Quick and Easy Rate Equations for Multistep Reactions
ERIC Educational Resources Information Center
Savage, Phillip E.
2008-01-01
Students rarely see closed-form analytical rate equations derived from underlying chemical mechanisms that contain more than a few steps unless restrictive simplifying assumptions (e.g., existence of a rate-determining step) are made. Yet, work published decades ago allows closed-form analytical rate equations to be written quickly and easily for…
Closed-form solutions and scaling laws for Kerr frequency combs
Renninger, William H.; Rakich, Peter T.
2016-01-01
A single closed-form analytical solution of the driven nonlinear Schrödinger equation is developed, reproducing a large class of the behaviors in Kerr-comb systems, including bright-solitons, dark-solitons, and a large class of periodic wavetrains. From this analytical framework, a Kerr-comb area theorem and a pump-detuning relation are developed, providing new insights into soliton- and wavetrain-based combs along with concrete design guidelines for both. This new area theorem reveals significant deviation from the conventional soliton area theorem, which is crucial to understanding cavity solitons in certain limits. Moreover, these closed-form solutions represent the first step towards an analytical framework for wavetrain formation, and reveal new parameter regimes for enhanced Kerr-comb performance. PMID:27108810
Comments on "A Closed-Form Solution to Tensor Voting: Theory and Applications".
Maggiori, Emmanuel; Lotito, Pablo; Manterola, Hugo Luis; del Fresno, Mariana
2014-12-01
We comment on a paper that describes a closed-form formulation to Tensor Voting, a technique to perceptually group clouds of points, usually applied to infer features in images. The authors proved an analytic solution to the technique, a highly relevant contribution considering that the original formulation required numerical integration, a time-consuming task. Their work constitutes the first closed-form expression for the Tensor Voting framework. In this work we first observe that the proposed formulation leads to unexpected results which do not satisfy the constraints for a Tensor Voting output, hence they cannot be interpreted. Given that the closed-form expression is said to be an analytic equivalent solution, unexpected outputs should not be encountered unless there are flaws in the proof. We analyzed the underlying math to find which were the causes of these unexpected results. In this commentary we show that their proposal does not in fact provide a proper analytic solution to Tensor Voting and we indicate the flaws in the proof.
Kinematics and dynamics of robotic systems with multiple closed loops
NASA Astrophysics Data System (ADS)
Zhang, Chang-De
The kinematics and dynamics of robotic systems with multiple closed loops, such as Stewart platforms, walking machines, and hybrid manipulators, are studied. In the study of kinematics, focus is on the closed-form solutions of the forward position analysis of different parallel systems. A closed-form solution means that the solution is expressed as a polynomial in one variable. If the order of the polynomial is less than or equal to four, the solution has analytical closed-form. First, the conditions of obtaining analytical closed-form solutions are studied. For a Stewart platform, the condition is found to be that one rotational degree of freedom of the output link is decoupled from the other five. Based on this condition, a class of Stewart platforms which has analytical closed-form solution is formulated. Conditions of analytical closed-form solution for other parallel systems are also studied. Closed-form solutions of forward kinematics for walking machines and multi-fingered grippers are then studied. For a parallel system with three three-degree-of-freedom subchains, there are 84 possible ways to select six independent joints among nine joints. These 84 ways can be classified into three categories: Category 3:3:0, Category 3:2:1, and Category 2:2:2. It is shown that the first category has no solutions; the solutions of the second category have analytical closed-form; and the solutions of the last category are higher order polynomials. The study is then extended to a nearly general Stewart platform. The solution is a 20th order polynomial and the Stewart platform has a maximum of 40 possible configurations. Also, the study is extended to a new class of hybrid manipulators which consists of two serially connected parallel mechanisms. In the study of dynamics, a computationally efficient method for inverse dynamics of manipulators based on the virtual work principle is developed. Although this method is comparable with the recursive Newton-Euler method for serial manipulators, its advantage is more noteworthy when applied to parallel systems. An approach of inverse dynamics of a walking machine is also developed, which includes inverse dynamic modeling, foot force distribution, and joint force/torque allocation.
Parametric study of minimum reactor mass in energy-storage dc-to-dc converters
NASA Technical Reports Server (NTRS)
Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.
1981-01-01
Closed-form analytical solutions for the design equations of a minimum-mass reactor for a two-winding voltage-or-current step-up converter are derived. A quantitative relationship between the three parameters - minimum total reactor mass, maximum output power, and switching frequency - is extracted from these analytical solutions. The validity of the closed-form solution is verified by a numerical minimization procedure. A computer-aided design procedure using commercially available toroidal cores and magnet wires is also used to examine how the results from practical designs follow the predictions of the analytical solutions.
Power combining in an array of microwave power rectifiers
NASA Technical Reports Server (NTRS)
Gutmann, R. J.; Borrego, J. M.
1979-01-01
This work analyzes the resultant efficiency degradation when identical rectifiers operate at different RF power levels as caused by the power beam taper. Both a closed-form analytical circuit model and a detailed computer-simulation model are used to obtain the output dc load line of the rectifier. The efficiency degradation is nearly identical with series and parallel combining, and the closed-form analytical model provides results which are similar to the detailed computer-simulation model.
An Analytic Approach to Projectile Motion in a Linear Resisting Medium
ERIC Educational Resources Information Center
Stewart, Sean M.
2006-01-01
The time of flight, range and the angle which maximizes the range of a projectile in a linear resisting medium are expressed in analytic form in terms of the recently defined Lambert W function. From the closed-form solutions a number of results characteristic to the motion of the projectile in a linear resisting medium are analytically confirmed,…
Analytical Methods of Decoupling the Automotive Engine Torque Roll Axis
NASA Astrophysics Data System (ADS)
JEONG, TAESEOK; SINGH, RAJENDRA
2000-06-01
This paper analytically examines the multi-dimensional mounting schemes of an automotive engine-gearbox system when excited by oscillating torques. In particular, the issue of torque roll axis decoupling is analyzed in significant detail since it is poorly understood. New dynamic decoupling axioms are presented an d compared with the conventional elastic axis mounting and focalization methods. A linear time-invariant system assumption is made in addition to a proportionally damped system. Only rigid-body modes of the powertrain are considered and the chassis elements are assumed to be rigid. Several simplified physical systems are considered and new closed-form solutions for symmetric and asymmetric engine-mounting systems are developed. These clearly explain the design concepts for the 4-point mounting scheme. Our analytical solutions match with the existing design formulations that are only applicable to symmetric geometries. Spectra for all six rigid-body motions are predicted using the alternate decoupling methods and the closed-form solutions are verified. Also, our method is validated by comparing modal solutions with prior experimental and analytical studies. Parametric design studies are carried out to illustrate the methodology. Chief contributions of this research include the development of new or refined analytical models and closed-form solutions along with improved design strategies for the torque roll axis decoupling.
NASA Astrophysics Data System (ADS)
Qiao, Yaojun; Li, Ming; Yang, Qiuhong; Xu, Yanfei; Ji, Yuefeng
2015-01-01
Closed-form expressions of nonlinear interference of dense wavelength-division-multiplexed (WDM) systems with dispersion managed transmission (DMT) are derived. We carry out a simulative validation by addressing an ample and significant set of the Nyquist-WDM systems based on polarization multiplexed quadrature phase-shift keying (PM-QPSK) subcarriers at a baud rate of 32 Gbaud per channel. Simulation results show the simple closed-form analytical expressions can provide an effective tool for the quick and accurate prediction of system performance in DMT coherent optical systems.
DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROTECTION
A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...
DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROJECTION - PROJECT SUMMARY
A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...
Analytic studies of the hard dumbell fluid
NASA Astrophysics Data System (ADS)
Morriss, G. P.; Cummings, P. T.
A closed form analytic theory for the structure of the hard dumbell fluid is introduced and evaluated. It is found to be comparable in accuracy to the reference interaction site approximation (RISA) of Chandler and Andersen.
WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL (EPA/600/SR-94/210)
A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a groundwater flo...
Closed-form solution of the Ogden-Hill's compressible hyperelastic model for ramp loading
NASA Astrophysics Data System (ADS)
Berezvai, Szabolcs; Kossa, Attila
2017-05-01
This article deals with the visco-hyperelastic modelling approach for compressible polymer foam materials. Polymer foams can exhibit large elastic strains and displacements in case of volumetric compression. In addition, they often show significant rate-dependent properties. This material behaviour can be accurately modelled using the visco-hyperelastic approach, in which the large strain viscoelastic description is combined with the rate-independent hyperelastic material model. In case of polymer foams, the most widely used compressible hyperelastic material model, the so-called Ogden-Hill's model, was applied, which is implemented in the commercial finite element (FE) software Abaqus. The visco-hyperelastic model is defined in hereditary integral form, therefore, obtaining a closed-form solution for the stress is not a trivial task. However, the parameter-fitting procedure could be much faster and accurate if closed-form solution exists. In this contribution, exact stress solutions are derived in case of uniaxial, biaxial and volumetric compression loading cases using ramp-loading history. The analytical stress solutions are compared with the stress results in Abaqus using FE analysis. In order to highlight the benefits of the analytical closed-form solution during the parameter-fitting process experimental work has been carried out on a particular open-cell memory foam material. The results of the material identification process shows significant accuracy improvement in the fitting procedure by applying the derived analytical solutions compared to the so-called separated approach applied in the engineering practice.
Analytical close-form solutions to the elastic fields of solids with dislocations and surface stress
NASA Astrophysics Data System (ADS)
Ye, Wei; Paliwal, Bhasker; Ougazzaden, Abdallah; Cherkaoui, Mohammed
2013-07-01
The concept of eigenstrain is adopted to derive a general analytical framework to solve the elastic field for 3D anisotropic solids with general defects by considering the surface stress. The formulation shows the elastic constants and geometrical features of the surface play an important role in determining the elastic fields of the solid. As an application, the analytical close-form solutions to the stress fields of an infinite isotropic circular nanowire are obtained. The stress fields are compared with the classical solutions and those of complex variable method. The stress fields from this work demonstrate the impact from the surface stress when the size of the nanowire shrinks but becomes negligible in macroscopic scale. Compared with the power series solutions of complex variable method, the analytical solutions in this work provide a better platform and they are more flexible in various applications. More importantly, the proposed analytical framework profoundly improves the studies of general 3D anisotropic materials with surface effects.
NASA Technical Reports Server (NTRS)
Georgevic, R. M.
1973-01-01
Closed-form analytic expressions for the time variations of instantaneous orbital parameters and of the topocentric range and range rate of a spacecraft moving in the gravitational field of an oblate large body are derived using a first-order variation of parameters technique. In addition, the closed-form analytic expressions for the partial derivatives of the topocentric range and range rate are obtained, with respect to the coefficient of the second harmonic of the potential of the central body (J sub 2). The results are applied to the motion of a point-mass spacecraft moving in the orbit around the equatorially elliptic, oblate sun, with J sub 2 approximately equal to .000027.
NASA Astrophysics Data System (ADS)
Lemmens, D.; Wouters, M.; Tempere, J.; Foulon, S.
2008-07-01
We present a path integral method to derive closed-form solutions for option prices in a stochastic volatility model. The method is explained in detail for the pricing of a plain vanilla option. The flexibility of our approach is demonstrated by extending the realm of closed-form option price formulas to the case where both the volatility and interest rates are stochastic. This flexibility is promising for the treatment of exotic options. Our analytical formulas are tested with numerical Monte Carlo simulations.
Analytical expressions for the correlation function of a hard sphere dimer fluid
NASA Astrophysics Data System (ADS)
Kim, Soonho; Chang, Jaeeon; Kim, Hwayong
A closed form expression is given for the correlation function of a hard sphere dimer fluid. A set of integral equations is obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with Percus-Yevick approximation. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of the individual correlation functions are obtained. By the inverse Laplace transformation, the radial distribution function (RDF) is obtained in closed form out to 3D (D is the segment diameter). The analytical expression for the RDF of the hard dimer should be useful in developing the perturbation theory of dimer fluids.
Analytical expression for the correlation function of a hard sphere chain fluid
NASA Astrophysics Data System (ADS)
Chang, Jaeeon; Kim, Hwayong
A closed form expression is given for the correlation function of flexible hard sphere chain fluid. A set of integral equations obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with the polymer Percus-Yevick ideal chain approximation is considered. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of individual correlation functions are obtained. By inverse Laplace transformation the inter- and intramolecular radial distribution functions (RDFs) are obtained in closed forms up to 3D(D is segment diameter). These analytical expressions for the RDFs would be useful in developing the perturbation theory of chain fluids.
Analytical Description of Ascending Motion of Rockets in the Atmosphere
ERIC Educational Resources Information Center
Rodrigues, H.; de Pinho, M. O.; Portes, D., Jr.; Santiago, A.
2009-01-01
In continuation of a previous work, we present an analytic study of ascending vertical motion of a rocket subjected to a quadratic drag for the case where the mass-variation law is a linear function of time. We discuss the detailed analytical solution of the model differential equations in closed form. Examples of application are presented and…
Closed-form solutions for a class of optimal quadratic regulator problems with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Turner, J. D.; Chun, H. M.
1984-01-01
Closed-form solutions are derived for coupled Riccati-like matrix differential equations describing the solution of a class of optimal finite time quadratic regulator problems with terminal constraints. Analytical solutions are obtained for the feedback gains and the closed-loop response trajectory. A computational procedure is presented which introduces new variables for efficient computation of the terminal control law. Two examples are given to illustrate the validity and usefulness of the theory.
Closed-form recursive formula for an optimal tracker with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Turner, J. D.; Chun, H. M.
1984-01-01
Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. Two examples are given to illustrate the validity and usefulness of the formulations.
Closed-form analytical solutions of high-temperature heat pipe startup and frozen startup limitation
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1992-01-01
Previous numerical and experimental studies indicate that the high-temperature heat pipe startup process is characterized by a moving hot zone with relatively sharp fronts. Based on the above observation, a flat-front model for an approximate analytical solution is proposed. A closed-form solution related to the temperature distribution in the hot zone and the hot zone length as a function of time are obtained. The analytical results agree well with the corresponding experimental data, and provide a quick prediction method for the heat pipe startup performance. Finally, a heat pipe limitation related to the frozen startup process is identified, and an explicit criterion for the high-temperature heat pipe startup is derived. The frozen startup limit identified in this paper provides a fundamental guidance for high-temperature heat pipe design.
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Clement, T. P.
2008-02-01
Multi-species reactive transport equations coupled through sorption and sequential first-order reactions are commonly used to model sites contaminated with radioactive wastes, chlorinated solvents and nitrogenous species. Although researchers have been attempting to solve various forms of these reactive transport equations for over 50 years, a general closed-form analytical solution to this problem is not available in the published literature. In Part I of this two-part article, we derive a closed-form analytical solution to this problem for spatially-varying initial conditions. The proposed solution procedure employs a combination of Laplace and linear transform methods to uncouple and solve the system of partial differential equations. Two distinct solutions are derived for Dirichlet and Cauchy boundary conditions each with Bateman-type source terms. We organize and present the final solutions in a common format that represents the solutions to both boundary conditions. In addition, we provide the mathematical concepts for deriving the solution within a generic framework that can be used for solving similar transport problems.
Orthopositronium Lifetime: Analytic Results in O({alpha}) and O({alpha}{sup 3}ln{alpha})
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kniehl, Bernd A.; Kotikov, Anatoly V.; Veretin, Oleg L.
2008-11-07
We present the O({alpha}) and O({alpha}{sup 3}ln{alpha}) corrections to the total decay width of orthopositronium in closed analytic form, in terms of basic irrational numbers, which can be evaluated numerically to arbitrary precision.
NASA Astrophysics Data System (ADS)
Tran, A. B.; Vu, M. N.; Nguyen, S. T.; Dong, T. Q.; Le-Nguyen, K.
2018-02-01
This paper presents analytical solutions to heat transfer problems around a crack and derive an adaptive model for effective thermal conductivity of cracked materials based on singular integral equation approach. Potential solution of heat diffusion through two-dimensional cracked media, where crack filled by air behaves as insulator to heat flow, is obtained in a singular integral equation form. It is demonstrated that the temperature field can be described as a function of temperature and rate of heat flow on the boundary and the temperature jump across the cracks. Numerical resolution of this boundary integral equation allows determining heat conduction and effective thermal conductivity of cracked media. Moreover, writing this boundary integral equation for an infinite medium embedding a single crack under a far-field condition allows deriving the closed-form solution of temperature discontinuity on the crack and particularly the closed-form solution of temperature field around the crack. These formulas are then used to establish analytical effective medium estimates. Finally, the comparison between the developed numerical and analytical solutions allows developing an adaptive model for effective thermal conductivity of cracked media. This model takes into account both the interaction between cracks and the percolation threshold.
Kapteyn series arising in radiation problems
NASA Astrophysics Data System (ADS)
Lerche, I.; Tautz, R. C.
2008-01-01
In discussing radiation from multiple point charges or magnetic dipoles, moving in circles or ellipses, a variety of Kapteyn series of the second kind arises. Some of the series have been known in closed form for a hundred years or more, others appear not to be available to analytic persuasion. This paper shows how 12 such generic series can be developed to produce either closed analytic expressions or integrals that are not analytically tractable. In addition, the method presented here may be of benefit when one has other Kapteyn series of the second kind to consider, thereby providing an additional reason to consider such series anew.
Numerical Algorithm for Delta of Asian Option
Zhang, Boxiang; Yu, Yang; Wang, Weiguo
2015-01-01
We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options. PMID:26266271
Simplified multiple scattering model for radiative transfer in turbid water
NASA Technical Reports Server (NTRS)
Ghovanlou, A. H.; Gupta, G. N.
1978-01-01
Quantitative analytical procedures for relating selected water quality parameters to the characteristics of the backscattered signals, measured by remote sensors, require the solution of the radiative transport equation in turbid media. Presented is an approximate closed form solution of this equation and based on this solution, the remote sensing of sediments is discussed. The results are compared with other standard closed form solutions such as quasi-single scattering approximations.
Closed-form recursive formula for an optimal tracker with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J. N.; Turner, J. D.; Chun, H. M.
1986-01-01
Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. An example involving the feedback slewing of a flexible spacecraft is given to illustrate the validity and usefulness of the formulations.
Realistic Analytical Polyhedral MRI Phantoms
Ngo, Tri M.; Fung, George S. K.; Han, Shuo; Chen, Min; Prince, Jerry L.; Tsui, Benjamin M. W.; McVeigh, Elliot R.; Herzka, Daniel A.
2015-01-01
Purpose Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing 3D analytical phantoms are unable to accurately model shapes of biomedical interest. It is demonstrated that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. Theory The derivations of the Fourier transform of a polygon and polyhedron are presented. Methods The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D/2D MRI acquisitions was described. Results Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D/2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing as compared to equivalent voxelized/rasterized phantoms. Conclusion Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. PMID:26479724
Approximate Solution to the Angular Speeds of a Nearly-Symmetric Mass-Varying Cylindrical Body
NASA Astrophysics Data System (ADS)
Nanjangud, Angadh; Eke, Fidelis
2017-06-01
This paper examines the rotational motion of a nearly axisymmetric rocket type system with uniform burn of its propellant. The asymmetry comes from a slight difference in the transverse principal moments of inertia of the system, which then results in a set of nonlinear equations of motion even when no external torque is applied to the system. It is often difficult, or even impossible, to generate analytic solutions for such equations; closed form solutions are even more difficult to obtain. In this paper, a perturbation-based approach is employed to linearize the equations of motion and generate analytic solutions. The solutions for the variables of transverse motion are analytic and a closed-form solution to the spin rate is suggested. The solutions are presented in a compact form that permits rapid computation. The approximate solutions are then applied to the torque-free motion of a typical solid rocket system and the results are found to agree with those obtained from the numerical solution of the full non-linear equations of motion of the mass varying system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xibing; Dong, Longjun, E-mail: csudlj@163.com; Australian Centre for Geomechanics, The University of Western Australia, Crawley, 6009
This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Yoojin
In this study, we have developed an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs where fluid flow through the fracture is radial. The dimensionless forms of the governing equations and the initial and boundary conditions in the radial flow system can be written in a form identical to those in the linear flow system developed by Jung and Pruess [Jung, Y., and K. Pruess (2012), A Closed-Form Analytical Solution for Thermal Single-Well Injection-Withdrawal Tests, Water Resour. Res., 48, W03504, doi:10.1029/2011WR010979], and therefore the analytical solutions developed in Jung and Pruess (2012) can be applied to computemore » the time dependence of temperature recovery at the injection/withdrawal well in a horizontally oriented fracture with radial flow.« less
Critical behavior of a relativistic Bose gas.
Pandita, P N
2014-03-01
We show that the thermodynamic behavior of relativistic ideal Bose gas, recently studied numerically by Grether et al., can be obtained analytically. Using the analytical results, we obtain the critical behavior of the relativistic Bose gas exactly for all the regimes. We show that these analytical results reduce to those of Grether et al. in different regimes of the Bose gas. Furthermore, we also obtain an analytically closed-form expression for the energy density for the Bose gas that is valid in all regimes.
Continuous Optimization on Constraint Manifolds
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1988-01-01
This paper demonstrates continuous optimization on the differentiable manifold formed by continuous constraint functions. The first order tensor geodesic differential equation is solved on the manifold in both numerical and closed analytic form for simple nonlinear programs. Advantages and disadvantages with respect to conventional optimization techniques are discussed.
New integrable models and analytical solutions in f (R ) cosmology with an ideal gas
NASA Astrophysics Data System (ADS)
Papagiannopoulos, G.; Basilakos, Spyros; Barrow, John D.; Paliathanasis, Andronikos
2018-01-01
In the context of f (R ) gravity with a spatially flat FLRW metric containing an ideal fluid, we use the method of invariant transformations to specify families of models which are integrable. We find three families of f (R ) theories for which new analytical solutions are given and closed-form solutions are provided.
Analytical formulation of cellular automata rules using data models
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.
2009-05-01
We present a unique method for converting traditional cellular automata (CA) rules into analytical function form. CA rules have been successfully used for morphological image processing and volumetric shape recognition and classification. Further, the use of CA rules as analog models to the physical and biological sciences can be significantly extended if analytical (as opposed to discrete) models could be formulated. We show that such transformations are possible. We use as our example John Horton Conway's famous "Game of Life" rule set. We show that using Data Modeling, we are able to derive both polynomial and bi-spectrum models of the IF-THEN rules that yield equivalent results. Further, we demonstrate that the "Game of Life" rule set can be modeled using the multi-fluxion, yielding a closed form nth order derivative and integral. All of the demonstrated analytical forms of the CA rule are general and applicable to real-time use.
Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions
NASA Astrophysics Data System (ADS)
Fang, Tiegang
2014-05-01
In this paper, the magnetohydrodynamic (MHD) flow over a nonlinearly (power-law velocity) moving surface is investigated analytically and solutions are presented for a few special conditions. The solutions are obtained in closed forms with hyperbolic functions. The effects of the magnetic, the wall moving, and the mass transpiration parameters are discussed. These solutions are important to show the flow physics as well as to be used as bench mark problems for numerical validation and development of new solution schemes.
Sample distribution in peak mode isotachophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, Shimon; Schwartz, Ortal; Bercovici, Moran, E-mail: mberco@technion.ac.il
We present an analytical study of peak mode isotachophoresis (ITP), and provide closed form solutions for sample distribution and electric field, as well as for leading-, trailing-, and counter-ion concentration profiles. Importantly, the solution we present is valid not only for the case of fully ionized species, but also for systems of weak electrolytes which better represent real buffer systems and for multivalent analytes such as proteins and DNA. The model reveals two major scales which govern the electric field and buffer distributions, and an additional length scale governing analyte distribution. Using well-controlled experiments, and numerical simulations, we verify andmore » validate the model and highlight its key merits as well as its limitations. We demonstrate the use of the model for determining the peak concentration of focused sample based on known buffer and analyte properties, and show it differs significantly from commonly used approximations based on the interface width alone. We further apply our model for studying reactions between multiple species having different effective mobilities yet co-focused at a single ITP interface. We find a closed form expression for an effective-on rate which depends on reactants distributions, and derive the conditions for optimizing such reactions. Interestingly, the model reveals that maximum reaction rate is not necessarily obtained when the concentration profiles of the reacting species perfectly overlap. In addition to the exact solutions, we derive throughout several closed form engineering approximations which are based on elementary functions and are simple to implement, yet maintain the interplay between the important scales. Both the exact and approximate solutions provide insight into sample focusing and can be used to design and optimize ITP-based assays.« less
QCD triple Pomeron coupling from string amplitudes
NASA Astrophysics Data System (ADS)
Bialas, A.; Navelet, H.; Peschanski, R.
1998-06-01
Using the recent solution of the triple Pomeron coupling in the QCD dipole picture as a closed string amplitude with six legs, its analytical form in terms of hypergeometric functions and numerical value are derived.
NASA Technical Reports Server (NTRS)
Goldberg, Louis F.
1992-01-01
Aspects of the information propagation modeling behavior of integral machine computer simulation programs are investigated in terms of a transmission line. In particular, the effects of pressure-linking and temporal integration algorithms on the amplitude ratio and phase angle predictions are compared against experimental and closed-form analytic data. It is concluded that the discretized, first order conservation balances may not be adequate for modeling information propagation effects at characteristic numbers less than about 24. An entropy transport equation suitable for generalized use in Stirling machine simulation is developed. The equation is evaluated by including it in a simulation of an incompressible oscillating flow apparatus designed to demonstrate the effect of flow oscillations on the enhancement of thermal diffusion. Numerical false diffusion is found to be a major factor inhibiting validation of the simulation predictions with experimental and closed-form analytic data. A generalized false diffusion correction algorithm is developed which allows the numerical results to match their analytic counterparts. Under these conditions, the simulation yields entropy predictions which satisfy Clausius' inequality.
Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes
NASA Astrophysics Data System (ADS)
Pan, E.
2004-03-01
This paper presents an exact closed-form solution for the Eshelby problem of polygonal inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields are first expressed in terms of line integral on the boundary of the inclusion with the integrand being the Green's function. Using the recently derived exact closed-form line-source Green's function, the line integral is then carried out analytically, with the final expression involving only elementary functions. The exact closed-form solution is applied to a square-shaped quantum wire within semiconductor GaAs full- and half-planes, with results clearly showing the importance of material orientation and piezoelectric coupling. While the elastic and piezoelectric fields within the square-shaped quantum wire could serve as benchmarks to other numerical methods, the exact closed-form solution should be useful to the analysis of nanoscale quantum-wire structures where large strain and electric fields could be induced by the misfit strain.
Closed form expressions for ABER and capacity over EGK fading channel in presence of CCI
NASA Astrophysics Data System (ADS)
Singh, S. Pratap; Kumar, Sanjay
2017-03-01
Goal of next generation wireless communication system is to achieve very high data rate. Femto-cell is one of the possibilities to achieve the above target. However, co-channel interference (CCI) is the important concern in femto-cell. This paper presents closed form expressions for average bit error rate (ABER) and capacity for different adaptive schemes under extended generalised-K (EGK) fading channel in the presence of CCI. A novel conditional unified expression (CUE) is derived, which results different conditional error probability and normalised average capacity. Using CUE, a generic expression for ABER is obtained. In addition, closed form expressions for ABER for different modulation schemes under EGK fading channel in presence of CCI are also derived. Further, it is shown that generic ABER expression results into ABER of different modulation schemes. Besides, the closed form expressions of capacity for different adaptive schemes under EGK in presence of CCI are derived. Finally, analytical and simulated results are obtained with excellent agreement.
Diagnostics of seeded RF plasmas: An experimental study related to the gaseous core reactor
NASA Technical Reports Server (NTRS)
Thompson, S. D.; Clement, J. D.; Williams, J. R.
1974-01-01
Measurements of the temperature profiles in an RF argon plasma were made over magnetic field intensities ranging from 20 amp turns/cm to 80 amp turns/cm. The results were compared with a one-dimensional numerical treatment of the governing equations and with an approximate closed form analytical solution that neglected radiation losses. The average measured temperatures in the plasma compared well with the numerical treatment, though the experimental profile showed less of an off center temperature peak than predicted by theory. This may be a result of the complex turbulent flow pattern present in the experimental torch and not modeled in the numerical treatment. The radiation term cannot be neglected for argon at the power levels investigated. The closed form analytical approximation that neglected radiation led to temperature predictions on the order of 1000 K to 2000 K higher than measured or predicted by the numerical treatment which considered radiation losses.
An Analytical Study of Prostate-Specific Antigen Dynamics.
Esteban, Ernesto P; Deliz, Giovanni; Rivera-Rodriguez, Jaileen; Laureano, Stephanie M
2016-01-01
The purpose of this research is to carry out a quantitative study of prostate-specific antigen dynamics for patients with prostatic diseases, such as benign prostatic hyperplasia (BPH) and localized prostate cancer (LPC). The proposed PSA mathematical model was implemented using clinical data of 218 Japanese patients with histological proven BPH and 147 Japanese patients with LPC (stages T2a and T2b). For prostatic diseases (BPH and LPC) a nonlinear equation was obtained and solved in a close form to predict PSA progression with patients' age. The general solution describes PSA dynamics for patients with both diseases LPC and BPH. Particular solutions allow studying PSA dynamics for patients with BPH or LPC. Analytical solutions have been obtained and solved in a close form to develop nomograms for a better understanding of PSA dynamics in patients with BPH and LPC. This study may be useful to improve the diagnostic and prognosis of prostatic diseases.
On the Probabilistic Deployment of Smart Grid Networks in TV White Space.
Cacciapuoti, Angela Sara; Caleffi, Marcello; Paura, Luigi
2016-05-10
To accommodate the rapidly increasing demand for wireless broadband communications in Smart Grid (SG) networks, research efforts are currently ongoing to enable the SG networks to utilize the TV spectrum according to the Cognitive Radio paradigm. To this aim, in this letter, we develop an analytical framework for the optimal deployment of multiple closely-located SG Neighborhood Area Networks (NANs) concurrently using the same TV spectrum. The objective is to derive the optimal values for both the number of NANs and their coverage. More specifically, regarding the number of NANs, we derive the optimal closed-form expression, i.e., the closed-form expression that assures the deployment of the maximum number of NANs in the considered region satisfying a given collision constraint on the transmissions of the NANs. Regarding the NAN coverage, we derive the optimal closed-form expression, i.e., the closed-form expression of the NAN transmission range that assures the maximum coverage of each NAN in the considered region satisfying the given collision constraint. All the theoretical results are derived by adopting a stochastic approach. Finally, numerical results validate the theoretical analysis.
NASA Astrophysics Data System (ADS)
Endress, E.; Weigelt, S.; Reents, G.; Bayerl, T. M.
2005-01-01
Measurements of very slow diffusive processes in membranes, like the diffusion of integral membrane proteins, by fluorescence recovery after photo bleaching (FRAP) are hampered by bleaching of the probe during the read out of the fluorescence recovery. In the limit of long observation time (very slow diffusion as in the case of large membrane proteins), this bleaching may cause errors to the recovery function and thus provides error-prone diffusion coefficients. In this work we present a new approach to a two-dimensional closed form analytical solution of the reaction-diffusion equation, based on the addition of a dissipative term to the conventional diffusion equation. The calculation was done assuming (i) a Gaussian laser beam profile for bleaching the spot and (ii) that the fluorescence intensity profile emerging from the spot can be approximated by a two-dimensional Gaussian. The detection scheme derived from the analytical solution allows for diffusion measurements without the constraint of observation bleaching. Recovery curves of experimental FRAP data obtained under non-negligible read-out bleaching for native membranes (rabbit endoplasmic reticulum) on a planar solid support showed excellent agreement with the analytical solution and allowed the calculation of the lipid diffusion coefficient.
Advances in the theory of box integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, David H.; Borwein, J.M.; Crandall, R.E.
2009-06-25
Box integrals - expectations <|{rvec r}|{sup s}> or <|{rvec r}-{rvec q}|{sup s}> over the unit n-cube (or n-box) - have over three decades been occasionally given closed forms for isolated n,s. By employing experimental mathematics together with a new, global analytic strategy, we prove that for n {le} 4 dimensions the box integrals are for any integer s hypergeometrically closed in a sense we clarify herein. For n = 5 dimensions, we show that a single unresolved integral we call K{sub 5} stands in the way of such hyperclosure proofs. We supply a compendium of exemplary closed forms that naturallymore » arise algorithmically from this theory.« less
Analytical and finite element simulation of a three-bar torsion spring
NASA Astrophysics Data System (ADS)
Rădoi, M.; Cicone, T.
2016-08-01
The present study is dedicated to the innovative 3-bar torsion spring used as suspension solution for the first time at Lunokhod-1, the first autonomous vehicle sent for the exploration of the Moon in the early 70-ies by the former USSR. The paper describes a simple analytical model for calculation of spring static characteristics, taking into account both torsion and bending effects. Closed form solutions of this model allows quick and elegant parametric analysis. A comparison with a single torsion bar with the same stiffness reveal an increase of the maximum stress with more than 50%. A 3D finite element (FE) simulation is proposed to evaluate the accuracy of the analytical model. The model was meshed in an automated pattern (sweep for hubs and tetrahedrons for bars) with mesh morphing. Very close results between analytical and numerical solutions have been found, concluding that the analytical model is accurate. The 3-D finite element simulation was used to evaluate the effects of design details like fillet radius of the bars or contact stresses in the hex hub.
A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function.
Hall, A J; Minchin, P E H
2013-12-01
A closed-form solution for steady-state coupled phloem/xylem flow is presented. This incorporates the basic Münch flow model of phloem transport, the cohesion model of xylem flow, and local variation in the xylem water potential and lateral water flow along the transport pathway. Use of the Lambert-W function allows this solution to be obtained under much more general and realistic conditions than has previously been possible. Variation in phloem resistance (i.e. viscosity) with solute concentration, and deviations from the Van't Hoff expression for osmotic potential are included. It is shown that the model predictions match those of the equilibrium solution of a numerical time-dependent model based upon the same mechanistic assumptions. The effect of xylem flow upon phloem flow can readily be calculated, which has not been possible in any previous analytical model. It is also shown how this new analytical solution can handle multiple sources and sinks within a complex architecture, and can describe competition between sinks. The model provides new insights into Münch flow by explicitly including interactions with xylem flow and water potential in the closed-form solution, and is expected to be useful as a component part of larger numerical models of entire plants. © 2013 John Wiley & Sons Ltd.
Binegativity of two qubits under noise
NASA Astrophysics Data System (ADS)
Sazim, Sk; Awasthi, Natasha
2018-07-01
Recently, it was argued that the binegativity might be a good quantifier of entanglement for two-qubit states. Like the concurrence and the negativity, the binegativity is also analytically computable quantifier for all two qubits. Based on numerical evidence, it was conjectured that it is a PPT (positive partial transposition) monotone and thus fulfills the criterion to be a good measure of entanglement. In this work, we investigate its behavior under noisy channels which indicate that the binegativity is decreasing monotonically with respect to increasing noise. We also find that the binegativity is closely connected to the negativity and has closed analytical form for arbitrary two qubits. Our study supports the conjecture that the binegativity is a monotone.
Axially grooved heat pipe study
NASA Technical Reports Server (NTRS)
1977-01-01
A technology evaluation study on axially grooved heat pipes is presented. The state-of-the-art is reviewed and present and future requirements are identified. Analytical models, the Groove Analysis Program (GAP) and a closed form solution, were developed to facilitate parametric performance evaluations. GAP provides a numerical solution of the differential equations which govern the hydrodynamic flow. The model accounts for liquid recession, liquid/vapor shear interaction, puddle flow as well as laminar and turbulent vapor flow conditions. The closed form solution was developed to reduce computation time and complexity in parametric evaluations. It is applicable to laminar and ideal charge conditions, liquid/vapor shear interaction, and an empirical liquid flow factor which accounts for groove geometry and liquid recession effects. The validity of the closed form solution is verified by comparison with GAP predictions and measured data.
A Novel Capacity Analysis for Wireless Backhaul Mesh Networks
NASA Astrophysics Data System (ADS)
Chung, Tein-Yaw; Lee, Kuan-Chun; Lee, Hsiao-Chih
This paper derived a closed-form expression for inter-flow capacity of a backhaul wireless mesh network (WMN) with centralized scheduling by employing a ring-based approach. Through the definition of an interference area, we are able to accurately describe a bottleneck collision area for a WMN and calculate the upper bound of inter-flow capacity. The closed-form expression shows that the upper bound is a function of the ratio between transmission range and network radius. Simulations and numerical analysis show that our analytic solution can better estimate the inter-flow capacity of WMNs than that of previous approach.
Line-source excitation of realistic conformal metasurface cloaks
NASA Astrophysics Data System (ADS)
Padooru, Yashwanth R.; Yakovlev, Alexander B.; Chen, Pai-Yen; Alù, Andrea
2012-11-01
Following our recently introduced analytical tools to model and design conformal mantle cloaks based on metasurfaces [Padooru et al., J. Appl. Phys. 112, 034907 (2012)], we investigate their performance and physical properties when excited by an electric line source placed in their close proximity. We consider metasurfaces formed by 2-D arrays of slotted (meshes and Jerusalem cross slots) and printed (patches and Jerusalem crosses) sub-wavelength elements. The electromagnetic scattering analysis is carried out using a rigorous analytical model, which utilizes the two-sided impedance boundary conditions at the interface of the sub-wavelength elements. It is shown that the homogenized grid-impedance expressions, originally derived for planar arrays of sub-wavelength elements and plane-wave excitation, may be successfully used to model and tailor the surface reactance of cylindrical conformal mantle cloaks illuminated by near-field sources. Our closed-form analytical results are in good agreement with full-wave numerical simulations, up to sub-wavelength distances from the metasurface, confirming that mantle cloaks may be very effective to suppress the scattering of moderately sized objects, independent of the type of excitation and point of observation. We also discuss the dual functionality of these metasurfaces to boost radiation efficiency and directivity from confined near-field sources.
NASA Technical Reports Server (NTRS)
Fuller, C. R.
1986-01-01
A simplified analytical model of transmission of noise into the interior of propeller-driven aircraft has been developed. The analysis includes directivity and relative phase effects of the propeller noise sources, and leads to a closed form solution for the coupled motion between the interior and exterior fields via the shell (fuselage) vibrational response. Various situations commonly encountered in considering sound transmission into aircraft fuselages are investigated analytically and the results obtained are compared to measurements in real aircraft. In general the model has proved successful in identifying basic mechanisms behind noise transmission phenomena.
First-order analytic propagation of satellites in the exponential atmosphere of an oblate planet
NASA Astrophysics Data System (ADS)
Martinusi, Vladimir; Dell'Elce, Lamberto; Kerschen, Gaëtan
2017-04-01
The paper offers the fully analytic solution to the motion of a satellite orbiting under the influence of the two major perturbations, due to the oblateness and the atmospheric drag. The solution is presented in a time-explicit form, and takes into account an exponential distribution of the atmospheric density, an assumption that is reasonably close to reality. The approach involves two essential steps. The first one concerns a new approximate mathematical model that admits a closed-form solution with respect to a set of new variables. The second step is the determination of an infinitesimal contact transformation that allows to navigate between the new and the original variables. This contact transformation is obtained in exact form, and afterwards a Taylor series approximation is proposed in order to make all the computations explicit. The aforementioned transformation accommodates both perturbations, improving the accuracy of the orbit predictions by one order of magnitude with respect to the case when the atmospheric drag is absent from the transformation. Numerical simulations are performed for a low Earth orbit starting at an altitude of 350 km, and they show that the incorporation of drag terms into the contact transformation generates an error reduction by a factor of 7 in the position vector. The proposed method aims at improving the accuracy of analytic orbit propagation and transforming it into a viable alternative to the computationally intensive numerical methods.
An explicit closed-form analytical solution for European options under the CGMY model
NASA Astrophysics Data System (ADS)
Chen, Wenting; Du, Meiyu; Xu, Xiang
2017-01-01
In this paper, we consider the analytical pricing of European path-independent options under the CGMY model, which is a particular type of pure jump Le´vy process, and agrees well with many observed properties of the real market data by allowing the diffusions and jumps to have both finite and infinite activity and variation. It is shown that, under this model, the option price is governed by a fractional partial differential equation (FPDE) with both the left-side and right-side spatial-fractional derivatives. In comparison to derivatives of integer order, fractional derivatives at a point not only involve properties of the function at that particular point, but also the information of the function in a certain subset of the entire domain of definition. This ;globalness; of the fractional derivatives has added an additional degree of difficulty when either analytical methods or numerical solutions are attempted. Albeit difficult, we still have managed to derive an explicit closed-form analytical solution for European options under the CGMY model. Based on our solution, the asymptotic behaviors of the option price and the put-call parity under the CGMY model are further discussed. Practically, a reliable numerical evaluation technique for the current formula is proposed. With the numerical results, some analyses of impacts of four key parameters of the CGMY model on European option prices are also provided.
NASA Astrophysics Data System (ADS)
Li, Chuan-Yao; Huang, Hai-Jun; Tang, Tie-Qiao
2017-03-01
This paper investigates the traffic flow dynamics under the social optimum (SO) principle in a single-entry traffic corridor with staggered shifts from the analytical and numerical perspectives. The LWR (Lighthill-Whitham and Richards) model and the Greenshield's velocity-density function are utilized to describe the dynamic properties of traffic flow. The closed-form SO solution is analytically derived and some numerical examples are used to further testify the analytical solution. The optimum proportion of the numbers of commuters with different desired arrival times is further discussed, where the analytical and numerical results both indicate that the cumulative outflow curve under the SO principle is piecewise smooth.
NASA Astrophysics Data System (ADS)
Kumar, V. R. Sanal; Sankar, Vigneshwaran; Chandrasekaran, Nichith; Saravanan, Vignesh; Natarajan, Vishnu; Padmanabhan, Sathyan; Sukumaran, Ajith; Mani, Sivabalan; Rameshkumar, Tharikaa; Nagaraju Doddi, Hema Sai; Vysaprasad, Krithika; Sharan, Sharad; Murugesh, Pavithra; Shankar, S. Ganesh; Nejaamtheen, Mohammed Niyasdeen; Baskaran, Roshan Vignesh; Rahman Mohamed Rafic, Sulthan Ariff; Harisrinivasan, Ukeshkumar; Srinivasan, Vivek
2018-02-01
A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.
Cluster Size Optimization in Sensor Networks with Decentralized Cluster-Based Protocols
Amini, Navid; Vahdatpour, Alireza; Xu, Wenyao; Gerla, Mario; Sarrafzadeh, Majid
2011-01-01
Network lifetime and energy-efficiency are viewed as the dominating considerations in designing cluster-based communication protocols for wireless sensor networks. This paper analytically provides the optimal cluster size that minimizes the total energy expenditure in such networks, where all sensors communicate data through their elected cluster heads to the base station in a decentralized fashion. LEACH, LEACH-Coverage, and DBS comprise three cluster-based protocols investigated in this paper that do not require any centralized support from a certain node. The analytical outcomes are given in the form of closed-form expressions for various widely-used network configurations. Extensive simulations on different networks are used to confirm the expectations based on the analytical results. To obtain a thorough understanding of the results, cluster number variability problem is identified and inspected from the energy consumption point of view. PMID:22267882
Two-way DF relaying assisted D2D communication: ergodic rate and power allocation
NASA Astrophysics Data System (ADS)
Ni, Yiyang; Wang, Yuxi; Jin, Shi; Wong, Kai-Kit; Zhu, Hongbo
2017-12-01
In this paper, we investigate the ergodic rate for a device-to-device (D2D) communication system aided by a two-way decode-and-forward (DF) relay node. We first derive closed-form expressions for the ergodic rate of the D2D link under asymmetric and symmetric cases, respectively. We subsequently discuss two special scenarios including weak interference case and high signal-to-noise ratio case. Then we derive the tight approximations for each of the considered scenarios. Assuming that each transmitter only has access to its own statistical channel state information (CSI), we further derive closed-form power allocation strategy to improve the system performance according to the analytical results of the ergodic rate. Furthermore, some insights are provided for the power allocation strategy based on the analytical results. The strategies are easy to compute and require to know only the channel statistics. Numerical results show the accuracy of the analysis results under various conditions and test the availability of the power allocation strategy.
Nonlinear pressure-flow relationships for passive microfluidic valves.
Seker, Erkin; Leslie, Daniel C; Haj-Hariri, Hossein; Landers, James P; Utz, Marcel; Begley, Matthew R
2009-09-21
An analytical solution is presented for the nonlinear pressure-flow relationship of deformable passive valves, which are formed by bonding a deformable film over etched channels separated by a weir. A fluidic pathway connecting the channels is opened when the upstream pressure creates a tunnel along a predefined narrow strip where the film is not bonded to the weir. When the width of the strip is comparable to the inlet channel width, the predicted closed-form pressure-flow rate relationship is in excellent agreement with experiments, which determine pressures by measuring film deflections for prescribed flow rates. The validated closed-form models involve no fitting parameters, and provide the foundation to design passive diodes with specific nonlinear pressure-flow characteristics.
An analytical model for scanning electron microscope Type I magnetic contrast with energy filtering
NASA Astrophysics Data System (ADS)
Chim, W. K.
1994-02-01
In this article, a theoretical model for type I magnetic contrast calculations in the scanning electron microscope with energy filtering is presented. This model uses an approximate form of the secondary electron (SE) energy distribution by Chung and Everhart [M. S. Chung and T. E. Everhart, J. Appl. Phys. 45, 707 (1974). Closed form analytical expressions for the contrast and quality factors, which take into consideration the work function and field-distance integral of the material being studied, are obtained. This analytical model is compared with that of a more accurate numerical model. Results showed that the contrast and quality factors for the analytical model differed by not more than 20% from the numerical model, with the actual difference depending on the range of filtered SE energies considered. This model has also been extended to the situation of a two-detector (i.e., detector A and B) configuration, in which enhanced magnetic contrast and quality factor can be obtained by operating in the ``A-B'' mode.
Preliminary numerical analysis of improved gas chromatograph model
NASA Technical Reports Server (NTRS)
Woodrow, P. T.
1973-01-01
A mathematical model for the gas chromatograph was developed which incorporates the heretofore neglected transport mechanisms of intraparticle diffusion and rates of adsorption. Because a closed-form analytical solution to the model does not appear realizable, techniques for the numerical solution of the model equations are being investigated. Criteria were developed for using a finite terminal boundary condition in place of an infinite boundary condition used in analytical solution techniques. The class of weighted residual methods known as orthogonal collocation is presently being investigated and appears promising.
A New Closed Form Approximation for BER for Optical Wireless Systems in Weak Atmospheric Turbulence
NASA Astrophysics Data System (ADS)
Kaushik, Rahul; Khandelwal, Vineet; Jain, R. C.
2018-04-01
Weak atmospheric turbulence condition in an optical wireless communication (OWC) is captured by log-normal distribution. The analytical evaluation of average bit error rate (BER) of an OWC system under weak turbulence is intractable as it involves the statistical averaging of Gaussian Q-function over log-normal distribution. In this paper, a simple closed form approximation for BER of OWC system under weak turbulence is given. Computation of BER for various modulation schemes is carried out using proposed expression. The results obtained using proposed expression compare favorably with those obtained using Gauss-Hermite quadrature approximation and Monte Carlo Simulations.
NASA Astrophysics Data System (ADS)
Barati, Mohammad Reza
2018-02-01
Nonlocal and surface effects on nonlinear vibration characteristics of a flexoelectric nanobeams under magnetic field are examined. Eringen’s nonlocal elasticity as well as surface elasticity theories are employed to describe the size-dependency of the flexoelectric nanobeam. Also, flexoelectricity is an important size-dependent phenomena for piezoelectric structures at nanoscale, related to the strain gradient-electric polarization coupling. After the derivation of governing equation via Hamilton’s principle, Galerkin method is employed to satisfy boundary conditions. Also, analytical procedures are implemented to obtain the closed-form nonlinear frequency of flexoelectric nanobeam. It is showed that magnetic field intensity, flexoelectric parameter, nonlocal parameter, elastic foundation and applied voltage on the top surface of the nanobeam have great influences on nonlinear vibration frequency.
An improved shear beam method for the characterization of bonded composite joints
NASA Technical Reports Server (NTRS)
Hiel, Clem C.; Brinson, Hal F.
1989-01-01
Closed-form analytical solutions, which govern the displacements and stresses in an adhesive shear beam, are discussed. The remarkable precision with which the shear stresses in the adhesive can be predicted forms the basis of the proposed characterization procedure. The shear modulus of the adhesive is obtained by means of a parameter estimation procedure which requires a symbiosis of theoretical and experimental stress analysis.
Morse oscillator propagator in the high temperature limit II: Quantum dynamics and spectroscopy
NASA Astrophysics Data System (ADS)
Toutounji, Mohamad
2018-04-01
This paper is a continuation of Paper I (Toutounji, 2017) of which motivation was testing the applicability of Morse oscillator propagator whose analytical form was derived by Duru (1983). This is because the Morse oscillator propagator was reported (Duru, 1983) in a triple-integral form of a functional of modified Bessel function of the first kind, which considerably limits its applicability. For this reason, I was prompted to find a regime under which Morse oscillator propagator may be simplified and hence be expressed in a closed-form. This was well accomplished in Paper I. Because Morse oscillator is of central importance and widely used in modelling vibrations, its propagator applicability will be extended to applications in quantum dynamics and spectroscopy as will be reported in this paper using the off-diagonal propagator of Morse oscillator whose analytical form is derived.
Anomaly formulas for the complex-valued analytic torsion on compact bordisms
Maldonado Molina, Osmar
2013-01-01
We extend the complex-valued analytic torsion, introduced by Burghelea and Haller on closed manifolds, to compact Riemannian bordisms. We do so by considering a flat complex vector bundle over a compact Riemannian manifold, endowed with a fiberwise nondegenerate symmetric bilinear form. The Riemmanian metric and the bilinear form are used to define non-selfadjoint Laplacians acting on vector-valued smooth forms under absolute and relative boundary conditions. In order to define the complex-valued analytic torsion in this situation, we study spectral properties of these generalized Laplacians. Then, as main results, we obtain so-called anomaly formulas for this torsion. Our reasoning takes into account that the coefficients in the heat trace asymptotic expansion associated to the boundary value problem under consideration, are locally computable. The anomaly formulas for the complex-valued Ray–Singer torsion are derived first by using the corresponding ones for the Ray–Singer metric, obtained by Brüning and Ma on manifolds with boundary, and then an argument of analytic continuation. In odd dimensions, our anomaly formulas are in accord with the corresponding results of Su, without requiring the variations of the Riemannian metric and bilinear structures to be supported in the interior of the manifold. PMID:27087744
What Makes a Senior Thesis Good?
ERIC Educational Resources Information Center
Trosset, Carol; Weisler, Steven
2018-01-01
Kuh (2008) describes the capstone as a "culminating experience" students undertake close to graduation often involving "a project of some sort that integrates and applies what they've learned" (p. 11). The senior thesis is one form of the capstone in which students write an analytic paper under faculty supervision, typically as…
Roy-Steiner equations for pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Ditsche, C.; Hoferichter, M.; Kubis, B.; Meißner, U.-G.
2012-06-01
Starting from hyperbolic dispersion relations, we derive a closed system of Roy-Steiner equations for pion-nucleon scattering that respects analyticity, unitarity, and crossing symmetry. We work out analytically all kernel functions and unitarity relations required for the lowest partial waves. In order to suppress the dependence on the high energy regime we also consider once- and twice-subtracted versions of the equations, where we identify the subtraction constants with subthreshold parameters. Assuming Mandelstam analyticity we determine the maximal range of validity of these equations. As a first step towards the solution of the full system we cast the equations for the π π to overline N N partial waves into the form of a Muskhelishvili-Omnès problem with finite matching point, which we solve numerically in the single-channel approximation. We investigate in detail the role of individual contributions to our solutions and discuss some consequences for the spectral functions of the nucleon electromagnetic form factors.
Müllerová, Ludmila; Dubský, Pavel; Gaš, Bohuslav
2015-03-06
Interactions among analyte forms that undergo simultaneous dissociation/protonation and complexation with multiple selectors take the shape of a highly interconnected multi-equilibrium scheme. This makes it difficult to express the effective mobility of the analyte in these systems, which are often encountered in electrophoretical separations, unless a generalized model is introduced. In the first part of this series, we presented the theory of electromigration of a multivalent weakly acidic/basic/amphoteric analyte undergoing complexation with a mixture of an arbitrary number of selectors. In this work we demonstrate the validity of this concept experimentally. The theory leads to three useful perspectives, each of which is closely related to the one originally formulated for simpler systems. If pH, IS and the selector mixture composition are all kept constant, the system is treated as if only a single analyte form interacted with a single selector. If the pH changes at constant IS and mixture composition, the already well-established models of a weakly acidic/basic analyte interacting with a single selector can be employed. Varying the mixture composition at constant IS and pH leads to a situation where virtually a single analyte form interacts with a mixture of selectors. We show how to switch between the three perspectives in practice and confirm that they can be employed interchangeably according to the specific needs by measurements performed in single- and dual-selector systems at a pH where the analyte is fully dissociated, partly dissociated or fully protonated. Weak monoprotic analyte (R-flurbiprofen) and two selectors (native β-cyclodextrin and monovalent positively charged 6-monodeoxy-6-monoamino-β-cyclodextrin) serve as a model system. Copyright © 2015 Elsevier B.V. All rights reserved.
Analytical approach to peel stresses in bonded composite stiffened panels
NASA Technical Reports Server (NTRS)
Barkey, Derek A.; Madan, Ram C.; Sutton, Jason O.
1987-01-01
A closed-form solution was obtained for the stresses and displacements of two bonded beams. A system of two fourth-order and two second-order differential equations with the associated boundary equations was determined using a variational work approach. A FORTRAN computer program was devised to solve for the eigenvalues and eigenvectors of this system and to calculate the coefficients from the boundary conditions. The results were then compared with NASTRAN finite-element solutions and shown to agree closely.
Morse oscillator propagator in the high temperature limit I: Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae
2017-02-15
In an earlier work of the author the time evolution of Morse oscillator was studied analytically and exactly at low temperatures whereupon optical correlation functions were calculated using Morse oscillator coherent states were employed. Morse oscillator propagator in the high temperature limit is derived and a closed form of its corresponding canonical partition function is obtained. Both diagonal and off-diagonal forms of Morse oscillator propagator are derived in the high temperature limit. Partition functions of diatomic molecules are calculated. - Highlights: • Derives the quantum propagator of Morse oscillator in the high temperature limit. • Uses the resulting diagonal propagatormore » to derive a closed form of Morse oscillator partition function. • Provides a more sophisticated formula of the quantum propagator to test the accuracy of the herein results.« less
Analytic solution of the Spencer-Lewis angular-spatial moments equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippone, W.L.
A closed-form solution for the angular-spatial moments of the Spencer-Lewis equation is presented that is valid for infinite homogeneous media. From the moments, the electron density distribution as a function of position and path length (energy) is reconstructed for several sample problems involving plane isotropic sources of electrons in aluminium. The results are in excellent agreement with those determined numerically using the streaming ray method. The primary use of the closed form solution will most likely be to generate accurate electron transport benchmark solutions. In principle, the electron density as a function of space, path length, and direction can bemore » determined for planar sources of arbitrary angular distribution.« less
NASA Technical Reports Server (NTRS)
Paraska, Peter J.
1993-01-01
This report documents an analytical study of the response of unsymmetrically laminated cylinders subjected to thermally-induced preloading effects and compressive axial load. Closed-form solutions are obtained for the displacements and intralaminar stresses and recursive relations for the interlaminar shear stress were obtained using the closed-form intralaminar stress solutions. For the cylinder geometries and stacking sequence examples analyzed, several important and as yet undocumented effects of including thermally-induced preloading in the analysis are observed. It should be noted that this work is easily extended to include uniform internal and/or external pressure loadings and the application of strain and stress failure theories.
A theoretical study on pure bending of hexagonal close-packed metal sheet
NASA Astrophysics Data System (ADS)
Mehrabi, Hamed; Yang, Chunhui
2018-05-01
Hexagonal close-packed (HCP) metals have quite different mechanical behaviours in comparison to conventional cubic metals such as steels and aluminum alloys [1, 2]. They exhibit a significant tension-compression asymmetry in initial yielding and subsequent plastic hardening. The reason for this unique behaviour can be attributed to their limited symmetric crystal structure, which leads to twining deformation [3-5]. This unique behaviour strongly influences sheet metal forming of such metals, especially for roll forming, in which the bending is dominant. Hence, it is crucial to represent constitutive relations of HCP metals for accurate estimation of bending moment-curvature behaviours. In this paper, an analytical model for asymmetric elastoplastic pure bending with an application of Cazacu-Barlat asymmetric yield function [6] is presented. This yield function considers the asymmetrical tension-compression behaviour of HCP metals by using second and third invariants of the stress deviator tensor and a specified constant, which can be expressed in terms of uniaxial yield stresses in tension and compression. As a case study, the analytical model is applied to predict the moment-curvature behaviours of AZ31B magnesium alloy sheets under uniaxial loading condition. Furthermore, the analytical model is implemented as a user-defined material through the UMAT interface in Abaqus [7, 8] for conducting pure bending simulations. The results show that the analytical model can reasonably capture the asymmetric tension-compression behaviour of the magnesium alloy. The predicted moment-curvature behaviour has good agreement with the experimental results. Furthermore, numerical results show a better accuracy by the application of the Cazacu-Barlat yield function than those using the von-Mises yield function, which are more conservative than analytical results.
NASA Astrophysics Data System (ADS)
Parvathi, S. P.; Ramanan, R. V.
2018-06-01
An iterative analytical trajectory design technique that includes perturbations in the departure phase of the interplanetary orbiter missions is proposed. The perturbations such as non-spherical gravity of Earth and the third body perturbations due to Sun and Moon are included in the analytical design process. In the design process, first the design is obtained using the iterative patched conic technique without including the perturbations and then modified to include the perturbations. The modification is based on, (i) backward analytical propagation of the state vector obtained from the iterative patched conic technique at the sphere of influence by including the perturbations, and (ii) quantification of deviations in the orbital elements at periapsis of the departure hyperbolic orbit. The orbital elements at the sphere of influence are changed to nullify the deviations at the periapsis. The analytical backward propagation is carried out using the linear approximation technique. The new analytical design technique, named as biased iterative patched conic technique, does not depend upon numerical integration and all computations are carried out using closed form expressions. The improved design is very close to the numerical design. The design analysis using the proposed technique provides a realistic insight into the mission aspects. Also, the proposed design is an excellent initial guess for numerical refinement and helps arrive at the four distinct design options for a given opportunity.
Benchmark solutions for the galactic heavy-ion transport equations with energy and spatial coupling
NASA Technical Reports Server (NTRS)
Ganapol, Barry D.; Townsend, Lawrence W.; Lamkin, Stanley L.; Wilson, John W.
1991-01-01
Nontrivial benchmark solutions are developed for the galactic heavy ion transport equations in the straightahead approximation with energy and spatial coupling. Analytical representations of the ion fluxes are obtained for a variety of sources with the assumption that the nuclear interaction parameters are energy independent. The method utilizes an analytical LaPlace transform inversion to yield a closed form representation that is computationally efficient. The flux profiles are then used to predict ion dose profiles, which are important for shield design studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassemi, S.A.
1988-04-01
High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.
NASA Technical Reports Server (NTRS)
Kassemi, Siavash A.
1988-01-01
High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.
Flexible aircraft dynamic modeling for dynamic analysis and control synthesis
NASA Technical Reports Server (NTRS)
Schmidt, David K.
1989-01-01
The linearization and simplification of a nonlinear, literal model for flexible aircraft is highlighted. Areas of model fidelity that are critical if the model is to be used for control system synthesis are developed and several simplification techniques that can deliver the necessary model fidelity are discussed. These techniques include both numerical and analytical approaches. An analytical approach, based on first-order sensitivity theory is shown to lead not only to excellent numerical results, but also to closed-form analytical expressions for key system dynamic properties such as the pole/zero factors of the vehicle transfer-function matrix. The analytical results are expressed in terms of vehicle mass properties, vibrational characteristics, and rigid-body and aeroelastic stability derivatives, thus leading to the underlying causes for critical dynamic characteristics.
Thermodynamics of Quantum Gases for the Entire Range of Temperature
ERIC Educational Resources Information Center
Biswas, Shyamal; Jana, Debnarayan
2012-01-01
We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…
NASA Astrophysics Data System (ADS)
Demiray, Hilmi; El-Zahar, Essam R.
2018-04-01
We consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.
Polar decomposition for attitude determination from vector observations
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.
1993-01-01
This work treats the problem of weighted least squares fitting of a 3D Euclidean-coordinate transformation matrix to a set of unit vectors measured in the reference and transformed coordinates. A closed-form analytic solution to the problem is re-derived. The fact that the solution is the closest orthogonal matrix to some matrix defined on the measured vectors and their weights is clearly demonstrated. Several known algorithms for computing the analytic closed form solution are considered. An algorithm is discussed which is based on the polar decomposition of matrices into the closest unitary matrix to the decomposed matrix and a Hermitian matrix. A somewhat longer improved algorithm is suggested too. A comparison of several algorithms is carried out using simulated data as well as real data from the Upper Atmosphere Research Satellite. The comparison is based on accuracy and time consumption. It is concluded that the algorithms based on polar decomposition yield a simple although somewhat less accurate solution. The precision of the latter algorithms increase with the number of the measured vectors and with the accuracy of their measurement.
NASA Astrophysics Data System (ADS)
Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin
2017-10-01
Rotational permanent magnet eddy current couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet eddy current couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, eddy current, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.
NASA Astrophysics Data System (ADS)
Agarwal, Bhaskar; Regan, John; Klessen, Ralf S.; Downes, Turlough P.; Zackrisson, Erik
2017-10-01
A near pristine atomic cooling halo close to a star forming galaxy offers a natural pathway for forming massive direct collapse black hole (DCBH) seeds, which could be the progenitors of the z > 6 redshift quasars. The close proximity of the haloes enables a sufficient Lyman-Werner flux to effectively dissociate H2 in the core of the atomic cooling halo. A mild background may also be required to delay star formation in the atomic cooling halo, often attributed to distant background galaxies. In this paper, we investigate the impact of metal pollution from both the background galaxies and the close star forming galaxy under extremely unfavourable conditions such as instantaneous metal mixing. We find that within the time window of DCBH formation, the level of pollution never exceeds the critical threshold (Zcr ˜ 1 × 10-5 Z⊙) and attains a maximum metallicity of Z ˜ 2 × 10- 6 Z⊙. As the system evolves, the metallicity eventually exceeds the critical threshold, long after the DCBH has formed.
Outage Probability of MRC for κ-μ Shadowed Fading Channels under Co-Channel Interference.
Chen, Changfang; Shu, Minglei; Wang, Yinglong; Yang, Ming; Zhang, Chongqing
2016-01-01
In this paper, exact closed-form expressions are derived for the outage probability (OP) of the maximal ratio combining (MRC) scheme in the κ-μ shadowed fading channels, in which both the independent and correlated shadowing components are considered. The scenario assumes the received desired signals are corrupted by the independent Rayleigh-faded co-channel interference (CCI) and background white Gaussian noise. To this end, first, the probability density function (PDF) of the κ-μ shadowed fading distribution is obtained in the form of a power series. Then the incomplete generalized moment-generating function (IG-MGF) of the received signal-to-interference-plus-noise ratio (SINR) is derived in the closed form. By using the IG-MGF results, closed-form expressions for the OP of MRC scheme are obtained over the κ-μ shadowed fading channels. Simulation results are included to validate the correctness of the analytical derivations. These new statistical results can be applied to the modeling and analysis of several wireless communication systems, such as body centric communications.
Outage Probability of MRC for κ-μ Shadowed Fading Channels under Co-Channel Interference
Chen, Changfang; Shu, Minglei; Wang, Yinglong; Yang, Ming; Zhang, Chongqing
2016-01-01
In this paper, exact closed-form expressions are derived for the outage probability (OP) of the maximal ratio combining (MRC) scheme in the κ-μ shadowed fading channels, in which both the independent and correlated shadowing components are considered. The scenario assumes the received desired signals are corrupted by the independent Rayleigh-faded co-channel interference (CCI) and background white Gaussian noise. To this end, first, the probability density function (PDF) of the κ-μ shadowed fading distribution is obtained in the form of a power series. Then the incomplete generalized moment-generating function (IG-MGF) of the received signal-to-interference-plus-noise ratio (SINR) is derived in the closed form. By using the IG-MGF results, closed-form expressions for the OP of MRC scheme are obtained over the κ-μ shadowed fading channels. Simulation results are included to validate the correctness of the analytical derivations. These new statistical results can be applied to the modeling and analysis of several wireless communication systems, such as body centric communications. PMID:27851817
Comparison of three methods for wind turbine capacity factor estimation.
Ditkovich, Y; Kuperman, A
2014-01-01
Three approaches to calculating capacity factor of fixed speed wind turbines are reviewed and compared using a case study. The first "quasiexact" approach utilizes discrete wind raw data (in the histogram form) and manufacturer-provided turbine power curve (also in discrete form) to numerically calculate the capacity factor. On the other hand, the second "analytic" approach employs a continuous probability distribution function, fitted to the wind data as well as continuous turbine power curve, resulting from double polynomial fitting of manufacturer-provided power curve data. The latter approach, while being an approximation, can be solved analytically thus providing a valuable insight into aspects, affecting the capacity factor. Moreover, several other merits of wind turbine performance may be derived based on the analytical approach. The third "approximate" approach, valid in case of Rayleigh winds only, employs a nonlinear approximation of the capacity factor versus average wind speed curve, only requiring rated power and rotor diameter of the turbine. It is shown that the results obtained by employing the three approaches are very close, enforcing the validity of the analytically derived approximations, which may be used for wind turbine performance evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra ismore » later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a rotating quadrupole field ion trap are presented. •Exact solutions for magneto-transport in variable electromagnetic fields are shown.« less
NASA Technical Reports Server (NTRS)
Madnia, C. K.; Frankel, S. H.; Givi, P.
1992-01-01
Closed form analytical expressions are obtained for predicting the limited rate of reactant conversion in a binary reaction of the type F + rO yields (1 + r) Product in unpremixed homogeneous turbulence. These relations are obtained by means of a single point Probability Density Function (PDF) method based on the Amplitude Mapping Closure. It is demonstrated that with this model, the maximum rate of the reactants' decay can be conveniently expressed in terms of definite integrals of the Parabolic Cylinder Functions. For the cases with complete initial segregation, it is shown that the results agree very closely with those predicted by employing a Beta density of the first kind for an appropriately defined Shvab-Zeldovich scalar variable. With this assumption, the final results can also be expressed in terms of closed form analytical expressions which are based on the Incomplete Beta Functions. With both models, the dependence of the results on the stoichiometric coefficient and the equivalence ratio can be expressed in an explicit manner. For a stoichiometric mixture, the analytical results simplify significantly. In the mapping closure, these results are expressed in terms of simple trigonometric functions. For the Beta density model, they are in the form of Gamma Functions. In all the cases considered, the results are shown to agree well with data generated by Direct Numerical Simulations (DNS). Due to the simplicity of these expressions and because of nice mathematical features of the Parabolic Cylinder and the Incomplete Beta Functions, these models are recommended for estimating the limiting rate of reactant conversion in homogeneous reacting flows. These results also provide useful insights in assessing the extent of validity of turbulence closures in the modeling of unpremixed reacting flows. Some discussions are provided on the extension of the model for treating more complicated reacting systems including realistic kinetics schemes and multi-scalar mixing with finite rate chemical reactions in more complex configurations.
NASA Astrophysics Data System (ADS)
Schatz, Konrad; Friedrich, Bretislav; Becker, Simon; Schmidt, Burkhard
2018-05-01
We make use of the quantum Hamilton-Jacobi (QHJ) theory to investigate conditional quasisolvability of the quantum symmetric top subject to combined electric fields (symmetric top pendulum). We derive the conditions of quasisolvability of the time-independent Schrödinger equation as well as the corresponding finite sets of exact analytic solutions. We do so for this prototypical trigonometric system as well as for its anti-isospectral hyperbolic counterpart. An examination of the algebraic and numerical spectra of these two systems reveals mutually closely related patterns. The QHJ approach allows us to retrieve the closed-form solutions for the spherical and planar pendula and the Razavy system that had been obtained in our earlier work via supersymmetric quantum mechanics as well as to find a cornucopia of additional exact analytic solutions.
Analytic Closed-Form Solution of a Mixed Layer Model for Stratocumulus Clouds
NASA Astrophysics Data System (ADS)
Akyurek, Bengu Ozge
Stratocumulus clouds play an important role in climate cooling and are hard to predict using global climate and weather forecast models. Thus, previous studies in the literature use observations and numerical simulation tools, such as large-eddy simulation (LES), to solve the governing equations for the evolution of stratocumulus clouds. In contrast to the previous works, this work provides an analytic closed-form solution to the cloud thickness evolution of stratocumulus clouds in a mixed-layer model framework. With a focus on application over coastal lands, the diurnal cycle of cloud thickness and whether or not clouds dissipate are of particular interest. An analytic solution enables the sensitivity analysis of implicitly interdependent variables and extrema analysis of cloud variables that are hard to achieve using numerical solutions. In this work, the sensitivity of inversion height, cloud-base height, and cloud thickness with respect to initial and boundary conditions, such as Bowen ratio, subsidence, surface temperature, and initial inversion height, are studied. A critical initial cloud thickness value that can be dissipated pre- and post-sunrise is provided. Furthermore, an extrema analysis is provided to obtain the minima and maxima of the inversion height and cloud thickness within 24 h. The proposed solution is validated against LES results under the same initial and boundary conditions. Then, the proposed analytic framework is extended to incorporate multiple vertical columns that are coupled by advection through wind flow. This enables a bridge between the micro-scale and the mesoscale relations. The effect of advection on cloud evolution is studied and a sensitivity analysis is provided.
Michael, Costas; Bayona, Josep Maria; Lambropoulou, Dimitra; Agüera, Ana; Fatta-Kassinos, Despo
2017-06-01
Occurrence and effects of contaminants of emerging concern pose a special challenge to environmental scientists. The investigation of these effects requires reliable, valid, and comparable analytical data. To this effect, two critical aspects are raised herein, concerning the limitations of the produced analytical data. The first relates to the inherent difficulty that exists in the analysis of environmental samples, which is related to the lack of knowledge (information), in many cases, of the form(s) of the contaminant in which is present in the sample. Thus, the produced analytical data can only refer to the amount of the free contaminant ignoring the amount in which it may be present in other forms; e.g., as in chelated and conjugated form. The other important aspect refers to the way with which the spiking procedure is generally performed to determine the recovery of the analytical method. Spiking environmental samples, in particular solid samples, with standard solution followed by immediate extraction, as is the common practice, can lead to an overestimation of the recovery. This is so, because no time is given to the system to establish possible equilibria between the solid matter-inorganic and/or organic-and the contaminant. Therefore, the spiking procedure need to be reconsidered by including a study of the extractable amount of the contaminant versus the time elapsed between spiking and the extraction of the sample. This study can become an element of the validation package of the method.
ERIC Educational Resources Information Center
Li, Tiandong
2012-01-01
In large-scale assessments, such as the National Assessment of Educational Progress (NAEP), plausible values based on Multiple Imputations (MI) have been used to estimate population characteristics for latent constructs under complex sample designs. Mislevy (1991) derived a closed-form analytic solution for a fixed-effect model in creating…
Analytic saddlepoint approximation for ionization energy loss distributions
Sjue, Sky K. L.; George, Jr., Richard Neal; Mathews, David Gregory
2017-07-27
Here, we present a saddlepoint approximation for ionization energy loss distributions, valid for arbitrary relativistic velocities of the incident particle 0 < v/c < 1, provided that ionizing collisions are still the dominant energy loss mechanism. We derive a closed form solution closely related to Moyal’s distribution. This distribution is intended for use in simulations with relatively low computational overhead. The approximation generally reproduces the Vavilov most probable energy loss and full width at half maximum to better than 1% and 10%, respectively, with significantly better agreement as Vavilov’s κ approaches 1.
Analytic saddlepoint approximation for ionization energy loss distributions
NASA Astrophysics Data System (ADS)
Sjue, S. K. L.; George, R. N.; Mathews, D. G.
2017-09-01
We present a saddlepoint approximation for ionization energy loss distributions, valid for arbitrary relativistic velocities of the incident particle 0 < v / c < 1 , provided that ionizing collisions are still the dominant energy loss mechanism. We derive a closed form solution closely related to Moyal's distribution. This distribution is intended for use in simulations with relatively low computational overhead. The approximation generally reproduces the Vavilov most probable energy loss and full width at half maximum to better than 1% and 10%, respectively, with significantly better agreement as Vavilov's κ approaches 1.
Analytic saddlepoint approximation for ionization energy loss distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjue, Sky K. L.; George, Jr., Richard Neal; Mathews, David Gregory
Here, we present a saddlepoint approximation for ionization energy loss distributions, valid for arbitrary relativistic velocities of the incident particle 0 < v/c < 1, provided that ionizing collisions are still the dominant energy loss mechanism. We derive a closed form solution closely related to Moyal’s distribution. This distribution is intended for use in simulations with relatively low computational overhead. The approximation generally reproduces the Vavilov most probable energy loss and full width at half maximum to better than 1% and 10%, respectively, with significantly better agreement as Vavilov’s κ approaches 1.
Analytical solutions for avalanche-breakdown voltages of single-diffused Gaussian junctions
NASA Astrophysics Data System (ADS)
Shenai, K.; Lin, H. C.
1983-03-01
Closed-form solutions of the potential difference between the two edges of the depletion layer of a single diffused Gaussian p-n junction are obtained by integrating Poisson's equation and equating the magnitudes of the positive and negative charges in the depletion layer. By using the closed form solution of the static Poisson's equation and Fulop's average ionization coefficient, the ionization integral in the depletion layer is computed, which yields the correct values of avalanche breakdown voltage, depletion layer thickness at breakdown, and the peak electric field as a function of junction depth. Newton's method is used for rapid convergence. A flowchart to perform the calculations with a programmable hand-held calculator, such as the TI-59, is shown.
NASA Astrophysics Data System (ADS)
Krishnasamy, M.; Qian, Feng; Zuo, Lei; Lenka, T. R.
2018-03-01
The charge cancellation due to the change of strain along single continuous piezoelectric layer can remarkably affect the performance of a cantilever based harvester. In this paper, analytical models using distributed parameters are developed with some extent of averting the charge cancellation in cantilever piezoelectric transducer where the piezoelectric layers are segmented at strain nodes of concerned vibration mode. The electrode of piezoelectric segments are parallelly connected with a single external resistive load in the 1st model (Model 1). While each bimorph piezoelectric layers are connected in parallel to a resistor to form an independent circuit in the 2nd model (Model 2). The analytical expressions of the closed-form electromechanical coupling responses in frequency domain under harmonic base excitation are derived based on the Euler-Bernoulli beam assumption for both models. The developed analytical models are validated by COMSOL and experimental results. The results demonstrate that the energy harvesting performance of the developed segmented piezoelectric layer models is better than the traditional model of continuous piezoelectric layer.
An analytical method for the inverse Cauchy problem of Lame equation in a rectangle
NASA Astrophysics Data System (ADS)
Grigor’ev, Yu
2018-04-01
In this paper, we present an analytical computational method for the inverse Cauchy problem of Lame equation in the elasticity theory. A rectangular domain is frequently used in engineering structures and we only consider the analytical solution in a two-dimensional rectangle, wherein a missing boundary condition is recovered from the full measurement of stresses and displacements on an accessible boundary. The essence of the method consists in solving three independent Cauchy problems for the Laplace and Poisson equations. For each of them, the Fourier series is used to formulate a first-kind Fredholm integral equation for the unknown function of data. Then, we use a Lavrentiev regularization method, and the termwise separable property of kernel function allows us to obtain a closed-form regularized solution. As a result, for the displacement components, we obtain solutions in the form of a sum of series with three regularization parameters. The uniform convergence and error estimation of the regularized solutions are proved.
Applications of computer algebra to distributed parameter systems
NASA Technical Reports Server (NTRS)
Storch, Joel A.
1993-01-01
In the analysis of vibrations of continuous elastic systems, one often encounters complicated transcendental equations with roots directly related to the system's natural frequencies. Typically, these equations contain system parameters whose values must be specified before a numerical solution can be obtained. The present paper presents a method whereby the fundamental frequency can be obtained in analytical form to any desired degree of accuracy. The method is based upon truncation of rapidly converging series involving inverse powers of the system natural frequencies. A straightforward method to developing these series and summing them in closed form is presented. It is demonstrated how Computer Algebra can be exploited to perform the intricate analytical procedures which otherwise would render the technique difficult to apply in practice. We illustrate the method by developing two analytical approximations to the fundamental frequency of a vibrating cantilever carrying a rigid tip body. The results are compared to the numerical solution of the exact (transcendental) frequency equation over a range of system parameters.
Higher-n triangular dilatonic black holes
NASA Astrophysics Data System (ADS)
Zadora, Anton; Gal'tsov, Dmitri V.; Chen, Chiang-Mei
2018-04-01
Dilaton gravity with the form fields is known to possess dyon solutions with two horizons for the discrete "triangular" values of the dilaton coupling constant a =√{ n (n + 1) / 2 }. This sequence first obtained numerically and then explained analytically as consequence of the regularity of the dilaton, should have some higher-dimensional and/or group theoretical origin. Meanwhile, this origin was explained earlier only for n = 1 , 2 in which cases the solutions were known analytically. We extend this explanation to n = 3 , 5 presenting analytical triangular solutions for the theory with different dilaton couplings a , b in electric and magnetic sectors in which case the quantization condition reads ab = n (n + 1) / 2. The solutions are derived via the Toda chains for B2 and G2 Lie algebras. They are found in the closed form in general D space-time dimensions. Solutions satisfy the entropy product rules indicating on the microscopic origin of their entropy and have negative binding energy in the extremal case.
Comparative Kinetic Analysis of Closed-Ended and Open-Ended Porous Sensors
NASA Astrophysics Data System (ADS)
Zhao, Yiliang; Gaur, Girija; Mernaugh, Raymond L.; Laibinis, Paul E.; Weiss, Sharon M.
2016-09-01
Efficient mass transport through porous networks is essential for achieving rapid response times in sensing applications utilizing porous materials. In this work, we show that open-ended porous membranes can overcome diffusion challenges experienced by closed-ended porous materials in a microfluidic environment. A theoretical model including both transport and reaction kinetics is employed to study the influence of flow velocity, bulk analyte concentration, analyte diffusivity, and adsorption rate on the performance of open-ended and closed-ended porous sensors integrated with flow cells. The analysis shows that open-ended pores enable analyte flow through the pores and greatly reduce the response time and analyte consumption for detecting large molecules with slow diffusivities compared with closed-ended pores for which analytes largely flow over the pores. Experimental confirmation of the results was carried out with open- and closed-ended porous silicon (PSi) microcavities fabricated in flow-through and flow-over sensor configurations, respectively. The adsorption behavior of small analytes onto the inner surfaces of closed-ended and open-ended PSi membrane microcavities was similar. However, for large analytes, PSi membranes in a flow-through scheme showed significant improvement in response times due to more efficient convective transport of analytes. The experimental results and theoretical analysis provide quantitative estimates of the benefits offered by open-ended porous membranes for different analyte systems.
Bogoliubov theory of acoustic Hawking radiation in Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Recati, A.; Physik-Department, Technische Universitaet Muenchen, D-85748 Garching; Pavloff, N.
2009-10-15
We apply the microscopic Bogoliubov theory of dilute Bose-Einstein condensates to analyze quantum and thermal fluctuations in a flowing atomic condensate in the presence of a sonic horizon. For the simplest case of a step-like horizon, closed-form analytical expressions are found for the spectral distribution of the analog Hawking radiation and for the density correlation function. The peculiar long-distance density correlations that appear as a consequence of the Hawking emission features turns out to be reinforced by a finite initial temperature of the condensate. The analytical results are in good quantitative agreement with first principle numerical calculations.
Eggert, Corinne; Moselle, Kenneth; Protti, Denis; Sanders, Dale
2017-01-01
Closed Loop Analytics© is receiving growing interest in healthcare as a term referring to information technology, local data and clinical analytics working together to generate evidence for improvement. The Closed Loop Analytics model consists of three loops corresponding to the decision-making levels of an organization and the associated data within each loop - Patients, Protocols, and Populations. The authors propose that each of these levels should utilize the same ecosystem of electronic health record (EHR) and enterprise data warehouse (EDW) enabled data, in a closed-loop fashion, with that data being repackaged and delivered to suit the analytic and decision support needs of each level, in support of better outcomes.
An accurate analytic description of neutrino oscillations in matter
NASA Astrophysics Data System (ADS)
Akhmedov, E. Kh.; Niro, Viviana
2008-12-01
A simple closed-form analytic expression for the probability of two-flavour neutrino oscillations in a matter with an arbitrary density profile is derived. Our formula is based on a perturbative expansion and allows an easy calculation of higher order corrections. The expansion parameter is small when the density changes relatively slowly along the neutrino path and/or neutrino energy is not very close to the Mikheyev-Smirnov-Wolfenstein (MSW) resonance energy. Our approximation is not equivalent to the adiabatic approximation and actually goes beyond it. We demonstrate the validity of our results using a few model density profiles, including the PREM density profile of the Earth. It is shown that by combining the results obtained from the expansions valid below and above the MSW resonance one can obtain a very good description of neutrino oscillations in matter in the entire energy range, including the resonance region.
NASA Astrophysics Data System (ADS)
Shan, Zhendong; Ling, Daosheng
2018-02-01
This article develops an analytical solution for the transient wave propagation of a cylindrical P-wave line source in a semi-infinite elastic solid with a fluid layer. The analytical solution is presented in a simple closed form in which each term represents a transient physical wave. The Scholte equation is derived, through which the Scholte wave velocity can be determined. The Scholte wave is the wave that propagates along the interface between the fluid and solid. To develop the analytical solution, the wave fields in the fluid and solid are defined, their analytical solutions in the Laplace domain are derived using the boundary and interface conditions, and the solutions are then decomposed into series form according to the power series expansion method. Each item of the series solution has a clear physical meaning and represents a transient wave path. Finally, by applying Cagniard's method and the convolution theorem, the analytical solutions are transformed into the time domain. Numerical examples are provided to illustrate some interesting features in the fluid layer, the interface and the semi-infinite solid. When the P-wave velocity in the fluid is higher than that in the solid, two head waves in the solid, one head wave in the fluid and a Scholte wave at the interface are observed for the cylindrical P-wave line source.
A simple closed-form solution for assessing concentration uncertainty
NASA Astrophysics Data System (ADS)
de Barros, F. P. J.; Fiori, Aldo; Bellin, Alberto
2011-12-01
We propose closed-form approximate solutions for the moments of a nonreactive tracer that can be used in applications, such as risk analysis. This is in line with the tenet that analytical solutions provide useful information, with minimum cost, during initial site characterization efforts and can serve as a preliminary screening tool when used with prior knowledge. We show that with the help of a few assumptions, the first-order solutions of the concentration moments proposed by Fiori and Dagan (2000) can be further simplified to assume a form similar to well-known deterministic solutions, therefore facilitating their use in applications. A highly anisotropic formation is assumed, and we neglect the transverse components of the two-particle correlation trajectory. The proposed solution compares well with the work of Fiori and Dagan while presenting the same simplicity of use of existing solutions for homogeneous porous media.
NASA Astrophysics Data System (ADS)
Konstantinou, Georgios; Moulopoulos, Konstantinos
2017-05-01
By perceiving gauge invariance as an analytical tool in order to get insight into the states of the "generalized Landau problem" (a charged quantum particle moving inside a magnetic, and possibly electric field), and motivated by an early article that correctly warns against a naive use of gauge transformation procedures in the usual Landau problem (i.e. with the magnetic field being static and uniform), we first show how to bypass the complications pointed out in that article by solving the problem in full generality through gauge transformation techniques in a more appropriate manner. Our solution provides in simple and closed analytical forms all Landau Level-wavefunctions without the need to specify a particular vector potential. This we do by proper handling of the so-called pseudomomentum ěc {{K}} (or of a quantity that we term pseudo-angular momentum L z ), a method that is crucially different from the old warning argument, but also from standard treatments in textbooks and in research literature (where the usual Landau-wavefunctions are employed - labeled with canonical momenta quantum numbers). Most importantly, we go further by showing that a similar procedure can be followed in the more difficult case of spatially-nonuniform magnetic fields: in such case we define ěc {{K}} and L z as plausible generalizations of the previous ordinary case, namely as appropriate line integrals of the inhomogeneous magnetic field - our method providing closed analytical expressions for all stationary state wavefunctions in an easy manner and in a broad set of geometries and gauges. It can thus be viewed as complementary to the few existing works on inhomogeneous magnetic fields, that have so far mostly focused on determining the energy eigenvalues rather than the corresponding eigenkets (on which they have claimed that, even in the simplest cases, it is not possible to obtain in closed form the associated wavefunctions). The analytical forms derived here for these wavefunctions enable us to also provide explicit Berry's phase calculations and a quick study of their connection to probability currents and to some recent interesting issues in elementary Quantum Mechanics and Condensed Matter Physics. As an added feature, we also show how the possible presence of an additional electric field can be treated through a further generalization of pseudomomenta and their proper handling.
Too hot to handle? Analytic solutions for massive neutrino or warm dark matter cosmologies
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Portillo, Stephen K. N.
2018-05-01
We obtain novel closed-form solutions to the Friedmann equation for cosmological models containing a component whose equation of state is that of radiation (w = 1/3) at early times and that of cold pressureless matter (w = 0) at late times. The equation of state smoothly transitions from the early to late-time behavior and exactly describes the evolution of a species with a Dirac Delta function distribution in momentum magnitudes |p_0| (i.e. all particles have the same |p_0|). Such a component, here termed "hot matter", is an approximate model for both neutrinos and warm dark matter. We consider it alone and in combination with cold matter and with radiation, also obtaining closed-form solutions for the growth of super-horizon perturbations in each case. The idealized model recovers t(a) to better than 1.5% accuracy for all a relative to a Fermi-Dirac distribution (as describes neutrinos). We conclude by adding the second moment of the distribution to our exact solution and then generalizing to include all moments of an arbitrary momentum distribution in a closed-form solution.
Too hot to handle? Analytic solutions for massive neutrino or warm dark matter cosmologies
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Portillo, Stephen K. N.
2018-07-01
We obtain novel closed-form solutions to the Friedmann equation for cosmological models containing a component whose equation of state is that of radiation (w = 1/3) at early times and that of cold pressureless matter (w= 0) at late times. The equation of state smoothly transitions from the early- to late-time behaviour and exactly describes the evolution of a species with a Dirac delta function distribution in momentum magnitudes |{p}_0| (i.e. all particles have the same |{p}_0|). Such a component, here termed `hot matter', is an approximate model for both neutrinos and warm dark matter. We consider it alone and in combination with cold matter and with radiation, also obtaining closed-form solutions for the growth of superhorizon perturbations in each case. The idealized model recovers t(a) to better than 1.5 per cent accuracy for all a relative to a Fermi-Dirac distribution (as describes neutrinos). We conclude by adding the second moment of the distribution to our exact solution and then generalizing to include all moments of an arbitrary momentum distribution in a closed-form solution.
NASA Astrophysics Data System (ADS)
Chesnaux, R.
2016-04-01
Closed-form analytical solutions for assessing the consequences of sea-level rise on fresh groundwater oceanic island lenses are provided for the cases of both strip and circular islands. Solutions are proposed for directly calculating the change in the thickness of the lens, the changes in volume and the changes in travel time of fresh groundwater within island aquifers. The solutions apply for homogenous aquifers recharged by surface infiltration and discharged by a down-gradient, fixed-head boundary. They also take into account the inland shift of the ocean due to land surface inundation, this shift being determined by the coastal slope of inland aquifers. The solutions are given for two simple island geometries: circular islands and strip islands. Base case examples are presented to illustrate, on one hand, the amplitude of the change of the fresh groundwater lens thickness and the volume depletion of the lens in oceanic island with sea-level rise, and on the other hand, the shortening of time required for groundwater to discharge into the ocean. These consequences can now be quantified and may help decision-makers to anticipate the effects of sea-level rise on fresh groundwater availability in oceanic island aquifers.
Fast and Analytical EAP Approximation from a 4th-Order Tensor.
Ghosh, Aurobrata; Deriche, Rachid
2012-01-01
Generalized diffusion tensor imaging (GDTI) was developed to model complex apparent diffusivity coefficient (ADC) using higher-order tensors (HOTs) and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP). Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF), since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data.
Fast and Analytical EAP Approximation from a 4th-Order Tensor
Ghosh, Aurobrata; Deriche, Rachid
2012-01-01
Generalized diffusion tensor imaging (GDTI) was developed to model complex apparent diffusivity coefficient (ADC) using higher-order tensors (HOTs) and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile does not correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the ensemble average propagator (EAP). Though interesting methods for estimating a positive ADC using 4th-order diffusion tensors were developed, GDTI in general was overtaken by other approaches, for example, the orientation distribution function (ODF), since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper, we present a novel closed-form approximation of the EAP using Hermite polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate our approach with 4th-order tensors on synthetic data and in vivo human data. PMID:23365552
Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry
NASA Astrophysics Data System (ADS)
Zheng, Qiuling; Chen, Hao
2016-06-01
Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.
NASA Astrophysics Data System (ADS)
Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza
2018-06-01
Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the comparison with both the finite element solution of the main partial differential equations and the experimental observations. The effect of excitation angle of the resonator on horizontal oscillation of the probe tip and the effect of different parameters on the frequency-response of the system are investigated.
Unsteady lift forces on highly cambered airfoils moving through a gust
NASA Technical Reports Server (NTRS)
Atassi, H.; Goldstein, M.
1974-01-01
An unsteady airfoil theory in which the flow is linearized about the steady potential flow of the airfoil is presented. The theory is applied to an airfoil entering a gust. After transformation to the W-plane, the problem is formulated in terms of a Poisson's equation. The solutions are expanded in a Fourier-Bessel series. The theory is applied to a circular arc with arbitrary camber. Closed form expressions for the velocity and pressure on the surface of the airfoil are obtained. The unsteady aerodynamic forces are then calculated and shown to contain two terms. One in an explicit closed analytical form represents the contribution of the oncoming vortical disturbance, the other depends on a single quadrature and accounts for the effect of the wake.
NASA Astrophysics Data System (ADS)
Hasan, Mohammd; Mandal, Bhabani Prasad
2018-04-01
In this paper we introduce the concept of super periodic potential (SPP) of arbitrary order n, n ∈I+, in one dimension. General theory of wave propagation through SPP of order n is presented and the reflection and transmission coefficients are derived in their closed analytical form by transfer matrix formulation. We present scattering features of super periodic rectangular potential and super periodic delta potential as special cases of SPP. It is found that the symmetric self-similarity is the special case of super periodicity. Thus by identifying a symmetric fractal potential as special cases of SPP, one can obtain the tunnelling amplitude for a particle from such fractal potential. By using the formalism of SPP we obtain the close form expression of tunnelling amplitude of a particle for general Cantor and Smith-Volterra-Cantor potentials.
Analytical formulation of impulsive collision avoidance dynamics
NASA Astrophysics Data System (ADS)
Bombardelli, Claudio
2014-02-01
The paper deals with the problem of impulsive collision avoidance between two colliding objects in three dimensions and assuming elliptical Keplerian orbits. Closed-form analytical expressions are provided that accurately predict the relative dynamics of the two bodies in the encounter b-plane following an impulsive delta-V manoeuvre performed by one object at a given orbit location prior to the impact and with a generic three-dimensional orientation. After verifying the accuracy of the analytical expressions for different orbital eccentricities and encounter geometries the manoeuvre direction that maximises the miss distance is obtained numerically as a function of the arc length separation between the manoeuvre point and the predicted collision point. The provided formulas can be used for high-accuracy instantaneous estimation of the outcome of a generic impulsive collision avoidance manoeuvre and its optimisation.
Natural Vibration Analysis of Clamped Rectangular Orthotropic Plates
NASA Astrophysics Data System (ADS)
dalaei, m.; kerr, a. d.
The natural vibrations of clamped rectangular orthotropic plates are analyzed using the extended Kantorovich method. The developed iterative scheme converges very rapidly to the final result. The obtained natural frequencies are evaluated for a square plate made of Kevlar 49 Epoxy and the obtained results are compared with those published by Kanazawa and Kawai, and by Leissa. The agreement was found to be very close. As there are no exact analytical solutions for clamped rectangular plates, the generated closed form expression for the natural modes, and the corresponding natural frequencies, are very suitable for use in engineering analyses.
Ring dark and antidark solitons in nonlocal media.
Horikis, Theodoros P; Frantzeskakis, Dimitrios J
2016-02-01
Ring dark and antidark solitons in nonlocal media are found. These structures have, respectively, the form of annular dips or humps on top of a stable CW background, and exist in a weak or strong nonlocality regime, defined by the sign of a characteristic parameter. It is demonstrated analytically that these solitons satisfy an effective cylindrical Kadomtsev-Petviashvili (aka Johnson's) equation and, as such, can be written explicitly in closed form. Numerical simulations show that they propagate undistorted and undergo quasi-elastic collisions, attesting to their stability properties.
Elastic model for crimped collagen fibrils
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Doehring, Todd C.
2005-01-01
A physiologic constitutive expression is presented in algorithmic format for the nonlinear elastic response of wavy collagen fibrils found in soft connective tissues. The model is based on the observation that crimped fibrils in a fascicle have a three-dimensional structure at the micron scale that we approximate as a helical spring. The symmetry of this wave form allows the force/displacement relationship derived from Castigliano's theorem to be solved in closed form: all integrals become analytic. Model predictions are in good agreement with experimental observations for mitral-valve chordae tendinece.
Generalized M-factor of hollow Gaussian beams through a hard-edge circular aperture
NASA Astrophysics Data System (ADS)
Deng, Dongmei
2005-06-01
Based on the generalized truncated second-order moments, the generalized M-factor (MG2-factor) of three-dimensional hollow Gaussian beams (HGBs) through a hard-edge circular aperture is studied in cylindrical coordinate system analytically and numerically. The closed-form expression for the MG2-factor of the truncated HGBs, which is dependent on the truncation parameter β and the beam order n, can be simplified to that of the truncated, the untruncated Gaussian beams and the untruncated HGBs. Also, the power fraction is demonstrated analytically and numerically, which shows that the area of the dark region across the HGBs increases as n increasing.
NASA Technical Reports Server (NTRS)
Lerche, I.; Low, B. C.
1980-01-01
Exact analytic solutions for the static equilibrium of a gravitating plasma polytrope in the presence of magnetic fields are presented. The means of generating various equilibrium configurations to illustrate directly the complex physical relationships between pressure, magnetic fields, and gravity in self-gravitating systems is demonstrated. One of the solutions is used to model interstellar clouds suspended by magnetic fields against the galactic gravity such as may be formed by the Parker (1966) instability. It is concluded that the pinching effect of closed loops of magnetic fields in the clouds may be a dominant agent in further collapsing the clouds following their formation.
The serpentine optical waveguide: engineering the dispersion relations and the stopped light points.
Scheuer, Jacob; Weiss, Ori
2011-06-06
We present a study a new type of optical slow-light structure comprising a serpentine shaped waveguide were the loops are coupled. The dispersion relation, group velocity and GVD are studied analytically using a transfer matrix method and numerically using finite difference time domain simulations. The structure exhibits zero group velocity points at the ends of the Brillouin zone, but also within the zone. The position of mid-zone zero group velocity point can be tuned by modifying the coupling coefficient between adjacent loops. Closed-form analytic expressions for the dispersion relations, group velocity and the mid-zone zero v(g) points are found and presented.
Comment on "A note on generalized radial mesh generation for plasma electronic structure"
NASA Astrophysics Data System (ADS)
Pain, J.-Ch.
2011-12-01
In a recent note, B.G. Wilson and V. Sonnad [1] proposed a very useful closed form expression for the efficient generation of analytic log-linear radial meshes. The central point of the note is an implicit equation for the parameter h, involving Lambert's function W[x]. The authors mention that they are unaware of any direct proof of this equation (they obtained it by re-summing the Taylor expansion of h[α] using high-order coefficients obtained by analytic differentiation of the implicit definition using symbolic manipulation). In the present comment, we propose a direct proof of that equation.
NASA Astrophysics Data System (ADS)
Govindarajan, A.; Vijayalakshmi, R.; Ramamurthy, V.
2018-04-01
The main aim of this article is to study the combined effects of heat and mass transfer to radiative Magneto Hydro Dynamics (MHD) oscillatory optically thin dusty fluid in a saturated porous medium channel. Based on certain assumptions, the momentum, energy, concentration equations are obtained.The governing equations are non-dimensionalised, simplified and solved analytically. The closed analytical form solutions for velocity, temperature, concentration profiles are obtained. Numerical computations are presented graphically to show the salient features of various physical parameters. The shear stress, the rate of heat transfer and the rate of mass transfer are also presented graphically.
Analytical skin friction and heat transfer formula for compressible internal flows
NASA Technical Reports Server (NTRS)
Dechant, Lawrence J.; Tattar, Marc J.
1994-01-01
An analytic, closed-form friction formula for turbulent, internal, compressible, fully developed flow was derived by extending the incompressible law-of-the-wall relation to compressible cases. The model is capable of analyzing heat transfer as a function of constant surface temperatures and surface roughness as well as analyzing adiabatic conditions. The formula reduces to Prandtl's law of friction for adiabatic, smooth, axisymmetric flow. In addition, the formula reduces to the Colebrook equation for incompressible, adiabatic, axisymmetric flow with various roughnesses. Comparisons with available experiments show that the model averages roughly 12.5 percent error for adiabatic flow and 18.5 percent error for flow involving heat transfer.
A closed form of a kurtosis parameter of a hypergeometric-Gaussian type-II beam
NASA Astrophysics Data System (ADS)
F, Khannous; A, A. A. Ebrahim; A, Belafhal
2016-04-01
Based on the irradiance moment definition and the analytical expression of waveform propagation for hypergeometric-Gaussian type-II beams passing through an ABCD system, the kurtosis parameter is derived analytically and illustrated numerically. The kurtosis parameters of the Gaussian beam, modified Bessel modulated Gaussian beam with quadrature radial and elegant Laguerre-Gaussian beams are obtained by treating them as special cases of the present treatment. The obtained results show that the kurtosis parameter depends on the change of the beam order m and the hollowness parameter p, such as its decrease with increasing m and increase with increasing p.
Thermodynamics of Thomas-Fermi screened Coulomb systems
NASA Technical Reports Server (NTRS)
Firey, B.; Ashcroft, N. W.
1977-01-01
We obtain in closed analytic form, estimates for the thermodynamic properties of classical fluids with pair potentials of Yukawa type, with special reference to dense fully ionized plasmas with Thomas-Fermi or Debye-Hueckel screening. We further generalize the hard-sphere perturbative approach used for similarly screened two-component mixtures, and demonstrate phase separation in this simple model of a liquid mixture of metallic helium and hydrogen.
On the strain energy of laminated composite plates
NASA Technical Reports Server (NTRS)
Atilgan, Ali R.; Hodges, Dewey H.
1991-01-01
The present effort to obtain the asymptotically correct form of the strain energy in inhomogeneous laminated composite plates proceeds from the geometrically nonlinear elastic theory-based three-dimensional strain energy by decomposing the nonlinear three-dimensional problem into a linear, through-the-thickness analysis and a nonlinear, two-dimensional analysis analyzing plate formation. Attention is given to the case in which each lamina exhibits material symmetry about its middle surface, deriving closed-form analytical expressions for the plate elastic constants and the displacement and strain distributions through the plate's thickness. Despite the simplicity of the plate strain energy's form, there are no restrictions on the magnitudes of displacement and rotation measures.
NASA Astrophysics Data System (ADS)
Mathias, Simon A.; Gluyas, Jon G.; GonzáLez MartíNez de Miguel, Gerardo J.; Hosseini, Seyyed A.
2011-12-01
This work extends an existing analytical solution for pressure buildup because of CO2 injection in brine aquifers by incorporating effects associated with partial miscibility. These include evaporation of water into the CO2 rich phase and dissolution of CO2 into brine and salt precipitation. The resulting equations are closed-form, including the locations of the associated leading and trailing shock fronts. Derivation of the analytical solution involves making a number of simplifying assumptions including: vertical pressure equilibrium, negligible capillary pressure, and constant fluid properties. The analytical solution is compared to results from TOUGH2 and found to accurately approximate the extent of the dry-out zone around the well, the resulting permeability enhancement due to residual brine evaporation, the volumetric saturation of precipitated salt, and the vertically averaged pressure distribution in both space and time for the four scenarios studied. While brine evaporation is found to have a considerable effect on pressure, the effect of CO2 dissolution is found to be small. The resulting equations remain simple to evaluate in spreadsheet software and represent a significant improvement on current methods for estimating pressure-limited CO2 storage capacity.
NASA Astrophysics Data System (ADS)
Anastassiu, Hristos T.
2003-04-01
The physical optics approximation is employed in the derivation of a closed form expression for the radar cross section (RCS) of a flat, perfectly conducting plate of various shapes, located over a dielectric, possibly lossy half-space. The half-space is assumed to lie in the far field region of the plate. The well-known "four-path model" is invoked in a first-order approximation of the half-space contribution to the scattering mechanisms. Numerical results are compared to a reference, Moment Method solution, and the agreement is investigated, to assess the accuracy of the approximations used. The analytical expressions derived can facilitate very fast RCS calculations for realistic scatterers, such as ships in a sea environment, or aircraft flying low over the ground.
Erratum: A Comparison of Closures for Stochastic Advection-Diffusion Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarman, Kenneth D.; Tartakovsky, Alexandre M.
2015-01-01
This note corrects an error in the authors' article [SIAM/ASA J. Uncertain. Quantif., 1 (2013), pp. 319 347] in which the cited work [Neuman, Water Resour. Res., 29(3) (1993), pp. 633 645] was incorrectly represented and attributed. Concentration covariance equations presented in our article as new were in fact previously derived in the latter work. In the original abstract, the phrase " . . .we propose a closed-form approximation to two-point covariance as a measure of uncertainty. . ." should be replaced by the phrase " . . .we study a closed-form approximation to two-point covariance, previously derived in [Neumanmore » 1993], as a measure of uncertainty." The primary results in our article--the analytical and numerical comparison of existing closure methods for specific example problems are not changed by this correction.« less
NASA Astrophysics Data System (ADS)
Xu, Tianhua; Jacobsen, Gunnar; Popov, Sergei; Li, Jie; Liu, Tiegen; Zhang, Yimo
2016-10-01
The performance of long-haul high speed coherent optical fiber communication systems is significantly degraded by the laser phase noise and the equalization enhanced phase noise (EEPN). In this paper, the analysis of the one-tap normalized least-mean-square (LMS) carrier phase recovery (CPR) is carried out and the close-form expression is investigated for quadrature phase shift keying (QPSK) coherent optical fiber communication systems, in compensating both laser phase noise and equalization enhanced phase noise. Numerical simulations have also been implemented to verify the theoretical analysis. It is found that the one-tap normalized least-mean-square algorithm gives the same analytical expression for predicting CPR bit-error-rate (BER) floors as the traditional differential carrier phase recovery, when both the laser phase noise and the equalization enhanced phase noise are taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samin, Adib; Lahti, Erik; Zhang, Jinsuo, E-mail: zhang.3558@osu.edu
Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extendedmore » to cases that are more general and may be useful for benchmarking purposes.« less
Zheng, Wendong; Zeng, Pingping
2016-01-01
ABSTRACT Most of the empirical studies on stochastic volatility dynamics favour the 3/2 specification over the square-root (CIR) process in the Heston model. In the context of option pricing, the 3/2 stochastic volatility model (SVM) is reported to be able to capture the volatility skew evolution better than the Heston model. In this article, we make a thorough investigation on the analytic tractability of the 3/2 SVM by proposing a closed-form formula for the partial transform of the triple joint transition density which stand for the log asset price, the quadratic variation (continuous realized variance) and the instantaneous variance, respectively. Two distinct formulations are provided for deriving the main result. The closed-form partial transform enables us to deduce a variety of marginal partial transforms and characteristic functions and plays a crucial role in pricing discretely sampled variance derivatives and exotic options that depend on both the asset price and quadratic variation. Various applications and numerical examples on pricing moment swaps and timer options with discrete monitoring feature are given to demonstrate the versatility of the partial transform under the 3/2 model. PMID:28706460
NASA Astrophysics Data System (ADS)
Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu
2017-05-01
The boundary-value problem in the classical theory of elasticity for a core-shell nanowire with an eccentric parallelepipedal core of an arbitrary rectangular cross section is solved. The core is subjected to one-dimensional cross dilatation eigenstrain. The misfit stresses are given in a closed analytical form suitable for theoretical modeling of misfit accommodation in relevant heterostructures.
Combined structures-controls optimization of lattice trusses
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1991-01-01
The role that distributed parameter model can play in CSI is demonstrated, in particular in combined structures controls optimization problems of importance in preliminary design. Closed form solutions can be obtained for performance criteria such as rms attitude error, making possible analytical solutions of the optimization problem. This is in contrast to the need for numerical computer solution involving the inversion of large matrices in traditional finite element model (FEM) use. Another advantage of the analytic solution is that it can provide much needed insight into phenomena that can otherwise be obscured or difficult to discern from numerical computer results. As a compromise in level of complexity between a toy lab model and a real space structure, the lattice truss used in the EPS (Earth Pointing Satellite) was chosen. The optimization problem chosen is a generic one: of minimizing the structure mass subject to a specified stability margin and to a specified upper bond on the rms attitude error, using a co-located controller and sensors. Standard FEM treating each bar as a truss element is used, while the continuum model is anisotropic Timoshenko beam model. Performance criteria are derived for each model, except that for the distributed parameter model, explicit closed form solutions was obtained. Numerical results obtained by the two model show complete agreement.
A closed form slug test theory for high permeability aquifers.
Ostendorf, David W; DeGroot, Don J; Dunaj, Philip J; Jakubowski, Joseph
2005-01-01
We incorporate a linear estimate of casing friction into the analytical slug test theory of Springer and Gelhar (1991) for high permeability aquifers. The modified theory elucidates the influence of inertia and casing friction on consistent, closed form equations for the free surface, pressure, and velocity fluctuations for overdamped and underdamped conditions. A consistent, but small, correction for kinetic energy is included as well. A characteristic velocity linearizes the turbulent casing shear stress so that an analytical solution for attenuated, phase shifted pressure fluctuations fits a single parameter (damping frequency) to transducer data from any depth in the casing. Underdamped slug tests of 0.3, 0.6, and 1 m amplitudes at five transducer depths in a 5.1 cm diameter PVC well 21 m deep in the Plymouth-Carver Aquifer yield a consistent hydraulic conductivity of 1.5 x 10(-3) m/s. The Springer and Gelhar (1991) model underestimates the hydraulic conductivity for these tests by as much as 25% by improperly ascribing smooth turbulent casing friction to the aquifer. The match point normalization of Butler (1998) agrees with our fitted hydraulic conductivity, however, when friction is included in the damping frequency. Zurbuchen et al. (2002) use a numerical model to establish a similar sensitivity of hydraulic conductivity to nonlinear casing friction.
NASA Astrophysics Data System (ADS)
Vu, Thang X.; Duhamel, Pierre; Chatzinotas, Symeon; Ottersten, Bjorn
2017-12-01
This work studies the performance of a cooperative network which consists of two channel-coded sources, multiple relays, and one destination. To achieve high spectral efficiency, we assume that a single time slot is dedicated to relaying. Conventional network-coded-based cooperation (NCC) selects the best relay which uses network coding to serve the two sources simultaneously. The bit error rate (BER) performance of NCC with channel coding, however, is still unknown. In this paper, we firstly study the BER of NCC via a closed-form expression and analytically show that NCC only achieves diversity of order two regardless of the number of available relays and the channel code. Secondly, we propose a novel partial relaying-based cooperation (PARC) scheme to improve the system diversity in the finite signal-to-noise ratio (SNR) regime. In particular, closed-form expressions for the system BER and diversity order of PARC are derived as a function of the operating SNR value and the minimum distance of the channel code. We analytically show that the proposed PARC achieves full (instantaneous) diversity order in the finite SNR regime, given that an appropriate channel code is used. Finally, numerical results verify our analysis and demonstrate a large SNR gain of PARC over NCC in the SNR region of interest.
Creep and stress relaxation induced by interface diffusion in metal matrix composites
NASA Astrophysics Data System (ADS)
Li, Yinfeng; Li, Zhonghua
2013-03-01
An analytical solution is developed to predict the creep rate induced by interface diffusion in unidirectional fiber-reinforced and particle reinforced composites. The driving force for the interface diffusion is the normal stress acting on the interface, which is obtained from rigorous Eshelby inclusion theory. The closed-form solution is an explicit function of the applied stress, volume fraction and radius of the fiber, as well as the modulus ratio between the fiber and the matrix. It is interesting that the solution is formally similar to that of Coble creep in polycrystalline materials. For the application of the present solution in the realistic composites, the scale effect is taken into account by finite element analysis based on a unit cell. Based on the solution, a closed-form solution is also given as a description of stress relaxation induced by interfacial diffusion under constant strain. In addition, the analytical solution for the interface stress presented in this study gives some insight into the relationship between the interface diffusion and interface slip. This work was supported by the financial support from the Nature Science Foundation of China (No. 10932007), the National Basic Research Program of China (No. 2010CB631003/5), and the Doctoral Program of Higher Education of China (No. 20100073110006).
NASA Astrophysics Data System (ADS)
Sulyok, G.
2017-07-01
Starting from the general definition of a one-loop tensor N-point function, we use its Feynman parametrization to calculate the ultraviolet (UV-)divergent part of an arbitrary tensor coefficient in the framework of dimensional regularization. In contrast to existing recursion schemes, we are able to present a general analytic result in closed form that enables direct determination of the UV-divergent part of any one-loop tensor N-point coefficient independent from UV-divergent parts of other one-loop tensor N-point coefficients. Simplified formulas and explicit expressions are presented for A-, B-, C-, D-, E-, and F-functions.
DROMO formulation for planar motions: solution to the Tsien problem
NASA Astrophysics Data System (ADS)
Urrutxua, Hodei; Morante, David; Sanjurjo-Rivo, Manuel; Peláez, Jesús
2015-06-01
The two-body problem subject to a constant radial thrust is analyzed as a planar motion. The description of the problem is performed in terms of three perturbation methods: DROMO and two others due to Deprit. All of them rely on Hansen's ideal frame concept. An explicit, analytic, closed-form solution is obtained for this problem when the initial orbit is circular (Tsien problem), based on the DROMO special perturbation method, and expressed in terms of elliptic integral functions. The analytical solution to the Tsien problem is later used as a reference to test the numerical performance of various orbit propagation methods, including DROMO and Deprit methods, as well as Cowell and Kustaanheimo-Stiefel methods.
NASA Astrophysics Data System (ADS)
Penin, A. A.; Pivovarov, A. A.
2001-02-01
We present an analytical description of top-antitop pair production near the threshold in $e^+e^-$ annihilation and $\\g\\g$ collisions. A set of basic observables considered includes the total cross sections, forward-backward asymmetry and top quark polarization. The threshold effects relevant for the basic observables are described by three universal functions related to S wave production, P wave production and S-P interference. These functions are computed analytically up to the next-to-next-to-leading order of NRQCD. The total $e^+e^-\\to t\\bar t$ cross section near the threshold is obtained in the next-to-next-to-leading order in the closed form including the contribution due to the axial coupling of top quark and mediated by the Z-boson. The effects of the running of the strong coupling constant and of the finite top quark width are taken into account analytically for the P wave production and S-P wave interference.
NASA Astrophysics Data System (ADS)
Li, F. X.; Rajapakse, R. K. N. D.
2007-03-01
Saturated domain orientation textures of three types of pseudocubic (tetragonal, rhombohedral, and orthorhombic) ferroelectric ceramics after complete electric and uniaxial tension (compression) poling is studied analytically in this paper. A one-dimensional orientation distribution function (ODF) of the domain polar vectors is explicitly derived from the uniform inverse pole figures of the poling field axes on a stereographic projection with respect to the fixed crystallite coordinates. The analytical ODF is used to obtain the analytical solutions of saturated polarization and strain after electric/mechanical poling. Based on the closed form solution of the saturated domain orientation textures, the resultant intrinsic electromechanical properties of ferroelectric ceramics, which depend only on the ODF and properties of the corresponding single crystals, are obtained. The results show how the macroscopic symmetries of ferroelectric crystals change from 4mm (tetragonal), 3m (rhombohedral), and mm2 (orthorhombic) single crystals to a ∞mm (transversely isotropic) completely poled ceramic.
Analytical Model for Thermal Elastoplastic Stresses of Functionally Graded Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, P. C.; Chen, G.; Liu, L. S.
2008-02-15
A modification analytical model is presented for the thermal elastoplastic stresses of functionally graded materials subjected to thermal loading. The presented model follows the analytical scheme presented by Y. L. Shen and S. Suresh [6]. In the present model, the functionally graded materials are considered as multilayered materials. Each layer consists of metal and ceramic with different volume fraction. The ceramic layer and the FGM interlayers are considered as elastic brittle materials. The metal layer is considered as elastic-perfectly plastic ductile materials. Closed-form solutions for different characteristic temperature for thermal loading are presented as a function of the structure geometriesmore » and the thermomechanical properties of the materials. A main advance of the present model is that the possibility of the initial and spread of plasticity from the two sides of the ductile layers taken into account. Comparing the analytical results with the results from the finite element analysis, the thermal stresses and deformation from the present model are in good agreement with the numerical ones.« less
NASA Astrophysics Data System (ADS)
Deta, U. A.; Lestari, N. A.; Yantidewi, M.; Suparmi, A.; Cari, C.
2018-03-01
The D-Dimensional Non-Relativistic Particle Properties in the Scarf Trigonometry plus Non-Central Rosen-Morse Potentials was investigated using an analytical method. The bound state energy is given approximately in the closed form. The approximate wave function for arbitrary l-state in D-dimensions are expressed in the form of generalised Jacobi Polynomials. The energy spectra of the particle are increased when the dimensions are higher. The relationship between the orbital number in each dimension is recursive. The special case in 3 dimensions is given to the ground state.
Current-sheet formation in two-dimensional coronal fields
NASA Astrophysics Data System (ADS)
Billinghurst, M. N.; Craig, I. J. D.; Sneyd, A. D.
1993-11-01
The formation of current sheets by shearing motions in line-tied twin-lobed fields is examined. A general analytic argument shows that current sheets form along the fieldline bounding the two lobes in the case of both symmetric and asymmetric footpoint motions. In the case of strictly antisymmetric motions however no current sheets can form. These findings are reinforced by magnetic relaxation experiments involving sheared two-lobed fields represented by Clebsh variables. It is pointed out that, although current singularites cannot be expected to form when the line-tying assumption is relaxed, the two-lobed geometry is still consistent with the formation of highly localised currents - and strong resistive dissipation - along field lines close to the bounding fieldline.
Wang, Fei; Syeda-Mahmood, Tanveer; Vemuri, Baba C.; Beymer, David; Rangarajan, Anand
2010-01-01
In this paper, we propose a generalized group-wise non-rigid registration strategy for multiple unlabeled point-sets of unequal cardinality, with no bias toward any of the given point-sets. To quantify the divergence between the probability distributions – specifically Mixture of Gaussians – estimated from the given point sets, we use a recently developed information-theoretic measure called Jensen-Renyi (JR) divergence. We evaluate a closed-form JR divergence between multiple probabilistic representations for the general case where the mixture models differ in variance and the number of components. We derive the analytic gradient of the divergence measure with respect to the non-rigid registration parameters, and apply it to numerical optimization of the group-wise registration, leading to a computationally efficient and accurate algorithm. We validate our approach on synthetic data, and evaluate it on 3D cardiac shapes. PMID:20426043
Wang, Fei; Syeda-Mahmood, Tanveer; Vemuri, Baba C; Beymer, David; Rangarajan, Anand
2009-01-01
In this paper, we propose a generalized group-wise non-rigid registration strategy for multiple unlabeled point-sets of unequal cardinality, with no bias toward any of the given point-sets. To quantify the divergence between the probability distributions--specifically Mixture of Gaussians--estimated from the given point sets, we use a recently developed information-theoretic measure called Jensen-Renyi (JR) divergence. We evaluate a closed-form JR divergence between multiple probabilistic representations for the general case where the mixture models differ in variance and the number of components. We derive the analytic gradient of the divergence measure with respect to the non-rigid registration parameters, and apply it to numerical optimization of the group-wise registration, leading to a computationally efficient and accurate algorithm. We validate our approach on synthetic data, and evaluate it on 3D cardiac shapes.
Analysis of Tank PMD Rewetting Following Thrust Resettling
NASA Astrophysics Data System (ADS)
Weislogel, M. M.; Sala, M. A.; Collicott, S. H.
2002-10-01
Recent investigations have successfully demonstrated closed-form analytical solutions of spontaneous capillary flows in idealized cylindrical containers with interior corners. In this report, the theory is extended and applied to complex containers modeling spacecraft fuel tanks employing propellant management devices (PMDs). The specific problem investigated is one of spontaneous rewetting of a typical partially filled liquid fuel/cryogen tank with PMD after thrust resettling. The transients of this flow impact the logistics of orbital maneuvers and potentially tank thermal control. The general procedure to compute the initial condition (mean radius of curvature for the interface) for the closed-form transient flows is first outlined then solved for several 'complex' cylindrical tanks exhibiting symmetry. The utility and limitations of the technique as a design tool are discussed in a summary, which also highlights comparisons with NASA flight data of a model propellant tank with PMD.
NASA Astrophysics Data System (ADS)
Li, M. P.; Sun, Q. P.
2018-01-01
We investigate the roles of grain size (lg) and grain boundary thickness (lb) on the stress-induced phase transition (PT) behaviors of nanocrystalline shape memory alloys (SMAs) by using a Core-shell type "crystallite-amorphous composite" model. A non-dimensionalized length scale lbarg(=lg /lb) is identified as the governing parameter which is indicative of the energy competition between the crystallite and the grain boundary. Closed form analytical solutions of a reduced effective 1D model with embedded microstructure length scales of lg and lb are presented in this paper. It is shown that, with lbarg reduction, the energy of the elastic non-transformable grain boundary will gradually become dominant in the phase transition process, and eventually bring fundamental changes of the deformation behaviors: breakdown of two-phase coexistence and vanishing of superelastic hysteresis. The predictions are supported by experimental data of nanocrystalline NiTi SMAs.
Analysis of Tank PMD Rewetting Following Thrust Resettling
NASA Technical Reports Server (NTRS)
Weislogel, M. M.; Sala, M. A.; Collicott, S. H.; Rame, Enrique (Technical Monitor)
2002-01-01
Recent investigations have successfully demonstrated closed-form analytical solutions of spontaneous capillary flows in idealized cylindrical containers with interior corners. In this report, the theory is extended and applied to complex containers modeling spacecraft fuel tanks employing propellant management devices (PMDs). The specific problem investigated is one of spontaneous rewetting of a typical partially filled liquid fuel/cryogen tank with PMD after thrust resettling. The transients of this flow impact the logistics of orbital maneuvers and potentially tank thermal control. The general procedure to compute the initial condition (mean radius of curvature for the interface) for the closed-form transient flows is first outlined then solved for several 'complex' cylindrical tanks exhibiting symmetry. The utility and limitations of the technique as a design tool are discussed in a summary, which also highlights comparisons with NASA flight data of a model propellant tank with PMD.
Self-induced transparency of an extremely short pulse
NASA Technical Reports Server (NTRS)
Lee, C. T.
1973-01-01
An extremely short pulse propagation in a resonant medium is properly described by a closed form steady-state analytic solution. The usual slowly varying envelope approximation (SVEA) is not made. Instead, different assumptions with respect to pulse speed and pulse duration are used, and any possible nonresonant loss is ignored. This study indicates that the results obtained by the SVEA approach are much better than they have been intuitively expected to be.
Closed form solution for a double quantum well using Gröbner basis
NASA Astrophysics Data System (ADS)
Acus, A.; Dargys, A.
2011-07-01
Analytical expressions for the spectrum, eigenfunctions and dipole matrix elements of a square double quantum well (DQW) are presented for a general case when the potential in different regions of the DQW has different heights and the effective masses are different. This was achieved by using a Gröbner basis algorithm that allowed us to disentangle the resulting coupled polynomials without explicitly solving the transcendental eigenvalue equation.
Performance-driven Multimodality Sensor Fusion
2012-01-23
in IEEE Intl Conf. on Acoust., Speech , Signal Processing, (Dallas), Mar. 2010. [10] K. Sricharan, R. Raich, and A. Hero III, “Boundary compensated knn ...nearest neighbor ( kNN ) plug-in estima- tors, we have developed a generally applicable theory that gives analytical closed-form expressions for asymptotic...Co-PI’s Raich and Hero and was published in the IEEE Proc. of 2011 Intl Conf. on Acoustics, Speech , and Signal Processing. 2.4 Dimension estimation in
Existence of small loops in a bifurcation diagram near degenerate eigenvalues
NASA Astrophysics Data System (ADS)
Hmidi, Taoufik; Renault, Coralie
2017-10-01
In this paper, we study the global structure of a bifurcation diagram for rotating doubly connected patches near a degenerate case for incompressible Euler equations. We show that branches with the same symmetry merge, forming a small loop, provided that they are close enough. This gives an analytical proof for the numerical observations conducted in the recent work by de la Hoz et al (2016 SIAM J. Math. Anal. 48 1892-928).
Vukovic, N; Radovanovic, J; Milanovic, V; Boiko, D L
2016-11-14
We have obtained a closed-form expression for the threshold of Risken-Nummedal-Graham-Haken (RNGH) multimode instability in a Fabry-Pérot (FP) cavity quantum cascade laser (QCL). This simple analytical expression is a versatile tool that can easily be applied in practical situations which require analysis of QCL dynamic behavior and estimation of its RNGH multimode instability threshold. Our model for a FP cavity laser accounts for the carrier coherence grating and carrier population grating as well as their relaxation due to carrier diffusion. In the model, the RNGH instability threshold is analyzed using a second-order bi-orthogonal perturbation theory and we confirm our analytical solution by a comparison with the numerical simulations. In particular, the model predicts a low RNGH instability threshold in QCLs. This agrees very well with experimental data available in the literature.
NASA Astrophysics Data System (ADS)
Wang, Chaoyue; Li, Hailong; Wan, Li; Wang, Xusheng; Jiang, Xiaowei
2014-07-01
Pumping wells are common in coastal aquifers affected by tides. Here we present analytical solutions of groundwater table or head variations during a constant rate pumping from a single, fully-penetrating well in coastal aquifer systems comprising an unconfined aquifer, a confined aquifer and semi-permeable layer between them. The unconfined aquifer terminates at the coastline (or river bank) and the other two layers extend under tidal water (sea or tidal river) for a certain distance L. Analytical solutions are derived for 11 reasonable combinations of different situations of the L-value (zero, finite, and infinite), of the middle layer's permeability (semi-permeable and impermeable), of the boundary condition at the aquifer's submarine terminal (Dirichlet describing direct connection with seawater and no-flow describing the existence of an impermeable capping), and of the tidal water body (sea and tidal river). Solutions are discussed with application examples in fitting field observations and parameter estimations.
Emergent rogue wave structures and statistics in spontaneous modulation instability.
Toenger, Shanti; Godin, Thomas; Billet, Cyril; Dias, Frédéric; Erkintalo, Miro; Genty, Goëry; Dudley, John M
2015-05-20
The nonlinear Schrödinger equation (NLSE) is a seminal equation of nonlinear physics describing wave packet evolution in weakly-nonlinear dispersive media. The NLSE is especially important in understanding how high amplitude "rogue waves" emerge from noise through the process of modulation instability (MI) whereby a perturbation on an initial plane wave can evolve into strongly-localised "breather" or "soliton on finite background (SFB)" structures. Although there has been much study of such structures excited under controlled conditions, there remains the open question of how closely the analytic solutions of the NLSE actually model localised structures emerging in noise-seeded MI. We address this question here using numerical simulations to compare the properties of a large ensemble of emergent peaks in noise-seeded MI with the known analytic solutions of the NLSE. Our results show that both elementary breather and higher-order SFB structures are observed in chaotic MI, with the characteristics of the noise-induced peaks clustering closely around analytic NLSE predictions. A significant conclusion of our work is to suggest that the widely-held view that the Peregrine soliton forms a rogue wave prototype must be revisited. Rather, we confirm earlier suggestions that NLSE rogue waves are most appropriately identified as collisions between elementary SFB solutions.
Emergent rogue wave structures and statistics in spontaneous modulation instability
Toenger, Shanti; Godin, Thomas; Billet, Cyril; Dias, Frédéric; Erkintalo, Miro; Genty, Goëry; Dudley, John M.
2015-01-01
The nonlinear Schrödinger equation (NLSE) is a seminal equation of nonlinear physics describing wave packet evolution in weakly-nonlinear dispersive media. The NLSE is especially important in understanding how high amplitude “rogue waves” emerge from noise through the process of modulation instability (MI) whereby a perturbation on an initial plane wave can evolve into strongly-localised “breather” or “soliton on finite background (SFB)” structures. Although there has been much study of such structures excited under controlled conditions, there remains the open question of how closely the analytic solutions of the NLSE actually model localised structures emerging in noise-seeded MI. We address this question here using numerical simulations to compare the properties of a large ensemble of emergent peaks in noise-seeded MI with the known analytic solutions of the NLSE. Our results show that both elementary breather and higher-order SFB structures are observed in chaotic MI, with the characteristics of the noise-induced peaks clustering closely around analytic NLSE predictions. A significant conclusion of our work is to suggest that the widely-held view that the Peregrine soliton forms a rogue wave prototype must be revisited. Rather, we confirm earlier suggestions that NLSE rogue waves are most appropriately identified as collisions between elementary SFB solutions. PMID:25993126
Modeling and control of flexible space platforms with articulated payloads
NASA Technical Reports Server (NTRS)
Graves, Philip C.; Joshi, Suresh M.
1989-01-01
The first steps in developing a methodology for spacecraft control-structure interaction (CSI) optimization are identification and classification of anticipated missions, and the development of tractable mathematical models in each mission class. A mathematical model of a generic large flexible space platform (LFSP) with multiple independently pointed rigid payloads is considered. The objective is not to develop a general purpose numerical simulation, but rather to develop an analytically tractable mathematical model of such composite systems. The equations of motion for a single payload case are derived, and are linearized about zero steady-state. The resulting model is then extended to include multiple rigid payloads, yielding the desired analytical form. The mathematical models developed clearly show the internal inertial/elastic couplings, and are therefore suitable for analytical and numerical studies. A simple decentralized control law is proposed for fine pointing the payloads and LFSP attitude control, and simulation results are presented for an example problem. The decentralized controller is shown to be adequate for the example problem chosen, but does not, in general, guarantee stability. A centralized dissipative controller is then proposed, requiring a symmetric form of the composite system equations. Such a controller guarantees robust closed loop stability despite unmodeled elastic dynamics and parameter uncertainties.
A series solution for horizontal infiltration in an initially dry aquifer
NASA Astrophysics Data System (ADS)
Furtak-Cole, Eden; Telyakovskiy, Aleksey S.; Cooper, Clay A.
2018-06-01
The porous medium equation (PME) is a generalization of the traditional Boussinesq equation for hydraulic conductivity as a power law function of height. We analyze the horizontal recharge of an initially dry unconfined aquifer of semi-infinite extent, as would be found in an aquifer adjacent a rising river. If the water level can be modeled as a power law function of time, similarity variables can be introduced and the original problem can be reduced to a boundary value problem for a nonlinear ordinary differential equation. The position of the advancing front is not known ahead of time and must be found in the process of solution. We present an analytical solution in the form of a power series, with the coefficients of the series given by a recurrence relation. The analytical solution compares favorably with a highly accurate numerical solution, and only a small number of terms of the series are needed to achieve high accuracy in the scenarios considered here. We also conduct a series of physical experiments in an initially dry wedged Hele-Shaw cell, where flow is modeled by a special form of the PME. Our analytical solution closely matches the hydraulic head profiles in the Hele-Shaw cell experiment.
Comparison of Three Methods for Wind Turbine Capacity Factor Estimation
Ditkovich, Y.; Kuperman, A.
2014-01-01
Three approaches to calculating capacity factor of fixed speed wind turbines are reviewed and compared using a case study. The first “quasiexact” approach utilizes discrete wind raw data (in the histogram form) and manufacturer-provided turbine power curve (also in discrete form) to numerically calculate the capacity factor. On the other hand, the second “analytic” approach employs a continuous probability distribution function, fitted to the wind data as well as continuous turbine power curve, resulting from double polynomial fitting of manufacturer-provided power curve data. The latter approach, while being an approximation, can be solved analytically thus providing a valuable insight into aspects, affecting the capacity factor. Moreover, several other merits of wind turbine performance may be derived based on the analytical approach. The third “approximate” approach, valid in case of Rayleigh winds only, employs a nonlinear approximation of the capacity factor versus average wind speed curve, only requiring rated power and rotor diameter of the turbine. It is shown that the results obtained by employing the three approaches are very close, enforcing the validity of the analytically derived approximations, which may be used for wind turbine performance evaluation. PMID:24587755
Calkins, Monica E; Iacono, William G; Ones, Deniz S
2008-12-01
Several forms of eye movement dysfunction (EMD) are regarded as promising candidate endophenotypes of schizophrenia. Discrepancies in individual study results have led to inconsistent conclusions regarding particular aspects of EMD in relatives of schizophrenia patients. To quantitatively evaluate and compare the candidacy of smooth pursuit, saccade and fixation deficits in first-degree biological relatives, we conducted a set of meta-analytic investigations. Among 18 measures of EMD, memory-guided saccade accuracy and error rate, global smooth pursuit dysfunction, intrusive saccades during fixation, antisaccade error rate and smooth pursuit closed-loop gain emerged as best differentiating relatives from controls (standardized mean differences ranged from .46 to .66), with no significant differences among these measures. Anticipatory saccades, but no other smooth pursuit component measures were also increased in relatives. Visually-guided reflexive saccades were largely normal. Moderator analyses examining design characteristics revealed few variables affecting the magnitude of the meta-analytically observed effects. Moderate effect sizes of relatives v. controls in selective aspects of EMD supports their endophenotype potential. Future work should focus on facilitating endophenotype utility through attention to heterogeneity of EMD performance, relationships among forms of EMD, and application in molecular genetics studies.
Neural Network Based Modeling and Analysis of LP Control Surface Allocation
NASA Technical Reports Server (NTRS)
Langari, Reza; Krishnakumar, Kalmanje; Gundy-Burlet, Karen
2003-01-01
This paper presents an approach to interpretive modeling of LP based control allocation in intelligent flight control. The emphasis is placed on a nonlinear interpretation of the LP allocation process as a static map to support analytical study of the resulting closed loop system, albeit in approximate form. The approach makes use of a bi-layer neural network to capture the essential functioning of the LP allocation process. It is further shown via Lyapunov based analysis that under certain relatively mild conditions the resulting closed loop system is stable. Some preliminary conclusions from a study at Ames are stated and directions for further research are given at the conclusion of the paper.
PFLOTRAN Verification: Development of a Testing Suite to Ensure Software Quality
NASA Astrophysics Data System (ADS)
Hammond, G. E.; Frederick, J. M.
2016-12-01
In scientific computing, code verification ensures the reliability and numerical accuracy of a model simulation by comparing the simulation results to experimental data or known analytical solutions. The model is typically defined by a set of partial differential equations with initial and boundary conditions, and verification ensures whether the mathematical model is solved correctly by the software. Code verification is especially important if the software is used to model high-consequence systems which cannot be physically tested in a fully representative environment [Oberkampf and Trucano (2007)]. Justified confidence in a particular computational tool requires clarity in the exercised physics and transparency in its verification process with proper documentation. We present a quality assurance (QA) testing suite developed by Sandia National Laboratories that performs code verification for PFLOTRAN, an open source, massively-parallel subsurface simulator. PFLOTRAN solves systems of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport processes in porous media. PFLOTRAN's QA test suite compares the numerical solutions of benchmark problems in heat and mass transport against known, closed-form, analytical solutions, including documentation of the exercised physical process models implemented in each PFLOTRAN benchmark simulation. The QA test suite development strives to follow the recommendations given by Oberkampf and Trucano (2007), which describes four essential elements in high-quality verification benchmark construction: (1) conceptual description, (2) mathematical description, (3) accuracy assessment, and (4) additional documentation and user information. Several QA tests within the suite will be presented, including details of the benchmark problems and their closed-form analytical solutions, implementation of benchmark problems in PFLOTRAN simulations, and the criteria used to assess PFLOTRAN's performance in the code verification procedure. References Oberkampf, W. L., and T. G. Trucano (2007), Verification and Validation Benchmarks, SAND2007-0853, 67 pgs., Sandia National Laboratories, Albuquerque, NM.
Line-source excited impulsive EM field response of thin plasmonic metal films
NASA Astrophysics Data System (ADS)
Štumpf, Martin; Vandenbosch, Guy A. E.
2013-08-01
In this paper, reflection against and transmission through thin plasmonic metal films, basic building blocks of many plasmonic devices, are analytically investigated directly in the time domain for an impulsive electric and magnetic line-source excitation. The electromagnetic properties of thin metallic films are modeled via the Drude model. The problem is formulated with the help of approximate thin-sheet boundary conditions and the analysis is carried out using the Cagniard-DeHoop technique. Closed-form space-time expressions are found and discussed. The obtained time-domain analytical expressions reveal the existence of the phenomenon of transient oscillatory surface effects along a plasmonic metal thin sheet. Illustrative numerical examples of transmitted/reflected pulsed fields are provided.
Distributed reacceleration of cosmic rays
NASA Technical Reports Server (NTRS)
Wandel, Amri; Eichler, David; Letaw, John R.; Silberberg, Rein; Tsao, C. H.
1985-01-01
A model is developed in which cosmic rays, in addition to their initial acceleration by a strong shock, are continuously reaccelerated while propagating through the Galaxy. The equations describing this acceleration scheme are solved analytically and numerically. Solutions for the spectra of primary and secondary cosmic rays are given in a closed analytic form, allowing a rapid search in parameter space for viable propagation models with distributed reeacceleration included. The observed boron-to-carbon ratio can be reproduced by the reacceleration theory over a range of escape parameters, some of them quite different from the standard leaky-box model. It is also shown that even a very modest amount of reacceleration by strong shocks causes the boron-to-carbon ratio to level off at sufficiently high energies.
Experiences with Probabilistic Analysis Applied to Controlled Systems
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Giesy, Daniel P.
2004-01-01
This paper presents a semi-analytic method for computing frequency dependent means, variances, and failure probabilities for arbitrarily large-order closed-loop dynamical systems possessing a single uncertain parameter or with multiple highly correlated uncertain parameters. The approach will be shown to not suffer from the same computational challenges associated with computing failure probabilities using conventional FORM/SORM techniques. The approach is demonstrated by computing the probabilistic frequency domain performance of an optimal feed-forward disturbance rejection scheme.
NASA Astrophysics Data System (ADS)
Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu
2017-03-01
We present an analytical solution to the boundary-value problem in the classical theory of elasticity for a core-shell nanowire with an eccentric parallelepipedal core of an arbitrary rectangular cross section. The core is subjected to one-dimensional cross dilatation eigenstrain. The misfit stresses are found in a concise and transparent closed form which is convenient for practical use in theoretical modeling of misfit relaxation processes.
Nonsteady Problem for an Elastic Half-Plane with Mixed Boundary Conditions
NASA Astrophysics Data System (ADS)
Kubenko, V. D.
2016-03-01
An approach to studying nonstationary wave processes in an elastic half-plane with mixed boundary conditions of the fourth boundary-value problem of elasticity is proposed. The Laplace and Fourier transforms are used. The sequential inversion of these transforms or the inversion of the joint transform by the Cagniard method allows obtaining the required solution (stresses, displacements) in a closed analytic form. With this approach, the problem can be solved for various types of loads
Spectral analysis for weighted tree-like fractals
NASA Astrophysics Data System (ADS)
Dai, Meifeng; Chen, Yufei; Wang, Xiaoqian; Sun, Yu; Su, Weiyi
2018-02-01
Much information about the structural properties and dynamical aspects of a network is measured by the eigenvalues of its normalized Laplacian matrix. In this paper, we aim to present a study on the spectra of the normalized Laplacian of weighted tree-like fractals. We analytically obtain the relationship between the eigenvalues and their multiplicities for two successive generations. As an example of application of these results, we then derive closed-form expressions for their multiplicative Kirchhoff index and Kemeny's constant.
Analytic approach to photoelectron transport.
NASA Technical Reports Server (NTRS)
Stolarski, R. S.
1972-01-01
The equation governing the transport of photoelectrons in the ionosphere is shown to be equivalent to the equation of radiative transfer. In the single-energy approximation this equation is solved in closed form by the method of discrete ordinates for isotropic scattering and for a single-constituent atmosphere. The results include prediction of the angular distribution of photoelectrons at all altitudes and, in particular, the angular distribution of the escape flux. The implications of these solutions in real atmosphere calculations are discussed.
A cluster bootstrap for two-loop MHV amplitudes
Golden, John; Spradlin, Marcus
2015-02-02
We apply a bootstrap procedure to two-loop MHV amplitudes in planar N=4 super-Yang-Mills theory. We argue that the mathematically most complicated part (the Λ 2 B 2 coproduct component) of the n-particle amplitude is uniquely determined by a simple cluster algebra property together with a few physical constraints (dihedral symmetry, analytic structure, supersymmetry, and well-defined collinear limits). Finally, we present a concise, closed-form expression which manifests these properties for all n.
Theoretical investigations on plasma processes in the Kaufman thruster
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.
1973-01-01
The lateral neutralization of ion beams is treated by standard mathematical methods for first order, nonlinear partial differential equations. A closed form analytical solution is derived for the transient lateral beam neutralization for electron injection by means of a von Mises transformation. A nonlinear theory of the longitudinal ion beam neutralization is developed using the von Mises transformation. By means of the Lenard-Balescu equation, the intercomponent momentum transfer between stable, collisionless electron and ion components is calculated.
A flux-limited treatment for the conductive evaporation of spherical interstellar gas clouds
NASA Technical Reports Server (NTRS)
Dalton, William W.; Balbus, Steven A.
1993-01-01
In this work, we present and analyze a new analytic solution for the saturated (flux-limited) thermal evaporation of a spherical cloud. This work is distinguished from earlier analytic studies by allowing the thermal conductivity to change continuously from a diffusive to a saturated form, in a manner usually employed only in numerical calculations. This closed form solution will be of interest as a computational benchmark. Using our calculated temperature profiles and mass-loss rates, we model the thermal evaporation of such a cloud under typical interstellar medium (ISM) conditions, with some restrictions. We examine the ionization structure of the cloud-ISM interface and evaluate column densities of carbon, nitrogen, oxygen, neon, and silicon ions toward the cloud. In accord with other investigations, we find that ionization equilibrium is far from satisfied under the assumed conditions. Since the inclusion of saturation effects in the heat flux narrows the thermal interface relative to its classical structure, we also find that saturation effects tend to lower predicted column densities.
Simon, Laurent; Ospina, Juan
2016-07-25
Three-dimensional solute transport was investigated for a spherical device with a release hole. The governing equation was derived using the Fick's second law. A mixed Neumann-Dirichlet condition was imposed at the boundary to represent diffusion through a small region on the surface of the device. The cumulative percentage of drug released was calculated in the Laplace domain and represented by the first term of an infinite series of Legendre and modified Bessel functions of the first kind. Application of the Zakian algorithm yielded the time-domain closed-form expression. The first-order solution closely matched a numerical solution generated by Mathematica(®). The proposed method allowed computation of the characteristic time. A larger surface pore resulted in a smaller effective time constant. The agreement between the numerical solution and the semi-analytical method improved noticeably as the size of the orifice increased. It took four time constants for the device to release approximately ninety-eight of its drug content. Copyright © 2016 Elsevier B.V. All rights reserved.
Analytically derived switching functions for exact H2+ eigenstates
NASA Astrophysics Data System (ADS)
Thorson, W. R.; Kimura, M.; Choi, J. H.; Knudson, S. K.
1981-10-01
Electron translation factors (ETF's) appropriate for slow atomic collisions may be constructed using switching functions. In this paper we derive a set of switching functions for the H2+ system by an analytical "two-center decomposition" of the exact molecular eigenstates. These switching functions are closely approximated by the simple form f=bη, where η is the "angle variable" of prolate spheroidal coordinates. For given united atom angular momentum quantum numbers (l,m), the characteristic parameter blm depends only on the quantity c2=-ɛR22, where ɛ is the electronic binding energy and R the internuclear distance in a.u. The resulting parameters are in excellent agreement with those found in our earlier work by a heuristic "optimization" scheme based on a study of coupling matrix-element behavior for a number of H2+ states. An approximate extension to asymmetric cases (HeH2+) has also been made. Nonadiabatic couplings based on these switching functions have been used in recent close-coupling calculations for H+-H(1s) collisions and He2+-H(1s) collisions at energies 1.0-20 keV.
Analytical Verifications in Cryogenic Testing of NGST Advanced Mirror System Demonstrators
NASA Technical Reports Server (NTRS)
Cummings, Ramona; Levine, Marie; VanBuren, Dave; Kegley, Jeff; Green, Joseph; Hadaway, James; Presson, Joan; Cline, Todd; Stahl, H. Philip (Technical Monitor)
2002-01-01
Ground based testing is a critical and costly part of component, assembly, and system verifications of large space telescopes. At such tests, however, with integral teamwork by planners, analysts, and test personnel, segments can be included to validate specific analytical parameters and algorithms at relatively low additional cost. This paper opens with strategy of analytical verification segments added to vacuum cryogenic testing of Advanced Mirror System Demonstrator (AMSD) assemblies. These AMSD assemblies incorporate material and architecture concepts being considered in the Next Generation Space Telescope (NGST) design. The test segments for workmanship testing, cold survivability, and cold operation optical throughput are supplemented by segments for analytical verifications of specific structural, thermal, and optical parameters. Utilizing integrated modeling and separate materials testing, the paper continues with support plan for analyses, data, and observation requirements during the AMSD testing, currently slated for late calendar year 2002 to mid calendar year 2003. The paper includes anomaly resolution as gleaned by authors from similar analytical verification support of a previous large space telescope, then closes with draft of plans for parameter extrapolations, to form a well-verified portion of the integrated modeling being done for NGST performance predictions.
NASA Astrophysics Data System (ADS)
Albuja, Antonella A.; Scheeres, Daniel J.
2015-02-01
The Yarkovsky-O'Keefe-Radzvieskii-Paddack (YORP) effect has been well studied for asteroids. This paper develops an analytic solution to find the normal emission YORP component for a single facet. The solution presented here does not account for self-shadowing or self-heating. The YORP coefficient for all facets can be summed together to find the total coefficient of the asteroid. The normal emission component of YORP has been shown to be the most important for asteroids and it directly affects the rate of change of the asteroid's spin period. The analytical solution found is a sole function of the facet's geometry and the obliquity of the asteroid. This solution is universal for any facet and its orientation. The behaviour of the coefficient is analysed with this analytical solution. The closed-form solution is used to find the total YORP coefficient for the asteroids Apollo and 1998 ML14 whose shape models are composed of different numbers of facets. The results are then compared to published results and those obtained through numerical quadrature for validation.
NASA Astrophysics Data System (ADS)
Kelber, Scott; Hanay, Mehmet; Naik, Akshay; Chi, Derrick; Hentz, Sebastien; Bullard, Caryn; Collinet, Eric; Duraffourg, Laurent; Roukes, Michael
2012-02-01
Nanoelectromechanical systems (NEMS) enable mass sensing with unprecedented sensitivity and mass dynamic range. Previous works have relied on statistical analysis of multiple landing events to assemble mass spectra. Here we demonstrate the utility of using multiple modes of the NEMS device in determining the mass of individual molecules landing on the NEMS. Analyte particles in vapor form are produced using matrix assisted laser desorption ionization. Resonant frequencies of the first two modes of a single NEMS device, placed in close proximity to the analyte source, are tracked using parallel phase locked loops. Each analyte molecule landing on the NEMS generates a distinct frequency shift in the two modes. These time correlated frequency jumps are used to evaluate the mass of each analyte particle landing on the NEMS and thus generate mass spectra. We present the latest experimental results using this scheme and also demonstrate the utility for mass spectrometry of large biomolecules. This NEMS-Mass Spec. system offers a new tool for structural biology and pathology for the analysis of large proteins, protein complexes, and viruses.
NASA Astrophysics Data System (ADS)
Lau, Chun Sing
This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in closed form. Numerical examples demonstrate that the pricing and hedging errors are in general less than 1% relative to the benchmark prices obtained by numerical integration or Monte Carlo simulation. By exploiting an explicit relationship between the option price and the underlying probability distribution, we further derive an approximate distribution function for the general basket-spread variable. It can be used to approximate the transition probability distribution of any linear combination of correlated GBMs. Finally, an implicit perturbation is applied to reduce the pricing errors by factors of up to 100. When compared against the existing methods, the basket-spread option formula coupled with the implicit perturbation turns out to be one of the most robust and accurate approximation methods.
General Relativistic Precession in Small Solar System Bodies
NASA Astrophysics Data System (ADS)
Sekhar, Aswin; Werner, Stephanie; Hoffmann, Volker; Asher, David; Vaubaillon, Jeremie; Hajdukova, Maria; Li, Gongjie
2016-10-01
Introduction: One of the greatest successes of the Einstein's General Theory of Relativity (GR) was the correct prediction of the precession of perihelion of Mercury. The closed form expression to compute this precession tells us that substantial GR precession would occur only if the bodies have a combination of both moderately small perihelion distance and semi-major axis. Minimum Orbit Intersection Distance (MOID) is a quantity which helps us to understand the closest proximity of two orbits in space. Hence evaluating MOID is crucial to understand close encounters and collision scenarios better. In this work, we look at the possible scenarios where a small GR precession in argument of pericentre (ω) can create substantial changes in MOID for small bodies ranging from meteoroids to comets and asteroids.Analytical Approach and Numerical Integrations: Previous works have looked into neat analytical techniques to understand different collision scenarios and we use those standard expressions to compute MOID analytically. We find the nature of this mathematical function is such that a relatively small GR precession can lead to drastic changes in MOID values depending on the initial value of ω. Numerical integrations were done with package MERCURY incorporating the GR code to test the same effects. Numerical approach showed the same interesting relationship (as shown by analytical theory) between values of ω and the peaks/dips in MOID values. Previous works have shown that GR precession suppresses Kozai oscillations and this aspect was verified using our integrations. There is an overall agreement between both analytical and numerical methods.Summary and Discussion: We find that GR precession could play an important role in the calculations pertaining to MOID and close encounter scenarios in the case of certain small solar system bodies (depending on their initial orbital elements). Previous works have looked into impact probabilities and collision scenarios on planets from different small body populations. This work aims to find certain sub-sets of orbits where GR could play an interesting role. Certain parallels are drawn between the cases of asteroids, comets and small perihelion distance meteoroid streams.
NASA Astrophysics Data System (ADS)
Sekhar, Aswin; Valsecchi, Giovanni B.; Asher, David; Werner, Stephanie; Vaubaillon, Jeremie; Li, Gongjie
2017-06-01
One of the greatest successes of Einstein's General Theory of Relativity (GR) was the correct prediction of the perihelion precession of Mercury. The closed form expression to compute this precession tells us that substantial GR precession would occur only if the bodies have a combination of both moderately small perihelion distance and semi-major axis. Minimum Orbit Intersection Distance (MOID) is a quantity which helps us to understand the closest proximity of two orbits in space. Hence evaluating MOID is crucial to understand close encounters and collision scenarios better. In this work, we look at the possible scenarios where a small GR precession in argument of pericentre can create substantial changes in MOID for small bodies ranging from meteoroids to comets and asteroids.Previous works have looked into neat analytical techniques to understand different collision scenarios and we use those standard expressions to compute MOID analytically. We find the nature of this mathematical function is such that a relatively small GR precession can lead to drastic changes in MOID values depending on the initial value of argument of pericentre. Numerical integrations were done with the MERCURY package incorporating GR code to test the same effects. A numerical approach showed the same interesting relationship (as shown by analytical theory) between values of argument of pericentre and the peaks or dips in MOID values. There is an overall agreement between both analytical and numerical methods.We find that GR precession could play an important role in the calculations pertaining to MOID and close encounter scenarios in the case of certain small solar system bodies (depending on their initial orbital elements) when long term impact risk possibilities are considered. Previous works have looked into impact probabilities and collision scenarios on planets from different small body populations. This work aims to find certain sub-sets of small bodies where GR could play an interesting role. Certain parallels are drawn between the cases of asteroids, comets and small perihelion distance meteoroid streams.
NASA Astrophysics Data System (ADS)
Witzany, V.; Jefremov, P.
2018-06-01
Context. When a black hole is accreting well below the Eddington rate, a geometrically thick, radiatively inefficient state of the accretion disk is established. There is a limited number of closed-form physical solutions for geometrically thick (nonselfgravitating) toroidal equilibria of perfect fluids orbiting a spinning black hole, and these are predominantly used as initial conditions for simulations of accretion in the aforementioned mode. However, different initial configurations might lead to different results and thus observational predictions drawn from such simulations. Aims: We aim to expand the known equilibria by a number of closed multiparametric solutions with various possibilities of rotation curves and geometric shapes. Then, we ask whether choosing these as initial conditions influences the onset of accretion and the asymptotic state of the disk. Methods: We have investigated a set of examples from the derived solutions in detail; we analytically estimate the growth of the magneto-rotational instability (MRI) from their rotation curves and evolve the analytically obtained tori using the 2D magneto-hydrodynamical code HARM. Properties of the evolutions are then studied through the mass, energy, and angular-momentum accretion rates. Results: The rotation curve has a decisive role in the numerical onset of accretion in accordance with our analytical MRI estimates: in the first few orbital periods, the average accretion rate is linearly proportional to the initial MRI rate in the toroids. The final state obtained from any initial condition within the studied class after an evolution of ten or more orbital periods is mostly qualitatively identical and the quantitative properties vary within a single order of magnitude. The average values of the energy of the accreted fluid have an irregular dependency on initial data, and in some cases fluid with energies many times its rest mass is systematically accreted.
Formation of Bipolar Lobes by Jets
NASA Astrophysics Data System (ADS)
Soker, Noam
2002-04-01
I conduct an analytical study of the interaction of jets, or a collimated fast wind (CFW), with a previously blown asymptotic giant branch (AGB) slow wind. Such jets (or CFWs) are supposedly formed when a compact companion, a main-sequence star, or a white dwarf accretes mass from the AGB star, forms an accretion disk, and blows two jets. This type of flow, which I think shapes bipolar planetary nebulae (PNs), requires three-dimensional gasdynamical simulations, which are limited in the parameter space they can cover. By imposing several simplifying assumptions, I derive simple expressions which reproduce some basic properties of lobes in bipolar PNs and which can be used to guide future numerical simulations. I quantitatively apply the results to two proto-PNs. I show that the jet interaction with the slow wind can form lobes which are narrow close to, and far away from, the central binary system, and which are wider somewhere in between. Jets that are recollimated and have constant cross section can form cylindrical lobes with constant diameter, as observed in several bipolar PNs. Close to their source, jets blown by main-sequence companions are radiative; only further out they become adiabatic, i.e., they form high-temperature, low-density bubbles that inflate the lobes.
NASA Astrophysics Data System (ADS)
Ikot, Akpan N.; Maghsoodi, Elham; Hassanabadi, Hassan; Obu, Joseph A.
2014-05-01
In this paper, we obtain the approximate analytical bound-state solutions of the Dirac particle with the generalized Yukawa potential within the framework of spin and pseudospin symmetries for the arbitrary к state with a generalized tensor interaction. The generalized parametric Nikiforov-Uvarov method is used to obtain the energy eigenvalues and the corresponding wave functions in closed form. We also report some numerical results and present figures to show the effect of the tensor interaction.
NASA Technical Reports Server (NTRS)
Madnia, C. K.; Frankel, S. H.; Givi, P.
1992-01-01
The presently obtained closed-form analytical expressions, which predict the limiting rate of mean reactant conversion in homogeneous turbulent flows under the influence of a binary reaction, are derived via the single-point pdf method based on amplitude mapping closure. With this model, the maximum rate of the mean reactant's decay can be conveniently expressed in terms of definite integrals of the parabolic cylinder functions. The results obtained are shown to be in good agreement with data generated by direct numerical simulations.
Franck-Condon factor formulae for astrophysical and other molecules
NASA Technical Reports Server (NTRS)
Nicholls, R. W.
1981-01-01
Simple closed-form, approximate, analytic expressions for Franck-Condon factors are given. They provide reliable estimates for Franck-Condon factor arrays for molecular band systems for which only vibrational-frequency, equilibrium internuclear separation and reduced mass values are known, as is often the case for astrophysically interesting molecules such as CeO, CoH, CrH, CrO, CuH, GeH, LaO, NiH, SnH, and ZnH for band systems of which Franck-Condon arrays have been calculated.
Film boiling of mercury droplets
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.
1975-01-01
Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.
Birkhoff Normal Form for Some Nonlinear PDEs
NASA Astrophysics Data System (ADS)
Bambusi, Dario
We consider the problem of extending to PDEs Birkhoff normal form theorem on Hamiltonian systems close to nonresonant elliptic equilibria. As a model problem we take the nonlinear wave equation
Reliability analysis of composite structures
NASA Technical Reports Server (NTRS)
Kan, Han-Pin
1992-01-01
A probabilistic static stress analysis methodology has been developed to estimate the reliability of a composite structure. Closed form stress analysis methods are the primary analytical tools used in this methodology. These structural mechanics methods are used to identify independent variables whose variations significantly affect the performance of the structure. Once these variables are identified, scatter in their values is evaluated and statistically characterized. The scatter in applied loads and the structural parameters are then fitted to appropriate probabilistic distribution functions. Numerical integration techniques are applied to compute the structural reliability. The predicted reliability accounts for scatter due to variability in material strength, applied load, fabrication and assembly processes. The influence of structural geometry and mode of failure are also considerations in the evaluation. Example problems are given to illustrate various levels of analytical complexity.
NASA Astrophysics Data System (ADS)
Li, Y.; Chen, J.; Xing, Y.; Song, J.
2017-03-01
The microscale inorganic light-emitting diodes (μ-ILEDs) create novel opportunities in biointegrated applications such as wound healing acceleration and optogenetics. Analytical expressions, validated by finite element analysis, are obtained for the temperature increase of a rectangular μ-ILED device on an orthotropic substrate, which could offer an appealing advantage in controlling the heat flow direction to achieve the goal in thermal management. The influences of various parameters (e.g., thermal conductivities of orthotropic substrate, loading parameters) on the temperature increase of the μ-ILED are investigated based on the obtained closed-form solutions. These results provide a novel route to control the temperature distribution in the μ-ILED system and provide easily interpretable guidelines to minimize the adverse thermal effects.
Analytical steady-state solutions for water-limited cropping systems using saline irrigation water
NASA Astrophysics Data System (ADS)
Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.
2014-12-01
Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.
Accessibility, stabilizability, and feedback control of continuous orbital transfer.
Gurfil, Pini
2004-05-01
This paper investigates the problem of low-thrust orbital transfer using orbital element feedback from a control-theoretic standpoint, concepts of controllability, feedback stabilizability, and their interaction. The Gauss variational equations (GVEs) are used to model the state-space dynamics. First, the notion of accessibility, a weaker form of controllability, is presented. It is then shown that the GVEs are globally accessible. Based on the accessibility result, a nonlinear feedback controller is derived that asymptotically steers a vehicle from an initial elliptic Keplerian orbit to any given elliptic Keplerian orbit. The performance of the new controller is illustrated by simulating an orbital transfer between two geosynchronous Earth orbits. It is shown that the low-thrust controller requires less fuel than an impulsive maneuver for the same transfer time. Closed-form, analytic expressions for the new orbital transfer controller are given. Finally, it is proved, based on a topological nonlinear stabilizability test, that there does not exist a continuous closed-loop controller that can transfer a spacecraft to a parabolic escape trajectory.
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Inger, George R.
1999-01-01
The local viscous-inviscid interaction field generated by a wall temperature jump on a flat plate in supersonic flow and on the windside of a Reusable Launch Vehicle in hypersonic flow is studied in detail by both a Navier-Stokes numerical code and an analytical triple-deck model. Treatment of the rapid heat transfer changes both upstream and downstream of the jump is included. Closed form relationships derived from the triple-deck theory are presented. The analytically predicted pressure and heating variations including upstream influence are found to be in generally good agreement with the Computational Fluid Dynamic (CFD) predictions. These analyses not only clarify the interactive physics involved but also are useful in preliminary design of thermal protection systems and as an insertable module to improve CFD code efficiency when applied to such small-scale interaction problems. The analyses only require conditions at the wall and boundary-layer edge which are easily extracted from a baseline, constant wall temperature, CFD solution.
Fasoli, Diego; Cattani, Anna; Panzeri, Stefano
2018-05-01
Despite their biological plausibility, neural network models with asymmetric weights are rarely solved analytically, and closed-form solutions are available only in some limiting cases or in some mean-field approximations. We found exact analytical solutions of an asymmetric spin model of neural networks with arbitrary size without resorting to any approximation, and we comprehensively studied its dynamical and statistical properties. The network had discrete time evolution equations and binary firing rates, and it could be driven by noise with any distribution. We found analytical expressions of the conditional and stationary joint probability distributions of the membrane potentials and the firing rates. By manipulating the conditional probability distribution of the firing rates, we extend to stochastic networks the associating learning rule previously introduced by Personnaz and coworkers. The new learning rule allowed the safe storage, under the presence of noise, of point and cyclic attractors, with useful implications for content-addressable memories. Furthermore, we studied the bifurcation structure of the network dynamics in the zero-noise limit. We analytically derived examples of the codimension 1 and codimension 2 bifurcation diagrams of the network, which describe how the neuronal dynamics changes with the external stimuli. This showed that the network may undergo transitions among multistable regimes, oscillatory behavior elicited by asymmetric synaptic connections, and various forms of spontaneous symmetry breaking. We also calculated analytically groupwise correlations of neural activity in the network in the stationary regime. This revealed neuronal regimes where, statistically, the membrane potentials and the firing rates are either synchronous or asynchronous. Our results are valid for networks with any number of neurons, although our equations can be realistically solved only for small networks. For completeness, we also derived the network equations in the thermodynamic limit of infinite network size and we analytically studied their local bifurcations. All the analytical results were extensively validated by numerical simulations.
NASA Astrophysics Data System (ADS)
Adivi, E. Ghanbari; Brunger, M. J.; Bolorizadeh, M. A.; Campbell, L.
2007-02-01
The second-order Faddeev-Watson-Lovelace approximation in a modified form is applied to charge transfer from hydrogenlike target atoms by a fully stripped energetic projectile ion. The state-to-state, nlm→n'l'm' , partial transition amplitudes are calculated analytically. The method is specifically applied to the collision of protons with hydrogen atoms, where differential cross sections of different transitions are calculated for incident energies of 2.8 and 5.0MeV . It is shown that the Thomas peak is present in all transition cross sections. The partial cross sections are then summed and compared with the available forward-angle experimental data, showing good agreement.
Theory for solubility in static systems
NASA Astrophysics Data System (ADS)
Gusev, Andrei A.; Suter, Ulrich W.
1991-06-01
A theory for the solubility of small particles in static structures has been developed. The distribution function of the solute in a frozen solid has been derived in analytical form for the quantum and the quasiclassical cases. The solubility at infinitesimal gas pressure (Henry's constant) as well as the pressure dependence of the solute concentration at elevated pressures has been found from the statistical equilibrium between the solute in the static matrix and the ideal-gas phase. The distribution function of a solute containing different particles has been evaluated in closed form. An application of the theory to the sorption of methane in the computed structures of glassy polycarbonate has resulted in a satisfactory agreement with experimental data.
An analytical investigation of transient effects on rewetting of heated thin flat plates
NASA Technical Reports Server (NTRS)
Platt, J. A.
1993-01-01
The rewetting of a hot surface is a problem of prime importance in the microgravity application of heat pipe technology, where rewetting controls the time before operations can be re-established following depriming of a heat pipe. Rewetting is also important in the nuclear industry (in predicting behavior during loss-of-coolant accidents), as well as in the chemical and petrochemical industries. Recently Chan and Zhang have presented a closed-form solution for the determination of the rewetting speed of a liquid film flowing over a finite (but long) hot plate subject to uniform heating. Unfortunately, their physically unreasonable initial conditions preclude a meaningful analysis of start-up transient behavior. A new nondimensionalization and closed-form solution for an infinitely-long, uniformly-heated plate is presented. Realistic initial conditions (step change in temperature across the wetting front) and boundary conditions (no spatial temperature gradients infinitely far from the wetting front) are employed. The effects of parametric variation on the resulting simpler closed-form solution are presented and compared with the predictions of a 'quasi-steady' model. The time to reach steady-state rewetting is found to be a strong function of the initial dry-region plate temperature. For heated plates it is found that in most cases the effect of the transient response terms cannot be neglected, even for large times.
Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-01-01
In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme. PMID:29186850
Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-11-25
In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme.
Application of Learning Analytics Using Clustering Data Mining for Students' Disposition Analysis
ERIC Educational Resources Information Center
Bharara, Sanyam; Sabitha, Sai; Bansal, Abhay
2018-01-01
Learning Analytics (LA) is an emerging field in which sophisticated analytic tools are used to improve learning and education. It draws from, and is closely tied to, a series of other fields of study like business intelligence, web analytics, academic analytics, educational data mining, and action analytics. The main objective of this research…
Extended Analytic Device Optimization Employing Asymptotic Expansion
NASA Technical Reports Server (NTRS)
Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred
2013-01-01
Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.
Ballistic heat conduction and mass disorder in one dimension.
Ong, Zhun-Yong; Zhang, Gang
2014-08-20
It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (κ) scales asymptotically as lim(L--> ∞) κ ∝ L(0.5) where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (LC) below which ballistic heat conduction (κ ∝ L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function Ξ i.e. Ξ(ω, L) = exp[-L/λ(ω)], where λ is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction.
On the formation of Friedlander waves in a compressed-gas-driven shock tube
Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.
2016-01-01
Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888
Equivalent-circuit models for electret-based vibration energy harvesters
NASA Astrophysics Data System (ADS)
Phu Le, Cuong; Halvorsen, Einar
2017-08-01
This paper presents a complete analysis to build a tool for modelling electret-based vibration energy harvesters. The calculational approach includes all possible effects of fringing fields that may have significant impact on output power. The transducer configuration consists of two sets of metal strip electrodes on a top substrate that faces electret strips deposited on a bottom movable substrate functioning as a proof mass. Charge distribution on each metal strip is expressed by series expansion using Chebyshev polynomials multiplied by a reciprocal square-root form. The Galerkin method is then applied to extract all charge induction coefficients. The approach is validated by finite element calculations. From the analytic tool, a variety of connection schemes for power extraction in slot-effect and cross-wafer configurations can be lumped to a standard equivalent circuit with inclusion of parasitic capacitance. Fast calculation of the coefficients is also obtained by a proposed closed-form solution based on leading terms of the series expansions. The achieved analytical result is an important step for further optimisation of the transducer geometry and maximising harvester performance.
NASA Astrophysics Data System (ADS)
Mingari Scarpello, Giovanni; Ritelli, Daniele
2018-06-01
The present study highlights the dynamics of a body moving about a fixed point and provides analytical closed form solutions. Firstly, for the symmetrical heavy body, that is the Lagrange-Poisson case, we compute the second (precession, ψ ) and third (spin, φ) Euler angles in explicit and real form by means of multiple hypergeometric (Lauricella) functions. Secondly, releasing the weight assumption but adding the complication of the asymmetry, by means of elliptic integrals of third kind, we provide the precession angle ψ completing the treatment of the Euler-Poinsot case. Thirdly, by integrating the relevant differential equation, we reach the finite polar equation of a special motion trajectory named the herpolhode. Finally, we keep the symmetry of the first problem, but without weight, and take into account a viscous dissipation. The use of motion first integrals—adopted for the first two problems—is no longer practicable in this situation; therefore, the Euler equations, faced directly, are driving to particular occurrences of Bessel functions of order - 1/2.
Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation.
Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R
2014-12-01
High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror's nonlinear dynamics under such excitation is analyzed in a Hill's equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror's frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies.
NASA Astrophysics Data System (ADS)
Barrett, Ronald M.; Barrett, Ronald P.; Barrett, Cassandra M.
2017-09-01
This paper lays out the inspiration, operational principles, analytical modeling and coupon testing of a new class of thermally adaptive building coverings. The fundamental driving concepts for these coverings are derived from various families of thermotropic plant structures. Certain plant cellular structures like those in Mimosa pudica (Sensitive Plant), Rhododendron leaves or Albizia julibrissin (Mimosa Tree), exhibit actuation physiology which depends on changes in cellular turgor pressures to generate motion. This form of cellular action via turgor pressure manipulation is an inspiration for a new field of thermally adaptive building coverings which use various forms of cellular foam to aid or enable actuation much like plant cells are used to move leaves. When exposed to high solar loading, the structures use the inherent actuation capability of pockets of air trapped in closed cell foam as actuators to curve plates upwards and outwards. When cold, these same structures curve back towards the building forming large convex pockets of dead air to insulate the building. This paper describes basic classical laminated plate theory models comparing theory and experiment of such coupons containing closed-cell foam actuators. The study concludes with a global description of the effectiveness of this class of thermally adaptive building coverings.
Free vibration of functionally graded beams and frameworks using the dynamic stiffness method
NASA Astrophysics Data System (ADS)
Banerjee, J. R.; Ananthapuvirajah, A.
2018-05-01
The free vibration analysis of functionally graded beams (FGBs) and frameworks containing FGBs is carried out by applying the dynamic stiffness method and deriving the elements of the dynamic stiffness matrix in explicit algebraic form. The usually adopted rule that the material properties of the FGB vary continuously through the thickness according to a power law forms the fundamental basis of the governing differential equations of motion in free vibration. The differential equations are solved in closed analytical form when the free vibratory motion is harmonic. The dynamic stiffness matrix is then formulated by relating the amplitudes of forces to those of the displacements at the two ends of the beam. Next, the explicit algebraic expressions for the dynamic stiffness elements are derived with the help of symbolic computation. Finally the Wittrick-Williams algorithm is applied as solution technique to solve the free vibration problems of FGBs with uniform cross-section, stepped FGBs and frameworks consisting of FGBs. Some numerical results are validated against published results, but in the absence of published results for frameworks containing FGBs, consistency checks on the reliability of results are performed. The paper closes with discussion of results and conclusions.
Closed, analytic, boson realizations for Sp(4)
NASA Astrophysics Data System (ADS)
Klein, Abraham; Zhang, Qing-Ying
1986-08-01
The problem of determing a boson realization for an arbitrary irrep of the unitary simplectic algebra Sp(2d) [or of the corresponding discrete unitary irreps of the unbounded algebra Sp(2d,R)] has been solved completely in recent papers by Deenen and Quesne [J. Deenen and C. Quesne, J. Math. Phys. 23, 878, 2004 (1982); 25, 1638 (1984); 26, 2705 (1985)] and by Moshinsky and co-workers [O. Castaños, E. Chacón, M. Moshinsky, and C. Quesne, J. Math. Phys. 26, 2107 (1985); M. Moshinsky, ``Boson realization of symplectic algebras,'' to be published]. This solution is not known in closed analytic form except for d=1 and for special classes of irreps for d>1. A different method of obtaining a boson realization that solves the full problem for Sp(4) is described. The method utilizes the chain Sp(2d)⊇SU(2)×SU(2) ×ṡṡṡ×SU(2) (d times), which, for d≥4, does not provide a complete set of quantum numbers. Though a simple solution of the missing label problem can be given, this solution does not help in the construction of a mapping algorithm for general d.
Analytical Solution for Optimum Design of Furrow Irrigation Systems
NASA Astrophysics Data System (ADS)
Kiwan, M. E.
1996-05-01
An analytical solution for the optimum design of furrow irrigation systems is derived. The non-linear calculus optimization method is used to formulate a general form for designing the optimum system elements under circumstances of maximizing the water application efficiency of the system during irrigation. Different system bases and constraints are considered in the solution. A full irrigation water depth is considered to be achieved at the tail of the furrow line. The solution is based on neglecting the recession and depletion times after off-irrigation. This assumption is valid in the case of open-end (free gradient) furrow systems rather than closed-end (closed dike) systems. Illustrative examples for different systems are presented and the results are compared with the output obtained using an iterative numerical solution method. The final derived solution is expressed as a function of the furrow length ratio (the furrow length to the water travelling distance). The function of water travelling developed by Reddy et al. is considered for reaching the optimum solution. As practical results from the study, the optimum furrow elements for free gradient systems can be estimated to achieve the maximum application efficiency, i.e. furrow length, water inflow rate and cutoff irrigation time.
Analytical modeling and numerical simulation of the short-wave infrared electron-injection detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Movassaghi, Yashar; Fathipour, Morteza; Fathipour, Vala
2016-03-21
This paper describes comprehensive analytical and simulation models for the design and optimization of the electron-injection based detectors. The electron-injection detectors evaluated here operate in the short-wave infrared range and utilize a type-II band alignment in InP/GaAsSb/InGaAs material system. The unique geometry of detectors along with an inherent negative-feedback mechanism in the device allows for achieving high internal avalanche-free amplifications without any excess noise. Physics-based closed-form analytical models are derived for the detector rise time and dark current. Our optical gain model takes into account the drop in the optical gain at high optical power levels. Furthermore, numerical simulation studiesmore » of the electrical characteristics of the device show good agreement with our analytical models as well experimental data. Performance comparison between devices with different injector sizes shows that enhancement in the gain and speed is anticipated by reducing the injector size. Sensitivity analysis for the key detector parameters shows the relative importance of each parameter. The results of this study may provide useful information and guidelines for development of future electron-injection based detectors as well as other heterojunction photodetectors.« less
Analytical Studies of Boundary Layer Generated Aircraft Interior Noise
NASA Technical Reports Server (NTRS)
Howe, M. S.; Shah, P. L.
1997-01-01
An analysis is made of the "interior noise" produced by high, subsonic turbulent flow over a thin elastic plate partitioned into "panels" by straight edges transverse to the mean flow direction. This configuration models a section of an aircraft fuselage that may be regarded as locally flat. The analytical problem can be solved in closed form to represent the acoustic radiation in terms of prescribed turbulent boundary layer pressure fluctuations. Two cases are considered: (i) the production of sound at an isolated panel edge (i.e., in the approximation in which the correlation between sound and vibrations generated at neighboring edges is neglected), and (ii) the sound generated by a periodic arrangement of identical panels. The latter problem is amenable to exact analytical treatment provided the panel edge conditions are the same for all panels. Detailed predictions of the interior noise depend on a knowledge of the turbulent boundary layer wall pressure spectrum, and are given here in terms of an empirical spectrum proposed by Laganelli and Wolfe. It is expected that these analytical representations of the sound generated by simplified models of fluid-structure interactions can used to validate more general numerical schemes.
Metallic positive expulsion diaphragms
NASA Technical Reports Server (NTRS)
Gleich, D.
1972-01-01
High-cycle life ring-reinforced hemispherical type positive expulsion diaphragm performance was demonstrated by room temperature fluid expulsion tests of 13" diameter, 8 mil thick stainless steel configurations. A maximum of eleven (11) leak-free, fluid expulsions were achieved by a 25 deg cone angle diaphragm hoop-reinforced with .110-inch cross-sectional diameter wires. This represents a 70% improvement in diaphragm reversal cycle life compared to results previously obtained. The reversal tests confirmed analytic predictions for diaphragm cycle life increases due to increasing values of diaphragm cone angle, radius to thickness ratio and material strain to necking capacity. Practical fabrication techniques were demonstrated for forming close-tolerance, thin corrugated shells and for obtaining closely controlled reinforcing ring stiffness required to maximize diaphragm cycle life. A non-destructive inspection technique for monitoring large local shell bending strains was developed.
An analytical study of physical models with inherited temporal and spatial memory
NASA Astrophysics Data System (ADS)
Jaradat, Imad; Alquran, Marwan; Al-Khaled, Kamel
2018-04-01
Du et al. (Sci. Reb. 3, 3431 (2013)) demonstrated that the fractional derivative order can be physically interpreted as a memory index by fitting the test data of memory phenomena. The aim of this work is to study analytically the joint effect of the memory index on time and space coordinates simultaneously. For this purpose, we introduce a novel bivariate fractional power series expansion that is accompanied by twofold fractional derivatives ordering α, β\\in(0,1]. Further, some convergence criteria concerning our expansion are presented and an analog of the well-known bivariate Taylor's formula in the sense of mixed fractional derivatives is obtained. Finally, in order to show the functionality and efficiency of this expansion, we employ the corresponding Taylor's series method to obtain closed-form solutions of various physical models with inherited time and space memory.
An efficient formulation of robot arm dynamics for control and computer simulation
NASA Astrophysics Data System (ADS)
Lee, C. S. G.; Nigam, R.
This paper describes an efficient formulation of the dynamic equations of motion of industrial robots based on the Lagrange formulation of d'Alembert's principle. This formulation, as applied to a PUMA robot arm, results in a set of closed form second order differential equations with cross product terms. They are not as efficient in computation as those formulated by the Newton-Euler method, but provide a better analytical model for control analysis and computer simulation. Computational complexities of this dynamic model together with other models are tabulated for discussion.
Aerodynamic response of an airfoil with thickness to a longitudinal and transverse periodic gust
NASA Technical Reports Server (NTRS)
Hamad, G.; Atassi, H.
1980-01-01
The unsteady lift of an airfoil with thickness subject to a two-dimensional periodic gust is analyzed using the recent theory of Goldstein and Atassi. It is found that to properly account for the coupling between the steady potential flow and the unsteady vortical flow, one has to consider the contribution of order alpha-squared (when alpha is steady state disturbance) to the potential flowfield. A closed form analytical formula is then derived for the lift function. The results show strong dependence on the wave members of the gust.
Effective grating theory for resonance domain surface-relief diffraction gratings.
Golub, Michael A; Friesem, Asher A
2005-06-01
An effective grating model, which generalizes effective-medium theory to the case of resonance domain surface-relief gratings, is presented. In addition to the zero order, it takes into account the first diffraction order, which obeys the Bragg condition. Modeling the surface-relief grating as an effective grating with two diffraction orders provides closed-form analytical relationships between efficiency and grating parameters. The aspect ratio, the grating period, and the required incidence angle that would lead to high diffraction efficiencies are predicted for TE and TM polarization and verified by rigorous numerical calculations.
Diversity Order Analysis of Dual-Hop Relaying with Partial Relay Selection
NASA Astrophysics Data System (ADS)
Bao, Vo Nguyen Quoc; Kong, Hyung Yun
In this paper, we study the performance of dual hop relaying in which the best relay selected by partial relay selection will help the source-destination link to overcome the channel impairment. Specifically, closed-form expressions for outage probability, symbol error probability and achievable diversity gain are derived using the statistical characteristic of the signal-to-noise ratio. Numerical investigation shows that the system achieves diversity of two regardless of relay number and also confirms the correctness of the analytical results. Furthermore, the performance loss due to partial relay selection is investigated.
NASA Astrophysics Data System (ADS)
Cuahutenango-Barro, B.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.
2017-12-01
Analytical solutions of the wave equation with bi-fractional-order and frictional memory kernel of Mittag-Leffler type are obtained via Caputo-Fabrizio fractional derivative in the Liouville-Caputo sense. Through the method of separation of variables and Laplace transform method we derive closed-form solutions and establish fundamental solutions. Special cases with homogeneous Dirichlet boundary conditions and nonhomogeneous initial conditions, as well as for the external force are considered. Numerical simulations of the special solutions were done and novel behaviors are obtained.
Noise kernels of stochastic gravity in conformally-flat spacetimes
NASA Astrophysics Data System (ADS)
Cho, H. T.; Hu, B. L.
2015-03-01
The central object in the theory of semiclassical stochastic gravity is the noise kernel, which is the symmetric two point correlation function of the stress-energy tensor. Using the corresponding Wightman functions in Minkowski, Einstein and open Einstein spaces, we construct the noise kernels of a conformally coupled scalar field in these spacetimes. From them we show that the noise kernels in conformally-flat spacetimes, including the Friedmann-Robertson-Walker universes, can be obtained in closed analytic forms by using a combination of conformal and coordinate transformations.
Nonlinear vibration of an axially loaded beam carrying rigid bodies
NASA Astrophysics Data System (ADS)
Barry, O.
2016-12-01
This paper investigates the nonlinear vibration due to mid-plane stretching of an axially loaded simply supported beam carrying multiple rigid masses. Explicit expressions and closed form solutions of both linear and nonlinear analysis of the present vibration problem are presented for the first time. The validity of the analytical model is demonstrated using finite element analysis and via comparison with the result in the literature. Parametric studies are conducted to examine how the nonlinear frequency and frequency response curve are affected by tension, rotational inertia, and number of intermediate rigid bodies.
Spectral Analysis for Weighted Iterated Triangulations of Graphs
NASA Astrophysics Data System (ADS)
Chen, Yufei; Dai, Meifeng; Wang, Xiaoqian; Sun, Yu; Su, Weiyi
Much information about the structural properties and dynamical aspects of a network is measured by the eigenvalues of its normalized Laplacian matrix. In this paper, we aim to present a first study on the spectra of the normalized Laplacian of weighted iterated triangulations of graphs. We analytically obtain all the eigenvalues, as well as their multiplicities from two successive generations. As an example of application of these results, we then derive closed-form expressions for their multiplicative Kirchhoff index, Kemeny’s constant and number of weighted spanning trees.
Approximate solutions to Mathieu's equation
NASA Astrophysics Data System (ADS)
Wilkinson, Samuel A.; Vogt, Nicolas; Golubev, Dmitry S.; Cole, Jared H.
2018-06-01
Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrödinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community.
Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities of Planetary Gears
NASA Technical Reports Server (NTRS)
Parker, Robert G.; Lin, Jian; Krantz, Timothy L. (Technical Monitor)
2001-01-01
Planetary gear noise and vibration are primary concerns in their applications in helicopters, automobiles, aircraft engines, heavy machinery and marine vehicles. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. A lumped-parameter model is built for the dynamic analysis of general planetary gears. The unique properties of the natural frequency spectra and vibration modes are rigorously characterized. These special structures apply for general planetary gears with cyclic symmetry and, in practically important case, systems with diametrically opposed planets. The special vibration properties are useful for subsequent research. Taking advantage of the derived modal properties, the natural frequency and vibration mode sensitivities to design parameters are investigated. The key parameters include mesh stiffnesses, support/bearing stiffnesses, component masses, moments of inertia, and operating speed. The eigen-sensitivities are expressed in simple, closed-form formulae associated with modal strain and kinetic energies. As disorders (e.g., mesh stiffness variation. manufacturing and assembling errors) disturb the cyclic symmetry of planetary gears, their effects on the free vibration properties are quantitatively examined. Well-defined veering rules are derived to identify dramatic changes of natural frequencies and vibration modes under parameter variations. The knowledge of free vibration properties, eigen-sensitivities, and veering rules provide important information to effectively tune the natural frequencies and optimize structural design to minimize noise and vibration. Parametric instabilities excited by mesh stiffness variations are analytically studied for multi-mesh gear systems. The discrepancies of previous studies on parametric instability of two-stage gear chains are clarified using perturbation and numerical methods. The operating conditions causing parametric instabilities are expressed in closed-form suitable for design guidance. Using the well-defined modal properties of planetary gears, the effects of mesh parameters on parametric instability are analytically identified. Simple formulae are obtained to suppress particular instabilities by adjusting contact ratios and mesh phasing.
Cole, K S
1975-12-01
Analytical solutions of Laplace equations have given the electrical characteristics of membranes and interiors of spherical, ellipsoidal, and cylindrical cells in suspensions and tissues from impedance measurements, but the underlying assumptions may be invalid above 50% volume concentrations. However, resistance measurements on several nonconducting, close-packing forms in two and three dimensions closely predicted volume concentrations up to 100% by equations derived from Maxwell and Rayleigh. Calculations of membrane capacities of cells in suspensions and tissues from extensions of theory, as developed by Fricke and by Cole, have been useful but of unknown validity at high concentrations. A resistor analogue has been used to solve the finite difference approximation to the Laplace equation for the resistance and capacity of a square array of square cylindrical cells with surface capacity. An 11 x 11 array of resistors, simulating a quarter of the unit structure, was separated into intra- and extra-cellular regions by rows of capacitors corresponding to surface membrane areas from 3 x 3 to 11 x 11 or 7.5% to 100%. The extended Rayleigh equation predicted the cell concentrations and membrane capacities to within a few percent from boundary resistance and capacity measurements at low frequencies. This single example suggests that analytical solutions for other, similar two- and three-dimensional problems may be approximated up to near 100% concentrations and that there may be analytical justifications for such analogue solutions of Laplace equations.
Three essays on energy and environmental economics: Empirical, applied, and theoretical
NASA Astrophysics Data System (ADS)
Karney, Daniel Houghton
Energy and environmental economics are closely related fields as nearly all forms of energy production generate pollution and thus nearly all forms of environmental policy affect energy production and consumption. The three essays in this dissertation are related by their common themes of energy and environmental economics, but they differ in their methodologies. The first chapter is an empirical exercise that looks that the relationship between electricity price deregulation and maintenance outages at nuclear power plants. The second chapter is an applied theory paper that investigates environmental regulation in a multiple pollutants setting. The third chapter develops a new methodology regarding the construction of analytical general equilibrium models that can be used to study topics in energy and environmental economics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deta, U. A., E-mail: utamaalan@yahoo.co.id; Suparmi,; Cari,
2014-09-30
The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectramore » of system.« less
Speciation analysis of aluminium in plant parts of Betula pendula and in soil.
Zioła-Frankowska, Anetta; Frankowski, Marcin
2018-03-01
The research presents the first results of aluminium speciation analysis in aqueous extracts of individual plant parts of Betula pendula and soil samples, using High Performance Ion Chromatography with Diode Array Detection (HPIC-DAD). The applied method allowed us to carry out a full speciation analysis of aluminium in the form of predominant aluminium-fluoride complexes: AlF (x=2,3,4) (3-x) (first analytical signal), AlF 2+ (second analytical signal) and Al 3+ (third analytical signal) in samples of lateral roots, tap roots, twigs, stem, leaf and soil collected under roots of B. pendula. Concentrations of aluminium and its complexes were determined for two types of environment characterised by different degree of human impact: contaminated site of the Chemical Plant in Luboń and protected area of the Wielkopolski National Park. For all the analysed samples of B. pendula and soil, AlF (x=2,3,4) (3-x) had the largest contribution, followed by Al 3+ and AlF 2+ . Significant differences in concentration and contribution of Al-F complexes and Al 3+ form, depending on the place of sampling (different anthropogenic pressure) and plant part of B. pendula were observed. Based on the obtained results, it was found that transport of aluminium is "blocked" by lateral roots, and is closely related to Al content of soil. Copyright © 2017. Published by Elsevier B.V.
The post-buckling behavior of a beam constrained by springy walls
NASA Astrophysics Data System (ADS)
Katz, Shmuel; Givli, Sefi
2015-05-01
The post-buckling behavior of a beam subjected to lateral constraints is of practical importance in a variety of applications, such as stent procedures, filopodia growth in living cells, endoscopic examination of internal organs, and deep drilling. Even though in reality the constraining surfaces are often deformable, the literature has focused mainly on rigid and fixed constraints. In this paper, we make a first step to bridge this gap through a theoretical and experimental examination of the post-buckling behavior of a beam constrained by a fixed wall and a springy wall, i.e. one that moves laterally against a spring. The response exhibited by the proposed system is much richer compared to that of the fixed-wall system, and can be tuned by choosing the spring stiffness. Based on small-deformation analysis, we obtained closed-form analytical solutions and quantitative insights. The accuracy of these results was examined by comparison to large-deformation analysis. We concluded that the closed-form solution of the small-deformation analysis provides an excellent approximation, except in the highest attainable mode. There, the system exhibits non-intuitive behavior and non-monotonous force-displacement relations that can only be captured by large-deformation theories. Although closed-form solutions cannot be derived for the large-deformation analysis, we were able to reveal general properties of the solution. In the last part of the paper, we present experimental results that demonstrate various features obtained from the theoretical analysis.
High resolution x-ray CMT: Reconstruction methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.K.
This paper qualitatively discusses the primary characteristics of methods for reconstructing tomographic images from a set of projections. These reconstruction methods can be categorized as either {open_quotes}analytic{close_quotes} or {open_quotes}iterative{close_quotes} techniques. Analytic algorithms are derived from the formal inversion of equations describing the imaging process, while iterative algorithms incorporate a model of the imaging process and provide a mechanism to iteratively improve image estimates. Analytic reconstruction algorithms are typically computationally more efficient than iterative methods; however, analytic algorithms are available for a relatively limited set of imaging geometries and situations. Thus, the framework of iterative reconstruction methods is better suited formore » high accuracy, tomographic reconstruction codes.« less
Lee, Yih Hong; Lee, Hiang Kwee; Ho, Jonathan Yong Chew; Yang, Yijie; Ling, Xing Yi
2016-08-15
Current substrate-less SERS platforms are limited to uncontrolled aggregation of plasmonic nanoparticles or quasi-crystalline arrays of spherical nanoparticles, with no study on how the lattice structures formed by nanoparticle self-assembly affect their detection capabilities. Here, we organize Ag octahedral building blocks into two large-area plasmonic metacrystals at the oil/water interface, and investigate their in situ SERS sensing capabilities. Amphiphilic octahedra assemble into a hexagonal close-packed metacrystal, while hydrophobic octahedra assemble into an open square metacrystal. The lower packing density square metacrystal gives rise to much stronger SERS enhancement than the denser packing hexagonal metacrystal, arising from the larger areas of plasmonic hotspots within the square metacrystal at the excitation wavelength. We further demonstrate the ability of the square metacrystal to achieve quantitative ultratrace detection of analytes from both the aqueous and organic phases. Detection limits are at the nano-molar levels, with analytical enhancement factors reaching 10(8). In addition, multiplex detection across both phases can be achieved in situ without any loss of signal quantitation.
Analytic model of a multi-electron atom
NASA Astrophysics Data System (ADS)
Skoromnik, O. D.; Feranchuk, I. D.; Leonau, A. U.; Keitel, C. H.
2017-12-01
A fully analytical approximation for the observable characteristics of many-electron atoms is developed via a complete and orthonormal hydrogen-like basis with a single-effective charge parameter for all electrons of a given atom. The basis completeness allows us to employ the secondary-quantized representation for the construction of regular perturbation theory, which includes in a natural way correlation effects, converges fast and enables an effective calculation of the subsequent corrections. The hydrogen-like basis set provides a possibility to perform all summations over intermediate states in closed form, including both the discrete and continuous spectra. This is achieved with the help of the decomposition of the multi-particle Green function in a convolution of single-electronic Coulomb Green functions. We demonstrate that our fully analytical zeroth-order approximation describes the whole spectrum of the system, provides accuracy, which is independent of the number of electrons and is important for applications where the Thomas-Fermi model is still utilized. In addition already in second-order perturbation theory our results become comparable with those via a multi-configuration Hartree-Fock approach.
Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds
NASA Technical Reports Server (NTRS)
Serafini, John S
1954-01-01
An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.
Joule heating induced stream broadening in free-flow zone electrophoresis.
Dutta, Debashis
2018-03-01
The use of an electric field in free-flow zone electrophoresis (FFZE) automatically leads to Joule heating yielding a higher temperature at the center of the separation chamber relative to that around the channel walls. For small amounts of heat generated, this thermal effect introduces a variation in the equilibrium position of the analyte molecules due to the dependence of liquid viscosity and analyte diffusivity on temperature leading to a modification in the position of the analyte stream as well as the zone width. In this article, an analytic theory is presented to quantitate such effects of Joule heating on FFZE assays in the limit of small temperature differentials across the channel gap yielding a closed form expression for the stream position and zone variance under equilibrium conditions. A method-of-moments approach is employed to develop this analytic theory, which is further validated with numerical solutions of the governing equations. Interestingly, the noted analyses predict that Joule heating can drift the location of the analyte stream either way of its equilibrium position realized in the absence of any temperature rise in the system, and also tends to reduce zone dispersion. The extent of these modifications, however, is governed by the electric field induced temperature rise and three Péclet numbers evaluated based on the axial pressure-driven flow, transverse electroosmotic and electrophoretic solute velocities in the separation chamber. Monte Carlo simulations of the FFZE system further establish a time and a length scale over which the results from the analytic theory are valid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dam break problem for the focusing nonlinear Schrödinger equation and the generation of rogue waves
NASA Astrophysics Data System (ADS)
El, G. A.; Khamis, E. G.; Tovbis, A.
2016-09-01
We propose a novel, analytically tractable, scenario of the rogue wave formation in the framework of the small-dispersion focusing nonlinear Schrödinger (NLS) equation with the initial condition in the form of a rectangular barrier (a ‘box’). We use the Whitham modulation theory combined with the nonlinear steepest descent for the semi-classical inverse scattering transform, to describe the evolution and interaction of two counter-propagating nonlinear wave trains—the dispersive dam break flows—generated in the NLS box problem. We show that the interaction dynamics results in the emergence of modulated large-amplitude quasi-periodic breather lattices whose amplitude profiles are closely approximated by the Akhmediev and Peregrine breathers within certain space-time domain. Our semi-classical analytical results are shown to be in excellent agreement with the results of direct numerical simulations of the small-dispersion focusing NLS equation.
A two-parameter family of double-power-law biorthonormal potential-density expansions
NASA Astrophysics Data System (ADS)
Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn
2018-07-01
We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in a closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.
Mapping Systemic Risk: Critical Degree and Failures Distribution in Financial Networks.
Smerlak, Matteo; Stoll, Brady; Gupta, Agam; Magdanz, James S
2015-01-01
The financial crisis illustrated the need for a functional understanding of systemic risk in strongly interconnected financial structures. Dynamic processes on complex networks being intrinsically difficult to model analytically, most recent studies of this problem have relied on numerical simulations. Here we report analytical results in a network model of interbank lending based on directly relevant financial parameters, such as interest rates and leverage ratios. We obtain a closed-form formula for the "critical degree" (the number of creditors per bank below which an individual shock can propagate throughout the network), and relate failures distributions to network topologies, in particular scalefree ones. Our criterion for the onset of contagion turns out to be isomorphic to the condition for cooperation to evolve on graphs and social networks, as recently formulated in evolutionary game theory. This remarkable connection supports recent calls for a methodological rapprochement between finance and ecology.
A two-parameter family of double-power-law biorthonormal potential-density expansions
NASA Astrophysics Data System (ADS)
Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn
2018-05-01
We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. (2017a) expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.
Comparison of sound power radiation from isolated airfoils and cascades in a turbulent flow.
Blandeau, Vincent P; Joseph, Phillip F; Jenkins, Gareth; Powles, Christopher J
2011-06-01
An analytical model of the sound power radiated from a flat plate airfoil of infinite span in a 2D turbulent flow is presented. The effects of stagger angle on the radiated sound power are included so that the sound power radiated upstream and downstream relative to the fan axis can be predicted. Closed-form asymptotic expressions, valid at low and high frequencies, are provided for the upstream, downstream, and total sound power. A study of the effects of chord length on the total sound power at all reduced frequencies is presented. Excellent agreement for frequencies above a critical frequency is shown between the fast analytical isolated airfoil model presented in this paper and an existing, computationally demanding, cascade model, in which the unsteady loading of the cascade is computed numerically. Reasonable agreement is also observed at low frequencies for low solidity cascade configurations. © 2011 Acoustical Society of America
Strings, vortex rings, and modes of instability
Gubser, Steven S.; Nayar, Revant; Parikh, Sarthak
2015-01-12
We treat string propagation and interaction in the presence of a background Neveu–Schwarz three-form field strength, suitable for describing vortex rings in a superfluid or low-viscosity normal fluid. A circular vortex ring exhibits instabilities which have been recognized for many years, but whose precise boundaries we determine for the first time analytically in the small core limit. Two circular vortices colliding head-on exhibit stronger instabilities which cause splitting into many small vortices at late times. We provide an approximate analytic treatment of these instabilities and show that the most unstable wavelength is parametrically larger than a dynamically generated length scalemore » which in many hydrodynamic systems is close to the cutoff. We also summarize how the string construction we discuss can be derived from the Gross–Pitaevskii Lagrangian, and also how it compares to the action for giant gravitons.« less
d'Errico, Michele; Sammarco, Paolo; Vairo, Giuseppe
2015-09-01
Pharmacokinetics induced by drug eluting stents (DES) in coronary walls is modeled by means of a one-dimensional multi-layered model, accounting for vessel curvature and non-homogeneous properties of the arterial tissues. The model includes diffusion mechanisms, advection effects related to plasma filtration through the walls, and bio-chemical drug reactions. A non-classical Sturm-Liouville problem with discontinuous coefficients is derived, whose closed-form analytical solution is obtained via an eigenfunction expansion. Soundness and consistency of the proposed approach are shown by numerical computations based on possible clinical treatments involving both hydrophilic and hydrophobic drugs. The influence of the main model parameters on drug delivery mechanisms is analyzed, highlighting the effects induced by vessel curvature and yielding comparative indications and useful insights into the concurring mechanisms governing the pharmacokinetics. Copyright © 2015. Published by Elsevier Inc.
The dynamics of spin stabilized spacecraft with movable appendages, part 1
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Sellappan, R.
1975-01-01
The motion and stability of spin stabilized spacecraft with movable external appendages are treated both analytically and numerically. The two basic types of appendages considered are: (1) a telescoping type of varying length and (2) a hinged type of fixed length whose orientation with respect to the main part of the spacecraft can vary. Two classes of telescoping appendages are considered: (a) where an end mass is mounted at the end of an (assumed) massless boom; and (b) where the appendage is assumed to consist of a uniformly distributed homogeneous mass throughout its length. For the telescoping system Eulerian equations of motion are developed. During all deployment sequences it is assumed that the transverse component of angular momentum is much smaller than the component along the major spin axis. Closed form analytical solutions for the time response of the transverse components of angular velocities are obtained when the spacecraft hub has a nearly spherical mass distribution.
Analytically-derived sensitivities in one-dimensional models of solute transport in porous media
Knopman, D.S.
1987-01-01
Analytically-derived sensitivities are presented for parameters in one-dimensional models of solute transport in porous media. Sensitivities were derived by direct differentiation of closed form solutions for each of the odel, and by a time integral method for two of the models. Models are based on the advection-dispersion equation and include adsorption and first-order chemical decay. Boundary conditions considered are: a constant step input of solute, constant flux input of solute, and exponentially decaying input of solute at the upstream boundary. A zero flux is assumed at the downstream boundary. Initial conditions include a constant and spatially varying distribution of solute. One model simulates the mixing of solute in an observation well from individual layers in a multilayer aquifer system. Computer programs produce output files compatible with graphics software in which sensitivities are plotted as a function of either time or space. (USGS)
Analytic description of microcylindrical cavity for surface plasmon polariton
NASA Astrophysics Data System (ADS)
Tekkozyan, Vahan; Babajanyan, Arsen; Nerkararyan, Khachatur
2013-09-01
We consider the formation of the surface plasmon polariton (SPP) mode in the microcylinder cavity. Developed theoretical model allows to analytically calculate the closed-form expressions for the mode field distributions, resonant frequency, as well as the radiation and dissipative parts of quality factor of the structure in a broad wavelength range. For the conditions when a radius of a metallic cylinder is in order of SPP's wavelength, the highest value of Q-factor is achieved in infrared region of the spectrum where the absolute value of the real part of dielectric permittivity of the metal is much more than both the imaginary part of dielectric permittivity of the metal and the dielectric permittivity of surrounding media. Also, the radiation losses decrease with increasing of radius of cylinder. The obtained results give opportunity to find optimal conditions for having efficient emission in microcylinder cavity and it can serve as practical guidelines to design SPP microcavity for stimulated emission.
A two-parameter family of double-power-law biorthonormal potential-density expansions
NASA Astrophysics Data System (ADS)
Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn
2018-05-01
We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. (2018b) expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.
Pinching solutions of slender cylindrical jets
NASA Technical Reports Server (NTRS)
Papageorgiou, Demetrios T.; Orellana, Oscar
1993-01-01
Simplified equations for slender jets are derived for a circular jet of one fluid flowing into an ambient second fluid, the flow being confined in a circular tank. Inviscid flows are studied which include both surface tension effects and Kelvin-Helmholtz instability. For slender jets a coupled nonlinear system of equations is found for the jet shape and the axial velocity jump across it. The equations can break down after a finite time and similarity solutions are constructed, and studied analytically and numerically. The break-ups found pertain to the jet pinching after a finite time, without violation of the slender jet ansatz. The system is conservative and admissible singular solutions are those which conserve the total energy, mass, and momentum. Such solutions are constructed analytically and numerically, and in the case of vortex sheets with no surface tension certain solutions are given in closed form.
Probability theory versus simulation of petroleum potential in play analysis
Crovelli, R.A.
1987-01-01
An analytic probabilistic methodology for resource appraisal of undiscovered oil and gas resources in play analysis is presented. This play-analysis methodology is a geostochastic system for petroleum resource appraisal in explored as well as frontier areas. An objective was to replace an existing Monte Carlo simulation method in order to increase the efficiency of the appraisal process. Underlying the two methods is a single geologic model which considers both the uncertainty of the presence of the assessed hydrocarbon and its amount if present. The results of the model are resource estimates of crude oil, nonassociated gas, dissolved gas, and gas for a geologic play in terms of probability distributions. The analytic method is based upon conditional probability theory and a closed form solution of all means and standard deviations, along with the probabilities of occurrence. ?? 1987 J.C. Baltzer A.G., Scientific Publishing Company.
NASA Technical Reports Server (NTRS)
Williams, Craig Hamilton
1995-01-01
A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human interplanetary space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line (radial) trajectories between the planets. Closed form, one dimensional equations of motion for two-burn rendezvous and four-burn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of integrated solutions respectively, verifying that for these systems, credible analysis does not require computationally intensive numerical techniques.
Mapping Systemic Risk: Critical Degree and Failures Distribution in Financial Networks
Smerlak, Matteo; Stoll, Brady; Gupta, Agam; Magdanz, James S.
2015-01-01
The financial crisis illustrated the need for a functional understanding of systemic risk in strongly interconnected financial structures. Dynamic processes on complex networks being intrinsically difficult to model analytically, most recent studies of this problem have relied on numerical simulations. Here we report analytical results in a network model of interbank lending based on directly relevant financial parameters, such as interest rates and leverage ratios. We obtain a closed-form formula for the “critical degree” (the number of creditors per bank below which an individual shock can propagate throughout the network), and relate failures distributions to network topologies, in particular scalefree ones. Our criterion for the onset of contagion turns out to be isomorphic to the condition for cooperation to evolve on graphs and social networks, as recently formulated in evolutionary game theory. This remarkable connection supports recent calls for a methodological rapprochement between finance and ecology. PMID:26207631
An Analytical Time–Domain Expression for the Net Ripple Produced by Parallel Interleaved Converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B.; Krein, Philip T.
We apply modular arithmetic and Fourier series to analyze the superposition of N interleaved triangular waveforms with identical amplitudes and duty-ratios. Here, interleaving refers to the condition when a collection of periodic waveforms with identical periods are each uniformly phase-shifted across one period. The main result is a time-domain expression which provides an exact representation of the summed and interleaved triangular waveforms, where the peak amplitude and parameters of the time-periodic component are all specified in closed-form. Analysis is general and can be used to study various applications in multi-converter systems. This model is unique not only in that itmore » reveals a simple and intuitive expression for the net ripple, but its derivation via modular arithmetic and Fourier series is distinct from prior approaches. The analytical framework is experimentally validated with a system of three parallel converters under time-varying operating conditions.« less
An Improved Correlation between Impression and Uniaxial Creep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsueh, Chun-Hway; Miranda, Pedro; Becher, Paul F
2006-01-01
A semiempirical correlation between impression and uniaxial creep has been established by Hyde et al. [Int. J. Mech. Sci. 35, 451 (1993) ] using finite element results for materials exhibiting general power-law creep with the stress exponent n in the range 2 {<=} n {<=} 15. Here, we derive the closed-form solution for a special case of viscoelastic materials, i.e., n = 1, subjected to impression creep and obtain the exact correlation between impression and uniaxial creep. This analytical solution serves as a checkpoint for the finite element results. We then perform finite element analyses for the general case tomore » derive a semiempirical correlation, which agrees well with both analytical viscoelastic results and the existing experimental data. Our improved correlation agrees with the correlation of Hyde et al. for n {>=} 4, and the difference increases with decreasing n for n<4.« less
Kim, Kimin; Park, Jong-Kyu; Boozer, Allen H
2013-05-03
This Letter presents the first numerical verification for the bounce-harmonic (BH) resonance phenomena of the neoclassical transport in a tokamak perturbed by nonaxisymmetric magnetic fields. The BH resonances were predicted by analytic theories of neoclassical toroidal viscosity (NTV), as the parallel and perpendicular drift motions can be resonant and result in a great enhancement of the radial momentum transport. A new drift-kinetic δf guiding-center particle code, POCA, clearly verified that the perpendicular drift motions can reduce the transport by phase-mixing, but in the BH resonances the motions can form closed orbits and particles radially drift out fast. The POCA calculations on resulting NTV torque are largely consistent with analytic calculations, and show that the BH resonances can easily dominate the NTV torque when a plasma rotates in the perturbed tokamak and therefore, is a critical physics for predicting the rotation and stability in the International Thermonuclear Experimental Reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saprykin, E. G.; Chernenko, A. A., E-mail: chernen@isp.nsc.ru; Shalagin, A. M.
Analytical and numerical investigations are carried out of the effect of spontaneous decay through operating transition on the shape of a resonance in the work of a probe field under a strong field applied to the transition. A narrow nonlinear resonance arising on transitions with long-living lower level in the work of a probe field can manifest itself in the form of a traditional minimum and a peak as a function of the first Einstein coefficient for the operating transition. The transformation of the resonance from a minimum to a peak is attributed to the specific character of relaxation ofmore » lower-level population beatings on a closed or almost closed transition (the decay of the upper level occurs completely or almost completely through the operating transition).« less
Gravitational waves from neutron star excitations in a binary inspiral
NASA Astrophysics Data System (ADS)
Parisi, Alessandro; Sturani, Riccardo
2018-02-01
In the context of a binary inspiral of mixed neutron star-black hole systems, we investigate the excitation of the neutron star oscillation modes by the orbital motion. We study generic eccentric orbits and show that tidal interaction can excite the f -mode oscillations of the star by computing the amount of energy and angular momentum deposited into the star by the orbital motion tidal forces via closed form analytic expressions. We study the f -mode oscillations of cold neutron stars using recent microscopic nuclear equations of state, and we compute their imprint into the emitted gravitational waves.
NASA Technical Reports Server (NTRS)
Messiter, A. F.
1979-01-01
Analytical solutions are derived which incorporate additional physical effects as higher order terms for the case when the sonic line is very close to the wall. The functional form used for the undisturbed velocity profile is described to indicate how various parameters will be calculated for later comparison with experiment. The basic solutions for the pressure distribution are derived. Corrections are added for flow along a wall having longitudinal curvature and for flow in a circular pipe, and comparisons with available experimental data are shown.
Standard and reference materials for marine science. Third edition. Technical memo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantillo, A.Y.
1992-08-01
The third edition of the catalog of reference materials suited for use in marine science, originally compiled in 1986 for NOAA, IOC, and UNEP. The catalog lists close to 2,000 reference materials from sixteen producers and contains information about their proper use, sources, availability, and analyte concentrations. Indices are included for elements, isotopes, and organic compounds, as are cross references to CAS registry numbers, alternate names, and chemical structures of selected organic compounds. The catalog is being published independently by both NOAA and IOC/UNEP and is available from NOAA/NOS/ORCA in electronic form.
Relative motion using analytical differential gravity
NASA Technical Reports Server (NTRS)
Gottlieb, Robert G.
1988-01-01
This paper presents a new approach to the computation of the motion of one satellite relative to another. The trajectory of the reference satellite is computed accurately subject to geopotential perturbations. This precise trajectory is used as a reference in computing the position of a nearby body, or bodies. The problem that arises in this approach is differencing nearly equal terms in the geopotential model, especially as the separation of the reference and nearby bodies approaches zero. By developing closed form expressions for differences in higher order and degree geopotential terms, the numerical problem inherent in the differencing approach is eliminated.
Moment distributions around holes in symmetric composite laminates subjected to bending moments
NASA Technical Reports Server (NTRS)
Prasad, C. B.; Shuart, M. J.
1989-01-01
An analytical investigation of the effects of holes on the moment distribution of symmetric composite laminates subjected to bending moments is described. A general, closed-form solution for the moment distribution of an infinite anisotropic plate is derived, and this solution is used to determine stress distributions both on the hole boundary and throughout the plate. Results are presented for several composite laminates that have holes and are subjected to either pure bending or cylindrical bending. Laminates with a circular hole or with an elliptical hole are studied. Laminate moment distributions are discussed, and ply stresses are described.
On the Achievable Throughput Over TVWS Sensor Networks
Caleffi, Marcello; Cacciapuoti, Angela Sara
2016-01-01
In this letter, we study the throughput achievable by an unlicensed sensor network operating over TV white space spectrum in presence of coexistence interference. Through the letter, we first analytically derive the achievable throughput as a function of the channel ordering. Then, we show that the problem of deriving the maximum expected throughput through exhaustive search is computationally unfeasible. Finally, we derive a computational-efficient algorithm characterized by polynomial-time complexity to compute the channel set maximizing the expected throughput and, stemming from this, we derive a closed-form expression of the maximum expected throughput. Numerical simulations validate the theoretical analysis. PMID:27043565
Analytic gravitational waveforms for generic precessing compact binaries
NASA Astrophysics Data System (ADS)
Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolas
2017-01-01
Gravitational waves from compact binaries are subject to amplitude and phase modulations arising from interactions between the angular momenta of the system. Failure to account for such spin-precession effects in gravitational wave data analysis could hinder detection and completely ruin parameter estimation. In this talk I will describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals. The resulting waveforms can model spinning binaries of arbitrary spin magnitudes, spin orientations, and masses during the inspiral phase. I will also describe ongoing efforts to extend these inspiral waveforms to the merger and ringdown phases.
Calculation of the time resolution of the J-PET tomograph using kernel density estimation
NASA Astrophysics Data System (ADS)
Raczyński, L.; Wiślicki, W.; Krzemień, W.; Kowalski, P.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B.; Jasińska, B.; Kamińska, D.; Korcyl, G.; Kozik, T.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Niedźwiecki, S.; Pałka, M.; Rudy, Z.; Rundel, O.; Sharma, N. G.; Silarski, M.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Zgardzińska, B.; Zieliński, M.; Moskal, P.
2017-06-01
In this paper we estimate the time resolution of the J-PET scanner built from plastic scintillators. We incorporate the method of signal processing using the Tikhonov regularization framework and the kernel density estimation method. We obtain simple, closed-form analytical formulae for time resolution. The proposed method is validated using signals registered by means of the single detection unit of the J-PET tomograph built from a 30 cm long plastic scintillator strip. It is shown that the experimental and theoretical results obtained for the J-PET scanner equipped with vacuum tube photomultipliers are consistent.
Applications of δ-function perturbation to the pricing of derivative securities
NASA Astrophysics Data System (ADS)
Decamps, Marc; De Schepper, Ann; Goovaerts, Marc
2004-11-01
In the recent econophysics literature, the use of functional integrals is widespread for the calculation of option prices. In this paper, we extend this approach in several directions by means of δ-function perturbations. First, we show that results about infinitely repulsive δ-function are applicable to the pricing of barrier options. We also introduce functional integrals over skew paths that give rise to a new European option formula when combined with δ-function potential. We propose accurate closed-form approximations based on the theory of comonotonic risks in case the functional integrals are not analytically computable.
Atmospheric guidance law for planar skip trajectories
NASA Technical Reports Server (NTRS)
Mease, K. D.; Mccreary, F. A.
1985-01-01
The applicability of an approximate, closed-form, analytical solution to the equations of motion, as a basis for a deterministic guidance law for controlling the in-plane motion during a skip trajectory, is investigated. The derivation of the solution by the method of matched asymptotic expansions is discussed. Specific issues that arise in the application of the solution to skip trajectories are addressed. Based on the solution, an explicit formula for the approximate energy loss due to an atmospheric pass is derived. A guidance strategy is proposed that illustrates the use of the approximate solution. A numerical example shows encouraging performance.
Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation
Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D.; Oldham, Kenn R.
2014-01-01
High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror’s nonlinear dynamics under such excitation is analyzed in a Hill’s equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror’s frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies. PMID:25506188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liemert, André, E-mail: andre.liemert@ilm.uni-ulm.de; Kienle, Alwin
Purpose: Explicit solutions of the monoenergetic radiative transport equation in the P{sub 3} approximation have been derived which can be evaluated with nearly the same computational effort as needed for solving the standard diffusion equation (DE). In detail, the authors considered the important case of a semi-infinite medium which is illuminated by a collimated beam of light. Methods: A combination of the classic spherical harmonics method and the recently developed method of rotated reference frames is used for solving the P{sub 3} equations in closed form. Results: The derived solutions are illustrated and compared to exact solutions of the radiativemore » transport equation obtained via the Monte Carlo (MC) method as well as with other approximated analytical solutions. It is shown that for the considered cases which are relevant for biomedical optics applications, the P{sub 3} approximation is close to the exact solution of the radiative transport equation. Conclusions: The authors derived exact analytical solutions of the P{sub 3} equations under consideration of boundary conditions for defining a semi-infinite medium. The good agreement to Monte Carlo simulations in the investigated domains, for example, in the steady-state and time domains, as well as the short evaluation time needed suggests that the derived equations can replace the often applied solutions of the diffusion equation for the homogeneous semi-infinite medium.« less
The Transient Dermal Exposure II: Post-Exposure Absorption and Evaporation of Volatile Compounds
FRASCH, H. FREDERICK; BUNGE, ANNETTE L.
2016-01-01
The transient dermal exposure is one where the skin is exposed to chemical for a finite duration, after which the chemical is removed and no residue remains on the skin’s surface. Chemical within the skin at the end of the exposure period can still enter the systemic circulation. If it has some volatility, a portion of it will evaporate from the surface before it has a chance to be absorbed by the body. The fate of this post-exposure “skin depot” is the focus of this theoretical study. Laplace domain solutions for concentration distribution, flux, and cumulative mass absorption and evaporation are presented, and time domain results are obtained through numerical inversion. The Final Value Theorem is applied to obtain the analytical solutions for the total fractional absorption by the body and evaporation from skin at infinite time following a transient exposure. The solutions depend on two dimensionless variables: χ, the ratio of evaporation rate to steady-state dermal permeation rate; and the ratio of exposure time to membrane lag time. Simple closed form algebraic equations are presented that closely approximate the complete analytical solutions. Applications of the theory to the dermal risk assessment of pharmaceutical, occupational, and environmental exposures are presented for four example chemicals. PMID:25611182
NASA Astrophysics Data System (ADS)
Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik
2008-09-01
Gravitational lensing provides a unique and powerful probe of the mass distributions of distant galaxies. Four-image lens systems with fold and cusp configurations have two or three bright images near a critical point. Within the framework of singularity theory, we derive analytic relations that are satisfied for a light source that lies a small but finite distance from the astroid caustic of a four-image lens. Using a perturbative expansion of the image positions, we show that the time delay between the close pair of images in a fold lens scales with the cube of the image separation, with a constant of proportionality that depends on a particular third derivative of the lens potential. We also apply our formalism to cusp lenses, where we develop perturbative expressions for the image positions, magnifications and time delays of the images in a cusp triplet. Some of these results were derived previously for a source asymptotically close to a cusp point, but using a simplified form of the lens equation whose validity may be in doubt for sources that lie at astrophysically relevant distances from the caustic. Along with the work of Keeton, Gaudi & Petters, this paper demonstrates that perturbation theory plays an important role in theoretical lensing studies.
Analytic theory of high-order-harmonic generation by an intense few-cycle laser pulse
NASA Astrophysics Data System (ADS)
Frolov, M. V.; Manakov, N. L.; Popov, A. M.; Tikhonova, O. V.; Volkova, E. A.; Silaev, A. A.; Vvedenskii, N. V.; Starace, Anthony F.
2012-03-01
We present a theoretical model for describing the interaction of an electron, weakly bound in a short-range potential, with an intense, few-cycle laser pulse. General definitions for the differential probability of above-threshold ionization and for the yield of high-order-harmonic generation (HHG) are presented. For HHG we then derive detailed analytic expressions for the spectral density of generated radiation in terms of the key laser parameters, including the number N of optical cycles in the pulse and the carrier-envelope phase (CEP). In particular, in the tunneling approximation, we provide detailed derivations of the closed-form formulas presented briefly by M. V. Frolov [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.83.021405 83, 021405(R) (2011)], which were used to describe key features of HHG by both H and Xe atom targets in an intense, few-cycle laser pulse. We then provide a complete analysis of the dependence of the HHG spectrum on both N and the CEP φ of an N-cycle laser pulse. Most importantly, we show analytically that the structure of the HHG spectrum stems from interference between electron wave packets originating from electron ionization from neighboring half-cycles near the peak of the intensity envelope of the few-cycle laser pulse. Such interference is shown to be very sensitive to the CEP. The usual HHG spectrum for a monochromatic driving laser field (comprising harmonic peaks at odd multiples of the carrier frequency and spaced by twice the carrier frequency) is shown analytically to occur only in the limit of very large N, and begins to form, as N increases, in the energy region beyond the HHG plateau cutoff.
NASA Astrophysics Data System (ADS)
Zheng, Jun; Han, Xinyue; Wang, ZhenTao; Li, Changfeng; Zhang, Jiazhong
2017-06-01
For about a century, people have been trying to seek for a globally convergent and closed analytical solution (CAS) of the Blasius Equation (BE). In this paper, we proposed a formally satisfied solution which could be parametrically expressed by two power series. Some analytical results of the laminar boundary layer of a flat plate, that were not analytically given in former studies, e.g. the thickness of the boundary layer and higher order derivatives, could be obtained based on the solution. Besides, the heat transfer in the laminar boundary layer of a flat plate with constant temperature could also be analytically formulated. Especially, the solution of the singular situation with Prandtl number Pr=0, which seems impossible to be analyzed in prior studies, could be given analytically. The method for finding the CAS of Blasius equation was also utilized in the problem of the boundary layer regulation through wall injection and slip velocity on the wall surface.
Solitons in Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Carr, Lincoln D.
2003-05-01
The stationary form, dynamical properties, and experimental criteria for creation of matter-wave bright and dark solitons, both singly and in trains, are studied numerically and analytically in the context of Bose-Einstein condensates [1]. The full set of stationary solutions in closed analytic form to the mean field model in the quasi-one-dimensional regime, which is a nonlinear Schrodinger equation equally relevant in nonlinear optics, is developed under periodic and box boundary conditions [2]. These solutions are extended numerically into the two and three dimensional regimes, where it is shown that dark solitons can be used to create vortex-anti-vortex pairs under realistic conditions. Specific experimental prescriptions for creating viable dark and bright solitons in the quasi-one-dimensional regime are provided. These analytic methods are then extended to treat the nonlinear Schrodinger equation with a generalized lattice potential, which models a Bose-Einstein condensate trapped in the potential generated by a standing light wave. A novel solution family is developed and stability criterion are presented. Experiments which successfully carried out these ideas are briefly discussed [3]. [1] Dissertation research completed at the University of Washington Physics Department under the advisorship of Prof. William P. Reinhardt. [2] L. D. Carr, C. W. Clark, and W. P. Reinhardt, Phys. Rev. A v. 62 p. 063610-1--10 and Phys. Rev. A v.62, p.063611-1--10 (2000). [3] L. Khaykovich, F. Schreck, T. Bourdel, J. Cubizolles, G. Ferrari, L. D. Carr, Y. Castin, and C. Salomon, Science v. 296, p.1290--1293 (2002).
Wolf, Jan-Christoph; Gyr, Luzia; Mirabelli, Mario F; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato
2016-09-01
Active capillary plasma ionization is a highly efficient ambient ionization method. Its general principle of ion formation is closely related to atmospheric pressure chemical ionization (APCI). The method is based on dielectric barrier discharge ionization (DBDI), and can be constructed in the form of a direct flow-through interface to a mass spectrometer. Protonated species ([M + H](+)) are predominantly formed, although in some cases radical cations are also observed. We investigated the underlying ionization mechanisms and reaction pathways for the formation of protonated analyte ([M + H](+)). We found that ionization occurs in the presence and in the absence of water vapor. Therefore, the mechanism cannot exclusively rely on hydronium clusters, as generally accepted for APCI. Based on isotope labeling experiments, protons were shown to originate from various solvents (other than water) and, to a minor extent, from gaseous impurities and/or self-protonation. By using CO2 instead of air or N2 as plasma gas, additional species like [M + OH](+) and [M - H](+) were observed. These gas-phase reaction products of CO2 with the analyte (tertiary amines) indicate the presence of a radical-mediated ionization pathway, which proceeds by direct reaction of the ionized plasma gas with the analyte. The proposed reaction pathway is supported with density functional theory (DFT) calculations. These findings add a new ionization pathway leading to the protonated species to those currently known for APCI. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Pieprzyk, S.; Brańka, A. C.; Maćkowiak, Sz.; Heyes, D. M.
2018-03-01
The equation of state (EoS) of the Lennard-Jones fluid is calculated using a new set of molecular dynamics data which extends to higher temperature than in previous studies. The modified Benedict-Webb-Rubin (MBWR) equation, which goes up to ca. T ˜ 6, is reparametrized with new simulation data. A new analytic form for the EoS, which breaks the fluid range into two regions with different analytic forms and goes up to ca. T ≃ 35, is also proposed. The accuracy of the new formulas is at least as good as the MBWR fit and goes to much higher temperature allowing it to now encompass the Amagat line. The fitted formula extends into the high temperature range where the system can be well represented by inverse power potential scaling, which means that our specification of the equation of state covers the entire (ρ, T) plane. Accurate analytic fit formulas for the Boyle, Amagat, and inversion curves are presented. Parametrizations of the extrema loci of the isochoric, CV, and isobaric, CP, heat capacities are given. As found by others, a line maxima of CP terminates in the critical point region, and a line of minima of CP terminates on the freezing line. The line of maxima of CV terminates close to or at the critical point, and a line of minima of CV terminates to the right of the critical point. No evidence for a divergence in CV in the critical region is found.
7 CFR 90.2 - General terms defined.
Code of Federal Regulations, 2011 CFR
2011-01-01
... agency, or other agency, organization or person that defines in the general terms the basis on which the... analytical data using proficiency check sample or analyte recovery techniques. In addition, the certainty.... Quality control. The system of close examination of the critical details of an analytical procedure in...
Ikeda, Yukihiro; Ishihara, Yoko; Moriwaki, Toshiya; Kato, Eiji; Terada, Katsuhide
2010-01-01
A novel analytical method for the determination of pharmaceutical polymorphs was developed using terahertz spectroscopy. It was found out that each polymorph of a substance showed a specific terahertz absorption spectrum. In particular, analysis of the second derivative spectrum was enormously beneficial in the discrimination of closely related polymorphs that were difficult to discern by powder X-ray diffractometry. Crystal forms that were obtained by crystallization from various solvents and stored under various conditions were specifically characterized by the second derivative of each terahertz spectrum. Fractional polymorphic transformation for substances stored under stressed conditions was also identified by terahertz spectroscopy during solid-state stability test, but could not be detected by powder X-ray diffractometry. Since polymorphs could be characterized clearly by terahertz spectroscopy, further physicochemical studies could be conducted in a timely manner. The development form of compound examined was determined by the results of comprehensive physicochemical studies that included thermodynamic relationships, as well as chemical and physicochemical stability. In conclusion, terahertz spectroscopy, which has unique power in the elucidation of molecular interaction within a crystal lattice, can play more important role in physicochemical research. Terahertz spectroscopy has a great potential as a tool for polymorphic determination, particularly since the second derivative of the terahertz spectrum possesses high sensitivity for pharmaceutical polymorphs.
Yura, H T; Thrane, L; Andersen, P E
2000-12-01
Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.
Approximate analytical relationships for linear optimal aeroelastic flight control laws
NASA Astrophysics Data System (ADS)
Kassem, Ayman Hamdy
1998-09-01
This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safari, L., E-mail: laleh.safari@ist.ac.at; Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu; Santos, J. P.
Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.
Gain weighted eigenspace assignment
NASA Technical Reports Server (NTRS)
Davidson, John B.; Andrisani, Dominick, II
1994-01-01
This report presents the development of the gain weighted eigenspace assignment methodology. This provides a designer with a systematic methodology for trading off eigenvector placement versus gain magnitudes, while still maintaining desired closed-loop eigenvalue locations. This is accomplished by forming a cost function composed of a scalar measure of error between desired and achievable eigenvectors and a scalar measure of gain magnitude, determining analytical expressions for the gradients, and solving for the optimal solution by numerical iteration. For this development the scalar measure of gain magnitude is chosen to be a weighted sum of the squares of all the individual elements of the feedback gain matrix. An example is presented to demonstrate the method. In this example, solutions yielding achievable eigenvectors close to the desired eigenvectors are obtained with significant reductions in gain magnitude compared to a solution obtained using a previously developed eigenspace (eigenstructure) assignment method.
The Analytical Solution of the Transient Radial Diffusion Equation with a Nonuniform Loss Term.
NASA Astrophysics Data System (ADS)
Loridan, V.; Ripoll, J. F.; De Vuyst, F.
2017-12-01
Many works have been done during the past 40 years to perform the analytical solution of the radial diffusion equation that models the transport and loss of electrons in the magnetosphere, considering a diffusion coefficient proportional to a power law in shell and a constant loss term. Here, we propose an original analytical method to address this challenge with a nonuniform loss term. The strategy is to match any L-dependent electron losses with a piecewise constant function on M subintervals, i.e., dealing with a constant lifetime on each subinterval. Applying an eigenfunction expansion method, the eigenvalue problem becomes presently a Sturm-Liouville problem with M interfaces. Assuming the continuity of both the distribution function and its first spatial derivatives, we are able to deal with a well-posed problem and to find the full analytical solution. We further show an excellent agreement between both the analytical solutions and the solutions obtained directly from numerical simulations for different loss terms of various shapes and with a diffusion coefficient DLL L6. We also give two expressions for the required number of eigenmodes N to get an accurate snapshot of the analytical solution, highlighting that N is proportional to 1/√t0, where t0 is a time of interest, and that N increases with the diffusion power. Finally, the equilibrium time, defined as the time to nearly reach the steady solution, is estimated by a closed-form expression and discussed. Applications to Earth and also Jupiter and Saturn are discussed.
Nguyen, Tuan A H; Biggs, Simon R; Nguyen, Anh V
2018-05-30
Current analytical models for sessile droplet evaporation do not consider the nonuniform temperature field within the droplet and can overpredict the evaporation by 20%. This deviation can be attributed to a significant temperature drop due to the release of the latent heat of evaporation along the air-liquid interface. We report, for the first time, an analytical solution of the sessile droplet evaporation coupled with this interfacial cooling effect. The two-way coupling model of the quasi-steady thermal diffusion within the droplet and the quasi-steady diffusion-controlled droplet evaporation is conveniently solved in the toroidal coordinate system by applying the method of separation of variables. Our new analytical model for the coupled vapor concentration and temperature fields is in the closed form and is applicable for a full range of spherical-cap shape droplets of different contact angles and types of fluids. Our analytical results are uniquely quantified by a dimensionless evaporative cooling number E o whose magnitude is determined only by the thermophysical properties of the liquid and the atmosphere. Accordingly, the larger the magnitude of E o , the more significant the effect of the evaporative cooling, which results in stronger suppression on the evaporation rate. The classical isothermal model is recovered if the temperature gradient along the air-liquid interface is negligible ( E o = 0). For substrates with very high thermal conductivities (isothermal substrates), our analytical model predicts a reversal of temperature gradient along the droplet-free surface at a contact angle of 119°. Our findings pose interesting challenges but also guidance for experimental investigations.
Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells.
Ahmadi, S M; Campoli, G; Amin Yavari, S; Sajadi, B; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A
2014-06-01
Cellular structures with highly controlled micro-architectures are promising materials for orthopedic applications that require bone-substituting biomaterials or implants. The availability of additive manufacturing techniques has enabled manufacturing of biomaterials made of one or multiple types of unit cells. The diamond lattice unit cell is one of the relatively new types of unit cells that are used in manufacturing of regular porous biomaterials. As opposed to many other types of unit cells, there is currently no analytical solution that could be used for prediction of the mechanical properties of cellular structures made of the diamond lattice unit cells. In this paper, we present new analytical solutions and closed-form relationships for predicting the elastic modulus, Poisson׳s ratio, critical buckling load, and yield (plateau) stress of cellular structures made of the diamond lattice unit cell. The mechanical properties predicted using the analytical solutions are compared with those obtained using finite element models. A number of solid and porous titanium (Ti6Al4V) specimens were manufactured using selective laser melting. A series of experiments were then performed to determine the mechanical properties of the matrix material and cellular structures. The experimentally measured mechanical properties were compared with those obtained using analytical solutions and finite element (FE) models. It has been shown that, for small apparent density values, the mechanical properties obtained using analytical and numerical solutions are in agreement with each other and with experimental observations. The properties estimated using an analytical solution based on the Euler-Bernoulli theory markedly deviated from experimental results for large apparent density values. The mechanical properties estimated using FE models and another analytical solution based on the Timoshenko beam theory better matched the experimental observations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Extremal black holes in dynamical Chern-Simons gravity
NASA Astrophysics Data System (ADS)
McNees, Robert; Stein, Leo C.; Yunes, Nicolás
2016-12-01
Rapidly rotating black hole (BH) solutions in theories beyond general relativity (GR) play a key role in experimental gravity, as they allow us to compute observables in extreme spacetimes that deviate from the predictions of GR. Such solutions are often difficult to find in beyond-general-relativity theories due to the inclusion of additional fields that couple to the metric nonlinearly and non-minimally. In this paper, we consider rotating BH solutions in one such theory, dynamical Chern-Simons (dCS) gravity, where the Einstein-Hilbert action is modified by the introduction of a dynamical scalar field that couples to the metric through the Pontryagin density. We treat dCS gravity as an effective field theory and work in the decoupling limit, where corrections are treated as small perturbations from GR. We perturb about the maximally rotating Kerr solution, the so-called extremal limit, and develop mathematical insight into the analysis techniques needed to construct solutions for generic spin. First we find closed-form, analytic expressions for the extremal scalar field, and then determine the trace of the metric perturbation, giving both in terms of Legendre decompositions. Retaining only the first three and four modes in the Legendre representation of the scalar field and the trace, respectively, suffices to ensure a fidelity of over 99% relative to full numerical solutions. The leading-order mode in the Legendre expansion of the trace of the metric perturbation contains a logarithmic divergence at the extremal Kerr horizon, which is likely to be unimportant as it occurs inside the perturbed dCS horizon. The techniques employed here should enable the construction of analytic, closed-form expressions for the scalar field and metric perturbations on a background with arbitrary rotation.
Analytic integrable systems: Analytic normalization and embedding flows
NASA Astrophysics Data System (ADS)
Zhang, Xiang
In this paper we mainly study the existence of analytic normalization and the normal form of finite dimensional complete analytic integrable dynamical systems. More details, we will prove that any complete analytic integrable diffeomorphism F(x)=Bx+f(x) in (Cn,0) with B having eigenvalues not modulus 1 and f(x)=O(|) is locally analytically conjugate to its normal form. Meanwhile, we also prove that any complete analytic integrable differential system x˙=Ax+f(x) in (Cn,0) with A having nonzero eigenvalues and f(x)=O(|) is locally analytically conjugate to its normal form. Furthermore we will prove that any complete analytic integrable diffeomorphism defined on an analytic manifold can be embedded in a complete analytic integrable flow. We note that parts of our results are the improvement of Moser's one in J. Moser, The analytic invariants of an area-preserving mapping near a hyperbolic fixed point, Comm. Pure Appl. Math. 9 (1956) 673-692 and of Poincaré's one in H. Poincaré, Sur l'intégration des équations différentielles du premier order et du premier degré, II, Rend. Circ. Mat. Palermo 11 (1897) 193-239. These results also improve the ones in Xiang Zhang, Analytic normalization of analytic integrable systems and the embedding flows, J. Differential Equations 244 (2008) 1080-1092 in the sense that the linear part of the systems can be nonhyperbolic, and the one in N.T. Zung, Convergence versus integrability in Poincaré-Dulac normal form, Math. Res. Lett. 9 (2002) 217-228 in the way that our paper presents the concrete expression of the normal form in a restricted case.
An analytical approach to the CMB polarization in a spatially closed background
NASA Astrophysics Data System (ADS)
Niazy, Pedram; Abbassi, Amir H.
2018-03-01
The scalar mode polarization of the cosmic microwave background is derived in a spatially closed universe from the Boltzmann equation using the line of sight integral method. The EE and TE multipole coefficients have been extracted analytically by considering some tolerable approximations such as considering the evolution of perturbation hydrodynamically and sudden transition from opacity to transparency at the time of last scattering. As the major advantage of analytic expressions, CEE,ℓS and CTE,ℓ explicitly show the dependencies on baryon density ΩB, matter density ΩM, curvature ΩK, primordial spectral index ns, primordial power spectrum amplitude As, Optical depth τreion, recombination width σt and recombination time tL. Using a realistic set of cosmological parameters taken from a fit to data from Planck, the closed universe EE and TE power spectrums in the scalar mode are compared with numerical results from the CAMB code and also latest observational data. The analytic results agree with the numerical ones on the big and moderate scales. The peak positions are in good agreement with the numerical result on these scales while the peak heights agree with that to within 20% due to the approximations have been considered for these derivations. Also, several interesting properties of CMB polarization are revealed by the analytic spectra.
A Semi-Analytical Orbit Propagator Program for Highly Elliptical Orbits
NASA Astrophysics Data System (ADS)
Lara, M.; San-Juan, J. F.; Hautesserres, D.
2016-05-01
A semi-analytical orbit propagator to study the long-term evolution of spacecraft in Highly Elliptical Orbits is presented. The perturbation model taken into account includes the gravitational effects produced by the first nine zonal harmonics and the main tesseral harmonics affecting to the 2:1 resonance, which has an impact on Molniya orbit-types, of Earth's gravitational potential, the mass-point approximation for third body perturbations, which on ly include the Legendre polynomial of second order for the sun and the polynomials from second order to sixth order for the moon, solar radiation pressure and atmospheric drag. Hamiltonian formalism is used to model the forces of gravitational nature so as to avoid time-dependence issues the problem is formulated in the extended phase space. The solar radiation pressure is modeled as a potential and included in the Hamiltonian, whereas the atmospheric drag is added as a generalized force. The semi-analytical theory is developed using perturbation techniques based on Lie transforms. Deprit's perturbation algorithm is applied up to the second order of the second zonal harmonics, J2, including Kozay-type terms in the mean elements Hamiltonian to get "centered" elements. The transformation is developed in closed-form of the eccentricity except for tesseral resonances and the coupling between J_2 and the moon's disturbing effects are neglected. This paper describes the semi-analytical theory, the semi-analytical orbit propagator program and some of the numerical validations.
An analytically solvable three-body break-up model problem in hyperspherical coordinates
NASA Astrophysics Data System (ADS)
Ancarani, L. U.; Gasaneo, G.; Mitnik, D. M.
2012-10-01
An analytically solvable S-wave model for three particles break-up processes is presented. The scattering process is represented by a non-homogeneous Coulombic Schrödinger equation where the driven term is given by a Coulomb-like interaction multiplied by the product of a continuum wave function and a bound state in the particles coordinates. The closed form solution is derived in hyperspherical coordinates leading to an analytic expression for the associated scattering transition amplitude. The proposed scattering model contains most of the difficulties encountered in real three-body scattering problem, e.g., non-separability in the electrons' spherical coordinates and Coulombic asymptotic behavior. Since the coordinates' coupling is completely different, the model provides an alternative test to that given by the Temkin-Poet model. The knowledge of the analytic solution provides an interesting benchmark to test numerical methods dealing with the double continuum, in particular in the asymptotic regions. An hyperspherical Sturmian approach recently developed for three-body collisional problems is used to reproduce to high accuracy the analytical results. In addition to this, we generalized the model generating an approximate wave function possessing the correct radial asymptotic behavior corresponding to an S-wave three-body Coulomb problem. The model allows us to explore the typical structure of the solution of a three-body driven equation, to identify three regions (the driven, the Coulombic and the asymptotic), and to analyze how far one has to go to extract the transition amplitude.
NASA Astrophysics Data System (ADS)
Shan, Zhendong; Ling, Daosheng; Jing, Liping; Li, Yongqiang
2018-05-01
In this paper, transient wave propagation is investigated within a fluid/saturated porous medium halfspace system with a planar interface that is subjected to a cylindrical P-wave line source. Assuming the permeability coefficient is sufficiently large, analytical solutions for the transient response of the fluid/saturated porous medium halfspace system are developed. Moreover, the analytical solutions are presented in simple closed forms wherein each term represents a transient physical wave, especially the expressions for head waves. The methodology utilised to determine where the head wave can emerge within the system is also given. The wave fields within the fluid and porous medium are first defined considering the behaviour of two compressional waves and one tangential wave in the saturated porous medium and one compressional wave in the fluid. Substituting these wave fields into the interface continuity conditions, the analytical solutions in the Laplace domain are then derived. To transform the solutions into the time domain, a suitable distortion of the contour is provided to change the integration path of the solution, after which the analytical solutions in the Laplace domain are transformed into the time domain by employing Cagniard's method. Numerical examples are provided to illustrate some interesting features of the fluid/saturated porous medium halfspace system. In particular, the interface wave and head waves that propagate along the interface between the fluid and saturated porous medium can be observed.
Hertäg, Loreen; Durstewitz, Daniel; Brunel, Nicolas
2014-01-01
Computational models offer a unique tool for understanding the network-dynamical mechanisms which mediate between physiological and biophysical properties, and behavioral function. A traditional challenge in computational neuroscience is, however, that simple neuronal models which can be studied analytically fail to reproduce the diversity of electrophysiological behaviors seen in real neurons, while detailed neuronal models which do reproduce such diversity are intractable analytically and computationally expensive. A number of intermediate models have been proposed whose aim is to capture the diversity of firing behaviors and spike times of real neurons while entailing the simplest possible mathematical description. One such model is the exponential integrate-and-fire neuron with spike rate adaptation (aEIF) which consists of two differential equations for the membrane potential (V) and an adaptation current (w). Despite its simplicity, it can reproduce a wide variety of physiologically observed spiking patterns, can be fit to physiological recordings quantitatively, and, once done so, is able to predict spike times on traces not used for model fitting. Here we compute the steady-state firing rate of aEIF in the presence of Gaussian synaptic noise, using two approaches. The first approach is based on the 2-dimensional Fokker-Planck equation that describes the (V,w)-probability distribution, which is solved using an expansion in the ratio between the time constants of the two variables. The second is based on the firing rate of the EIF model, which is averaged over the distribution of the w variable. These analytically derived closed-form expressions were tested on simulations from a large variety of model cells quantitatively fitted to in vitro electrophysiological recordings from pyramidal cells and interneurons. Theoretical predictions closely agreed with the firing rate of the simulated cells fed with in-vivo-like synaptic noise.
Development of the Gliding Hole of the Dynamics Compression Plate
NASA Astrophysics Data System (ADS)
Salim, U. A.; Suyitno; Magetsari, R.; Mahardika, M.
2017-02-01
The gliding hole of the dynamics compression plate is designed to facilitate relative movement of pedicle screw during surgery application. The gliding hole shape is then geometrically complex. The gliding hole manufactured using machining processes used to employ ball-nose cutting tool. Then, production cost is expensive due to long production time. This study proposed to increase productivity of DCP products by introducing forming process (cold forming). The forming process used to involve any press tool devices. In the closed die forming press tool is designed with little allowance, then work-pieces is trapped in the mould after forming. Therefore, it is very important to determine hole geometry and dimensions of raw material in order to success on forming process. This study optimized the hole sizes with both geometry analytics and experiments. The success of the forming process was performed by increasing the holes size on the raw materials. The holes size need to be prepared is diameter of 5.5 mm with a length of 11.4 mm for the plate thickness 3 mm and diameter of 6 mm with a length of 12.5 mm for the plate thickness 4 mm.
Eddy diffusivity of quasi-neutrally-buoyant inertial particles
NASA Astrophysics Data System (ADS)
Martins Afonso, Marco; Muratore-Ginanneschi, Paolo; Gama, Sílvio M. A.; Mazzino, Andrea
2018-04-01
We investigate the large-scale transport properties of quasi-neutrally-buoyant inertial particles carried by incompressible zero-mean periodic or steady ergodic flows. We show how to compute large-scale indicators such as the inertial-particle terminal velocity and eddy diffusivity from first principles in a perturbative expansion around the limit of added-mass factor close to unity. Physically, this limit corresponds to the case where the mass density of the particles is constant and close in value to the mass density of the fluid, which is also constant. Our approach differs from the usual over-damped expansion inasmuch as we do not assume a separation of time scales between thermalization and small-scale convection effects. For a general flow in the class of incompressible zero-mean periodic velocity fields, we derive closed-form cell equations for the auxiliary quantities determining the terminal velocity and effective diffusivity. In the special case of parallel flows these equations admit explicit analytic solution. We use parallel flows to show that our approach sheds light onto the behavior of terminal velocity and effective diffusivity for Stokes numbers of the order of unity.
NASA Technical Reports Server (NTRS)
Moas, Eduardo; Boitnott, Richard L.; Griffin, O. Hayden, Jr.
1994-01-01
Six-foot diameter, semicircular graphite/epoxy specimens representative of generic aircraft frames were loaded quasi-statistically to determine their load response and failure mechanisms for large deflections that occur in airplanes crashes. These frame/skin specimens consisted of a cylindrical skin section co-cured with a semicircular I-frame. The skin provided the necessary lateral stiffness to keep deformations in the plane of the frame in order to realistically represent deformations as they occur in actual fuselage structures. Various frame laminate stacking sequences and geometries were evaluated by statically loading the specimen until multiple failures occurred. Two analytical methods were compared for modeling the frame/skin specimens: a two-dimensional shell finite element analysis and a one-dimensional, closed-form, curved beam solution derived using an energy method. Flange effectivities were included in the beam analysis to account for the curling phenomenon that occurs in thin flanges of curved beams. Good correlation was obtained between experimental results and the analytical predictions of the linear response of the frames prior to the initial failure. The specimens were found to be useful for evaluating composite frame designs.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.
1993-01-01
The utility of a recently developed analytical micromechanics model for the response of metal matrix composites under thermal loading is illustrated by comparison with the results generated using the finite-element approach. The model is based on the concentric cylinder assemblage consisting of an arbitrary number of elastic or elastoplastic sublayers with isotropic or orthotropic, temperature-dependent properties. The elastoplastic boundary-value problem of an arbitrarily layered concentric cylinder is solved using the local/global stiffness matrix formulation (originally developed for elastic layered media) and Mendelson's iterative technique of successive elastic solutions. These features of the model facilitate efficient investigation of the effects of various microstructural details, such as functionally graded architectures of interfacial layers, on the evolution of residual stresses during cool down. The available closed-form expressions for the field variables can readily be incorporated into an optimization algorithm in order to efficiently identify optimal configurations of graded interfaces for given applications. Comparison of residual stress distributions after cool down generated using finite-element analysis and the present micromechanics model for four composite systems with substantially different temperature-dependent elastic, plastic, and thermal properties illustrates the efficacy of the developed analytical scheme.
Spectral Deformation for Two-Body Dispersive Systems with e.g. the Yukawa Potential
NASA Astrophysics Data System (ADS)
Engelmann, Matthias; Rasmussen, Morten Grud
2016-12-01
We find an explicit closed formula for the k'th iterated commutator {{ad}Ak}(HV(ξ )) of arbitrary order k ⩾ 1 between a Hamiltonian HV(ξ )=M_{ω _{ξ }}+S_{\\check V} and a conjugate operator A={i}/2(v_{ξ}\\cdotnabla+nabla\\cdot v_{ξ}), where M_{ω _{ξ }} is the operator of multiplication with the real analytic function ω ξ which depends real analytically on the parameter ξ, and the operator S_{\\check V} is the operator of convolution with the (sufficiently nice) function \\check V, and v ξ is some vector field determined by ω ξ . Under certain assumptions, which are satisfied for the Yukawa potential, we then prove estimates of the form {{{ad}Ak}(HV(ξ ))(H0(ξ )+{i} )}|≤ C_{ξ }kk! where C ξ is some constant which depends continuously on ξ. The Hamiltonian is the fixed total momentum fiber Hamiltonian of an abstract two-body dispersive system and the work is inspired by a recent result [3] which, under conditions including estimates of the mentioned type, opens up for spectral deformation and analytic perturbation theory of embedded eigenvalues of finite multiplicity.
Zhou, Lin; Glennon, Jeremy D; Luong, John H T
2010-08-15
Field-amplified sample stacking using a fused silica capillary coated with gold nanoparticles (AuNPs) embedded in poly(diallyl dimethylammonium) chloride (PDDA) has been investigated for the electrophoretic separation of indoxyl sulfate, homovanillic acid (HVA), and vanillylmandelic acid (VMA). AuNPs (27 nm) exhibit ionic and hydrophobic interactions, as well as hydrogen bonding with the PDDA network to form a stable layer on the internal wall of the capillary. This approach reverses electro-osmotic flow allowing for fast migration of the analytes while retarding other endogenous compounds including ascorbic acid, uric acid, catecholamines, and indoleamines. Notably, the two closely related biomarkers of clinical significance, HVA and VMA, displayed differential interaction with PDDA-AuNPs which enabled the separation of this pair. The detection limit of the three analytes obtained by using a boron doped diamond electrode was approximately 75 nM, which was significantly below their normal physiological levels in biological fluids. This combined separation and detection scheme was applied to the direct analysis of these analytes and other interfering chemicals including uric and ascorbic acids in urine samples without off-line sample treatment or preconcentration.
Approximate analytical solution for induction heating of solid cylinders
Jankowski, Todd Andrew; Pawley, Norma Helen; Gonzales, Lindsey Michal; ...
2015-10-20
An approximate solution to the mathematical model for induction heating of a solid cylinder in a cylindrical induction coil is presented here. The coupled multiphysics model includes equations describing the electromagnetic field in the heated object, a heat transfer simulation to determine temperature of the heated object, and an AC circuit simulation of the induction heating power supply. A multiple-scale perturbation method is used to solve the multiphysics model. The approximate analytical solution yields simple closed-form expressions for the electromagnetic field and heat generation rate in the solid cylinder, for the equivalent impedance of the associated tank circuit, and formore » the frequency response of a variable frequency power supply driving the tank circuit. The solution developed here is validated by comparing predicted power supply frequency to both experimental measurements and calculated values from finite element analysis for heating of graphite cylinders in an induction furnace. The simple expressions from the analytical solution clearly show the functional dependence of the power supply frequency on the material properties of the load and the geometrical characteristics of the furnace installation. In conclusion, the expressions developed here provide physical insight into observations made during load signature analysis of induction heating.« less
NASA Astrophysics Data System (ADS)
Pan, E.; Chen, J. Y.; Bevis, M.; Bordoni, A.; Barletta, V. R.; Molavi Tabrizi, A.
2015-12-01
We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in each layer varies as 1/r (where r is the radial coordinate) while the gravity is constant and that in the core the gravity in each layer varies linearly in r with constant density. These approximations dramatically simplify the subsequent mathematical analysis and render closed-form expressions for the expansion coefficients. We implement our solution in a MATLAB code and perform a benchmark which shows both the correctness of our solution and the implementation. We also calculate the load Love numbers (LLNs) of the PREM Earth for different degrees of the Legendre function for both isotropic and transversely isotropic, layered mantles with different core models, demonstrating for the first time the effect of Earth anisotropy on the LLNs.
Mechanics of the tapered interference fit in dental implants.
Bozkaya, Dinçer; Müftü, Sinan
2003-11-01
In evaluation of the long-term success of a dental implant, the reliability and the stability of the implant-abutment interface plays a great role. Tapered interference fits provide a reliable connection method between the abutment and the implant. In this work, the mechanics of the tapered interference fits were analyzed using a closed-form formula and the finite element (FE) method. An analytical solution, which is used to predict the contact pressure in a straight interference, was modified to predict the contact pressure in the tapered implant-abutment interface. Elastic-plastic FE analysis was used to simulate the implant and abutment material behavior. The validity and the applicability of the analytical solution were investigated by comparisons with the FE model for a range of problem parameters. It was shown that the analytical solution could be used to determine the pull-out force and loosening-torque with 5-10% error. Detailed analysis of the stress distribution due to tapered interference fit, in a commercially available, abutment-implant system was carried out. This analysis shows that plastic deformation in the implant limits the increase in the pull-out force that would have been otherwise predicted by higher interference values.
Impingement of water droplets on wedges and diamond airfoils at supersonic speeds
NASA Technical Reports Server (NTRS)
Serafini, John S
1953-01-01
An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees to 460 degrees R. Also, free-stream Mach numbers from 1.1 to 2.0, semi-apex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.
Analytical modelling of temperature effects on an AMPA-type synapse.
Kufel, Dominik S; Wojcik, Grzegorz M
2018-05-11
It was previously reported, that temperature may significantly influence neural dynamics on the different levels of brain function. Thus, in computational neuroscience, it would be useful to make models scalable for a wide range of various brain temperatures. However, lack of experimental data and an absence of temperature-dependent analytical models of synaptic conductance does not allow to include temperature effects at the multi-neuron modeling level. In this paper, we propose a first step to deal with this problem: A new analytical model of AMPA-type synaptic conductance, which is able to incorporate temperature effects in low-frequency stimulations. It was constructed based on Markov model description of AMPA receptor kinetics using the set of coupled ODEs. The closed-form solution for the set of differential equations was found using uncoupling assumption (introduced in the paper) with few simplifications motivated both from experimental data and from Monte Carlo simulation of synaptic transmission. The model may be used for computationally efficient and biologically accurate implementation of temperature effects on AMPA receptor conductance in large-scale neural network simulations. As a result, it may open a wide range of new possibilities for researching the influence of temperature on certain aspects of brain functioning.
López-Guerra, Enrique A
2017-01-01
We explore the contact problem of a flat-end indenter penetrating intermittently a generalized viscoelastic surface, containing multiple characteristic times. This problem is especially relevant for nanoprobing of viscoelastic surfaces with the highly popular tapping-mode AFM imaging technique. By focusing on the material perspective and employing a rigorous rheological approach, we deliver analytical closed-form solutions that provide physical insight into the viscoelastic sources of repulsive forces, tip–sample dissipation and virial of the interaction. We also offer a systematic comparison to the well-established standard harmonic excitation, which is the case relevant for dynamic mechanical analysis (DMA) and for AFM techniques where tip–sample sinusoidal interaction is permanent. This comparison highlights the substantial complexity added by the intermittent-contact nature of the interaction, which precludes the derivation of straightforward equations as is the case for the well-known harmonic excitations. The derivations offered have been thoroughly validated through numerical simulations. Despite the complexities inherent to the intermittent-contact nature of the technique, the analytical findings highlight the potential feasibility of extracting meaningful viscoelastic properties with this imaging method. PMID:29114450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adachi, Satoshi; Toda, Mikito; Kubotani, Hiroto
The fixed-trace ensemble of random complex matrices is the fundamental model that excellently describes the entanglement in the quantum states realized in a coupled system by its strongly chaotic dynamical evolution [see H. Kubotani, S. Adachi, M. Toda, Phys. Rev. Lett. 100 (2008) 240501]. The fixed-trace ensemble fully takes into account the conservation of probability for quantum states. The present paper derives for the first time the exact analytical formula of the one-body distribution function of singular values of random complex matrices in the fixed-trace ensemble. The distribution function of singular values (i.e. Schmidt eigenvalues) of a quantum state ismore » so important since it describes characteristics of the entanglement in the state. The derivation of the exact analytical formula utilizes two recent achievements in mathematics, which appeared in 1990s. The first is the Kaneko theory that extends the famous Selberg integral by inserting a hypergeometric type weight factor into the integrand to obtain an analytical formula for the extended integral. The second is the Petkovsek-Wilf-Zeilberger theory that calculates definite hypergeometric sums in a closed form.« less
An exactly solvable coarse-grained model for species diversity
NASA Astrophysics Data System (ADS)
Suweis, Samir; Rinaldo, Andrea; Maritan, Amos
2012-07-01
We present novel analytical results concerning ecosystem species diversity that stem from a proposed coarse-grained neutral model based on birth-death processes. The relevance of the problem lies in the urgency for understanding and synthesizing both theoretical results from ecological neutral theory and empirical evidence on species diversity preservation. The neutral model of biodiversity deals with ecosystems at the same trophic level, where per capita vital rates are assumed to be species independent. Closed-form analytical solutions for the neutral theory are obtained within a coarse-grained model, where the only input is the species persistence time distribution. Our results pertain to: the probability distribution function of the number of species in the ecosystem, both in transient and in stationary states; the n-point connected time correlation function; and the survival probability, defined as the distribution of time spans to local extinction for a species randomly sampled from the community. Analytical predictions are also tested on empirical data from an estuarine fish ecosystem. We find that emerging properties of the ecosystem are very robust and do not depend on specific details of the model, with implications for biodiversity and conservation biology.
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Baumeister, Joseph F.
1994-01-01
An analytical procedure is presented, called the modal element method, that combines numerical grid based algorithms with eigenfunction expansions developed by separation of variables. A modal element method is presented for solving potential flow in a channel with two-dimensional cylindrical like obstacles. The infinite computational region is divided into three subdomains; the bounded finite element domain, which is characterized by the cylindrical obstacle and the surrounding unbounded uniform channel entrance and exit domains. The velocity potential is represented approximately in the grid based domain by a finite element solution and is represented analytically by an eigenfunction expansion in the uniform semi-infinite entrance and exit domains. The calculated flow fields are in excellent agreement with exact analytical solutions. By eliminating the grid surrounding the obstacle, the modal element method reduces the numerical grid size, employs a more precise far field boundary condition, as well as giving theoretical insight to the interaction of the obstacle with the mean flow. Although the analysis focuses on a specific geometry, the formulation is general and can be applied to a variety of problems as seen by a comparison to companion theories in aeroacoustics and electromagnetics.
NASA Technical Reports Server (NTRS)
Williams, Robert L., III
1992-01-01
This paper presents three methods to solve the inverse position kinematics position problem of the double universal joint attached to a manipulator: (1) an analytical solution for two specific cases; (2) an approximate closed form solution based on ignoring the wrist offset; and (3) an iterative method which repeats closed form position and orientation calculations until the solution is achieved. Several manipulators are used to demonstrate the solution methods: cartesian, cylindrical, spherical, and an anthropomorphic articulated arm, based on the Flight Telerobotic Servicer (FTS) arm. A singularity analysis is presented for the double universal joint wrist attached to the above manipulator arms. While the double universal joint wrist standing alone is singularity-free in orientation, the singularity analysis indicates the presence of coupled position/orientation singularities of the spherical and articulated manipulators with the wrist. The cartesian and cylindrical manipulators with the double universal joint wrist were found to be singularity-free. The methods of this paper can be implemented in a real-time controller for manipulators with the double universal joint wrist. Such mechanically dextrous systems could be used in telerobotic and industrial applications, but further work is required to avoid the singularities.
Composite transport wing technology development
NASA Technical Reports Server (NTRS)
Madan, Ram C.
1988-01-01
The design, fabrication, testing, and analysis of stiffened wing cover panels to assess damage tolerance criteria are discussed. The damage tolerance improvements were demonstrated in a test program using full-sized cover panel subcomponents. The panels utilized a hard skin concept with identical laminates of 44-percent 0-degree, 44-percent plus or minus 45-degree, and 12-percent 90-degree plies in the skins and stiffeners. The panel skins were impacted at midbay between the stiffeners, directly over the stiffener, and over the stiffener flange edge. The stiffener blades were impacted laterally. Impact energy levels of 100 ft-lb and 200 ft-lb were used. NASTRAN finite-element analyses were performed to simulate the nonvisible damage that was detected in the panels by nondestructive inspection. A closed-form solution for generalized loading was developed to evaluate the peel stresses in the bonded structure. Two-dimensional delamination growth analysis was developed using the principle of minimum potential energy in terms of closed-form solution for critical strain. An analysis was conducted to determine the residual compressive stress in the panels after impact damage, and the analytical predictions were verified by compression testing of the damaged panels.
Self-assembly of three-dimensional open structures using patchy colloidal particles.
Rocklin, D Zeb; Mao, Xiaoming
2014-10-14
Open structures can display a number of unusual properties, including a negative Poisson's ratio, negative thermal expansion, and holographic elasticity, and have many interesting applications in engineering. However, it is a grand challenge to self-assemble open structures at the colloidal scale, where short-range interactions and low coordination number can leave them mechanically unstable. In this paper we discuss the self-assembly of three-dimensional open structures using triblock Janus particles, which have two large attractive patches that can form multiple bonds, separated by a band with purely hard-sphere repulsion. Such surface patterning leads to open structures that are stabilized by orientational entropy (in an order-by-disorder effect) and selected over close-packed structures by vibrational entropy. For different patch sizes the particles can form into either tetrahedral or octahedral structural motifs which then compose open lattices, including the pyrochlore, the hexagonal tetrastack and the perovskite lattices. Using an analytic theory, we examine the phase diagrams of these possible open and close-packed structures for triblock Janus particles and characterize the mechanical properties of these structures. Our theory leads to rational designs of particles for the self-assembly of three-dimensional colloidal structures that are possible using current experimental techniques.
NASA Astrophysics Data System (ADS)
Lázaro, Mario
2018-01-01
In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.
Compliance and stress sensitivity of spur gear teeth
NASA Technical Reports Server (NTRS)
Cornell, R. W.
1983-01-01
The magnitude and variation of tooth pair compliance with load position affects the dynamics and loading significantly, and the tooth root stressing per load varies significantly with load position. Therefore, the recently developed time history, interactive, closed form solution for the dynamic tooth loads for both low and high contact ratio spur gears was expanded to include improved and simplified methods for calculating the compliance and stress sensitivity for three involute tooth forms as a function of load position. The compliance analysis has an improved fillet/foundation. The stress sensitivity analysis is a modified version of the Heywood method but with an improvement in the magnitude and location of the peak stress in the fillet. These improved compliance and stress sensitivity analyses are presented along with their evaluation using test, finite element, and analytic transformation results, which showed good agreement.
NASA Technical Reports Server (NTRS)
Seshan, P. K.; Ferrall, Joseph F.; Rohatgi, Naresh K.
1991-01-01
Several alternative configurations of life-support systems (LSSs) for a Mars missions are compared analytically on a quantitative basis in terms of weight, volume, and power. A baseline technology set is utilized for the illustrations of systems including totally open loop, carbon dioxide removal only, partially closed loop, and totally closed loop. The analytical model takes advantage of a modular, top-down hierarchical breakdown of LSS subsystems into functional elements that represent individual processing technologies. The open-loop systems are not competitive in terms of weight for both long-duration orbiters and short-duration lander vehicles, and power demands are lowest with the open loop and highest with the closed loop. The closed-loop system can reduce vehicle weight by over 70,000 lbs and thereby overcome the power penalty of 1600 W; the closed-loop variety is championed as the preferred system for a Mars expedition.
A theoretical study of the spheroidal droplet evaporation in forced convection
NASA Astrophysics Data System (ADS)
Li, Jie; Zhang, Jian
2014-11-01
In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time.
Singh, Brajesh K; Srivastava, Vineet K
2015-04-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.
Quantum square-well with logarithmic central spike
NASA Astrophysics Data System (ADS)
Znojil, Miloslav; Semorádová, Iveta
2018-01-01
Singular repulsive barrier V (x) = -gln(|x|) inside a square-well is interpreted and studied as a linear analog of the state-dependent interaction ℒeff(x) = -gln[ψ∗(x)ψ(x)] in nonlinear Schrödinger equation. In the linearized case, Rayleigh-Schrödinger perturbation theory is shown to provide a closed-form spectrum at sufficiently small g or after an amendment of the unperturbed Hamiltonian. At any spike strength g, the model remains solvable numerically, by the matching of wave functions. Analytically, the singularity is shown regularized via the change of variables x = expy which interchanges the roles of the asymptotic and central boundary conditions.
NASA Technical Reports Server (NTRS)
Botez, D.
1982-01-01
A highly accurate analytical expression for the effective refractive index in In GaAsP/InP DH lasers emitting in the 1.2-1.6 micron range is presented. This closed-form expression is used to derive simple wavelength-independent expressions for the first-order mode cutoff conditions of various lateral waveguides. The effective refractive index is a function of emission wavelength and active layer thickness, and the mode cutoff conditions are compared to experimental data from mode-stabilized 1.3 and 1.55 micron DH lasers.
NASA Astrophysics Data System (ADS)
Degan, Gérard; Sanya, Arthur; Akowanou, Christian
2016-10-01
This work analytically investigates the problem of steady film condensation along a vertical surface embedded in an anisotropic porous medium filled with a dry saturated vapor. The porous medium is anisotropic in permeability whose principal axes are oriented in a direction which is oblique to the gravity vector. On the basis of the generalized Darcy's law and within the boundary layer approximations, similar solutions have been obtained for the temperature and flow patterns in the condensate. Moreover, closed form solutions for the boundary layer thickness and heat transfer rate have been obtained in terms of the governing parameters of the problem.
Singh, Brajesh K.; Srivastava, Vineet K.
2015-01-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639
Initial investigations into the damping characteristics of wire rope vibration isolators
NASA Technical Reports Server (NTRS)
Cutchins, M. A.; Cochran, J. E., Jr.; Kumar, K.; Fitz-Coy, N. G.; Tinker, M. L.
1987-01-01
Passive dampers composed of coils of multi-strand wire rope are investigated. Analytical results range from those produced by complex NASTRAN models to those of a Coulomb damping model with variable friction force. The latter agrees well with experiment. The Coulomb model is also utilized to generate hysteresis loops. Various other models related to early experimental investigations are described. Significant closed-form static solutions for physical properties of single-and multi-strand wire ropes are developed for certain specific geometries and loading conditions. NASTRAN models concentrate on model generation and mode shapes of 2-strand and 7-strand straight wire ropes with interfacial forces.
Manual for Program PSTRESS: Peel stress computation
NASA Technical Reports Server (NTRS)
Barkey, Derek A.; Madan, Ram C.
1987-01-01
Described is the use of the interactive FORTRAN computer program PSTRESS, which computes a closed form solution for two bonded plates subjected to applied moments, vertical shears, and in-plane forces. The program calculates in-plane stresses in the plates, deflections of the plates, and peel and shear stresses in the adhesive. The document briefly outlines the analytical method used by PSTRESS, describes the input and output of the program, and presents a sample analysis. The results of the latter are shown to be within a few percent of results obtained using a NASTRAN finite element analysis. An appendix containing a listing of PSTRESS is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alemgadmi, Khaled I. K., E-mail: azozkied@yahoo.com; Suparmi; Cari
2015-09-30
The approximate analytical solution of Schrodinger equation for Q-Deformed Rosen-Morse potential was investigated using Supersymmetry Quantum Mechanics (SUSY QM) method. The approximate bound state energy is given in the closed form and the corresponding approximate wave function for arbitrary l-state given for ground state wave function. The first excited state obtained using upper operator and ground state wave function. The special case is given for the ground state in various number of q. The existence of Rosen-Morse potential reduce energy spectra of system. The larger value of q, the smaller energy spectra of system.
Thin airfoil theory based on approximate solution of the transonic flow equation
NASA Technical Reports Server (NTRS)
Spreiter, John R; Alksne, Alberta Y
1957-01-01
A method is presented for the approximate solution of the nonlinear equations transonic flow theory. Solutions are found for two-dimensional flows at a Mach number of 1 and for purely subsonic and purely supersonic flows. Results are obtained in closed analytic form for a large and significant class of nonlifting airfoils. At a Mach number of 1 general expressions are given for the pressure distribution on an airfoil of specified geometry and for the shape of an airfoil having a prescribed pressure distribution. Extensive comparisons are made with available data, particularly for a Mach number of 1, and with existing solutions.
Scattering Manipulation and Camouflage of Electrically Small Objects through Metasurfaces
NASA Astrophysics Data System (ADS)
Vellucci, S.; Monti, A.; Toscano, A.; Bilotti, F.
2017-03-01
In this paper, we discuss the intriguing possibility of tailoring the scattering response of an electrically small object for camouflage and illusion applications using metasurfaces. As a significant example, we focus our attention on the cylindrical geometry and derive the analytical conditions needed to camouflage the geometrical and electrical characteristics of dielectric and metallic cylinders coated with ideal metasurfaces. A closed-form expression of the camouflaging metasurface depending on the cylinder's characteristics is derived. Furthermore, the frequency behavior and the limitations of this technique are discussed with the aid of relevant examples. In order to overcome these limitations, a solution based on the use of lossy metasurfaces is proposed.
High-Fidelity Micromechanics Model Developed for the Response of Multiphase Materials
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
2002-01-01
A new high-fidelity micromechanics model has been developed under funding from the NASA Glenn Research Center for predicting the response of multiphase materials with arbitrary periodic microstructures. The model's analytical framework is based on the homogenization technique, but the method of solution for the local displacement and stress fields borrows concepts previously employed in constructing the higher order theory for functionally graded materials. The resulting closed-form macroscopic and microscopic constitutive equations, valid for both uniaxial and multiaxial loading of periodic materials with elastic and inelastic constitutive phases, can be incorporated into a structural analysis computer code. Consequently, this model now provides an alternative, accurate method.
The effective compliance of spatially evolving planar wing-cracks
NASA Astrophysics Data System (ADS)
Ayyagari, R. S.; Daphalapurkar, N. P.; Ramesh, K. T.
2018-02-01
We present an analytic closed form solution for anisotropic change in compliance due to the spatial evolution of planar wing-cracks in a material subjected to largely compressive loading. A fully three-dimensional anisotropic compliance tensor is defined and evaluated considering the wing-crack mechanism, using a mixed-approach based on kinematic and energetic arguments to derive the coefficients in incremental compliance. Material, kinematic and kinetic parametric influences on the increments in compliance are studied in order to understand their physical implications on material failure. Model verification is carried out through comparisons to experimental uniaxial compression results to showcase the predictive capabilities of the current study.
Numerical studies of edge localized instabilities in tokamaks
NASA Astrophysics Data System (ADS)
Wilson, H. R.; Snyder, P. B.; Huysmans, G. T. A.; Miller, R. L.
2002-04-01
A new computational tool, edge localized instabilities in tokamaks equilibria (ELITE), has been developed to help our understanding of short wavelength instabilities close to the edge of tokamak plasmas. Such instabilities may be responsible for the edge localized modes observed in high confinement H-mode regimes, which are a serious concern for next step tokamaks because of the high transient power loads which they can impose on divertor target plates. ELITE uses physical insight gained from analytic studies of peeling and ballooning modes to provide an efficient way of calculating the edge ideal magnetohydrodynamic stability properties of tokamaks. This paper describes the theoretical formalism which forms the basis for the code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messina, Riccardo; Antezza, Mauro; CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095, Montpellier
2011-10-15
We study the radiative heat transfer and the Casimir-Lifshitz force occurring between two bodies in a system out of thermal equilibrium. We consider bodies of arbitrary shape and dielectric properties, held at two different temperatures and immersed in environmental radiation at a third different temperature. We derive explicit closed-form analytic expressions for the correlations of the electromagnetic field and for the heat transfer and Casimir-Lifshitz force in terms of the bodies' scattering matrices. We then consider some particular cases which we investigate in detail: the atom-surface and the slab-slab configurations.
Eulerian Mapping Closure Approach for Probability Density Function of Concentration in Shear Flows
NASA Technical Reports Server (NTRS)
He, Guowei; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The Eulerian mapping closure approach is developed for uncertainty propagation in computational fluid mechanics. The approach is used to study the Probability Density Function (PDF) for the concentration of species advected by a random shear flow. An analytical argument shows that fluctuation of the concentration field at one point in space is non-Gaussian and exhibits stretched exponential form. An Eulerian mapping approach provides an appropriate approximation to both convection and diffusion terms and leads to a closed mapping equation. The results obtained describe the evolution of the initial Gaussian field, which is in agreement with direct numerical simulations.
Constructing analytic solutions on the Tricomi equation
NASA Astrophysics Data System (ADS)
Ghiasi, Emran Khoshrouye; Saleh, Reza
2018-04-01
In this paper, homotopy analysis method (HAM) and variational iteration method (VIM) are utilized to derive the approximate solutions of the Tricomi equation. Afterwards, the HAM is optimized to accelerate the convergence of the series solution by minimizing its square residual error at any order of the approximation. It is found that effect of the optimal values of auxiliary parameter on the convergence of the series solution is not negligible. Furthermore, the present results are found to agree well with those obtained through a closed-form equation available in the literature. To conclude, it is seen that the two are effective to achieve the solution of the partial differential equations.
Performance evaluation soil samples utilizing encapsulation technology
Dahlgran, J.R.
1999-08-17
Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.
Performance evaluation soil samples utilizing encapsulation technology
Dahlgran, James R.
1999-01-01
Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.
NASA Astrophysics Data System (ADS)
Xia, Ying; Wang, Shiyu; Sun, Wenjia; Xiu, Jie
2017-01-01
The electromagnetically induced parametric vibration of the symmetrical three-phase induction stator is examined. While it can be analyzed by an approximate analytical or numerical method, more accurate and simple analytical method is desirable. This work proposes a new method based on the field-synchronous coordinates. A mechanical-electromagnetic coupling model is developed under this frame such that a time-invariant governing equation with gyroscopic term can be developed. With the general vibration theory, the eigenvalue is formulated; the transition curves between the stable and unstable regions, and response are all determined as closed-form expressions of basic mechanical-electromagnetic parameters. The dependence of these parameters on the instability behaviors is demonstrated. The results imply that the divergence and flutter instabilities can occur even for symmetrical motors with balanced, constant amplitude and sinusoidal voltage. To verify the analytical predictions, this work also builds up a time-variant model of the same system under the conventional inertial frame. The Floquét theory is employed to predict the parametric instability and the numerical integration is used to obtain the parametric response. The parametric instability and response are both well compared against those under the field-synchronous coordinates. The proposed field-synchronous coordinates allows a quick estimation on the electromagnetically induced vibration. The convenience offered by the body-fixed coordinates is discussed across various fields.
An experimental and analytical investigation on the response of GR/EP composite I-frames
NASA Technical Reports Server (NTRS)
Moas, E., Jr.; Boitnott, R. L.; Griffin, O. H., Jr.
1991-01-01
Six-foot diameter, semicircular graphite/epoxy specimens representative of generic aircraft frames were loaded quasi-statically to determine their load response and failure mechanisms for large deflections that occur in an airplane crash. These frame-skin specimens consisted of a cylindrical skin section cocured with a semicircular I-frame. Various frame laminate stacking sequences and geometries were evaluated by statically loading the specimen until multiple failures occurred. Two analytical methods were compared for modeling the frame-skin specimens: a two-dimensional branched-shell finite element analysis and a one-dimensional, closed-form, curved beam solution derived using an energy method. Excellent correlation was obtained between experimental results and the finite element predictions of the linear response of the frames prior to the initial failure. The beam solution was used for rapid parameter and design studies, and was found to be stiff in comparison with the finite element analysis. The specimens were found to be useful for evaluating composite frame designs.
Exact density-potential pairs from complex-shifted axisymmetric systems
NASA Astrophysics Data System (ADS)
Ciotti, Luca; Marinacci, Federico
2008-07-01
In a previous paper, the complex-shift method has been applied to self-gravitating spherical systems, producing new analytical axisymmetric density-potential pairs. We now extend the treatment to the Miyamoto-Nagai disc and the Binney logarithmic halo, and we study the resulting axisymmetric and triaxial analytical density-potential pairs; we also show how to obtain the surface density of shifted systems from the complex shift of the surface density of the parent model. In particular, the systems obtained from Miyamoto-Nagai discs can be used to describe disc galaxies with a peanut-shaped bulge or with a central triaxial bar, depending on the direction of the shift vector. By using a constructive method that can be applied to generic axisymmetric systems, we finally show that the Miyamoto-Nagai and the Satoh discs, and the Binney logarithmic halo cannot be obtained from the complex shift of any spherical parent distribution. As a by-product of this study, we also found two new generating functions in closed form for even and odd Legendre polynomials, respectively.
Kim, Seongho; Jang, Hyejeong; Koo, Imhoi; Lee, Joohyoung; Zhang, Xiang
2017-01-01
Compared to other analytical platforms, comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC×GC-MS) has much increased separation power for analysis of complex samples and thus is increasingly used in metabolomics for biomarker discovery. However, accurate peak detection remains a bottleneck for wide applications of GC×GC-MS. Therefore, the normal-exponential-Bernoulli (NEB) model is generalized by gamma distribution and a new peak detection algorithm using the normal-gamma-Bernoulli (NGB) model is developed. Unlike the NEB model, the NGB model has no closed-form analytical solution, hampering its practical use in peak detection. To circumvent this difficulty, three numerical approaches, which are fast Fourier transform (FFT), the first-order and the second-order delta methods (D1 and D2), are introduced. The applications to simulated data and two real GC×GC-MS data sets show that the NGB-D1 method performs the best in terms of both computational expense and peak detection performance.
Discrete breathers in an array of self-excited oscillators: Exact solutions and stability.
Shiroky, I B; Gendelman, O V
2016-10-01
We consider dynamics of array of coupled self-excited oscillators. The model of Franklin bell is adopted as a mechanism for the self-excitation. The model allows derivation of exact analytic solutions for discrete breathers (DBs) and exploration of their stability in the space of parameters. The DB solutions exist for all frequencies in the attenuation zone but lose stability via Neimark-Sacker bifurcation in the vicinity of the bandgap boundary. Besides the well-known DBs with exponential localization, the considered system possesses novel type of solutions-discrete breathers with main frequency in the propagation zone of the chain. In these regimes, the energy irradiation into the chain is balanced by the self-excitation. The amplitude of oscillations is maximal at the localization site and then exponentially approaches constant value at infinity. We also derive these solutions in the closed analytic form. They are stable in a narrow region of system parameters bounded by Neimark-Sacker and pitchfork bifurcations.
Gravitational Instabilities, Chondrule Formation, and the FU Orionis Phenomenon
NASA Astrophysics Data System (ADS)
Boley, Aaron C.; Durisen, Richard H.
2008-10-01
Using analytic arguments and numerical simulations, we examine whether chondrule formation and the FU Orionis phenomenon can be caused by the burstlike onset of gravitational instabilities (GIs) in dead zones. At least two scenarios for bursting dead zones can work, in principle. If the disk is on the verge of fragmentation, GI activation near r ~ 4-5 AU can produce chondrule-forming shocks, at least under extreme conditions. Mass fluxes are also high enough during the onset of GIs to suggest that the outburst is related to an FU Orionis phenomenon. This situation is demonstrated by numerical simulations. In contrast, as supported by analytic arguments, if the burst takes place close to r ~ 1 AU, then even low pitch angle spiral waves can create chondrule-producing shocks and outbursts. We also study the stability of the massive disks in our simulations against fragmentation and find that although disk evolution is sensitive to changes in opacity, the disks we study do not fragment, even at high resolution and even for extreme assumptions.
Chalker, Victoria J; Smith, Alyson; Al-Shahib, Ali; Botchway, Stella; Macdonald, Emily; Daniel, Roger; Phillips, Sarah; Platt, Steven; Doumith, Michel; Tewolde, Rediat; Coelho, Juliana; Jolley, Keith A; Underwood, Anthony; McCarthy, Noel D
2016-06-01
Single-strain outbreaks of Streptococcus pyogenes infections are common and often go undetected. In 2013, two clusters of invasive group A Streptococcus (iGAS) infection were identified in independent but closely located care homes in Oxfordshire, United Kingdom. Investigation included visits to each home, chart review, staff survey, microbiologic sampling, and genome sequencing. S. pyogenes emm type 1.0, the most common circulating type nationally, was identified from all cases yielding GAS isolates. A tailored whole-genome reference population comprising epidemiologically relevant contemporaneous isolates and published isolates was assembled. Data were analyzed independently using whole-genome multilocus sequencing and single-nucleotide polymorphism analyses. Six isolates from staff and residents of the homes formed a single cluster that was separated from the reference population by both analytical approaches. No further cases occurred after mass chemoprophylaxis and enhanced infection control. Our findings demonstrate the ability of 2 independent analytical approaches to enable robust conclusions from nonstandardized whole-genome analysis to support public health practice.
Discrete breathers in an array of self-excited oscillators: Exact solutions and stability
NASA Astrophysics Data System (ADS)
Shiroky, I. B.; Gendelman, O. V.
2016-10-01
We consider dynamics of array of coupled self-excited oscillators. The model of Franklin bell is adopted as a mechanism for the self-excitation. The model allows derivation of exact analytic solutions for discrete breathers (DBs) and exploration of their stability in the space of parameters. The DB solutions exist for all frequencies in the attenuation zone but lose stability via Neimark-Sacker bifurcation in the vicinity of the bandgap boundary. Besides the well-known DBs with exponential localization, the considered system possesses novel type of solutions—discrete breathers with main frequency in the propagation zone of the chain. In these regimes, the energy irradiation into the chain is balanced by the self-excitation. The amplitude of oscillations is maximal at the localization site and then exponentially approaches constant value at infinity. We also derive these solutions in the closed analytic form. They are stable in a narrow region of system parameters bounded by Neimark-Sacker and pitchfork bifurcations.
Analytical observations on the aerodynamics of a delta wing with leading edge flaps
NASA Technical Reports Server (NTRS)
Oh, S.; Tavella, D.
1986-01-01
The effect of a leading edge flap on the aerodynamics of a low aspect ratio delta wing is studied analytically. The separated flow field about the wing is represented by a simple vortex model composed of a conical straight vortex sheet and a concentrated vortex. The analysis is carried out in the cross flow plane by mapping the wing trace, by means of the Schwarz-Christoffel transformation into the real axis of the transformed plane. Particular attention is given to the influence of the angle of attack and flap deflection angle on lift and drag forces. Both lift and drag decrease with flap deflection, while the lift-to-drag ratioe increases. A simple coordinate transformation is used to obtain a closed form expression for the lift-to-drag ratio as a function of flap deflection. The main effect of leading edge flap deflection is a partial suppression of the separated flow on the leeside of the wing. Qualitative comparison with experiments is presented, showing agreement in the general trends.
Statistical theory on the analytical form of cloud particle size distributions
NASA Astrophysics Data System (ADS)
Wu, Wei; McFarquhar, Greg
2017-11-01
Several analytical forms of cloud particle size distributions (PSDs) have been used in numerical modeling and remote sensing retrieval studies of clouds and precipitation, including exponential, gamma, lognormal, and Weibull distributions. However, there is no satisfying physical explanation as to why certain distribution forms preferentially occur instead of others. Theoretically, the analytical form of a PSD can be derived by directly solving the general dynamic equation, but no analytical solutions have been found yet. Instead of using a process level approach, the use of the principle of maximum entropy (MaxEnt) for determining the analytical form of PSDs from the perspective of system is examined here. Here, the issue of variability under coordinate transformations that arises using the Gibbs/Shannon definition of entropy is identified, and the use of the concept of relative entropy to avoid these problems is discussed. Focusing on cloud physics, the four-parameter generalized gamma distribution is proposed as the analytical form of a PSD using the principle of maximum (relative) entropy with assumptions on power law relations between state variables, scale invariance and a further constraint on the expectation of one state variable (e.g. bulk water mass). DOE ASR.
Exact linearized Coulomb collision operator in the moment expansion
Ji, Jeong -Young; Held, Eric D.
2006-10-05
In the moment expansion, the Rosenbluth potentials, the linearized Coulomb collision operators, and the moments of the collision operators are analytically calculated for any moment. The explicit calculation of Rosenbluth potentials converts the integro-differential form of the Coulomb collision operator into a differential operator, which enables one to express the collision operator in a simple closed form for any arbitrary mass and temperature ratios. In addition, it is shown that gyrophase averaging the collision operator acting on arbitrary distribution functions is the same as the collision operator acting on the corresponding gyrophase averaged distribution functions. The moments of the collisionmore » operator are linear combinations of the fluid moments with collision coefficients parametrized by mass and temperature ratios. Furthermore, useful forms involving the small mass-ratio approximation are easily found since the collision operators and their moments are expressed in terms of the mass ratio. As an application, the general moment equations are explicitly written and the higher order heat flux equation is derived.« less
Analyticity in Time and Smoothing Effect of Solutions to Nonlinear Schrödinger Equations
NASA Astrophysics Data System (ADS)
Hayashi, Nakao; Kato, Keiichi
In this paper we consider analyticity in time and smoothing effect of solutions to nonlinear Schrödinger equations
Quasi-linear diffusion coefficients for highly oblique whistler mode waves
NASA Astrophysics Data System (ADS)
Albert, J. M.
2017-05-01
Quasi-linear diffusion coefficients are considered for highly oblique whistler mode waves, which exhibit a singular "resonance cone" in cold plasma theory. The refractive index becomes both very large and rapidly varying as a function of wave parameters, making the diffusion coefficients difficult to calculate and to characterize. Since such waves have been repeatedly observed both outside and inside the plasmasphere, this problem has received renewed attention. Here the diffusion equations are analytically treated in the limit of large refractive index μ. It is shown that a common approximation to the refractive index allows the associated "normalization integral" to be evaluated in closed form and that this can be exploited in the numerical evaluation of the exact expression. The overall diffusion coefficient formulas for large μ are then reduced to a very simple form, and the remaining integral and sum over resonances are approximated analytically. These formulas are typically written for a modeled distribution of wave magnetic field intensity, but this may not be appropriate for highly oblique whistlers, which become quasi-electrostatic. Thus, the analysis is also presented in terms of wave electric field intensity. The final results depend strongly on the maximum μ (or μ∥) used to model the wave distribution, so realistic determination of these limiting values becomes paramount.
Numerically stable formulas for a particle-based explicit exponential integrator
NASA Astrophysics Data System (ADS)
Nadukandi, Prashanth
2015-05-01
Numerically stable formulas are presented for the closed-form analytical solution of the X-IVAS scheme in 3D. This scheme is a state-of-the-art particle-based explicit exponential integrator developed for the particle finite element method. Algebraically, this scheme involves two steps: (1) the solution of tangent curves for piecewise linear vector fields defined on simplicial meshes and (2) the solution of line integrals of piecewise linear vector-valued functions along these tangent curves. Hence, the stable formulas presented here have general applicability, e.g. exact integration of trajectories in particle-based (Lagrangian-type) methods, flow visualization and computer graphics. The Newton form of the polynomial interpolation definition is used to express exponential functions of matrices which appear in the analytical solution of the X-IVAS scheme. The divided difference coefficients in these expressions are defined in a piecewise manner, i.e. in a prescribed neighbourhood of removable singularities their series approximations are computed. An optimal series approximation of divided differences is presented which plays a critical role in this methodology. At least ten significant decimal digits in the formula computations are guaranteed to be exact using double-precision floating-point arithmetic. The worst case scenarios occur in the neighbourhood of removable singularities found in fourth-order divided differences of the exponential function.
Hydroxytyrosol disposition in humans.
Miro-Casas, Elisabet; Covas, Maria-Isabel; Farre, Magi; Fito, Montserrat; Ortuño, Jordi; Weinbrenner, Tanja; Roset, Pere; de la Torre, Rafael
2003-06-01
Animal and in vitro studies suggest that phenolic compounds in virgin olive oil are effective antioxidants. In animal and in vitro studies, hydroxytyrosol and its metabolites have been shown to be strong antioxidants. One of the prerequisites to assess their in vivo physiologic significance is to determine their presence in human plasma. We developed an analytical method for both hydroxytyrosol and 3-O-methyl-hydroxytyrosol in plasma. The administered dose of phenolic compounds was estimated from methanolic extracts of virgin olive oil after subjecting them to different hydrolytic treatments. Plasma and urine samples were collected from 0 to 12 h before and after 25 mL of virgin olive oil intake, a dose close to that used as daily intake in Mediterranean countries. Samples were analyzed by capillary gas chromatography-mass spectrometry before and after being subjected to acidic and enzymatic hydrolytic treatments. Calibration curves were linear (r >0.99). Analytical recoveries were 42-60%. Limits of quantification were <1.5 mg/L. Plasma hydroxytyrosol and 3-O-methyl-hydroxytyrosol increased as a response to virgin olive oil administration, reaching maximum concentrations at 32 and 53 min, respectively (P <0.001 for quadratic trend). The estimated hydroxytyrosol elimination half-life was 2.43 h. Free forms of these phenolic compounds were not detected in plasma samples. The proposed analytical method permits quantification of hydroxytyrosol and 3-O-methyl-hydroxytyrosol in plasma after real-life doses of virgin olive oil. From our results, approximately 98% of hydroxytyrosol appears to be present in plasma and urine in conjugated forms, mainly glucuronoconjugates, suggesting extensive first-pass intestinal/hepatic metabolism of the ingested hydroxytyrosol.
Gold Nanorods as Plasmonic Sensors for Particle Diffusion.
Wulf, Verena; Knoch, Fabian; Speck, Thomas; Sönnichsen, Carsten
2016-12-01
Plasmonic gold nanoparticles are normally used as sensor to detect analytes permanently bound to their surface. If the interaction between the analyte and the nanosensor surface is negligible, it only diffuses through the sensor's sensing volume, causing a small temporal shift of the plasmon resonance position. By using a very sensitive and fast detection scheme, we are able to detect these small fluctuations in the plasmon resonance. With the help of a theoretical model consistent with our detection geometry, we determine the analyte's diffusion coefficient. The method is verified by observing the trends upon changing diffusor size and medium viscosity, and the diffusion coefficients obtained were found to reflect reduced diffusion close to a solid interface. Our method, which we refer to as NanoPCS (for nanoscale plasmon correlation spectroscopy), is of practical importance for any application involving the diffusion of analytes close to nanoparticles.
Testing the Delayed Gamma Capability in MCNP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weldon, Robert A.; Fensin, Michael L.; McKinney, Gregg W.
The mission of the Domestic Nuclear Detection Office is to quickly and reliably detect unauthorized attempts to import or transport special nuclear material for use against the United States. Developing detection equipment to meet this objective requires accurate simulation of both the detectable signature and detection mechanism. A delayed particle capability was initially added to MCNPX 2.6.A in 2005 to sample the radioactive fission product parents and emit decay particles resulting from the decay chain. To meet the objectives of detection scenario modeling, the capability was designed to sample a particular time for emitting particular multiplicity of a particular energy.more » Because the sampling process of selecting both time and energy is interdependent, to linearize the time and emission sampling, atom densities are computed at several discrete time steps, and the time-integrated production is computed by multiplying the atom density by the decay constant and time step size to produce a cumulative distribution function for sampling the emission time, energy, and multiplicity. The delayed particle capability was initially given a time-bin structure to help reasonably reproduce, from a qualitative sense, a fission benchmark by Beddingfield, which examined the delayed gamma emission. This original benchmark was only qualitative and did not contain the magnitudes of the actual measured data but did contain relative graphical representation of the spectra. A better benchmark with measured data was later provided by Hunt, Mozin, Reedy, Selpel, and Tobin at the Idaho Accelerator Center; however, because of the complexity of the benchmark setup, sizable systematic errors were expected in the modeling, and initial results compared to MCNPX 2.7.0 showed errors outside of statistical fluctuation. Presented in this paper is a more simplified approach to benchmarking, utilizing closed form analytic solutions to the granddaughter equations for particular sets of decay systems. We examine five different decay chains (two-stage decay to stable) and show the predictability of the MCNP6 delayed gamma feature. Results do show that while the default delayed gamma calculations available in the MCNP6 1.0 release can give accurate results for some isotopes (e.g., 137Ba), the percent differences between the closed form analytic solutions and the MCNP6 calculations were often >40% ( 28Mg, 28Al, 42K, 47Ca, 47Sc, 60Co). With the MCNP6 1.1 Beta release, the tenth entry on the DBCN card allows improved calculation within <5% as compared to the closed form analytic solutions for immediate parent emissions and transient equilibrium systems. While the tenth entry on the DBCN card for MCNP6 1.1 gives much better results for transient equilibrium systems and parent emissions in general, it does little to improve daughter emissions of secular equilibrium systems. Finally, hypotheses were presented as to why daughter emissions of secular equilibrium systems might be mispredicted in some cases and not in others.« less
Cylindrical optical resonators: fundamental properties and bio-sensing characteristics
NASA Astrophysics Data System (ADS)
Khozeymeh, Foroogh; Razaghi, Mohammad
2018-04-01
In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).
On the degrees of freedom of reduced-rank estimators in multivariate regression
Mukherjee, A.; Chen, K.; Wang, N.; Zhu, J.
2015-01-01
Summary We study the effective degrees of freedom of a general class of reduced-rank estimators for multivariate regression in the framework of Stein's unbiased risk estimation. A finite-sample exact unbiased estimator is derived that admits a closed-form expression in terms of the thresholded singular values of the least-squares solution and hence is readily computable. The results continue to hold in the high-dimensional setting where both the predictor and the response dimensions may be larger than the sample size. The derived analytical form facilitates the investigation of theoretical properties and provides new insights into the empirical behaviour of the degrees of freedom. In particular, we examine the differences and connections between the proposed estimator and a commonly-used naive estimator. The use of the proposed estimator leads to efficient and accurate prediction risk estimation and model selection, as demonstrated by simulation studies and a data example. PMID:26702155
An analytic method to account for drag in the Vinti Satellite theory
NASA Technical Reports Server (NTRS)
Watson, J. S.; Mistretta, G. D.; Bonavito, N. L.
1974-01-01
To retain separability in the Vinti theory of earth satellite motion when a nonconservative force such as air drag is considered, a set of variational equations for the orbital elements are introduced, and expressed as functions of the transverse, radial, and normal components of the nonconservative forces acting on the system. In this approach, the Hamiltonian is preserved in form, and remains the total energy, but the initial or boundary conditions and hence the Jacobi constants of the motion advance with time through the variational equations. In particular, the atmospheric density profile is written as a fitted exponential function of the eccentric anomaly, which adheres to tabular data at all altitudes and simultaneously reduced the variational equations to indefinite integrals with closed form evaluations. The values of the limits for any arbitrary time interval are obtained from the Vinti program.
Sinusoidal input describing function for hysteresis followed by elementary backlash
NASA Technical Reports Server (NTRS)
Ringland, R. F.
1976-01-01
The author proposes a new sinusoidal input describing function which accounts for the serial combination of hysteresis followed by elementary backlash in a single nonlinear element. The output of the hysteresis element drives the elementary backlash element. Various analytical forms of the describing function are given, depending on the a/A ratio, where a is the half width of the hysteresis band or backlash gap, and A is the amplitude of the assumed input sinusoid, and on the value of the parameter representing the fraction of a attributed to the backlash characteristic. The negative inverse describing function is plotted on a gain-phase plot, and it is seen that a relatively small amount of backlash leads to domination of the backlash character in the describing function. The extent of the region of the gain-phase plane covered by the describing function is such as to guarantee some form of limit cycle behavior in most closed-loop systems.
Mixed-state fidelity susceptibility through iterated commutator series expansion
NASA Astrophysics Data System (ADS)
Tonchev, N. S.
2014-11-01
We present a perturbative approach to the problem of computation of mixed-state fidelity susceptibility (MFS) for thermal states. The mathematical techniques used provide an analytical expression for the MFS as a formal expansion in terms of the thermodynamic mean values of successively higher commutators of the Hamiltonian with the operator involved through the control parameter. That expression is naturally divided into two parts: the usual isothermal susceptibility and a constituent in the form of an infinite series of thermodynamic mean values which encodes the noncommutativity in the problem. If the symmetry properties of the Hamiltonian are given in terms of the generators of some (finite-dimensional) algebra, the obtained expansion may be evaluated in a closed form. This issue is tested on several popular models, for which it is shown that the calculations are much simpler if they are based on the properties from the representation theory of the Heisenberg or SU(1, 1) Lie algebra.
Diagnosis, referral, and rehabilitation within the Fairfax Alcohol Safety Action Project, 1974.
DOT National Transportation Integrated Search
1975-01-01
This report is a combination of Analytic Study #5 (Diagnosis and Referral) and Analytic Study #6 (Rehabilitation). Data concerning these countermeasures are presented together because of their very close relationship within the Fairfax ASAP. Both the...
A Least-Squares Transport Equation Compatible with Voids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Jon; Peterson, Jacob; Morel, Jim
Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transportmore » equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares S n formulation represents an excellent alternative to existing second-order S n transport formulations« less
Spatially resolved thermal desorption/ionization coupled with mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S
2013-02-26
A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms themore » gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.« less
Analytical probabilistic modeling of RBE-weighted dose for ion therapy.
Wieser, H P; Hennig, P; Wahl, N; Bangert, M
2017-11-10
Particle therapy is especially prone to uncertainties. This issue is usually addressed with uncertainty quantification and minimization techniques based on scenario sampling. For proton therapy, however, it was recently shown that it is also possible to use closed-form computations based on analytical probabilistic modeling (APM) for this purpose. APM yields unique features compared to sampling-based approaches, motivating further research in this context. This paper demonstrates the application of APM for intensity-modulated carbon ion therapy to quantify the influence of setup and range uncertainties on the RBE-weighted dose. In particular, we derive analytical forms for the nonlinear computations of the expectation value and variance of the RBE-weighted dose by propagating linearly correlated Gaussian input uncertainties through a pencil beam dose calculation algorithm. Both exact and approximation formulas are presented for the expectation value and variance of the RBE-weighted dose and are subsequently studied in-depth for a one-dimensional carbon ion spread-out Bragg peak. With V and B being the number of voxels and pencil beams, respectively, the proposed approximations induce only a marginal loss of accuracy while lowering the computational complexity from order [Formula: see text] to [Formula: see text] for the expectation value and from [Formula: see text] to [Formula: see text] for the variance of the RBE-weighted dose. Moreover, we evaluated the approximated calculation of the expectation value and standard deviation of the RBE-weighted dose in combination with a probabilistic effect-based optimization on three patient cases considering carbon ions as radiation modality against sampled references. The resulting global γ-pass rates (2 mm,2%) are [Formula: see text]99.15% for the expectation value and [Formula: see text]94.95% for the standard deviation of the RBE-weighted dose, respectively. We applied the derived analytical model to carbon ion treatment planning, although the concept is in general applicable to other ion species considering a variable RBE.
Analytical probabilistic modeling of RBE-weighted dose for ion therapy
NASA Astrophysics Data System (ADS)
Wieser, H. P.; Hennig, P.; Wahl, N.; Bangert, M.
2017-12-01
Particle therapy is especially prone to uncertainties. This issue is usually addressed with uncertainty quantification and minimization techniques based on scenario sampling. For proton therapy, however, it was recently shown that it is also possible to use closed-form computations based on analytical probabilistic modeling (APM) for this purpose. APM yields unique features compared to sampling-based approaches, motivating further research in this context. This paper demonstrates the application of APM for intensity-modulated carbon ion therapy to quantify the influence of setup and range uncertainties on the RBE-weighted dose. In particular, we derive analytical forms for the nonlinear computations of the expectation value and variance of the RBE-weighted dose by propagating linearly correlated Gaussian input uncertainties through a pencil beam dose calculation algorithm. Both exact and approximation formulas are presented for the expectation value and variance of the RBE-weighted dose and are subsequently studied in-depth for a one-dimensional carbon ion spread-out Bragg peak. With V and B being the number of voxels and pencil beams, respectively, the proposed approximations induce only a marginal loss of accuracy while lowering the computational complexity from order O(V × B^2) to O(V × B) for the expectation value and from O(V × B^4) to O(V × B^2) for the variance of the RBE-weighted dose. Moreover, we evaluated the approximated calculation of the expectation value and standard deviation of the RBE-weighted dose in combination with a probabilistic effect-based optimization on three patient cases considering carbon ions as radiation modality against sampled references. The resulting global γ-pass rates (2 mm,2%) are > 99.15% for the expectation value and > 94.95% for the standard deviation of the RBE-weighted dose, respectively. We applied the derived analytical model to carbon ion treatment planning, although the concept is in general applicable to other ion species considering a variable RBE.
Study of the Effect of a Closed-End Side Branch on Sinusoidally Perturbed Flow of Liquid in a Line
NASA Technical Reports Server (NTRS)
Lewis, William; Blade, Robert J.; Dorsch, Robert G.
1963-01-01
Classical undamped acoustic-wave theory was used to determine analytical relations among sinusoidal perturbations of pressure and flow at the ends of a hydraulic-transmission line having a closed-end branch of arbitrary length attached at an arbitrary point. Experimental data were obtained for the equilateral case (a branch half as long as the main line connected to the main line at the midpoint) at mean flow speeds of 5 to 10 feet per second. Measured pressure-perturbation ratios agreed closely with analytical predictions. As frequencies for which the branch length was an odd multiple of 1/4 wavelength, waves in the main line were almost completely reflected at the junction point.
Extended analytical solutions for effective elastic moduli of cracked porous media
NASA Astrophysics Data System (ADS)
Nguyen, Sy-Tuan; To, Quy Dong; Vu, Minh Ngoc
2017-05-01
Extended solutions are derived, on the basis of the micromechanical methods, for the effective elastic moduli of porous media containing stiff pores and both open and closed cracks. Analytical formulas of the overall bulk and shear moduli are obtained as functions of the elastic moduli of the solid skeleton, porosity and the densities of open and closed cracks families. We show that the obtained results are extensions of the classical widely used Walsh's (JGR, 1965) and Budiansky-O‧Connell's (JGR, 1974) solutions. Parametric sensitivity analysis clarifies the impact of the model parameters on the effective elastic properties. An inverse analysis, using sonic and density data, is considered to quantify the density of both open and closed cracks. It is observed that the density of closed cracks depends strongly on stress condition while the dependence of open cracks on the confining stress is negligible.
Analytical probabilistic proton dose calculation and range uncertainties
NASA Astrophysics Data System (ADS)
Bangert, M.; Hennig, P.; Oelfke, U.
2014-03-01
We introduce the concept of analytical probabilistic modeling (APM) to calculate the mean and the standard deviation of intensity-modulated proton dose distributions under the influence of range uncertainties in closed form. For APM, range uncertainties are modeled with a multivariate Normal distribution p(z) over the radiological depths z. A pencil beam algorithm that parameterizes the proton depth dose d(z) with a weighted superposition of ten Gaussians is used. Hence, the integrals ∫ dz p(z) d(z) and ∫ dz p(z) d(z)2 required for the calculation of the expected value and standard deviation of the dose remain analytically tractable and can be efficiently evaluated. The means μk, widths δk, and weights ωk of the Gaussian components parameterizing the depth dose curves are found with least squares fits for all available proton ranges. We observe less than 0.3% average deviation of the Gaussian parameterizations from the original proton depth dose curves. Consequently, APM yields high accuracy estimates for the expected value and standard deviation of intensity-modulated proton dose distributions for two dimensional test cases. APM can accommodate arbitrary correlation models and account for the different nature of random and systematic errors in fractionated radiation therapy. Beneficial applications of APM in robust planning are feasible.
FAST TRACK COMMUNICATION: Uniqueness of static black holes without analyticity
NASA Astrophysics Data System (ADS)
Chruściel, Piotr T.; Galloway, Gregory J.
2010-08-01
We show that the hypothesis of analyticity in the uniqueness theory of vacuum, or electrovacuum, static black holes is not needed. More generally, we show that prehorizons covering a closed set cannot occur in well-behaved domains of outer communications.
Magnetic-saturation zone model for two semipermeable cracks in magneto-electro-elastic medium
NASA Astrophysics Data System (ADS)
Jangid, Kamlesh
2018-03-01
Extension of the PS model (Gao et al. [1]) in piezoelectric materials and the SEMPS model (Fan and Zhao [2]) in MEE materials, is proposed for two semi-permeable cracks in a MEE medium. It is assumed that the magnetic yielding occurs at the continuation of the cracks due to the prescribed loads. We have model these crack continuations as the zones with cohesive saturation limit magnetic induction. Stroh's formalism and complex variable techniques are used to formulate the problem. Closed form analytical expressions are derived for various fracture parameters. A numerical case study is presented for BaTiO3 - CoFe2O4 ceramic cracked plate.
Two-dimensional dispersion of magnetostatic volume spin waves
NASA Astrophysics Data System (ADS)
Buijnsters, Frank J.; van Tilburg, Lennert J. A.; Fasolino, Annalisa; Katsnelson, Mikhail I.
2018-06-01
Owing to the dipolar (magnetostatic) interaction, long-wavelength spin waves in in-plane magnetized films show an unusual dispersion behavior, which can be mathematically described by the model of and and refinements thereof. However, solving the two-dimensional dispersion requires the evaluation of a set of coupled transcendental equations and one has to rely on numerics. In this work, we present a systematic perturbative analysis of the spin wave model. An expansion in the in-plane wavevector allows us to obtain explicit closed-form expressions for the dispersion relation and mode profiles in various asymptotic regimes. Moreover, we derive a very accurate semi-analytical expression for the dispersion relation of the lowest-frequency mode that is straightforward to evaluate.
NASA Astrophysics Data System (ADS)
Kalyuzhnyi, Yurij V.; Cummings, Peter T.
2006-03-01
The Blum-Høye [J. Stat. Phys. 19 317 (1978)] solution of the mean spherical approximation for a multicomponent multi-Yukawa hard-sphere fluid is extended to a polydisperse multi-Yukawa hard-sphere fluid. Our extension is based on the application of the orthogonal polynomial expansion method of Lado [Phys. Rev. E 54, 4411 (1996)]. Closed form analytical expressions for the structural and thermodynamic properties of the model are presented. They are given in terms of the parameters that follow directly from the solution. By way of illustration the method of solution is applied to describe the thermodynamic properties of the one- and two-Yukawa versions of the model.
NASA Technical Reports Server (NTRS)
Monaghan, R. C.
1981-01-01
The aeroelastically tailored outer wing and canard of the highly maneuverable aircraft technology (HiMAT) vehicle are closely examined and a general description of the overall structure of the vehicle is provided. Test data in the form of laboratory measured twist under load and predicted twist from the HiMAT NASTRAN structural design program are compared. The results of this comparison indicate that the measured twist is generally less than the NASTRAN predicted twist. These discrepancies in twist predictions are attributed, at least in part, to the inability of current analytical composite materials programs to provide sufficiently accurate properties of matrix dominated laminates for input into structural programs such as NASTRAN.
Limits on estimating the width of thin tubular structures in 3D images.
Wörz, Stefan; Rohr, Karl
2006-01-01
This work studies limits on estimating the width of thin tubular structures in 3D images. Based on nonlinear estimation theory we analyze the minimal stochastic error of estimating the width. Given a 3D analytic model of the image intensities of tubular structures, we derive a closed-form expression for the Cramér-Rao bound of the width estimate under image noise. We use the derived lower bound as a benchmark and compare it with three previously proposed accuracy limits for vessel width estimation. Moreover, by experimental investigations we demonstrate that the derived lower bound can be achieved by fitting a 3D parametric intensity model directly to the image data.
NASA Technical Reports Server (NTRS)
Wise, Stephen A.; Holt, James M.
2002-01-01
The complexity of International Space Station (ISS) systems modeling often necessitates the concurrence of various dissimilar, parallel analysis techniques to validate modeling. This was the case with a feasibility and performance study of the ISS Node 3 Regenerative Heat Exchanger (RHX). A thermo-hydraulic network model was created and analyzed in SINDA/FLUINT. A less complex, closed form solution of the systems dynamics was created using an Excel Spreadsheet. The purpose of this paper is to provide a brief description of the modeling processes utilized, the results and benefits of each to the ISS Node 3 RHX study.
NASA Technical Reports Server (NTRS)
Wise, Stephen A.; Holt, James M.; Turner, Larry D. (Technical Monitor)
2001-01-01
The complexity of International Space Station (ISS) systems modeling often necessitates the concurrence of various dissimilar, parallel analysis techniques to validate modeling. This was the case with a feasibility and performance study of the ISS Node 3 Regenerative Heat Exchanger (RHX). A thermo-hydraulic network model was created and analyzed in SINDA/FLUINT. A less complex, closed form solution of the system dynamics was created using Excel. The purpose of this paper is to provide a brief description of the modeling processes utilized, the results and benefits of each to the ISS Node 3 RHX study.
Characterization of the bending stiffness of large space structure joints
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey
1989-01-01
A technique for estimating the bending stiffness of large space structure joints is developed and demonstrated for an erectable joint concept. Experimental load-deflection data from a three-point bending test was used as input to solve a closed-form expression for the joint bending stiffness which was derived from linear beam theory. Potential error sources in both the experimental and analytical procedures are identified and discussed. The bending stiffness of a mechanically preloaded erectable joint is studied at three applied moments and seven joint orientations. Using this technique, the joint bending stiffness was bounded between 6 and 17 percent of the bending stiffness of the graphite/epoxy strut member.
Effect of turbulence on the beam quality of apertured partially coherent beams.
Ji, Xiaoling; Ji, Guangming
2008-06-01
The effects of turbulence on the beam quality of apertured partially coherent beams have been studied both analytically and numerically. Taking the Gaussian Schell-model (GSM) beam as a typical example of partially coherent beams, closed-form expressions for the average intensity, mean-squared beam width, power in the bucket, beta parameter, and Strehl ratio of apertured partially coherent beams propagating through atmospheric turbulence are derived. It is shown that the smaller the beam truncation parameter is, the less affected by turbulence the apertured partially coherent beams are. Furthermore, the apertured partially coherent beams are less sensitive to the effects of turbulence than unapertured ones. The main results are interpreted physically.
Automated and Cooperative Vehicle Merging at Highway On-Ramps
Rios-Torres, Jackeline; Malikopoulos, Andreas A.
2016-08-05
Recognition of necessities of connected and automated vehicles (CAVs) is gaining momentum. CAVs can improve both transportation network efficiency and safety through control algorithms that can harmonically use all existing information to coordinate the vehicles. This paper addresses the problem of optimally coordinating CAVs at merging roadways to achieve smooth traffic flow without stop-and-go driving. Here we present an optimization framework and an analytical closed-form solution that allows online coordination of vehicles at merging zones. The effectiveness of the efficiency of the proposed solution is validated through a simulation, and it is shown that coordination of vehicles can significantly reducemore » both fuel consumption and travel time.« less
Xu, Zhengyuan; Ding, Haipeng; Sadler, Brian M; Chen, Gang
2008-08-15
Motivated by recent advances in solid-state incoherent ultraviolet sources and solar blind detectors, we study communication link performance over a range of less than 1 km with a bit error rate (BER) below 10(-3) in solar blind non-line-of-sight situation. The widely adopted yet complex single scattering channel model is significantly simplified by means of a closed-form expression for tractable analysis. Path loss is given as a function of transceiver geometry as well as atmospheric scattering and attenuation and is compared with experimental data for model validation. The BER performance of a shot-noise-limited receiver under this channel model is demonstrated.
NASA Astrophysics Data System (ADS)
Zhang, Wei-Guo; Li, Zhe; Liu, Yong-Jun
2018-01-01
In this paper, we study the pricing problem of the continuously monitored fixed and floating strike geometric Asian power options in a mixed fractional Brownian motion environment. First, we derive both closed-form solutions and mixed fractional partial differential equations for fixed and floating strike geometric Asian power options based on delta-hedging strategy and partial differential equation method. Second, we present the lower and upper bounds of the prices of fixed and floating strike geometric Asian power options under the assumption that both risk-free interest rate and volatility are interval numbers. Finally, numerical studies are performed to illustrate the performance of our proposed pricing model.
NASA Technical Reports Server (NTRS)
Cole, G. L.; Willoh, R. G.
1975-01-01
A linearized mathematical analysis is presented for determining the response of normal shock position and subsonic duct pressures to flow-field perturbations upstream of the normal shock in mixed-compression supersonic inlets. The inlet duct cross-sectional area variation is approximated by constant-area sections; this approximation results in one-dimensional wave equations. A movable normal shock separates the supersonic and subsonic flow regions, and a choked exit is assumed for the inlet exit condition. The analysis leads to a closed-form matrix solution for the shock position and pressure transfer functions. Analytical frequency response results are compared with experimental data and a method of characteristics solution.
Couple stresses and the fracture of rock.
Atkinson, Colin; Coman, Ciprian D; Aldazabal, Javier
2015-03-28
An assessment is made here of the role played by the micropolar continuum theory on the cracked Brazilian disc test used for determining rock fracture toughness. By analytically solving the corresponding mixed boundary-value problems and employing singular-perturbation arguments, we provide closed-form expressions for the energy release rate and the corresponding stress-intensity factors for both mode I and mode II loading. These theoretical results are augmented by a set of fracture toughness experiments on both sandstone and marble rocks. It is further shown that the morphology of the fracturing process in our centrally pre-cracked circular samples correlates very well with discrete element simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Molina, A.; Laborda, E.; Compton, R. G.
2014-03-01
Simple theory for the electrochemical study of reversible ion transfer processes at micro- and nano-liquid|liquid interfaces supported on a capillary is presented. Closed-form expressions are obtained for the response in normal pulse and differential double pulse voltammetries, which describe adequately the particular behaviour of these systems due to the ‘asymmetric’ ion diffusion inside and outside the capillary. The use of different potential pulse techniques for the determination of the formal potential and diffusion coefficients of the ion is examined. For this, very simple analytical expressions are presented for the half-wave potential in NPV and the peak potential in DDPV.
On estimation of linear transformation models with nested case–control sampling
Liu, Mengling
2011-01-01
Nested case–control (NCC) sampling is widely used in large epidemiological cohort studies for its cost effectiveness, but its data analysis primarily relies on the Cox proportional hazards model. In this paper, we consider a family of linear transformation models for analyzing NCC data and propose an inverse selection probability weighted estimating equation method for inference. Consistency and asymptotic normality of our estimators for regression coefficients are established. We show that the asymptotic variance has a closed analytic form and can be easily estimated. Numerical studies are conducted to support the theory and an application to the Wilms’ Tumor Study is also given to illustrate the methodology. PMID:21912975
Deterministic Bragg Coherent Diffraction Imaging.
Pavlov, Konstantin M; Punegov, Vasily I; Morgan, Kaye S; Schmalz, Gerd; Paganin, David M
2017-04-25
A deterministic variant of Bragg Coherent Diffraction Imaging is introduced in its kinematical approximation, for X-ray scattering from an imperfect crystal whose imperfections span no more than half of the volume of the crystal. This approach provides a unique analytical reconstruction of the object's structure factor and displacement fields from the 3D diffracted intensity distribution centred around any particular reciprocal lattice vector. The simple closed-form reconstruction algorithm, which requires only one multiplication and one Fourier transformation, is not restricted by assumptions of smallness of the displacement field. The algorithm performs well in simulations incorporating a variety of conditions, including both realistic levels of noise and departures from ideality in the reference (i.e. imperfection-free) part of the crystal.
Dominant takeover regimes for genetic algorithms
NASA Technical Reports Server (NTRS)
Noever, David; Baskaran, Subbiah
1995-01-01
The genetic algorithm (GA) is a machine-based optimization routine which connects evolutionary learning to natural genetic laws. The present work addresses the problem of obtaining the dominant takeover regimes in the GA dynamics. Estimated GA run times are computed for slow and fast convergence in the limits of high and low fitness ratios. Using Euler's device for obtaining partial sums in closed forms, the result relaxes the previously held requirements for long time limits. Analytical solution reveal that appropriately accelerated regimes can mark the ascendancy of the most fit solution. In virtually all cases, the weak (logarithmic) dependence of convergence time on problem size demonstrates the potential for the GA to solve large N-P complete problems.
Barnacles resist removal by crack trapping
Hui, Chung-Yuen; Long, Rong; Wahl, Kathryn J.; Everett, Richard K.
2011-01-01
We study the mechanics of pull-off of a barnacle adhering to a thin elastic layer which is bonded to a rigid substrate. We address the case of barnacles having acorn shell geometry and hard, calcarious base plates. Pull-off is initiated by the propagation of an interface edge crack between the base plate and the layer. We compute the energy release rate of this crack as it grows along the interface using a finite element method. We also develop an approximate analytical model to interpret our numerical results and to give a closed-form expression for the energy release rate. Our result shows that the resistance of barnacles to interfacial failure arises from a crack-trapping mechanism. PMID:21208968
Viscosity of a concentrated suspension of rigid monosized particles
NASA Astrophysics Data System (ADS)
Brouwers, H. J. H.
2010-05-01
This paper addresses the relative viscosity of concentrated suspensions loaded with unimodal hard particles. So far, exact equations have only been put forward in the dilute limit, e.g., by Einstein [A. Einstein, Ann. Phys. 19, 289 (1906) (in German); Ann. Phys. 34, 591 (1911) (in German)] for spheres. For larger concentrations, a number of phenomenological models for the relative viscosity was presented, which depend on particle concentration only. Here, an original and exact closed form expression is derived based on geometrical considerations that predicts the viscosity of a concentrated suspension of monosized particles. This master curve for the suspension viscosity is governed by the relative viscosity-concentration gradient in the dilute limit (for spheres the Einstein limit) and by random close packing of the unimodal particles in the concentrated limit. The analytical expression of the relative viscosity is thoroughly compared with experiments and simulations reported in the literature, concerning both dilute and concentrated suspensions of spheres, and good agreement is found.
Scaling and percolation in the small-world network model
NASA Astrophysics Data System (ADS)
Newman, M. E. J.; Watts, D. J.
1999-12-01
In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Padé approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model.
A forecast for extinction debt in the presence of speciation.
Sgardeli, Vasiliki; Iwasa, Yoh; Varvoglis, Harry; Halley, John M
2017-02-21
Predicting biodiversity relaxation following a disturbance is of great importance to conservation biology. Recently-developed models of stochastic community assembly allow us to predict the evolution of communities on the basis of mechanistic processes at the level of individuals. The neutral model of biodiversity, in particular, has provided closed-form solutions for the relaxation of biodiversity in isolated communities (no immigration or speciation). Here, we extend these results by deriving a relaxation curve for a neutral community in which new species are introduced through the mechanism of random fission speciation (RFS). The solution provides simple closed-form expressions for the equilibrium species richness, the relaxation time and the species-individual curve, which are good approximation to the more complicated formulas existing for the same model. The derivation of the relaxation curve is based on the assumption of a broken-stick species-abundance distribution (SAD) as an initial community configuration; yet for commonly observed SADs, the maximum deviation from the curve does not exceed 10%. Importantly, the solution confirms theoretical results and observations showing that the relaxation time increases with community size and thus habitat area. Such simple and analytically tractable models can help crystallize our ideas on the leading factors affecting biodiversity loss. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Andreotti, Riccardo; Del Fiorentino, Paolo; Giannetti, Filippo; Lottici, Vincenzo
2016-12-01
This work proposes a distributed resource allocation (RA) algorithm for packet bit-interleaved coded OFDM transmissions in the uplink of heterogeneous networks (HetNets), characterized by small cells deployed over a macrocell area and sharing the same band. Every user allocates its transmission resources, i.e., bits per active subcarrier, coding rate, and power per subcarrier, to minimize the power consumption while both guaranteeing a target quality of service (QoS) and accounting for the interference inflicted by other users transmitting over the same band. The QoS consists of the number of information bits delivered in error-free packets per unit of time, or goodput (GP), estimated at the transmitter by resorting to an efficient effective SNR mapping technique. First, the RA problem is solved in the point-to-point case, thus deriving an approximate yet accurate closed-form expression for the power allocation (PA). Then, the interference-limited HetNet case is examined, where the RA problem is described as a non-cooperative game, providing a solution in terms of generalized Nash equilibrium. Thanks to the closed-form of the PA, the solution analysis is based on the best response concept. Hence, sufficient conditions for existence and uniqueness of the solution are analytically derived, along with a distributed algorithm capable of reaching the game equilibrium.
Self-consistent multidimensional electron kinetic model for inductively coupled plasma sources
NASA Astrophysics Data System (ADS)
Dai, Fa Foster
Inductively coupled plasma (ICP) sources have received increasing interest in microelectronics fabrication and lighting industry. In 2-D configuration space (r, z) and 2-D velocity domain (νθ,νz), a self- consistent electron kinetic analytic model is developed for various ICP sources. The electromagnetic (EM) model is established based on modal analysis, while the kinetic analysis gives the perturbed Maxwellian distribution of electrons by solving Boltzmann-Vlasov equation. The self- consistent algorithm combines the EM model and the kinetic analysis by updating their results consistently until the solution converges. The closed-form solutions in the analytical model provide rigorous and fast computing for the EM fields and the electron kinetic behavior. The kinetic analysis shows that the RF energy in an ICP source is extracted by a collisionless dissipation mechanism, if the electron thermovelocity is close to the RF phase velocities. A criterion for collisionless damping is thus given based on the analytic solutions. To achieve uniformly distributed plasma for plasma processing, we propose a novel discharge structure with both planar and vertical coil excitations. The theoretical results demonstrate improved uniformity for the excited azimuthal E-field in the chamber. Non-monotonic spatial decay in electric field and space current distributions was recently observed in weakly- collisional plasmas. The anomalous skin effect is found to be responsible for this phenomenon. The proposed model successfully models the non-monotonic spatial decay effect and achieves good agreements with the measurements for different applied RF powers. The proposed analytical model is compared with other theoretical models and different experimental measurements. The developed model is also applied to two kinds of ICP discharges used for electrodeless light sources. One structure uses a vertical internal coil antenna to excite plasmas and another has a metal shield to prevent the electromagnetic radiation. The theoretical results delivered by the proposed model agree quite well with the experimental measurements in many aspects. Therefore, the proposed self-consistent model provides an efficient and reliable means for designing ICP sources in various applications such as VLSI fabrication and electrodeless light sources.
Fluctuation-induced forces in confined ideal and imperfect Bose gases
NASA Astrophysics Data System (ADS)
Diehl, H. W.; Rutkevich, Sergei B.
2017-06-01
Fluctuation-induced ("Casimir") forces caused by thermal and quantum fluctuations are investigated for ideal and imperfect Bose gases confined to d -dimensional films of size ∞d -1×D under periodic (P), antiperiodic (A), Dirichlet-Dirichlet (DD), Neumann-Neumann (NN), and Robin (R) boundary conditions (BCs). The full scaling functions ΥdBC(xλ=D /λth ,xξ=D /ξ ) of the residual reduced grand potential per area φres,dBC(T ,μ ,D ) =D-(d -1 )ΥdBC(xλ,xξ) are determined for the ideal gas case with these BCs, where λth and ξ are the thermal de Broglie wavelength and the bulk correlation length, respectively. The associated limiting scaling functions ΘdBC(xξ) ≡ΥdBC(∞ ,xξ) describing the critical behavior at the bulk condensation transition are shown to agree with those previously determined from a massive free O (2 ) theory for BC=P,A,DD,DN,NN . For d =3 , they are expressed in closed analytical form in terms of polylogarithms. The analogous scaling functions ΥdBC(xλ,xξ,c1D ,c2D ) and ΘdR(xξ,c1D ,c2D ) under the RBCs (∂z-c1) ϕ |z=0=(∂z+c2) ϕ | z =D=0 with c1≥0 and c2≥0 are also determined. The corresponding scaling functions Υ∞,d P(xλ,xξ) and Θ∞,d P(xξ) for the imperfect Bose gas are shown to agree with those of the interacting Bose gas with n internal degrees of freedom in the limit n →∞ . Hence, for d =3 , Θ∞,d P(xξ) is known exactly in closed analytic form. To account for the breakdown of translation invariance in the direction perpendicular to the boundary planes implied by free BCs such as DDBCs, a modified imperfect Bose gas model is introduced that corresponds to the limit n →∞ of this interacting Bose gas. Numerically and analytically exact results for the scaling function Θ∞,3 DD(xξ) therefore follow from those of the O (2 n ) ϕ4 model for n →∞ .
Fluctuation-induced forces in confined ideal and imperfect Bose gases.
Diehl, H W; Rutkevich, Sergei B
2017-06-01
Fluctuation-induced ("Casimir") forces caused by thermal and quantum fluctuations are investigated for ideal and imperfect Bose gases confined to d-dimensional films of size ∞^{d-1}×D under periodic (P), antiperiodic (A), Dirichlet-Dirichlet (DD), Neumann-Neumann (NN), and Robin (R) boundary conditions (BCs). The full scaling functions Υ_{d}^{BC}(x_{λ}=D/λ_{th},x_{ξ}=D/ξ) of the residual reduced grand potential per area φ_{res,d}^{BC}(T,μ,D)=D^{-(d-1)}Υ_{d}^{BC}(x_{λ},x_{ξ}) are determined for the ideal gas case with these BCs, where λ_{th} and ξ are the thermal de Broglie wavelength and the bulk correlation length, respectively. The associated limiting scaling functions Θ_{d}^{BC}(x_{ξ})≡Υ_{d}^{BC}(∞,x_{ξ}) describing the critical behavior at the bulk condensation transition are shown to agree with those previously determined from a massive free O(2) theory for BC=P,A,DD,DN,NN. For d=3, they are expressed in closed analytical form in terms of polylogarithms. The analogous scaling functions Υ_{d}^{BC}(x_{λ},x_{ξ},c_{1}D,c_{2}D) and Θ_{d}^{R}(x_{ξ},c_{1}D,c_{2}D) under the RBCs (∂_{z}-c_{1})ϕ|_{z=0}=(∂_{z}+c_{2})ϕ|_{z=D}=0 with c_{1}≥0 and c_{2}≥0 are also determined. The corresponding scaling functions Υ_{∞,d}^{P}(x_{λ},x_{ξ}) and Θ_{∞,d}^{P}(x_{ξ}) for the imperfect Bose gas are shown to agree with those of the interacting Bose gas with n internal degrees of freedom in the limit n→∞. Hence, for d=3, Θ_{∞,d}^{P}(x_{ξ}) is known exactly in closed analytic form. To account for the breakdown of translation invariance in the direction perpendicular to the boundary planes implied by free BCs such as DDBCs, a modified imperfect Bose gas model is introduced that corresponds to the limit n→∞ of this interacting Bose gas. Numerically and analytically exact results for the scaling function Θ_{∞,3}^{DD}(x_{ξ}) therefore follow from those of the O(2n)ϕ^{4} model for n→∞.
A New Paradigm for Flare Particle Acceleration
NASA Astrophysics Data System (ADS)
Guidoni, Silvina E.; Karpen, Judith T.; DeVore, C. Richard
2017-08-01
The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission and its spectra in solar flares is not well understood. Here, we propose a first-principle-based model of particle acceleration that produces energy spectra that closely resemble those derived from hard X-ray observations. Our mechanism uses contracting magnetic islands formed during fast reconnection in solar flares to accelerate electrons, as first proposed by Drake et al. (2006) for kinetic-scale plasmoids. We apply these ideas to MHD-scale islands formed during fast reconnection in a simulated eruptive flare. A simple analytic model based on the particles’ adiabatic invariants is used to calculate the energy gain of particles orbiting field lines in our ultrahigh-resolution, 2.5D, MHD numerical simulation of a solar eruption (flare + coronal mass ejection). Then, we analytically model electrons visiting multiple contracting islands to account for the observed high-energy flare emission. Our acceleration mechanism inherently produces sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each macroscopic island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions. This work was supported in part by the NASA LWS and H-SR programs..
Meisel, Jose D; Sarmiento, Olga L; Montes, Felipe; Martinez, Edwin O; Lemoine, Pablo D; Valdivia, Juan A; Brownson, Ross C; Zarama, Roberto
2014-01-01
Conduct a social network analysis of the health and non-health related organizations that participate in Bogotá's Ciclovía Recreativa (Ciclovía). Cross-sectional study. Ciclovía is a multisectoral community-based mass program in which streets are temporarily closed to motorized transport, allowing exclusive access to individuals for leisure activities and physical activity. Twenty-five organizations that participate in the Ciclovía. Seven variables were examined by using network analytic methods: relationship, link attributes (integration, contact, and importance), and node attributes (leadership, years in the program, and the sector of the organization). The network analytic methods were based on a visual descriptive analysis and an exponential random graph model. Analysis shows that the most central organizations in the network were outside of the Health sector and include Sports and Recreation, Government, and Security sectors. The organizations work in clusters formed by organizations of different sectors. Organization importance and structural predictors were positively related to integration, while the number of years working with Ciclovía was negatively associated with integration. Ciclovía is a network whose structure emerged as a self-organized complex system. Ciclovía of Bogotá is an example of a program with public health potential formed by organizations of multiple sectors with Sports and Recreation as the most central.
NASA Astrophysics Data System (ADS)
Zeng, Xiaguang; Wei, Yujie
Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.
NASA Astrophysics Data System (ADS)
Rinzema, Kees; ten Bosch, Jaap J.; Ferwerda, Hedzer A.; Hoenders, Bernhard J.
1995-01-01
The diffusion approximation, which is often used to describe the propagation of light in biological tissues, is only good at a sufficient distance from sources and boundaries. Light- tissue interaction is however most intense in the region close to the source. It would therefore be interesting to study this region more closely. Although scattering in biological tissues is predominantly forward peaked, explicit solutions to the transport equation have only been obtained in the case of isotropic scattering. Particularly, for the case of an isotropic point source in an unbounded, isotropically scattering medium the solution is well known. We show that this problem can also be solved analytically if the scattering is no longer isotropic, while everything else remains the same.
Closed-loop, pilot/vehicle analysis of the approach and landing task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.; Anderson, M. R.
1985-01-01
Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.
Foreman, W.T.; Zaugg, S.D.; Falres, L.M.; Werner, M.G.; Leiker, T.J.; Rogerson, P.F.
1992-01-01
Analytical interferences were observed during the determination of organic compounds in groundwater samples preserved with mercuric chloride. The nature of the interference was different depending on the analytical isolation technique employed. (1) Water samples extracted with dichloromethane by continuous liquid-liquid extraction (CLLE) and analyzed by gas chromatography/mass spectrometry revealed a broad HgCl2 'peak' eluting over a 3-5-min span which interfered with the determination of coeluting organic analytes. Substitution of CLLE for separatory funnel extraction in EPA method 508 also resulted in analytical interferences from the use of HgCl2 preservative. (2) Mercuric chloride was purged, along with organic contaminants, during closed-loop stripping (CLS) of groundwater samples and absorbed onto the activated charcoal trap. Competitive sorption of the HgCl2 by the trap appeared to contribute to the observed poor recoveries for spiked organic contaminants. The HgCl2 was not displaced from the charcoal with the dichloromethane elution solvent and required strong nitric acid to achieve rapid, complete displacement. Similar competitive sorption mechanisms might also occur in other purge and trap methods when this preservative is used.
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1987-01-01
A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature.
NASA Astrophysics Data System (ADS)
Singh, Pooja; Chattopadhyay, Amares; Srivastava, Akanksha; Singh, Abhishek Kumar
2018-05-01
With a motivation to gain physical insight of reflection as well as transmission phenomena in frozen (river/ocean) situation for example in Antarctica and other coldest place on Earth, the present article undertakes the analysis of reflection and transmission of a plane wave at the interfaces of layered structured comprised of a water layer of finite thickness sandwiched between an upper half-space constituted of ice and a lower isotropic elastic half-space, which may be useful in geophysical exploration in such conditions. A closed form expression of reflection/transmission coefficients of reflected and transmitted waves has been derived in terms of angles of incidence, propagation vector, displacement vector and elastic constants of the media. Expressions corresponding to the energy partition of various reflected and transmitted waves have also been established analytically. It has been remarkably shown that the law of conservation of energy holds good in the entire reflection and transmission phenomena for different angles of incidence. A numerical examples were performed so to graphically portray the analytical findings. Further the deduced results are validated with the pre-established classical results.
Jeandet, Philippe; Heinzmann, Silke S.; Roullier-Gall, Chloé; Cilindre, Clara; Aron, Alissa; Deville, Marie Alice; Moritz, Franco; Karbowiak, Thomas; Demarville, Dominique; Brun, Cyril; Moreau, Fabienne; Michalke, Bernhard; Liger-Belair, Gérard; Witting, Michael; Lucio, Marianna; Steyer, Damien; Gougeon, Régis D.; Schmitt-Kopplin, Philippe
2015-01-01
Archaeochemistry as the application of the most recent analytical techniques to ancient samples now provides an unprecedented understanding of human culture throughout history. In this paper, we report on a multiplatform analytical investigation of 170-y-old champagne bottles found in a shipwreck at the bottom of the Baltic Sea, which provides insight into winemaking practices used at the time. Organic spectroscopy-based nontargeted metabolomics and metallomics give access to the detailed composition of these wines, revealing, for instance, unexpected chemical characteristics in terms of small ion, sugar, and acid contents as well as markers of barrel aging and Maillard reaction products. The distinct aroma composition of these ancient champagne samples, first revealed during tasting sessions, was later confirmed using state-of-the-art aroma analysis techniques. After 170 y of deep sea aging in close-to-perfect conditions, these sleeping champagne bottles awoke to tell us a chapter of the story of winemaking and to reveal their extraordinary archaeometabolome and elemental diversity in the form of chemical signatures related to each individual step of champagne production. PMID:25897020
Logarithmic spiral trajectories generated by Solar sails
NASA Astrophysics Data System (ADS)
Bassetto, Marco; Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni
2018-02-01
Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.
Jeandet, Philippe; Heinzmann, Silke S; Roullier-Gall, Chloé; Cilindre, Clara; Aron, Alissa; Deville, Marie Alice; Moritz, Franco; Karbowiak, Thomas; Demarville, Dominique; Brun, Cyril; Moreau, Fabienne; Michalke, Bernhard; Liger-Belair, Gérard; Witting, Michael; Lucio, Marianna; Steyer, Damien; Gougeon, Régis D; Schmitt-Kopplin, Philippe
2015-05-12
Archaeochemistry as the application of the most recent analytical techniques to ancient samples now provides an unprecedented understanding of human culture throughout history. In this paper, we report on a multiplatform analytical investigation of 170-y-old champagne bottles found in a shipwreck at the bottom of the Baltic Sea, which provides insight into winemaking practices used at the time. Organic spectroscopy-based nontargeted metabolomics and metallomics give access to the detailed composition of these wines, revealing, for instance, unexpected chemical characteristics in terms of small ion, sugar, and acid contents as well as markers of barrel aging and Maillard reaction products. The distinct aroma composition of these ancient champagne samples, first revealed during tasting sessions, was later confirmed using state-of-the-art aroma analysis techniques. After 170 y of deep sea aging in close-to-perfect conditions, these sleeping champagne bottles awoke to tell us a chapter of the story of winemaking and to reveal their extraordinary archaeometabolome and elemental diversity in the form of chemical signatures related to each individual step of champagne production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eglinton, T.I.; Goni, M.A.; Boon, J.J.
1995-12-31
Tissue samples from Ginkgo shoots (Ginkgo biloba L.) and Rice grass (Oryzasitiva sp.) incubated in the presence of {sup 13}C-labeled substrates such as coniferin (postulated to be biosynthetic intermediates in lignin biosynthesis) were studied using thermal and chemical dissociation methods in combination with molecular-level isotopic measurements. The aim of the study was (1) to investigate dissociation mechanisms, and (2) to examine and quantify the proportions of labeled material incorporated within each sample. Isotopic analysis of specific dissociation products revealed the presence of the label in its original positions, and only within lignin-derived (phenolic) products. Moreover, the distribution and isotopic compositionmore » of the dissociation products strongly suggest an origin from newly-formed lignin. These results clearly indicate that there is no {open_quotes}scrambling{close_quotes} of carbon atoms as a result of the dissociation process, thereby lending support to this analytical approach. In addition, the data provide confidence in the selective labeling approach for elucidation of the structure and biosynthesis of lignin.« less
Chu, Khim Hoong
2017-11-09
Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6 cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.
NASA Astrophysics Data System (ADS)
Galley, Chad R.; Rothstein, Ira Z.
2017-05-01
We utilize the dynamical renormalization group formalism to calculate the real space trajectory of a compact binary inspiral for long times via a systematic resummation of secularly growing terms. This method generates closed form solutions without orbit averaging, and the accuracy can be systematically improved. The expansion parameter is v5ν Ω (t -t0) where t0 is the initial time, t is the time elapsed, and Ω and v are the angular orbital frequency and initial speed, respectively. ν is the binary's symmetric mass ratio. We demonstrate how to apply the renormalization group method to resum solutions beyond leading order in two ways. First, we calculate the second-order corrections of the leading radiation reaction force, which involves highly nontrivial checks of the formalism (i.e., its renormalizability). Second, we show how to systematically include post-Newtonian corrections to the radiation reaction force. By avoiding orbit averaging, we gain predictive power and eliminate ambiguities in the initial conditions. Finally, we discuss how this methodology can be used to find analytic solutions to the spin equations of motion that are valid over long times.
Ion Dynamics Model for Collisionless Radio Frequency Sheaths
NASA Technical Reports Server (NTRS)
Bose, Deepak; Govindan, T.R.; Meyyappan, M.
2000-01-01
Full scale reactor model based on fluid equations is widely used to analyze high density plasma reactors. It is well known that the submillimeter scale sheath in front of a biased electrode supporting the wafer is difficult to resolve in numerical simulations, and the common practice is to use results for electric field from some form of analytical sheath model as boundary conditions for full scale reactor simulation. There are several sheath models in the literature ranging from Child's law to a recent unified sheath model [P. A. Miller and M. E. Riley, J. Appl. Phys. 82, 3689 (1997)l. In the present work, the cold ion fluid equations in the radio frequency sheath are solved numerically to show that the spatiotemporal variation of ion flux inside the sheath, commonly ignored in analytical models, is important in determining the electric field and ion energy at the electrode. Consequently, a semianalytical model that includes the spatiotemporal variation of ion flux is developed for use as boundary condition in reactor simulations. This semianalytical model is shown to yield results for sheath properties in close agreement with numerical solutions.
An analytical model with flexible accuracy for deep submicron DCVSL cells
NASA Astrophysics Data System (ADS)
Valiollahi, Sepideh; Ardeshir, Gholamreza
2018-07-01
Differential cascoded voltage switch logic (DCVSL) cells are among the best candidates of circuit designers for a wide range of applications due to advantages such as low input capacitance, high switching speed, small area and noise-immunity; nevertheless, a proper model has not yet been developed to analyse them. This paper analyses deep submicron DCVSL cells based on a flexible accuracy-simplicity trade-off including the following key features: (1) the model is capable of producing closed-form expressions with an acceptable accuracy; (2) model equations can be solved numerically to offer higher accuracy; (3) the short-circuit currents occurring in high-low/low-high transitions are accounted in analysis and (4) the changes in the operating modes of transistors during transitions together with an efficient submicron I-V model, which incorporates the most important non-ideal short-channel effects, are considered. The accuracy of the proposed model is validated in IBM 0.13 µm CMOS technology through comparisons with the accurate physically based BSIM3 model. The maximum error caused by analytical solutions is below 10%, while this amount is below 7% for numerical solutions.
Response of a shell structure subject to distributed harmonic excitation
NASA Astrophysics Data System (ADS)
Cao, Rui; Bolton, J. Stuart
2016-09-01
Previously, a coupled, two-dimensional structural-acoustic ring model was constructed to simulate the dynamic and acoustical behavior of pneumatic tires. Analytical forced solutions were obtained and were experimentally verified through laser velocimeter measurement made using automobile tires. However, the two-dimensional ring model is incapable of representing higher order, in-plane modal motion in either the circumferential or axial directions. Therefore, in this paper, a three-dimensional pressurized circular shell model is proposed to study the in-plane shearing motion and the effect of different forcing conditions. Closed form analytical solutions were obtained for both free and forced vibrations of the shell under simply supported boundary conditions. Dispersion relations were calculated and different wave types were identified by their different speeds. Shell surface mobility results under various input distributions were also studied and compared. Spatial Fourier series decompositions were also performed on the spatial mobility results to give the forced dispersion relations, which illustrate clearly the influence of input force spatial distribution. Such a model has practical application in identifying the sources of noise and vibration problems in automotive tires.
The motion and stability of a dual spin satellite during the momentum wheel spin-up maneuver
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Sen, S.
1972-01-01
The stability of a dual-spin satellite system during the momentum wheel spin-up maneuver is treated both analytically and numerically. The dual-spin system consists of: a slowly rotating or despun main-body; a momentum wheel (or rotor) which is accelerated by a torque motor to change its initial angular velocity relative to the main part to some high terminal value; and a nutation damper. A closed form solution for the case of a symmetrical satellite indicates that when the nutation damper is physically constrained for movement (i.e. by use of a mechanical clamp) the magnitude of the vector sum of the transverse angular velocity components remains bounded during the wheel spin-up under the influence of a constant motor torque. The analysis is extended to consider such effects as: the motion of the nutation damper during spin-up; a non-uniform motor torque; and the effect of a non-symmetrical mass distribution in the main spacecraft and the rotor. An approximate analytical solution using perturbation techniques is developed for the case of a slightly asymmetric main spacecraft.
NASA Astrophysics Data System (ADS)
Hou, X. Y.; Koh, C. G.; Kuang, K. S. C.; Lee, W. H.
2017-07-01
This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations.
Steady state and transient temperature distributions in the human thigh covered with a cooling pad
NASA Technical Reports Server (NTRS)
Leo, R. J.; Shitzer, A.; Chato, J. C.; Hertig, B. A.
1971-01-01
An analytical and experimental study was done on the performance of cooling pads attached to a human thigh. Each cooling pad consisted of a long, water cooled tube formed into a serpentine shape with uniform spacing between the parallel sections. The analytical work developed a cylindrical model for the human thigh. The transient times predicted by this model ranged from 25 to 80 minutes, which is reasonably close to the experimental results. Calculated and measured steady state temperature profiles were in fair agreement. The transient times associated with a change from a high metabolic rate of 1800 Btu/hr (528 w) to a low level of 300 Btu/hr (88 w), were found to be about 120 minutes. A change from 300 Btu/hr (264 w) to 300 Btu/hr (88 w) resulted in 90 to 100 minute transients. However, the transient times for a change in metabolic rate in the opposite direction from 300 Btu/hr (88 w) to 1800 Btu/hr (528 w) were 40 to 60 minutes.
NASA Astrophysics Data System (ADS)
López, O. E.; Guazzotto, L.
2017-03-01
The Grad-Shafranov-Bernoulli system of equations is a single fluid magnetohydrodynamical description of axisymmetric equilibria with mass flows. Using a variational perturbative approach [E. Hameiri, Phys. Plasmas 20, 024504 (2013)], analytic approximations for high-beta equilibria in circular, elliptical, and D-shaped cross sections in the high aspect ratio approximation are found, which include finite toroidal and poloidal flows. Assuming a polynomial dependence of the free functions on the poloidal flux, the equilibrium problem is reduced to an inhomogeneous Helmholtz partial differential equation (PDE) subject to homogeneous Dirichlet conditions. An application of the Green's function method leads to a closed form for the circular solution and to a series solution in terms of Mathieu functions for the elliptical case, which is valid for arbitrary elongations. To extend the elliptical solution to a D-shaped domain, a boundary perturbation in terms of the triangularity is used. A comparison with the code FLOW [L. Guazzotto et al., Phys. Plasmas 11(2), 604-614 (2004)] is presented for relevant scenarios.
Barth-Weingarten, Dagmar
2012-03-01
In grammar books, the various functions of and as phrasal coordinator and clausal conjunction are treated as standard knowledge. In addition, studies on the uses of and in everyday talk-in-interaction have described its discourse-organizational functions on a more global level. In the phonetic literature, in turn, a range of phonetic forms of and have been listed. Yet, so far few studies have related the phonetic features of and to its function. This contribution surveys a range of phonetic forms of and in a corpus of private American English telephone conversations. It shows that the use of forms such as [ænd], [εn], or [en], among others, is not random but, in essence, correlates with the syntactic-pragmatic scope of and and the cognitive closeness of the items the and connects. This, in turn, allows the phonetic design of and to contribute to the organization of turn-taking. The findings presented are based on conversation-analytic and interactional-linguistic methodology, which includes quantitative analyses.
ERIC Educational Resources Information Center
Bowen, Sarah; Haworth, Kevin; Grow, Joel; Tsai, Mavis; Kohlenberg, Robert
2012-01-01
Functional Analytic Psychotherapy (FAP; Kohlenberg & Tsai, 1991) aims to improve interpersonal relationships through skills intended to increase closeness and connection. The current trial assessed a brief mindfulness-based intervention informed by FAP, in which an interpersonal element was added to a traditional intrapersonal mindfulness…
Let's Not Forget: Learning Analytics Are about Learning
ERIC Educational Resources Information Center
Gaševic, Dragan; Dawson, Shane; Siemens, George
2015-01-01
The analysis of data collected from the interaction of users with educational and information technology has attracted much attention as a promising approach for advancing our understanding of the learning process. This promise motivated the emergence of the new research field, learning analytics, and its closely related discipline, educational…
Biomimetic micromechanical adaptive flow-sensor arrays
NASA Astrophysics Data System (ADS)
Krijnen, Gijs; Floris, Arjan; Dijkstra, Marcel; Lammerink, Theo; Wiegerink, Remco
2007-05-01
We report current developments in biomimetic flow-sensors based on flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of sacrificial poly-silicon technology, to form silicon-nitride suspended membranes, and SU8 polymer processing for fabrication of hairs with diameters of about 50 μm and up to 1 mm length. The membranes have thin chromium electrodes on top forming variable capacitors with the substrate that allow for capacitive read-out. Previously these sensors have been shown to exhibit acoustic sensitivity. Like for the crickets, the MEMS hair-sensors are positioned on elongated structures, resembling the cercus of crickets. In this work we present optical measurements on acoustically and electrostatically excited hair-sensors. We present adaptive control of flow-sensitivity and resonance frequency by electrostatic spring stiffness softening. Experimental data and simple analytical models derived from transduction theory are shown to exhibit good correspondence, both confirming theory and the applicability of the presented approach towards adaptation.
Systems and methods for laser assisted sample transfer to solution for chemical analysis
Van Berkel, Gary J.; Kertesz, Vilmos; Ovchinnikova, Olga S.
2014-06-03
Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.
Systems and methods for laser assisted sample transfer to solution for chemical analysis
Van Berkel, Gary J.; Kertesz, Vilmos; Ovchinnikova, Olga S.
2015-09-29
Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.
Systems and methods for laser assisted sample transfer to solution for chemical analysis
Van Berkel, Gary J; Kertesz, Vilmos; Ovchinnikova, Olga S
2013-08-27
Systems and methods are described for laser ablation of an analyte from a specimen and capturing of the analyte in a dispensed solvent to form a testing solution. A solvent dispensing and extraction system can form a liquid microjunction with the specimen. The solvent dispensing and extraction system can include a surface sampling probe. The laser beam can be directed through the surface sampling probe. The surface sampling probe can also serve as an atomic force microscopy probe. The surface sampling probe can form a seal with the specimen. The testing solution including the analyte can then be analyzed using an analytical instrument or undergo further processing.
Stream Lifetimes Against Planetary Encounters
NASA Technical Reports Server (NTRS)
Valsecchi, G. B.; Lega, E.; Froeschle, Cl.
2011-01-01
We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.
NASA Astrophysics Data System (ADS)
Purohit, Ghanshyam Purshottamdas
Experimental investigations of static liquid fillets formed between small gaps of a cylindrical surface and a flat surface are carried out. The minimum volume of liquid required to form a stable fillet and the maximum liquid content the fillet can hold before becoming unstable are studied. Fillet shapes are captured in photographs obtained by a high speed image system. Experiments were conducted using water, UPA and PF 5060 on two surfaces-stand-blasted titanium and polished copper for different surface inclinations. Experimental data are generalized using appropriate non-dimensional groups. Analytical model are developed to describe the fillet curvature. Fillet curvature data are compared against model predictions and are found to be in close agreement. Bubble point experiments were carried out to measure the capillary pressure difference across the liquid-gas interface in the channels of photo-chemically etched disk stacks. Experiments were conducted using titanium stacks of five different geometrical configurations. Both well wetting liquids (IPA and PF5060) and partially wetting liquid (water) were used during experiments. Test results are found to be in close agreement with analytical predictions. Experiments were carried out to measure the frictional pressure drop across the stack as a function of liquid flow rate using two different liquids (water and IPA) and five stacks of different geometrical configurations. A channel pressure drop model is developed by treating the flow within stack channels as fully developed laminar flow between parallel plates and solving the one-dimensional Navier Stokes equation. An alternate model is developed by treating the flow in channels as flow within porous media. Expressions are developed for effective porosity and permeability for the stacks and the pressure drop is related to these parameters. Pressure drop test results are found to be in close agreement with model predictions. As a specific application of this work, a surface tension propellant management device (PMD) that uses photo-chemically etched disk stacks as capillary elements is examined. These PMDs are used in gas pressurized liquid propellant tanks to supply gas-free propellant to rocket engines in near zero-gravity environment. The experimentally validated models are integrated to perform key analyses for predicting PMD performance in zero gravity.
NASA Astrophysics Data System (ADS)
Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I.; Skvortsov, Alexander M.; Yan, Dadong; Schmid, Friederike
2018-01-01
We use Brownian dynamics simulations and analytical theory to compare two prominent types of single molecule transitions. One is the adsorption transition of a loop (a chain with two ends bound to an attractive substrate) driven by an attraction parameter ɛ and the other is the loop-stretch transition in a chain with one end attached to a repulsive substrate, driven by an external end-force F applied to the free end. Specifically, we compare the behavior of the respective order parameters of the transitions, i.e., the mean number of surface contacts in the case of the adsorption transition and the mean position of the chain end in the case of the loop-stretch transition. Close to the transition points, both the static behavior and the dynamic behavior of chains with different length N are very well described by a scaling ansatz with the scaling parameters (ɛ - ɛ*)Nϕ (adsorption transition) and (F - F*)Nν (loop-stretch transition), respectively, where ϕ is the crossover exponent of the adsorption transition and ν is the Flory exponent. We show that both the loop-stretch and the loop adsorption transitions provide an exceptional opportunity to construct explicit analytical expressions for the crossover functions which perfectly describe all simulation results on static properties in the finite-size scaling regime. Explicit crossover functions are based on the ansatz for the analytical form of the order parameter distributions at the respective transition points. In contrast to the close similarity in equilibrium static behavior, the dynamic relaxation at the two transitions shows qualitative differences, especially in the strongly ordered regimes. This is attributed to the fact that the surface contact dynamics in a strongly adsorbed chain is governed by local processes, whereas the end height relaxation of a strongly stretched chain involves the full spectrum of Rouse modes.
Effects of Surface Roughness on Conical Squeeze Film Bearings with Micropolar fluid
NASA Astrophysics Data System (ADS)
Rajani, C. B.; Hanumagowda, B. N.; Shigehalli, Vijayalaxmi S.
2018-04-01
In the current paper, a hypothetical analysis of the impact of surface roughness on squeeze film lubrication of rough conical bearing using Micropolar fluid is examined using Eringen’sMicropolar fluid model. The generalized averaged Reynolds type equation for roughness has been determined analytically using the Christensen’s stochastic theory of roughness effects and the closed form expressions are obtained for the fluid film pressure, load carrying capacity and squeezing time. Further, the impacts of surface roughness using micropolar fluids on the squeeze film lubrication of rough conical bearings has been discussed and according to the outcomes arrived, pressure, load carrying capacity and squeezing time increases for azimuthal roughness pattern and decreases for radial roughness patterns comparatively to the smooth case.
On the Long Period Luni-Solar Effect in the Motion of an Artificial Satellite
NASA Technical Reports Server (NTRS)
Musen, Peter
1961-01-01
Two systems of formulas are presented for the determination of the long period perturbations caused by the Sun and the Moon in the motion of an artificial satellite. The first system can be used to determine the lunar effect for all satellites. The second method is more convenient for finding the lunar effect for close satellites and the solar effect for all satellites. Knowledge of these effects is essential for determining the stability of the satellite orbit. The basic equations of both systems are arranged in a form which permits the use of numerical integration. The two theories are more accurate and more adaptable to the use of electronic machines than the analytical developments obtained previously.
Surface-admittance equivalence principle for nonradiating and cloaking problems
NASA Astrophysics Data System (ADS)
Labate, Giuseppe; Alù, Andrea; Matekovits, Ladislau
2017-06-01
In this paper, we address nonradiating and cloaking problems exploiting the surface equivalence principle, by imposing at any arbitrary boundary the control of the admittance discontinuity between the overall object (with or without cloak) and the background. After a rigorous demonstration, we apply this model to a nonradiating problem, appealing for anapole modes and metamolecules modeling, and to a cloaking problem, appealing for non-Foster metasurface design. A straightforward analytical condition is obtained for controlling the scattering of a dielectric object over a surface boundary of interest. Previous quasistatic results are confirmed and a general closed-form solution beyond the subwavelength regime is provided. In addition, this formulation can be extended to other wave phenomena once the proper admittance function is defined (thermal, acoustics, elastomechanics, etc.).
Analytical model of brittle destruction based on hypothesis of scale similarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arakcheev, A. S., E-mail: asarakcheev@gmail.com; Lotov, K. V.
2012-08-15
The size distribution of dust particles in thermonuclear (fusion) devices is closely described by a power law, which may be related to the brittle destruction of materials. The hypothesis of scale similarity leads to the conclusion that the size distribution of particles formed as a result of a brittle destruction is described by a power law with the exponent -{alpha} that can range from -4 to -1. The model of brittle destruction is described in terms of the fractal geometry, and the distribution exponent is expressed via the fractal dimension of packing. Under additional assumptions, it is possible to refinemore » the {alpha} value and, vice versa, to determine the type of destruction using the measured size distribution of particles.« less
Analytical approximation of the InGaZnO thin-film transistors surface potential
NASA Astrophysics Data System (ADS)
Colalongo, Luigi
2016-10-01
Surface-potential-based mathematical models are among the most accurate and physically based compact models of thin-film transistors, and in turn of indium gallium zinc oxide TFTs, available today. However, the need of iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not accurate enough in particular to model transconductances and transcapacitances. In this work we present an extremely accurate (in the range of nV) and computationally efficient non-iterative approximation of the surface potential that can serve as a basis for advanced surface-potential-based indium gallium zinc oxide TFTs models.
NASA Astrophysics Data System (ADS)
Hoffmann, Thomas; Dorrestein, Pieter C.
2015-11-01
Matrix deposition on agar-based microbial colonies for MALDI imaging mass spectrometry is often complicated by the complex media on which microbes are grown. This Application Note demonstrates how consecutive short spray pulses of a matrix solution can form an evenly closed matrix layer on dried agar. Compared with sieving dry matrix onto wet agar, this method supports analyte cocrystallization, which results in significantly more signals, higher signal-to-noise ratios, and improved ionization efficiency. The even matrix layer improves spot-to-spot precision of measured m/z values when using TOF mass spectrometers. With this technique, we established reproducible imaging mass spectrometry of myxobacterial cultures on nutrient-rich cultivation media, which was not possible with the sieving technique.
NASA Technical Reports Server (NTRS)
Armstrong, John T.; Hutcheon, Ian D.; Wasserburg, G. J.
1987-01-01
A detailed petrographic and chemical study of Zelda (a gigantic sulfide-rich Fremdling from the Allende Ca-rich inclusion, CAI, Egg 6) and its contact with the host was conducted using analytical SEM and electron-microprobe techniques, and the results were compared with those obtained on other sulfide-rich and oxide-rich Fremdlinge. Strong evidence is presented that Zelda, a type-example of sulfide-rich Fremdlinge, has been formed from a preexisting Ur-Fremdling, similar by composition to Willy, by closed-system sulfidization of magnetite and metal. At least two different sulfidization mechanisms appear to have occurred in altering Fremdlinge: one producing compositionally homogeneous equigranular objects such as Zelda, the other producing compositionally and texturally heterogeneous objects.
You can run, you can hide: The epidemiology and statistical mechanics of zombies
NASA Astrophysics Data System (ADS)
Alemi, Alexander A.; Bierbaum, Matthew; Myers, Christopher R.; Sethna, James P.
2015-11-01
We use a popular fictional disease, zombies, in order to introduce techniques used in modern epidemiology modeling, and ideas and techniques used in the numerical study of critical phenomena. We consider variants of zombie models, from fully connected continuous time dynamics to a full scale exact stochastic dynamic simulation of a zombie outbreak on the continental United States. Along the way, we offer a closed form analytical expression for the fully connected differential equation, and demonstrate that the single person per site two dimensional square lattice version of zombies lies in the percolation universality class. We end with a quantitative study of the full scale US outbreak, including the average susceptibility of different geographical regions.
Theoretical studies of system performance and adaptive optics design parameters
NASA Astrophysics Data System (ADS)
Tyson, Robert K.
1990-08-01
The ultimate performance of an adaptive optics (AO) system can be sensitive to specific design parameters of individual components. The type and configuration of a wavefront sensor or the shape of individual deformable mirror actuator influence functions can have a profound effect on the correctability of the AO system. This paper will discuss the results of a theoretical study which employed both closed form analytic solutions and computer models. A parametric analysis of wavefront sensor characteristics, noise, and subaperture geometry are independently evaluated against system response to an aberrated wave characteristic of atmospheric turbulence. Similarly, the shape and extent of the deformable mirror influence function and the placement and number of actuators is evaluated to characterize the effects of fitting error and coupling.
Hydrodynamic model for conductivity in graphene.
Mendoza, M; Herrmann, H J; Succi, S
2013-01-01
Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of ε, the dimensionless strength of the electric field, and provides excellent agreement with experimental data.
Recovery time in quantum dynamics of wave packets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strekalov, M. L., E-mail: strekalov@kinetics.nsc.ru
2017-01-15
A wave packet formed by a linear superposition of bound states with an arbitrary energy spectrum returns arbitrarily close to the initial state after a quite long time. A method in which quantum recovery times are calculated exactly is developed. In particular, an exact analytic expression is derived for the recovery time in the limiting case of a two-level system. In the general case, the reciprocal recovery time is proportional to the Gauss distribution that depends on two parameters (mean value and variance of the return probability). The dependence of the recovery time on the mean excitation level of themore » system is established. The recovery time is the longest for the maximal excitation level.« less
The rise of environmental analytical chemistry as an interdisciplinary activity.
Brown, Richard
2009-07-01
Modern scientific endeavour is increasingly delivered within an interdisciplinary framework. Analytical environmental chemistry is a long-standing example of an interdisciplinary approach to scientific research where value is added by the close cooperation of different disciplines. This editorial piece discusses the rise of environmental analytical chemistry as an interdisciplinary activity and outlines the scope of the Analytical Chemistry and the Environmental Chemistry domains of TheScientificWorldJOURNAL (TSWJ), and the appropriateness of TSWJ's domain format in covering interdisciplinary research. All contributions of new data, methods, case studies, and instrumentation, or new interpretations and developments of existing data, case studies, methods, and instrumentation, relating to analytical and/or environmental chemistry, to the Analytical and Environmental Chemistry domains, are welcome and will be considered equally.
The Interactional Management of Claims of Insufficient Knowledge in English Language Classrooms
ERIC Educational Resources Information Center
Sert, Olcay; Walsh, Steve
2013-01-01
This paper primarily investigates the interactional unfolding and management of "claims of insufficient knowledge" (Beach and Metzger 1997) in two English language classrooms from a multi-modal, conversation-analytic perspective. The analyses draw on a close, micro-analytic account of sequential organisation of talk as well as on various…
Akan, Ozgur B.
2018-01-01
We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics. PMID:29415019
NASA Astrophysics Data System (ADS)
Krapez, J.-C.
2018-07-01
This work deals with the exact analytical modeling of transfer phenomena in heterogeneous materials exhibiting one-dimensional continuous variations of their properties. Regarding heat transfer, it has recently been shown that by applying a Liouville transformation and multiple Darboux transformations, infinite sequences of solvable profiles of thermal effusivity can be constructed together with the associated temperature (exact) solutions, all in closed-form expressions (vs. the diffusion-time variable and with a growing number of parameters). In addition, a particular class of profiles, the so-called {sech}( {\\hat{ξ }} ) -type profiles, exhibit high agility and at the same time parsimony. In this paper we delve further into the description of these solvable profiles and their properties. Most importantly, their quadrupole formulation is provided, enabling smooth synthetic profiles of effusivity of arbitrary complexity to be built, and allowing the corresponding temperature dynamic response to be obtained very easily thereafter. Examples are given with increasing variability of the effusivity and an increasing number of elementary profiles. These highly flexible profiles are equally relevant to providing an exact analytical solution to wave propagation problems in 1D graded media (i.e., Maxwell's equations, the acoustic equation, the telegraph equation, etc.). From now on, whether it be for diffusion-like or wave-like problems, when the leading properties present (possibly piecewise-) continuously heterogeneous profiles, the classical staircase model can be advantageously replaced by a "high-level" quadrupole model consisting of one or more {sech}( {\\hat{ξ }} ) -type profiles, which makes the latter a true Swiss-Army knife for analytical modeling.
Kuscu, Murat; Akan, Ozgur B
2018-01-01
We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.
Analytical approximations for effective relative permeability in the capillary limit
NASA Astrophysics Data System (ADS)
Rabinovich, Avinoam; Li, Boxiao; Durlofsky, Louis J.
2016-10-01
We present an analytical method for calculating two-phase effective relative permeability, krjeff, where j designates phase (here CO2 and water), under steady state and capillary-limit assumptions. These effective relative permeabilities may be applied in experimental settings and for upscaling in the context of numerical flow simulations, e.g., for CO2 storage. An exact solution for effective absolute permeability, keff, in two-dimensional log-normally distributed isotropic permeability (k) fields is the geometric mean. We show that this does not hold for krjeff since log normality is not maintained in the capillary-limit phase permeability field (Kj=k·krj) when capillary pressure, and thus the saturation field, is varied. Nevertheless, the geometric mean is still shown to be suitable for approximating krjeff when the variance of lnk is low. For high-variance cases, we apply a correction to the geometric average gas effective relative permeability using a Winsorized mean, which neglects large and small Kj values symmetrically. The analytical method is extended to anisotropically correlated log-normal permeability fields using power law averaging. In these cases, the Winsorized mean treatment is applied to the gas curves for cases described by negative power law exponents (flow across incomplete layers). The accuracy of our analytical expressions for krjeff is demonstrated through extensive numerical tests, using low-variance and high-variance permeability realizations with a range of correlation structures. We also present integral expressions for geometric-mean and power law average krjeff for the systems considered, which enable derivation of closed-form series solutions for krjeff without generating permeability realizations.
Analytical and experimental study of axisymmetric truncated plug nozzle flow fields
NASA Technical Reports Server (NTRS)
Muller, T. J.; Sule, W. P.; Fanning, A. E.; Giel, T. V.; Galanga, F. L.
1972-01-01
Experimental and analytical investigation of the flow field and base pressure of internal-external-expansion truncated plug nozzles are discussed. Experimental results for two axisymmetric, conical plug-cylindrical shroud, truncated plug nozzles are presented for both open and closed wake operations. These results include extensive optical and pressure data covering nozzle flow field and base pressure characteristics, diffuser effects, lip shock strength, Mach disc behaviour, and the recompression and reverse flow regions. Transonic experiments for a special planar transonic section are presented. An extension of the analytical method of Hall and Mueller to include the internal shock wave from the shroud exit is presented for closed wake operation. Results of this analysis include effects on the flow field and base pressure of ambient pressure ratio, nozzle geometry, and the ratio of specific heats. Static thrust is presented as a function of ambient pressure ratio and nozzle geometry. A new transonic solution method is also presented.
Ahmadzadeh, Arman; Arjmandi, Hamidreza; Burkovski, Andreas; Schober, Robert
2016-10-01
This paper studies the problem of receiver modeling in molecular communication systems. We consider the diffusive molecular communication channel between a transmitter nano-machine and a receiver nano-machine in a fluid environment. The information molecules released by the transmitter nano-machine into the environment can degrade in the channel via a first-order degradation reaction and those that reach the receiver nano-machine can participate in a reversible bimolecular reaction with receiver receptor proteins. Thereby, we distinguish between two scenarios. In the first scenario, we assume that the entire surface of the receiver is covered by receptor molecules. We derive a closed-form analytical expression for the expected received signal at the receiver, i.e., the expected number of activated receptors on the surface of the receiver. Then, in the second scenario, we consider the case where the number of receptor molecules is finite and the uniformly distributed receptor molecules cover the receiver surface only partially. We show that the expected received signal for this scenario can be accurately approximated by the expected received signal for the first scenario after appropriately modifying the forward reaction rate constant. The accuracy of the derived analytical results is verified by Brownian motion particle-based simulations of the considered environment, where we also show the impact of the effect of receptor occupancy on the derived analytical results.
Heterogeneous network epidemics: real-time growth, variance and extinction of infection.
Ball, Frank; House, Thomas
2017-09-01
Recent years have seen a large amount of interest in epidemics on networks as a way of representing the complex structure of contacts capable of spreading infections through the modern human population. The configuration model is a popular choice in theoretical studies since it combines the ability to specify the distribution of the number of contacts (degree) with analytical tractability. Here we consider the early real-time behaviour of the Markovian SIR epidemic model on a configuration model network using a multitype branching process. We find closed-form analytic expressions for the mean and variance of the number of infectious individuals as a function of time and the degree of the initially infected individual(s), and write down a system of differential equations for the probability of extinction by time t that are numerically fast compared to Monte Carlo simulation. We show that these quantities are all sensitive to the degree distribution-in particular we confirm that the mean prevalence of infection depends on the first two moments of the degree distribution and the variance in prevalence depends on the first three moments of the degree distribution. In contrast to most existing analytic approaches, the accuracy of these results does not depend on having a large number of infectious individuals, meaning that in the large population limit they would be asymptotically exact even for one initial infectious individual.
A semi-analytic theory for the motion of a close-earth artificial satellite with drag
NASA Technical Reports Server (NTRS)
Liu, J. J. F.; Alford, R. L.
1979-01-01
A semi-analytic method is used to estimate the decay history/lifetime and to generate orbital ephemeris for close-earth satellites perturbed by the atmospheric drag and earth oblateness due to the spherical harmonics J2, J3, and J4. The theory maintains efficiency through the application of the theory of a method of averaging and employs sufficient numerical emphasis to include a rather sophisticated atmospheric density model. The averaged drag effects with respect to mean anomaly are evaluated by a Gauss-Legendre quadrature while the averaged variational equations of motion are integrated numerically with automatic step size and error control.
Molecular Structure of a Helical ribbon in a Peptide Self-Assembly
NASA Astrophysics Data System (ADS)
Hwang, Wonmuk; Marini, Davide; Kamm, Roger D.; Zhang, Shuguang
2002-03-01
We have studied the molecular structure of nanometer scale helical ribbons observed during self-assembly of the peptide KFE8 (amino acid sequence: FKFEFKFE) (NanoLetters (2002, in press)). By analyzing the hydrogen bonding patterns between neighboring peptide backbones, we constructed a number of possible β-sheets. Using all possible combinations of these, we built helical ribbons with dimensions close to those found experimentally and performed molecular dynamics simulations to identify the most stable structure. Solvation effects were implemented by the analytic continuum electrostatics (ACE) model developed by Schaefer and Karplus (J. Phys. Chem. 100, 1578 (1996)). By applying electrostatic double layer theory, we incorporated the effect of pH by scaling the amount of charge on the sidechains. Our results suggest that the helical ribbon is comprised of a double β-sheet where the inner and the outer helices have distinct hydrogen bonding patterns. Our approach has general applicability to the study of helices formed by the self-assembly of β-sheet forming peptides with various amino acid sequences.
On the Lamb shift in neutral muonic helium
NASA Astrophysics Data System (ADS)
Amusia, Miron; Karshenboim, Savely; Ivanov, Vladimir
2015-05-01
The neutral muonic helium is an exotic atomic system consisting of an electron, muon and a nucleus. We consider it as a hydrogen-like atom with a compound nucleus that is also hydrogen-like system. There are a number of corrections to the Bohr energy levels, which all can be treated as contributions of generic hydrogen-like theory. While the form of those contributions is the same for all hydrogen-like atoms, their relative numerical importance differs from an atom to an atom. Here, the leading contribution to the electronic Lamb shift in the neutral muonic helium is found in a close analytic form together with the most important corrections. We believe that the Lamb shift in the neutral muonic hydrogen is measurable, at least through a measurement of the electronic 1 s - 2 s transition. We present a theoretical prediction for the 1 s - 2 s transitions with the uncertainty of 2 ppm (4 GHz), as well as for the 2 s - 2 p Lamb shift with the uncertainty of 0.6 GHz.
Apparent contact angle and contact angle hysteresis on liquid infused surfaces.
Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim
2016-12-21
We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.
Transport of a decay chain in homogenous porous media: analytical solutions.
Bauer, P; Attinger, S; Kinzelbach, W
2001-06-01
With the aid of integral transforms, analytical solutions for the transport of a decay chain in homogenous porous media are derived. Unidirectional steady-state flow and radial steady-state flow in single and multiple porosity media are considered. At least in Laplace domain, all solutions can be written in closed analytical formulae. Partly, the solutions can also be inverted analytically. If not, analytical calculation of the steady-state concentration distributions, evaluation of temporal moments and numerical inversion are still possible. Formulae for several simple boundary conditions are given and visualized in this paper. The derived novel solutions are widely applicable and are very useful for the validation of numerical transport codes.
NASA Astrophysics Data System (ADS)
Sharma, Basant Lal
2018-05-01
Based on the well known nearest-neighbor tight-binding approximation for graphene, an exact expression for the electronic conductance across a zigzag nanoribbon/armchair nanotube junction is presented for non-interacting electrons. The junction results from the removal of a half-row of zigzag dimers in armchair nanotube, or equivalently by partial rolling of zigzag nanoribbon and insertion of a half-row of zigzag dimers in between. From the former point of view, a discrete form of Dirichlet condition is imposed on a zigzag half-line of dimers assuming the vanishing of wave function outside the physical structure. A closed form expression is provided for the reflection and transmission moduli for the outgoing wave modes for each given electronic wave mode incident from either side of the junction. It is demonstrated that such a contact junction between the nanotube and nanoribbon exhibits negligible backscattering, and the transmission has been found to be nearly ballistic. In contrast to the previously reported studies for partially unzipped carbon nanotubes (CNTs), using the same tight binding model, it is found that due to the "defect" there is certain amount of mixing between the electronic wave modes with even and odd reflection symmetries. But the junction remains a perfect valley filter for CNTs at certain energy ranges. Applications aside from the electronic case, include wave propagation in quasi-one-dimensional honeycomb structures of graphene-like constitution. The paper includes several numerical calculations, analytical derivations, and graphical results, which complement the provision of succinct closed form expressions.
Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.
Petrinović, Davor; Brezović, Marko
2011-04-01
We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device. © 2011 IEEE
Predictive probability methods for interim monitoring in clinical trials with longitudinal outcomes.
Zhou, Ming; Tang, Qi; Lang, Lixin; Xing, Jun; Tatsuoka, Kay
2018-04-17
In clinical research and development, interim monitoring is critical for better decision-making and minimizing the risk of exposing patients to possible ineffective therapies. For interim futility or efficacy monitoring, predictive probability methods are widely adopted in practice. Those methods have been well studied for univariate variables. However, for longitudinal studies, predictive probability methods using univariate information from only completers may not be most efficient, and data from on-going subjects can be utilized to improve efficiency. On the other hand, leveraging information from on-going subjects could allow an interim analysis to be potentially conducted once a sufficient number of subjects reach an earlier time point. For longitudinal outcomes, we derive closed-form formulas for predictive probabilities, including Bayesian predictive probability, predictive power, and conditional power and also give closed-form solutions for predictive probability of success in a future trial and the predictive probability of success of the best dose. When predictive probabilities are used for interim monitoring, we study their distributions and discuss their analytical cutoff values or stopping boundaries that have desired operating characteristics. We show that predictive probabilities utilizing all longitudinal information are more efficient for interim monitoring than that using information from completers only. To illustrate their practical application for longitudinal data, we analyze 2 real data examples from clinical trials. Copyright © 2018 John Wiley & Sons, Ltd.
Neyman, Markov processes and survival analysis.
Yang, Grace
2013-07-01
J. Neyman used stochastic processes extensively in his applied work. One example is the Fix and Neyman (F-N) competing risks model (1951) that uses finite homogeneous Markov processes to analyse clinical trials with breast cancer patients. We revisit the F-N model, and compare it with the Kaplan-Meier (K-M) formulation for right censored data. The comparison offers a way to generalize the K-M formulation to include risks of recovery and relapses in the calculation of a patient's survival probability. The generalization is to extend the F-N model to a nonhomogeneous Markov process. Closed-form solutions of the survival probability are available in special cases of the nonhomogeneous processes, like the popular multiple decrement model (including the K-M model) and Chiang's staging model, but these models do not consider recovery and relapses while the F-N model does. An analysis of sero-epidemiology current status data with recurrent events is illustrated. Fix and Neyman used Neyman's RBAN (regular best asymptotic normal) estimates for the risks, and provided a numerical example showing the importance of considering both the survival probability and the length of time of a patient living a normal life in the evaluation of clinical trials. The said extension would result in a complicated model and it is unlikely to find analytical closed-form solutions for survival analysis. With ever increasing computing power, numerical methods offer a viable way of investigating the problem.
NASA Astrophysics Data System (ADS)
Hosenfeld, Fabian; Horst, Fabian; Iñíguez, Benjamín; Lime, François; Kloes, Alexander
2017-11-01
Source-to-drain (SD) tunneling decreases the device performance in MOSFETs falling below the 10 nm channel length. Modeling quantum mechanical effects including SD tunneling has gained more importance specially for compact model developers. The non-equilibrium Green's function (NEGF) has become a state-of-the-art method for nano-scaled device simulation in the past years. In the sense of a multi-scale simulation approach it is necessary to bridge the gap between compact models with their fast and efficient calculation of the device current, and numerical device models which consider quantum effects of nano-scaled devices. In this work, an NEGF based analytical model for nano-scaled double-gate (DG) MOSFETs is introduced. The model consists of a closed-form potential solution of a classical compact model and a 1D NEGF formalism for calculating the device current, taking into account quantum mechanical effects. The potential calculation omits the iterative coupling and allows the straightforward current calculation. The model is based on a ballistic NEGF approach whereby backscattering effects are considered as second order effect in a closed-form. The accuracy and scalability of the non-iterative DG MOSFET model is inspected in comparison with numerical NanoMOS TCAD data for various channel lengths. With the help of this model investigations on short-channel and temperature effects are performed.
Geometry of Conservation Laws for a Class of Parabolic Partial Differential Equations
NASA Astrophysics Data System (ADS)
Clelland, Jeanne Nielsen
1996-08-01
I consider the problem of computing the space of conservation laws for a second-order, parabolic partial differential equation for one function of three independent variables. The PDE is formulated as an exterior differential system {cal I} on a 12 -manifold M, and its conservation laws are identified with the vector space of closed 3-forms in the infinite prolongation of {cal I} modulo the so -called "trivial" conservation laws. I use the tools of exterior differential systems and Cartan's method of equivalence to study the structure of the space of conservation laws. My main result is:. Theorem. Any conservation law for a second-order, parabolic PDE for one function of three independent variables can be represented by a closed 3-form in the differential ideal {cal I} on the original 12-manifold M. I show that if a nontrivial conservation law exists, then {cal I} has a deprolongation to an equivalent system {cal J} on a 7-manifold N, and any conservation law for {cal I} can be expressed as a closed 3-form on N which lies in {cal J}. Furthermore, any such system in the real analytic category is locally equivalent to a system generated by a (parabolic) equation of the formA(u _{xx}u_{yy}-u_sp {xy}{2}) + B_1u_{xx }+2B_2u_{xy} +B_3u_ {yy}+C=0crwhere A, B_{i}, C are functions of x, y, t, u, u_{x}, u _{y}, u_{t}. I compute the space of conservation laws for several examples, and I begin the process of analyzing the general case using Cartan's method of equivalence. I show that the non-linearizable equation u_{t} = {1over2}e ^{-u}(u_{xx}+u_ {yy})has an infinite-dimensional space of conservation laws. This stands in contrast to the two-variable case, for which Bryant and Griffiths showed that any equation whose space of conservation laws has dimension 4 or more is locally equivalent to a linear equation, i.e., is linearizable.
Analytical determination of thermal conductivity of W-UO2 and W-UN CERMET nuclear fuels
NASA Astrophysics Data System (ADS)
Webb, Jonathan A.; Charit, Indrajit
2012-08-01
The thermal conductivity of tungsten based CERMET fuels containing UO2 and UN fuel particles are determined as a function of particle geometry, stabilizer fraction and fuel-volume fraction, by using a combination of an analytical approach and experimental data collected from literature. Thermal conductivity is estimated using the Bruggeman-Fricke model. This study demonstrates that thermal conductivities of various CERMET fuels can be analytically predicted to values that are very close to the experimentally determined ones.
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1989-01-01
The paper introduces a new theory of N-dimensional complex variables and analytic functions which, for N greater than 2, is both a direct generalization and a close analog of the theory of ordinary complex variables. The algebra in the present theory is a commutative ring, not a field. Functions of a three-dimensional variable were defined and the definition of the derivative then led to analytic functions.
Multi-modal vibration amplitudes of taut inclined cables due to direct and/or parametric excitation
NASA Astrophysics Data System (ADS)
Macdonald, J. H. G.
2016-02-01
Cables are often prone to potentially damaging large amplitude vibrations. The dynamic excitation may be from external loading or motion of the cable ends, the latter including direct excitation, normally from components of end motion transverse to the cable, and parametric excitation induced by axial components of end motion causing dynamic tension variations. Geometric nonlinearity can be important, causing stiffening behaviour and nonlinear modal coupling. Previous analyses of the vibrations, often neglecting sag, have generally dealt with direct and parametric excitation separately or have reverted to numerical solutions of the responses. Here a nonlinear cable model is adopted, applicable to taut cables such as on cable-stayed bridges, that allows for cable inclination, small sag (such that the vibration modes are similar to those of a taut string), multiple modes in both planes and end motion and/or external forcing close to any natural frequency. Based on the method of scaling and averaging it is found that, for sinusoidal inputs and positive damping, non-zero steady state responses can only occur in the modes in each plane with natural frequencies close to the excitation frequency and those with natural frequencies close to half this frequency. Analytical solutions, in the form of non-dimensional polynomial equations, are derived for the steady state vibration amplitudes in up to three modes simultaneously: the directly excited mode, the corresponding nonlinearly coupled mode in the orthogonal plane and a parametrically excited mode with half the natural frequency. The stability of the solutions is also identified. The outputs of the equations are consistent with previous results, where available. Example results from the analytical solutions are presented for a typical inclined bridge cable subject to vertical excitation of the lower end, and they are validated by numerical integration of the equations of motion and against some previous experimental results. It is shown that the modal interactions and sag (although very small) affect the responses significantly.
Casement, Ann
2014-02-01
The Jungian analyst Gerhard Adler left Berlin and re-settled in London in 1936. He was closely involved with the professionalization of analytical psychology internationally and in the UK, including the formation of the International Association for Analytical Psychology (IAAP) and The Society of Analytical Psychology (SAP).The tensions that arose within the latter organization led to a split that ended in the formation of the Association of Jungian Analysts (AJA). A further split at AJA resulted in the creation of another organization, the Independent Group of Analytical Psychologists (IGAP). Adler's extensive publications include his role as an editor of Jung's Collected Works and as editor of the C.G. Jung Letters. © 2014, The Society of Analytical Psychology.
Krayukhina, Elena; Noda, Masanori; Ishii, Kentaro; Maruno, Takahiro; Wakabayashi, Hirotsugu; Tada, Minoru; Suzuki, Takuo; Ishii-Watabe, Akiko; Kato, Masahiko; Uchiyama, Susumu
2017-01-01
ABSTRACT A number of studies have attempted to elucidate the binding mechanism between tumor necrosis factor (TNF) and clinically relevant antagonists. None of these studies, however, have been conducted as close as possible to physiologic conditions, and so the relationship between the size distribution of TNF-antagonist complexes and the antagonists' biological activity or adverse effects remains elusive. Here, we characterized the binding stoichiometry and sizes of soluble TNF-antagonist complexes for adalimumab, infliximab, and etanercept that were formed in human serum and in phosphate-buffered saline (PBS). Fluorescence-detected sedimentation velocity analytical ultracentrifugation analyses revealed that adalimumab and infliximab formed a range of complexes with TNF, with the major complexes consisting of 3 molcules of the respective antagonist and one or 2 molcules of TNF. Considerably greater amounts of high-molecular-weight complexes were detected for infliximab in human serum. The emergence of peaks with higher sedimentation coefficients than the adalimumab monomer as a function of added human serum albumin (HSA) concentration in PBS suggested weak reversible interactions between HSA and immunoglobulins. Etanerept exclusively formed 1:1 complexes with TNF in PBS, and a small amount of complexes with higher stoichiometry was detected in human serum. Consistent with these biophysical characterizations, a reporter assay showed that adalimumab and infliximab, but not etanercept, exerted FcγRIIa- and FcγRIIIa-mediated cell signaling in the presence of TNF and that infliximab exhibited higher potency than adalimumab. This study shows that assessing distribution profiles in serum will contribute to a more comprehensive understanding of the in vivo behavior of therapeutic proteins. PMID:28387583
17 CFR 239.14 - Form N-2 for closed end management investment companies registered on Form N-8A.
Code of Federal Regulations, 2010 CFR
2010-04-01
... management investment companies registered on Form N-8A. 239.14 Section 239.14 Commodity and Securities... Registration Statements § 239.14 Form N-2 for closed end management investment companies registered on Form N... closed end management investment companies registered under the Investment Company Act of 1940 on form N...
Access to Education in Bangladesh: Country Analytic Review of Primary and Secondary School
ERIC Educational Resources Information Center
Ahmed, Manzoor; Ahmed, Kazi Saleh; Khan, Nurul Islam; Ahmed, Romij
2007-01-01
This country analytical review examines the key issues in access to and participation in primary and secondary education in Bangladesh, with a special focus on areas and dimensions of exclusion. Against a background of overall progress, particularly in closing the gender gap in primary and secondary enrollment, the research applies a conceptual…
Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory
ERIC Educational Resources Information Center
Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno
2015-01-01
Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…
Search Analytics: Automated Learning, Analysis, and Search with Open Source
NASA Astrophysics Data System (ADS)
Hundman, K.; Mattmann, C. A.; Hyon, J.; Ramirez, P.
2016-12-01
The sheer volume of unstructured scientific data makes comprehensive human analysis impossible, resulting in missed opportunities to identify relationships, trends, gaps, and outliers. As the open source community continues to grow, tools like Apache Tika, Apache Solr, Stanford's DeepDive, and Data-Driven Documents (D3) can help address this challenge. With a focus on journal publications and conference abstracts often in the form of PDF and Microsoft Office documents, we've initiated an exploratory NASA Advanced Concepts project aiming to use the aforementioned open source text analytics tools to build a data-driven justification for the HyspIRI Decadal Survey mission. We call this capability Search Analytics, and it fuses and augments these open source tools to enable the automatic discovery and extraction of salient information. In the case of HyspIRI, a hyperspectral infrared imager mission, key findings resulted from the extractions and visualizations of relationships from thousands of unstructured scientific documents. The relationships include links between satellites (e.g. Landsat 8), domain-specific measurements (e.g. spectral coverage) and subjects (e.g. invasive species). Using the above open source tools, Search Analytics mined and characterized a corpus of information that would be infeasible for a human to process. More broadly, Search Analytics offers insights into various scientific and commercial applications enabled through missions and instrumentation with specific technical capabilities. For example, the following phrases were extracted in close proximity within a publication: "In this study, hyperspectral images…with high spatial resolution (1 m) were analyzed to detect cutleaf teasel in two areas. …Classification of cutleaf teasel reached a users accuracy of 82 to 84%." Without reading a single paper we can use Search Analytics to automatically identify that a 1 m spatial resolution provides a cutleaf teasel detection users accuracy of 82-84%, which could have tangible, direct downstream implications for crop protection. Automatically assimilating this information expedites and supplements human analysis, and, ultimately, Search Analytics and its foundation of open source tools will result in more efficient scientific investment and research.
Meisel, Jose D; Sarmiento, Olga; Montes, Felipe; Martinez, Edwin O.; Lemoine, Pablo D; Valdivia, Juan A; Brownson, RC; Zarama, Robert
2016-01-01
Purpose Conduct a social network analysis of the health and non-health related organizations that participate in the Bogotá’s Ciclovía Recreativa (Ciclovía). Design Cross sectional study. Setting Ciclovía is a multisectoral community-based mass program in which streets are temporarily closed to motorized transport, allowing exclusive access to individuals for leisure activities and PA. Subjects 25 organizations that participate in the Ciclovía. Measures Seven variables were examined using network analytic methods: relationship, link attributes (integration, contact, and importance), and node attributes (leadership, years in the program, and the sector of the organization). Analysis The network analytic methods were based on a visual descriptive analysis and an exponential random graph model. Results Analysis shows that the most central organizations in the network were outside of the health sector and includes Sports and Recreation, Government, and Security sectors. The organizations work in clusters formed by organizations of different sectors. Organization importance and structural predictors were positively related to integration, while the number of years working with Ciclovía was negatively associated with integration. Conclusion Ciclovía is a network whose structure emerged as a self-organized complex system. Ciclovía of Bogotá is an example of a program with public health potential formed by organizations of multiple sectors with Sports and Recreation as the most central. PMID:23971523
NASA Astrophysics Data System (ADS)
Parshin, D. A.
2017-09-01
We study the processes of additive formation of spherically shaped rigid bodies due to the uniform accretion of additional matter to their surface in an arbitrary centrally symmetric force field. A special case of such a field can be the gravitational or electrostatic force field. We consider the elastic deformation of the formed body. The body is assumed to be isotropic with elasticmoduli arbitrarily varying along the radial coordinate.We assume that arbitrary initial circular stresses can arise in the additional material added to the body in the process of its formation. In the framework of linear mechanics of growing bodies, the mathematical model of the processes under study is constructed in the quasistatic approximation. The boundary value problems describing the development of stress-strain state of the object under study before the beginning of the process and during the entire process of its formation are posed. The closed analytic solutions of the posed problems are constructed by quadratures for some general types of material inhomogeneity. Important typical characteristics of the mechanical behavior of spherical bodies additively formed in the central force field are revealed. These characteristics substantially distinguish such bodies from the already completely composed bodies similar in dimensions and properties which are placed in the force field and are described by problems of mechanics of deformable solids in the classical statement disregarding the mechanical aspects of additive processes.
Modern analytical chemistry in the contemporary world
NASA Astrophysics Data System (ADS)
Šíma, Jan
2016-12-01
Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among sciences and in the contemporary world is discussed. Its interdisciplinary character and the necessity of the collaboration between analytical chemists and other experts in order to effectively solve the actual problems of the human society and the environment are emphasized. The importance of the analytical method validation in order to obtain the accurate and precise results is highlighted. The invalid results are not only useless; they can often be even fatal (e.g., in clinical laboratories). The curriculum of analytical chemistry at schools and universities is discussed. It is referred to be much broader than traditional equilibrium chemistry coupled with a simple description of individual analytical methods. Actually, the schooling of analytical chemistry should closely connect theory and practice.
A lower bound on the solutions of Kapustin-Witten equations
NASA Astrophysics Data System (ADS)
Huang, Teng
2016-11-01
In this article, we consider the Kapustin-Witten equations on a closed four-manifold. We study certain analytic properties of solutions to the equations on a closed manifold. The main result is that there exists an L2 -lower bound on the extra fields over a closed four-manifold satisfying certain conditions if the connections are not ASD connections. Furthermore, we also obtain a similar result about the Vafa-Witten equations.
Neural Network-Based Sensor Validation for Turboshaft Engines
NASA Technical Reports Server (NTRS)
Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei
1998-01-01
Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.
Electron-Impact Total Ionization Cross Sections of Fluorine Compounds
NASA Astrophysics Data System (ADS)
Kim, Y.-K.; Ali, M. A.; Rudd, M. E.
1997-10-01
A theoretical method called the Binary-Encounter-Bethe (BEB) model(M. A. Ali, Y.-K. Kim, H. Hwang, N. M. Weinberger, and M. E. Rudd, J. Chem. Phys. 106), 9602 (1997), and references therein. that combines the Mott cross section at low incident energies T and the Bethe cross section at high T was applied to fluorine compounds of interest to plasma processing of semiconductors (CF_4, CHF_3, C_2F_6, C_4F_8, etc.). The theory provides total ioniztion cross sections in an analytic form from the threshold to a few keV in T, making it convenient to use the theory for modeling. The theory is particularly effective for closed-shell molecules. The theoretical cross sections are compared to available experimental data.
Belyaev, Victor; Solomatin, Alexey; Chausov, Denis
2013-02-25
Phase retardation of both extraordinary and ordinary polarized rays passing through a liquid crystal (LC) cell with homogeneous and inhomogeneous LC director distribution is calculated as a function of the LC pretilt angle θ₀ on the cell substrates in the range 0 ≤ θ₀ ≤ 90°. The LC pretilt on both substrates can have the same or opposite direction, thereby forming homogeneous, splay, or bend director configurations. At the same pretilt angle value, the largest phase retardation ΔΦ is observed in splay LC cells, whereas the smallest phase retardation is observed in bend cells. For the θ₀ values close to 0, 45°, and 90°, analytical approximations are derived, showing that phase retardation depends on LC birefringence variation.
Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model
NASA Astrophysics Data System (ADS)
Wang, Jia Jie; Han, Yi Ping; Chang, Jiao Yong; Chen, Zhu Yang
2018-02-01
Within the framework of generalized Lorenz-Mie theory (GLMT), an eccentrically stratified dielectric sphere model illuminated by an arbitrarily incident Bessel beam is applied to investigate the scattering characteristics of a single nucleated biological cell. The Bessel beam propagating in an arbitrary direction is expanded in terms of vector spherical wave functions (VSWFs), where the beam shape coefficients (BSCs) are calculated rigorously in a closed analytical form. The effects of the half-cone angle of Bessel beam, the location of the particle in the beam, the size ratio of nucleus to cell, and the location of the nucleus inside the cell on the scattering properties of a nucleated cell are analyzed. The results provide useful references for optical diagnostic and imaging of particle having nucleated structure.
NASA Astrophysics Data System (ADS)
Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Sidorov, V. V.
2018-04-01
In practice of increased responsibility structures design there are often weak saturated clayey soils with low characteristics of deformability and strength take place on the construction site. In these cases, foundations using piles-drains of sandy or coarse material are recommended by norms, which is able to bear the load and to accelerate the consolidation process. The presented solutions include an analytical solution of the interaction problem between piles and slab raft foundation with the surrounding soil of the base with the possibility of extension of pile shaft. The closed-form solutions to determine the stresses in pile shaft and in the soil under the foundation slab are obtained. The article presents the results of large scale tests in the pilot area construction of major energy facilities in Russia.
A κ-generalized statistical mechanics approach to income analysis
NASA Astrophysics Data System (ADS)
Clementi, F.; Gallegati, M.; Kaniadakis, G.
2009-02-01
This paper proposes a statistical mechanics approach to the analysis of income distribution and inequality. A new distribution function, having its roots in the framework of κ-generalized statistics, is derived that is particularly suitable for describing the whole spectrum of incomes, from the low-middle income region up to the high income Pareto power-law regime. Analytical expressions for the shape, moments and some other basic statistical properties are given. Furthermore, several well-known econometric tools for measuring inequality, which all exist in a closed form, are considered. A method for parameter estimation is also discussed. The model is shown to fit remarkably well the data on personal income for the United States, and the analysis of inequality performed in terms of its parameters is revealed as very powerful.
Assessment of Optimal Flexibility in Ensemble of Frequency Responsive Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Soumya; Hansen, Jacob; Lian, Jianming
2018-04-19
Potential of electrical loads in providing grid ancillary services is often limited due to the uncertainties associated with the load behavior. A knowledge of the expected uncertainties with a load control program would invariably yield to better informed control policies, opening up the possibility of extracting the maximal load control potential without affecting grid operations. In the context of frequency responsive load control, a probabilistic uncertainty analysis framework is presented to quantify the expected error between the target and actual load response, under uncertainties in the load dynamics. A closed-form expression of an optimal demand flexibility, minimizing the expected errormore » in actual and committed flexibility, is provided. Analytical results are validated through Monte Carlo simulations of ensembles of electric water heaters.« less
NASA Astrophysics Data System (ADS)
Astoul, A.; Mathis, S.; Baruteau, C.; André, Q.
2017-12-01
Star-planet tidal interactions play a significant role in the dynamical evolution of close-in planetary systems. We investigate the propagation and dissipation of tidal inertial waves in a stellar/planetary convective region. We take into account a latitudinal differential rotation for the background flow, similar to what is observed in the envelope of low-mass stars like the Sun. Previous works have shown that differential rotation significantly alters the propagation and dissipation properties of inertial waves. In particular, when the Doppler-shifted tidal frequency vanishes in the fluid, a critical layer forms where tidal dissipation can be greatly enhanced. Our present work develops a local analytic model to better understand the propagation and dissipation properties of tidally forced inertial waves at critical layers.
Hoffmann, Thomas; Dorrestein, Pieter C
2015-11-01
Matrix deposition on agar-based microbial colonies for MALDI imaging mass spectrometry is often complicated by the complex media on which microbes are grown. This Application Note demonstrates how consecutive short spray pulses of a matrix solution can form an evenly closed matrix layer on dried agar. Compared with sieving dry matrix onto wet agar, this method supports analyte cocrystallization, which results in significantly more signals, higher signal-to-noise ratios, and improved ionization efficiency. The even matrix layer improves spot-to-spot precision of measured m/z values when using TOF mass spectrometers. With this technique, we established reproducible imaging mass spectrometry of myxobacterial cultures on nutrient-rich cultivation media, which was not possible with the sieving technique. Graphical Abstract ᅟ.
Unsteady seepage flow over sloping beds in response to multiple localized recharge
NASA Astrophysics Data System (ADS)
Bansal, Rajeev K.
2017-05-01
New generalized solutions of linearized Boussinesq equation are derived to approximate the dynamic behavior of subsurface seepage flow induced by multiple localized time-varying recharges over sloping ditch-drain aquifer system. The mathematical model is based on extended Dupuit-Forchheimer assumption and treats the spatial location of recharge basins as additional parameter. Closed form analytic expressions for spatio-temporal variations in water head distribution and discharge rate into the drains are obtained by solving the governing flow equation using eigenvalue-eigenfunction method. Downward and zero-sloping aquifers are treated as special cases of main results. A numerical example is used for illustration of combined effects of various parameters such as spatial coordinates of the recharge basin, aquifer's bed slope, and recharge rate on the dynamic profiles of phreatic surface.
Model reduction by weighted Component Cost Analysis
NASA Technical Reports Server (NTRS)
Kim, Jae H.; Skelton, Robert E.
1990-01-01
Component Cost Analysis considers any given system driven by a white noise process as an interconnection of different components, and assigns a metric called 'component cost' to each component. These component costs measure the contribution of each component to a predefined quadratic cost function. A reduced-order model of the given system may be obtained by deleting those components that have the smallest component costs. The theory of Component Cost Analysis is extended to include finite-bandwidth colored noises. The results also apply when actuators have dynamics of their own. Closed-form analytical expressions of component costs are also derived for a mechanical system described by its modal data. This is very useful to compute the modal costs of very high order systems. A numerical example for MINIMAST system is presented.
NASA Astrophysics Data System (ADS)
Bahrami, Hafez; Faghri, Amir
2012-11-01
A one-dimensional, isothermal, single-phase model is presented to investigate the mass transport in a direct ethanol fuel cell incorporating an alkaline anion exchange membrane. The electrochemistry is analytically solved and the closed-form solution is provided for two limiting cases assuming Tafel expressions for both oxygen reduction and ethanol oxidation. A multi-layer membrane model is proposed to properly account for the diffusive and electroosmotic transport of ethanol through the membrane. The fundamental differences in fuel crossover for positive and negative electroosmotic drag coefficients are discussed. It is found that ethanol crossover is significantly reduced upon using an alkaline anion exchange membrane instead of a proton exchange membrane, especially at current densities higher than 500 A m
Hydrodynamic Model for Conductivity in Graphene
Mendoza, M.; Herrmann, H. J.; Succi, S.
2013-01-01
Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of ε, the dimensionless strength of the electric field, and provides excellent agreement with experimental data. PMID:23316277
NASA Astrophysics Data System (ADS)
Chitra, M.; Suhasini, M.
2018-04-01
In this paper, we investigate the effect of chemical reaction on the unsteady oscillatory MHD flow through porous medium in a porous vertical channel in the presence of suction velocity. The flow is assumed to be incompressible electrically conducting and radiating viscoelastic fluid in the presence of uniform magnetic flied applied perpendicular to the plane of the plates of the channel. The closed forms of analytical solution are obtained for the momentum, energy and concentration equation. The effect of various flow parameters like Schmidt number, chemical radiation parameter, Grashof number, solutal Grashof number on velocity profile, temperature, concentration, wall shear stress, and the rate of heat and mass transfer are obtained and their behaviour are discussed graphically.
NASA Technical Reports Server (NTRS)
Zhu, P. Y.
1991-01-01
The effective-medium approximation is applied to investigate scattering from a half-space of randomly and densely distributed discrete scatterers. Starting from vector wave equations, an approximation, called effective-medium Born approximation, a particular way, treating Green's functions, and special coordinates, of which the origin is set at the field point, are used to calculate the bistatic- and back-scatterings. An analytic solution of backscattering with closed form is obtained and it shows a depolarization effect. The theoretical results are in good agreement with the experimental measurements in the cases of snow, multi- and first-year sea-ice. The root product ratio of polarization to depolarization in backscattering is equal to 8; this result constitutes a law about polarized scattering phenomena in the nature.
Superexchange and spin-glass formation in semimagnetic semiconductors
NASA Astrophysics Data System (ADS)
Rusin, Tomasz M.
1996-05-01
The Mn-Mn superexchange interaction in semimagnetic semiconductors A1-xMnxB (where A=Zn, Cd and B=S, Se, Te) is studied within the three-level model of the band structure. We focus on the dependence of the interaction on the interion distance Jdd(r)=J0f(r). In the present work, the function f(r) is obtained analytically. This, only weakly material-dependent function is found to decrease with Mn-Mn distance much slower than its Gaussian approximation derived previously. The exact form of the decay of the superexchange can be approximated by a power law J0r-8.5. This is close to an experimental result, J0r-6.8, determined on the basis of the spin-glass transition temperature on the composition.
On the analytical form of the Earth's magnetic attraction expressed as a function of time
NASA Technical Reports Server (NTRS)
Carlheim-Gyllenskold, V.
1983-01-01
An attempt is made to express the Earth's magnetic attraction in simple analytical form using observations during the 16th to 19th centuries. Observations of the magnetic inclination in the 16th and 17th centuries are discussed.
The Framework of Intervention Engine Based on Learning Analytics
ERIC Educational Resources Information Center
Sahin, Muhittin; Yurdugül, Halil
2017-01-01
Learning analytics primarily deals with the optimization of learning environments and the ultimate goal of learning analytics is to improve learning and teaching efficiency. Studies on learning analytics seem to have been made in the form of adaptation engine and intervention engine. Adaptation engine studies are quite widespread, but intervention…
Foster, Tobias
2011-09-01
A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society
Wang, Hongzhi; Wang, Yu; Liu, Su; Yu, Jinghua; Guo, Yuna; Xu, Ying; Huang, Jiadong
2016-06-15
In the work, a signal-on electrochemical DNA sensor based on multiple amplification for ultrasensitive detection of antibiotics has been reported. In the presence of target, the ingeniously designed hairpin probe (HP1) is opened and the polymerase-assisted target recycling amplification is triggered, resulting in autonomous generation of secondary target. It is worth noting that the produced secondary target could not only hybridize with other HP1, but also displace the Helper from the electrode. Consequently, methylene blue labeled HP2 forms a "close" probe structure, and the increase of signal is monitored. The increasing current provides an ultrasensitive electrochemical detection for antibiotics down to 1.3 fM. To our best knowledge, such work is the first report about multiple recycling amplification combing with signal-on sensing strategy, which has been utilized for quantitative determination of antibiotics. It would be further used as a general strategy associated with more analytical techniques toward the detection of a wide spectrum of analytes. Thus, it holds great potential for the development of ultrasensitive biosensing platform for the applications in bioanalysis, disease diagnostics, and clinical biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McEver, Jimmie; Davis, Paul K.; Bigelow, James H.
2000-06-01
We have developed and used families of multiresolution and multiple-perspective models (MRM and MRMPM), both in our substantive analytic work for the Department of Defense and to learn more about how such models can be designed and implemented. This paper is a brief case history of our experience with a particular family of models addressing the use of precision fires in interdicting and halting an invading army. Our models were implemented as closed-form analytic solutions, in spreadsheets, and in the more sophisticated AnalyticaTM environment. We also drew on an entity-level simulation for data. The paper reviews the importance of certain key attributes of development environments (visual modeling, interactive languages, friendly use of array mathematics, facilities for experimental design and configuration control, statistical analysis tools, graphical visualization tools, interactive post-processing, and relational database tools). These can go a long way towards facilitating MRMPM work, but many of these attributes are not yet widely available (or available at all) in commercial model-development tools--especially for use with personal computers. We conclude with some lessons learned from our experience.
Aircraft electric field measurements: Calibration and ambient field retrieval
NASA Technical Reports Server (NTRS)
Koshak, William J.; Bailey, Jeff; Christian, Hugh J.; Mach, Douglas M.
1994-01-01
An aircraft locally distorts the ambient thundercloud electric field. In order to determine the field in the absence of the aircraft, an aircraft calibration is required. In this work a matrix inversion method is introduced for calibrating an aircraft equipped with four or more electric field sensors and a high-voltage corona point that is capable of charging the aircraft. An analytic, closed form solution for the estimate of a (3 x 3) aircraft calibration matrix is derived, and an absolute calibration experiment is used to improve the relative magnitudes of the elements of this matrix. To demonstrate the calibration procedure, we analyze actual calibration date derived from a Lear jet 28/29 that was equipped with five shutter-type field mill sensors (each with sensitivities of better than 1 V/m) located on the top, bottom, port, starboard, and aft positions. As a test of the calibration method, we analyze computer-simulated calibration data (derived from known aircraft and ambient fields) and explicitly determine the errors involved in deriving the variety of calibration matrices. We extend our formalism to arrive at an analytic solution for the ambient field, and again carry all errors explicitly.
Oscillatory flow past a slip cylindrical inclusion embedded in a Brinkman medium
NASA Astrophysics Data System (ADS)
Palaniappan, D.
2015-11-01
Transient flow past a circular cylinder embedded in a porous medium is studied based on Brinkman model with Navier slip conditions. Closed form analytic solution for the stream-function describing slow oscillatory flow around a solid cylindrical inclusion is obtained in the limit of low-Reynolds-number. The key parameters such as the frequency of oscillation λ, the permeability constant δ, and the slip coefficient ξ dictate the flow fields and physical quantities in the entire flow domain. Asymptotic steady-state analysis when δ --> 0 reveals the paradoxical behavior detected by Stokes. Local streamlines for small times demonstrate interesting flow patterns. Rapid transitions including flow separations and eddies are observed far away from the solid inclusion. Analytic expressions for the wall shear stress and the force acting on the cylinder are computed and compared with existing results. It is noted that the slip parameter in the range 0 <= ξ <= 0 . 5 has a significant effect in reducing the stress and force. In the limit of large permeability, Darcy (potential) flow is recovered outside a boundary layer. The results are of some interest in predicting maximum wall stress and pressure drop associated with biological models in fibrous media.
NASA Astrophysics Data System (ADS)
Lesiuk, Michał; Moszynski, Robert
2014-12-01
In this paper we consider the calculation of two-center exchange integrals over Slater-type orbitals (STOs). We apply the Neumann expansion of the Coulomb interaction potential and consider calculation of all basic quantities which appear in the resulting expression. Analytical closed-form equations for all auxiliary quantities have already been known but they suffer from large digital erosion when some of the parameters are large or small. We derive two differential equations which are obeyed by the most difficult basic integrals. Taking them as a starting point, useful series expansions for small parameter values or asymptotic expansions for large parameter values are systematically derived. The resulting expansions replace the corresponding analytical expressions when the latter introduce significant cancellations. Additionally, we reconsider numerical integration of some necessary quantities and present a new way to calculate the integrand with a controlled precision. All proposed methods are combined to lead to a general, stable algorithm. We perform extensive numerical tests of the introduced expressions to verify their validity and usefulness. Advances reported here provide methodology to compute two-electron exchange integrals over STOs for a broad range of the nonlinear parameters and large angular momenta.
Adaptive learning in complex reproducing kernel Hilbert spaces employing Wirtinger's subgradients.
Bouboulis, Pantelis; Slavakis, Konstantinos; Theodoridis, Sergios
2012-03-01
This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and real kernels (via the complexification trick) can be employed. Moreover, any convex, continuous and not necessarily differentiable function can be used to measure the loss between the output of the specific system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. In order to derive analytically the subgradients, the principles of the (recently developed) Wirtinger's calculus in complex RKHS are exploited. Furthermore, both linear and widely linear (in RKHS) estimation filters are considered. To cope with the problem of increasing memory requirements, which is present in almost all online schemes in RKHS, the sparsification scheme, based on projection onto closed balls, has been adopted. We demonstrate the effectiveness of the proposed framework in a non-linear channel identification task, a non-linear channel equalization problem and a quadrature phase shift keying equalization scheme, using both circular and non circular synthetic signal sources.
Capillary Flow in Containers of Polygonal Section: Theory and Experiment
NASA Technical Reports Server (NTRS)
Weislogel, Mark M.; Rame, Enrique (Technical Monitor)
2001-01-01
An improved understanding of the large-length-scale capillary flows arising in a low-gravity environment is critical to that engineering community concerned with the design and analysis of spacecraft fluids management systems. Because a significant portion of liquid behavior in spacecraft is capillary dominated it is natural to consider designs that best exploit the spontaneous character of such flows. In the present work, a recently verified asymptotic analysis is extended to approximate spontaneous capillary flows in a large class of cylindrical containers of irregular polygonal section experiencing a step reduction in gravitational acceleration. Drop tower tests are conducted using partially-filled irregular triangular containers for comparison with the theoretical predictions. The degree to which the experimental data agree with the theory is a testament to the robustness of the basic analytical assumption of predominantly parallel flow. As a result, the closed form analytical expressions presented serve as simple, accurate tools for predicting bulk flow characteristics essential to practical low-g system design and analysis. Equations for predicting corner wetting rates, total container flow rates, and transient surfaces shapes are provided that are relevant also to terrestrial applications such as capillary flow in porous media.
Localized solutions of Lugiato-Lefever equations with focused pump.
Cardoso, Wesley B; Salasnich, Luca; Malomed, Boris A
2017-12-04
Lugiato-Lefever (LL) equations in one and two dimensions (1D and 2D) accurately describe the dynamics of optical fields in pumped lossy cavities with the intrinsic Kerr nonlinearity. The external pump is usually assumed to be uniform, but it can be made tightly focused too-in particular, for building small pixels. We obtain solutions of the LL equations, with both the focusing and defocusing intrinsic nonlinearity, for 1D and 2D confined modes supported by the localized pump. In the 1D setting, we first develop a simple perturbation theory, based in the sech ansatz, in the case of weak pump and loss. Then, a family of exact analytical solutions for spatially confined modes is produced for the pump focused in the form of a delta-function, with a nonlinear loss (two-photon absorption) added to the LL model. Numerical findings demonstrate that these exact solutions are stable, both dynamically and structurally (the latter means that stable numerical solutions close to the exact ones are found when a specific condition, necessary for the existence of the analytical solution, does not hold). In 2D, vast families of stable confined modes are produced by means of a variational approximation and full numerical simulations.
Capillary Flow in an Interior Corner
NASA Technical Reports Server (NTRS)
Weislogel, Mark Milton
1996-01-01
The design of fluids management processes in the low-gravity environment of space requires an accurate model and description of capillarity-controlled flow in containers of irregular geometry. Here we consider the capillary rise of a fluid along an interior corner of a container following a rapid reduction in gravity. The analytical portion of the work presents an asymptotic formulation in the limit of a slender fluid column, slight surface curvature along the corner, small inertia, and low gravity. New similarity solutions are found and a list of closed form expressions is provided for flow rate and column length. In particular, it is found that the flow is proportional to t(exp 1/2) for a constant height boundary condition, t(exp 2/5) for a spreading drop, and t(exp 3/5) for constant flow. In the experimental portion of the work, measurements from a 2.2s drop tower are reported. An extensive data set, collected over a previously unexplored range of flow parameters, includes estimates of repeatability and accuracy, the role of inertia and column slenderness, and the effects of corner angle, container geometry, and fluid properties. Comprehensive comparisons are made which illustrate the applicability of the analytic results to low-g fluid systems design.
Analysis of pultrusion processing for long fiber reinforced thermoplastic composite system
NASA Technical Reports Server (NTRS)
Tso, W.; Hou, T. H.; Tiwari, S. N.
1993-01-01
Pultrusion is one of the composite processing technology, commonly recognized as a simple and cost-effective means for the manufacturing of fiber-reinforced, resin matrix composite parts with different regular geometries. Previously, because the majority of the pultruded composite parts were made of thermosetting resin matrix, emphasis of the analysis on the process has been on the conservation of energy from various sources, such as heat conduction and the curing kinetics of the resin system. Analysis on the flow aspect of the process was almost absent in the literature for thermosetting process. With the increasing uses of thermoplastic materials, it is desirable to obtain the detailed velocity and pressure profiles inside the pultrusion die. Using a modified Darcy's law for flow through porous media, closed form analytical solutions for the velocity and pressure distributions inside the pultrusion die are obtained for the first time. This enables us to estimate the magnitude of viscous dissipation and it's effects on the pultruded parts. Pulling forces refined in the pultrusion processing are also analyzed. The analytical model derived in this study can be used to advance our knowledge and control of the pultrusion process for fiber reinforced thermoplastic composite parts.
Analytical Solution for the Aeroelastic Response of a Two-Dimensional Elastic Plate in Axial Flow
NASA Astrophysics Data System (ADS)
Medina, Cory; Kang, Chang-Kwon
2017-11-01
The aeroelastic response of an elastic plate in an unsteady flow describes many engineering problems from bio-locomotion, deforming airfoils, to energy harvesting. However, the analysis is challenging because the shape of the plate is a priori unknown. This study presents an analytical model that can predict the two-way tightly coupled aeroelastic response of a two-dimensional elastic plate including the effects of plate curvature along the flow direction. The plate deforms due to the dynamic balance of wing inertia, elastic restoring force, and aerodynamic force. The coupled model utilizes the linearized Euler-Bernoulli beam theory for the structural model and thin airfoil theory as presented by Theodorsen, which assumes incompressible potential flow, for the aerodynamic model. The coupled equations of motion are solved via Galerkin's method, where closed form solutions for the plate deformation are obtained by deriving the unsteady aerodynamic pressure with respect to the plate normal functions, expressed in a Chebyshev polynomial expansion. Stability analysis is performed for a range of mass ratios obtaining the flutter velocities and corresponding frequencies and the results agree well with the results reported in the literature.
Quantification of Water Flux in Vesicular Systems.
Hannesschläger, Christof; Barta, Thomas; Siligan, Christine; Horner, Andreas
2018-06-04
Water transport across lipid membranes is fundamental to all forms of life and plays a major role in health and disease. However, not only typical water facilitators like aquaporins facilitate water flux, but also transporters, ion channels or receptors represent potent water pathways. The efforts directed towards a mechanistic understanding of water conductivity determinants in transmembrane proteins, the development of water flow inhibitors, and the creation of biomimetic membranes with incorporated membrane proteins or artificial water channels depend on reliable and accurate ways of quantifying water permeabilities P f . A conventional method is to subject vesicles to an osmotic gradient in a stopped-flow device: Fast recordings of scattered light intensity are converted into the time course of vesicle volume change. Even though an analytical solution accurately acquiring P f from scattered light intensities exists, approximations potentially misjudging P f by orders of magnitude are used. By means of computational and experimental data we point out that erroneous results such as that the single channel water permeability p f depends on the osmotic gradient are direct results of such approximations. Finally, we propose an empirical solution of which calculated permeability values closely match those calculated with the analytical solution in the relevant range of parameters.
Studies in perpendicular magnetic recording
NASA Astrophysics Data System (ADS)
Valcu, Bogdan F.
This dissertation uses both micromagnetic simulation and analytical methods to analyze several aspects of a perpendicular recording system. To increase the head field amplitude, the recording layer is grown on top of a soft magnetic layer (keeper). There is concern about the ability of the keeper to conduct the magnetic flux from the head at high data rates. We compute numerically the magnetization motion of the soft underlayer during the reversal process. Generation of non-linear spin waves characterizes the magnetization dynamics in the keeper, the spins are oscillating with a frequency higher than that of the reversal current. However, the recording field applied to the data layer follows the time dependence of the input wave form. The written transition shape is determined by the competition between the head field gradient and the demagnetizing field gradient. An analytical slope model that takes into consideration the angular orientation of the applied field is used to estimate the transition parameter; agreement is shown with the micromagnetic results. On the playback side, the reciprocity principle is applied to calculate the read out signal from a single magnetic transition in the perpendicular medium. The pulse shape is close to an error-function, going through zero when the sensor is above the transition center and decaying from the peak to an asymptotic value when the transition center is far away. Analytical closed forms for both the slope in the origin and the asymptotic value show the dependence on the recording geometry parameters. The Signal-to-Noise Ratio is calculated assuming that the noise is dominated by the medium jitter. To keep the SNR at a readable level while increasing the areal density, the average magnetic grain diameter must decrease; consequently grain size fluctuations will affect the thermal decay. We performed Transmission Electron Microscopy measurements and observed differences in the grain size distribution between various types of media. Perpendicular media has more non-uniform grains than typical longitudinal media; the difference might appear due to the higher symmetry (related to the crystallographic orientation). The SNR is affected in great measure by the amount of exchange interaction between the grains. The intergranular coupling in CoCr alloys---typical for recording media---is reduced by Cr diffusion at the grain boundary. Micromagnetic modeling with an elementary discrete cell of atomic dimensions is used to calculate the magnetization variations through the grain boundary. An effective exchange interaction parameter is determined in terms of details of the chemical composition.