</p> <p>This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960007718','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960007718"><span>A three-dimensional ring current decay model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.</p> <p>1994-01-01</p> <p>This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawn and dusk sides of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always over-estimated. A newly-invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm-time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j(sub o)(1+Ay(exp n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26764628','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26764628"><span>Kubo formulas for dispersion in heterogeneous periodic nonequilibrium systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guérin, T; Dean, D S</p> <p>2015-12-01</p> <p>We consider the dispersion properties of tracer particles moving in nonequilibrium heterogeneous periodic media. The tracer motion is described by a Fokker-Planck equation with arbitrary spatially periodic (but constant in time) local diffusion tensors and drifts, eventually with the presence of obstacles. We derive a Kubo-like formula for the time-dependent effective diffusion tensor valid in any dimension. From this general formula, we derive expressions for the late time effective diffusion tensor and drift in these systems. In addition, we find an explicit formula for the late finite-time corrections to these transport coefficients. In one dimension, we give a closed analytical formula for the transport coefficients. The formulas derived here are very general and provide a straightforward method to compute the dispersion properties in arbitrary nonequilibrium periodic advection-diffusion systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NIMPA.881....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NIMPA.881....1S"><span>Performance of a MICROMEGAS-based TPC in a high-energy neutron beam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snyder, L.; Manning, B.; Bowden, N. S.; Bundgaard, J.; Casperson, R. J.; Cebra, D. A.; Classen, T.; Duke, D. L.; Gearhart, J.; Greife, U.; Hagmann, C.; Heffner, M.; Hensle, D.; Higgins, D.; Isenhower, D.; King, J.; Klay, J. L.; Geppert-Kleinrath, V.; Loveland, W.; Magee, J. A.; Mendenhall, M. P.; Sangiorgio, S.; Seilhan, B.; Schmitt, K. T.; Tovesson, F.; Towell, R. S.; Walsh, N.; Watson, S.; Yao, L.; Younes, W.</p> <p>2018-02-01</p> <p>The MICROMEGAS (MICRO-MEsh GAseous Structure) charge amplification structure has found wide use in many detection applications, especially as a gain stage for the charge readout of Time Projection Chambers (TPCs). Here we report on the behavior of a MICROMEGAS TPC when operated in a high-energy (up to 800 MeV) neutron beam. It is found that neutron-induced reactions can cause discharges in some drift gas mixtures that are stable in the absence of the neutron beam. The discharges result from recoil ions close to the MICROMEGAS that deposit high specific ionization density and have a limited diffusion time. For a binary drift gas, increasing the percentage of the molecular component (quench gas) relative to the noble component and operating at lower pressures generally improves stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26833034','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26833034"><span>The relationship between hippocampal volume and static postural sway: results from the GAIT study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beauchet, Olivier; Barden, John; Liu-Ambrose, Teresa; Chester, Victoria L; Szturm, Tony; Allali, Gilles</p> <p>2016-02-01</p> <p>The role of the hippocampus in postural control, in particular in maintaining upright stance, has not been fully examined in normal aging. This study aims to examine the association of postural sway with hippocampal volume while maintaining upright stance in healthy older individuals. Seventy healthy individuals (mean age 69.7 ± 3.4 years; 41.4 % women) were recruited in this study based on cross-sectional design. Hippocampal volume (quantified from a three-dimensional T1-weighted MRI using semi-automated software), three center of pressure (COP) motion parameters (sway area, path length of anterior-posterior (AP) and medial-lateral (ML) displacement) while maintaining upright stance (eyes open and closed), and the relative difference between open and closed eye conditions were used as outcome measures. Age, sex, body mass index, lower limb proprioception, distance vision, 15-item geriatric depression scale score, total cranial volume, and white matter abnormalities were used as covariates. The sway area decreased from open to closed eye condition but this variation was non-significant (P = 0.244), whereas path length of AP and ML displacement increased significantly (P < 0.003). Increase in sway area from open to closed eyes was associated with greater hippocampal volume (β -18.21; P = 0.044), and a trend for an association of increase in path length of AP displacement (P = 0.075 for open eyes and P = 0.071 for closed eyes) with greater hippocampal volume was reported. The hippocampus is involved in upright postural control in normal aging, such that an increase in sway area of COP motion from open to closed eyes is associated with greater hippocampal volume in healthy older adults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080012219','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080012219"><span>Tri-state logic circuit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pryor, Richard Lee (Inventor)</p> <p>1977-01-01</p> <p>A line driver including a pair of complementary transistors having their conduction paths serially connected between an operating and a reference potential and their bases connected through a first switch to a signal input terminal. A second switch is connected between the common base connection and the common connection of the conduction paths. With the second switch open and the first closed, an output voltage, responsive to the input signal, corresponding to first or second binary values is obtained. When the second switch is closed and the first opened, the transistor pair is turned off, disconnecting the line driver from its load, thereby providing tri-state logic operation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QSRv..173...40L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QSRv..173...40L"><span>Deglacial to Holocene history of ice-sheet retreat and bottom current strength on the western Barents Sea shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lantzsch, Hendrik; Hanebuth, Till J. J.; Horry, Jan; Grave, Marina; Rebesco, Michele; Schwenk, Tilmann</p> <p>2017-10-01</p> <p>High-resolution sediment echosounder data combined with radiocarbon-dated sediment cores allowed us to reconstruct the Late Quaternary stratigraphic architecture of the Kveithola Trough and surrounding Spitsbergenbanken. The deposits display the successive deglacial retreat of the Svalbard-Barents Sea Ice Sheet. Basal subglacial till indicates that the grounded ice sheet covered both bank and trough during the Late Weichselian. A glaciomarine blanket inside the trough coinciding with laminated plumites on the bank formed during the initial ice-melting phase from at least 16.1 to 13.5 cal ka BP in close proximity to the ice margin. After the establishment of open-marine conditions at around 13.5 cal ka BP, a sediment drift developed in the confined setting of the Kveithola Trough, contemporary with crudely laminated mud, an overlying lag deposit, and modern bioclastic-rich sand on Spitsbergenbanken. The Kveithola Drift shows a remarkable grain-size coarsening from the moat towards the southern flank of the trough. This trend contradicts the concept of a separated drift (which would imply coarser grain sizes in proximity of the moat) and indicates that the southern bank is the main sediment source for the coarse material building up the Kveithola Drift. This depocenter represents, therefore, a yet undescribed combination of off-bank wedge and confined drift. Although the deposits inside Kveithola Trough and on Spitsbergenbanken display different depocenter geometries, time-equivalent grain-size changes imply a region-wide sediment-dynamic connection. We thus relate a phase of coarsest sediment supply (8.8-6.3 cal ka BP) to an increase in bottom current strength, which might be related to a stronger Atlantic Water inflow from the Southeast across the bank leading to winnowing and off-bank export of sandy sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ChPhB..19c0701J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ChPhB..19c0701J"><span>Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jin, Jing; Tian, Hai-Ting; Pan, Xiong; Song, Ning-Fang</p> <p>2010-03-01</p> <p>The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2817277','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2817277"><span>Navigational challenges in the oceanic migrations of leatherback sea turtles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sale, Alessandro; Luschi, Paolo</p> <p>2009-01-01</p> <p>The open-sea movements of marine animals are affected by the drifting action of currents that, if not compensated for, can produce non-negligible deviations from the correct route towards a given target. Marine turtles are paradigmatic skilful oceanic navigators that are able to reach remote goals at the end of long-distance migrations, apparently overcoming current drift effects. Particularly relevant is the case of leatherback turtles (Dermochelys coriacea), which spend entire years in the ocean, wandering in search of planktonic prey. Recent analyses have revealed how the movements of satellite-tracked leatherbacks in the Indian, Atlantic and Pacific Oceans are strongly dependent on the oceanic currents, up to the point that turtles are often passively transported over long distances. However, leatherbacks are known to return to specific areas to breed every 2–3 years, thus finding their way back home after long periods in the oceanic environment. Here we examine the navigational consequences of the leatherbacks' close association with currents and discuss how the combined reliance on mechanisms of map-based navigation and local orientation cues close to the target may allow leatherbacks to accomplish the difficult task of returning to specific sites after years spent wandering in a moving medium. PMID:19625321</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP42A..05K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP42A..05K"><span>Ted Irving and the Arc of APW Paths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kent, D. V.</p> <p>2014-12-01</p> <p>Ted Irving's last two published papers neatly encapsulate his seminal contributions to the delineation of ever-important apparent polar wander (APW) paths. His final (210th) paper [Creer & Irving, 2012 Earth Sciences History] describes in detail how Ken Creer and he when still graduate students at Cambridge started to generate and assemble paleomagnetic data for the first APW path, for then only the UK; the paper was published 60 years ago and happened to be Ted's first [Creer, Irving & Runcorn, 1954 JGE]. Only 10 years later, there was already a lengthy reference list of paleomagnetic results available from most continents that had been compiled in pole lists he published in GJRAS from 1960 to 1965 and included in an appendix in his landmark book "Paleomagnetism" [Irving, 1964 Wiley] in support of wide ranging discussions of continental drift and related topics in chapters like 'Paleolatitudes and paleomeridians.' A subsequent innovation was calculating running means of poles indexed to a numerical geologic time scale [Irving, 1977 Nature], which with independent tectonic reconstructions as already for Gondwana allowed constructions of more detailed composite APW paths. His 1977 paper also coined Pangea B for an earlier albeit contentious configuration for the supercontinent that refuses to go away. Gliding over much work on APW tracks and hairpins in the Precambrian, we come to Ted's penultimate (209th) paper [Kent & Irving, 2010 JGR] in which individual poles from short-lived large igneous provinces were grouped and most sedimentary poles, many rather venerable, excluded as likely to be biased by variable degrees of inclination error. The leaner composite APW path helped to resurrect the Baja BC scenario of Cordilleran terrane motions virtually stopped in the 1980s by APW path techniques that relied on a few key but alas often badly skewed poles. The new composite APW path also revealed several major features, such as a huge polar shift of 30° in 15 Myr in the Late Jurassic, which had been missed in seemingly more robust (certainly more populated) APW paths to date. This prompts the suggestion that a threshold criterion for pole selection might be whether a result was publishable by today's standards, which could provide motivation for the generation of new data for better resolved APW paths as a legacy to Ted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1176433','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1176433"><span>Rankine cycle load limiting through use of a recuperator bypass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ernst, Timothy C.</p> <p>2011-08-16</p> <p>A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...586A..29B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...586A..29B"><span>High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bouratzis, C.; Hillaris, A.; Alissandrakis, C. E.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.</p> <p>2016-02-01</p> <p>Context. Narrow-band bursts appear on dynamic spectra from microwave to decametric frequencies as fine structures with very small duration and bandwidth. They are believed to be manifestations of small scale energy release through magnetic reconnection. Aims: We analyzed 27 metric type IV events with embedded narrow-band bursts, which were observed by the ARTEMIS-IV radio spectrograph from 30 June 1999 to 1 August 2010. We examined the morphological characteristics of isolated narrow-band structures (mostly spikes) and groups or chains of structures. Methods: The events were recorded with the SAO high resolution (10 ms cadence) receiver of ARTEMIS-IV in the 270-450 MHz range. We measured the duration, spectral width, and frequency drift of ~12 000 individual narrow-band bursts, groups, and chains. Spike sources were imaged with the Nançay radioheliograph (NRH) for the event of 21 April 2003. Results: The mean duration of individual bursts at fixed frequency was ~100 ms, while the instantaneous relative bandwidth was ~2%. Some bursts had measurable frequency drift, either positive or negative. Quite often spikes appeared in chains, which were closely spaced in time (column chains) or in frequency (row chains). Column chains had frequency drifts similar to type-IIId bursts, while most of the row chains exhibited negative frequently drifts with a rate close to that of fiber bursts. From the analysis of NRH data, we found that spikes were superimposed on a larger, slowly varying, background component. They were polarized in the same sense as the background source, with a slightly higher degree of polarization of ~65%, and their size was about 60% of their size in total intensity. Conclusions: The duration and bandwidth distributions did not show any clear separation in groups. Some chains tended to assume the form of zebra, lace stripes, fiber bursts, or bursts of the type-III family, suggesting that such bursts might be resolved in spikes when viewed with high resolution. The NRH data indicate that the spikes are not fluctuations of the background, but represent additional emission such as what would be expected from small-scale reconnection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/891775-habitat-corridors-function-both-drift-fences-movement-conduits-dispersing-flies','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/891775-habitat-corridors-function-both-drift-fences-movement-conduits-dispersing-flies"><span>Habitat corridors function as both drift fences and movement conduits for dispersing flies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fried, Joanna H.; Levey Douglas J.; Hogsette, Jerome A.</p> <p>2005-03-30</p> <p>Abstract Corridors connect otherwise isolated habitat patches and can direct movement of animals among such patches. In eight experimental landscapes, we tested two hypotheses of how corridors might affect dispersal behavior. The Traditional Corridor hypothesis posits that animals preferentially leave patches via corridors, following them into adjacent patches. The Drift Fence hypothesis posits that animals dispersing through matrix habitat are diverted into patches with corridors because they follow corridors when encountered. House flies (Musca domestica L.), a species that prefers the habitat of our patches and corridors, were released in a central patch (100•100 m) and recaptured in peripheral patchesmore » that were or were not connected by a corridor. Flies were captured more frequently in connected than unconnected patches, thereby supporting the Traditional Corridor hypothesis. The Drift Fence hypothesis was also supported, as flies were captured more frequently in unconnected patches with blind (dead end) corridors than in unconnected patches of equal area without blind corridors. A second experiment tested whether these results might be dependent on the type of patch-matrix boundary encountered by dispersing flies and whether edge-following behavior might be the mechanism underlying the observed corridor effect in the first experiment. We recorded dispersal patterns of flies released along forest edges with dense undergrowth in the forest (‘‘closed’’ edges) and along edges with little forest understory (‘‘open’’ edges). Flies were less likely to cross and more likely to follow closed edges than open edges, indicating that when patch and corridor edges are pronounced, edge-following behavior of flies may direct them along corridors into connected patches. Because edges in the first experiment were open, these results also suggest that corridor effects for flies in that experiment would have been even stronger if the edges around the source patches and corridors had been more closed. Taken together, our results suggest that corridors can affect dispersal of organisms in unappreciated ways (i.e., as drift fences) and that edge type can alter dispersal behavior.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20028360','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20028360"><span>Mechanisms of postural control in alcoholic men and women: biomechanical analysis of musculoskeletal coordination during quiet standing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sullivan, Edith V; Rose, Jessica; Pfefferbaum, Adolf</p> <p>2010-03-01</p> <p>Excessive sway during quiet standing is a common sequela of chronic alcoholism even with prolonged sobriety. Whether alcoholic men and women who have remained abstinent from alcohol for weeks to months differ from each other in the degree of residual postural instability and biomechanical control mechanisms has not been directly tested. We used a force platform to characterize center-of-pressure biomechanical features of postural sway, with and without stabilizing conditions from touch, vision, and stance, in 34 alcoholic men, 15 alcoholic women, 22 control men, and 29 control women. Groups were matched in age (49.4 years), general intelligence, socioeconomic status, and handedness. Each alcoholic group was sober for an average of 75 days. Analysis of postural sway when using all 3 stabilizing conditions versus none revealed diagnosis and sex differences in ability to balance. Alcoholics had significantly longer sway paths, especially in the anterior-posterior direction, than controls when maintaining erect posture without balance aids. With stabilizing conditions the sway paths of all groups shortened significantly, especially those of alcoholic men, who demonstrated a 3.1-fold improvement in sway path difference between the easiest and most challenging conditions; the remaining 3 groups, each showed a approximately 2.4-fold improvement. Application of a mechanical model to partition sway paths into open-loop and closed-loop postural control systems revealed that the sway paths of the alcoholic men but not alcoholic women were characterized by greater short-term (open-loop) diffusion coefficients without aids, often associated with muscle stiffening response. With stabilizing factors, all 4 groups showed similar long-term (closed loop) postural control. Correlations between cognitive abilities and closed-loop sway indices were more robust in alcoholic men than alcoholic women. Reduction in sway and closed-loop activity during quiet standing with stabilizing factors shows some differential expression in men and women with histories of alcohol dependence. Nonetheless, enduring deficits in postural instability of both alcoholic men and alcoholic women suggest persisting liability for falling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780056503&hterms=group+differences&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dgroup%2Bdifferences','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780056503&hterms=group+differences&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dgroup%2Bdifferences"><span>On the relation between phase path, group path and attenuation in a cold absorbing plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bennett, J. A.; Dyson, P. L.</p> <p>1978-01-01</p> <p>Consideration is given to a cold absorbing plasma in which the collision frequency is zero. Expressions are developed which relate the attenuation and the group and phase refractive indices. It is found that because the expressions for the group and phase refractive indices and the imaginary part of the refractive index are closely related in form, the attenuation is related to the difference between the group and phase paths. Numerical calculations have derived approximations which significantly increase the range of known approximations of this type.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090040741','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090040741"><span>Short-Term Forecasting of Radiation Belt and Ring Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Ching</p> <p>2007-01-01</p> <p>A computer program implements a mathematical model of the radiation-belt and ring-current plasmas resulting from interactions between the solar wind and the Earth s magnetic field, for the purpose of predicting fluxes of energetic electrons (10 keV to 5 MeV) and protons (10 keV to 1 MeV), which are hazardous to humans and spacecraft. Given solar-wind and interplanetary-magnetic-field data as inputs, the program solves the convection-diffusion equations of plasma distribution functions in the range of 2 to 10 Earth radii. Phenomena represented in the model include particle drifts resulting from the gradient and curvature of the magnetic field; electric fields associated with the rotation of the Earth, convection, and temporal variation of the magnetic field; and losses along particle-drift paths. The model can readily accommodate new magnetic- and electric-field submodels and new information regarding physical processes that drive the radiation-belt and ring-current plasmas. Despite the complexity of the model, the program can be run in real time on ordinary computers. At present, the program can calculate present electron and proton fluxes; after further development, it should be able to predict the fluxes 24 hours in advance</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM41F2559M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM41F2559M"><span>Observations of Multi-band Structures in Double Star TC-1 PEACE Electron and HIA Ion Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohan Narasimhan, K.; Fazakerley, A. N.; Grimald, S.; Dandouras, I. S.; Mihaljcic, B.; Kistler, L. M.; Owen, C. J.</p> <p>2015-12-01</p> <p>Several authors have reported inner magnetosphere observations of proton distributions confined to narrow energy bands in the range 1 - 25 keV (Smith and Hoffman (1974), etc). These structures have been described as "nose structures", with reference to their appearance in energy-time spectrograms and are also known as "bands" if they occur for extended periods of time. Multi-nose structures have been observed if 2 or more noses appear at the same time (Vallat et al., 2007). Gaps between "noses" (or "bands") have been explained in terms of the competing corotation, convection and magnetic gradient drifts. Charge exchange losses in slow drift paths for steady state scenarios and the role of substorm injections have also been considered (Li et al., 2000; Ebihara et al., 2004). We analyse observations of electron and ion multi-band structures frequently seen in Double-Star TC1 PEACE and HIA data. We present results from statistical surveys conducted using data from the duration of the mission. Furthermore, using a combination of both statistics and simulations, we test previous theories as to possible formation mechanisms and explore other possible explanations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1290380-spatial-ion-peak-compression-its-utility-ion-mobility-spectrometry','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1290380-spatial-ion-peak-compression-its-utility-ion-mobility-spectrometry"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi</p> <p></p> <p>A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e.,more » a reduction in peak widths of all species. This peak compression occurs with a modest reduction of resolution, but which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. In addition, approaches for peak compression in traveling wave IMS are also discussed. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPYI2006D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPYI2006D"><span>Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duff, James</p> <p>2016-10-01</p> <p>Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060042922&hterms=behzad&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Dbehzad','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060042922&hterms=behzad&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Dbehzad"><span>Flight path control strategies and preliminary deltaV requirements for the 2007 Mars Phoenix (PHX) mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Raofi, Behzad</p> <p>2005-01-01</p> <p>This paper describes the methods used to estimate the statistical deltaV requirements for the propulsive maneuvers that will deliver the spacecraft to its target landing site while satisfying planetary protection requirements. the paper presents flight path control analysis results for three different trajectories, open, middle, and close of launch period for the mission.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Miyake&pg=4&id=EJ623733','ERIC'); return false;" href="https://eric.ed.gov/?q=Miyake&pg=4&id=EJ623733"><span>The Development of Close Relationships in Japan and the United States: Paths of Symbiotic Harmony and Generative Tension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Rothbaum, Fred; Pott, Martha; Azuma, Hiroshi; Miyake, Kazuo; Weisz, John</p> <p>2000-01-01</p> <p>Compares paths of development in Japan (symbiotic harmony) and the United States (generative tension) of parent-child and adult mate relationships, challenging assumptions that certain processes are central in all relationships or that U.S. relationships are less valued or weaker than Japan's. Suggests need to investigate processes underlying, and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29377775','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29377775"><span>Moderating Effects of Prevention-Focus on the Paths from Two Insecure Attachment Dimensions to Depression.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Dong-Gwi; Park, Jae Joon; Bae, Byeong Hoon; Lim, Hyun-Woo</p> <p>2018-04-03</p> <p>The present study investigated the moderating effects of prevention-focus on the paths from the dimensions of insecure attachment (attachment avoidance and attachment anxiety) to depression. Two hundred twenty eight Korean college students completed the Experience in Close Relationship - Revised Scale; the Regulatory Focus Strategies Scale; and the Center for Epidemiologic Studies Depression Scale. Results revealed a significant moderating effect for prevention-focus on the path from attachment avoidance to depression, but not on the path from attachment anxiety to depression. They further suggest that different interventions are needed for different combinations of persons' insecure attachment dimensions and levels of prevention-focus. Counseling implications and suggestions for future research are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22506910','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22506910"><span>Predictors of satisfaction in geographically close and long-distance relationships.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Ji-yeon; Pistole, M Carole</p> <p>2012-04-01</p> <p>In this study, the authors examined geographically close (GCRs) and long-distance (LDRs) romantic relationship satisfaction as explained by insecure attachment, self-disclosure, gossip, and idealization. After college student participants (N = 536) completed a Web survey, structural equation modeling (SEM) multigroup analysis revealed that the GCR and LDR models were nonequivalent, as expected. Self-disclosure mediated the insecure attachment-idealization path differently in GCRs and in LDRs. Self-disclosure was positively associated with idealization in GCRs and negatively associated with idealization in LDRs, with the insecure attachment-idealization and the insecure attachment-satisfaction paths negative for both GCRs and LDRs. Furthermore, the insecure attachment-idealization path was stronger than the mediated path, especially for LDRs; the insecure attachment-satisfaction path was stronger than the mediation model for GCRs and LDRs. In other words, the GCR and LDR models differed despite some similarities. For both, with higher insecure (i.e., anxious and avoidant) attachment, the person discloses less to the partner, idealizes the partner less, and is less satisfied with the relationship. Also, people who idealize are more satisfied. In contrast, in LDRs only, with higher insecure attachment, the people tend to gossip more. With higher insecure attachment and with higher self-disclosure, people idealize more in GCRs but idealize less in LDRs. Overall, attachment insecurity explained more idealization and satisfaction in LDRs than in GCRs. Implications are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JInst..13C3032B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JInst..13C3032B"><span>A new large solid angle multi-element silicon drift detector system for low energy X-ray fluorescence spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bufon, J.; Schillani, S.; Altissimo, M.; Bellutti, P.; Bertuccio, G.; Billè, F.; Borghes, R.; Borghi, G.; Cautero, G.; Cirrincione, D.; Fabiani, S.; Ficorella, F.; Gandola, M.; Gianoncelli, A.; Giuressi, D.; Kourousias, G.; Mele, F.; Menk, R. H.; Picciotto, A.; Rachevski, A.; Rashevskaya, I.; Sammartini, M.; Stolfa, A.; Zampa, G.; Zampa, N.; Zorzi, N.; Vacchi, A.</p> <p>2018-03-01</p> <p>Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.3692O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.3692O"><span>On the Role of Last Closed Drift Shell Dynamics in Driving Fast Losses and Van Allen Radiation Belt Extinction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olifer, L.; Mann, I. R.; Morley, S. K.; Ozeke, L. G.; Choi, D.</p> <p>2018-05-01</p> <p>We present observations of very fast radiation belt loss as resolved using high time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The time scale of these losses is revealed to be as short as ˜0.5-2 hr during intense magnetic storms, with some storms demonstrating almost total loss on these time scales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the September 2014 storm shows fast extinction but no recovery for around 2 weeks. By contrast, the moderate September 2012 storm which generated a three radiation belt morphology shows more gradual loss. We compute the last closed drift shell (LCDS) for each of these four storms and show a very strong correspondence between the LCDS and the loss patterns of trapped electrons in each storm. Most significantly, the location of the LCDS closely mirrors the high time resolution losses observed in GPS flux. The fast losses occur on a time scale shorter than the Van Allen Probes orbital period, are explained by proximity to the LCDS, and progress inward, consistent with outward transport to the LCDS by fast ultralow frequency wave radial diffusion. Expressing the location of the LCDS in L*, and not model magnetopause standoff distance in units of RE, clearly reveals magnetopause shadowing as the cause of the fast loss observed by the GPS satellites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......234A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......234A"><span>Some Minorants and Majorants of Random Walks and Levy Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abramson, Joshua Simon</p> <p></p> <p>This thesis consists of four chapters, all relating to some sort of minorant or majorant of random walks or Levy processes. In Chapter 1 we provide an overview of recent work on descriptions and properties of the convex minorant of random walks and Levy processes as detailed in Chapter 2, [72] and [73]. This work rejuvenated the field of minorants, and led to the work in all the subsequent chapters. The results surveyed include point process descriptions of the convex minorant of random walks and Levy processes on a fixed finite interval, up to an independent exponential time, and in the infinite horizon case. These descriptions follow from the invariance of these processes under an adequate path transformation. In the case of Brownian motion, we note how further special properties of this process, including time-inversion, imply a sequential description for the convex minorant of the Brownian meander. This chapter is based on [3], which was co-written with Jim Pitman, Nathan Ross and Geronimo Uribe Bravo. Chapter 1 serves as a long introduction to Chapter 2, in which we offer a unified approach to the theory of concave majorants of random walks. The reasons for the switch from convex minorants to concave majorants are discussed in Section 1.1, but the results are all equivalent. This unified theory is arrived at by providing a path transformation for a walk of finite length that leaves the law of the walk unchanged whilst providing complete information about the concave majorant - the path transformation is different from the one discussed in Chapter 1, but this is necessary to deal with a more general case than the standard one as done in Section 2.6. The path transformation of Chapter 1, which is discussed in detail in Section 2.8, is more relevant to the limiting results for Levy processes that are of interest in Chapter 1. Our results lead to a description of a walk of random geometric length as a Poisson point process of excursions away from its concave majorant, which is then used to find a complete description of the concave majorant of a walk of infinite length. In the case where subsets of increments may have the same arithmetic mean (the more general case mentioned above), we investigate three nested compositions that naturally arise from our construction of the concave majorant. This chapter is based on [4], which was co-written with Jim Pitman. In Chapter 3, we study the Lipschitz minorant of a Levy process. For alpha > 0, the alpha-Lipschitz minorant of a function f : R→R is the greatest function m : R→R such that m ≤ f and | m(s) - m(t)| ≤ alpha |s - t| for all s, t ∈ R should such a function exist. If X = Xtt∈ R is a real-valued Levy process that is not pure linear drift with slope +/-alpha, then the sample paths of X have an alpha-Lipschitz minorant almost surely if and only if | E [X1]| < alpha. Denoting the minorant by M, we investigate properties of the random closed set Z := {t ∈ R : Mt = {Xt ∧ Xt-}, which, since it is regenerative and stationary, has the distribution of the closed range of some subordinator "made stationary" in a suitable sense. We give conditions for the contact set Z to be countable or to have zero Lebesgue measure, and we obtain formulas that characterize the Levy measure of the associated subordinator. We study the limit of Z as alpha → infinity and find for the so-called abrupt Levy processes introduced by Vigon that this limit is the set of local infima of X. When X is a Brownian motion with drift beta such that |beta| < alpha, we calculate explicitly the densities of various random variables related to the minorant. This chapter is based on [2], which was co-written with Steven N. Evans. Finally, in Chapter 4 we study the structure of the shocks for the inviscid Burgers equation in dimension 1 when the initial velocity is given by Levy noise, or equivalently when the initial potential is a two-sided Levy process This shock structure turns out to give rise to a parabolic minorant of the Levy process--see Section 4.2 for details. The main results are that when psi0 is abrupt in the sense of Vigon or has bounded variation with limsuph-2 h↓0y0 h=infinity , the set of points with zero velocity is regenerative, and that in the latter case this set is equal to the set of Lagrangian regular points, which is non-empty. When psi0 is abrupt the shock structure is discrete and when psi0 is eroded there are no rarefaction intervals. This chapter is based on [1].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2670Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2670Y"><span>Mantle temperature under drifting deformable continents during the supercontinent cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoshida, Masaki</p> <p>2013-04-01</p> <p>The thermal heterogeneity of the Earth's mantle under the drifting continents during a supercontinent cycle is a controversial issue in earth science. Here, a series of numerical simulations of mantle convection are performed in 3D spherical-shell geometry, incorporating drifting deformable continents and self-consistent plate tectonics, to evaluate the subcontinental mantle temperature during a supercontinent cycle. Results show that the laterally averaged temperature anomaly of the subcontinental mantle remains within several tens of degrees (±50 °C) throughout the simulation time. Even after the formation of the supercontinent and the development of subcontinental plumes due to the subduction of the oceanic plates, the laterally averaged temperature anomaly of the deep mantle under the continent is within +10 °C. This implies that there is no substantial temperature difference between the subcontinental and suboceanic mantles during a supercontinent cycle. The temperature anomaly immediately beneath the supercontinent is generally positive owing to the thermal insulation effect and the active upwelling plumes from the core-mantle boundary. In the present simulation, the formation of a supercontinent causes the laterally averaged subcontinental temperature to increase by a maximum of 50 °C, which would produce sufficient tensional force to break up the supercontinent. The periodic assembly and dispersal of continental fragments, referred to as the supercontinent cycle, bear close relation to the evolution of mantle convection and plate tectonics. Supercontinent formation involves complex processes of introversion, extroversion or a combination of these in uniting dispersed continental fragments, as against the simple opening and closing of individual oceans envisaged in Wilson cycle. In the present study, I evaluate supercontinent processes in a realistic mantle convection regime. Results show that the assembly of supercontinents is accompanied by a combination of introversion and extroversion processes. The regular periodicity of the supercontinent cycles observed in previous 2D and 3D simulation models with rigid nondeformable continents is not confirmed. The small-scale thermal heterogeneity is dominated in deep mantle convection during the supercontinent cycle, although the large-scale, active upwelling plumes intermittently originate under drifting continents and/or the supercontinent. Results suggest that active subducting cold plates along continental margins generate thermal heterogeneity with short-wavelength structures, which is consistent with the thermal heterogeneity in the present-day mantle convection inferred from seismic tomography models. References: [1] Yoshida, M. Mantle temperature under drifting deformable continents during the supercontinent cycle, Geophys. Res. Lett., 2013, in press. [2] Yoshida, M. and M. Santosh, Mantle convection modeling of supercontinent cycle: Introversion, extroversion, or combination?, 2013, submitted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAP...122h3904H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAP...122h3904H"><span>Modeling dynamic behavior of superconducting maglev systems under external disturbances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He</p> <p>2017-08-01</p> <p>For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16631179','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16631179"><span>Comprehensive combinatory standard correction: a calibration method for handling instrumental drifts of gas chromatography-mass spectrometry systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deport, Coralie; Ratel, Jérémy; Berdagué, Jean-Louis; Engel, Erwan</p> <p>2006-05-26</p> <p>The current work describes a new method, the comprehensive combinatory standard correction (CCSC), for the correction of instrumental signal drifts in GC-MS systems. The method consists in analyzing together with the products of interest a mixture of n selected internal standards, and in normalizing the peak area of each analyte by the sum of standard areas and then, select among the summation operator sigma(p = 1)(n)C(n)p possible sums, the sum that enables the best product discrimination. The CCSC method was compared with classical techniques of data pre-processing like internal normalization (IN) or single standard correction (SSC) on their ability to correct raw data from the main drifts occurring in a dynamic headspace-gas chromatography-mass spectrometry system. Three edible oils with closely similar compositions in volatile compounds were analysed using a device which performance was modulated by using new or used dynamic headspace traps and GC-columns, and by modifying the tuning of the mass spectrometer. According to one-way ANOVA, the CCSC method increased the number of analytes discriminating the products (31 after CCSC versus 25 with raw data or after IN and 26 after SSC). Moreover, CCSC enabled a satisfactory discrimination of the products irrespective of the drifts. In a factorial discriminant analysis, 100% of the samples (n = 121) were well-classified after CCSC versus 45% for raw data, 90 and 93%, respectively after IN and SSC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5856299-analytic-solution-spencer-lewis-angular-spatial-moments-equations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5856299-analytic-solution-spencer-lewis-angular-spatial-moments-equations"><span>Analytic solution of the Spencer-Lewis angular-spatial moments equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Filippone, W.L.</p> <p></p> <p>A closed-form solution for the angular-spatial moments of the Spencer-Lewis equation is presented that is valid for infinite homogeneous media. From the moments, the electron density distribution as a function of position and path length (energy) is reconstructed for several sample problems involving plane isotropic sources of electrons in aluminium. The results are in excellent agreement with those determined numerically using the streaming ray method. The primary use of the closed form solution will most likely be to generate accurate electron transport benchmark solutions. In principle, the electron density as a function of space, path length, and direction can bemore » determined for planar sources of arbitrary angular distribution.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JPCM...16.5199J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JPCM...16.5199J"><span>Metastable phases of silver and gold in hexagonal structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jona, F.; Marcus, P. M.</p> <p>2004-07-01</p> <p>Metastable phases of silver and gold in hexagonal close-packed structures are investigated by means of first-principles total-energy calculations. Two different methods are employed to find the equilibrium states: determination of the minima along the hexagonal epitaxial Bain path, and direct determination of minima of the total energy by a new minimum-path procedure. Both metals have two equilibrium states at different values of the hexagonal axial ratio c/a. For both metals, the elastic constants show that the high-c/a states are stable, hence, since the ground states are face-centred cubic, these states represent hexagonal close-packed metastable phases. The elastic constants of the low-c/a states show that they are unstable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1414355-performance-micromegas-based-tpc-high-energy-neutron-beam','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1414355-performance-micromegas-based-tpc-high-energy-neutron-beam"><span>Performance of a MICROMEGAS-based TPC in a high-energy neutron beam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Snyder, L.; Manning, B.; Bowden, N. S.; ...</p> <p>2017-11-01</p> <p>The MICROMEGAS (MICRO-MEsh GAseous Structure) charge amplification structure has found wide use in many detection applications, especially as a gain stage for the charge readout of Time Projection Chambers (TPCs). We report on the behavior of a MICROMEGAS TPC when operated in a high-energy (up to 800 MeV) neutron beam. It is found that neutron-induced reactions can cause discharges in some drift gas mixtures that are stable in the absence of the neutron beam. The discharges result from recoil ions close to the MICROMEGAS that deposit high specific ionization density and have a limited diffusion time. And for a binarymore » drift gas, increasing the percentage of the molecular component (quench gas) relative to the noble component and operating at lower pressures generally improves stability.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20723901','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20723901"><span>Ambulatory estimation of foot placement during walking using inertial sensors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martin Schepers, H; van Asseldonk, Edwin H F; Baten, Chris T M; Veltink, Peter H</p> <p>2010-12-01</p> <p>This study proposes a method to assess foot placement during walking using an ambulatory measurement system consisting of orthopaedic sandals equipped with force/moment sensors and inertial sensors (accelerometers and gyroscopes). Two parameters, lateral foot placement (LFP) and stride length (SL), were estimated for each foot separately during walking with eyes open (EO), and with eyes closed (EC) to analyze if the ambulatory system was able to discriminate between different walking conditions. For validation, the ambulatory measurement system was compared to a reference optical position measurement system (Optotrak). LFP and SL were obtained by integration of inertial sensor signals. To reduce the drift caused by integration, LFP and SL were defined with respect to an average walking path using a predefined number of strides. By varying this number of strides, it was shown that LFP and SL could be best estimated using three consecutive strides. LFP and SL estimated from the instrumented shoe signals and with the reference system showed good correspondence as indicated by the RMS difference between both measurement systems being 6.5 ± 1.0 mm (mean ± standard deviation) for LFP, and 34.1 ± 2.7 mm for SL. Additionally, a statistical analysis revealed that the ambulatory system was able to discriminate between the EO and EC condition, like the reference system. It is concluded that the ambulatory measurement system was able to reliably estimate foot placement during walking. Copyright © 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.3962G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.3962G"><span>Palaeoceanographic significance of sedimentary features at the Argentine continental margin revealed by multichannel seismic reflection data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gruetzner, Jens; Uenzelmann-Neben, Gabriele; Franke, Dieter</p> <p>2010-05-01</p> <p>The thermohaline circulation in the Argentine Basin today is characterized by the interaction of northward flowing Antarctic water masses (Antarctic Intermediate Water, AAIW; Circumpolar Deep Water, CDW; Antarctic Bottom Water, AABW) and southward flowing North Atlantic Deep Water (NADW). The transfer of heat and energy via both AABW and NADW constitutes an important component in maintaining the global conveyor belt. We aim at a better understanding of both paths and intensity of this current system in the past by investigating an extensive (> 11000 km) set of high quality seismic reflection profiles from the Argentine continental margin. The profiles show a significant contourite system containing both erosive and depositional features that formed through the evolution of water masses and their modifications (path, physical and chemical properties) due to plate tectonic events such as the opening of the Drake Passage or the extensive emplacement of volcanic flows at the Rio Grande Rise. Overall the depositional features indicate that along slope (contour current) transport dominates over down slope (turbiditic) processes at the southern Argentine margin south of 45° S. Further to the North down slope transport was more extensive as indicated by the presence of submarine canyons crossing the slope down to a depth of ~3500 m. Here we present preliminary results from the southern part of the continental margin (42°-50° S) where we focus on a set of ~50 km wide terraces on the slope and rise separated by contouritic channels. The terraces developed over time in alternating constructional (depositional) and erosive phases. An initial age frame was developed by mapping regional reflectors and seismic units known from previous studies. The sedimentary layer between regional reflectors AR 4 and AR 5 spanning roughly the time interval from the Eocene/Oligocene boundary to the early middle Miocene is thin (0.1 - 0.4 s TWT) below the Valentine Feilberg Terrace but thickens towards the East forming a giant buried drift and also towards the West building a unit of plastered drifts below the Piedra Buena Terrace. Here, the maximum thickness of this unit is ~1.4 s (TWT). In contrast to this the sediments of late Miocene to recent age are very thin or completely eroded over the Piedra Buena terrace but form drifts at the Valentin Feilberg terrace that can be further divided into subunits whose reflections have stratified facies with good lateral continuity. Mounded drift structures on the western and eastern edges of the terrace are bounding an onlap fill structure possibly associated with bottom currents of reduced activity. With an assumed age of ~15 Ma for reflector AR5 the average sedimentation rate since the middle Miocene is estimated to be > 10 cm/ka and thus would make a drill site on the terrace suitable for high resolution palaeoclimate studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RScI...89a3105Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RScI...89a3105Z"><span>Thermal stability control system of photo-elastic interferometer in the PEM-FTs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, M. J.; Jing, N.; Li, K. W.; Wang, Z. B.</p> <p>2018-01-01</p> <p>A drifting model for the resonant frequency and retardation amplitude of a photo-elastic modulator (PEM) in the photo-elastic modulated Fourier transform spectrometer (PEM-FTs) is presented. A multi-parameter broadband-matching driving control method is proposed to improve the thermal stability of the PEM interferometer. The automatically frequency-modulated technology of the driving signal based on digital phase-locked technology is used to track the PEM's changing resonant frequency. Simultaneously the maximum optical-path-difference of a laser's interferogram is measured to adjust the amplitude of the PEM's driving signal so that the spectral resolution is stable. In the experiment, the multi-parameter broadband-matching control method is applied to the driving control system of the PEM-FTs. Control of resonant frequency and retardation amplitude stabilizes the maximum optical-path-difference to approximately 236 μm and results in a spectral resolution of 42 cm-1. This corresponds to a relative error smaller than 2.16% (4.28 standard deviation). The experiment shows that the method can effectively stabilize the spectral resolution of the PEM-FTs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1437536-characterization-applied-fields-ion-mobility-traveling-wave-based-structures-lossless-ion-manipulations-slim','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1437536-characterization-applied-fields-ion-mobility-traveling-wave-based-structures-lossless-ion-manipulations-slim"><span>Characterization of applied fields for ion mobility in traveling wave based structures for lossless ion manipulations (SLIM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hamid, Ahmed M.; Prabhakaran Nair Syamala Amma, Aneesh; Garimella, Venkata BS</p> <p>2018-03-21</p> <p>Ion mobility (IM) is rapidly gaining attention for the analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM has limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. These can be readily obtainable in structures for lossless ion manipulations (SLIM), which are fabricated from electric fields that are generated by appropriate potentials applied to arrays of electrodes patterned on twomore » parallel surfaces. In this work we have investigated the relationship between the various SLIM variables, such as electrode dimensions, inter-surface gap, and the TW applied voltages, that directly impact the fields experienced by ions. Ion simulation and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric field. The variables explored impact both ion confinement and the observed IM resolution in Structures for Lossless Ion Manipulations (SLIM) modules.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1437536-characterization-applied-fields-ion-mobility-separations-traveling-wave-based-structures-lossless-ion-manipulations-slim','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1437536-characterization-applied-fields-ion-mobility-separations-traveling-wave-based-structures-lossless-ion-manipulations-slim"><span>Characterization of applied fields for ion mobility separations in traveling wave based structures for lossless ion manipulations (SLIM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hamid, Ahmed M.; Prabhakaran, Aneesh; Garimella, Sandilya V. B.</p> <p></p> <p>Ion mobility (IM) is rapidly gaining attention for the analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM has limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. These can be readily obtainable in structures for lossless ion manipulations (SLIM), which are fabricated from electric fields that are generated by appropriate potentials applied to arrays of electrodes patterned on twomore » parallel surfaces. In this work we have investigated the relationship between the various SLIM variables, such as electrode dimensions, inter-surface gap, and the TW applied voltages, that directly impact the fields experienced by ions. Ion simulation and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric field. The variables explored impact both ion confinement and the observed IM resolution in Structures for Lossless Ion Manipulations (SLIM) modules.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED517502.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED517502.pdf"><span>Closing the Skills Gap: A Blueprint for Preparing New York City's Workforce to Meet the Evolving Needs of Employers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Fischer, David Jason; Reiss, Jeremy</p> <p>2010-01-01</p> <p>While public attention remains focused on the highest unemployment numbers in a generation, New York City is drifting toward a structural crisis with which policy makers could be grappling long after the recession fades to a bad memory. Even as the concerns about financial capital that spurred the downturn begin to subside, public officials must…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhPl....4.4331S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhPl....4.4331S"><span>Electron transport fluxes in potato plateau regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shaing, K. C.; Hazeltine, R. D.</p> <p>1997-12-01</p> <p>Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100% bootstrap current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA591399','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA591399"><span>Closing the Gap Between Research and Field Applications for Multi-UAV Cooperative Missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-01</p> <p>IMU Inertial Measurement Units INCOSE International Council on Systems Engineering ISR Intelligence Surveillance and Reconnaissance ISTAR...light-weight and low-cost inertial measurement units ( IMUs ) are widely adopted for navigation of small- scale UAVs. Low-costs IMUs are characterized...by high measurement noises and large measurement biases. Hence pure initial navigation using low-cost IMUs drifts rapidly. In practice, inertial</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5034778','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5034778"><span>Dynamical characterization of inactivation path in voltage-gated Na+ ion channel by non-equilibrium response spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pal, Krishnendu; Gangopadhyay, Gautam</p> <p>2016-01-01</p> <p>ABSTRACT Inactivation path of voltage gated sodium channel has been studied here under various voltage protocols as it is the main governing factor for the periodic occurrence and shape of the action potential. These voltage protocols actually serve as non-equilibrium response spectroscopic tools to study the ion channel in non-equilibrium environment. In contrast to a lot of effort in finding the crystal structure based molecular mechanism of closed-state(CSI) and open-state inactivation(OSI); here our approach is to understand the dynamical characterization of inactivation. The kinetic flux as well as energetic contribution of the closed and open- state inactivation path is compared here for voltage protocols, namely constant, pulsed and oscillating. The non-equilibrium thermodynamic quantities used in response to these voltage protocols serve as improved characterization tools for theoretical understanding which not only agrees with the previously known kinetic measurements but also predict the energetically optimum processes to sustain the auto-regulatory mechanism of action potential and the consequent inactivation steps needed. The time dependent voltage pattern governs the population of the conformational states which when couple with characteristic rate parameters, the CSI and OSI selectivity arise dynamically to control the inactivation path. Using constant, pulsed and continuous oscillating voltage protocols we have shown that during depolarization the OSI path is more favored path of inactivation however, in the hyper-polarized situation the CSI is favored. It is also shown that the re-factorisation of inactivated sodium channel to resting state occurs via CSI path. Here we have shown how the subtle energetic and entropic cost due to the change in the depolarization magnitude determines the optimum path of inactivation. It is shown that an efficient CSI and OSI dynamical profile in principle can characterize the open-state drug blocking phenomena. PMID:27367642</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790057437&hterms=parental+pressure&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dparental%2Bpressure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790057437&hterms=parental+pressure&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dparental%2Bpressure"><span>Thermal control of low-pressure fractionation processes. [in basaltic magma solidification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Usselman, T. M.; Hodge, D. S.</p> <p>1978-01-01</p> <p>Thermal models detailing the solidification paths for shallow basaltic magma chambers (both open and closed systems) were calculated using finite-difference techniques. The total solidification time for closed chambers are comparable to previously published calculations; however, the temperature-time paths are not. These paths are dependent on the phase relations and the crystallinity of the system, because both affect the manner in which the latent heat of crystallization is distributed. In open systems, where a chamber would be periodically replenished with additional parental liquid, calculations indicate that the possibility is strong that a steady-state temperature interval is achieved near a major phase boundary. In these cases it is straightforward to analyze fractionation models of the basaltic liquid evolution and their corresponding cumulate sequences. This steady thermal fractionating state can be invoked to explain large amounts of erupted basalts of similar composition over long time periods from the same volcanic center and some rhythmically layered basic cumulate sequences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010000522','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010000522"><span>Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bayard, David S.; Kohen, Hamid</p> <p>1997-01-01</p> <p>This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011655','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011655"><span>The Magnetic and Shielding Effects of Ring Current on Radiation Belt Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Ching</p> <p>2012-01-01</p> <p>The ring current plays many key roles in controlling magnetospheric dynamics. A well-known example is the magnetic depression produced by the ring current, which alters the drift paths of radiation belt electrons and may cause significant electron flux dropout. Little attention is paid to the ring current shielding effect on radiation belt dynamics. A recent simulation study that combines the Comprehensive Ring Current Model (CRCM) with the Radiation Belt Environment (RBE) model has revealed that the ring current-associated shielding field directly and/or indirectly weakens the relativistic electron flux increase during magnetic storms. In this talk, we will discuss how ring current magnetic field and electric shielding moderate the radiation belt enhancement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988PhDT........65L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988PhDT........65L"><span>Drift Wave Simulation in Toroidal Geometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lebrun, Maurice Joseph, III</p> <p>1988-12-01</p> <p>The drift wave, a general category of plasma behavior arising from a plasma inhomogeneity, is studied using the particle simulation method. In slab geometry, the drift wave (or universal mode) is stabilized by any finite amount of magnetic shear. In toroidal geometry, however, the coupling of the poloidal harmonics gives rise to a new branch of drift wave eigenmodes called the toroidicity -induced mode, which is predicted to be unstable in some regimes. The drift wave in a toroidal system is intrinsically three-dimensional, and is sensitive to the handling of the parallel electron dynamics, the (nearly) perpendicular wave dynamics, and the radial variation of magnetic field vector (shear). A simulation study must therefore be kinetic in nature, motivating the extension of particle simulation techniques to complex geometries. From this effort a three dimensional particle code in a toroidal coordinate system has been developed and applied to the toroidal drift wave problem. The code uses an (r,theta,phi) -type coordinate system, and a nonuniform radial grid that increases resolution near the mode-rational surfaces. Full ion dynamics and electron guiding center dynamics are employed. Further, the algorithm incorporates a straightforward limiting process to cylindrical geometry and slab geometry, enabling comparison to the theoretical results in these regimes. Simulations of the density-driven modes in toroidal geometry retain a single toroidal mode number (n = 9). In this regime, the poloidal harmonics are expected to be strongly coupled, giving rise to the marginally unstable toroidicity-induced drift mode. Analysis of the simulation data reveals a strong, low-frequency response that peaks near each mode rational surface. Further, the characteristic oscillation frequencies persist from one mode rational surface to the next, which identifies them as multiple harmonics of the toroidicity-induced mode. The lowest harmonic occurs at a frequency of omega/ omega^{*} ~ 0.26, which is reasonably close to the prediction of linear theory. Interferogram analysis of these modes indicates a "ballooning" structure toward the outside of the torus. The amplitude of the potential is observed to grow exponentially for the m = 8 through m = 10 poloidal mode numbers, with a growth rate of approximately gamma/omega ^{*} ~ 0.075. Saturation occurs at time t ~ 1000 Omega_sp{i}{-1}, and may be caused by quasilinear flattening of the density profile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.6225G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.6225G"><span>Comparing the weight method and the use of the tracer Uranine for assessing pesticide drift on soils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia-Santos, G.; Scheiben, D.; Leuenberger, F.; Binder, C. R.</p> <p>2009-04-01</p> <p>Drift from pesticide backpack-spraying is of major importance in the highlands of Colombia, where more than 20% be drifted by wind effects. This study assesses the usefulness of the weight method and the use of the tracer Uranine for assessing pesticide drift distribution on soils. The weight method has been used in developing countries and consists of weighing previously dried papers, installed close to the soil surface, before and after spraying a known amount of water. Relative humidity, temperature, direction and speed of the wind were monitored during the experiments. The tracer Uranine is often used for groundwater studies. Uranine was added to the water and sprayed by the farmer in the same way he would spray any pesticide mixture. The same papers used in the previous method were stored after the spraying and weighing. The tracer was extracted in water and analyzed using a fluorescent spectrometer. The advantage of Uranine over other tracers is its easy extraction with water and low detectable concentration. No solvents are required for the extraction. The experiments were performed during two months in the wet season in the region of Vereda la Hoya, Boyaca, Colombia at an altitude of 2800 m a.s.l., from September to October. Each experiment lasted about 30 min. The fast-changing meteorological conditions in the region affected the success of the weight method. The paper's weight was very sensitive to atmospheric high relative humidity and different evaporative conditions in grass and bare ground. Location of the blanks was essential and had to represent each of the different experimental evaporative conditions. Although the method was easy to implement, we consider that it is not appropriate for areas characterized by high evapotranspiration rates, and fast-changing climatic conditions as found in the Colombian highlands above 2800 m a.s.l. Whereas Uranine was not sensitive to different evapotranspiration rates nor fast changing climatic conditions, this method is affected by radiation, limiting its explanatory power during sunny days with high radiation. Remarkably, the drift measured with the weight method was on average 80% lower than the drift measured with Uranine. Very low values were only detectable with the tracer method. Therefore, the tracer Uranine is considered particularly suitable for assessing pesticide drift on soils in the highlands of Colombia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018372','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018372"><span>Mediterranean undercurrent sandy contourites, Gulf of Cadiz, Spain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hans, Nelson C.; Baraza, J.; Maldonado, A.</p> <p>1993-01-01</p> <p>The Pliocene-Quaternary pattern of contourite deposits on the eastern Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are perpendicular to slope contours and the Mediterranean undercurrent that has flowed northwestward parallel to the slope contours and down valleys between the ridges since the late Miocene opening of the Strait of Gibraltar. Coincident with the northwestward decrease in undercurrent speeds from the Strait there is the following northwestward gradation of sediment facies associations: (1) upper slope facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor facies is composed of gravelly, shelly coarse to medium sand lags and large sand dunes on the valley margins. Compared to this, the northwestern drift contains coarse silt interbeds and the adjacent valley floors exhibit small to medium sand dunes of fine sand. Further northwestward, sediment drift grades to biogenous silt near the Faro Drift at the Portuguese border. Because of the complex pattern of contour-parallel and valley-perpendicular flow paths of the Mediterranean undercurrent, the larger-scale bedforms and coarser-grained sediment of valley facies trend perpendicular to the smaller-scale bedforms and finer-grained contourite deposits of adjacent sediment drift facies. The bottom-current deposits of valleys and the contourites of the Cadiz slope intervalley areas are distinct from turbidite systems. The valley sequences are not aggradational like turbidite channel-levee complexes, but typically exhibit bedrock walls against ridges, extensive scour and fill into adjacent contourites, transverse bedform fields and bioclastic lag deposits. Both valley and contourite deposits exhibit reverse graded bedding and sharp upper bed contacts in coarse-grained layers, low deposition rates, and a regional pattern of bedform zones, textural variation, and compositional gradation. The surface sandy contourite layer of 0.2-1.2 m thickness that covers the Gulf of Cadiz slope has formed during the present Holocene high sea level because high sea level results in maximum water depth over the Gibraltar sill and full development of the Mediterranean undercurrent. The late Pleistocene age of the mud underlying the surface sand sheet correlates with the age of the last sea-level lowstand and apparent weak Mediterranean undercurrent development. Thus, the cyclic deposition of sand or mud layers and contourite or drape sequences appear to be related to late Pliocene and Quaternary sea-level changes and Mediterranean water circulation patterns. Since its Pliocene origin, the contourite sequence has had low deposition rates of < 5 cm/1000y on the upper slope and < 13 cm/1000y in the middle slope sediment drift. ?? 1993.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=research+AND+gap&pg=2&id=EJ1152940','ERIC'); return false;" href="https://eric.ed.gov/?q=research+AND+gap&pg=2&id=EJ1152940"><span>Learning from Schools That Close Opportunity Gaps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>LaCour, Sarah E.; York, Adam; Welner, Kevin; Valladares, Michelle Renée; Kelley, Linda Molner</p> <p>2017-01-01</p> <p>The Schools of Opportunity Project recognizes public high schools that employ research-based practices to close opportunity gaps. The commended schools illustrate how school quality can and should be measured by far more than just test scores. In doing so, they offer exemplars and a path forward for the nation's schools. The selection criteria for…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........69C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........69C"><span>Parameter optimization on the convergence surface of path simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chandrasekaran, Srinivas Niranj</p> <p></p> <p>Computational treatments of protein conformational changes tend to focus on the trajectories themselves, despite the fact that it is the transition state structures that contain information about the barriers that impose multi-state behavior. PATH is an algorithm that computes a transition pathway between two protein crystal structures, along with the transition state structure, by minimizing the Onsager-Machlup action functional. It is rapid but depends on several unknown input parameters whose range of different values can potentially generate different transition-state structures. Transition-state structures arising from different input parameters cannot be uniquely compared with those generated by other methods. I outline modifications that I have made to the PATH algorithm that estimates these input parameters in a manner that circumvents these difficulties, and describe two complementary tests that validate the transition-state structures found by the PATH algorithm. First, I show that although the PATH algorithm and two other approaches to computing transition pathways produce different low-energy structures connecting the initial and final ground-states with the transition state, all three methods agree closely on the configurations of their transition states. Second, I show that the PATH transition states are close to the saddle points of free-energy surfaces connecting initial and final states generated by replica-exchange Discrete Molecular Dynamics simulations. I show that aromatic side-chain rearrangements create similar potential energy barriers in the transition-state structures identified by PATH for a signaling protein, a contractile protein, and an enzyme. Finally, I observed, but cannot account for, the fact that trajectories obtained for all-atom and Calpha-only simulations identify transition state structures in which the Calpha atoms are in essentially the same positions. The consistency between transition-state structures derived by different algorithms for unrelated protein systems argues that although functionally important protein conformational change trajectories are to a degree stochastic, they nonetheless pass through a well-defined transition state whose detailed structural properties can rapidly be identified using PATH. In the end, I outline the strategies that could enhance the efficiency and applicability of PATH.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120010289','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120010289"><span>A Framework for Simulation of Aircraft Flyover Noise Through a Non-Standard Atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Arntzen, Michael; Rizzi, Stephen A.; Visser, Hendrikus G.; Simons, Dick G.</p> <p>2012-01-01</p> <p>This paper describes a new framework for the simulation of aircraft flyover noise through a non-standard atmosphere. Central to the framework is a ray-tracing algorithm which defines multiple curved propagation paths, if the atmosphere allows, between the moving source and listener. Because each path has a different emission angle, synthesis of the sound at the source must be performed independently for each path. The time delay, spreading loss and absorption (ground and atmosphere) are integrated along each path, and applied to each synthesized aircraft noise source to simulate a flyover. A final step assigns each resulting signal to its corresponding receiver angle for the simulation of a flyover in a virtual reality environment. Spectrograms of the results from a straight path and a curved path modeling assumption are shown. When the aircraft is at close range, the straight path results are valid. Differences appear especially when the source is relatively far away at shallow elevation angles. These differences, however, are not significant in common sound metrics. While the framework used in this work performs off-line processing, it is conducive to real-time implementation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4738330','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4738330"><span>Two betweenness centrality measures based on Randomized Shortest Paths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kivimäki, Ilkka; Lebichot, Bertrand; Saramäki, Jari; Saerens, Marco</p> <p>2016-01-01</p> <p>This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP’s have previously proven to be useful in defining distance measures on networks. In this work we study their utility in quantifying the importance of the nodes of a network. The proposed RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. We present the derivations of these measures and how they can be computed in an efficient way. In addition, we show with real world examples the potential of the RSP betweenness centralities in identifying interesting nodes of a network that more traditional methods might fail to notice. PMID:26838176</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617893','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617893"><span>North Pacific Acoustic Laboratory and Deep Water Acoustics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>collaboration with Gerald D’Spain at the Marine Physical Laboratory ( MPL ) has continued. Data from PhilSea10 during the Drift Test have corrected for...Doppler shift, processed and provided to MPL . The collaboration will continue as the analysis progresses. II. Award Number N00014-13-1-0053...Wage (George Mason Univ.), Peter Worcester (Scripps), and others. In addition, we have begun close collaboration with Gerald D’Spain ( MPL</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/2759','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/2759"><span>Response of reptile and amphibian communities to canopy gaps created by wind disturbance in the Southern Appalachians</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Cathryn H. Greenberg</p> <p>2001-01-01</p> <p>Reptile and amphibian communities were sampled in intact gaps created by wind disturbance, salvage-logged gaps, and closed canopy mature forest (controls). Sampling was conducted during June–October in 1997 and 1998 using drift fences with pitfall and funnel traps. Basal area of live trees, shade, leaf litter coverage, and litter depth was highest in controls and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/553014-electron-transport-fluxes-potato-plateau-regime','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/553014-electron-transport-fluxes-potato-plateau-regime"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shaing, K.C.; Hazeltine, R.D.</p> <p></p> <p>Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820025716','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820025716"><span>A two-component rain model for the prediction of attenuation and diversity improvement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crane, R. K.</p> <p>1982-01-01</p> <p>A new model was developed to predict attenuation statistics for a single Earth-satellite or terrestrial propagation path. The model was extended to provide predictions of the joint occurrences of specified or higher attenuation values on two closely spaced Earth-satellite paths. The joint statistics provide the information required to obtain diversity gain or diversity advantage estimates. The new model is meteorologically based. It was tested against available Earth-satellite beacon observations and terrestrial path measurements. The model employs the rain climate region descriptions of the Global rain model. The rms deviation between the predicted and observed attenuation values for the terrestrial path data was 35 percent, a result consistent with the expectations of the Global model when the rain rate distribution for the path is not used in the calculation. Within the United States the rms deviation between measurement and prediction was 36 percent but worldwide it was 79 percent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900016374','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900016374"><span>Identifying decohering paths in closed quantum systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Albrecht, Andreas</p> <p>1990-01-01</p> <p>A specific proposal is discussed for how to identify decohering paths in a wavefunction of the universe. The emphasis is on determining the correlations among subsystems and then considering how these correlations evolve. The proposal is similar to earlier ideas of Schroedinger and of Zeh, but in other ways it is closer to the decoherence functional of Griffiths, Omnes, and Gell-Mann and Hartle. There are interesting differences with each of these which are discussed. Once a given coarse-graining is chosen, the candidate paths are fixed in this scheme, and a single well defined number measures the degree of decoherence for each path. The normal probability sum rules are exactly obeyed (instantaneously) by these paths regardless of the level of decoherence. Also briefly discussed is how one might quantify some other aspects of classicality. The important role that concrete calculations play in testing this and other proposals is stressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CEAB...37..417G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CEAB...37..417G"><span>Variations of Solar Non-axisymmetric Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gyenge, N.; Baranyi, T.; Ludmány, A.</p> <p></p> <p>The temporal behaviour of solar active longitudes has been examined by using two sunspot catalogues, the Greenwich Photoheliographic Results (GPR) and the Debrecen Photoheliographic Data (DPD). The time-longitude diagrams of the activity distribution reveal the preferred longitudinal zones and their migration with respect to the Carrington frame. The migration paths outline a set of patterns in which the activity zone has alternating prograde/retrograde angular velocities with respect to the Carrington rotation rate. The time profiles of these variations can be described by a set of successive parabolae. Two similar migration paths have been selected from these datasets, one northern path during cycles 21 - 22 and one southern path during cycles 13 - 14, for closer examination and comparison of their dynamical behaviours. The rates of sunspot emergence exhibited in both migration paths similar periodicities, close to 1.3 years. This behaviour may imply that the active longitude is connected to the bottom of convection zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CoPhC.184...79G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CoPhC.184...79G"><span>Efficient computation paths for the systematic analysis of sensitivities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greppi, Paolo; Arato, Elisabetta</p> <p>2013-01-01</p> <p>A systematic sensitivity analysis requires computing the model on all points of a multi-dimensional grid covering the domain of interest, defined by the ranges of variability of the inputs. The issues to efficiently perform such analyses on algebraic models are handling solution failures within and close to the feasible region and minimizing the total iteration count. Scanning the domain in the obvious order is sub-optimal in terms of total iterations and is likely to cause many solution failures. The problem of choosing a better order can be translated geometrically into finding Hamiltonian paths on certain grid graphs. This work proposes two paths, one based on a mixed-radix Gray code and the other, a quasi-spiral path, produced by a novel heuristic algorithm. Some simple, easy-to-visualize examples are presented, followed by performance results for the quasi-spiral algorithm and the practical application of the different paths in a process simulation tool.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2012/1078/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2012/1078/"><span>Preliminary observations of voluminous ice-rich and water-rich lahars generated during the 2009 eruption of Redoubt, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waythomas, Christopher F.; Pierson, Thomas C.; Major, Jon J.; Scott, William E.</p> <p>2012-01-01</p> <p>Redoubt Volcano in south-central Alaska began erupting on March 15, 2009, and by April 4, 2009, had produced at least 20 explosive events that generated plumes of ash and lahars. The 3,108-m high, snow- and -ice-clad stratovolcano has an ice-filled summit crater that is breached to the north. The volcano supports about 4 km3 of ice and snow and about 1 km3 of this makes up the Drift glacier on the northern side of the volcano. Explosive eruptions between March 22 and April 4, which included the destruction of at least two lava domes, triggered significant lahars in the Drift River valley on March 23 and April 4 and several smaller lahars between March 24 and March 31. High-flow marks, character of deposits, areas of inundation, and estimates of flow velocity revealed that the lahars on March 23 and April 4 were the largest of the eruption. In the 2-km-wide upper Drift River valley, average flow depths were about 3–5 m. Average peak-flow velocities were likely between 10 and 15 ms-1, and peak discharges were on the order of 104–105 m3s-1. The area inundated by lahars on March 23 was at least 100 km2 and on April 4 about 125 km2. The lahars emplaced on March 23 and April 4 had volumes on the order of 107–108 m3 and were similar in size to the largest lahar of the 1989–90 eruption. The March 23 lahars were primarily flowing slurries of snow and ice entrained from the Drift glacier and seasonal snow and tabular blocks of river ice from the Drift River valley. Only a single, undifferentiated deposit up to 5 m thick was found and contained about 80–95 percent of poorly sorted, massive to imbricate assemblages of snow and ice. The deposit was frozen soon after it was emplaced and later eroded and buried by the April 4 lahar. The lahar of April 4, in contrast, was primarily a hyperconcentrated flow, as interpreted from 1- to 6-m thick deposits of massive to horizontally stratified sand-to-fine-gravel. Rock material in the April 4 lahar deposit is predominantly juvenile andesite. We infer that the lahars generated on March 23 were initiated by a rapid succession of vent-clearing explosions that blasted through about 50–100 m of crater-filling glacier ice and snow, producing a voluminous release of meltwater from the Drift glacier. The resulting flood eroded and entrained snow, fragments of glacier and river ice, and liquid water along its flow path. Small-volume pyroclastic flows, possibly associated with destruction of a small dome or minor eruption-column collapses, may have contributed additional meltwater to the lahar. Meltwater generated by subglacial hydrothermal activity and stored beneath the Drift glacier may have been ejected or released rapidly as well. The April 4 lahar was initiated when hot dome-collapse pyroclastic flows entrained and swiftly melted snow and ice, and incorporated additional rock debris from the Drift glacier. The peak discharge of the April 4 lahar was in the range of 60,000–160,000 m3s-1. For comparison, the largest lahar of the 1989–90 eruption had a peak discharge of about 80,000 m3s-1. Lahars generated by the 2009 eruption led to significant channel aggradation in the lower Drift River valley and caused extensive inundation at an oil storage and transfer facility located there. The April 4, 2009, lahar was 6–30 times larger than the largest meteorological floods known or estimated in the Drift River drainage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20817261','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20817261"><span>Water body and riparian buffer strip characteristics in a vineyard area to support aquatic pesticide exposure assessment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ohliger, Renja; Schulz, Ralf</p> <p>2010-10-15</p> <p>The implementation of a geodata-based probabilistic pesticide exposure assessment for surface waters in Germany offers the opportunity to base the exposure estimation on more differentiated assumptions including detailed landscape characteristics. Since these characteristics can only be estimated using field surveys, water body width and depth, hydrology, riparian buffer strip width, ground vegetation cover, existence of concentrated flow paths, and riparian vegetation were characterised at 104 water body segments in the vineyard region Palatinate (south-west Germany). Water body segments classified as permanent (n=43) had median values of water body width and depth of 0.9m and 0.06m, respectively, and the determined median width:depth ratio was 15. Thus, the deterministic water body model (width=1m; depth=0.3m) assumed in regulatory exposure assessment seems unsuitable for small water bodies in the study area. Only 25% of investigated buffer strips had a dense vegetation cover (>70%) and allow a laminar sheet flow as required to include them as an effective pesticide runoff reduction landscape characteristic. At 77 buffer strips, bordering field paths and erosion rills leading into the water body were present, concentrating pesticide runoff and consequently decreasing buffer strip efficiency. The vegetation type shrubbery (height>1.5m) was present at 57 (29%) investigated riparian buffer strips. According to their median optical vegetation density of 75%, shrubberies may provide a spray drift reduction of 72±29%. Implementing detailed knowledge in an overall assessment revealed that exposure via drift might be 2.4 and via runoff up to 1.6 fold higher than assumed by the deterministic approach. Furthermore, considering vegetated buffer strips only by their width leads to an underestimation of exposure by a factor of as much as four. Our data highlight that the deterministic model assumptions neither represent worst-case nor median values and therefore cannot simply be adopted in a probabilistic approach. Copyright © 2010 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900020537','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900020537"><span>Vehicle path-planning in three dimensions using optics analogs for optimizing visibility and energy cost</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rowe, Neil C.; Lewis, David H.</p> <p>1989-01-01</p> <p>Path planning is an important issue for space robotics. Finding safe and energy-efficient paths in the presence of obstacles and other constraints can be complex although important. High-level (large-scale) path planning for robotic vehicles was investigated in three-dimensional space with obstacles, accounting for: (1) energy costs proportional to path length; (2) turn costs where paths change trajectory abruptly; and (3) safety costs for the danger associated with traversing a particular path due to visibility or invisibility from a fixed set of observers. Paths optimal with respect to these cost factors are found. Autonomous or semi-autonomous vehicles were considered operating either in a space environment around satellites and space platforms, or aircraft, spacecraft, or smart missiles operating just above lunar and planetary surfaces. One class of applications concerns minimizing detection, as for example determining the best way to make complex modifications to a satellite without being observed by hostile sensors; another example is verifying there are no paths (holes) through a space defense system. Another class of applications concerns maximizing detection, as finding a good trajectory between mountain ranges of a planet while staying reasonably close to the surface, or finding paths for a flight between two locations that maximize the average number of triangulation points available at any time along the path.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950059022&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPlasma%2BRing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950059022&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPlasma%2BRing"><span>Decay of equatorial ring current ions and associated aeronomical consequences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, M.-C.; Kozyra, J. U.; Nagy, A. F.; Rasmussen, C. E.; Khazanov, G. V.</p> <p>1993-01-01</p> <p>The decay of the major ion species which constitute the ring current is studied by solving the time evolution of their distribution functions during the recovery phase of a moderate geomagnetic storm. In this work, only equatorially mirroring particles are considered. Particles are assumed to move subject to E x B and gradient drifts. They also experience loses along their drift paths. Two loss mechanisms are considered: charge exchange with neutral hydrogen atoms and Coulomb collisions with thermal plasma in the plasmasphere. Thermal plasma densities are calculated with a plasmaspheric model employing a time-dependent convection electric field model. The drift-loss model successfully reproduces a number of important and observable features in the distribution function. Charge exchange is found to be the major loss mechanism for the ring current ions; however the important effects of Coulomb collisions on both the ring current and thermal populations are also presented. The model predicts the formation of a low-energy (less than 500 eV) ion population as a result of energy degradation caused by Coulomb collision of the ring current ions with the plasmaspheric electrons; this population may be one source of the low-energy ions observed during active and quiet periods in the inner magnetosphere. The energy transferred to plasmaspheric electrons through Coulomb collisions with ring current ions is believed to be the energy source for the electron temperature enhancement and the associated 6300 A (stable auroral red (SAR) arc) emission in the subauroral region. The calculated energy deposition rate is sufficient to produce a subauroral electron temperature enhancement and SAR arc emissions that are consistent with observations of these quantities during moderate magnetic activity levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20236958','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20236958"><span>Ontogenetic development of migration: Lagrangian drift trajectories suggest a new paradigm for sea turtles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hays, Graeme C; Fossette, Sabrina; Katselidis, Kostas A; Mariani, Patrizio; Schofield, Gail</p> <p>2010-09-06</p> <p>Long distance migration occurs in a wide variety of taxa including birds, insects, fishes, mammals and reptiles. Here, we provide evidence for a new paradigm for the determinants of migration destination. As adults, sea turtles show fidelity to their natal nesting areas and then at the end of the breeding season may migrate to distant foraging sites. For a major rookery in the Mediterranean, we simulated hatchling drift by releasing 288 000 numerical particles in an area close to the nesting beaches. We show that the pattern of adult dispersion from the breeding area reflects the extent of passive dispersion that would be experienced by hatchlings. Hence, the prevailing oceanography around nesting areas may be crucial to the selection of foraging sites used by adult sea turtles. This environmental forcing may allow the rapid evolution of new migration destinations if ocean currents alter with climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RScI...88f3706G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RScI...88f3706G"><span>Developments on a SEM-based X-ray tomography system: Stabilization scheme and performance evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gomes Perini, L. A.; Bleuet, P.; Filevich, J.; Parker, W.; Buijsse, B.; Kwakman, L. F. Tz.</p> <p>2017-06-01</p> <p>Recent improvements in a SEM-based X-ray tomography system are described. In this type of equipment, X-rays are generated through the interaction between a highly focused electron-beam and a geometrically confined anode target. Unwanted long-term drifts of the e-beam can lead to loss of X-ray flux or decrease of spatial resolution in images. To circumvent this issue, a closed-loop control using FFT-based image correlation is integrated to the acquisition routine, in order to provide an in-line drift correction. The X-ray detection system consists of a state-of-the-art scientific CMOS camera (indirect detection), featuring high quantum efficiency (˜60%) and low read-out noise (˜1.2 electrons). The system performance is evaluated in terms of resolution, detectability, and scanning times for applications covering three different scientific fields: microelectronics, technical textile, and material science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21069973-radiation-from-space-charge-dominated-linear-electron-beam','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21069973-radiation-from-space-charge-dominated-linear-electron-beam"><span>Radiation from a space charge dominated linear electron beam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Biswas, Debabrata</p> <p>2008-01-15</p> <p>It is commonly known that radiation loss in linear beam transport is largely unimportant. For a space charge dominated linear beam, however, radiation power loss can be an appreciable fraction of the injected beam power [Biswas, Kumar, and Puri, Phys. Plasmas 14, 094702 (2007)]. Exploring this further, the electromagnetic nature of radiation due to the passage of a space charge dominated electron beam in a 'closed' drift tube is explicitly demonstrated by identifying the cavity modes where none existed prior to beam injection. It is further shown that even in an 'open' drift tube from which radiation may leak, themore » modes that escape contribute to the time variation of the electric and magnetic fields in the transient phase. As the window opening increases, the oscillatory transient phase disappears altogether. However, the 'bouncing ball' modes survive and can be observed between the injection and collection plates.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Prama..88...23M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Prama..88...23M"><span>Nonlinear waves in electron-positron-ion plasmas including charge separation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mugemana, A.; Moolla, S.; Lazarus, I. J.</p> <p>2017-02-01</p> <p>Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth and spiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E 0 was reduced. The results are compared with satellite observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JInst..12C6014T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JInst..12C6014T"><span>Central Drift Chamber for Belle-II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taniguchi, N.</p> <p>2017-06-01</p> <p>The Central Drift Chamber (CDC) is the main device for tracking and identification of charged particles for Belle-II experiment. The Belle-II CDC is cylindrical wire chamber with 14336 sense wires, 2.3 m-length and 2.2 m-diameter. The wire chamber and readout electronics have been completely replaced from the Belle CDC. The new readout electronics system must handle higher trigger rate of 30 kHz with less dead time at the design luminosity of 8 × 1035 cm-2s-1. The front-end electronics are located close to detector and send digitized signal through optical fibers. The Amp-Shaper-Discriminator chips, FADC and FPGA are assembled on a single board. Belle-II CDC with readout electronics has been installed successfully in Belle structure in October 2016. We will present overview of the Belle-II CDC and status of commissioning with cosmic ray.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996PhPl....3.4046B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996PhPl....3.4046B"><span>Toroidal gyrofluid equations for simulations of tokamak turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beer, M. A.; Hammett, G. W.</p> <p>1996-11-01</p> <p>A set of nonlinear gyrofluid equations for simulations of tokamak turbulence are derived by taking moments of the nonlinear toroidal gyrokinetic equation. The moment hierarchy is closed with approximations that model the kinetic effects of parallel Landau damping, toroidal drift resonances, and finite Larmor radius effects. These equations generalize the work of Dorland and Hammett [Phys. Fluids B 5, 812 (1993)] to toroidal geometry by including essential toroidal effects. The closures for phase mixing from toroidal ∇B and curvature drifts take the basic form presented in Waltz et al. [Phys. Fluids B 4, 3138 (1992)], but here a more rigorous procedure is used, including an extension to higher moments, which provides significantly improved accuracy. In addition, trapped ion effects and collisions are incorporated. This reduced set of nonlinear equations accurately models most of the physics considered important for ion dynamics in core tokamak turbulence, and is simple enough to be used in high resolution direct numerical simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhRvD..84f3503T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhRvD..84f3503T"><span>Peculiar motions, accelerated expansion, and the cosmological axis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsagas, Christos G.</p> <p>2011-09-01</p> <p>Peculiar velocities change the expansion rate of any observer moving relative to the smooth Hubble flow. As a result, observers in a galaxy like our Milky Way can experience accelerated expansion within a globally decelerating universe, even when the drift velocities are small. The effect is local, but the affected scales can be large enough to give the false impression that the whole cosmos has recently entered an accelerating phase. Generally, peculiar velocities are also associated with dipolelike anisotropies, triggered by the fact that they introduce a preferred spatial direction. This implies that observers experiencing locally accelerated expansion, as a result of their own drift motion, may also find that the acceleration is maximized in one direction and minimized in the opposite. We argue that, typically, such a dipole anisotropy should be relatively small and the axis should probably lie fairly close to the one seen in the spectrum of the cosmic microwave background.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2894886','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2894886"><span>Ontogenetic development of migration: Lagrangian drift trajectories suggest a new paradigm for sea turtles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hays, Graeme C.; Fossette, Sabrina; Katselidis, Kostas A.; Mariani, Patrizio; Schofield, Gail</p> <p>2010-01-01</p> <p>Long distance migration occurs in a wide variety of taxa including birds, insects, fishes, mammals and reptiles. Here, we provide evidence for a new paradigm for the determinants of migration destination. As adults, sea turtles show fidelity to their natal nesting areas and then at the end of the breeding season may migrate to distant foraging sites. For a major rookery in the Mediterranean, we simulated hatchling drift by releasing 288 000 numerical particles in an area close to the nesting beaches. We show that the pattern of adult dispersion from the breeding area reflects the extent of passive dispersion that would be experienced by hatchlings. Hence, the prevailing oceanography around nesting areas may be crucial to the selection of foraging sites used by adult sea turtles. This environmental forcing may allow the rapid evolution of new migration destinations if ocean currents alter with climate change. PMID:20236958</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1438365-role-last-closed-drift-shell-dynamics-driving-fast-losses-van-allen-radiation-belt-extinction','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1438365-role-last-closed-drift-shell-dynamics-driving-fast-losses-van-allen-radiation-belt-extinction"><span>On the role of last closed drift shell dynamics in driving fast losses and Van Allen radiation belt extinction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Olifer, Leonid; Mann, Ian R.; Morley, Steven Karl; ...</p> <p>2018-04-20</p> <p>We present observations of very fast radiation belt loss as resolved using high time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The time scale of these losses is revealed to be as short as ~0.5–2 hr during intense magnetic storms, with some storms demonstrating almost total loss on these time scales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the September 2014 storm shows fast extinction but no recovery for around 2 weeks. By contrast, themore » moderate September 2012 storm which generated a three radiation belt morphology shows more gradual loss. Here, we compute the last closed drift shell (LCDS) for each of these four storms and show a very strong correspondence between the LCDS and the loss patterns of trapped electrons in each storm. Most significantly, the location of the LCDS closely mirrors the high time resolution losses observed in GPS flux. The fast losses occur on a time scale shorter than the Van Allen Probes orbital period, are explained by proximity to the LCDS, and progress inward, consistent with outward transport to the LCDS by fast ultralow frequency wave radial diffusion. Expressing the location of the LCDS in L*, and not model magnetopause standoff distance in units of RE, clearly reveals magnetopause shadowing as the cause of the fast loss observed by the GPS satellites.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DPS....4731101F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DPS....4731101F"><span>Uranus' Persistent Patterns and Features from High-SNR Imaging in 2012-2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fry, Patrick M.; Sromovsky, Lawrence A.; de Pater, Imke; Hammel, Heidi B.; Marcus, Phillip</p> <p>2015-11-01</p> <p>Since 2012, Uranus has been the subject of an observing campaign utilizing high signal-to-noise imaging techniques at Keck Observatory (Fry et al. 2012, Astron. J. 143, 150-161). High quality observing conditions on four observing runs of consecutive nights allowed longitudinally-complete coverage of the atmosphere over a period of two years (Sromovsky et al. 2015, Icarus 258, 192-223). Global mosaic maps made from images acquired on successive nights in August 2012, November 2012, August 2013, and August 2014, show persistent patterns, and six easily distinguished long-lived cloud features, which we were able to track for long periods that ranged from 5 months to over two years. Two at similar latitudes are associated with dark spots, and move with the atmospheric zonal flow close to the location of their associated dark spot instead of following the flow at the latitude of the bright features. These features retained their morphologies and drift rates in spite of several close interactions. A second pair of features at similar latitudes also survived several close approaches. Several of the long-lived features also exhibited equatorward drifts and latitudinal oscillations. Also persistent are a remarkable near-equatorial wave feature and global zonal band structure. We will present imagery, maps, and analyses of these phenomena.PMF and LAS acknowledge support from NASA Planetary Astronomy Program; PMF and LAS acknowledge funding and technical support from W. M. Keck Observatory. We thank those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests. Without their generous hospitality none of our groundbased observations would have been possible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1438365-role-last-closed-drift-shell-dynamics-driving-fast-losses-van-allen-radiation-belt-extinction','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1438365-role-last-closed-drift-shell-dynamics-driving-fast-losses-van-allen-radiation-belt-extinction"><span>On the role of last closed drift shell dynamics in driving fast losses and Van Allen radiation belt extinction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Olifer, Leonid; Mann, Ian R.; Morley, Steven Karl</p> <p></p> <p>We present observations of very fast radiation belt loss as resolved using high time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The time scale of these losses is revealed to be as short as ~0.5–2 hr during intense magnetic storms, with some storms demonstrating almost total loss on these time scales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the September 2014 storm shows fast extinction but no recovery for around 2 weeks. By contrast, themore » moderate September 2012 storm which generated a three radiation belt morphology shows more gradual loss. Here, we compute the last closed drift shell (LCDS) for each of these four storms and show a very strong correspondence between the LCDS and the loss patterns of trapped electrons in each storm. Most significantly, the location of the LCDS closely mirrors the high time resolution losses observed in GPS flux. The fast losses occur on a time scale shorter than the Van Allen Probes orbital period, are explained by proximity to the LCDS, and progress inward, consistent with outward transport to the LCDS by fast ultralow frequency wave radial diffusion. Expressing the location of the LCDS in L*, and not model magnetopause standoff distance in units of RE, clearly reveals magnetopause shadowing as the cause of the fast loss observed by the GPS satellites.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/864960','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/864960"><span>Valve for gas centrifuges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hahs, Charles A.; Burbage, Charles H.</p> <p>1984-01-01</p> <p>The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Pendulum&pg=2&id=EJ1000673','ERIC'); return false;" href="https://eric.ed.gov/?q=Pendulum&pg=2&id=EJ1000673"><span>Oscillations of a Simple Pendulum with Extremely Large Amplitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Butikov, Eugene I.</p> <p>2012-01-01</p> <p>Large oscillations of a simple rigid pendulum with amplitudes close to 180[degrees] are treated on the basis of a physically justified approach in which the cycle of oscillation is divided into several stages. The major part of the almost closed circular path of the pendulum is approximated by the limiting motion, while the motion in the vicinity…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6601204','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6601204"><span>Valve for gas centrifuges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hahs, C.A.; Rurbage, C.H.</p> <p>1982-03-17</p> <p>The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B41B0407B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B41B0407B"><span>Field evaluation of open and closed-path CO2 flux systems over asphalt surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bogoev, I.; Santos, E.</p> <p>2016-12-01</p> <p>Eddy covariance (EC) is a widely used method for quantifying surface fluxes of heat, water vapor and carbon dioxide between ecosystems and the atmosphere. A typical EC system consists of an ultrasonic anemometer measuring the 3D wind vector and a fast-response infrared gas analyzer for sensing the water vapor and CO2 density in the air. When using an open-path analyzer that detects the constituent's density in situ a correction for concurrent air temperature and humidity fluctuations must be applied, Webb et al. (1980). In environments with small magnitudes of CO2 flux (<5µmol m-2 s-1) and in the presence of high sensible heat flux, like wintertime over boreal forest, open-path flux measurements have been challenging since the magnitude of the density corrections are as large as the uncorrected CO2 flux itself. A new technology merging the sensing paths of the gas analyzer and the sonic anemometer has been recently developed. This new integrated instrument allows a direct measurement of CO2 mixing ratio in the open air and has the potential to improve the quality of the temperature related density corrections by synchronously measuring the sensible heat flux in the optical path of the gas analyzer. We evaluate the performance and the accuracy of this new sensor over a large parking lot with an asphalt surface where the CO2 fluxes are considered low and the interfering sensible heat fluxes are above 200 Wm-2. A co-located closed-path EC system is used as a reference measurement to examine any systematic biases and apparent CO2 uptake observed with open-path sensors under high sensible heat flux regimes. Half-hour mean and variance of CO2 and water vapor concentrations are evaluated. The relative spectral responses, covariances and corrected turbulent fluxes using a common sonic anemometer are analyzed. The influence of sensor separation and frequency response attenuation on the density corrections is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981mtcr.rept.....B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981mtcr.rept.....B"><span>Mechanical and thermomechanical calculations related to the storage of spent nuclear-fuel assemblies in granite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Butkovich, T. R.</p> <p>1981-08-01</p> <p>A generic test of the geologic storage of spent-fuel assemblies from an operating nuclear reactor is being made by the Lawrence Livermore National Laboratory at the US Department of Energy's Nevada Test Site. The spent-fuel assemblies were emplaced at a depth of 420 m (1370 ft) below the surface in a typical granite and will be retrieved at a later time. The early time, close-in thermal history of this type of repository is being simulated with spent-fuel and electrically heated canisters in a central drift, with auxiliary heaters in two parallel side drifts. Prior to emplacement of the spent-fuel canister, preliminary calculations were made using a pair of existing finite-element codes. Calculational modeling of a spent-fuel repository requires a code with a multiple capability. The effects of both the mining operation and the thermal load on the existing stress fields and the resultant displacements of the rock around the repository must be calculated. The thermal loading for each point in the rock is affected by heat transfer through conduction, radiation, and normal convection, as well as by ventilation of the drifts. Both the ADINA stress code and the compatible ADINAT heat-flow code were used to perform the calculations because they satisfied the requirements of this project. ADINAT was adapted to calculate radiative and convective heat transfer across the drifts and to model the effects of ventilation in the drifts, while the existing isotropic elastic model was used with the ADINA code. The results of the calculation are intended to provide a base with which to compare temperature, stress, and displacement data taken during the planned 5-y duration of the test. In this way, it will be possible to determine how the existing jointing in the rock influences the results as compared with a homogeneous, isotropic rock mass. Later, new models will be introduced into ADINA to account for the effects of jointing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO43D..07N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO43D..07N"><span>Modeling the drift of objects floating in the sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nof, D.; Girihagama, L. N.</p> <p>2016-02-01</p> <p>The question how buoyant objects drift and where are they ultimately washed ashore must have troubled humans since the beginning of civilization. A good summary of the observational aspect of the problem is given in Ebbesmeyer (2015) and the references given therein. It includes the journey of shoes originally housed in containers that were accidently swept from the deck of cargo ships to the ocean as well as the famous world war two case of a corpse released by the British Counter Intelligence agency near the Spanish Coast. Of practical modern importance is the question how did the flaperon, belonging to the Malaysian Airplane lost last year (supposedly over the Indian Ocean near Western Australia), travelled almost across the entire Indian Ocean in just 15 months (corresponding to the very high speed of six centimeters per-second, about three times the speed of most ocean currents away from boundaries). Traditionally, it has been thought that three processes affect the drift-ocean currents, surface waves and wind. Of these, the last two are usually regarded as small. The waves effect (Stokes drift) is nonlinear and is probably indeed very small in most cases because the amplitudes are small. It is not so easy to estimate the wind effect and we will argue here that it is not necessarily small though it is obviously close to zero in some cases. The wind speed is typically two orders of magnitude faster than the water (meters per second compared to centimeters per second) and the stress is proportional to the square of the wind speed implying that the wind is important even if only a very small portion of the object protrudes above the sea-level. It is argued that wind, rather than ocean current dominated the drift of both the WWII corpse and the modern day flaperon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8219E..0UV','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8219E..0UV"><span>Toward minimally invasive, continuous glucose monitoring in vivo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vrancic, Christian; Gretz, Norbert; Kröger, Niels; Neudecker, Sabine; Pucci, Annemarie; Petrich, Wolfgang</p> <p>2012-01-01</p> <p>Diabetes mellitus is a disorder of glucose metabolism and it is one of the most challenging diseases, both from a medical and economic perspective. People with diabetes can benefit from a frequent or even continuous monitoring of their blood glucose concentrations. The approach presented here takes advantage of the observational nature of biomedical vibrational spectroscopy in contrast to chemical reactions which consume glucose. The particular technique employed here is based on the high sensitivity of mid-infrared transmission spectroscopy where strong vibrational bands of glucose can be monitored at wavelengths around 10 μm. The strong absorption of water in this spectral region was mitigated by the use of quantum cascade lasers and very short interaction path lengths below 50 μm. Various sensor concepts have been explored. In one of the concepts, the interaction of mid-infrared radiation with glucose is established within a miniature measurement cavity, formed by a gap between two silver halide fibers. In recent experiments, an additional quantum cascade laser was used for reference purposes. The long-term drift could significantly be reduced for time intervals > 1000 s, e. g., by more than 60% for a 3 hour interval. This extension for the compensation of long-term drifts of the measurement system in vitro is an important contribution towards the applicability in vivo.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170004099','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170004099"><span>NASA's Flexible Path for the Human Exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Soeder, James F.</p> <p>2016-01-01</p> <p>The idea of human exploration of Mars has been a topic in science fiction for close to a century. For the past 50 years it has been a major thrust in NASAs space mission planning. Currently, NASA is pursuing a flexible development path with the final goal to have humans on Mars. To reach Mars, new hardware will have to be developed and many technology hurdles will have to be overcome. This presentation discusses Mars and its Moons; the flexible path currently being followed; the hardware under development to support exploration; and the technical and organizational challenges that must be overcome to realize the age old dream of humans traveling to Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhRvB..79l5119K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhRvB..79l5119K"><span>Effective pathway of charge transfer in DNA duplex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Seongjin; Yi, Juyeon; Hwang, Sun-Yong</p> <p>2009-03-01</p> <p>We examine the most efficient route for charge propagation in DNA duplex. We find a direct path along one strand and a detour using the complementary strand compete with each other. Charge tends to take the path along the strand whose energy levels are close to its energy, and yet there exists a crossover length Nc so that for a transfer over a distance shorter than Nc the direct path is always advantageous. We obtain the analytic results for the behavior together with various decay types such as a constant decay, an exponential decay, and a crossover between them, whose validity is confirmed by the numerical calculation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940026162','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940026162"><span>Noise and drift analysis of non-equally spaced timing data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vernotte, F.; Zalamansky, G.; Lantz, E.</p> <p>1994-01-01</p> <p>Generally, it is possible to obtain equally spaced timing data from oscillators. The measurement of the drifts and noises affecting oscillators is then performed by using a variance (Allan variance, modified Allan variance, or time variance) or a system of several variances (multivariance method). However, in some cases, several samples, or even several sets of samples, are missing. In the case of millisecond pulsar timing data, for instance, observations are quite irregularly spaced in time. Nevertheless, since some observations are very close together (one minute) and since the timing data sequence is very long (more than ten years), information on both short-term and long-term stability is available. Unfortunately, a direct variance analysis is not possible without interpolating missing data. Different interpolation algorithms (linear interpolation, cubic spline) are used to calculate variances in order to verify that they neither lose information nor add erroneous information. A comparison of the results of the different algorithms is given. Finally, the multivariance method was adapted to the measurement sequence of the millisecond pulsar timing data: the responses of each variance of the system are calculated for each type of noise and drift, with the same missing samples as in the pulsar timing sequence. An estimation of precision, dynamics, and separability of this method is given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599891-geometric-stabilization-electrostatic-ion-temperature-gradient-driven-instability-nearly-axisymmetric-systems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599891-geometric-stabilization-electrostatic-ion-temperature-gradient-driven-instability-nearly-axisymmetric-systems"><span>Geometric stabilization of the electrostatic ion-temperature-gradient driven instability. I. Nearly axisymmetric systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zocco, A.; Plunk, G. G.; Xanthopoulos, P.</p> <p></p> <p>The effects of a non-axisymmetric (3D) equilibrium magnetic field on the linear ion-temperature-gradient (ITG) driven mode are investigated. We consider the strongly driven, toroidal branch of the instability in a global (on the magnetic surface) setting. Previous studies have focused on particular features of non-axisymmetric systems, such as strong local shear or magnetic ripple, that introduce inhomogeneity in the coordinate along the magnetic field. In contrast, here we include non-axisymmetry explicitly via the dependence of the magnetic drift on the field line label α, i.e., across the magnetic field, but within the magnetic flux surface. We consider the limit wheremore » this variation occurs on a scale much larger than that of the ITG mode, and also the case where these scales are similar. Close to axisymmetry, we find that an averaging effect of the magnetic drift on the flux surface causes global (on the surface) stabilization, as compared to the most unstable local mode. In the absence of scale separation, we find destabilization is also possible, but only if a particular resonance occurs between the magnetic drift and the mode, and finite Larmor radius effects are neglected. We discuss the relative importance of surface global effects and known radially global effects.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JPhA...37.2913G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JPhA...37.2913G"><span>Shrunk loop theorem for the topology probabilities of closed Brownian (or Feynman) paths on the twice punctured plane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giraud, O.; Thain, A.; Hannay, J. H.</p> <p>2004-02-01</p> <p>The shrunk loop theorem proved here is an integral identity which facilitates the calculation of the relative probability (or probability amplitude) of any given topology that a free, closed Brownian (or Feynman) path of a given 'duration' might have on the twice punctured plane (plane with two marked points). The result is expressed as a 'scattering' series of integrals of increasing dimensionality based on the maximally shrunk version of the path. Physically, this applies in different contexts: (i) the topology probability of a closed ideal polymer chain on a plane with two impassable points, (ii) the trace of the Schrödinger Green function, and thence spectral information, in the presence of two Aharonov-Bohm fluxes and (iii) the same with two branch points of a Riemann surface instead of fluxes. Our theorem starts from the Stovicek scattering expansion for the Green function in the presence of two Aharonov-Bohm flux lines, which itself is based on the famous Sommerfeld one puncture point solution of 1896 (the one puncture case has much easier topology, just one winding number). Stovicek's expansion itself can supply the results at the expense of choosing a base point on the loop and then integrating it away. The shrunk loop theorem eliminates this extra two-dimensional integration, distilling the topology from the geometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/269020','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/269020"><span>Geochemical study of groundwater at Sandia National Laboratories/New Mexico and Kirtland Air Force Base</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>NONE</p> <p></p> <p>The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) and its contractor, Rust Geotech, support the Kirtland Area Office by assisting Sandia National Laboratories/New Mexico (Sandia/NM) with remedial action, remedial design, and technical support of its Environmental Restoration Program. To aid in determining groundwater origins and flow paths, the GJPO was tasked to provide interpretation of groundwater geochemical data. The purpose of this investigation was to describe and analyze the groundwater geochemistry of the Sandia/NM Kirtland Air Force Base (KAFB). Interpretations of groundwater origins are made by using these data and the results of {open_quotes}mass balance{close_quotes} and {open_quotes}reactionmore » path{close_quote} modeling. Additional maps and plots were compiled to more fully comprehend the geochemical distributions. A more complete set of these data representations are provided in the appendices. Previous interpretations of groundwater-flow paths that were based on well-head, geologic, and geochemical data are presented in various reports and were used as the basis for developing the models presented in this investigation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900019689','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900019689"><span>Kinematics, controls, and path planning results for a redundant manipulator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gretz, Bruce; Tilley, Scott W.</p> <p>1989-01-01</p> <p>The inverse kinematics solution, a modal position control algorithm, and path planning results for a 7 degree of freedom manipulator are presented. The redundant arm consists of two links with shoulder and elbow joints and a spherical wrist. The inverse kinematics problem for tip position is solved and the redundant joint is identified. It is also shown that a locus of tip positions exists in which there are kinematic limitations on self-motion. A computationally simple modal position control algorithm has been developed which guarantees a nearly constant closed-loop dynamic response throughout the workspace. If all closed-loop poles are assigned to the same location, the algorithm can be implemented with very little computation. To further reduce the required computation, the modal gains are updated only at discrete time intervals. Criteria are developed for the frequency of these updates. For commanding manipulator movements, a 5th-order spline which minimizes jerk provides a smooth tip-space path. Schemes for deriving a corresponding joint-space trajectory are discussed. Modifying the trajectory to avoid joint torque saturation when a tip payload is added is also considered. Simulation results are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhB.123..180V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhB.123..180V"><span>Part per trillion nitric oxide measurement by optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ventrillard, Irène; Gorrotxategi-Carbajo, Paula; Romanini, Daniele</p> <p>2017-06-01</p> <p>While nitric oxide (NO) is being monitored in various fields of application, there is still a lack of available instruments at a sub-ppb level of sensitivity. We report on the first application of Optical Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) to NO trace gas analysis, with a room-temperature quantum-cascade laser at 5.26 µm (1900.5 cm^{-1}). A detection limit of 60 ppt is reached in a single measurement performed in 140 ms. The stability of the instrument allows to average for 10 s down to 8.3 ppt, limited by drift of etalon fringes in the spectra. This work opens the path towards new applications notably in breath analysis and environment sciences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009tfrd.book.....B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009tfrd.book.....B"><span>Theory of Financial Risk and Derivative Pricing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bouchaud, Jean-Philippe; Potters, Marc</p> <p>2009-01-01</p> <p>Foreword; Preface; 1. Probability theory: basic notions; 2. Maximum and addition of random variables; 3. Continuous time limit, Ito calculus and path integrals; 4. Analysis of empirical data; 5. Financial products and financial markets; 6. Statistics of real prices: basic results; 7. Non-linear correlations and volatility fluctuations; 8. Skewness and price-volatility correlations; 9. Cross-correlations; 10. Risk measures; 11. Extreme correlations and variety; 12. Optimal portfolios; 13. Futures and options: fundamental concepts; 14. Options: hedging and residual risk; 15. Options: the role of drift and correlations; 16. Options: the Black and Scholes model; 17. Options: some more specific problems; 18. Options: minimum variance Monte-Carlo; 19. The yield curve; 20. Simple mechanisms for anomalous price statistics; Index of most important symbols; Index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003tfrd.book.....B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003tfrd.book.....B"><span>Theory of Financial Risk and Derivative Pricing - 2nd Edition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bouchaud, Jean-Philippe; Potters, Marc</p> <p>2003-12-01</p> <p>Foreword; Preface; 1. Probability theory: basic notions; 2. Maximum and addition of random variables; 3. Continuous time limit, Ito calculus and path integrals; 4. Analysis of empirical data; 5. Financial products and financial markets; 6. Statistics of real prices: basic results; 7. Non-linear correlations and volatility fluctuations; 8. Skewness and price-volatility correlations; 9. Cross-correlations; 10. Risk measures; 11. Extreme correlations and variety; 12. Optimal portfolios; 13. Futures and options: fundamental concepts; 14. Options: hedging and residual risk; 15. Options: the role of drift and correlations; 16. Options: the Black and Scholes model; 17. Options: some more specific problems; 18. Options: minimum variance Monte-Carlo; 19. The yield curve; 20. Simple mechanisms for anomalous price statistics; Index of most important symbols; Index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARV36003S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARV36003S"><span>Classical Hall Effect without Magnetic Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schade, Nicholas; Tao, Chiao-Yu; Schuster, David; Nagel, Sidney</p> <p></p> <p>We show that the sign and density of charge carriers in a material can be obtained without the presence of a magnetic field. This effect, analogous to the classical Hall effect, is due solely to the geometry of the current-carrying wire. When current flows, surface charges along the wire create small electric fields that direct the current to follow the path of the conductor. In a curved wire, the charge carriers must experience a centripetal force, which arises from an electric field perpendicular to the drift velocity. This electric field produces a potential difference between the sides of the wire that depends on the sign and density of the charge carriers. We experimentally investigate circuits made from superconductors or graphene to find evidence for this effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JSP...152..569T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JSP...152..569T"><span>An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turkington, Bruce</p> <p>2013-08-01</p> <p>A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a vector of resolved variables, selected to describe the macroscopic state of the system, a family of quasi-equilibrium probability densities on phase space corresponding to the resolved variables is employed as a statistical model, and the evolution of the mean resolved vector is estimated by optimizing over paths of these densities. Specifically, a cost function is constructed to quantify the lack-of-fit to the microscopic dynamics of any feasible path of densities from the statistical model; it is an ensemble-averaged, weighted, squared-norm of the residual that results from submitting the path of densities to the Liouville equation. The path that minimizes the time integral of the cost function determines the best-fit evolution of the mean resolved vector. The closed reduced equations satisfied by the optimal path are derived by Hamilton-Jacobi theory. When expressed in terms of the macroscopic variables, these equations have the generic structure of governing equations for nonequilibrium thermodynamics. In particular, the value function for the optimization principle coincides with the dissipation potential that defines the relation between thermodynamic forces and fluxes. The adjustable closure parameters in the best-fit reduced equations depend explicitly on the arbitrary weights that enter into the lack-of-fit cost function. Two particular model reductions are outlined to illustrate the general method. In each example the set of weights in the optimization principle contracts into a single effective closure parameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRG..122.2064K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRG..122.2064K"><span>High-quality eddy-covariance CO2 budgets under cold climate conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kittler, Fanny; Eugster, Werner; Foken, Thomas; Heimann, Martin; Kolle, Olaf; Göckede, Mathias</p> <p>2017-08-01</p> <p>This study aimed at quantifying potential negative effects of instrument heating to improve eddy-covariance flux data quality in cold environments. Our overarching objective was to minimize heating-related bias in annual CO2 budgets from an Arctic permafrost system. We used continuous eddy-covariance measurements covering three full years within an Arctic permafrost ecosystem with parallel sonic anemometers operation with activated heating and without heating as well as parallel operation of open- and closed-path gas analyzers, the latter serving as a reference. Our results demonstrate that the sonic anemometer heating has a direct effect on temperature measurements while the turbulent wind field is not affected. As a consequence, fluxes of sensible heat are increased by an average 5 W m-2 with activated heating, while no direct effect on other scalar fluxes was observed. However, the biased measurements in sensible heat fluxes can have an indirect effect on the CO2 fluxes in case they are used as input for a density-flux WPL correction of an open-path gas analyzer. Evaluating the self-heating effect of the open-path gas analyzer by comparing CO2 flux measurements between open- and closed-path gas analyzers, we found systematically higher CO2 uptake recorded with the open-path sensor, leading to a cumulative annual offset of 96 gC m-2, which was not only the result of the cold winter season but also due to substantial self-heating effects during summer. With an inclined sensor mounting, only a fraction of the self-heating correction for vertically mounted instruments is required.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015VSD....53.1687K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015VSD....53.1687K"><span>Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kapania, Nitin R.; Gerdes, J. Christian</p> <p>2015-12-01</p> <p>This paper presents a feedback-feedforward steering controller that simultaneously maintains vehicle stability at the limits of handling while minimising lateral path tracking deviation. The design begins by considering the performance of a baseline controller with a lookahead feedback scheme and a feedforward algorithm based on a nonlinear vehicle handling diagram. While this initial design exhibits desirable stability properties at the limits of handling, the steady-state path deviation increases significantly at highway speeds. Results from both linear and nonlinear analyses indicate that lateral path tracking deviations are minimised when vehicle sideslip is held tangent to the desired path at all times. Analytical results show that directly incorporating this sideslip tangency condition into the steering feedback dramatically improves lateral path tracking, but at the expense of poor closed-loop stability margins. However, incorporating the desired sideslip behaviour into the feedforward loop creates a robust steering controller capable of accurate path tracking and oversteer correction at the physical limits of tyre friction. Experimental data collected from an Audi TTS test vehicle driving at the handling limits on a full length race circuit demonstrates the improved performance of the final controller design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA474030','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA474030"><span>Ground Segment Preparation for NPSAT1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-09-01</p> <p>39 a. Close Aiming Point...for a closed loop control scheme. The controller has the antenna follow the predicted path of NPSAT1 during an overhead pass. One drawback of the...satellite on its descending pass are said to have a “ keyhole ” in Air Force jargon because one has to turn the antenna just like a key. Figure 6 is</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810006476','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810006476"><span>Flight evaluation of the terminal guidance system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sandlin, D. R.</p> <p>1981-01-01</p> <p>The terminal guidance system (TGS) is avionic equipment which gives guidance along a curved descending flight path to a landing. A Cessna 182 was used as the test aircraft and the TGS was installed and connected to the altimeter, DME, RMI, and gyro compass. Approaches were flown by three different pilots. When the aircraft arrives at the termination point, it is set up on final approach for a landing. The TGS provides guidance for curved descending approaches with guideslopes of 6 deg which required, for experienced pilots, workloads that are approximately the same as for an ILS. The glideslope is difficult to track within 1/2 n.m. of the VOR/DME station. The system permits, for experienced pilots, satisfactory approaches with a turn radius as low as 1/2 n.m. and a glideslope of 6 deg. Turn angles have little relation to pilot workload for curved approaches. Pilot experience is a factor for curved approaches. Pilots with low instrument time have difficulty flying steep approaches with small turn radius. Turbulence increases the pilot workload for curved approaches. The TGS does not correct to a given flight path over the ground nor does it adequately compensate for wind drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1430526-characterization-applied-fields-ion-mobility-separations-traveling-wave-based-structures-lossless-ion-manipulations-slim','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1430526-characterization-applied-fields-ion-mobility-separations-traveling-wave-based-structures-lossless-ion-manipulations-slim"><span>Characterization of applied fields for ion mobility separations in traveling wave based structures for lossless ion manipulations (SLIM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hamid, Ahmed M.; Prabhakaran, Aneesh; Garimella, Sandilya V. B.; ...</p> <p>2018-03-26</p> <p>Ion mobility (IM) is rapidly gaining attention for the separation and analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM separations have limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. Both of these can be readily obtained in Structures for Lossless Ion Manipulations (SLIM), which are fabricated from arrays of electrodes patterned on two parallel surfaces where potentials aremore » applied to generate appropriate electric fields between the surfaces. Here we have investigated the relationship between the primary SLIM variables, such as electrode dimensions, inter-surface gap, and the applied TW voltages, that directly impact the fields experienced by ions. Ion trajectory simulations and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric fields on IM resolution. The variables explored impact both ion confinement and the observed IM resolution using SLIM modules.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1892l0007T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1892l0007T"><span>Soft storey effects on plastic hinge propagation of moment resisting reinforced concrete building subjected to Ranau earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tan, Chee Ghuan; Chia, Wei Ting; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Adiyanto, Mohd Irwan</p> <p>2017-10-01</p> <p>On 5th June 2015, a moderate earthquake with Mw 5.9 hit Ranau, resulted in damages of the existing non-seismically designed buildings, such that 61 buildings, including mosques, schools, hospitals and Ranau police headquarters were suffered from different level structural damages. Soft storey irregularity is one of the main reasons of the building damage. This study is to investigate the soft-story effect on the propagation path of plastic hinges RC building under seismic excitation. The plastic hinges formation and seismic performance of five moment resisting RC frames with different infill configurations are studied. The seismic performance of building is evaluated by Incremental Dynamic Analysis (IDA). Open ground soft storey structure shows the lowest seismic resistance, collapses at 0.55g pga. The maximum interstorey drift ratio (IDRmax) in soft storey buildings ranging from 0.53% to 2.96% which are far greater than bare frame ranging from 0.095% to 0.69%. The presence of infill walls creates stiffer upper stories causing moments concentrate at the soft storey, resulting the path of plastic hinge propagation is dominant at the soft storey columns. Hence, the buildings with soft storey are very susceptible under earthquake load.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30c4104K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30c4104K"><span>Free-fall dynamics of a pair of rigidly linked disks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum</p> <p>2018-03-01</p> <p>We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/circ/1974/0702/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/circ/1974/0702/report.pdf"><span>Movement and effects of spilled oil over the outer continental shelf; inadequacy of existent data for the Baltimore Canyon Trough area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Knebel, Harley J.</p> <p>1974-01-01</p> <p>A deductive approach to the problem of determining the movement and effects of spilled oil over the Outer Continental Shelf requires that the potential paths of oil be determined first, in order that critical subareas may be defined for later studies. The paths of spilled oil, in turn, depend primarily on the temporal and spatial variability of four factors: the thermohaline structure of the waters, the circulation of the water, the winds, and the distribution of suspended matter. A review of the existent data concerning these factors for the Baltimore Canyon Trough area (a relatively well studied segment of the Continental Shelf) reveals that the movement and dispersal of potential oil spills cannot be reliably predicted. Variations in the thermohaline structure of waters and in the distribution of suspended matter are adequately known; the uncertainty is due to insufficient wind and storm statistics and to the lack of quantitative understanding of the relationship between the nontidal drift and its basic driving mechanisms. Similar inadequacies should be anticipated for other potentially leasable areas of the shelf because an understanding of the movement of spilled oil has not been the underlying aim of most previous studies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1430526-characterization-applied-fields-ion-mobility-separations-traveling-wave-based-structures-lossless-ion-manipulations-slim','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1430526-characterization-applied-fields-ion-mobility-separations-traveling-wave-based-structures-lossless-ion-manipulations-slim"><span>Characterization of applied fields for ion mobility separations in traveling wave based structures for lossless ion manipulations (SLIM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hamid, Ahmed M.; Prabhakaran, Aneesh; Garimella, Sandilya V. B.</p> <p></p> <p>Ion mobility (IM) is rapidly gaining attention for the separation and analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM separations have limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. Both of these can be readily obtained in Structures for Lossless Ion Manipulations (SLIM), which are fabricated from arrays of electrodes patterned on two parallel surfaces where potentials aremore » applied to generate appropriate electric fields between the surfaces. Here we have investigated the relationship between the primary SLIM variables, such as electrode dimensions, inter-surface gap, and the applied TW voltages, that directly impact the fields experienced by ions. Ion trajectory simulations and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric fields on IM resolution. The variables explored impact both ion confinement and the observed IM resolution using SLIM modules.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21637574','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21637574"><span>Change in genetic size of small-closed populations: Lessons from a domestic mammal population.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ghafouri-Kesbi, Farhad</p> <p>2010-10-01</p> <p>The aim of this study was to monitor changes in genetic size of a small-closed population of Iranian Zandi sheep, by using pedigree information from animals born between 1991 and 2005. The genetic size was assessed by using measures based on the probability of identity-by-descend of genes (coancestry, f, and effective population size, N(e) ), as well as measures based on probability of gene origin (effective number of founders, f(e) , effective number of founder genomes, f(g) , and effective number of non-founder genomes, f(ne) ). Average coancestry, or the degree of genetic similarity of individuals, increased from 0.81% to 1.44% during the period 1993 to 2005, at the same time that N(e) decreased from 263 to 93. The observed trend for f(e) was irregular throughout the experiment in a way that f(e) was 68, 87, 77, 92, and 80 in 1993, 1996, 1999, 2002, and 2005, respectively. Simultaneously, f(g) , the most informative effective number, decreased from 61 to 35. The index of genetic diversity (GD) which was obtained from estimates of f(g) , decreased about 2% throughout the period studied. In addition, a noticeable reduction was observed in the estimates of f(ne) from 595 in 1993 to 61 in 2005. The higher than 1 ratio of f(e) to f(g) indicated the presence of bottlenecks and genetic drift in the development of this population of Zandi sheep. From 1993 to 1999, f(ne) was much higher than f(e) , thereby indicating that with respect to loss of genetic diversity, the unequal contribution of founders was more important than the random genetic drift in non-founder generations. Subsequently, random genetic drift in non-founder generations was the major reason for f(e) > f(ne) . The minimization of average coancestry in new reproductive individuals was recommended as a means of preserving the population against a further loss in genetic diversity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25401020','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25401020"><span>Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sulai, Yusufu N; Dubra, Alfredo</p> <p>2014-09-01</p> <p>The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5223687-spatial-relationship-between-lightning-discharges-propagation-paths-perturbed-subionospheric-vlf-lf-signals','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5223687-spatial-relationship-between-lightning-discharges-propagation-paths-perturbed-subionospheric-vlf-lf-signals"><span>On the spatial relationship between lightning discharges and propagation paths of perturbed subionospheric VLF/LF signals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wai-Yeung Yip; Inan, U.S.; Orville, R.E.</p> <p>1991-01-01</p> <p>A study has been made of the spatial relationship between propagation paths of subionospheric VLF/LF signals exhibiting sudden amplitude perturbations (Trimpi events) and time correlated cloud-to-ground lightning flashes. On each of the 4 days examined the storm centers were located close to the signal path from the NAU transmitter (28.5-kHz) in Puerto Rico to Stanford (SU) and were at large distances from the propagation path of the 48.5-kHz transmitter signal from Nebraska to SU. Nevertheless, no Trimpi events were observed on the former path, while many were seen on the latter. Furthermore, the detected Trimpi perturbations of the 48.5-kHz signalmore » received at Stanford were found to be associated with the lightning activity in the distant storm centers. Since the NAU-SU path lies entirely at L < 2 and the 48.5-SU path is located mostly at 2< L <3, the L dependent magnetospheric conditions which determine the level of lightning-induced electron precipitation are different along the two paths. Thus, the authors postulate that the observed difference in Trimpi occurence on the two paths was due to the different magnetospheric conditions. Hence the occurence of Trimpi events over the geographical region corresponding to L <3 may be more dominantly controlled by magnetospheric conditions than the source lightning distribution.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110009891','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110009891"><span>Electric Field Observations of Plasma Convection, Shear, Alfven Waves, and other Phenomena Observed on Sounding Rockets in the Cusp and Boundary Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pfaff, R. F.</p> <p>2009-01-01</p> <p>On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/260412-new-stochastic-approach-extreme-response-slow-drift-motion-moored-floating-structures','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/260412-new-stochastic-approach-extreme-response-slow-drift-motion-moored-floating-structures"><span>New stochastic approach for extreme response of slow drift motion of moored floating structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kato, Shunji; Okazaki, Takashi</p> <p>1995-12-31</p> <p>A new stochastic method for investigating the flow drift response statistics of moored floating structures is described. Assuming that wave drift excitation process can be driven by a Gaussian white noise process, an exact stochastic equation governing a time evolution of the response Probability Density Function (PDF) is derived on a basis of Projection operator technique in the field of statistical physics. In order to get an approximate solution of the GFP equation, the authors develop the renormalized perturbation technique which is a kind of singular perturbation methods and solve the GFP equation taken into account up to third ordermore » moments of a non-Gaussian excitation. As an example of the present method, a closed form of the joint PDF is derived for linear response in surge motion subjected to a non-Gaussian wave drift excitation and it is represented by the product of a form factor and the quasi-Cauchy PDFs. In this case, the motion displacement and velocity processes are not mutually independent if the excitation process has a significant third order moment. From a comparison between the response PDF by the present solution and the exact one derived by Naess, it is found that the present solution is effective for calculating both the response PDF and the joint PDF. Furthermore it is shown that the displacement-velocity independence is satisfied if the damping coefficient in equation of motion is not so large and that both the non-Gaussian property of excitation and the damping coefficient should be taken into account for estimating the probability exceedance of the response.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH33B2781Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH33B2781Y"><span>Radio Spectral Imaging of Reflective MHD Waves during the Impulsive Phase of a Solar Flare</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, S.; Chen, B.; Reeves, K.</p> <p>2017-12-01</p> <p>We report a new type of coherent radio bursts observed by the Karl G. Jansky Very Large Array (VLA) in 1-2 GHz during the impulsive phase of a two-ribbon flare on 2014 November 1, which we interpret as MHD waves reflected near the footpoint of flaring loops. In the dynamic spectrum, this burst starts with a positive frequency drift toward higher frequencies until it slows down near its highest-frequency boundary. Then it turns over and drifts toward lower frequencies. The frequency drift rate in its descending and ascending branch is between 50-150 MHz/s, which is much slower than type III radio bursts associated with fast electron beams but close to the well-known intermediate drift bursts, or fiber bursts, which are usually attributed to propagating whistler or Alfvenic waves. Thanks to VLA's unique capability of imaging with spectrometer-like temporal and spectral resolution (50 ms and 2 MHz), we are able to obtain an image of the radio source at every time and frequency in the dynamic spectrum where the burst is present and trace its spatial evolution. From the imaging results, we find that the radio source firstly moves downward toward one of the flaring ribbons before it "bounces off" at the lowest height (corresponding to the turnover frequency in the dynamic spectrum) and moves upward again. The measured speed in projection is at the order of 1-2 Mm/s, which is characteristic of Alfvenic or fast-mode MHD waves in the low corona. We conclude that the radio burst is emitted by trapped nonthermal electrons in the flaring loop carried along by a large-scale MHD wave. The waves are probably launched during the eruption of a magnetic flux rope in the flare impulsive phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70197075','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70197075"><span>A mechanistic assessment of seasonal microhabitat selection by drift-feeding rainbow trout Oncorhynchus mykiss in a southwestern headwater stream</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kalb, Bradley W.; Huntsman, Brock M.; Caldwell, Colleen A.; Bozek, Michael A.</p> <p>2018-01-01</p> <p>The positioning of fishes within a riverscape is dependent on the proximity of complementary habitats. In this study, foraging and non-foraging habitat were quantified monthly over an entire year for a rainbow trout (Oncorhynchus mykiss) population in an isolated, headwater stream in southcentral New Mexico. The stream follows a seasonal thermal and hydrologic pattern typical for a Southwestern stream and was deemed suitable for re-introduction of the native and close relative, Rio Grande cutthroat trout (O. clarkii virginalis). However, uncertainty associated with limited habitat needed to be resolved if repatriation of the native fish was to be successful. Habitat was evaluated using resource selection functions with a mechanistic drift-foraging model to explain trout distributions. Macroinvertebrate drift was strongly season- and temperature-dependent (lower in winter and spring, higher in summer and fall). Models identified stream depth as the most limiting factor for habitat selection across seasons and size-classes. Additionally, positions closer to cover were selected during the winter by smaller size-classes (0, 1, 2), while net energy intake was important during the spring for most size-classes (0, 1, 2, 3). Drift-foraging models identified that 81% of observed trout selected positions that could meet maintenance levels throughout the year. Moreover, 40% of selected habitats could sustain maximum growth. Stream positions occupied by rainbow trout were more energetically profitable than random sites regardless of season or size-class. Larger size-classes (3, 4+) were energetically more limited throughout the year than were smaller size-classes. This research suggests that habitat in the form of deep pools is of paramount importance for rainbow trout or native cutthroat trout.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3887104','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3887104"><span>Narrow Bottlenecks Affect Pea Seedborne Mosaic Virus Populations during Vertical Seed Transmission but not during Leaf Colonization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Johansen, Elisabeth Ida; Simon, Vincent; Jacquemond, Mireille; Senoussi, Rachid</p> <p>2014-01-01</p> <p>The effective size of populations (Ne) determines whether selection or genetic drift is the predominant force shaping their genetic structure and evolution. Populations having high Ne adapt faster, as selection acts more intensely, than populations having low Ne, where random effects of genetic drift dominate. Estimating Ne for various steps of plant virus life cycle has been the focus of several studies in the last decade, but no estimates are available for the vertical transmission of plant viruses, although virus seed transmission is economically significant in at least 18% of plant viruses in at least one plant species. Here we study the co-dynamics of two variants of Pea seedborne mosaic virus (PSbMV) colonizing leaves of pea plants (Pisum sativum L.) during the whole flowering period, and their subsequent transmission to plant progeny through seeds. Whereas classical estimators of Ne could be used for leaf infection at the systemic level, as virus variants were equally competitive, dedicated stochastic models were needed to estimate Ne during vertical transmission. Very little genetic drift was observed during the infection of apical leaves, with Ne values ranging from 59 to 216. In contrast, a very drastic genetic drift was observed during vertical transmission, with an average number of infectious virus particles contributing to the infection of a seedling from an infected mother plant close to one. A simple model of vertical transmission, assuming a cumulative action of virus infectious particles and a virus density threshold required for vertical transmission to occur fitted the experimental data very satisfactorily. This study reveals that vertically-transmitted viruses endure bottlenecks as narrow as those imposed by horizontal transmission. These bottlenecks are likely to slow down virus adaptation and could decrease virus fitness and virulence. PMID:24415934</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2009/1027/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2009/1027/"><span>Patterns of Larval Sucker Emigration from the Sprague and Lower Williamson Rivers of the Upper Klamath Basin, Oregon, Prior to the Removal of Chiloquin Dam - 2006 Annual Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ellsworth, Craig M.; Tyler, Torrey J.; VanderKooi, Scott P.; Markle, Douglas F.</p> <p>2009-01-01</p> <p>In 2006, we collected larval Lost River sucker Deltistes luxatus (LRS), shortnose sucker Chasmistes brevirostris (SNS), and Klamath largescale sucker Catostomus snyderi (KLS) emigrating from spawning areas in the Williamson and Sprague Rivers. This work is part of a multi-year effort to characterize the relative abundance, drift timing, and length frequencies of larval suckers in this watershed prior to the removal of Chiloquin Dam on the lower Sprague River. Additional larval drift samples were collected from the Fremont Bridge on Lakeshore Drive on the south end of Upper Klamath Lake near its outlet to the Link River. Because of difficulties in distinguishing KLS larvae from SNS larvae, individuals identified as either of these two species were grouped together and reported as KLS-SNS in this report. We found that larval densities varied by site with the highest densities being collected at the most upstream site on the Sprague River at river kilometer (rkm) 108.0 near Beatty, Oregon (Beatty), and the most downstream sites near Chiloquin, Oregon; one site on the Sprague River at rkm 0.7 (Chiloquin) and the other site on the Williamson River at rkm 7.4 (Williamson). Larval catches were relatively small and sporadic at two other sites on the Sprague River located between Chiloquin and Beatty (Power Station at rkm 9.5 and Lone Pine at rkm 52.7) and one site on the Sycan River at rkm 4.7. Most larvae (79 percent) collected in 2006 were identified as LRS. More larvae and eggs were collected at Chiloquin than at any other site. The seasonal timing of larval drift varied by location; larvae generally were captured earlier at upstream sites than at downstream sites. Cumulative catch percentages of drifting larvae suggest that larval LRS emigrated earlier than KLS-SNS larvae at every site. Drift of LRS larvae at Beatty began 3 to 4 weeks earlier than at Chiloquin or Williamson. At Chiloquin, peak larval catches occurred 3 and 5 weeks after peak egg catches. The daily peak in larval drift at Chiloquin occurred approximately 1.5 to 2.0 hours after sunset. Nightly peak larval drift varied by location; larvae were captured earlier in the evening at sites closer to known spawning locations than sites farther away from these areas. The highest numerical catches of sucker-sized eggs were at Chiloquin indicating that this site is in close proximity to a spawning area. Numerical catches of older, more developed larval and juvenile suckers also were highest at Chiloquin. This may be due to the turbulent nature of this site, which could have swept larger fish into the drift. Proportional catches of older, more developed larval and juvenile suckers were highest at Sycan, Lone Pine, Power Station, and Fremont Bridge. This indicates these sites are located nearer to sucker nursery areas rather than spawning areas. Very few larval LRS were collected at Fremont Bridge at the south end of Upper Klamath Lake. Larval KLS-SNS densities at Fremont Bridge were the third highest of the seven sampling sites. Peak drift of larval KLS-SNS at Fremont Bridge occurred the week after peak drift of larval KLS-SNS at Williamson. Although inter-annual variation continues to appear in the larval drift data, our results continue to show consistent patterns of larval emigration in the drainage basin. In combination with data collected from the spawning movements and destinations of radio-tagged and PIT-tagged adult suckers, this larval drift data will provide a baseline standard by which to determine the effects of dam removal on the spawning distribution of endangered Klamath Basin suckers in the Sprague River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec25-1321.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec25-1321.pdf"><span>14 CFR 25.1321 - Arrangement and visibility.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... and line of vision when he is looking forward along the flight path. (b) The flight instruments... center position. (c) Required powerplant instruments must be closely grouped on the instrument panel. In...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec25-1321.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec25-1321.pdf"><span>14 CFR 25.1321 - Arrangement and visibility.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... and line of vision when he is looking forward along the flight path. (b) The flight instruments... center position. (c) Required powerplant instruments must be closely grouped on the instrument panel. In...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27805689','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27805689"><span>Spectral correlation and interference in non-degenerate photon pairs at telecom wavelengths.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kuo, Paulina S; Gerrits, Thomas; Verma, Varun B; Nam, Sae Woo</p> <p>2016-11-01</p> <p>We characterize an entangled-photon-pair source that produces signal and idler photons at 1533 nm and 1567 nm using fiber-assisted signal-photon spectroscopy. By erasing the polarization distinguishability, we observe interference between the two down-conversion paths. The observed interference signature is closely related to the spectral correlations between photons in a Hong-Ou-Mandel interferometer. These measurements suggest good indistinguishability between the two down-conversion paths, which is required for high entanglement visibility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA121890','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA121890"><span>Non-Normal Projectile Penetration in Soil and Rock: User’s Guide for Computer Code PENC02D.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-09-01</p> <p>the path traveled , with projec- tile orientation shown every FREQI projectile lengths. In this run, FREQI was input as 2.5. The horizontal lines...must be a closed surface in the direction of travel ; the bluntness of the nose requires a near 90-deg element for closure. Sheet 3 shows the beginning...plots for this problem. Sheets 1 and 2 automatically verify the projectile shape and path traveled . Sheets 3, 4, and 5 show the axial deceleration</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1006571','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1006571"><span>Interprocedural Analysis and the Verification of Concurrent Programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-01-01</p> <p>SSPE ) problem is to compute a regular expression that represents paths(s, v) for all vertices v in the graph. The syntax of regular expressions is as...follows: r ::= ∅ | ε | e | r1 ∪ r2 | r1.r2 | r∗, where e stands for an edge in G. We can use any algorithm for SSPE to compute regular expressions for...a closed representation of loops provides an exponential speedup.2 Tarjan’s path-expression algorithm solves the SSPE problem efficiently. It uses</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014A%26A...561A.104C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014A%26A...561A.104C"><span>Characteristics of polar coronal hole jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.</p> <p>2014-01-01</p> <p>Context. High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. Aims: We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. Methods: Stack plots were used to find the drift and flow speeds of the jets. A toymodel was developed by assuming that the observed jet is generated by a sequence of single reconnection events where single unresolved blobs of plasma are ejected along open field lines, then expand and fall back along the same path, following a simple ballistic motion. Results: We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be ≈27 km s-1. The average outward speed of the first jet is ≈171 km s-1, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C-poly, Al-poly, and Al-mesh filters. Many small-scale (≈3″-5″) fast (≈200-300 km s-1) ejections of plasma were observed on the same day; they propagated outwards. We observed that the stronger jet drifted at all altitudes along the jet with the same drift speed of ≃7 km s-1. We also observed that the bright point associated with the first jet is a part of sigmoid structure. The time of appearance of the sigmoid and that of the ejection of plasma from the bright point suggest that the sigmoid is the progenitor of the jet. Conclusions: The enhancement in the light curves of low-temperature EIS lines in the later phase of the jet lifetime and the shape of the jet's stack plots suggests that the jet material falls back, and most likely cools down. To further support this conclusion, the observed drifts were interpreted within a scenario where reconnection progressively shifts along a magnetic structure, leading to the sequential appearance of jets of about the same size and physical characteristics. On this basis, we also propose a simple qualitative model that mimics the observations. Movies 1-3 are available in electronic form at http://www.aanda.org Warning, no authors found for 2014A&A...561A..97.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..117a2031A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..117a2031A"><span>Comparative Study of Drift Compensation Methods for Environmental Gas Sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abidin, M. Z.; Asmat, Arnis; Hamidon, M. N.</p> <p>2018-02-01</p> <p>Most drift compensation attempts in environmental gas sensors are only emphasize on the “already-known” drift-causing parameter (i.e., ambient temperature, relative humidity) in compensating the sensor drift. Less consideration is taken to another parameter (i.e., baseline responses) that might have affected indirectly with the promotion of drift-causing parameter variable (in this context, is ambient temperature variable). In this study, the “indirect” drift-causing parameter (drifted baseline responses) has been taken into consideration in compensating the sensor drift caused by ambient temperature variable, by means of a proposed drift compensation method (named as RT-method). The effectiveness of this method in its efficacy of compensating drift was analysed and compared with the common method that used the “already-known” drift-causing parameter (named as T-method), using drift reduction percentage. From the results analysis, the RT-method has outperformed T- method in the drift reduction percentage, with its ability to reduce drift up to 64% rather than the T-method which only able to reduce up to 45% for TGS2600 sensor. It has proven that the inclusion of drifted baseline responses into drift compensation attempt would resulted to an improved drift compensation efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4230870','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4230870"><span>Non-common path aberration correction in an adaptive optics scanning ophthalmoscope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sulai, Yusufu N.; Dubra, Alfredo</p> <p>2014-01-01</p> <p>The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth. PMID:25401020</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014CNSNS..19.3617C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014CNSNS..19.3617C"><span>A 2D chaotic path planning for mobile robots accomplishing boundary surveillance missions in adversarial conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curiac, Daniel-Ioan; Volosencu, Constantin</p> <p>2014-10-01</p> <p>The path-planning algorithm represents a crucial issue for every autonomous mobile robot. In normal circumstances a patrol robot will compute an optimal path to ensure its task accomplishment, but in adversarial conditions the problem is getting more complicated. Here, the robot’s trajectory needs to be altered into a misleading and unpredictable path to cope with potential opponents. Chaotic systems provide the needed framework for obtaining unpredictable motion in all of the three basic robot surveillance missions: area, points of interests and boundary monitoring. Proficient approaches have been provided for the first two surveillance tasks, but for boundary patrol missions no method has been reported yet. This paper addresses the mentioned research gap by proposing an efficient method, based on chaotic dynamic of the Hénon system, to ensure unpredictable boundary patrol on any shape of chosen closed contour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJWC.16807004L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJWC.16807004L"><span>Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Taejin</p> <p>2018-01-01</p> <p>We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997RScI...68.4124W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997RScI...68.4124W"><span>Tapping mode imaging with an interfacial force microscope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Warren, O. L.; Graham, J. F.; Norton, P. R.</p> <p>1997-11-01</p> <p>In their present embodiment, sensors used in interfacial force microscopy do not have the necessary mechanical bandwidth to be employed as free-running tapping mode devices. We describe an extremely stable method of obtaining tapping mode images using feedback on the sensor. Our method is immune to small dc drifts in the force signal, and the prospect of diminishing the risk of damaging fragile samples is realized. The feasibility of the technique is demonstrated by our imaging work on a Kevlar fiber-epoxy composite. We also present a model which accounts for the frequency dependence of the sensor in air when operating under closed loop control. A simplified force modulation model is investigated to explore the effect of contact on the closed loop response of the sensor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.946a2149F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.946a2149F"><span>Dusty waves and vortices in rf magnetron discharge plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Filippov, A. V.; Pal, A. F.; Ryabinkin, A. N.; Serov, A. O.; Shugaev, F. V.</p> <p>2018-01-01</p> <p>The appearance and subsequent growth of metallic particles in plasma of planar rf magnetron sputter were observed. The origin of the particles is sputtering of the rf electrode by ion flux from the plasma. In some regions of formed dust cloud the particles were involved in the horizontal or vertical circular movement. The horizontal rotation along the sputtered track in the cyclotron drift direction was observed close to the main magnetron plasma. The torus-shaped dust vortex ring engirdled the secondary plasma of the discharge at height of a few centimeters over the electrode. Close to this region particle density waves propagated through the cloud. The possible role of discharge plasma azimuthal inhomogeneity and gas dynamics effects in the forming the observed structures was considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/twri/twri3-a17/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/twri/twri3-a17/"><span>Acoustic velocity meter systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Laenen, Antonius</p> <p>1985-01-01</p> <p>Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5055473-using-dye-tracing-establish-groundwater-flow-paths-limestone-marble-aquifer-university-california-santa-cruz-california','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5055473-using-dye-tracing-establish-groundwater-flow-paths-limestone-marble-aquifer-university-california-santa-cruz-california"><span>Using dye tracing to establish groundwater flow paths in a limestone marble aquifer, University of California, Santa Cruz, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hayes, J.; Bertschinger, V.; Aley, T.</p> <p>1993-04-01</p> <p>Areas underlain by karst aquifers are characterized by soluble rock with sinkholes, caves, and a complex underground drainage network. Groundwater issues such as flow direction, well pumping impacts, spring recharge areas, and potential contamination transport routes are greatly complicated by the unique structure of karst aquifers. Standard aquifer analysis techniques cannot be applied unless the structure of the karst aquifer is understood. Water soluble fluorescent dyes are a powerful tool for mapping the irregular subsurface connections and flow paths in karst aquifers. Mapping the subsurface connections allows reasonable estimates of the hydrologic behavior of the aquifer. Two different fluorescent dyesmore » were injected at two points in a limestone karst aquifer system beneath the University of California, Santa Cruz campus. Flow paths in the marble were thought to be closely tied to easily recognized geomorphic alignments of sinkholes associated with fault and fracture zones. The dye tests revealed unexpected and highly complex interconnections. These complex flow paths only partially corresponded to previous surface mapping and aerial photo analysis of fracture systems. Several interfingering but hydrologically unconnected flow paths evidently exist within the cavernous aquifer. For example, dye did not appear at some discharge springs close to the dye injection points, but did appear at more distant springs. This study shows how a dye tracing study in a small, well-defined limestone body can shed light on a variety of environmental and hydrological issues, including potential well pumping impact areas, wellhead protection and recharge areas, parking lot runoff injection to aquifers, and drainage routes from hazardous materials storage areas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25570634','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25570634"><span>On the asynchronously continuous control of mobile robot movement by motor cortical spiking activity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Zhiming; So, Rosa Q; Toe, Kyaw Kyar; Ang, Kai Keng; Guan, Cuntai</p> <p>2014-01-01</p> <p>This paper presents an asynchronously intracortical brain-computer interface (BCI) which allows the subject to continuously drive a mobile robot. This system has a great implication for disabled patients to move around. By carefully designing a multiclass support vector machine (SVM), the subject's self-paced instantaneous movement intents are continuously decoded to control the mobile robot. In particular, we studied the stability of the neural representation of the movement directions. Experimental results on the nonhuman primate showed that the overt movement directions were stably represented in ensemble of recorded units, and our SVM classifier could successfully decode such movements continuously along the desired movement path. However, the neural representation of the stop state for the self-paced control was not stably represented and could drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss015e10125.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss015e10125.html"><span>Earth Observations taken by the Expedition 15 Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2007-05-30</p> <p>ISS015-E-10125 (30 May 2007) --- An iceberg in the South Atlantic Ocean is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. This iceberg illustrates the remains of a giant iceberg -- designated A22A that broke off Antarctica in 2002. This is one of the largest icebergs to drift as far north as 50 degrees south latitude, bringing it beneath the daylight path of the station. Crewmembers aboard the orbital complex were able to locate the ice mass and photograph it, despite great cloud masses of winter storms in the Southern Ocean. Dimensions of A22A in early June were 49.9 x 23.4 kilometers, giving it an area of 622 square kilometers, or seven times the area of Manhattan Island.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26275507','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26275507"><span>Pathways involving traumatic losses, worry about family, adult separation anxiety and posttraumatic stress symptoms amongst refugees from West Papua.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tay, Alvin Kuowei; Rees, Susan; Chen, Jack; Kareth, Moses; Silove, Derrick</p> <p>2015-10-01</p> <p>There is some evidence that adult separation anxiety disorder (ASAD) symptoms are closely associated with posttraumatic stress disorder (PTSD) amongst refugees exposed to traumatic events (TEs), but the pathways involved remain to be elucidated. A recent study suggests that separation anxiety disorder precedes and predicts onset of PTSD. We examined a path model testing whether ASAD symptoms and worry about family mediated the path from traumatic losses to PTSD symptoms amongst 230 refugees from West Papua. Culturally adapted measures were applied to assess TE exposure and symptoms of ASAD and PTSD. A structural equation model indicated that ASAD symptoms played an important role in mediating the effects of traumatic losses and worry about family in the pathway to PTSD symptoms. Although based on cross-sectional data, our findings suggest that ASAD symptoms may play a role in the path from traumatic losses to PTSD amongst refugees. We propose an evolutionary model in which the ASAD and PTSD reactions represent complementary survival responses designed to protect the individual and close attachments from external threats. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001652','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001652"><span>The Algorithm Theoretical Basis Document for the Atmospheric Delay Correction to GLAS Laser Altimeter Ranges. Volume 8</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Herring, Thomas A.; Quinn, Katherine J.</p> <p>2012-01-01</p> <p>NASA s Ice, Cloud, and Land Elevation Satellite (ICESat) mission will be launched late 2001. It s primary instrument is the Geoscience Laser Altimeter System (GLAS) instrument. The main purpose of this instrument is to measure elevation changes of the Greenland and Antarctic icesheets. To accurately measure the ranges it is necessary to correct for the atmospheric delay of the laser pulses. The atmospheric delay depends on the integral of the refractive index along the path that the laser pulse travels through the atmosphere. The refractive index of air at optical wavelengths is a function of density and molecular composition. For ray paths near zenith and closed form equations for the refractivity, the atmospheric delay can be shown to be directly related to surface pressure and total column precipitable water vapor. For ray paths off zenith a mapping function relates the delay to the zenith delay. The closed form equations for refractivity recommended by the International Union of Geodesy and Geophysics (IUGG) are optimized for ground based geodesy techniques and in the next section we will consider whether these equations are suitable for satellite laser altimetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DPPCP9105I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DPPCP9105I"><span>Characteristics of Muti-pulsing CHI driven ST plasmas on HIST</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ishihara, M.; Hanao, T.; Ito, K.; Matsumoto, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.</p> <p>2011-10-01</p> <p>The flux amplification and sustainment of the ST configurations by operating in Multi-pulsing Coaxial Helicity Injection (M-CHI) method have been demonstrated on HIST. The multi-pulsing experiment was demonstrated in the SSPX spheromak device at LLNL. In the double pulsing discharges, we have observed that the plasma current has been sustained much longer against the resistive decay as compared to the single CHI. We have measured the radial profiles of the flow velocities by using Ion Doppler Spectrometer and Mach probes. The result shows that poloidal shear flow exists between the open flux column and the most outer closed flux surface. The poloidal velocity shear at the interface may be caused by the ion diamagnetic drift, because of a steep density gradient there. The radial electric field is determined by the flow velocities and the ion pressure gradient through the radial momentum balance equation. We have investigated the contribution of ExB or the ion pressure gradient on the poloidal velocity shear by comparing the impurity ion flow obtained from the IDS with the bulk ion flow from the Mach probe. It should be noted that the diamagnetic drift velocity of the impurity is much smaller than ExB drift velocity. We will discuss characteristics of M-CHI-driven ST plasmas by varying TF coil current and the line averaged electron density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17801399','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17801399"><span>Test of Continental Drift by Comparison of Radiometric Ages: A pre-drift reconstruction shows matching geologic age provinces in West Africa and Northern Brazil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hurley, P M; Rand, J R; Pinson, W H; Fairbairn, H W; de Almeida, F F; Melcher, G C; Cordani, U G; Kawashita, K; Vandoros, P</p> <p>1967-08-04</p> <p>1) The distribution of age values obtained by potassium-argon determinations and whole-rock rubidium-strontium determinations appears to be almost identical for West African rocks of the pervasive Eburnean Orogenic Cycle and basement rocks at opposite locations in South America. 2) There is also a close correlation, with respect to potassium-argon age determinations on micas, rubidium-strontium determinations on total-rock samples, and the extent to which these two sets of values differ, between rocks of the Pan-African Orogenic Cycle and rocks of the Caririan Orogenic Cycle in Brazil, where these two groups of rocks lie opposite each other in the two continents. 3) When Africa and South America are "fitted together," the sharply defined boundary between the Eburnean and the Pan-African age provinces in West Africa strikes directly toward the corresponding age boundary in northeast Brazil. 4) The transition from the 550-million-year Pan-African age province to the 2000-million-year age province in the Congo Craton in Cameroun-Gabon is matched in the rocks near the corresponding part of the east coast of Brazil. However the geological and age data are insufficient to do more than suggest the possibility of another age-boundary correlation here. 5) The evidence reported here supports the hypothesis of continental drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20089126','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20089126"><span>Local selection modifies phenotypic divergence among Rana temporaria populations in the presence of gene flow.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Richter-Boix, Alex; Teplitsky, Céline; Rogell, Björn; Laurila, Anssi</p> <p>2010-02-01</p> <p>In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open-canopy or partially closed-canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (Q(ST)) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (F(ST)). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in F(ST) at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature-induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvF...1e3604C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvF...1e3604C"><span>Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cano-Lozano, José Carlos; Martínez-Bazán, Carlos; Magnaudet, Jacques; Tchoufag, Joël</p> <p>2016-09-01</p> <p>We report on a series of results provided by three-dimensional numerical simulations of nearly spheroidal bubbles freely rising and deforming in a still liquid in the regime close to the transition to path instability. These results improve upon those of recent computational studies [Cano-Lozano et al., Int. J. Multiphase Flow 51, 11 (2013), 10.1016/j.ijmultiphaseflow.2012.11.005; Phys. Fluids 28, 014102 (2016), 10.1063/1.4939703] in which the neutral curve associated with this transition was obtained by considering realistic but frozen bubble shapes. Depending on the dimensionless parameters that characterize the system, various paths geometries are observed by letting an initially spherical bubble starting from rest rise under the effect of buoyancy and adjust its shape to the surrounding flow. These include the well-documented rectilinear axisymmetric, planar zigzagging, and spiraling (or helical) regimes. A flattened spiraling regime that most often eventually turns into either a planar zigzagging or a helical regime is also frequently observed. Finally, a chaotic regime in which the bubble experiences small horizontal displacements (typically one order of magnitude smaller than in the other regimes) is found to take place in a region of the parameter space where no standing eddy exists at the back of the bubble. The discovery of this regime provides evidence that path instability does not always result from a wake instability as previously believed. In each regime, we examine the characteristics of the path, bubble shape, and vortical structure in the wake, as well as their couplings. In particular, we observe that, depending on the fluctuations of the rise velocity, two different vortex shedding modes exist in the zigzagging regime, confirming earlier findings with falling spheres. The simulations also reveal that significant bubble deformations may take place along zigzagging or spiraling paths and that, under certain circumstances, they dramatically alter the wake structure. The instability thresholds that can be inferred from the computations compare favorably with experimental data provided by various sets of recent experiments guaranteeing that the bubble surface is free of surfactants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26122591','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26122591"><span>Fixation probabilities on superstars, revisited and revised.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jamieson-Lane, Alastair; Hauert, Christoph</p> <p>2015-10-07</p> <p>Population structures can be crucial determinants of evolutionary processes. For the Moran process on graphs certain structures suppress selective pressure, while others amplify it (Lieberman et al., 2005). Evolutionary amplifiers suppress random drift and enhance selection. Recently, some results for the most powerful known evolutionary amplifier, the superstar, have been invalidated by a counter example (Díaz et al., 2013). Here we correct the original proof and derive improved upper and lower bounds, which indicate that the fixation probability remains close to 1-1/(r(4)H) for population size N→∞ and structural parameter H⪢1. This correction resolves the differences between the two aforementioned papers. We also confirm that in the limit N,H→∞ superstars remain capable of eliminating random drift and hence of providing arbitrarily strong selective advantages to any beneficial mutation. In addition, we investigate the robustness of amplification in superstars and find that it appears to be a fragile phenomenon with respect to changes in the selection or mutation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25c2307T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25c2307T"><span>Plasma particle sources due to interactions with neutrals in a turbulent scrape-off layer of a toroidally confined plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thrysøe, A. S.; Løiten, M.; Madsen, J.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul</p> <p>2018-03-01</p> <p>The conditions in the edge and scrape-off layer (SOL) of magnetically confined plasmas determine the overall performance of the device, and it is of great importance to study and understand the mechanics that drive transport in those regions. If a significant amount of neutral molecules and atoms is present in the edge and SOL regions, those will influence the plasma parameters and thus the plasma confinement. In this paper, it is displayed how neutrals, described by a fluid model, introduce source terms in a plasma drift-fluid model due to inelastic collisions. The resulting source terms are included in a four-field drift-fluid model, and it is shown how an increasing neutral particle density in the edge and SOL regions influences the plasma particle transport across the last-closed-flux-surface. It is found that an appropriate gas puffing rate allows for the edge density in the simulation to be self-consistently maintained due to ionization of neutrals in the confined region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EPJD...68..230D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EPJD...68..230D"><span>An attack aimed at active phase compensation in one-way phase-encoded QKD systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, Zhao-Yue; Yu, Ning-Na; Wei, Zheng-Jun; Wang, Jin-Dong; Zhang, Zhi-Ming</p> <p>2014-08-01</p> <p>Phase drift is an inherent problem in one-way phase-encoded quantum key distribution (QKD) systems. Although combining passive with active phase compensation (APC) processes can effectively compensate for the phase drift, the security problems brought about by these processes are rarely considered. In this paper, we point out a security hole in the APC process and put forward a corresponding attack scheme. Under our proposed attack, the quantum bit error rate (QBER) of the QKD can be close to zero for some conditions. However, under the same conditions the ratio r of the key "0" and the key "1" which Bob (the legal communicators Alice and Bob) gets is no longer 1:1 but 2:1, which may expose Eve (the eavesdropper). In order to solve this problem, we modify the resend strategy of the attack scheme, which can force r to reach 1 and the QBER to be lower than the tolerable QBER.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21307544','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21307544"><span>Silicon drift detectors with on-chip electronics for x-ray spectroscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fiorini, C; Longoni, A; Hartmann, R; Lechner, P; Strüder, L</p> <p>1997-01-01</p> <p>The silicon drift detector (SDD) is a semiconductor device based on high resistivity silicon fully depleted through junctions implanted on both sides of the semiconductor wafer. The electrons generated by the ionizing radiation are driven by means of a suitable electric field from the point of interaction toward a collecting anode of small capacitance, independent of the active area of the detector. A suitably designed front-end JFET has been directly integrated on the detector chip close to the anode region, in order to obtain a nearly ideal capacitive matching between detector and transistor and to minimize the stray capacitances of the connections. This feature allows it to reach high energy resolution also at high count rates and near room temperature. The present work describes the structure and the performance of SDDs specially designed for high resolution spectroscopy with soft x rays at high detection rate. Experimental results of SDDs used in spectroscopy applications are also reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5397565','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5397565"><span>Continental Drift and Speciation of the Cryptococcus neoformans and Cryptococcus gattii Species Complexes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Freij, Joudeh B.; Hann-Soden, Christopher; Taylor, John</p> <p>2017-01-01</p> <p>ABSTRACT Genomic analysis has placed the origins of two human-pathogenic fungi, the Cryptococcus gattii species complex and the Cryptococcus neoformans species complex, in South America and Africa, respectively. Molecular clock calculations suggest that the two species separated ~80 to 100 million years ago. This time closely approximates the breakup of the supercontinent Pangea, which gave rise to South America and Africa. On the basis of the geographic distribution of these two species complexes and the coincidence of the evolutionary divergence and Pangea breakup times, we propose that a spatial separation caused by continental drift resulted in the emergence of the C. gattii and C. neoformans species complexes from a Pangean ancestor. We note that, despite the spatial and temporal separation that occurred approximately 100 million years ago, these two species complexes are morphologically similar, share virulence factors, and cause very similar diseases. Continuation of these phenotypic characteristics despite ancient separation suggests the maintenance of similar selection pressures throughout geologic ages. PMID:28435888</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28435888','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28435888"><span>Continental Drift and Speciation of the Cryptococcus neoformans and Cryptococcus gattii Species Complexes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Casadevall, Arturo; Freij, Joudeh B; Hann-Soden, Christopher; Taylor, John</p> <p>2017-01-01</p> <p>Genomic analysis has placed the origins of two human-pathogenic fungi, the Cryptococcus gattii species complex and the Cryptococcus neoformans species complex, in South America and Africa, respectively. Molecular clock calculations suggest that the two species separated ~80 to 100 million years ago. This time closely approximates the breakup of the supercontinent Pangea, which gave rise to South America and Africa. On the basis of the geographic distribution of these two species complexes and the coincidence of the evolutionary divergence and Pangea breakup times, we propose that a spatial separation caused by continental drift resulted in the emergence of the C. gattii and C. neoformans species complexes from a Pangean ancestor. We note that, despite the spatial and temporal separation that occurred approximately 100 million years ago, these two species complexes are morphologically similar, share virulence factors, and cause very similar diseases. Continuation of these phenotypic characteristics despite ancient separation suggests the maintenance of similar selection pressures throughout geologic ages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EnGeo..57.1299P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EnGeo..57.1299P"><span>Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pan, Peng-Zhi; Feng, Xia-Ting; Huang, Xiao-Hua; Cui, Qiang; Zhou, Hui</p> <p>2009-05-01</p> <p>This paper aims at a numerical study of coupled thermal, hydrological and mechanical processes in the excavation disturbed zones (EDZ) around nuclear waste emplacement drifts in fractured crystalline rocks. The study was conducted for two model domains close to an emplacement tunnel; (1) a near-field domain and (2) a smaller wall-block domain. Goodman element and weak element were used to represent the fractures in the rock mass and the rock matrix was represented as elasto-visco-plastic material. Mohr-Coulomb criterion and a non-associated plastic flow rule were adopted to consider the viscoplastic deformation in the EDZ. A relation between volumetric strain and permeability was established. Using a self-developed EPCA2D code, the elastic, elasto-plastic and creep analyses to study the evolution of stress and deformations, as well as failure and permeability evolution in the EDZ were conducted. Results indicate a strong impact of fractures, plastic deformation and time effects on the behavior of EDZ especially the evolution of permeability around the drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSP...171..656S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSP...171..656S"><span>Random Walk on a Perturbation of the Infinitely-Fast Mixing Interchange Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salvi, Michele; Simenhaus, François</p> <p>2018-05-01</p> <p>We consider a random walk in dimension d≥ 1 in a dynamic random environment evolving as an interchange process with rate γ >0. We prove that, if we choose γ large enough, almost surely the empirical velocity of the walker X_t/t eventually lies in an arbitrary small ball around the annealed drift. This statement is thus a perturbation of the case γ =+∞ where the environment is refreshed between each step of the walker. We extend three-way part of the results of Huveneers and Simenhaus (Electron J Probab 20(105):42, 2015), where the environment was given by the 1-dimensional exclusion process: (i) We deal with any dimension d≥1; (ii) We treat the much more general interchange process, where each particle carries a transition vector chosen according to an arbitrary law μ ; (iii) We show that X_t/t is not only in the same direction of the annealed drift, but that it is also close to it.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033350','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033350"><span>Nitrous oxide fluxes from a claypan soil overlying nitrate-enriched glacial drift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pomes, M.L.; Wilkison, D.H.; McMahon, P.B.</p> <p>1998-01-01</p> <p>The closed chamber method was used to assess nitrous oxide (N2O) fluxes from corn (Zea mays, L.) fields during the 1995 growing season. The study area was characterized by a claypan soil overlying a nitrate (NO31-)-enriched glacial-drift aquifer. Denitrification produced N2O fluxes of 0.2-6.9 g ha-1 hr-1 early in the growing season. Fluxes increased with increasing soil temperature, soil water potential, and soil saturation. However, greatly diminished N2O fluxes (0.001-0.09 gha-1 hr-1) occurred when soil saturation increased to 94 percent. Losses of N2O increased linearly during the day and decreased at night, probably because of declining soil temperatures. Declines in soil saturation (less than 80 percent) and soil moisture potential (less than -10 kPa) produced late season N2O fluxes (0.03-0.8 g ha-1 hr-1) attributable to nitrification. Results indicate that denitrification would not significantly reduce claypan soil NO31- concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999RaSc...34..939C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999RaSc...34..939C"><span>Sunrise effects on VLF signals propagating over a long north-south path</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clilverd, Mark A.; Thomson, Neil R.; Rodger, Craig J.</p> <p>1999-07-01</p> <p>We present a detailed study of the times of amplitude minima observed on the 12-Mm path from NAA (24 kHz, 1 MW, Cutler, Maine) to Faraday, Antarctica, during the period 1990-1995. (NAA is a naval transmitter call sign.) This study represents the first account of the effect of the sunrise terminator when it is parallel to a propagation path at some times of the year. Since the NAA-Faraday path is within 3° of the north-south meridian, parallel orientation happens close to the equinoxes, while the maximum angle of incidence occurs during the solstices. During the solstices the terminator takes a significant length of time to cross the entire propagation path, so modal conversion effects are observed over a range of hours. During the equinoxes, however, the leading edge of the night-day transition region crosses the whole propagation path within 20 min. The interpretation of the timing of minima is consistent with modal conversion taking place as the sunrise terminator crosses the NAA-Faraday transmission path at specific, consistent locations. The timing of minima is remarkably consistent from year to year. Long wave propagation modeling is used to show that the location of nightside minima at an altitude of 45-75 km in the subionospheric waveguide represents the location of the sunrise terminator on the great circle path when dayside minima occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18980905','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18980905"><span>Planning maximally smooth hand movements constrained to nonplanar workspaces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liebermann, Dario G; Krasovsky, Tal; Berman, Sigal</p> <p>2008-11-01</p> <p>The article characterizes hand paths and speed profiles for movements performed in a nonplanar, 2-dimensional workspace (a hemisphere of constant curvature). The authors assessed endpoint kinematics (i.e., paths and speeds) under the minimum-jerk model assumptions and calculated minimal amplitude paths (geodesics) and the corresponding speed profiles. The authors also calculated hand speeds using the 2/3 power law. They then compared modeled results with the empirical observations. In all, 10 participants moved their hands forward and backward from a common starting position toward 3 targets located within a hemispheric workspace of small or large curvature. Comparisons of modeled observed differences using 2-way RM-ANOVAs showed that movement direction had no clear influence on hand kinetics (p < .05). Workspace curvature affected the hand paths, which seldom followed geodesic lines. Constraining the paths to different curvatures did not affect the hand speed profiles. Minimum-jerk speed profiles closely matched the observations and were superior to those predicted by 2/3 power law (p < .001). The authors conclude that speed and path cannot be unambiguously linked under the minimum-jerk assumption when individuals move the hand in a nonplanar 2-dimensional workspace. In such a case, the hands do not follow geodesic paths, but they preserve the speed profile, regardless of the geometric features of the workspace.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27198459','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27198459"><span>Coordinated path following of multiple underacutated marine surface vehicles along one curve.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Lu; Wang, Dan; Peng, Zhouhua</p> <p>2016-09-01</p> <p>This paper investigates the coordinated path following problem for a fleet of underactuated marine surface vehicles (MSVs) along one curve. The dedicated control design is divided into two tasks. One is to steer individual underactuated MSV to track the given spatial path, and the other is to force the vehicles dispersed on a parameterized path subject to the constraints of a communication network. Specifically, a robust individual path following controller is developed based on a line-of-sight (LOS) guidance law and a reduced-order extended state observer (ESO). The vehicle sideslip angle due to environmental disturbances can be exactly identified. Then, the vehicle coordination is achieved by a path variable containment approach, under which the path variables are evenly dispersed between two virtual leaders. Another reduced-order ESO is developed to identify the composite disturbance related to the speed of virtual leaders and neighboring vehicles. The proposed coordination design is distributed since the reference speed does not need to be known by all vehicles as a priori. The input-to-state stability of the closed-loop network system is established via cascade theory. Simulation results demonstrate the effectiveness of the proposed design method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/reducing-pesticide-drift','PESTICIDES'); return false;" href="https://www.epa.gov/reducing-pesticide-drift"><span>Reducing Pesticide Drift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Provides information about pesticide spray drift, including problems associated with drift, managing risks from drift and the voluntary Drift Reduction Technology program that seeks to reduce spray drift through improved spray equipment design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..521..141D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..521..141D"><span>Gas and water flow in an excavation-induced fracture network around an underground drift: A case study for a radioactive waste repository in clay rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de La Vaissière, Rémi; Armand, Gilles; Talandier, Jean</p> <p>2015-02-01</p> <p>The Excavation Damaged Zone (EDZ) surrounding a drift, and in particular its evolution, is being studied for the performance assessment of a radioactive waste underground repository. A specific experiment (called CDZ) was designed and implemented in the Meuse/Haute-Marne Underground Research Laboratory (URL) in France to investigate the EDZ. This experiment is dedicated to study the evolution of the EDZ hydrogeological properties (conductivity and specific storage) of the Callovo-Oxfordian claystone under mechanical compression and artificial hydration. Firstly, a loading cycle applied on a drift wall was performed to simulate the compression effect from bentonite swelling in a repository drift (bentonite is a clay material to be used to seal drifts and shafts for repository closure purpose). Gas tests (permeability tests with nitrogen and tracer tests with helium) were conducted during the first phase of the experiment. The results showed that the fracture network within the EDZ was initially interconnected and opened for gas flow (particularly along the drift) and then progressively closed with the increasing mechanical stress applied on the drift wall. Moreover, the evolution of the EDZ after unloading indicated a self-sealing process. Secondly, the remaining fracture network was resaturated to demonstrate the ability to self-seal of the COx claystone without mechanical loading by conducting from 11 to 15 repetitive hydraulic tests with monitoring of the hydraulic parameters. During this hydration process, the EDZ effective transmissivity dropped due to the swelling of the clay materials near the fracture network. The hydraulic conductivity evolution was relatively fast during the first few days. Low conductivities ranging at 10-10 m/s were observed after four months. Conversely, the specific storage showed an erratic evolution during the first phase of hydration (up to 60 days). Some uncertainty remains on this parameter due to volumetric strain during the sealing of the fractures. The hydration was stopped after one year and cross-hole hydraulic tests were performed to determine more accurately the specific storage as well as the hydraulic conductivity at a meter-scale. All hydraulic conductivity values measured at the injection interval and at the observation intervals were all below 10-10 m/s. Moreover, the preferential inter-connectivity along the drift disappeared. Specific storage values at the observation and injection intervals were similar. Furthermore they were in agreement with the value obtained at the injection interval within the second hydration phase (60 days after starting hydration). The graphical abstract synthesizes the evolution of the hydraulic/gas conductivity for 8 intervals since the beginning of the CDZ experiment. The conductivity limit of 10-10 m/s corresponds to the lower bound hydraulic definition of the EDZ and it is demonstrated that EDZ can be sealed. This is a significant result in the demonstration of the long-term safety of a repository.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1159842','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1159842"><span>Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Zhang, Shukui; Wilson, Guy</p> <p>2014-09-23</p> <p>An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/943437','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/943437"><span>Correlation ion mobility spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Pfeifer, Kent B [Los Lunas, NM; Rohde, Steven B [Corrales, NM</p> <p>2008-08-26</p> <p>Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990008042&hterms=Lower+class&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DLower%2Bclass','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990008042&hterms=Lower+class&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DLower%2Bclass"><span>A Model for Lower Hybrid Wave Excitation Compared with Observations by Viking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, G. V.; Liemohn, M. W.; Krivorutsky, E. N.; Horwitz, J. L.</p> <p>1997-01-01</p> <p>The mechanism of lower hybrid wave (LHW) excitation due to the O+ relative drift in a plasma subjected to low-frequency waves (LFWs) is used for analysis of Viking satellite data for events in the cusp/cleft region. In some cases, such a mechanism leads to LHW energy densities and ion distribution functions close to those observed, suggesting the proposed mechanism is a plausible candidate to explain certain classes of LHW generation events in space plasmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25493870','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25493870"><span>Influence of excitability on unpinning and termination of spiral waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Luengviriya, Jiraporn; Sutthiopad, Malee; Phantu, Metinee; Porjai, Porramain; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya</p> <p>2014-11-01</p> <p>Application of electrical forcing to release pinned spiral waves from unexcitable obstacles and to terminate the rotation of free spiral waves at the boundary of excitable media has been investigated in thin layers of the Belousov-Zhabotinsky (BZ) reaction, prepared with different initial concentrations of H_{2}SO_{4}. Increasing [H_{2}SO_{4}] raises the excitability of the reaction and reduces the core diameter of free spiral waves as well as the wave period. An electric current with density stronger than a critical value Junpin causes a pinned spiral wave to drift away from the obstacle. For a given obstacle size, Junpin increases with [H_{2}SO_{4}]. Under an applied electrical current, the rotation center of a free spiral wave drifts along a straight path to the boundary. When the current density is stronger than a critical value Jterm, the spiral tip is forced to hit the boundary, where the spiral wave is terminated. Similar to Junpin for releasing a pinned spiral wave, Jterm also increases with [H_{2}SO_{4}]. These experimental findings were confirmed by numerical simulations using the Oregonator model, in which the excitability was adjusted via the ratio of the excitation rate to the recovery rate of the BZ reaction. Therefore, our investigation shows that decreasing the excitability can facilitate elimination of spiral waves by electrical forcing, either in the presence of obstacles or not.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3935396','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3935396"><span>Capture of fixation by rotational flow; a deterministic hypothesis regarding scaling and stochasticity in fixational eye movements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wilkinson, Nicholas M.; Metta, Giorgio</p> <p>2014-01-01</p> <p>Visual scan paths exhibit complex, stochastic dynamics. Even during visual fixation, the eye is in constant motion. Fixational drift and tremor are thought to reflect fluctuations in the persistent neural activity of neural integrators in the oculomotor brainstem, which integrate sequences of transient saccadic velocity signals into a short term memory of eye position. Despite intensive research and much progress, the precise mechanisms by which oculomotor posture is maintained remain elusive. Drift exhibits a stochastic statistical profile which has been modeled using random walk formalisms. Tremor is widely dismissed as noise. Here we focus on the dynamical profile of fixational tremor, and argue that tremor may be a signal which usefully reflects the workings of oculomotor postural control. We identify signatures reminiscent of a certain flavor of transient neurodynamics; toric traveling waves which rotate around a central phase singularity. Spiral waves play an organizational role in dynamical systems at many scales throughout nature, though their potential functional role in brain activity remains a matter of educated speculation. Spiral waves have a repertoire of functionally interesting dynamical properties, including persistence, which suggest that they could in theory contribute to persistent neural activity in the oculomotor postural control system. Whilst speculative, the singularity hypothesis of oculomotor postural control implies testable predictions, and could provide the beginnings of an integrated dynamical framework for eye movements across scales. PMID:24616670</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED43B0859H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED43B0859H"><span>CATE 2016 Indonesia: Image Calibration, Intensity Calibration, and Drift Scan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hare, H. S.; Kovac, S. A.; Jensen, L.; McKay, M. A.; Bosh, R.; Watson, Z.; Mitchell, A. M.; Penn, M. J.</p> <p>2016-12-01</p> <p>The citizen Continental America Telescopic Eclipse (CATE) experiment aims to provide equipment for 60 sites across the path of totality for the United States August 21st, 2017 total solar eclipse. The opportunity to gather ninety minutes of continuous images of the solar corona is unmatched by any other previous eclipse event. In March of 2016, 5 teams were sent to Indonesia to test CATE equipment and procedures on the March 9th, 2016 total solar eclipse. Also, a goal of the trip was practice and gathering data to use in testing data reduction methods. Of the five teams, four collected data. While in Indonesia, each group participated in community outreach in the location of their site. The 2016 eclipse allowed CATE to test the calibration techniques for the 2017 eclipse. Calibration dark current and flat field images were collected to remove variation across the cameras. Drift scan observations provided information to rotationally align the images from each site. These image's intensity values allowed for intensity calibration for each of the sites. A GPS at each site corrected for major computer errors in time measurement of images. Further refinement of these processes is required before the 2017 eclipse. This work was made possible through the NSO Training for the 2017 Citizen CATE Experiment funded by NASA (NASA NNX16AB92A).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29728262','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29728262"><span>Numerical simulations of debris drift from the Great Japan Tsunami of 2011 and their verification with observational reports.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maximenko, Nikolai; Hafner, Jan; Kamachi, Masafumi; MacFadyen, Amy</p> <p>2018-05-02</p> <p>A suite of five ocean models is used to simulate the movement of floating debris generated by the Great Japan Tsunami of 2011. This debris was subject to differential wind and wave-induced motion relative to the ambient current (often termed "windage") which is a function of the shape, size, and buoyancy of the individual debris items. Model solutions suggest that during the eastward drift across the North Pacific the debris became "stratified" by the wind so that objects with different windages took different paths: high windage items reached North America in large numbers the first year, medium windage items recirculated southwest toward Hawaii and Asia, and low windage items collected in the Subtropical Gyre, primarily in the so-called "garbage patch" area located northeast of Hawaii and known for high concentrations of microplastics. Numerous boats lost during the tsunami were later observed at sea and/or found on the west coast of North America: these observations are used to determine optimal windage values for scaling the model solutions. The initial number of boats set adrift during the tsunami is estimated at about 1000, while about 100 boats are projected to still float in year 2018 with an e-folding decay of 2 to 8 years. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24571787','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24571787"><span>Transition paths of Met-enkephalin from Markov state modeling of a molecular dynamics trajectory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Banerjee, Rahul; Cukier, Robert I</p> <p>2014-03-20</p> <p>Conformational states and their interconversion pathways of the zwitterionic form of the pentapeptide Met-enkephalin (MetEnk) are identified. An explicit solvent molecular dynamics (MD) trajectory is used to construct a Markov state model (MSM) based on dihedral space clustering of the trajectory, and transition path theory (TPT) is applied to identify pathways between open and closed conformers. In the MD trajectory, only four of the eight backbone dihedrals exhibit bistable behavior. Defining a conformer as the string XXXX with X = "+" or "-" denoting, respectively, positive or negative values of a given dihedral angle and obtaining the populations of these conformers shows that only four conformers are highly populated, implying a strong correlation among these dihedrals. Clustering in dihedral space to construct the MSM finds the same four bistable dihedral angles. These state populations are very similar to those found directly from the MD trajectory. TPT is used to obtain pathways, parametrized by committor values, in dihedral state space that are followed in transitioning from closed to open states. Pathway costs are estimated by introducing a kinetics-based procedure that orders pathways from least (shortest) to greater cost paths. The least costly pathways in dihedral space are found to only involve the same XXXX set of dihedral angles, and the conformers accessed in the closed to open transition pathways are identified. For these major pathways, a correlation between reaction path progress (committors) and the end-to-end distance is identified. A dihedral space principal component analysis of the MD trajectory shows that the first three modes capture most of the overall fluctuation, and pick out the same four dihedrals having essentially all the weight in those modes. A MSM based on root-mean-square backbone clustering was also carried out, with good agreement found with dihedral clustering for the static information, but with results that differ significantly for the pathway analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA572013','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA572013"><span>Construct User Guide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-11-01</p> <p>interactions in construct: An empirical validation using calibrated grounding. In 2007 BRIMS Conference Proceedings, Norfolk, VA. Simon, H. A...by the path name. Users should ensure that if they have opened any output files (e.g., in Excel to view the files), they should either close the file...stringvars to delimit string variables. Common Gotchas If Construct is unable to open an input file, it will exit and close. There are times when an</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29454682','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29454682"><span>Short communication: Genetic lag represents commercial herd genetic merit more accurately than the 4-path selection model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dechow, C D; Rogers, G W</p> <p>2018-05-01</p> <p>Expectation of genetic merit in commercial dairy herds is routinely estimated using a 4-path genetic selection model that was derived for a closed population, but commercial herds using artificial insemination sires are not closed. The 4-path model also predicts a higher rate of genetic progress in elite herds that provide artificial insemination sires than in commercial herds that use such sires, which counters other theoretical assumptions and observations of realized genetic responses. The aim of this work is to clarify whether genetic merit in commercial herds is more accurately reflected under the assumptions of the 4-path genetic response formula or by a genetic lag formula. We demonstrate by tracing the transmission of genetic merit from parents to offspring that the rate of genetic progress in commercial dairy farms is expected to be the same as that in the genetic nucleus. The lag in genetic merit between the nucleus and commercial farms is a function of sire and dam generation interval, the rate of genetic progress in elite artificial insemination herds, and genetic merit of sires and dams. To predict how strategies such as the use of young versus daughter-proven sires, culling heifers following genomic testing, or selective use of sexed semen will alter genetic merit in commercial herds, genetic merit expectations for commercial herds should be modeled using genetic lag expectations. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1334R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1334R"><span>The mean free path of hydrogen ionizing photons during the epoch of reionization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rahmati, Alireza; Schaye, Joop</p> <p>2018-05-01</p> <p>We use the Aurora radiation-hydrodynamical simulations to study the mean free path (MFP) for hydrogen ionizing photons during the epoch of reionization. We directly measure the MFP by averaging the distance 1 Ry photons travel before reaching an optical depth of unity along random lines-of-sight. During reionization the free paths tend to end in neutral gas with densities near the cosmic mean, while after reionization the end points tend to be overdense but highly ionized. Despite the increasing importance of discrete, over-dense systems, the cumulative contribution of systems with NHI ≲ 1016.5 cm-2 suffices to drive the MFP at z ≈ 6, while at earlier times higher column densities are more important. After reionization the typical size of HI systems is close to the local Jeans length, but during reionization it is much larger. The mean free path for photons originating close to galaxies, {MFP_{gal}}, is much smaller than the cosmic MFP. After reionization this enhancement can remain significant up to starting distances of ˜1 comoving Mpc. During reionization, however, {MFP_{gal}} for distances ˜102 - 103 comoving kpc typically exceeds the cosmic MFP. These findings have important consequences for models that interpret the intergalactic MFP as the distance escaped ionizing photons can travel from galaxies before being absorbed and may cause them to under-estimate the required escape fraction from galaxies, and/or the required emissivity of ionizing photons after reionization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3129817','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3129817"><span>Removing Shape-Preserving Transformations in Square-Root Elastic (SRE) Framework for Shape Analysis of Curves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Joshi, Shantanu H.; Klassen, Eric; Srivastava, Anuj; Jermyn, Ian</p> <p>2011-01-01</p> <p>This paper illustrates and extends an efficient framework, called the square-root-elastic (SRE) framework, for studying shapes of closed curves, that was first introduced in [2]. This framework combines the strengths of two important ideas - elastic shape metric and path-straightening methods - for finding geodesics in shape spaces of curves. The elastic metric allows for optimal matching of features between curves while path-straightening ensures that the algorithm results in geodesic paths. This paper extends this framework by removing two important shape preserving transformations: rotations and re-parameterizations, by forming quotient spaces and constructing geodesics on these quotient spaces. These ideas are demonstrated using experiments involving 2D and 3D curves. PMID:21738385</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhRvE..86a1117F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhRvE..86a1117F"><span>Corrections to scaling for watersheds, optimal path cracks, and bridge lines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fehr, E.; Schrenk, K. J.; Araújo, N. A. M.; Kadau, D.; Grassberger, P.; Andrade, J. S., Jr.; Herrmann, H. J.</p> <p>2012-07-01</p> <p>We study the corrections to scaling for the mass of the watershed, the bridge line, and the optimal path crack in two and three dimensions (2D and 3D). We disclose that these models have numerically equivalent fractal dimensions and leading correction-to-scaling exponents. We conjecture all three models to possess the same fractal dimension, namely, df=1.2168±0.0005 in 2D and df=2.487±0.003 in 3D, and the same exponent of the leading correction, Ω=0.9±0.1 and Ω=1.0±0.1, respectively. The close relations between watersheds, optimal path cracks in the strong disorder limit, and bridge lines are further supported by either heuristic or exact arguments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22251301-parallel-multiplex-laser-feedback-interferometry','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22251301-parallel-multiplex-laser-feedback-interferometry"><span>Parallel multiplex laser feedback interferometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Song; Tan, Yidong; Zhang, Shulian, E-mail: zsl-dpi@mail.tsinghua.edu.cn</p> <p>2013-12-15</p> <p>We present a parallel multiplex laser feedback interferometer based on spatial multiplexing which avoids the signal crosstalk in the former feedback interferometer. The interferometer outputs two close parallel laser beams, whose frequencies are shifted by two acousto-optic modulators by 2Ω simultaneously. A static reference mirror is inserted into one of the optical paths as the reference optical path. The other beam impinges on the target as the measurement optical path. Phase variations of the two feedback laser beams are simultaneously measured through heterodyne demodulation with two different detectors. Their subtraction accurately reflects the target displacement. Under typical room conditions, experimentalmore » results show a resolution of 1.6 nm and accuracy of 7.8 nm within the range of 100 μm.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4790973','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4790973"><span>ULTRA HIGH VACUUM VALVE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Fry, W.A.</p> <p>1962-05-29</p> <p>A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015A%26A...574A..83K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015A%26A...574A..83K"><span>Erosion and the limits to planetesimal growth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krijt, S.; Ormel, C. W.; Dominik, C.; Tielens, A. G. G. M.</p> <p>2015-02-01</p> <p>Context. The coagulation of microscopic dust into planetesimals is the first step towards the formation of planets. The composition, size, and shape of the growing aggregates determine the efficiency of this early growth. In particular, it has been proposed that fluffy ice aggregates can grow very efficiently in protoplanetary disks, suffering less from the bouncing and radial drift barriers. Aims: While the collision velocity between icy aggregates of similar size is thought to stay below the fragmentation threshold, they may nonetheless lose mass from collisions with much smaller projectiles. As a result, erosive collisions have the potential to terminate the growth of pre-planetesimal bodies. We investigate the effect of these erosive collisions on the ability of porous ice aggregates to cross the radial drift barrier. Methods: We develop a Monte Carlo code that calculates the evolution of the masses and porosities of growing aggregates, while resolving the entire mass distribution at all times. The aggregate's porosity is treated independently of its mass, and is determined by collisional compaction, gas compaction, and eventually self-gravity compaction. We include erosive collisions and study the effect of the erosion threshold velocity on aggregate growth. Results: For erosion threshold velocities of 20-40 m s-1, high-velocity collisions with small projectiles prevent the largest aggregates from growing when they start to drift. In these cases, our local simulations result in a steady-state distribution, with most of the dust mass in particles with Stokes numbers close to unity. Only for the highest erosion threshold considered (60 m s-1) do porous aggregates manage to cross the radial drift barrier in the inner 10 AU of MMSN-like disks. Conclusions: Erosive collisions are more effective in limiting the growth than fragmentary collisions between similar-size particles. Conceivably, erosion limits the growth before the radial drift barrier, although the robustness of this statement depends on uncertain material properties of icy aggregates. If erosion inhibits planetesimal formation through direct sticking, the sea of ~109 g, highly porous particles appears suitable for triggering streaming instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70043087','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70043087"><span>Small-scale lacustrine drifts in Lake Champlain, Vermont</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Manley, Patricia L.; Manley, T.O.; Hayo, Kathryn; Cronin, Thomas</p> <p>2012-01-01</p> <p>High resolution CHIRP (Compressed High Intensity Radar Pulse) seismic profiles reveal the presence of two lacustrine sediment drifts located in Lake Champlain's Juniper Deep. Both drifts are positive features composed of highly laminated sediments. Drift B sits on a basement high while Drift A is built on a trough-filling acoustically-transparent sediment unit inferred to be a mass-transport event. These drifts are oriented approximately north–south and are parallel to a steep ridge along the eastern shore of the basin. Drift A, located at the bottom of a structural trough, is classified as a confined, elongate drift that transitions northward to become a system of upslope asymmetric mudwaves. Drift B is perched atop a structural high to the west of Drift A and is classified as a detached elongate drift. Bottom current depositional control was investigated using Acoustic Doppler Current Profilers (ADCPs) located across Drift A. Sediment cores were taken at the crest and at the edges of the Drift A and were dated. Drift source, deposition, and evolution show that these drifts are formed by a water column shear with the highest deposition occurring along its crest and western flank and began developing circa 8700–8800 year BP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/or0480.photos.200236p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/or0480.photos.200236p/"><span>6. West elevation of Drift Creek Bridge, view looking east ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>6. West elevation of Drift Creek Bridge, view looking east from new alignment of Drift Creek Road - Drift Creek Bridge, Spanning Drift Creek on Drift Creek County Road, Lincoln City, Lincoln County, OR</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22689430-robotic-path-finding-inverse-treatment-planning-stereotactic-radiosurgery-continuous-dose-delivery','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22689430-robotic-path-finding-inverse-treatment-planning-stereotactic-radiosurgery-continuous-dose-delivery"><span>Robotic path-finding in inverse treatment planning for stereotactic radiosurgery with continuous dose delivery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vandewouw, Marlee M., E-mail: marleev@mie.utoronto</p> <p></p> <p>Purpose: Continuous dose delivery in radiation therapy treatments has been shown to decrease total treatment time while improving the dose conformity and distribution homogeneity over the conventional step-and-shoot approach. The authors develop an inverse treatment planning method for Gamma Knife® Perfexion™ that continuously delivers dose along a path in the target. Methods: The authors’ method is comprised of two steps: find a path within the target, then solve a mixed integer optimization model to find the optimal collimator configurations and durations along the selected path. Robotic path-finding techniques, specifically, simultaneous localization and mapping (SLAM) using an extended Kalman filter, aremore » used to obtain a path that travels sufficiently close to selected isocentre locations. SLAM is novelly extended to explore a 3D, discrete environment, which is the target discretized into voxels. Further novel extensions are incorporated into the steering mechanism to account for target geometry. Results: The SLAM method was tested on seven clinical cases and compared to clinical, Hamiltonian path continuous delivery, and inverse step-and-shoot treatment plans. The SLAM approach improved dose metrics compared to the clinical plans and Hamiltonian path continuous delivery plans. Beam-on times improved over clinical plans, and had mixed performance compared to Hamiltonian path continuous plans. The SLAM method is also shown to be robust to path selection inaccuracies, isocentre selection, and dose distribution. Conclusions: The SLAM method for continuous delivery provides decreased total treatment time and increased treatment quality compared to both clinical and inverse step-and-shoot plans, and outperforms existing path methods in treatment quality. It also accounts for uncertainty in treatment planning by accommodating inaccuracies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PrOce.137..149B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PrOce.137..149B"><span>Properties and pathways of Mediterranean water eddies in the Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bashmachnikov, I.; Neves, F.; Calheiros, T.; Carton, X.</p> <p>2015-09-01</p> <p>Data from ship vertical casts (NODC data-set), ARGO profiling floats (Coriolis data-set) and RAFOS-type neutral density floats (WOCE data-set) are used to study characteristics of meddies in the Northeast Atlantic. In total 241 Mediterranean water eddies (meddies) and 236 parts of float trajectories within meddies are selected for detailed analysis. The results suggest that the meddy generation rate at the southern and southwestern Iberian Peninsula (Portimao Canyon, cap St. Vincent, Estremadura Promontory, Gorringe Bank) is 3 times that at the northwestern Iberian Peninsula (Porto-Aveiro Canyons, Cape Finisterre and Galicia Bank). Meddies generated south of Estremadura Promontory (the southern meddies), as compared to those generated north of it (the northern meddies), have smaller radii, smaller vertical extension, higher aspect ratio, higher Rossby number and higher stability (stronger potential vorticity anomaly). These latter properties result from the southern meddies higher relative vorticity and stronger buoyancy frequency anomaly. Away from the generation regions, meddy drift concentrates along four main paths: three quasi-zonal paths (Northern, Central, Southern) and a path following the African coast (Coastal). The quasi-zonal paths are aligned to the isolines of the ambient potential vorticity field. Several cross-path exchanges, identified in this work, are aligned to topographic rises. Northward translation of the northern meddies within the North Atlantic Current to the subpolar gyre is detected. Within the first 600 km from the coast, meddy merger is proved to be a common event. This explains the observed difference in radii between the newly generated meddies and those away from the Iberian margin. The decay of the southern meddies proceeds mainly via the loss of their skirts and does not affect meddy cores until the latest stages. The decay of the northern meddies goes in parallel with the decay of their cores. In average meddy decay is achieved within 1-2 years, although may take over 3 years. Collisions with the Mid-Atlantic Ridge and seamounts sensibly decrease meddy lifetimes. Meddy decay also speeds up when meddies meet the Azores Current or the North Atlantic Current. A rapid drop in the number of meddies south of the Azores Current proves that it represents a dynamic barrier for weak meddies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012RScI...83c3506M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012RScI...83c3506M"><span>Multi-chord fiber-coupled interferometer with a long coherence length laser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Hsu, Scott C.</p> <p>2012-03-01</p> <p>This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 1015-1018 cm-2. Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce μs-, cm-, and Mbar-scale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths. Thus, only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of the order of 5 × 1015 cm-2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110013042','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110013042"><span>Stochastic Evolutionary Algorithms for Planning Robot Paths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard</p> <p>2006-01-01</p> <p>A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhyS...91h3009R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhyS...91h3009R"><span>Spin-bowling in cricket re-visited: model trajectories for various spin-vector angles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, Garry; Robinson, Ian</p> <p>2016-08-01</p> <p>In this paper we investigate, via the calculation of model trajectories appropriate to slow bowling in cricket, the effects on the flight path of the ball before pitching due to changes in the angle of the spin-vector. This was accomplished by allowing the spin-vector to vary in three ways. Firstly, from off-spin, where the spin-vector points horizontally and directly down the pitch, to top-spin where it points horizontally towards the off-side of the pitch. Secondly, from off-spin to side-spin where, for side-spin, the spin-vector points vertically upwards. Thirdly, where the spin-vector points horizontally and at 45° to the pitch (in the general direction of ‘point’, as viewed by the bowler), and is varied towards the vertical, while maintaining the 45° angle in the horizontal plane. It is found that, as is well known, top-spin causes the ball to dip in flight, side-spin causes the ball to move side-ways in flight and, perhaps most importantly, off-spin can cause the ball to drift to the off-side of the pitch late in its flight as it begins to fall. At a more subtle level it is found that, if the total spin is kept constant and a small amount of top-spin is added to the ball at the expense of some off-spin, there is little change in the side-ways drift. However, a considerable reduction in the length at which the ball pitches occurs, ˜25 cm, an amount that batsmen can ignore at their peril. On the other hand, a small amount of side-spin introduced to a top-spin delivery does not alter the point of pitching significantly, but produces a considerable amount of side-ways drift, ˜10 cm or more. For pure side-spin the side-ways drift is up to ˜30 cm. When a side-spin component is added to the spin of a ball bowled with a mixture of off-spin and top-spin in equal proportions, significant movement occurs in both the side-ways direction and in the point of pitching, of the order of a few tens of centimetres.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUSMGC12A..05G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUSMGC12A..05G"><span>Is there a Marine Biotic Imprint of Periodic Climate Oscillations During the Holocene? The Message of Calcareous Phytoplankton</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giraudeau, J.</p> <p>2004-05-01</p> <p>Rapidly deposited sediments and strong environmental gradients make the oceanic realms in the vicinities of Iceland and Norway, very sensitive areas to Holocene hydrological and climate changes. Of additional interest is that recent anomalies in oceanic circulation may manifest themselves by an advection of Arctic waters and drifting ice along eastern Greenland and western Iceland, through the Denmark strait, to as far south as the latitude of Britain. This specific pathway for hydrographic anomalies is thought to characterize both present (Great Salinity Anomaly of the last 1960's; Dickson et al., 1988), historical (e.g. Little Ice Age; Lamb, 1979), and ancient Holocene hydrographic anomalies (Bond et al., 1997). Their interplay with the main core of Atlantic drift water along western Europe is still a matter of debate. The manifestations and pace of these hydrographic instabilities are investigated using high resolution sediment cores collected off both northern (MD99-2269) and southern (MD95-2015) Iceland, below the present path of the Arctic and Subarctic fronts, respectively, as well as off Norway (MD95-2011) under the influence of the Norwegian Current. Coccolith species diversity and concentrations are used as proxies of surface water circulation changes. Millenial-scale oscillations linked with periodic advection of cool ice-bearing polar waters are particularly well depicted by the inferred productivity changes of the dominant and opportunistic species Emiliania huxleyi, as well as of specific North Atlantic Drift index species. These rapid, almost periodic changes call for a common origin and forcing mechanism. The frequent lack of synchronism of these oscillations in the studied sedimentary archives however suggests a complex pattern of transmission of these anomalies to remote areas of the boreal North Atlantic. The manifestation of the 8.2 cal. ka event around Iceland and off Scandinavia will be given a special attention, and will be compared with the impact of the other Holocene climate oscillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988SPIE..891..179W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988SPIE..891..179W"><span>Propagator Theory Of Polarization And Coherence For Fiber Optics With Application To The Fiber Gyroscope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wanser, Keith H.</p> <p>1988-06-01</p> <p>In order to understand the various phenomenon in fiber gyroscopes, we have developed a unified theory of polarization and vector coherence theory for fiber optics, using propagator techniques, which is valid for arbitrarily large relative polarization phase delays, arbitrary source polarization properties, in combination with birefringent phase modulation. The propagator representation makes clear the multi-path nature of the polarization effects, similar to the multiple scattering of waves, and an example illustrating this point is given. A "master" equation has been obtained for fiber gyroscopes which i s sufficiently general to permit modeling of the many parasitic effects and their interactions, as well as allow realistic assessment of methods for their reduction. As a result of the development of the propagator approach, several interesting results have been found. One important issue is the performance and characterization of the polarizer used in the fiber gyro. A theorem has been shown that "not all polarizers are created equal", even though they have equal extinction ratios. We have found that the fiber gyroscope probes properties of polarizers that cannot be probed without an interferometer that is equivalent to a ring interferometer. It has been found that there is a considerable difference in performance between two polarizers having the same extinction ratio, but one short, the other long, depending on the birefringence and mode coupling. This leads to an extended classification of polarizer properties beyond an ordinary Jones matrix. A new bound on polarizer performance using the propagator approach is given. Another important issue with fiber optic gyroscopes is drift as a function of temperature. Those familiar with testing of fiber gyroscopes are well aware of the often bizarre (highly non monotonic) drift behaviour as a function of temperature. It is shown how temperature drift can be related to the location of various types of birefringence in the gyro coil using a realistic coil model. The propagator for this coil model is also obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JGRA..108.1331G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JGRA..108.1331G"><span>Pressure balance inconsistency exhibited in a statistical model of magnetospheric plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garner, T. W.; Wolf, R. A.; Spiro, R. W.; Thomsen, M. F.; Korth, H.</p> <p>2003-08-01</p> <p>While quantitative theories of plasma flow from the magnetotail to the inner magnetosphere typically assume adiabatic convection, it has long been understood that these convection models tend to overestimate the plasma pressure in the inner magnetosphere. This phenomenon is called the pressure crisis or the pressure balance inconsistency. In order to analyze it in a new and more detailed manner we utilize an empirical model of the proton and electron distribution functions in the near-Earth plasma sheet (-50 RE < X < -10 RE), which uses the [1989] magnetic field model and a plasma sheet representation based upon several previously published statistical studies. We compare our results to a statistically derived particle distribution function at geosynchronous orbit. In this analysis the particle distribution function is characterized by the isotropic energy invariant λ = EV2/3, where E is the particle's kinetic energy and V is the magnetic flux tube volume. The energy invariant is conserved in guiding center drift under the assumption of strong, elastic pitch angle scattering. If, in addition, loss is negligible, the phase space density f(λ) is also conserved along the same path. The statistical model indicates that f(λ, ?) is approximately independent of X for X ≤ -35 RE but decreases with increasing X for X ≥ -35 RE. The tailward gradient of f(λ, ?) might be attributed to gradient/curvature drift for large isotropic energy invariants but not for small invariants. The tailward gradient of the distribution function indicates a violation of the adiabatic drift condition in the plasma sheet. It also confirms the existence of a "number crisis" in addition to the pressure crisis. In addition, plasma sheet pressure gradients, when crossed with the gradient of flux tube volume computed from the [1989] magnetic field model, indicate Region 1 currents on the dawn and dusk sides of the outer plasma sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA13A2111Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA13A2111Z"><span>A study of simultaneous scintillation observations by Chinese FY-2 geostationary meteorological satellite and VHF coherent radar measurements over South China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zuo, X.; Yu, T.; Xia, C.</p> <p>2016-12-01</p> <p>It's a good place for South China to monitor ionospheric scintillation, which are situated near the northern crest of the equatorial ionosphere anomaly. The temporal variation characteristics of Amplitude scintillations of Chinese FY-2 geostationary meteorological satellite (86.5°E) observed at Guangzhou (23.2°N, 113.3°E, dip 18°N) during the period from July 2011 to June 2013 are present. The scintillation occurrence and intensity increase dramatically at September and October in FY-2 satellite link. The scintillation observations of FY-2 geostationary satellite observed at Guangzhou and simultaneous VHF (47.5MHz) coherent radar measurements from Sanya (18.3°N, 109.6°E, dip 13°N) during equinoctial months of 2011 and 2012 are used for a coordinated study for the relationship between the L-band scintillation patches on the propagation path of FY-2 satellite and the extended 3-m irregularity structures known as plumes over South China. The results showed good coincidence of the plumes with scintillation patches in most events. In case study, the zonal drift velocity of the irregularities was estimated by comparison of the onset times of the scintillation and plume and the irregularities were found to drift eastwards at a speed ranging about tens of meters to one hundred meters per second. From the derived value of drift speed and duration of scintillation events, the irregularity patches were found to have east-west extent about a few hundred kilometers. On the other hand, if the plumes on the radar maps occurred at lower altitudes, the associated irregularities would not be able to reach the IPP of the satellite and generate L-band scintillations there. Weak scintillations were observed on FY-2 link without any plume structure on radar backscatter maps occasionally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040171161&hterms=laser+co2&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dlaser%2Bco2','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040171161&hterms=laser+co2&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dlaser%2Bco2"><span>Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space: Progress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abshire, J. B.; Krainak, M.; Riris, H. J.; Sun, X.; Riris, H.; Andrews, A. E.; Collatz, J.</p> <p>2004-01-01</p> <p>We describe progress toward developing a laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate measurements of the tropospheric CO2 mixing ratio from space are challenging due to the many potential error sources. These include possible interference from other trace gas species, the effects of temperature, clouds, aerosols & turbulence in the path, changes in surface reflectivity, and variability in dry air density caused by changes in atmospheric pressure, water vapor and topographic height. Some potential instrumental errors include frequency drifts in the transmitter, small transmission and sensitivity drifts in the instrument. High signal-to-noise ratios and measurement stability are needed for mixing ratio estimates at the few ppm level. We have been developing a laser sounder approach as a candidate for a future space mission. It utilizes multiple different laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter in the same measurement path. It directs the narrow co-aligned laser beams from the instrument's fiber lasers toward nadir, and measures the energy of the strong laser echoes reflected from the Earth's land and water surfaces. During the measurement its narrow linewidth lasers are rapidly tuned on- and off- selected CO2 line near 1572 nm and an O2 absorption line near 770 nm. The receiver measures the energies of the laser echoes from the surface and any clouds and aerosols in the path with photon counting detectors. Ratioing the on- to off-line echo pulse energies for each gas permits the column extinction and column densities of CO2 and O2 to be estimated simultaneously via the differential absorption lidar technique. For the on-line wavelengths, the side of the selected absorption lines are used, which due to pressure broadening, weights the measurements to the lower troposphere, where CO2 variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column abundance are made using an identical approach using an O2 line. The laser backscatter profiles from clouds and aerosols are measured with other lidar channels, which permits identifying measurements influenced by clouds and/or aerosol scattering in the path. For space use, our lidar would continuously measure at nadir in near polar circular orbit. Using dawn and dusk measurements made over the same region will make it possible to sample the diurnal variations in CO2 mixing ratios. A 1-m diameter telescope is used for the receiver for all wavelengths. When averaging over 50 seconds, our calculations show a SNR of approximately 1500 is achievable for each gas at each on- and off-line measurement. Measurements from such a mission can be used to generate monthly global maps of the lower tropospheric CO2 column abundance. Our calculations show global coverage with an accuracy of a few ppm with a spatial resolution of approximately 50,000 sq. km are achievable each month. We have demonstrated some key elements of the laser, detector and receiver approaches in the laboratory and with measurements over a 206 m horizontal path. These include stable measurements of CO2 line shapes in an absorption cell using a fiber laser amplifier seeded by a tunable diode laser, measurement of small amplitude changes at low optical signal levels with the PMT receiver, and comparison of the horizontal path measurements of CO2 against those from an in-situ instrument.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4263300','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4263300"><span>ION SWITCH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Cook, B.</p> <p>1959-02-10</p> <p>An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA514008','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA514008"><span>Critical Directed Energy Test and Evaluation Infrastructure Shortfalls: Results of the Directed Energy Test and Evaluation Capability Tri-Service Study Update</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-06-01</p> <p>Sensor H11 HPM Chamber Test Capability—Explosive Equivalent Substitute H12 HEL Irradiance & Temperature H13 HEL Near/In-Beam Path Quality H14 HPM Sensor...such things as artillery shells or UAVs and may impact the earth. Possible targets include missiles in flight or a relatively close command, control...capability is a synergy of four high priority shortfalls identified by the T-SS Update. H13 —HEL near/in-beam path quality H13 is the need for a</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890000190&hterms=hatch&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhatch','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890000190&hterms=hatch&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhatch"><span>Hatch Cover Slides Through Hatch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alton, Charles; Okane, James H.</p> <p>1989-01-01</p> <p>Hatch cover for pressurized vessel provides tight seal but opened quickly from either side. In opening or closing, cover sweeps out relatively little volume within vessel, so it does not hinder movement of people or objects from vessel to outside or placement of people or objects near hatch. Cover uses internal pressure to create seal when closed. Design of cover eliminates leakage paths, and cover immune to hazards of sudden decompression or jamming when bolts and latches fail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865931','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865931"><span>Valve and dash-pot assembly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Chang, Shih-Chih</p> <p>1986-01-01</p> <p>A dash-pot valve comprising a cylinder submerged in the fluid of a housing and having a piston attached to a plunger projecting into the path of closing movement of a pivotal valve member. A vortex chamber in said cylinder is provided with tangentially directed inlets to generate vortex flow upon retraction of said plunger and effect increasing resistance against said piston to progressively retard the closing rate of said valve member toward its seat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5582253','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5582253"><span>Improved valve and dash-pot assembly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Chang, S.C.</p> <p>1985-04-23</p> <p>A dash-pot valve comprises a cylinder submerged in the fluid of a housing and have a piston attached to a plunger projecting into the path of closing movement of a pivotal valve member. A vortex chamber in said cylinder is provided with targentially directed inlets to generate vortex flow upon retraction of said plunger and effect increasing resistance against said piston to progressively retard the closing rate of said valve member toward its seat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27862578','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27862578"><span>Rapid postglacial diversification and long-term stasis within the songbird genus Junco: phylogeographic and phylogenomic evidence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Friis, Guillermo; Aleixandre, Pau; Rodríguez-Estrella, Ricardo; Navarro-Sigüenza, Adolfo G; Milá, Borja</p> <p>2016-12-01</p> <p>Natural systems composed of closely related taxa that vary in the degree of phenotypic divergence and geographic isolation provide an opportunity to investigate the rate of phenotypic diversification and the relative roles of selection and drift in driving lineage formation. The genus Junco (Aves: Emberizidae) of North America includes parapatric northern forms that are markedly divergent in plumage pattern and colour, in contrast to geographically isolated southern populations in remote areas that show moderate phenotypic divergence. Here, we quantify patterns of phenotypic divergence in morphology and plumage colour and use mitochondrial DNA genes, a nuclear intron, and genomewide SNPs to reconstruct the demographic and evolutionary history of the genus to infer relative rates of evolutionary divergence among lineages. We found that geographically isolated populations have evolved independently for hundreds of thousands of years despite little differentiation in phenotype, in sharp contrast to phenotypically diverse northern forms, which have diversified within the last few thousand years as a result of the rapid postglacial recolonization of North America. SNP data resolved young northern lineages into reciprocally monophyletic lineages, indicating low rates of gene flow even among closely related parapatric forms, and suggesting a role for strong genetic drift or multifarious selection acting on multiple loci in driving lineage divergence. Juncos represent a compelling example of speciation in action, where the combined effects of historical and selective factors have produced one of the fastest cases of speciation known in vertebrates. © 2016 John Wiley & Sons Ltd.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.2267G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.2267G"><span>Application of small-size antennas for estimation of angles of arrival of HF signals scattered by ionospheric irregularities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Qiang; Galushko, Volodymyr G.; Zalizovski, Andriy V.; Kashcheyev, Sergiy B.; Zheng, Yu</p> <p>2018-05-01</p> <p>A modification of the Doppler Interferometry Technique is suggested to enable estimating angles of arrival of comparatively broadband HF signals scattered by random irregularities of the ionospheric plasma with the use of small-size weakly directional antennas. The technique is based on the measurements of cross-spectra phases of the probe radiation recorded at least in three spatially separated points. The developed algorithm has been used to investigate the angular and frequency-time characteristics of HF signals propagating at frequencies above the maximum usable one (MUF) for the direct radio path Moscow-Kharkiv. The received signal spectra show presence of three families of spatial components attributed, respectively, to scattering by plasma irregularities near the middle point of the radio path, ground backscatter signals and scattering of the sounding signals by the intense plasma turbulence associated with auroral activations. It has been shown that the regions responsible for the formation of the third family components are located well inside the auroral oval. The drift velocity and direction of the auroral ionosphere plasma have been determined. The obtained estimates are consistent with the classical conception of the ionospheric plasma convection at high latitudes and do not contradict the results of investigations of the auroral ionosphere dynamics using the SuperDARN network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26420473','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26420473"><span>Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato</p> <p>2015-12-01</p> <p>During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10183094','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10183094"><span>Spool pieces at the SSCL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Clayton, T.; Cai, Y.; Smellie, R.</p> <p>1993-05-01</p> <p>The basic features of the Superconducting Super Collider lattice are the two beamlines formed by superconducting dipoles (7736) and quadrupoles (1564). The dipoles constraint two 20 TeV proton beams into counterrotating closed orbits of 86.2 km. The quadrupoles (FODO) require cryogenic cooling the LHe temperatures. This requirement isolates the main magnets from the outside world. The interface required, the spool, is a crucial component of superconducting lattice design and machine operation. There are over 1588 spools in the Super Collider. We present hear SSCL spool designs which consist of (1) housing for superconducting closed orbit and multipole correction magnets, (2)more » cryogenic function, magnet quench protection, system power, and instrumentation interfaces, and (3) cold to warm transitions for ware magnet and warm instrumentation drift spaces.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JNEng..12a6015S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JNEng..12a6015S"><span>Brain-computer interface control along instructed paths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sadtler, P. T.; Ryu, S. I.; Tyler-Kabara, E. C.; Yu, B. M.; Batista, A. P.</p> <p>2015-02-01</p> <p>Objective. Brain-computer interfaces (BCIs) are being developed to assist paralyzed people and amputees by translating neural activity into movements of a computer cursor or prosthetic limb. Here we introduce a novel BCI task paradigm, intended to help accelerate improvements to BCI systems. Through this task, we can push the performance limits of BCI systems, we can quantify more accurately how well a BCI system captures the user’s intent, and we can increase the richness of the BCI movement repertoire. Approach. We have implemented an instructed path task, wherein the user must drive a cursor along a visible path. The instructed path task provides a versatile framework to increase the difficulty of the task and thereby push the limits of performance. Relative to traditional point-to-point tasks, the instructed path task allows more thorough analysis of decoding performance and greater richness of movement kinematics. Main results. We demonstrate that monkeys are able to perform the instructed path task in a closed-loop BCI setting. We further investigate how the performance under BCI control compares to native arm control, whether users can decrease their movement variability in the face of a more demanding task, and how the kinematic richness is enhanced in this task. Significance. The use of the instructed path task has the potential to accelerate the development of BCI systems and their clinical translation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss015e10118.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss015e10118.html"><span>Earth Observations taken by the Expedition 15 Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2007-05-30</p> <p>ISS015-E-10118 (30 May 2007) --- A close-up view of an area of an iceberg in the South Atlantic Ocean is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. This iceberg illustrates the remains of a giant iceberg -- designated A22A that broke off Antarctica in 2002. This is one of the largest icebergs to drift as far north as 50 degrees south latitude, bringing it beneath the daylight path of the station. Crewmembers aboard the orbital complex were able to locate the ice mass and photograph it, despite great cloud masses of winter storms in the Southern Ocean. Dimensions of A22A in early June were 49.9 x 23.4 kilometers, giving it an area of 622 square kilometers, or seven times the area of Manhattan Island. Once the station crew had located the iceberg, they managed to image it successfully with the "long" 800-mm lens. Handling the longer lens requires practice: with the speed of movement of the spacecraft and the length of the lens, it is necessary to "track" the target, which is, swinging the camera slowly to keep the target in the middle of the view finder. If you track too slowly or too fast, the image looks smeared. As in this image, the long lens only shows a small part of the iceberg. A series of parallel lines, termed "hummocks", can be seen. These hummocks are probably dunes of snow that have become solidified, and date back to the time when the iceberg was connected to Antarctica. A developing fracture in the ice is also visible at upper left.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JEnMa..70..255S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JEnMa..70..255S"><span>Mathematical embryology: the fluid mechanics of nodal cilia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, D. J.; Smith, A. A.; Blake, J. R.</p> <p>2011-07-01</p> <p>Left-right symmetry breaking is critical to vertebrate embryonic development; in many species this process begins with cilia-driven flow in a structure termed the `node'. Primary `whirling' cilia, tilted towards the posterior, transport morphogen-containing vesicles towards the left, initiating left-right asymmetric development. We review recent theoretical models based on the point-force stokeslet and point-torque rotlet singularities, explaining how rotation and surface-tilt produce directional flow. Analysis of image singularity systems enforcing the no-slip condition shows how tilted rotation produces a far-field `stresslet' directional flow, and how time-dependent point-force and time-independent point-torque models are in this respect equivalent. Associated slender body theory analysis is reviewed; this approach enables efficient and accurate simulation of three-dimensional time-dependent flow, time-dependence being essential in predicting features of the flow such as chaotic advection, which have subsequently been determined experimentally. A new model for the nodal flow utilising the regularized stokeslet method is developed, to model the effect of the overlying Reichert's membrane. Velocity fields and particle paths within the enclosed domain are computed and compared with the flow profiles predicted by previous `membrane-less' models. Computations confirm that the presence of the membrane produces flow-reversal in the upper region, but no continuous region of reverse flow close to the epithelium. The stresslet far-field is no longer evident in the membrane model, due to the depth of the cavity being of similar magnitude to the cilium length. Simulations predict that vesicles released within one cilium length of the epithelium are generally transported to the left via a `loopy drift' motion, sometimes involving highly unpredictable detours around leftward cilia [truncated</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NucFu..57l6049Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NucFu..57l6049Q"><span>Performance analysis of Rogowski coils and the measurement of the total toroidal current in the ITER machine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Quercia, A.; Albanese, R.; Fresa, R.; Minucci, S.; Arshad, S.; Vayakis, G.</p> <p>2017-12-01</p> <p>The paper carries out a comprehensive study of the performances of Rogowski coils. It describes methodologies that were developed in order to assess the capabilities of the Continuous External Rogowski (CER), which measures the total toroidal current in the ITER machine. Even though the paper mainly considers the CER, the contents are general and relevant to any Rogowski sensor. The CER consists of two concentric helical coils which are wound along a complex closed path. Modelling and computational activities were performed to quantify the measurement errors, taking detailed account of the ITER environment. The geometrical complexity of the sensor is accurately accounted for and the standard model which provides the classical expression to compute the flux linkage of Rogowski sensors is quantitatively validated. Then, in order to take into account the non-ideality of the winding, a generalized expression, formally analogue to the classical one, is presented. Models to determine the worst case and the statistical measurement accuracies are hence provided. The following sources of error are considered: effect of the joints, disturbances due to external sources of field (the currents flowing in the poloidal field coils and the ferromagnetic inserts of ITER), deviations from ideal geometry, toroidal field variations, calibration, noise and integration drift. The proposed methods are applied to the measurement error of the CER, in particular in its high and low operating ranges, as prescribed by the ITER system design description documents, and during transients, which highlight the large time constant related to the shielding of the vacuum vessel. The analyses presented in the paper show that the design of the CER diagnostic is capable of achieving the requisite performance as needed for the operation of the ITER machine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyA..494..574E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyA..494..574E"><span>Effective use of congestion in complex networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Echagüe, Juan; Cholvi, Vicent; Kowalski, Dariusz R.</p> <p>2018-03-01</p> <p>In this paper, we introduce a congestion-aware routing protocol that selects the paths according to the congestion of nodes in the network. The aim is twofold: on one hand, and in order to prevent the networks from collapsing, it provides a good tolerance to nodes' overloads; on the other hand, and in order to guarantee efficient communication, it also incentivize the routes to follow short paths. We analyze the performance of our proposed routing strategy by means of a series of experiments carried out by using simulations. We show that it provides a tolerance to collapse close to the optimal value. Furthermore, the average length of the paths behaves optimally up to the certain value of packet generation rate ρ and it grows in a linear fashion with the increase of ρ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050160217&hterms=grain+dust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgrain%2Bdust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050160217&hterms=grain+dust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgrain%2Bdust"><span>Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ragot, B. R.; Kahler, S. W.</p> <p>2003-01-01</p> <p>The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital periods. Finally, we consider possible observable consequences of individual CME/dust interactions. We show that the dust grains very likely have no observable effect on the dynamics of CMEs. The effect of an individual CME on the dust grains, however, might serve as a forecasting tool for the directions and amplitudes of the magnetic fields within the CME.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4634076','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4634076"><span>Something Old, Something New: Conserved Enzymes and the Evolution of Novelty in Plant Specialized Metabolism1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Moghe, Gaurav D.; Last, Robert L.</p> <p>2015-01-01</p> <p>Plants produce hundreds of thousands of small molecules known as specialized metabolites, many of which are of economic and ecological importance. This remarkable variety is a consequence of the diversity and rapid evolution of specialized metabolic pathways. These novel biosynthetic pathways originate via gene duplication or by functional divergence of existing genes, and they subsequently evolve through selection and/or drift. Studies over the past two decades revealed that diverse specialized metabolic pathways have resulted from the incorporation of primary metabolic enzymes. We discuss examples of enzyme recruitment from primary metabolism and the variety of paths taken by duplicated primary metabolic enzymes toward integration into specialized metabolism. These examples provide insight into processes by which plant specialized metabolic pathways evolve and suggest approaches to discover enzymes of previously uncharacterized metabolic networks. PMID:26276843</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JaJAP..56l0305K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JaJAP..56l0305K"><span>Fabrication of 4H-SiC lateral double implanted MOSFET on an on-axis semi-insulating substrate without using epi-layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Hyoung Woo; Seok, Ogyun; Moon, Jeong Hyun; Bahng, Wook; Jo, Jungyol</p> <p>2017-12-01</p> <p>4H-SiC lateral double implanted metal-oxide-semiconductor field effect transistors (LDIMOSFET) were fabricated on on-axis semi-insulating SiC substrates without using an epi-layer. The LDIMOSFET adopted a current path layer (CPL), which was formed by ion-implantation. The CPL works as a drift region between gate and drain. By using on-axis semi-insulating substrate and optimized CPL parameters, breakdown voltage (BV) of 1093 V and specific on-resistance (R on,sp) of 89.8 mΩ·cm2 were obtained in devices with 20 µm long CPL. Experimentally extracted field-effect channel mobility was 21.7 cm2·V-1·s-1 and the figure-of-merit (BV2/R on,sp) was 13.3 MW/cm2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29059698','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29059698"><span>Communicating Geographical Risks in Crisis Management: The Need for Research.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>French, Simon; Argyris, Nikolaos; Haywood, Stephanie M; Hort, Matthew C; Smith, Jim Q</p> <p>2017-10-23</p> <p>In any crisis, there is a great deal of uncertainty, often geographical uncertainty or, more precisely, spatiotemporal uncertainty. Examples include the spread of contamination from an industrial accident, drifting volcanic ash, and the path of a hurricane. Estimating spatiotemporal probabilities is usually a difficult task, but that is not our primary concern. Rather, we ask how analysts can communicate spatiotemporal uncertainty to those handling the crisis. We comment on the somewhat limited literature on the representation of spatial uncertainty on maps. We note that many cognitive issues arise and that the potential for confusion is high. We note that in the early stages of handling a crisis, the uncertainties involved may be deep, i.e., difficult or impossible to quantify in the time available. In such circumstance, we suggest the idea of presenting multiple scenarios. © 2017 Society for Risk Analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29882901','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29882901"><span>Pulse Based Time-of-Flight Range Sensing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sarbolandi, Hamed; Plack, Markus; Kolb, Andreas</p> <p>2018-05-23</p> <p>Pulse-based Time-of-Flight (PB-ToF) cameras are an attractive alternative range imaging approach, compared to the widely commercialized Amplitude Modulated Continuous-Wave Time-of-Flight (AMCW-ToF) approach. This paper presents an in-depth evaluation of a PB-ToF camera prototype based on the Hamamatsu area sensor S11963-01CR. We evaluate different ToF-related effects, i.e., temperature drift, systematic error, depth inhomogeneity, multi-path effects, and motion artefacts. Furthermore, we evaluate the systematic error of the system in more detail, and introduce novel concepts to improve the quality of range measurements by modifying the mode of operation of the PB-ToF camera. Finally, we describe the means of measuring the gate response of the PB-ToF sensor and using this information for PB-ToF sensor simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10196580','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10196580"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Argo, P.E.; DeLapp, D.; Sutherland, C.D.</p> <p></p> <p>TRACKER is an extension of a three-dimensional Hamiltonian raytrace code developed some thirty years ago by R. Michael Jones. Subsequent modifications to this code, which is commonly called the {open_quotes}Jones Code,{close_quotes} were documented by Jones and Stephensen (1975). TRACKER incorporates an interactive user`s interface, modern differential equation integrators, graphical outputs, homing algorithms, and the Ionospheric Conductivity and Electron Density (ICED) ionosphere. TRACKER predicts the three-dimensional paths of radio waves through model ionospheres by numerically integrating Hamilton`s equations, which are a differential expression of Fermat`s principle of least time. By using continuous models, the Hamiltonian method avoids false caustics and discontinuousmore » raypath properties often encountered in other raytracing methods. In addition to computing the raypath, TRACKER also calculates the group path (or pulse travel time), the phase path, the geometrical (or {open_quotes}real{close_quotes}) pathlength, and the Doppler shift (if the time variation of the ionosphere is explicitly included). Computational speed can be traded for accuracy by specifying the maximum allowable integration error per step in the integration. Only geometrical optics are included in the main raytrace code; no partial reflections or diffraction effects are taken into account. In addition, TRACKER does not lend itself to statistical descriptions of propagation -- it requires a deterministic model of the ionosphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMagR.272..141M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMagR.272..141M"><span>Dissolution Dynamic Nuclear Polarization capability study with fluid path</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malinowski, Ronja M.; Lipsø, Kasper W.; Lerche, Mathilde H.; Ardenkjær-Larsen, Jan H.</p> <p>2016-11-01</p> <p>Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling the fluid path that allows it to be reused. The filling method has been investigated in terms of reproducibility at two extrema, high dose for patient use and low dose for rodent studies, using [1-13C]pyruvate as example. We demonstrate that the filling method allows high reproducibility of six quality control parameters with standard deviations 3-10 times smaller than the acceptance criteria intervals in clinical studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/1864103','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/1864103"><span>Artificial intelligence-assisted occupational lung disease diagnosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Harber, P; McCoy, J M; Howard, K; Greer, D; Luo, J</p> <p>1991-08-01</p> <p>An artificial intelligence expert-based system for facilitating the clinical recognition of occupational and environmental factors in lung disease has been developed in a pilot fashion. It utilizes a knowledge representation scheme to capture relevant clinical knowledge into structures about specific objects (jobs, diseases, etc) and pairwise relations between objects. Quantifiers describe both the closeness of association and risk, as well as the degree of belief in the validity of a fact. An independent inference engine utilizes the knowledge, combining likelihoods and uncertainties to achieve estimates of likelihood factors for specific paths from work to illness. The system creates a series of "paths," linking work activities to disease outcomes. One path links a single period of work to a single possible disease outcome. In a preliminary trial, the number of "paths" from job to possible disease averaged 18 per subject in a general population and averaged 25 per subject in an asthmatic population. Artificial intelligence methods hold promise in the future to facilitate diagnosis in pulmonary and occupational medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26196335','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26196335"><span>The natural selection of altruistic traits.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boehm, C</p> <p>1999-09-01</p> <p>Proponents of the standard evolutionary biology paradigm explain human "altruism" in terms of either nepotism or strict reciprocity. On that basis our underlying nature is reduced to a function of inclusive fitness: human nature has to be totally selfish or nepotistic. Proposed here are three possible paths to giving costly aid to nonrelatives, paths that are controversial because they involve assumed pleiotropic effects or group selection. One path is pleiotropic subsidies that help to extend nepotistic helping behavior from close family to nonrelatives. Another is "warfare"-if and only if warfare recurred in the Paleolithic. The third and most plausible hypothesis is based on the morally based egalitarian syndrome of prehistoric hunter-gatherers, which reduced phenotypic variation at the within-group level, increased it at the between-group level, and drastically curtailed the advantages of free riders. In an analysis consistent with the fundamental tenets of evolutionary biology, these three paths are evaluated as explanations for the evolutionary development of a rather complicated human social nature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1980/1101/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1980/1101/report.pdf"><span>Behavioral and catastrophic drift of invertebrates in two streams in northeastern Wyoming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wangsness, David J.; Peterson, David A.</p> <p>1980-01-01</p> <p>Invertebrate drift samples were collected in August 1977 from two streams in the Powder River structural basin in northeastern Wyoming. The streams are Clear Creek, a mountain stream, and the Little Powder River, a plains stream. Two major patterns of drift were recognized. Clear Creek was sampled during a period of normal seasonal conditions. High drift rates occurred during the night indicating a behavioral drift pattern that is related to the benthic invertebrate density and carrying capacity of the stream substrates. The mayfly genes Baetis, a common drift organism, dominated the peak periods of drift in Clear Creek. The Little Powder River has a high discharge during the study period. Midge larvae of the families Chironomidae and Ceratopogonidae, ususally not common in drift, dominated the drift community. The dominance of midge larvae, the presence of several other organisms not common in drift, and the high discharge during the study period caused a catastrophic drift pattern. (USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/886576','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/886576"><span>POST-PROCESSING ANALYSIS FOR THC SEEPAGE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Y. SUN</p> <p></p> <p>This report describes the selection of water compositions for the total system performance assessment (TSPA) model of results from the thermal-hydrological-chemical (THC) seepage model documented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). The selection has been conducted in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2004 [DIRS 171334]). This technical work plan (TWP) was prepared in accordance with AP-2.27Q, ''Planning for Science Activities''. Section 1.2.3 of the TWP describes planning information pertaining to the technical scope, content, and managementmore » of this report. The post-processing analysis for THC seepage (THC-PPA) documented in this report provides a methodology for evaluating the near-field compositions of water and gas around a typical waste emplacement drift as these relate to the chemistry of seepage, if any, into the drift. The THC-PPA inherits the conceptual basis of the THC seepage model, but is an independently developed process. The relationship between the post-processing analysis and other closely related models, together with their main functions in providing seepage chemistry information for the Total System Performance Assessment for the License Application (TSPA-LA), are illustrated in Figure 1-1. The THC-PPA provides a data selection concept and direct input to the physical and chemical environment (P&CE) report that supports the TSPA model. The purpose of the THC-PPA is further discussed in Section 1.2. The data selection methodology of the post-processing analysis (Section 6.2.1) was initially applied to results of the THC seepage model as presented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). Other outputs from the THC seepage model (DTN: LB0302DSCPTHCS.002 [DIRS 161976]) used in the P&CE (BSC 2004 [DIRS 169860], Section 6.6) were also subjected to the same initial selection. The present report serves as a full documentation of this selection and also provides additional analyses in support of the choice of waters selected for further evaluation in ''Engineered Barrier System: Physical and Chemical Environment'' (BSC 2004 [DIRS 169860], Section 6.6). The work scope for the studies presented in this report is described in the TWP (BSC 2004 [DIRS 171334]) and other documents cited above and can be used to estimate water and gas compositions near waste emplacement drifts. Results presented in this report were submitted to the Technical Data Management System (TDMS) under specific data tracking numbers (DTNs) as listed in Appendix A. The major change from previous selection of results from the THC seepage model is that the THC-PPA now considers data selection in space around the modeled waste emplacement drift, tracking the evolution of pore-water and gas-phase composition at the edge of the dryout zone around the drift. This post-processing analysis provides a scientific background for the selection of potential seepage water compositions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26896900','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26896900"><span>Inhibition drives configural superiority of illusory Gestalt: Combined behavioral and drift-diffusion model evidence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nie, Qi-Yang; Maurer, Mara; Müller, Hermann J; Conci, Markus</p> <p>2016-05-01</p> <p>Illusory Kanizsa figures demonstrate that a perceptually completed whole is more than the sum of its composite parts. In the current study, we explored part/whole relationships in object completion using the configural superiority effect (CSE) with illusory figures (Pomerantz & Portillo, 2011). In particular, we investigated to which extent the CSE is modulated by closure in target and distractor configurations. Our results demonstrated a typical CSE, with detection of a configural whole being more efficient than the detection of a corresponding part-level target. Moreover, the CSE was more pronounced when grouped objects were presented in distractors rather than in the target. A follow-up experiment systematically manipulated closure in whole target or, respectively, distractor configurations. The results revealed the effect of closure to be again stronger in distractor, rather than in target configurations, suggesting that closure primarily affects the inhibition of distractors, and to a lesser extent the selection of the target. In addition, a drift-diffusion model analysis of our data revealed that efficient distractor inhibition expedites the rate of evidence accumulation, with closure in distractors particularly speeding the drift toward the decision boundary. In sum, our findings demonstrate that the CSE in Kanizsa figures derives primarily from the inhibition of closed distractor objects, rather than being driven by a conspicuous target configuration. Altogether, these results support a fundamental role of inhibition in driving configural superiority effects in visual search. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24357370','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24357370"><span>Cryo-electron microscopy of membrane proteins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goldie, Kenneth N; Abeyrathne, Priyanka; Kebbel, Fabian; Chami, Mohamed; Ringler, Philippe; Stahlberg, Henning</p> <p>2014-01-01</p> <p>Electron crystallography is used to study membrane proteins in the form of planar, two-dimensional (2D) crystals, or other crystalline arrays such as tubular crystals. This method has been used to determine the atomic resolution structures of bacteriorhodopsin, tubulin, aquaporins, and several other membrane proteins. In addition, a large number of membrane protein structures were studied at a slightly lower resolution, whereby at least secondary structure motifs could be identified.In order to conserve the structural details of delicate crystalline arrays, cryo-electron microscopy (cryo-EM) allows imaging and/or electron diffraction of membrane proteins in their close-to-native state within a lipid bilayer membrane.To achieve ultimate high-resolution structural information of 2D crystals, meticulous sample preparation for electron crystallography is of outmost importance. Beam-induced specimen drift and lack of specimen flatness can severely affect the attainable resolution of images for tilted samples. Sample preparations that sandwich the 2D crystals between symmetrical carbon films reduce the beam-induced specimen drift, and the flatness of the preparations can be optimized by the choice of the grid material and the preparation protocol.Data collection in the cryo-electron microscope using either the imaging or the electron diffraction mode has to be performed applying low-dose procedures. Spot-scanning further reduces the effects of beam-induced drift. Data collection using automated acquisition schemes, along with improved and user-friendlier data processing software, is increasingly being used and is likely to bring the technique to a wider user base.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5176114','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5176114"><span>How does epistasis influence the response to selection?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Barton, N H</p> <p>2017-01-01</p> <p>Much of quantitative genetics is based on the ‘infinitesimal model', under which selection has a negligible effect on the genetic variance. This is typically justified by assuming a very large number of loci with additive effects. However, it applies even when genes interact, provided that the number of loci is large enough that selection on each of them is weak relative to random drift. In the long term, directional selection will change allele frequencies, but even then, the effects of epistasis on the ultimate change in trait mean due to selection may be modest. Stabilising selection can maintain many traits close to their optima, even when the underlying alleles are weakly selected. However, the number of traits that can be optimised is apparently limited to ~4Ne by the ‘drift load', and this is hard to reconcile with the apparent complexity of many organisms. Just as for the mutation load, this limit can be evaded by a particular form of negative epistasis. A more robust limit is set by the variance in reproductive success. This suggests that selection accumulates information most efficiently in the infinitesimal regime, when selection on individual alleles is weak, and comparable with random drift. A review of evidence on selection strength suggests that although most variance in fitness may be because of alleles with large Nes, substantial amounts of adaptation may be because of alleles in the infinitesimal regime, in which epistasis has modest effects. PMID:27901509</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27901509','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27901509"><span>How does epistasis influence the response to selection?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barton, N H</p> <p>2017-01-01</p> <p>Much of quantitative genetics is based on the 'infinitesimal model', under which selection has a negligible effect on the genetic variance. This is typically justified by assuming a very large number of loci with additive effects. However, it applies even when genes interact, provided that the number of loci is large enough that selection on each of them is weak relative to random drift. In the long term, directional selection will change allele frequencies, but even then, the effects of epistasis on the ultimate change in trait mean due to selection may be modest. Stabilising selection can maintain many traits close to their optima, even when the underlying alleles are weakly selected. However, the number of traits that can be optimised is apparently limited to ~4N e by the 'drift load', and this is hard to reconcile with the apparent complexity of many organisms. Just as for the mutation load, this limit can be evaded by a particular form of negative epistasis. A more robust limit is set by the variance in reproductive success. This suggests that selection accumulates information most efficiently in the infinitesimal regime, when selection on individual alleles is weak, and comparable with random drift. A review of evidence on selection strength suggests that although most variance in fitness may be because of alleles with large N e s, substantial amounts of adaptation may be because of alleles in the infinitesimal regime, in which epistasis has modest effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRA..113.8216S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRA..113.8216S"><span>On the relationship between kinetic and fluid formalisms for convection in the inner magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Yang; Sazykin, Stanislav; Wolf, Richard A.</p> <p>2008-08-01</p> <p>In the inner magnetosphere, the plasma flows are mostly slow compared to thermal or Alfvén speeds, but the convection is far away from the ideal magnetohydrodynamic regime since the gradient/curvature drifts become significant. Both kinetic (Wolf, 1983) and two-fluid (Peymirat and Fontaine, 1994; Heinemann, 1999) formalisms have been used to describe plasma dynamics, but it is not fully understood how they relate to each other. We explore the relations among kinetic, fluid, and recently developed "average" (Liu, 2006) models in an attempt to find the simplest yet realistic way to describe the convection. First, we prove analytically that the model of (Liu, 2006), when closed with the assumption of a Maxwellian distribution, is equivalent to the fluid model of (Heinemann, 1999). Second, we analyze the transport of both one-dimensional and two-dimensional Gaussian-shaped blob of hot plasma. For the kinetic case, it is known that the time evolution of such a blob is gradual spreading in time. For the fluid case, Heinemann and Wolf (2001a, 2001b) showed that in a one-dimensional idealized case, the blob separates into two drifting at different speeds. We present a fully nonlinear solution of this case, confirming this behavior but demonstrating what appears to be a shocklike steepening of the faster drifting secondary blob. A new, more realistic two-dimensional example using the dipole geometry with a uniform electric field confirms the one-dimensional solutions. Implications for the numerical simulations of magnetospheric dynamics are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29407816','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29407816"><span>Addressing bystander exposure to agricultural pesticides in life cycle impact assessment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ryberg, Morten Walbech; Rosenbaum, Ralph K; Mosqueron, Luc; Fantke, Peter</p> <p>2018-04-01</p> <p>Residents living near agricultural fields may be exposed to pesticides drifting from the fields after application to different field crops. To address this currently missing exposure pathway in life cycle assessment (LCA), we developed a modeling framework for quantifying exposure of bystanders to pesticide spray drift from agricultural fields. Our framework consists of three parts addressing: (1) loss of pesticides from an agricultural field via spray drift; (2) environmental fate of pesticide in air outside of the treated field; and (3) exposure of bystanders to pesticides via inhalation. A comparison with measured data in a case study on pesticides applied to potato fields shows that our model gives good predictions of pesticide air concentrations. We compared our bystander exposure estimates with pathways currently included in LCA, namely aggregated inhalation and ingestion exposure mediated via the environment for the general population, and general population exposure via ingestion of pesticide residues in consumed food crops. The results show that exposure of bystanders is limited relative to total population exposure from ingestion of pesticide residues in crops, but that the exposure magnitude of individual bystanders can be substantially larger than the exposure of populations not living in the proximity to agricultural fields. Our framework for assessing bystander exposure to pesticide applications closes a relevant gap in the exposure assessment included in LCA for agricultural pesticides. This inclusion aids decision-making based on LCA as previously restricted knowledge about exposure of bystanders can now be taken into account. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.8947A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.8947A"><span>Equinoctial asymmetry in the zonal distribution of scintillation as observed by GPS receivers in Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abadi, P.; Otsuka, Y.; Shiokawa, K.; Husin, A.; Liu, Huixin; Saito, S.</p> <p>2017-08-01</p> <p>We investigate the azimuthal distribution of amplitude scintillation observed by Global Positioning System (GPS) ground receivers at Pontianak (0.0°S, 109.3°E; magnetic latitude: 9.8°S) and Bandung (6.9°S, 107.6°E; magnetic latitude: 16.7°S) in Indonesia in March and September from 2011 to 2015. The scintillation is found to occur more to the west than to the east in March at both stations, whereas no such zonal difference is found in September. We also analyze the zonal scintillation drift as estimated using three closely spaced single-frequency GPS receivers at Kototabang (0.2°S, 100.3°E; magnetic latitude: 9.9°S) in Indonesia during 2003-2015 and the zonal thermospheric neutral wind as measured by the CHAMP satellite at longitudes of 90°-120°E during 2001-2008. We find that the velocities of both the zonal scintillation drift and the neutral wind decrease with increasing latitudes. Interestingly, the latitudinal gradients of both the zonal scintillation drift and the neutral wind are steeper in March than in September. These steeper March gradients may be responsible for the increased westward altitudinal and latitudinal tilting of plasma bubbles in March. This equinoctial asymmetry could be responsible for the observed westward bias in scintillation in March, because the scintillation is more likely to occur when radio waves pass through longer lengths of plasma irregularities in the plasma bubbles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.9696K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.9696K"><span>Regional measurements of infrasound signals from ARIANE-5 engine tests in Southern Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koch, K.</p> <p>2012-04-01</p> <p>A well-controlled source of repetitive infrasound emissions was previously identified and has been related to development and acceptance tests of the European Space Agencies ARIANE-5 main engine. The propulsion testing facility of the German Aerospace Agency (DLR) near Heilbronn, Southern Germany, is a distance of about 320 km away from the International Monitoring System (IMS) station IS26 in east-southeasterly direction. In the past, signals associated with these propulsion tests could normally be detected at IS26 during winter months, but not during summer months, reflecting the changes in atmospheric conditions between winter and summer. Over the last year, DLR has prepared to conduct a series of seven propulsion tests which started in November 2011; with interim times between tests of 3-4 weeks it will last until late March or early April 2012. With mobile infrasound recording equipment available at BGR we planned to record the infrasonic wavefield along the path to IS26 at regular distances starting as close as 20 km from the source. Our aim is to study sound propagation from direct paths mainly involving the tropospheric layer through the "zone of silence" to distances close to IS26, where paths through stratospheric layers are followed. Preliminary results show that during the relevant winter season direct path propagation can be observed to some 40 km from the propulsion test source, even at seismographic stations where the acoustic wave couples into the ground. The tests are also observed at IS26, and waveform duration and f-k-analysis confirm the signals to be associated with the GT-type propulsion tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DPPGP8064J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DPPGP8064J"><span>A proof of principle spheromak experiment: The next step on a recently opened path to economical fusion power</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jarboe, Thomas; Marklin, George; Nelson, Brian; Sutherland, Derek; HIT Team Team</p> <p>2013-10-01</p> <p>A proof of principle experiment to study closed-flux energy confinement of a spheromak sustained by imposed dynamo current drive is described. A two-fluid validated NIMROD code has simulated closed-flux sustainment on a stable spheromak using imposed dynamo current drive (IDCD), demonstrating that dynamo current drive is compatible with closed flux. (submitted for publication and see adjacent poster.(spsap)) HIT-SI, a = 0.25 m, has achieved 90 kA of toroidal current, current gains of nearly 4, and operation from 5.5 kHz to 68 kHz, demonstrating the robustness of the method.(spsap) Finally, a reactor design study using fusion technology developed for ITER and modern nuclear technology shows a design that is economically superior to coal.(spsap) The spheromak reactor and development path are about a factor of 10 less expensive than that of the tokamak/stellarator. These exciting results justify a proof of principle (PoP) confinement experiment of a spheromak sustained by IDCD. Such an experiment (R = 1.5 m, a = 1 m, Itor = 3 . 2 MA, n = 4e19/m3, T = 3 keV) is described in detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25412217','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25412217"><span>Sampling-based real-time motion planning under state uncertainty for autonomous micro-aerial vehicles in GPS-denied environments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan</p> <p>2014-11-18</p> <p>This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4279562','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4279562"><span>Sampling-Based Real-Time Motion Planning under State Uncertainty for Autonomous Micro-Aerial Vehicles in GPS-Denied Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan</p> <p>2014-01-01</p> <p>This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints. PMID:25412217</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21689164','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21689164"><span>Implant-supported mandibular splinting affects temporomandibular joint biomechanics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zaugg, Balthasar; Hämmerle, Christoph H F; Palla, Sandro; Gallo, Luigi M</p> <p>2012-08-01</p> <p>Mandibular functional movements lead to complex deformations of bony structures. The aim of this study was to test whether mandibular splinting influences condylar kinematics and temporomandibular joint (TMJ) loading patterns. Six subjects were analyzed by means of dynamic stereometry during jaw opening-closing with mandibles unconstrained as well as splinted transversally by a cast metal bar fixed bilaterally to two implant pairs in the (pre)molar region. Statistical analysis was performed by means of ANOVAs for repeated measurements (significance level α=0.05). Transversal splinting reduced mandibular deformation during jaw opening-closing as measured between two implants in the (pre)molar region on each side of the mandible significantly by 54%. Furthermore, splinting significantly reduced the distance between lateral condylar poles (average displacement vector magnitude of each pole: 0.84±0.36 mm; average mediolateral displacement component: 45±28% of the magnitude) and led to a medial displacement of their trajectories as well as a mediolateral displacement of stress-field paths. During jaw opening-closing, splinting of the mandible leads to a significant reduction of mandibular deformation and intercondylar distance and to altered stress-field paths, resulting in changed loading patterns of the TMJ structures. © 2011 John Wiley & Sons A/S.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870060943&hterms=LAYER+LIMIT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DLAYER%2BLIMIT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870060943&hterms=LAYER+LIMIT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DLAYER%2BLIMIT"><span>An extended study of the low-latitude boundary layer on the dawn and dusk flanks of the magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mitchell, D. G.; Kutchko, F.; Williams, D. J.; Eastman, T. E.; Frank, L. A.</p> <p>1987-01-01</p> <p>The characteristics and structure of the low-latitude boundary layer (LLBL) have been studied for 66 ISEE 1 passes through the LLBL region. The dawn and dusk LLBL are on closed magnetic field lines for northward magnetosheath and/or IMF (M/IMF), and are on both closed and open field lines for southward M/IMF. For southward M/IMF, the regions of open LLBL field lines lie adjacent to the magnetopause and outside the closed LLBL. The LLBL is thicker (thinner) for northward (southward) M/IMF. With distance away from the subsolar magnetosphere, the LLBL becomes thicker for northward M/IMF and more variable in thickness for southward M/IMF. No dependence of LLBL thickness or electric field on geomagnetic activity is seen in these data. The LLBL electric field is a few millivolts per meter with a apparent upper limit of about 10 mV/m. The field captures magnetospherically drifting particles and propels them tailward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23292668','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23292668"><span>Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schuldt, Bernhard; Leuschner, Christoph; Brock, Nicolai; Horna, Viviana</p> <p>2013-02-01</p> <p>It is generally assumed that the largest vessels are occurring in the roots and that vessel diameters and the related hydraulic conductance in the xylem are decreasing acropetally from roots to leaves. With this study in five tree species of a perhumid tropical rainforest in Sulawesi (Indonesia), we searched for patterns in hydraulic architecture and axial conductivity along the flow path from small-diameter roots through strong roots and the trunk to distal sun-canopy twigs. Wood density differed by not more than 10% across the different flow path positions in a species, and branch and stem wood density were closely related in three of the five species. Other than wood density, the wood anatomical and xylem hydraulic traits varied in dependence on the position along the flow path, but were unrelated to wood density within a tree. In contrast to reports from conifers and certain dicotyledonous species, we found a hump-shaped variation in vessel diameter and sapwood area--specific conductivity along the flow path in all five species with a maximum in the trunk and strong roots and minima in both small roots and twigs; the vessel size depended on the diameter of the organ. This pattern might be an adaptation to the perhumid climate with a low risk of hydraulic failure. Despite a similar mean vessel diameter in small roots and twigs, the two distal organs, hydraulically weighted mean vessel diameters were on average 30% larger in small roots, resulting in ∼ 85% higher empirical and theoretical specific conductivities. Relative vessel lumen area in percent of sapwood area decreased linearly by 70% from roots to twigs, reflecting the increase in sclerenchymatic tissue and tracheids in acropetal direction in the xylem. Vessel size was more closely related to the organ diameter than to the distance along the root-to-shoot flow path. We conclude that (i) the five co-occurring tree species show convergent patterns in their hydraulic architecture despite different growth strategies, and (ii) the paradigm assuming continuous acropetal vessel tapering and decrease in specific conductance from fine roots towards distal twigs needs reconsideration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29922205','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29922205"><span>Roles of Impulsivity, Motivation, and Emotion Regulation in Procrastination - Path Analysis and Comparison Between Students and Non-students.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wypych, Marek; Matuszewski, Jacek; Dragan, Wojciech Ł</p> <p>2018-01-01</p> <p>Procrastination - an irrational delay of intended actions despite expecting to be worse off - is a complex and non-homogenous phenomenon. Previous studies have found a number of correlates of procrastination, some of which seem to be particularly important. Impulsivity is closely connected to procrastination on behavioral, genetic, and neuronal levels. Difficulties in emotion regulation have also been shown to be strongly related to procrastination. Procrastination can also be considered as a motivation-based problem. To try to disentangle the connections of impulsivity, emotion regulation, and motivation to procrastination we collected data from over 600 subjects using multiple questionnaires (PPS - Pure Procrastination Scale; UPPSP - Impulsive Behavior Scale, ERQ - Emotion Regulation Questionnaire and MDT - Motivational Diagnostic Test). Structural equation modeling was performed to test several possible relationships between the measured variables. The effects of student status and age have also been investigated. The final path model was a directional model based on six explanatory variables and accounted for 70% of the variance in procrastination. Path analysis revealed that the strongest contributions to procrastination came from lack of value, delay discounting, and lack of perseverance, suggesting the involvement of motivation and impulsivity. The model also revealed the moderating role of expressive suppression between several aspects of impulsivity and procrastination. Close inspection of the paths' weights suggests that there may be two partly competing strategies for dealing with impulsivity and negative emotions: either to suppress emotions and impulsive reactions or to react impulsively, discarding previous plans, and to procrastinate. Path invariance analysis showed the significant moderating roles of student status and age. Both in non-students and high-age groups, the path leading from suppression to procrastination was insignificant. This suggests that caution should be used in generalizing the results of studies carried out on students. These results support previous findings that procrastination may serve as a short-term mood regulation strategy. However, as the spectrum of the emotion regulation strategies included in the study was very limited, we conclude that future studies should seek more insight into the relationship between emotion regulation, self-control, and procrastination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1260240','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1260240"><span>Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Li, Zheng; Chen, Wei</p> <p>2016-07-05</p> <p>A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1618B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1618B"><span>On the Nocturnal Downward and Westward Equatorial Ionospheric Plasma Drifts During the 17 March 2015 Geomagnetic Storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bagiya, Mala S.; Vichare, Geeta; Sinha, A. K.; Sripathi, S.</p> <p>2018-02-01</p> <p>During quiet period, the nocturnal equatorial ionospheric plasma drifts eastward in the zonal direction and downward in the vertical direction. This quiet time drift pattern could be understood through dynamo processes in the nighttime equatorial ionosphere. The present case study reports the nocturnal simultaneous occurrence of the vertically downward and zonally westward plasma drifts over the Indian latitudes during the geomagnetic storm of 17 March 2015. After 17:00 UT ( 22:10 local time), the vertical plasma drift became downward and coincided with the westward zonal drift, a rarely observed feature of low latitude plasma drifts. The vertical drift turned upward after 18:00 UT, while the zonal drift became eastward. We mainly emphasize here the distinct bipolar type variations of vertical and zonal plasma drifts observed around 18:00 UT. We explain the vertical plasma drift in terms of the competing effects between the storm time prompt penetration and disturbance dynamo electric fields. Whereas, the westward drift is attributed to the storm time local electrodynamical changes mainly through the disturbance dynamo field in addition to the vertical Pedersen current arising from the spatial (longitudinal) gradient of the field aligned Pedersen conductivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/tx1117.photos.579999p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/tx1117.photos.579999p/"><span>Closeup view of an Aft Skirt being prepared for mating ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>Close-up view of an Aft Skirt being prepared for mating with sub assemblies in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility at Kennedy Space Center. The most prominent feature in this view are the four Aft Booster Separation Motors on the left side of the skirt in this view. The Separation Motors burn for one second to ensure the SRBs drift away from the External Tank and Orbiter at separation. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29448396','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29448396"><span>Measuring the equations of state in a relaxed magnetohydrodynamic plasma.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kaur, M; Barbano, L J; Suen-Lewis, E M; Shrock, J E; Light, A D; Brown, M R; Schaffner, D A</p> <p>2018-01-01</p> <p>We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890059221&hterms=thermal+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dthermal%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890059221&hterms=thermal+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dthermal%2Benergy"><span>Thermal-energy reactions of O2(2+) ions with O2, N2, CO2, NO, and Ne</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chatterjee, B. K.; Johnson, R.</p> <p>1989-01-01</p> <p>The paper presents results of drift-tube mass-spectrometer studies of the reactivity of doubly charged molecular oxygen ions with several molecules and neon atoms. Thermal-energ rate coefficients for the reactions with the molecular reactants were found to be large, close to the limiting Langevin rates. Charge transfer with neon atoms was observed, but the measured rate coefficient was only a small fraction of the Langevin rate. It is concluded that the measured rate constants for the reactions considereed refer to vibrationally excited ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97a1202K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97a1202K"><span>Measuring the equations of state in a relaxed magnetohydrodynamic plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaur, M.; Barbano, L. J.; Suen-Lewis, E. M.; Shrock, J. E.; Light, A. D.; Brown, M. R.; Schaffner, D. A.</p> <p>2018-01-01</p> <p>We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>