Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.
2016-01-01
The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for rehabilitation of gait. While the feasibility of a closed-loop BCI system for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a virtual reality (BCI-VR) environment has yet to be demonstrated. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control the walking movements of a virtual avatar. Moreover, virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. These findings have implications for the development of BCI-VR systems for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI system. PMID:27713915
Efficient dynamic modeling of manipulators containing closed kinematic loops
NASA Astrophysics Data System (ADS)
Ferretti, Gianni; Rocco, Paolo
An approach to efficiently solve the forward dynamics problem for manipulators containing closed chains is proposed. The two main distinctive features of this approach are: the dynamics of the equivalent open loop tree structures (any closed loop can be in general modeled by imposing some additional kinematic constraints to a suitable tree structure) is computed through an efficient Newton Euler formulation; the constraint equations relative to the most commonly adopted closed chains in industrial manipulators are explicitly solved, thus, overcoming the redundancy of Lagrange's multipliers method while avoiding the inefficiency due to a numerical solution of the implicit constraint equations. The constraint equations considered for an explicit solution are those imposed by articulated gear mechanisms and planar closed chains (pantograph type structures). Articulated gear mechanisms are actually used in all industrial robots to transmit motion from actuators to links, while planar closed chains are usefully employed to increase the stiffness of the manipulators and their load capacity, as well to reduce the kinematic coupling of joint axes. The accuracy and the efficiency of the proposed approach are shown through a simulation test.
Movement Forms: A Graph-Dynamic Perspective
Saltzman, Elliot; Holt, Ken
2014-01-01
The focus of this paper is on characterizing the physical movement forms (e.g., walk, crawl, roll, etc.) that can be used to actualize abstract, functionally-specified behavioral goals (e.g., locomotion). Emphasis is placed on how such forms are distinguished from one another, in part, by the set of topological patterns of physical contact between agent and environment (i.e., the set of physical graphs associated with each form) and the transitions among these patterns displayed over the course of performance (i.e., the form’s physical graph dynamics). Crucial in this regard is the creation and dissolution of loops in these graphs, which can be related to the distinction between open and closed kinematic chains. Formal similarities are described within the theoretical framework of task-dynamics between physically-closed kinematic chains (physical loops) that are created during various movement forms and functionally-closed kinematic chains (functional loops) that are associated with task-space control of end-effectors; it is argued that both types of loop must be flexibly incorporated into the coordinative structures that govern skilled action. Final speculation is focused on the role of graphs and their dynamics, not only in processes of coordination and control for individual agents, but also in processes of inter-agent coordination and the coupling of agents with (non-sentient) environmental objects. PMID:24910507
Movement Forms: A Graph-Dynamic Perspective.
Saltzman, Elliot; Holt, Ken
2014-01-01
The focus of this paper is on characterizing the physical movement forms (e.g., walk, crawl, roll, etc.) that can be used to actualize abstract, functionally-specified behavioral goals (e.g., locomotion). Emphasis is placed on how such forms are distinguished from one another, in part, by the set of topological patterns of physical contact between agent and environment (i.e., the set of physical graphs associated with each form) and the transitions among these patterns displayed over the course of performance (i.e., the form's physical graph dynamics ). Crucial in this regard is the creation and dissolution of loops in these graphs, which can be related to the distinction between open and closed kinematic chains. Formal similarities are described within the theoretical framework of task-dynamics between physically-closed kinematic chains (physical loops) that are created during various movement forms and functionally-closed kinematic chains (functional loops) that are associated with task-space control of end-effectors; it is argued that both types of loop must be flexibly incorporated into the coordinative structures that govern skilled action. Final speculation is focused on the role of graphs and their dynamics, not only in processes of coordination and control for individual agents, but also in processes of inter-agent coordination and the coupling of agents with (non-sentient) environmental objects.
Kinematic modeling of a 7-degree of freedom spatial hybrid manipulator for medical surgery.
Singh, Amanpreet; Singla, Ekta; Soni, Sanjeev; Singla, Ashish
2018-01-01
The prime objective of this work is to deal with the kinematics of spatial hybrid manipulators. In this direction, in 1955, Denavit and Hartenberg proposed a consistent and concise method, known as D-H parameters method, to deal with kinematics of open serial chains. From literature review, it is found that D-H parameter method is widely used to model manipulators consisting of lower pairs. However, the method leads to ambiguities when applied to closed-loop, tree-like and hybrid manipulators. Furthermore, in the dearth of any direct method to model closed-loop, tree-like and hybrid manipulators, revisions of this method have been proposed from time-to-time by different researchers. One such kind of revision using the concept of dummy frames has successfully been proposed and implemented by the authors on spatial hybrid manipulators. In that work, authors have addressed the orientational inconsistency of the D-H parameter method, restricted to body-attached frames only. In the current work, the condition of body-attached frames is relaxed and spatial frame attachment is considered to derive the kinematic model of a 7-degree of freedom spatial hybrid robotic arm, along with the development of closed-loop constraints. The validation of the new kinematic model has been performed with the help of a prototype of this 7-degree of freedom arm, which is being developed at Council of Scientific & Industrial Research-Central Scientific Instruments Organisation Chandigarh to aid the surgeon during a medical surgical task. Furthermore, the developed kinematic model is used to develop the first column of the Jacobian matrix, which helps in providing the estimate of the tip velocity of the 7-degree of freedom manipulator when the first joint velocity is known.
Extension of D-H parameter method to hybrid manipulators used in robot-assisted surgery.
Singh, Amanpreet; Singla, Ashish; Soni, Sanjeev
2015-10-01
The main focus of this work is to extend the applicability of D-H parameter method to develop a kinematic model of a hybrid manipulator. A hybrid manipulator is a combination of open- and closed-loop chains and contains planar and spatial links. It has been found in the literature that D-H parameter method leads to ambiguities, when dealing with closed-loop chains. In this work, it has been observed that the D-H parameter method, when applied to a hybrid manipulator, results in an orientational inconsistency, because of which the method cannot be used to develop the kinematic model. In this article, the concept of dummy frames is proposed to resolve the orientational inconsistency and to develop the kinematic model of a hybrid manipulator. Moreover, the prototype of 7-degree-of-freedom hybrid manipulator, known as a surgeon-side manipulator to assist the surgeon during a medical surgery, is also developed to validate the kinematic model derived in this work. © IMechE 2015.
NASA Astrophysics Data System (ADS)
Phat Luu, Trieu; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.
2016-06-01
Objective. The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31 Knee: 0.23 ± 0.33 Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24 Knee: 0.55 ± 0.20 Ankle: 0.29 ± 0.22) on Day 8. Significance. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.
NASA Astrophysics Data System (ADS)
Saupe, Florian; Knoblach, Andreas
2015-02-01
Two different approaches for the determination of frequency response functions (FRFs) are used for the non-parametric closed loop identification of a flexible joint industrial manipulator with serial kinematics. The two applied experiment designs are based on low power multisine and high power chirp excitations. The main challenge is to eliminate disturbances of the FRF estimates caused by the numerous nonlinearities of the robot. For the experiment design based on chirp excitations, a simple iterative procedure is proposed which allows exploiting the good crest factor of chirp signals in a closed loop setup. An interesting synergy of the two approaches, beyond validation purposes, is pointed out.
Trajectory tracking control for underactuated stratospheric airship
NASA Astrophysics Data System (ADS)
Zheng, Zewei; Huo, Wei; Wu, Zhe
2012-10-01
Stratospheric airship is a new kind of aerospace system which has attracted worldwide developing interests for its broad application prospects. Based on the trajectory linearization control (TLC) theory, a novel trajectory tracking control method for an underactuated stratospheric airship is presented in this paper. Firstly, the TLC theory is described sketchily, and the dynamic model of the stratospheric airship is introduced with kinematics and dynamics equations. Then, the trajectory tracking control strategy is deduced in detail. The designed control system possesses a cascaded structure which consists of desired attitude calculation, position control loop and attitude control loop. Two sub-loops are designed for the position and attitude control loops, respectively, including the kinematics control loop and dynamics control loop. Stability analysis shows that the controlled closed-loop system is exponentially stable. Finally, simulation results for the stratospheric airship to track typical trajectories are illustrated to verify effectiveness of the proposed approach.
Kinematics, controls, and path planning results for a redundant manipulator
NASA Technical Reports Server (NTRS)
Gretz, Bruce; Tilley, Scott W.
1989-01-01
The inverse kinematics solution, a modal position control algorithm, and path planning results for a 7 degree of freedom manipulator are presented. The redundant arm consists of two links with shoulder and elbow joints and a spherical wrist. The inverse kinematics problem for tip position is solved and the redundant joint is identified. It is also shown that a locus of tip positions exists in which there are kinematic limitations on self-motion. A computationally simple modal position control algorithm has been developed which guarantees a nearly constant closed-loop dynamic response throughout the workspace. If all closed-loop poles are assigned to the same location, the algorithm can be implemented with very little computation. To further reduce the required computation, the modal gains are updated only at discrete time intervals. Criteria are developed for the frequency of these updates. For commanding manipulator movements, a 5th-order spline which minimizes jerk provides a smooth tip-space path. Schemes for deriving a corresponding joint-space trajectory are discussed. Modifying the trajectory to avoid joint torque saturation when a tip payload is added is also considered. Simulation results are presented.
Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L.
2017-01-01
Objective The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1 – 3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated (AM) potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8. Significance These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system. PMID:27064824
Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L
2016-06-01
The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson's r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
1993-04-01
The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less
A decoupled recursive approach for constrained flexible multibody system dynamics
NASA Technical Reports Server (NTRS)
Lai, Hao-Jan; Kim, Sung-Soo; Haug, Edward J.; Bae, Dae-Sung
1989-01-01
A variational-vector calculus approach is employed to derive a recursive formulation for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent flexible bodies are derived in a companion paper, using a state vector notation that represents translational and rotational components simultaneously. Cartesian generalized coordinates are assigned for all body and joint reference frames, to explicitly formulate deformation kinematics under small deformation kinematics and an efficient flexible dynamics recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to illustrate efficiency of the algorithm.
Loop quantum cosmology with self-dual variables
NASA Astrophysics Data System (ADS)
Wilson-Ewing, Edward
2015-12-01
Using the complex-valued self-dual connection variables, the loop quantum cosmology of a closed Friedmann space-time coupled to a massless scalar field is studied. It is shown how the reality conditions can be imposed in the quantum theory by choosing a particular inner product for the kinematical Hilbert space. While holonomies of the self-dual Ashtekar connection are not well defined in the kinematical Hilbert space, it is possible to introduce a family of generalized holonomylike operators of which some are well defined; these operators in turn are used in the definition of the Hamiltonian constraint operator where the scalar field can be used as a relational clock. The resulting quantum theory is closely related, although not identical, to standard loop quantum cosmology constructed from the Ashtekar-Barbero variables with a real Immirzi parameter. Effective Friedmann equations are derived which provide a good approximation to the full quantum dynamics for sharply peaked states whose volume remains much larger than the Planck volume, and they show that for these states quantum gravity effects resolve the big-bang and big-crunch singularities and replace them by a nonsingular bounce. Finally, the loop quantization in self-dual variables of a flat Friedmann space-time is recovered in the limit of zero spatial curvature and is identical to the standard loop quantization in terms of the real-valued Ashtekar-Barbero variables.
Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators.
Bieze, Thor Morales; Largilliere, Frederick; Kruszewski, Alexandre; Zhang, Zhongkai; Merzouki, Rochdi; Duriez, Christian
2018-06-01
This article presents a modeling methodology and experimental validation for soft manipulators to obtain forward kinematic model (FKM) and inverse kinematic model (IKM) under quasi-static conditions (in the literature, these manipulators are usually classified as continuum robots. However, their main characteristic of interest in this article is that they create motion by deformation, as opposed to the classical use of articulations). It offers a way to obtain the kinematic characteristics of this type of soft robots that is suitable for offline path planning and position control. The modeling methodology presented relies on continuum mechanics, which does not provide analytic solutions in the general case. Our approach proposes a real-time numerical integration strategy based on finite element method with a numerical optimization based on Lagrange multipliers to obtain FKM and IKM. To reduce the dimension of the problem, at each step, a projection of the model to the constraint space (gathering actuators, sensors, and end-effector) is performed to obtain the smallest number possible of mathematical equations to be solved. This methodology is applied to obtain the kinematics of two different manipulators with complex structural geometry. An experimental comparison is also performed in one of the robots, between two other geometric approaches and the approach that is showcased in this article. A closed-loop controller based on a state estimator is proposed. The controller is experimentally validated and its robustness is evaluated using Lypunov stability method.
Adaptive control of an exoskeleton robot with uncertainties on kinematics and dynamics.
Brahmi, Brahim; Saad, Maarouf; Ochoa-Luna, Cristobal; Rahman, Mohammad H
2017-07-01
In this paper, we propose a new adaptive control technique based on nonlinear sliding mode control (JSTDE) taking into account kinematics and dynamics uncertainties. This approach is applied to an exoskeleton robot with uncertain kinematics and dynamics. The adaptation design is based on Time Delay Estimation (TDE). The proposed strategy does not necessitate the well-defined dynamic and kinematic models of the system robot. The updated laws are designed using Lyapunov-function to solve the adaptation problem systematically, proving the close loop stability and ensuring the convergence asymptotically of the outputs tracking errors. Experiments results show the effectiveness and feasibility of JSTDE technique to deal with the variation of the unknown nonlinear dynamics and kinematics of the exoskeleton model.
Unbiased, scalable sampling of protein loop conformations from probabilistic priors.
Zhang, Yajia; Hauser, Kris
2013-01-01
Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion.
Unbiased, scalable sampling of protein loop conformations from probabilistic priors
2013-01-01
Background Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Results Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Conclusion Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion. PMID:24565175
Tan, John F; Masani, Kei; Vette, Albert H; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing.
Tan, John F.; Masani, Kei; Vette, Albert H.; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R.
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing. PMID:27350992
Series Pneumatic Artificial Muscles (sPAMs) and Application to a Soft Continuum Robot.
Greer, Joseph D; Morimoto, Tania K; Okamura, Allison M; Hawkes, Elliot W
2017-01-01
We describe a new series pneumatic artificial muscle (sPAM) and its application as an actuator for a soft continuum robot. The robot consists of three sPAMs arranged radially round a tubular pneumatic backbone. Analogous to tendons, the sPAMs exert a tension force on the robot's pneumatic backbone, causing bending that is approximately constant curvature. Unlike a traditional tendon driven continuum robot, the robot is entirely soft and contains no hard components, making it safer for human interaction. Models of both the sPAM and soft continuum robot kinematics are presented and experimentally verified. We found a mean position accuracy of 5.5 cm for predicting the end-effector position of a 42 cm long robot with the kinematic model. Finally, closed-loop control is demonstrated using an eye-in-hand visual servo control law which provides a simple interface for operation by a human. The soft continuum robot with closed-loop control was found to have a step-response rise time and settling time of less than two seconds.
Series Pneumatic Artificial Muscles (sPAMs) and Application to a Soft Continuum Robot
Greer, Joseph D.; Morimoto, Tania K.; Okamura, Allison M.; Hawkes, Elliot W.
2017-01-01
We describe a new series pneumatic artificial muscle (sPAM) and its application as an actuator for a soft continuum robot. The robot consists of three sPAMs arranged radially round a tubular pneumatic backbone. Analogous to tendons, the sPAMs exert a tension force on the robot’s pneumatic backbone, causing bending that is approximately constant curvature. Unlike a traditional tendon driven continuum robot, the robot is entirely soft and contains no hard components, making it safer for human interaction. Models of both the sPAM and soft continuum robot kinematics are presented and experimentally verified. We found a mean position accuracy of 5.5 cm for predicting the end-effector position of a 42 cm long robot with the kinematic model. Finally, closed-loop control is demonstrated using an eye-in-hand visual servo control law which provides a simple interface for operation by a human. The soft continuum robot with closed-loop control was found to have a step-response rise time and settling time of less than two seconds. PMID:29379672
Kinematics and dynamics of robotic systems with multiple closed loops
NASA Astrophysics Data System (ADS)
Zhang, Chang-De
The kinematics and dynamics of robotic systems with multiple closed loops, such as Stewart platforms, walking machines, and hybrid manipulators, are studied. In the study of kinematics, focus is on the closed-form solutions of the forward position analysis of different parallel systems. A closed-form solution means that the solution is expressed as a polynomial in one variable. If the order of the polynomial is less than or equal to four, the solution has analytical closed-form. First, the conditions of obtaining analytical closed-form solutions are studied. For a Stewart platform, the condition is found to be that one rotational degree of freedom of the output link is decoupled from the other five. Based on this condition, a class of Stewart platforms which has analytical closed-form solution is formulated. Conditions of analytical closed-form solution for other parallel systems are also studied. Closed-form solutions of forward kinematics for walking machines and multi-fingered grippers are then studied. For a parallel system with three three-degree-of-freedom subchains, there are 84 possible ways to select six independent joints among nine joints. These 84 ways can be classified into three categories: Category 3:3:0, Category 3:2:1, and Category 2:2:2. It is shown that the first category has no solutions; the solutions of the second category have analytical closed-form; and the solutions of the last category are higher order polynomials. The study is then extended to a nearly general Stewart platform. The solution is a 20th order polynomial and the Stewart platform has a maximum of 40 possible configurations. Also, the study is extended to a new class of hybrid manipulators which consists of two serially connected parallel mechanisms. In the study of dynamics, a computationally efficient method for inverse dynamics of manipulators based on the virtual work principle is developed. Although this method is comparable with the recursive Newton-Euler method for serial manipulators, its advantage is more noteworthy when applied to parallel systems. An approach of inverse dynamics of a walking machine is also developed, which includes inverse dynamic modeling, foot force distribution, and joint force/torque allocation.
A new RISE-based adaptive control of PKMs: design, stability analysis and experiments
NASA Astrophysics Data System (ADS)
Bennehar, M.; Chemori, A.; Bouri, M.; Jenni, L. F.; Pierrot, F.
2018-03-01
This paper deals with the development of a new adaptive control scheme for parallel kinematic manipulators (PKMs) based on Rrbust integral of the sign of the error (RISE) control theory. Original RISE control law is only based on state feedback and does not take advantage of the modelled dynamics of the manipulator. Consequently, the overall performance of the resulting closed-loop system may be poor compared to modern advanced model-based control strategies. We propose in this work to extend RISE by including the nonlinear dynamics of the PKM in the control loop to improve its overall performance. More precisely, we augment original RISE control scheme with a model-based adaptive control term to account for the inherent nonlinearities in the closed-loop system. To demonstrate the relevance of the proposed controller, real-time experiments are conducted on the Delta robot, a three-degree-of-freedom (3-DOF) PKM.
NASA Astrophysics Data System (ADS)
Hu, Qinglei
2010-02-01
Semi-globally input-to-state stable (ISS) control law is derived for flexible spacecraft attitude maneuvers in the presence of parameter uncertainties and external disturbances. The modified rodrigues parameters (MRP) are used as the kinematic variables since they are nonsingular for all possible rotations. This novel simple control is a proportional-plus-derivative (PD) type controller plus a sign function through a special Lyapunov function construction involving the sum of quadratic terms in the angular velocities, kinematic parameters, modal variables and the cross state weighting. A sufficient condition under which this nonlinear PD-type control law can render the system semi-globally input-to-state stable is provided such that the closed-loop system is robust with respect to any disturbance within a quantifiable restriction on the amplitude, as well as the set of initial conditions, if the control gains are designed appropriately. In addition to detailed derivations of the new controllers design and a rigorous sketch of all the associated stability and attitude convergence proofs, extensive simulation studies have been conducted to validate the design and the results are presented to highlight the ensuring closed-loop performance benefits when compared with the conventional control schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Pankaj; Cho, Kyung-Suk; Innes, D. E., E-mail: pankaj@kasi.re.kr
2016-09-01
This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s{sup −1} and it accelerated to ∼1490 km s{supmore » −1} after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s{sup −1}) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.« less
A minimal approach to the scattering of physical massless bosons
NASA Astrophysics Data System (ADS)
Boels, Rutger H.; Luo, Hui
2018-05-01
Tree and loop level scattering amplitudes which involve physical massless bosons are derived directly from physical constraints such as locality, symmetry and unitarity, bypassing path integral constructions. Amplitudes can be projected onto a minimal basis of kinematic factors through linear algebra, by employing four dimensional spinor helicity methods or at its most general using projection techniques. The linear algebra analysis is closely related to amplitude relations, especially the Bern-Carrasco-Johansson relations for gluon amplitudes and the Kawai-Lewellen-Tye relations between gluons and graviton amplitudes. Projection techniques are known to reduce the computation of loop amplitudes with spinning particles to scalar integrals. Unitarity, locality and integration-by-parts identities can then be used to fix complete tree and loop amplitudes efficiently. The loop amplitudes follow algorithmically from the trees. A number of proof-of-concept examples are presented. These include the planar four point two-loop amplitude in pure Yang-Mills theory as well as a range of one loop amplitudes with internal and external scalars, gluons and gravitons. Several interesting features of the results are highlighted, such as the vanishing of certain basis coefficients for gluon and graviton amplitudes. Effective field theories are naturally and efficiently included into the framework. Dimensional regularisation is employed throughout; different regularisation schemes are worked out explicitly. The presented methods appear most powerful in non-supersymmetric theories in cases with relatively few legs, but with potentially many loops. For instance, in the introduced approach iterated unitarity cuts of four point amplitudes for non-supersymmetric gauge and gravity theories can be computed by matrix multiplication, generalising the so-called rung-rule of maximally supersymmetric theories. The philosophy of the approach to kinematics also leads to a technique to control colour quantum numbers of scattering amplitudes with matter, especially efficient in the adjoint and fundamental representations.
First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying
NASA Technical Reports Server (NTRS)
Gill, E.; Naasz, Bo; Ebinuma, T.
2003-01-01
A closed-loop system for the demonstration of autonomous satellite formation flying technologies using hardware-in-the-loop has been developed. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. The autonomous closed-loop formation acquisition and keeping strategy is based on Lyapunov's direct control method as applied to the standard set of Keplerian elements. This approach not only assures global and asymptotic stability of the control but also maintains valuable physical insight into the applied control vectors. Furthermore, the approach can account for system uncertainties and effectively avoids a computationally expensive solution of the two point boundary problem, which renders the concept particularly attractive for implementation in onboard processors. A guidance law has been developed which strictly separates the relative from the absolute motion, thus avoiding the numerical integration of a target trajectory in the onboard processor. Moreover, upon using precise kinematic relative GPS solutions, a dynamical modeling or filtering is avoided which provides for an efficient implementation of the process on an onboard processor. A sample formation flying scenario has been created aiming at the autonomous transition of a Low Earth Orbit satellite formation from an initial along-track separation of 800 m to a target distance of 100 m. Assuming a low-thrust actuator which may be accommodated on a small satellite, a typical control accuracy of less than 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.
Relative position coordinated control for spacecraft formation flying with communication delays
NASA Astrophysics Data System (ADS)
Ran, Dechao; Chen, Xiaoqian; Misra, Arun K.; Xiao, Bing
2017-08-01
This study addresses a relative position coordinated control problem for spacecraft formation flying subject to directed communication topology. Two different kinds of communication delay cases, including time-varying delays and arbitrarily bounded delays are investigated. Using the backstepping control technique, two virtual velocity control inputs are firstly designed to achieve coordinated position tracking for the kinematic subsystem. Furthermore, a hyperbolic tangent function is introduced to guarantee the boundedness of the virtual controller. Then, a finite-time control algorithm is designed for the dynamic subsystem. It can guarantee that the virtual velocity can be followed by the real velocity after finite time. It is theoretically proved that the proposed control scheme can asymptotically stabilize the closed-loop system. Numerical simulations are further presented that not only highlight closed-loop performance benefiting from the proposed control scheme, but also illustrate its superiority in comparison with conventional formation control schemes.
Kinematic Modeling of Normal Voluntary Mandibular Opening and Closing Velocity-Initial Study.
Gawriołek, Krzysztof; Gawriołek, Maria; Komosa, Marek; Piotrowski, Paweł R; Azer, Shereen S
2015-06-01
Determination and quantification of voluntary mandibular velocity movement has not been a thoroughly studied parameter of masticatory movement. This study attempted to objectively define kinematics of mandibular movement based on numerical (digital) analysis of the relations and interactions of velocity diagram records in healthy female individuals. Using a computerized mandibular scanner (K7 Evaluation Software), 72 diagrams of voluntary mandibular velocity movements (36 for opening, 36 for closing) for women with clinically normal motor and functional activities of the masticatory system were recorded. Multiple measurements were analyzed focusing on the curve for maximum velocity records. For each movement, the loop of temporary velocities was determined. The diagram was then entered into AutoCad calculation software where movement analysis was performed. The real maximum velocity values on opening (Vmax ), closing (V0 ), and average velocity values (Vav ) as well as movement accelerations (a) were recorded. Additionally, functional (A1-A2) and geometric (P1-P4) analysis of loop constituent phases were performed, and the relations between the obtained areas were defined. Velocity means and correlation coefficient values for various velocity phases were calculated. The Wilcoxon test produced the following maximum and average velocity results: Vmax = 394 ± 102, Vav = 222 ± 61 for opening, and Vmax = 409 ± 94, Vav = 225 ± 55 mm/s for closing. Both mandibular movement range and velocity change showed significant variability achieving the highest velocity in P2 phase. Voluntary mandibular velocity presents significant variations between healthy individuals. Maximum velocity is obtained when incisal separation is between 12.8 and 13.5 mm. An improved understanding of the patterns of normal mandibular movements may provide an invaluable diagnostic aid to pathological changes within the masticatory system. © 2014 by the American College of Prosthodontists.
Perturbative Quantum Gravity from Gauge Theory
NASA Astrophysics Data System (ADS)
Carrasco, John Joseph
In this dissertation we present the graphical techniques recently developed in the construction of multi-loop scattering amplitudes using the method of generalized unitarity. We construct the three-loop and four-loop four-point amplitudes of N = 8 supergravity using these methods and the Kawaii, Lewellen and Tye tree-level relations which map tree-level gauge theory amplitudes to tree-level gravity theory amplitudes. We conclude by extending a tree-level duality between color and kinematics, generic to gauge theories, to a loop level conjecture, allowing the easy relation between loop-level gauge and gravity kinematics. We provide non-trivial evidence for this conjecture at three-loops in the particular case of maximal supersymmetry.
Wenger, Nikolaus; Moraud, Eduardo Martin; Raspopovic, Stanisa; Bonizzato, Marco; DiGiovanna, Jack; Musienko, Pavel; Morari, Manfred; Micera, Silvestro; Courtine, Grégoire
2014-09-24
Neuromodulation of spinal sensorimotor circuits improves motor control in animal models and humans with spinal cord injury. With common neuromodulation devices, electrical stimulation parameters are tuned manually and remain constant during movement. We developed a mechanistic framework to optimize neuromodulation in real time to achieve high-fidelity control of leg kinematics during locomotion in rats. We first uncovered relationships between neuromodulation parameters and recruitment of distinct sensorimotor circuits, resulting in predictive adjustments of leg kinematics. Second, we established a technological platform with embedded control policies that integrated robust movement feedback and feed-forward control loops in real time. These developments allowed us to conceive a neuroprosthetic system that controlled a broad range of foot trajectories during continuous locomotion in paralyzed rats. Animals with complete spinal cord injury performed more than 1000 successive steps without failure, and were able to climb staircases of various heights and lengths with precision and fluidity. Beyond therapeutic potential, these findings provide a conceptual and technical framework to personalize neuromodulation treatments for other neurological disorders. Copyright © 2014, American Association for the Advancement of Science.
2005-01-01
C. Hughes, Spacecraft Attitude Dynamics, New York, NY: Wiley, 1994. [8] H. K. Khalil, “Adaptive Output Feedback Control of Non- linear Systems...Closed-Loop Manipulator Control Using Quaternion Feedback ”, IEEE Trans. Robotics and Automation, Vol. 4, No. 4, pp. 434-440, (1988). [23] E...full-state feedback quaternion based controller de- veloped in [5] and focuses on the design of a general sub-task controller. This sub-task controller
NASA Technical Reports Server (NTRS)
Nikravesh, Parviz E.; Gim, Gwanghum; Arabyan, Ara; Rein, Udo
1989-01-01
The formulation of a method known as the joint coordinate method for automatic generation of the equations of motion for multibody systems is summarized. For systems containing open or closed kinematic loops, the equations of motion can be reduced systematically to a minimum number of second order differential equations. The application of recursive and nonrecursive algorithms to this formulation, computational considerations and the feasibility of implementing this formulation on multiprocessor computers are discussed.
Funato, Tetsuro; Aoi, Shinya; Oshima, Hiroko; Tsuchiya, Kazuo
2010-09-01
Step length, cadence and joint flexion all increase in response to increases in gradient and walking speed. However, the tuning strategy leading to these changes has not been elucidated. One characteristic of joint variation that occurs during walking is the close relationship among the joints. This property reduces the number of degrees of freedom and seems to be a key issue in discussing the tuning strategy. This correlation has been analyzed for the lower limbs, but the relation between the trunk and lower body is generally ignored. Two questions about posture during walking are discussed in this paper: (1) whether there is a low-dimensional restriction that determines walking posture, which depends not just on the lower limbs but on the whole body, including the trunk and (2) whether some simple rules appear in different walking conditions. To investigate the correlation, singular value decomposition was applied to a measured walking pattern. This showed that the whole movement can be described by a closed loop on a two-dimensional plane in joint space. Furthermore, by investigating the effect of the walking condition on the decomposed patterns, the position and the tilt of the constraint plane was found to change significantly, while the loop pattern on the constraint plane was shown to be robust. This result indicates that humans select only certain kinematic characteristics for adapting to various walking conditions.
Inertial-space disturbance rejection for robotic manipulators
NASA Technical Reports Server (NTRS)
Holt, Kevin
1992-01-01
The disturbance rejection control problem for a 6-DOF (degree of freedom) PUMA manipulator mounted on a 3-DOF platform is investigated. A control algorithm is designed to track the desired position and attitude of the end-effector in inertial space, subject to unknown disturbances in the platform axes. Conditions for the stability of the closed-loop system are derived. The performance of the controller is compared for step, sinusoidal, and random disturbances in the platform rotational axis and in the neighborhood of kinematic singularities.
Cyclic coordinate descent: A robotics algorithm for protein loop closure.
Canutescu, Adrian A; Dunbrack, Roland L
2003-05-01
In protein structure prediction, it is often the case that a protein segment must be adjusted to connect two fixed segments. This occurs during loop structure prediction in homology modeling as well as in ab initio structure prediction. Several algorithms for this purpose are based on the inverse Jacobian of the distance constraints with respect to dihedral angle degrees of freedom. These algorithms are sometimes unstable and fail to converge. We present an algorithm developed originally for inverse kinematics applications in robotics. In robotics, an end effector in the form of a robot hand must reach for an object in space by altering adjustable joint angles and arm lengths. In loop prediction, dihedral angles must be adjusted to move the C-terminal residue of a segment to superimpose on a fixed anchor residue in the protein structure. The algorithm, referred to as cyclic coordinate descent or CCD, involves adjusting one dihedral angle at a time to minimize the sum of the squared distances between three backbone atoms of the moving C-terminal anchor and the corresponding atoms in the fixed C-terminal anchor. The result is an equation in one variable for the proposed change in each dihedral. The algorithm proceeds iteratively through all of the adjustable dihedral angles from the N-terminal to the C-terminal end of the loop. CCD is suitable as a component of loop prediction methods that generate large numbers of trial structures. It succeeds in closing loops in a large test set 99.79% of the time, and fails occasionally only for short, highly extended loops. It is very fast, closing loops of length 8 in 0.037 sec on average.
Multilateral Telecoordinated Control of Multiple Robots With Uncertain Kinematics.
Zhai, Di-Hua; Xia, Yuanqing
2017-06-06
This paper addresses the telecoordinated control of multiple robots in the simultaneous presence of asymmetric time-varying delays, nonpassive external forces, and uncertain kinematics/dynamics. To achieve the control objective, a neuroadaptive controller with utilizing prescribed performance control and switching control technique is developed, where the basic idea is to employ the concept of motion synchronization in each pair of master-slave robots and among all slave robots. By using the multiple Lyapunov-Krasovskii functionals method, the state-independent input-to-output practical stability of the closed-loop system is established. Compared with the previous approaches, the new design is straightforward and easier to implement and is applicable to a wider area. Simulation results on three pairs of three degrees-of-freedom robots confirm the theoretical findings.
Does the brain use sliding variables for the control of movements?
Hanneton, S; Berthoz, A; Droulez, J; Slotine, J J
1997-12-01
Delays in the transmission of sensory and motor information prevent errors from being instantaneously available to the central nervous system (CNS) and can reduce the stability of a closed-loop control strategy. On the other hand, the use of a pure feedforward control (inverse dynamics) requires a perfect knowledge of the dynamic behavior of the body and of manipulated objects. Sensory feedback is essential both to accommodate unexpected errors and events and to compensate for uncertainties about the dynamics of the body. Experimental observations concerning the control of posture, gaze and limbs have shown that the CNS certainly uses a combination of closed-loop and open-loop control. Feedforward components of movement, such as eye saccades, occur intermittently and present a stereotyped kinematic profile. In visuo-manual tracking tasks, hand movements exhibit velocity peaks that occur intermittently. When a delay or a slow dynamics are inserted in the visuo-manual control loop, intermittent step-and-hold movements appear clearly in the hand trajectory. In this study, we investigated strategies used by human subjects involved in the control of a particular dynamic system. We found strong evidence for substantial nonlinearities in the commands produced. The presence of step-and-hold movements seemed to be the major source of nonlinearities in the control loop. Furthermore, the stereotyped ballistic-like kinematics of these rapid and corrective movements suggests that they were produced in an open-loop way by the CNS. We analyzed the generation of ballistic movements in the light of sliding control theory assuming that they occurred when a sliding variable exceeded a constant threshold. In this framework, a sliding variable is defined as a composite variable (a combination of the instantaneous tracking error and its temporal derivatives) that fulfills a specific stability criterion. Based on this hypothesis and on the assumption of a constant reaction time, the tracking error and its derivatives should be correlated at a particular time lag before movement onset. A peak of correlation was found for a physiologically plausible reaction time, corresponding to a stable composite variable. The direction and amplitude of the ongoing stereotyped movements seemed also be adjusted in order to minimize this variable. These findings suggest that, during visually guided movements, human subjects attempt to minimize such a composite variable and not the instantaneous error. This minimization seems to be obtained by the execution of stereotyped corrective movements.
Mazinan, A H; Pasand, M; Soltani, B
2015-09-01
In the aspect of further development of investigations in the area of spacecraft modeling and analysis of the control scheme, a new hybrid finite-time robust three-axis cascade attitude control approach is proposed via pulse modulation synthesis. The full quaternion based control approach proposed here is organized in association with both the inner and the outer closed loops. It is shown that the inner closed loop, which consists of the sliding mode finite-time control approach, the pulse width pulse frequency modulator, the control allocation and finally the dynamics of the spacecraft is realized to track the three-axis referenced commands of the angular velocities. The pulse width pulse frequency modulators are in fact employed in the inner closed loop to accommodate the control signals to a number of on-off thrusters, while the control allocation algorithm provides the commanded firing times for the reaction control thrusters in the overactuated spacecraft. Hereinafter, the outer closed loop, which consists of the proportional linear control approach and the kinematics of the spacecraft is correspondingly designed to deal with the attitude angles that are presented by quaternion vector. It should be noted that the main motivation of the present research is to realize a hybrid control method by using linear and nonlinear terms and to provide a reliable and robust control structure, which is able to track time varying three-axis referenced commands. Subsequently, a stability analysis is presented to verify the performance of the overall proposed cascade attitude control approach. To prove the effectiveness of the presented approach, a thorough investigation is presented compared to a number of recent corresponding benchmarks. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Impact of Swarm GPS receiver updates on POD performance
NASA Astrophysics Data System (ADS)
van den IJssel, Jose; Forte, Biagio; Montenbruck, Oliver
2016-05-01
The Swarm satellites are equipped with state-of-the-art Global Positioning System (GPS) receivers, which are used for the precise geolocation of the magnetic and electric field instruments, as well as for the determination of the Earth's gravity field, the total electron content and low-frequency thermospheric neutral densities. The onboard GPS receivers deliver high-quality data with an almost continuous data rate. However, the receivers show a slightly degraded performance when flying over the geomagnetic poles and the geomagnetic equator, due to ionospheric scintillation. Furthermore, with only eight channels available for dual-frequency tracking, the amount of collected GPS tracking data is relatively low compared with various other missions. Therefore, several modifications have been implemented to the Swarm GPS receivers. To optimise the amount of collected GPS data, the GPS antenna elevation mask has slowly been reduced from 10° to 2°. To improve the robustness against ionospheric scintillation, the bandwidths of the GPS receiver tracking loops have been widened. Because these modifications were first implemented on Swarm-C, their impact can be assessed by a comparison with the close flying Swarm-A satellite. This shows that both modifications have a positive impact on the GPS receiver performance. The reduced elevation mask increases the amount of GPS tracking data by more than 3 %, while the updated tracking loops lead to around 1.3 % more observations and a significant reduction in tracking losses due to severe equatorial scintillation. The additional observations at low elevation angles increase the average noise of the carrier phase observations, but nonetheless slightly improve the resulting reduced-dynamic and kinematic orbit accuracy as shown by independent satellite laser ranging (SLR) validation. The more robust tracking loops significantly reduce the large carrier phase observation errors at the geomagnetic poles and along the geomagnetic equator and do not degrade the observations at midlatitudes. SLR validation indicates that the updated tracking loops also improve the reduced-dynamic and kinematic orbit accuracy. It is expected that the Swarm gravity field recovery will benefit from the improved kinematic orbit quality and potentially also from the expected improvement of the kinematic baseline determination and the anticipated reduction in the systematic gravity field errors along the geomagnetic equator. Finally, other satellites that carry GPS receivers that encounter similar disturbances might also benefit from this analysis.
The Projectile Inside the Loop
ERIC Educational Resources Information Center
Varieschi, Gabriele U.
2006-01-01
The loop-the-loop demonstration can be easily adapted to study the kinematics of projectile motion, when the moving body falls inside the apparatus. Video capturing software can be used to reveal peculiar geometrical effects of this simple but educational experiment.
Software Tools for Developing and Simulating the NASA LaRC CMF Motion Base
NASA Technical Reports Server (NTRS)
Bryant, Richard B., Jr.; Carrelli, David J.
2006-01-01
The NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base has provided many design and analysis challenges. In the process of addressing these challenges, a comprehensive suite of software tools was developed. The software tools development began with a detailed MATLAB/Simulink model of the motion base which was used primarily for safety loads prediction, design of the closed loop compensator and development of the motion base safety systems1. A Simulink model of the digital control law, from which a portion of the embedded code is directly generated, was later added to this model to form a closed loop system model. Concurrently, software that runs on a PC was created to display and record motion base parameters. It includes a user interface for controlling time history displays, strip chart displays, data storage, and initializing of function generators used during motion base testing. Finally, a software tool was developed for kinematic analysis and prediction of mechanical clearances for the motion system. These tools work together in an integrated package to support normal operations of the motion base, simulate the end to end operation of the motion base system providing facilities for software-in-the-loop testing, mechanical geometry and sensor data visualizations, and function generator setup and evaluation.
Autonomous Kinematic Calibration of the Robot Manipulator with a Linear Laser-Vision Sensor
NASA Astrophysics Data System (ADS)
Kang, Hee-Jun; Jeong, Jeong-Woo; Shin, Sung-Weon; Suh, Young-Soo; Ro, Young-Schick
This paper presents a new autonomous kinematic calibration technique by using a laser-vision sensor called "Perceptron TriCam Contour". Because the sensor measures by capturing the image of a projected laser line on the surface of the object, we set up a long, straight line of a very fine string inside the robot workspace, and then allow the sensor mounted on a robot to measure the point intersection of the line of string and the projected laser line. The data collected by changing robot configuration and measuring the intersection points are constrained to on a single straght line such that the closed-loop calibration method can be applied. The obtained calibration method is simple and accurate and also suitable for on-site calibration in an industrial environment. The method is implemented using Hyundai VORG-35 for its effectiveness.
Multiunit Activity-Based Real-Time Limb-State Estimation from Dorsal Root Ganglion Recordings
Han, Sungmin; Chu, Jun-Uk; Kim, Hyungmin; Park, Jong Woong; Youn, Inchan
2017-01-01
Proprioceptive afferent activities could be useful for providing sensory feedback signals for closed-loop control during functional electrical stimulation (FES). However, most previous studies have used the single-unit activity of individual neurons to extract sensory information from proprioceptive afferents. This study proposes a new decoding method to estimate ankle and knee joint angles using multiunit activity data. Proprioceptive afferent signals were recorded from a dorsal root ganglion with a single-shank microelectrode during passive movements of the ankle and knee joints, and joint angles were measured as kinematic data. The mean absolute value (MAV) was extracted from the multiunit activity data, and a dynamically driven recurrent neural network (DDRNN) was used to estimate ankle and knee joint angles. The multiunit activity-based MAV feature was sufficiently informative to estimate limb states, and the DDRNN showed a better decoding performance than conventional linear estimators. In addition, processing time delay satisfied real-time constraints. These results demonstrated that the proposed method could be applicable for providing real-time sensory feedback signals in closed-loop FES systems. PMID:28276474
Study on stress-strain response of multi-phase TRIP steel under cyclic loading
NASA Astrophysics Data System (ADS)
Dan, W. J.; Hu, Z. G.; Zhang, W. G.; Li, S. H.; Lin, Z. Q.
2013-12-01
The stress-strain response of multi-phase TRIP590 sheet steel is studied in cyclic loading condition at room temperature based on a cyclic phase transformation model and a multi-phase mixed kinematic hardening model. The cyclic martensite transformation model is proposed based on the shear-band intersection, where the repeat number, strain amplitude and cyclic frequency are used to control the phase transformation process. The multi-phase mixed kinematic hardening model is developed based on the non-linear kinematic hardening rule of per-phase. The parameters of transformation model are identified with the relationship between the austenite volume fraction and the repeat number. The parameters in Kinematic hardening model are confirmed by the experimental hysteresis loops in different strain amplitude conditions. The responses of hysteresis loop and stress amplitude are evaluated by tension-compression data.
Speed-constrained three-axes attitude control using kinematic steering
NASA Astrophysics Data System (ADS)
Schaub, Hanspeter; Piggott, Scott
2018-06-01
Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.
Preisach modeling of piezoceramic and shape memory alloy hysteresis
NASA Astrophysics Data System (ADS)
Hughes, Declan; Wen, John T.
1997-06-01
Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit hysteresis, and the larger the input signal the larger the effect. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys (SMAs), we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.
Preisach modeling of piezoceramic and shape memory alloy hysteresis
NASA Astrophysics Data System (ADS)
Hughes, Declan C.; Wen, John T.
1996-05-01
Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit significant hysteresis, especially when driven with large input signals. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys, we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.
Closed loop computer control for an automatic transmission
Patil, Prabhakar B.
1989-01-01
In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determined from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.
Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs
Torres-Moreno, José Luis; Blanco-Claraco, José Luis; Giménez-Fernández, Antonio; Sanjurjo, Emilio; Naya, Miguel Ángel
2016-01-01
This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs). Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics. PMID:26959027
Effect of visual and tactile feedback on kinematic synergies in the grasping hand.
Patel, Vrajeshri; Burns, Martin; Vinjamuri, Ramana
2016-08-01
The human hand uses a combination of feedforward and feedback mechanisms to accomplish high degree of freedom in grasp control efficiently. In this study, we used a synergy-based control model to determine the effect of sensory feedback on kinematic synergies in the grasping hand. Ten subjects performed two types of grasps: one that included feedback (real) and one without feedback (memory-guided), at two different speeds (rapid and natural). Kinematic synergies were extracted from rapid real and rapid memory-guided grasps using principal component analysis. Synergies extracted from memory-guided grasps revealed greater preservation of natural inter-finger relationships than those found in corresponding synergies extracted from real grasps. Reconstruction of natural real and natural memory-guided grasps was used to test performance and generalizability of synergies. A temporal analysis of reconstruction patterns revealed the differing contribution of individual synergies in real grasps versus memory-guided grasps. Finally, the results showed that memory-guided synergies could not reconstruct real grasps as accurately as real synergies could reconstruct memory-guided grasps. These results demonstrate how visual and tactile feedback affects a closed-loop synergy-based motor control system.
A Gaussian Weave for Kinematical Loop Quantum Gravity
NASA Astrophysics Data System (ADS)
Corichi, A.; Reyes, J. M.; Ashtekar, A.
Remarkable efforts in the study of the semiclassical regime of kinematical loop quantum gravity are currently underway. In this note, we construct a ``quasicoherent'' weave state using Gaussian factors. In a similar fashion to some other proposals, this state is peaked in both the connection and the spin network basis. However, the state constructed here has the novel feature that, in the spin network basis, the main contribution for this state is given by the fundamental representation, independently of the value of the parameter that regulates the Gaussian width.
NASA Astrophysics Data System (ADS)
Prygarin, Alexander; Spradlin, Marcus; Vergu, Cristian; Volovich, Anastasia
2012-04-01
Recent progress on scattering amplitudes has benefited from the mathematical technology of symbols for efficiently handling the types of polylogarithm functions which frequently appear in multiloop computations. The symbol for all two-loop maximally helicity violating amplitudes in planar supersymmetric Yang-Mills theory is known, but explicit analytic formulas for the amplitudes are hard to come by except in special limits where things simplify, such as multi-Regge kinematics. By applying symbology we obtain a formula for the leading behavior of the imaginary part (the Mandelstam cut contribution) of this amplitude in multi-Regge kinematics for any number of gluons. Our result predicts a simple recursive structure which agrees with a direct Balitsky-Fadin-Kuraev-Lipatov computation carried out in a parallel publication.
Testing of Gyroless Estimation Algorithms for the Fuse Spacecraft
NASA Technical Reports Server (NTRS)
Harman, R.; Thienel, J.; Oshman, Yaakov
2004-01-01
This paper documents the testing and development of magnetometer-based gyroless attitude and rate estimation algorithms for the Far Ultraviolet Spectroscopic Explorer (FUSE). The results of two approaches are presented, one relies on a kinematic model for propagation, a method used in aircraft tracking, and the other is a pseudolinear Kalman filter that utilizes Euler's equations in the propagation of the estimated rate. Both algorithms are tested using flight data collected over a few months after the failure of two of the reaction wheels. The question of closed-loop stability is addressed. The ability of the controller to meet the science slew requirements, without the gyros, is analyzed.
System identification from closed-loop data with known output feedback dynamics
NASA Technical Reports Server (NTRS)
Phan, Minh; Juang, Jer-Nan; Horta, Lucas G.; Longman, Richard W.
1992-01-01
This paper presents a procedure to identify the open loop systems when it is operating under closed loop conditions. First, closed loop excitation data are used to compute the system open loop and closed loop Markov parameters. The Markov parameters, which are the pulse response samples, are then used to compute a state space representation of the open loop system. Two closed loop configurations are considered in this paper. The closed loop system can have either a linear output feedback controller or a dynamic output feedback controller. Numerical examples are provided to illustrate the proposed closed loop identification method.
Multi-loop positivity of the planar $$ \\mathcal{N} $$ = 4 SYM six-point amplitude
Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.; ...
2017-02-22
We study the six-point NMHV ratio function in planarmore » $$ \\mathcal{N} $$ = 4 SYM theory in the context of positive geometry. The Amplituhedron construction of the integrand for the amplitudes provides a kinematical region in which the integrand was observed to be positive. It is natural to conjecture that this property survives integration, i.e. that the final result for the ratio function is also positive in this region. Establishing such a result would imply that preserving positivity is a surprising property of the Minkowski contour of integration and it might indicate some deeper underlying structure. We find that the ratio function is positive everywhere we have tested it, including analytic results for special kinematical regions at one and two loops, as well as robust numerical evidence through five loops. There is also evidence for not just positivity, but monotonicity in a “radial” direction. We also investigate positivity of the MHV six-gluon amplitude. While the remainder function ceases to be positive at four loops, the BDS-like normalized MHV amplitude appears to be positive through five loops.« less
An optimal open/closed-loop control method with application to a pre-stressed thin duralumin plate
NASA Astrophysics Data System (ADS)
Nadimpalli, Sruthi Raju
The excessive vibrations of a pre-stressed duralumin plate, suppressed by a combination of open-loop and closed-loop controls, also known as open/closed-loop control, is studied in this thesis. The two primary steps involved in this process are: Step (I) with an assumption that the closed-loop control law is proportional, obtain the optimal open-loop control by direct minimization of the performance measure consisting of energy at terminal time and a penalty on open-loop control force via calculus of variations. If the performance measure also involves a penalty on closed-loop control effort then a Fourier based method is utilized. Step (II) the energy at terminal time is minimized numerically to obtain optimal values of feedback gains. The optimal closed-loop control gains obtained are used to describe the displacement and the velocity of open-loop, closed-loop and open/closed-loop controlled duralumin plate.
Quantum Wronskian approach to six-point gluon scattering amplitudes at strong coupling
NASA Astrophysics Data System (ADS)
Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji; Suzuki, Junji
2014-08-01
We study the six-point gluon scattering amplitudes in = 4 super Yang-Mills theory at strong coupling based on the twisted ℤ4-symmetric integrable model. The lattice regularization allows us to derive the associated thermodynamic Bethe ansatz (TBA) equations as well as the functional relations among the Q-/T-/Y-functions. The quantum Wronskian relation for the Q-/T-functions plays an important role in determining a series of the expansion coefficients of the T-/Y-functions around the UV limit, including the dependence on the twist parameter. Studying the CFT limit of the TBA equations, we derive the leading analytic expansion of the remainder function for the general kinematics around the limit where the dual Wilson loops become regular-polygonal. We also compare the rescaled remainder functions at strong coupling with those at two, three and four loops, and find that they are close to each other along the trajectories parameterized by the scale parameter of the integrable model.
Learning-based position control of a closed-kinematic chain robot end-effector
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Zhou, Zhen-Lei
1990-01-01
A trajectory control scheme whose design is based on learning theory, for a six-degree-of-freedom (DOF) robot end-effector built to study robotic assembly of NASA hardwares in space is presented. The control scheme consists of two control systems: the feedback control system and the learning control system. The feedback control system is designed using the concept of linearization about a selected operating point, and the method of pole placement so that the closed-loop linearized system is stabilized. The learning control scheme consisting of PD-type learning controllers, provides additional inputs to improve the end-effector performance after each trial. Experimental studies performed on a 2 DOF end-effector built at CUA, for three tracking cases show that actual trajectories approach desired trajectories as the number of trials increases. The tracking errors are substantially reduced after only five trials.
Zhai, Di-Hua; Xia, Yuanqing
2018-02-01
This paper addresses the adaptive control for task-space teleoperation systems with constrained predefined synchronization error, where a novel switched control framework is investigated. Based on multiple Lyapunov-Krasovskii functionals method, the stability of the resulting closed-loop system is established in the sense of state-independent input-to-output stability. Compared with previous work, the developed method can simultaneously handle the unknown kinematics/dynamics, asymmetric varying time delays, and prescribed performance control in a unified framework. It is shown that the developed controller can guarantee the prescribed transient-state and steady-state synchronization performances between the master and slave robots, which is demonstrated by the simulation study.
Zhang, Xuena; Wu, Anshi; Yao, Shanglong; Xue, Zhanggang; Yue, Yun
2015-01-01
Background The CONCERT-CL closed-loop infusion system designed by VERYARK Technology Co., Ltd. (Guangxi, China) is an innovation using TCI combined with closed-loop controlled intravenous anesthesia under the guide of BIS. In this study we performed a randomized, controlled, multicenter study to compare closed-loop control and open-loop control of propofol by using the CONCERT-CL closed-loop infusion system. Methods 180 surgical patients from three medical centers undergone TCI intravenous anesthesia with propofol and remifentanil were randomly assigned to propofol closed-loop group and propofol opened-loop groups. Primary outcome was global score (GS, GS = (MDAPE+Wobble)/% of time of bispectral index (BIS) 40-60). Secondary outcomes were doses of the anesthetics and emergence time from anesthesia, such as, time to tracheal extubation. Results There were 89 and 86 patients in the closed-loop and opened-loop groups, respectively. GS in the closed-loop groups (22.21±8.50) were lower than that in the opened-loop group (27.19±15.26) (p=0.009). The higher proportion of time of BIS between 40 and 60 was also observed in the closed-loop group (84.11±9.50%), while that was 79.92±13.17% in the opened-loop group, (p=0.016). No significant differences in propofol dose and time of tracheal extubation were observed. The frequency of propofol regulation in the closed-loop group (31.55±9.46 times/hr) was obverse higher than that in the opened-loop group (6.84±6.21 times/hr) (p=0.000). Conclusion The CONCERT-CL closed-loop infusion system can automatically regulate the TCI of propofol, maintain the BIS value in an adequate range and reduce the workload of anesthesiologists better than open-loop system. Trial Registration ChiCTR ChiCTR-OOR-14005551 PMID:25886041
A closed-loop neurobotic system for fine touch sensing
NASA Astrophysics Data System (ADS)
Bologna, L. L.; Pinoteau, J.; Passot, J.-B.; Garrido, J. A.; Vogel, J.; Ros Vidal, E.; Arleo, A.
2013-08-01
Objective. Fine touch sensing relies on peripheral-to-central neurotransmission of somesthetic percepts, as well as on active motion policies shaping tactile exploration. This paper presents a novel neuroengineering framework for robotic applications based on the multistage processing of fine tactile information in the closed action-perception loop. Approach. The integrated system modules focus on (i) neural coding principles of spatiotemporal spiking patterns at the periphery of the somatosensory pathway, (ii) probabilistic decoding mechanisms mediating cortical-like tactile recognition and (iii) decision-making and low-level motor adaptation underlying active touch sensing. We probed the resulting neural architecture through a Braille reading task. Main results. Our results on the peripheral encoding of primary contact features are consistent with experimental data on human slow-adapting type I mechanoreceptors. They also suggest second-order processing by cuneate neurons may resolve perceptual ambiguities, contributing to a fast and highly performing online discrimination of Braille inputs by a downstream probabilistic decoder. The implemented multilevel adaptive control provides robustness to motion inaccuracy, while making the number of finger accelerations covariate with Braille character complexity. The resulting modulation of fingertip kinematics is coherent with that observed in human Braille readers. Significance. This work provides a basis for the design and implementation of modular neuromimetic systems for fine touch discrimination in robotics.
NASA Technical Reports Server (NTRS)
Voellmer, G. M.; Chuss, D. T.; Jackson, M.; Krejny, M.; Moseley, S. H.; Novak, G.; Wollack, E. J.
2008-01-01
We describe the design of the linear motion stage for a Variable-delay Polarization Modulator (VPM) and of a grid flattener that has been built and integrated into the Hertz ground-based, submillimeter polarimeter. VPMs allow the modulation of a polarized source by controlling the phase difference between two linear, orthogonal polarizations. The size of the gap between a mirror and a very flat polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. A novel, kinematic, flexure-based mechanism is described that passively maintains the parallelism of the mirror and the grid to 1.5 pm over a 150 mm diameter, with a 400 pm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. A simple device that ensures the planarity of the polarizing grid is also described. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented.
A novel hybrid actuation mechanism based XY nanopositioning stage with totally decoupled kinematics
NASA Astrophysics Data System (ADS)
Zhu, Wu-Le; Zhu, Zhiwei; Guo, Ping; Ju, Bing-Feng
2018-01-01
This paper reports the design, analysis and testing of a parallel two degree-of-freedom piezo-actuated compliant stage for XY nanopositioning by introducing an innovative hybrid actuation mechanism. It mainly features the combination of two Scott-Russell and a half-bridge mechanisms for double-stage displacement amplification as well as moving direction modulation. By adopting the leaf-type double parallelogram (LTDP) structures at both input and output ends of the hybrid mechanism, the lateral stiffness and dynamic characteristics are significantly improved while the parasitic motions are greatly eliminated. The XY nanopositioning stage is constructed with two orthogonally configured hybrid mechanisms along with the LTDP mechanisms for totally decoupled kinematics at both input and output ends. An analytical model was established to describe the complete elastic deformation behavior of the stage, with further verification through the finite element simulation. Finally, experiments were implemented to comprehensively evaluate both the static and dynamic performances of the proposed stage. Closed-loop control of the piezoelectric actuators (PEA) by integrating strain gauges was also conducted to effectively eliminate the nonlinear hysteresis of the stage.
Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0
NASA Astrophysics Data System (ADS)
Borowka, Sophia; Carter, Jonathon; Heinrich, Gudrun
2013-02-01
We present the program SecDec 2.0, which contains various new features. First, it allows the numerical evaluation of multi-loop integrals with no restriction on the kinematics. Dimensionally regulated ultraviolet and infrared singularities are isolated via sector decomposition, while threshold singularities are handled by a deformation of the integration contour in the complex plane. As an application, we present numerical results for various massive two-loop four-point diagrams. SecDec 2.0 also contains new useful features for the calculation of more general parameter integrals, related for example to phase space integrals. Program summaryProgram title: SecDec 2.0 Catalogue identifier: AEIR_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIR_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 156829 No. of bytes in distributed program, including test data, etc.: 2137907 Distribution format: tar.gz Programming language: Wolfram Mathematica, Perl, Fortran/C++. Computer: From a single PC to a cluster, depending on the problem. Operating system: Unix, Linux. RAM: Depending on the complexity of the problem Classification: 4.4, 5, 11.1. Catalogue identifier of previous version: AEIR_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182(2011)1566 Does the new version supersede the previous version?: Yes Nature of problem: Extraction of ultraviolet and infrared singularities from parametric integrals appearing in higher order perturbative calculations in gauge theories. Numerical integration in the presence of integrable singularities (e.g., kinematic thresholds). Solution method: Algebraic extraction of singularities in dimensional regularization using iterated sector decomposition. This leads to a Laurent series in the dimensional regularization parameter ɛ, where the coefficients are finite integrals over the unit hypercube. Those integrals are evaluated numerically by Monte Carlo integration. The integrable singularities are handled by choosing a suitable integration contour in the complex plane, in an automated way. Reasons for new version: In the previous version the calculation of multi-scale integrals was restricted to the Euclidean region. Now multi-loop integrals with arbitrary physical kinematics can be evaluated. Another major improvement is the possibility of full parallelization. Summary of revisions: No restriction on the kinematics for multi-loop integrals. The integrand can be constructed from the topological cuts of the diagram. Possibility of full parallelization. Numerical integration of multi-loop integrals written in C++ rather than Fortran. Possibility to loop over ranges of parameters. Restrictions: Depending on the complexity of the problem, limited by memory and CPU time. The restriction that multi-scale integrals could only be evaluated at Euclidean points is superseded in version 2.0. Running time: Between a few minutes and several days, depending on the complexity of the problem. Test runs provided take only seconds.
All orders results for self-crossing Wilson loops mimicking double parton scattering
Dixon, Lance J.; Esterlis, Ilya
2016-07-21
Loop-level scattering amplitudes for massless particles have singularities in regions where tree amplitudes are perfectly smooth. For example, a 2 → 4 gluon scattering process has a singularity in which each incoming gluon splits into a pair of gluons, followed by a pair of 2 → 2 collisions between the gluon pairs. This singularity mimics double parton scattering because it occurs when the transverse momentum of a pair of outgoing gluons vanishes. The singularity is logarithmic at fixed order in perturbation theory. We exploit the duality between scattering amplitudes and polygonal Wilson loops to study six-point amplitudes in this limitmore » to high loop order in planar N = 4 super-Yang-Mills theory. The singular configuration corresponds to the limit in which a hexagonal Wilson loop develops a self-crossing. The singular terms are governed by an evolution equation, in which the hexagon mixes into a pair of boxes; the mixing back is suppressed in the planar (large N c) limit. Because the kinematic dependence of the box Wilson loops is dictated by (dual) conformal invariance, the complete kinematic dependence of the singular terms for the self-crossing hexagon on the one nonsingular variable is determined to all loop orders. The complete logarithmic dependence on the singular variable can be obtained through nine loops, up to a couple of constants, using a correspondence with the multi-Regge limit. As a byproduct, we obtain a simple formula for the leading logs to all loop orders. Furthermore, we also show that, although the MHV six-gluon amplitude is singular, remarkably, the transcendental functions entering the non-MHV amplitude are finite in the same limit, at least through four loops.« less
All orders results for self-crossing Wilson loops mimicking double parton scattering
NASA Astrophysics Data System (ADS)
Dixon, Lance J.; Esterlis, Ilya
2016-07-01
Loop-level scattering amplitudes for massless particles have singularities in regions where tree amplitudes are perfectly smooth. For example, a 2 → 4 gluon scattering process has a singularity in which each incoming gluon splits into a pair of gluons, followed by a pair of 2 → 2 collisions between the gluon pairs. This singularity mimics double parton scattering because it occurs when the transverse momentum of a pair of outgoing gluons vanishes. The singularity is logarithmic at fixed order in perturbation theory. We exploit the duality between scattering amplitudes and polygonal Wilson loops to study six-point amplitudes in this limit to high loop order in planar {N} = 4 super-Yang-Mills theory. The singular configuration corresponds to the limit in which a hexagonal Wilson loop develops a self-crossing. The singular terms are governed by an evolution equation, in which the hexagon mixes into a pair of boxes; the mixing back is suppressed in the planar (large N c) limit. Because the kinematic dependence of the box Wilson loops is dictated by (dual) conformal invariance, the complete kinematic dependence of the singular terms for the self-crossing hexagon on the one nonsingular variable is determined to all loop orders. The complete logarithmic dependence on the singular variable can be obtained through nine loops, up to a couple of constants, using a correspondence with the multi-Regge limit. As a byproduct, we obtain a simple formula for the leading logs to all loop orders. We also show that, although the MHV six-gluon amplitude is singular, remarkably, the transcendental functions entering the non-MHV amplitude are finite in the same limit, at least through four loops.
It's positive to be negative: Achilles tendon work loops during human locomotion.
Zelik, Karl E; Franz, Jason R
2017-01-01
Ultrasound imaging is increasingly used with motion and force data to quantify tendon dynamics during human movement. Frequently, tendon dynamics are estimated indirectly from muscle fascicle kinematics (by subtracting muscle from muscle-tendon unit length), but there is mounting evidence that this Indirect approach yields implausible tendon work loops. Since tendons are passive viscoelastic structures, when they undergo a loading-unloading cycle they must exhibit a negative work loop (i.e., perform net negative work). However, prior studies using this Indirect approach report large positive work loops, often estimating that tendons return 2-5 J of elastic energy for every 1 J of energy stored. More direct ultrasound estimates of tendon kinematics have emerged that quantify tendon elongations by tracking either the muscle-tendon junction or localized tendon tissue. However, it is unclear if these yield more plausible estimates of tendon dynamics. Our objective was to compute tendon work loops and hysteresis losses using these two Direct tendon kinematics estimates during human walking. We found that Direct estimates generally resulted in negative work loops, with average tendon hysteresis losses of 2-11% at 1.25 m/s and 33-49% at 0.75 m/s (N = 8), alluding to 0.51-0.98 J of tendon energy returned for every 1 J stored. We interpret this finding to suggest that Direct approaches provide more plausible estimates than the Indirect approach, and may be preferable for understanding tendon energy storage and return. However, the Direct approaches did exhibit speed-dependent trends that are not consistent with isolated, in vitro tendon hysteresis losses of about 5-10%. These trends suggest that Direct estimates also contain some level of error, albeit much smaller than Indirect estimates. Overall, this study serves to highlight the complexity and difficulty of estimating tendon dynamics non-invasively, and the care that must be taken to interpret biological function from current ultrasound-based estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
The report discusses the orientation tracking control problem for a kinematically redundant, autonomous manipulator moving in a three dimensional workspace. The orientation error is derived using the normalized quaternion error method of Ickes, the Luh, Walker, and Paul error method, and a method suggested here utilizing the Rodrigues parameters, all of which are expressed in terms of normalized quaternions. The analytical time derivatives of the orientation errors are determined. The latter, along with the translational velocity error, form a dosed loop kinematic velocity model of the manipulator using normalized quaternion and translational position feedback. An analysis of the singularities associatedmore » with expressing the models in a form suitable for solving the inverse kinematics problem is given. Two redundancy resolution algorithms originally developed using an open loop kinematic velocity model of the manipulator are extended to properly take into account the orientation tracking control problem. This report furnishes the necessary mathematical framework required prior to experimental implementation of the orientation tracking control schemes on the seven axis CESARm research manipulator or on the seven-axis Robotics Research K1207i dexterous manipulator, the latter of which is to be delivered to the Oak Ridge National Laboratory in 1993.« less
Shoulder pain and jerk during recovery phase of manual wheelchair propulsion.
Jayaraman, Chandrasekaran; Beck, Carolyn L; Sosnoff, Jacob J
2015-11-05
Repetitive loading of the upper limb due to wheelchair propulsion plays a leading role in the development of shoulder pain in manual wheelchair users (mWCUs). There has been minimal inquiry on understanding wheelchair propulsion kinematics from a human movement ergonomics perspective. This investigation employs an ergonomic metric, jerk, to characterize the recovery phase kinematics of two recommended manual wheelchair propulsion patterns: semi-circular and the double loop. Further it examines if jerk is related to shoulder pain in mWCUs. Data from 22 experienced adult mWCUs was analyzed for this study (semi-circular: n=12 (pain/without-pain:6/6); double-loop: n=10 (pain/without-pain:4/6)). Participants propelled their own wheelchair fitted with SMARTWheels on a roller dynamometer at 1.1 m/s for 3 min. Kinematic and kinetic data of the upper limbs were recorded. Three dimensional absolute jerk experienced at the shoulder, elbow and wrist joint during the recovery phase of wheelchair propulsion were computed. Two-way ANOVAs were conducted with the recovery pattern type and shoulder pain as between group factors. (1) Individuals using a semi-circular pattern experienced lower jerk at their arm joints than those using a double loop pattern (P<0.05, η(2)=0.32)wrist;(P=0.05, η(2)=0.19)elbow;(P<0.05, η(2)=0.34)shoulder and (2) individuals with shoulder pain had lower peak jerk magnitude during the recovery phase (P≤0.05, η(2)=0.36)wrist;(P≤0.05, η(2)=0.30)elbow;(P≤0.05, η(2)=0.31)shoulder. Jerk during wheelchair propulsion was able to distinguish between pattern types (semi-circular and double loop) and the presence of shoulder pain. Jerk provides novel insights into wheelchair propulsion kinematics and in the future it may be beneficial to incorporate jerk based metric into rehabilitation practice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shoulder pain and jerk during recovery phase of manual wheelchair propulsion
Jayaraman, Chandrasekaran; Beck, Carolyn L; Sosnoff, Jacob J.
2015-01-01
Repetitive loading of the upper limb due to wheelchair propulsion plays a leading role in the development of shoulder pain in manual wheelchair users (mWCUs). There has been minimal inquiry on understanding wheelchair propulsion kinematics from a human movement ergonomics perspective. This investigation employs an ergonomic metric, jerk, to characterize the recovery phase kinematics of two recommended manual wheelchair propulsion patterns: semi-circular and the double loop. Further it examines if jerk is related to shoulder pain in mWCUs. Data from 22 experienced adult mWCUs was analyzed for this study (semi-circular: n=12 (pain/without-pain:6/6); double-loop: n=10 (pain/without-pain:4/6)). Participants propelled their own wheelchair fitted with SMARTWheels on a roller dynamometer at 1.1 m/s for 3 minutes. Kinematic and kinetic data of the upper limbs were recorded. Three dimensional absolute jerk experienced at the shoulder, elbow and wrist joint during the recovery phase of wheelchair propulsion were computed. Two-way ANOVAs were conducted with the recovery pattern type and shoulder pain as between group factors. Findings (1) Individuals using a semi-circular pattern experienced lower jerk at their arm joints than those using a double loop pattern (P<0.05, η2=0.32)wrist; (P=0.05, η2=0.19)elbow; (P<0.05, η2=0.34)shoulder and (2) individuals with shoulder pain had lower peak jerk magnitude during the recovery phase (P≤0.05, η2=0.36)wrist; (P≤0.05, η2=0.30)elbow; (P≤0.05, η2=0.31)shoulder. Conclusions Jerk during wheelchair propulsion was able to distinguish between pattern types (semi-circular and double loop) and the presence of shoulder pain. Jerk provides novel insights into wheelchair propulsion kinematics and in the future it may be beneficial to incorporate jerk based metric into rehabilitation practice. PMID:26472307
Effective field theory dimensional regularization
NASA Astrophysics Data System (ADS)
Lehmann, Dirk; Prézeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.
An integrand reconstruction method for three-loop amplitudes
NASA Astrophysics Data System (ADS)
Badger, Simon; Frellesvig, Hjalte; Zhang, Yang
2012-08-01
We consider the maximal cut of a three-loop four point function with massless kinematics. By applying Gröbner bases and primary decomposition we develop a method which extracts all ten propagator master integral coefficients for an arbitrary triple-box configuration via generalized unitarity cuts. As an example we present analytic results for the three loop triple-box contribution to gluon-gluon scattering in Yang-Mills with adjoint fermions and scalars in terms of three master integrals.
Evaluating Feynman integrals by the hypergeometry
NASA Astrophysics Data System (ADS)
Feng, Tai-Fu; Chang, Chao-Hsi; Chen, Jian-Bin; Gu, Zhi-Hua; Zhang, Hai-Bin
2018-02-01
The hypergeometric function method naturally provides the analytic expressions of scalar integrals from concerned Feynman diagrams in some connected regions of independent kinematic variables, also presents the systems of homogeneous linear partial differential equations satisfied by the corresponding scalar integrals. Taking examples of the one-loop B0 and massless C0 functions, as well as the scalar integrals of two-loop vacuum and sunset diagrams, we verify our expressions coinciding with the well-known results of literatures. Based on the multiple hypergeometric functions of independent kinematic variables, the systems of homogeneous linear partial differential equations satisfied by the mentioned scalar integrals are established. Using the calculus of variations, one recognizes the system of linear partial differential equations as stationary conditions of a functional under some given restrictions, which is the cornerstone to perform the continuation of the scalar integrals to whole kinematic domains numerically with the finite element methods. In principle this method can be used to evaluate the scalar integrals of any Feynman diagrams.
A string theory which isn't about strings
NASA Astrophysics Data System (ADS)
Lee, Kanghoon; Rey, Soo-Jong; Rosabal, J. A.
2017-11-01
Quantization of closed string proceeds with a suitable choice of worldsheet vacuum. A priori, the vacuum may be chosen independently for left-moving and right-moving sectors. We construct ab initio quantized bosonic string theory with left-right asymmetric worldsheet vacuum and explore its consequences and implications. We critically examine the validity of new vacuum and carry out first-quantization using standard operator formalism. Remarkably, the string spectrum consists only of a finite number of degrees of freedom: string gravity (massless spin-two, Kalb-Ramond and dilaton fields) and two massive spin-two Fierz-Pauli fields. The massive spin-two fields have negative norm, opposite mass-squared, and provides a Lee-Wick type extension of string gravity. We compute two physical observables: tree-level scattering amplitudes and one-loop cosmological constant. Scattering amplitude of four dilatons is shown to be a rational function of kinematic invariants, and in D = 26 factorizes into contributions of massless spin-two and a pair of massive spin-two fields. The string one loop partition function is shown to perfectly agree with one loop Feynman diagram of string gravity and two massive spin-two fields. In particular, it does not exhibit modular invariance. We critically compare our construction with recent studies and contrast differences.
Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems
NASA Astrophysics Data System (ADS)
Park, Yu-Chul
2016-04-01
Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).
Mechanical-thermal noise in drive-mode of a silicon micro-gyroscope.
Yang, Bo; Wang, Shourong; Li, Hongsheng; Zhou, Bailing
2009-01-01
A new closed-loop drive scheme which decouples the phase and the gain of the closed-loop driving system was designed in a Silicon Micro-Gyroscope (SMG). We deduce the system model of closed-loop driving and use stochastic averaging to obtain an approximate "slow" system that clarifies the effect of thermal noise. The effects of mechanical-thermal noise on the driving performance of the SMG, including the noise spectral density of the driving amplitude and frequency, are derived. By calculating and comparing the noise amplitude due to thermal noise both in the opened-loop driving and in the closed-loop driving, we find that the closed-loop driving does not reduce the RMS noise amplitude. We observe that the RMS noise frequency can be reduced by increasing the quality factor and the drive amplitude in the closed-loop driving system. The experiment and simulation validate the feasibility of closed-loop driving and confirm the validity of the averaged equation and its stablility criterion. The experiment and simulation results indicate the electrical noise of closed-loop driving circuitry is bigger than the mechanical-thermal noise and as the driving mass decreases, the mechanical-thermal noise may get bigger than the electrical noise of the closed-loop driving circuitry.
Nonperturbative study of the four gluon vertex
NASA Astrophysics Data System (ADS)
Binosi, D.; Ibañez, D.; Papavassiliou, J.
2014-09-01
In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where "one-loop" diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale p is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergence does not affect the form factor proportional to the tree-level tensor, which remains finite in the entire range of momenta, and deviates moderately from its naive tree-level value. It turns out that the kinematic configuration chosen is ideal for carrying out lattice simulations, because it eliminates from the connected Green's function all one-particle reducible contributions, projecting out the genuine one-particle irreducible vertex. Motivated by this possibility, we discuss in detail how a hypothetical lattice measurement of this quantity would compare to the results presented here, and the potential interference from an additional tensorial structure, allowed by Bose symmetry, but not encountered within our scheme.
Patel, Rita; Donohue, Kevin D; Unnikrishnan, Harikrishnan; Kryscio, Richard J
2015-04-01
This article presents a quantitative method for assessing instantaneous and average lateral vocal-fold motion from high-speed digital imaging, with a focus on developmental changes in vocal-fold kinematics during childhood. Vocal-fold vibrations were analyzed for 28 children (aged 5-11 years) and 28 adults (aged 21-45 years) without voice disorders. The following kinematic features were analyzed from the vocal-fold displacement waveforms: relative velocity-based features (normalized average and peak opening and closing velocities), relative acceleration-based features (normalized peak opening and closing accelerations), speed quotient, and normalized peak displacement. Children exhibited significantly larger normalized peak displacements, normalized average and peak opening velocities, normalized average and peak closing velocities, peak opening and closing accelerations, and speed quotient compared to adult women. Values of normalized average closing velocity and speed quotient were higher in children compared to adult men. When compared to adult men, developing children typically have higher estimates of kinematic features related to normalized displacement and its derivatives. In most cases, the kinematic features of children are closer to those of adult men than adult women. Even though boys experience greater changes in glottal length and pitch as they mature, results indicate that girls experience greater changes in kinematic features compared to boys.
Jurčišinová, E; Jurčišin, M
2017-05-01
The influence of the uniaxial small-scale anisotropy on the kinematic magnetohydrodynamic turbulence is investigated by using the field theoretic renormalization group technique in the one-loop approximation of a perturbation theory. The infrared stable fixed point of the renormalization group equations, which drives the scaling properties of the model in the inertial range, is investigated as the function of the anisotropy parameters and it is shown that, at least at the one-loop level of approximation, the diffusion processes of the weak passive magnetic field in the anisotropically driven kinematic magnetohydrodynamic turbulence are completely equivalent to the corresponding diffusion processes of passively advected scalar fields in the anisotropic Navier-Stokes turbulent environments.
Dynamic parameter identification of robot arms with servo-controlled electrical motors
NASA Astrophysics Data System (ADS)
Jiang, Zhao-Hui; Senda, Hiroshi
2005-12-01
This paper addresses the issue of dynamic parameter identification of the robot manipulator with servo-controlled electrical motors. An assumption is made that all kinematical parameters, such as link lengths, are known, and only dynamic parameters containing mass, moment of inertia, and their functions need to be identified. First, we derive dynamics of the robot arm with a linear form of the unknown dynamic parameters by taking dynamic characteristics of the motor and servo unit into consideration. Then, we implement the parameter identification approach to identify the unknown parameters with respect to individual link separately. A pseudo-inverse matrix is used for formulation of the parameter identification. The optimal solution is guaranteed in a sense of least-squares of the mean errors. A Direct Drive (DD) SCARA type industrial robot arm AdeptOne is used as an application example of the parameter identification. Simulations and experiments for both open loop and close loop controls are carried out. Comparison of the results confirms the correctness and usefulness of the parameter identification and the derived dynamic model.
Energy theorem for (2+1)-dimensional gravity.
NASA Astrophysics Data System (ADS)
Menotti, P.; Seminara, D.
1995-05-01
We prove a positive energy theorem in (2+1)-dimensional gravity for open universes and any matter energy-momentum tensor satisfying the dominant energy condition. We consider on the space-like initial value surface a family of widening Wilson loops and show that the energy-momentum of the enclosed subsystem is a future directed time-like vector whose mass is an increasing function of the loop, until it reaches the value 1/4G corresponding to a deficit angle of 2π. At this point the energy-momentum of the system evolves, depending on the nature of a zero norm vector appearing in the evolution equations, either into a time-like vector of a universe which closes kinematically or into a Gott-like universe whose energy momentum vector, as first recognized by Deser, Jackiw, and 't Hooft (1984) is space-like. This treatment generalizes results obtained by Carroll, Fahri, Guth, and Olum (1994) for a system of point-like spinless particle, to the most general form of matter whose energy-momentum tensor satisfies the dominant energy condition. The treatment is also given for the anti-de Sitter (2+1)-dimensional gravity.
A dynamic motion simulator for future European docking systems
NASA Technical Reports Server (NTRS)
Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.
1990-01-01
Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.
NNLO splitting and coefficient functions with time-like kinematics
NASA Astrophysics Data System (ADS)
Mitov, A.; Moch, S.; Vogt, A.
2006-10-01
We discuss recent results on the three-loop (next-to-next-to-leading order, NNLO) time-like splitting functions of QCD and the two-loop (NNLO) coefficient functions in one-particle inclusive e+e--annihilation. These results form the basis for extracting fragmentation functions for light and heavy flavors with NNLO accuracy that will be needed at the LHC and ILC. The two-loop calculations have been performed in Mellin space based on a new method, the main features of which we also describe briefly.
Real-time control of walking using recordings from dorsal root ganglia.
Holinski, B J; Everaert, D G; Mushahwar, V K; Stein, R B
2013-10-01
The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the DRG. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modelled from recorded neural firing rates. These models were then used for closed-loop feedback. Overall, firing-rate-based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48 ± 13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development.
New BCJ representations for one-loop amplitudes in gauge theories and gravity
NASA Astrophysics Data System (ADS)
He, Song; Schlotterer, Oliver; Zhang, Yong
2018-05-01
We explain a procedure to manifest the Bern-Carrasco-Johansson duality between color and kinematics in n-point one-loop amplitudes of a variety of supersymmetric gauge theories. Explicit amplitude representations are constructed through a systematic reorganization of the integrands in the Cachazo-He-Yuan formalism. Our construction holds for any nonzero number of supersymmetries and does not depend on the number of spacetime dimensions. The cancellations from supersymmetry multiplets in the loop as well as the resulting power counting of loop momenta is manifested along the lines of the corresponding superstring computations. The setup is used to derive the one-loop version of the Kawai-Lewellen-Tye formula for the loop integrands of gravitational amplitudes.
2016-01-01
The goal of this study is to quantify the effects of vocal fold nodules on vibratory motion in children using high-speed videoendoscopy. Differences in vibratory motion were evaluated in 20 children with vocal fold nodules (5–11 years) and 20 age and gender matched typically developing children (5–11 years) during sustained phonation at typical pitch and loudness. Normalized kinematic features of vocal fold displacements from the mid-membranous vocal fold point were extracted from the steady-state high-speed video. A total of 12 kinematic features representing spatial and temporal characteristics of vibratory motion were calculated. Average values and standard deviations (cycle-to-cycle variability) of the following kinematic features were computed: normalized peak displacement, normalized average opening velocity, normalized average closing velocity, normalized peak closing velocity, speed quotient, and open quotient. Group differences between children with and without vocal fold nodules were statistically investigated. While a moderate effect size was observed for the spatial feature of speed quotient, and the temporal feature of normalized average closing velocity in children with nodules compared to vocally normal children, none of the features were statistically significant between the groups after Bonferroni correction. The kinematic analysis of the mid-membranous vocal fold displacement revealed that children with nodules primarily differ from typically developing children in closing phase kinematics of the glottal cycle, whereas the opening phase kinematics are similar. Higher speed quotients and similar opening phase velocities suggest greater relative forces are acting on vocal fold in the closing phase. These findings suggest that future large-scale studies should focus on spatial and temporal features related to the closing phase of the glottal cycle for differentiating the kinematics of children with and without vocal fold nodules. PMID:27124157
Hammad, Mohanad M; Elshenawy, Ahmed K; El Singaby, M I
2017-01-01
In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment.
Elshenawy, Ahmed K.; El Singaby, M.I.
2017-01-01
In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment. PMID:28683071
Donohue, Kevin D.; Unnikrishnan, Harikrishnan; Kryscio, Richard J.
2015-01-01
Purpose This article presents a quantitative method for assessing instantaneous and average lateral vocal-fold motion from high-speed digital imaging, with a focus on developmental changes in vocal-fold kinematics during childhood. Method Vocal-fold vibrations were analyzed for 28 children (aged 5–11 years) and 28 adults (aged 21–45 years) without voice disorders. The following kinematic features were analyzed from the vocal-fold displacement waveforms: relative velocity-based features (normalized average and peak opening and closing velocities), relative acceleration-based features (normalized peak opening and closing accelerations), speed quotient, and normalized peak displacement. Results Children exhibited significantly larger normalized peak displacements, normalized average and peak opening velocities, normalized average and peak closing velocities, peak opening and closing accelerations, and speed quotient compared to adult women. Values of normalized average closing velocity and speed quotient were higher in children compared to adult men. Conclusions When compared to adult men, developing children typically have higher estimates of kinematic features related to normalized displacement and its derivatives. In most cases, the kinematic features of children are closer to those of adult men than adult women. Even though boys experience greater changes in glottal length and pitch as they mature, results indicate that girls experience greater changes in kinematic features compared to boys. PMID:25652615
Kinematic sensitivity of robot manipulators
NASA Technical Reports Server (NTRS)
Vuskovic, Marko I.
1989-01-01
Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its geometrical parameters. The four-parameter kinematic model is considered, as well as the five-parameter model in case of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames. Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.
1989-01-01
This report presents results from the research grant entitled Active Control of Robot Manipulators, funded by the Goddard Space Flight Center, under Grant NAG5-780, for the period July 1, 1988 to January 1, 1989. An analysis is presented of a 6 degree-of-freedom robot end-effector built to study telerobotic assembly of NASA hardware in space. Since the end-effector is required to perform high precision motion in a limited workspace, closed-kinematic mechanisms are chosen for its design. A closed-form solution is obtained for the inverse kinematic problem and an iterative procedure employing Newton-Raphson method is proposed to solve the forward kinematic problem. A study of the end-effector workspace results in a general procedure for the workspace determination based on link constraints. Computer simulation results are presented.
Human-centric predictive model of task difficulty for human-in-the-loop control tasks
Majewicz Fey, Ann
2018-01-01
Quantitatively measuring the difficulty of a manipulation task in human-in-the-loop control systems is ill-defined. Currently, systems are typically evaluated through task-specific performance measures and post-experiment user surveys; however, these methods do not capture the real-time experience of human users. In this study, we propose to analyze and predict the difficulty of a bivariate pointing task, with a haptic device interface, using human-centric measurement data in terms of cognition, physical effort, and motion kinematics. Noninvasive sensors were used to record the multimodal response of human user for 14 subjects performing the task. A data-driven approach for predicting task difficulty was implemented based on several task-independent metrics. We compare four possible models for predicting task difficulty to evaluated the roles of the various types of metrics, including: (I) a movement time model, (II) a fusion model using both physiological and kinematic metrics, (III) a model only with kinematic metrics, and (IV) a model only with physiological metrics. The results show significant correlation between task difficulty and the user sensorimotor response. The fusion model, integrating user physiology and motion kinematics, provided the best estimate of task difficulty (R2 = 0.927), followed by a model using only kinematic metrics (R2 = 0.921). Both models were better predictors of task difficulty than the movement time model (R2 = 0.847), derived from Fitt’s law, a well studied difficulty model for human psychomotor control. PMID:29621301
Golebiowski, Jérôme; Antonczak, Serge; Fernandez-Carmona, Juan; Condom, Roger; Cabrol-Bass, Daniel
2004-12-01
Nanosecond molecular dynamics using the Ewald summation method have been performed to elucidate the structural and energetic role of the closing base pair in loop-loop RNA duplexes neutralized by Mg2+ counterions in aqueous phases. Mismatches GA, CU and Watson-Crick GC base pairs have been considered for closing the loop of an RNA in complementary interaction with HIV-1 TAR. The simulations reveal that the mismatch GA base, mediated by a water molecule, leads to a complex that presents the best compromise between flexibility and energetic contributions. The mismatch CU base pair, in spite of the presence of an inserted water molecule, is too short to achieve a tight interaction at the closing-loop junction and seems to force TAR to reorganize upon binding. An energetic analysis has allowed us to quantify the strength of the interactions of the closing and the loop-loop pairs throughout the simulations. Although the water-mediated GA closing base pair presents an interaction energy similar to that found on fully geometry-optimized structure, the water-mediated CU closing base pair energy interaction reaches less than half the optimal value.
NASA Astrophysics Data System (ADS)
Bennett, C.; Dunne, J. F.; Trimby, S.; Richardson, D.
2017-02-01
A recurrent non-linear autoregressive with exogenous input (NARX) neural network is proposed, and a suitable fully-recurrent training methodology is adapted and tuned, for reconstructing cylinder pressure in multi-cylinder IC engines using measured crank kinematics. This type of indirect sensing is important for cost effective closed-loop combustion control and for On-Board Diagnostics. The challenge addressed is to accurately predict cylinder pressure traces within the cycle under generalisation conditions: i.e. using data not previously seen by the network during training. This involves direct construction and calibration of a suitable inverse crank dynamic model, which owing to singular behaviour at top-dead-centre (TDC), has proved difficult via physical model construction, calibration, and inversion. The NARX architecture is specialised and adapted to cylinder pressure reconstruction, using a fully-recurrent training methodology which is needed because the alternatives are too slow and unreliable for practical network training on production engines. The fully-recurrent Robust Adaptive Gradient Descent (RAGD) algorithm, is tuned initially using synthesised crank kinematics, and then tested on real engine data to assess the reconstruction capability. Real data is obtained from a 1.125 l, 3-cylinder, in-line, direct injection spark ignition (DISI) engine involving synchronised measurements of crank kinematics and cylinder pressure across a range of steady-state speed and load conditions. The paper shows that a RAGD-trained NARX network using both crank velocity and crank acceleration as input information, provides fast and robust training. By using the optimum epoch identified during RAGD training, acceptably accurate cylinder pressures, and especially accurate location-of-peak-pressure, can be reconstructed robustly under generalisation conditions, making it the most practical NARX configuration and recurrent training methodology for use on production engines.
Human motion planning based on recursive dynamics and optimal control techniques
NASA Technical Reports Server (NTRS)
Lo, Janzen; Huang, Gang; Metaxas, Dimitris
2002-01-01
This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A quasi-Newton nonlinear programming technique (super-linear convergence) is implemented to solve minimum torque-based human motion-planning problems. The explicit analytical gradients needed in the dynamics are derived using a matrix exponential formulation and Lie algebra. Cubic spline functions are used to make the search space for an optimal solution finite. Based on our formulations, our method is well conditioned and robust, in addition to being computationally efficient. To better illustrate the efficiency of our method, we present results of natural looking and physically correct human motions for a variety of human motion tasks involving open and closed loop kinematic chains.
Fundamental Structure of Loop Quantum Gravity
NASA Astrophysics Data System (ADS)
Han, Muxin; Ma, Yongge; Huang, Weiming
In the recent twenty years, loop quantum gravity, a background independent approach to unify general relativity and quantum mechanics, has been widely investigated. The aim of loop quantum gravity is to construct a mathematically rigorous, background independent, non-perturbative quantum theory for a Lorentzian gravitational field on a four-dimensional manifold. In the approach, the principles of quantum mechanics are combined with those of general relativity naturally. Such a combination provides us a picture of, so-called, quantum Riemannian geometry, which is discrete on the fundamental scale. Imposing the quantum constraints in analogy from the classical ones, the quantum dynamics of gravity is being studied as one of the most important issues in loop quantum gravity. On the other hand, the semi-classical analysis is being carried out to test the classical limit of the quantum theory. In this review, the fundamental structure of loop quantum gravity is presented pedagogically. Our main aim is to help non-experts to understand the motivations, basic structures, as well as general results. It may also be beneficial to practitioners to gain insights from different perspectives on the theory. We will focus on the theoretical framework itself, rather than its applications, and do our best to write it in modern and precise langauge while keeping the presentation accessible for beginners. After reviewing the classical connection dynamical formalism of general relativity, as a foundation, the construction of the kinematical Ashtekar-Isham-Lewandowski representation is introduced in the content of quantum kinematics. The algebraic structure of quantum kinematics is also discussed. In the content of quantum dynamics, we mainly introduce the construction of a Hamiltonian constraint operator and the master constraint project. At last, some applications and recent advances are outlined. It should be noted that this strategy of quantizing gravity can also be extended to obtain other background-independent quantum gauge theories. There is no divergence within this background-independent and diffeomorphism-invariant quantization program of matter coupled to gravity.
Elastic scattering of virtual photons via a quark loop in the double-logarithmic approximation
NASA Astrophysics Data System (ADS)
Ermolaev, B. I.; Ivanov, D. Yu.; Troyan, S. I.
2018-04-01
We calculate the amplitude of elastic photon-photon scattering via a single quark loop in the double-logarithmic approximation, presuming all external photons to be off-shell and unpolarized. At the same time we account for the running coupling effects. We consider this process in the forward kinematics at arbitrary relations between t and the external photon virtualities. We obtain explicit expressions for the photon-photon scattering amplitudes in all double-logarithmic kinematic regions. Then we calculate the small-x asymptotics of the obtained amplitudes and compare them with the parent amplitudes, thereby fixing the applicability regions of the asymptotics, i.e., fixing the applicability region for the nonvacuum Reggeons. We find that these Reggeons should be used at x <10-8 only.
A neurorobotic platform for locomotor prosthetic development in rats and mice
NASA Astrophysics Data System (ADS)
von Zitzewitz, Joachim; Asboth, Leonie; Fumeaux, Nicolas; Hasse, Alexander; Baud, Laetitia; Vallery, Heike; Courtine, Grégoire
2016-04-01
Objectives. We aimed to develop a robotic interface capable of providing finely-tuned, multidirectional trunk assistance adjusted in real-time during unconstrained locomotion in rats and mice. Approach. We interfaced a large-scale robotic structure actuated in four degrees of freedom to exchangeable attachment modules exhibiting selective compliance along distinct directions. This combination allowed high-precision force and torque control in multiple directions over a large workspace. We next designed a neurorobotic platform wherein real-time kinematics and physiological signals directly adjust robotic actuation and prosthetic actions. We tested the performance of this platform in both rats and mice with spinal cord injury. Main Results. Kinematic analyses showed that the robotic interface did not impede locomotor movements of lightweight mice that walked freely along paths with changing directions and height profiles. Personalized trunk assistance instantly enabled coordinated locomotion in mice and rats with severe hindlimb motor deficits. Closed-loop control of robotic actuation based on ongoing movement features enabled real-time control of electromyographic activity in anti-gravity muscles during locomotion. Significance. This neurorobotic platform will support the study of the mechanisms underlying the therapeutic effects of locomotor prosthetics and rehabilitation using high-resolution genetic tools in rodent models.
A neurorobotic platform for locomotor prosthetic development in rats and mice.
von Zitzewitz, Joachim; Asboth, Leonie; Fumeaux, Nicolas; Hasse, Alexander; Baud, Laetitia; Vallery, Heike; Courtine, Grégoire
2016-04-01
We aimed to develop a robotic interface capable of providing finely-tuned, multidirectional trunk assistance adjusted in real-time during unconstrained locomotion in rats and mice. We interfaced a large-scale robotic structure actuated in four degrees of freedom to exchangeable attachment modules exhibiting selective compliance along distinct directions. This combination allowed high-precision force and torque control in multiple directions over a large workspace. We next designed a neurorobotic platform wherein real-time kinematics and physiological signals directly adjust robotic actuation and prosthetic actions. We tested the performance of this platform in both rats and mice with spinal cord injury. Kinematic analyses showed that the robotic interface did not impede locomotor movements of lightweight mice that walked freely along paths with changing directions and height profiles. Personalized trunk assistance instantly enabled coordinated locomotion in mice and rats with severe hindlimb motor deficits. Closed-loop control of robotic actuation based on ongoing movement features enabled real-time control of electromyographic activity in anti-gravity muscles during locomotion. This neurorobotic platform will support the study of the mechanisms underlying the therapeutic effects of locomotor prosthetics and rehabilitation using high-resolution genetic tools in rodent models.
Static Analysis of Large-Scale Multibody System Using Joint Coordinates and Spatial Algebra Operator
Omar, Mohamed A.
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732
Omar, Mohamed A
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.
NASA Technical Reports Server (NTRS)
Seshan, P. K.; Ferrall, Joseph F.; Rohatgi, Naresh K.
1991-01-01
Several alternative configurations of life-support systems (LSSs) for a Mars missions are compared analytically on a quantitative basis in terms of weight, volume, and power. A baseline technology set is utilized for the illustrations of systems including totally open loop, carbon dioxide removal only, partially closed loop, and totally closed loop. The analytical model takes advantage of a modular, top-down hierarchical breakdown of LSS subsystems into functional elements that represent individual processing technologies. The open-loop systems are not competitive in terms of weight for both long-duration orbiters and short-duration lander vehicles, and power demands are lowest with the open loop and highest with the closed loop. The closed-loop system can reduce vehicle weight by over 70,000 lbs and thereby overcome the power penalty of 1600 W; the closed-loop variety is championed as the preferred system for a Mars expedition.
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.
1989-01-01
This paper deals with a class of robot manipulators built based on the kinematic chain mechanism (CKCM). This class of CKCM manipulators consists of a fixed and a moving platform coupled together via a number of in-parallel actuators. A closed-form solution is derived for the inverse kinematic problem of a six-degre-of-freedom CKCM manipulator designed to study robotic applications in space. Iterative Newton-Raphson method is employed to solve the forward kinematic problem. Dynamics of the above manipulator is derived using the Lagrangian approach. Computer simulation of the dynamical equations shows that the actuating forces are strongly dependent on the mass and centroid of the robot links.
Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development
2016-09-01
ARL-TN-0779 ● SEP 2016 US Army Research Laboratory Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and...Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development by Neal Tesny Sensors and Electron Devices Directorate...TITLE AND SUBTITLE Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development 5a. CONTRACT NUMBER 5b
A systematic and efficient method to compute multi-loop master integrals
NASA Astrophysics Data System (ADS)
Liu, Xiao; Ma, Yan-Qing; Wang, Chen-Yu
2018-04-01
We propose a novel method to compute multi-loop master integrals by constructing and numerically solving a system of ordinary differential equations, with almost trivial boundary conditions. Thus it can be systematically applied to problems with arbitrary kinematic configurations. Numerical tests show that our method can not only achieve results with high precision, but also be much faster than the only existing systematic method sector decomposition. As a by product, we find a new strategy to compute scalar one-loop integrals without reducing them to master integrals.
Kamiya, Atsunori; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru
2011-01-01
Abstract Although the dynamic characteristics of the baroreflex system have been described by baroreflex transfer functions obtained from open-loop analysis, the predictability of time-series output dynamics from input signals, which should confirm the accuracy of system identification, remains to be elucidated. Moreover, despite theoretical concerns over closed-loop system identification, the accuracy and the predictability of the closed-loop spontaneous baroreflex transfer function have not been evaluated compared with the open-loop transfer function. Using urethane and α-chloralose anaesthetized, vagotomized and aortic-denervated rabbits (n = 10), we identified open-loop baroreflex transfer functions by recording renal sympathetic nerve activity (SNA) while varying the vascularly isolated intracarotid sinus pressure (CSP) according to a binary random (white-noise) sequence (operating pressure ± 20 mmHg), and using a simplified equation to calculate closed-loop-spontaneous baroreflex transfer function while matching CSP with systemic arterial pressure (AP). Our results showed that the open-loop baroreflex transfer functions for the neural and peripheral arcs predicted the time-series SNA and AP outputs from measured CSP and SNA inputs, with r2 of 0.8 ± 0.1 and 0.8 ± 0.1, respectively. In contrast, the closed-loop-spontaneous baroreflex transfer function for the neural arc was markedly different from the open-loop transfer function (enhanced gain increase and a phase lead), and did not predict the time-series SNA dynamics (r2; 0.1 ± 0.1). However, the closed-loop-spontaneous baroreflex transfer function of the peripheral arc partially matched the open-loop transfer function in gain and phase functions, and had limited but reasonable predictability of the time-series AP dynamics (r2, 0.7 ± 0.1). A numerical simulation suggested that a noise predominantly in the neural arc under resting conditions might be a possible mechanism responsible for our findings. Furthermore, the predictabilities of the neural arc transfer functions obtained in open-loop and closed-loop conditions were validated by closed-loop pharmacological (phenylephrine and nitroprusside infusions) pressure interventions. Time-series SNA responses to drug-induced AP changes predicted by the open-loop transfer function matched closely the measured responses (r2, 0.9 ± 0.1), whereas SNA responses predicted by closed-loop-spontaneous transfer function deviated greatly and were the inverse of measured responses (r, −0.8 ± 0.2). These results indicate that although the spontaneous baroreflex transfer function obtained by closed-loop analysis has been believed to represent the neural arc function, it is inappropriate for system identification of the neural arc but is essentially appropriate for the peripheral arc under resting conditions, when compared with open-loop analysis. PMID:21486839
Conditions for Stabilizability of Linear Switched Systems
NASA Astrophysics Data System (ADS)
Minh, Vu Trieu
2011-06-01
This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence.
New experimental approaches to the biology of flight control systems.
Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R
2008-01-01
Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them.
Grimm, Florian; Naros, Georgios; Gharabaghi, Alireza
2016-01-01
Stroke patients with severe motor deficits of the upper extremity may practice rehabilitation exercises with the assistance of a multi-joint exoskeleton. Although this technology enables intensive task-oriented training, it may also lead to slacking when the assistance is too supportive. Preserving the engagement of the patients while providing “assistance-as-needed” during the exercises, therefore remains an ongoing challenge. We applied a commercially available seven degree-of-freedom arm exoskeleton to provide passive gravity compensation during task-oriented training in a virtual environment. During this 4-week pilot study, five severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living. The subjects received virtual reality feedback from their three-dimensional movements. The level of difficulty for the exercise was adjusted by a performance-dependent real-time adaptation algorithm. The goal of this algorithm was the automated improvement of the range of motion. In the course of 20 training and feedback sessions, this unsupervised adaptive training concept led to a progressive increase of the virtual training space (p < 0.001) in accordance with the subjects' abilities. This learning curve was paralleled by a concurrent improvement of real world kinematic parameters, i.e., range of motion (p = 0.008), accuracy of movement (p = 0.01), and movement velocity (p < 0.001). Notably, these kinematic gains were paralleled by motor improvements such as increased elbow movement (p = 0.001), grip force (p < 0.001), and upper extremity Fugl-Meyer-Assessment score from 14.3 ± 5 to 16.9 ± 6.1 (p = 0.026). Combining gravity-compensating assistance with adaptive closed-loop feedback in virtual reality provides customized rehabilitation environments for severely affected stroke patients. This approach may facilitate motor learning by progressively challenging the subject in accordance with the individual capacity for functional restoration. It might be necessary to apply concurrent restorative interventions to translate these improvements into relevant functional gains of severely motor impaired patients in activities of daily living. PMID:27895550
Grimm, Florian; Naros, Georgios; Gharabaghi, Alireza
2016-01-01
Stroke patients with severe motor deficits of the upper extremity may practice rehabilitation exercises with the assistance of a multi-joint exoskeleton. Although this technology enables intensive task-oriented training, it may also lead to slacking when the assistance is too supportive. Preserving the engagement of the patients while providing "assistance-as-needed" during the exercises, therefore remains an ongoing challenge. We applied a commercially available seven degree-of-freedom arm exoskeleton to provide passive gravity compensation during task-oriented training in a virtual environment. During this 4-week pilot study, five severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living. The subjects received virtual reality feedback from their three-dimensional movements. The level of difficulty for the exercise was adjusted by a performance-dependent real-time adaptation algorithm. The goal of this algorithm was the automated improvement of the range of motion. In the course of 20 training and feedback sessions, this unsupervised adaptive training concept led to a progressive increase of the virtual training space ( p < 0.001) in accordance with the subjects' abilities. This learning curve was paralleled by a concurrent improvement of real world kinematic parameters, i.e., range of motion ( p = 0.008), accuracy of movement ( p = 0.01), and movement velocity ( p < 0.001). Notably, these kinematic gains were paralleled by motor improvements such as increased elbow movement ( p = 0.001), grip force ( p < 0.001), and upper extremity Fugl-Meyer-Assessment score from 14.3 ± 5 to 16.9 ± 6.1 ( p = 0.026). Combining gravity-compensating assistance with adaptive closed-loop feedback in virtual reality provides customized rehabilitation environments for severely affected stroke patients. This approach may facilitate motor learning by progressively challenging the subject in accordance with the individual capacity for functional restoration. It might be necessary to apply concurrent restorative interventions to translate these improvements into relevant functional gains of severely motor impaired patients in activities of daily living.
Rinehart, Joseph; Liu, Ngai; Alexander, Brenton; Cannesson, Maxime
2012-01-01
Closed-loop (automated) controllers are encountered in all aspects of modern life in applications ranging from air-conditioning to spaceflight. Although these systems are virtually ubiquitous, they are infrequently used in anesthesiology because of the complexity of physiologic systems and the difficulty in obtaining reliable and valid feedback data from the patient. Despite these challenges, closed-loop systems are being increasingly studied and improved for medical use. Two recent developments have made fluid administration a candidate for closed-loop control. First, the further description and development of dynamic predictors of fluid responsiveness provides a strong parameter for use as a control variable to guide fluid administration. Second, rapid advances in noninvasive monitoring of cardiac output and other hemodynamic variables make goal-directed therapy applicable for a wide range of patients in a variety of clinical care settings. In this article, we review the history of closed-loop controllers in clinical care, discuss the current understanding and limitations of the dynamic predictors of fluid responsiveness, and examine how these variables might be incorporated into a closed-loop fluid administration system.
Chacko, Ajay; Tikku, Tripti; Khanna, Rohit; Maurya, Rana Pratap; Srivastava, Kamna
2018-05-28
Retraction in lingual orthodontics has biomechanical differences when compared to labial orthodontics, which is not yet established. Thus, we have intended to compare the biomechanical characteristics of closed helical loop and T-loop on 1 mm activation with 30° of compensatory curvatures during retraction in lingual orthodontics. STb lingual brackets were indirectly bonded to maxillary typhodont model that was scanned to obtain FEM model. Closed helical loop (2 × 7 mm) and T-loop (6 × 2 × 7 mm) of 0.016″ × 0.016″ TMA wire were modeled without preactivation bends. Preactivation bends at 30° were given in the software. Boundary conditions were set. The force (F) and moment (M) of both the loops were determined on 1 mm activation, using ANSYS software. M/F ratio was also calculated for both the loops. T-loop exerted less force, thus increased M/F ratio as compared to closed helical loop on 1 mm activation. When torque has to be preserved in the anterior segment during retraction in lingual orthodontics, T-loop can be preferred over closed helical loop.
Multi-Regge kinematics and the moduli space of Riemann spheres with marked points
Del Duca, Vittorio; Druc, Stefan; Drummond, James; ...
2016-08-25
We show that scattering amplitudes in planar N = 4 Super Yang-Mills in multi-Regge kinematics can naturally be expressed in terms of single-valued iterated integrals on the moduli space of Riemann spheres with marked points. As a consequence, scattering amplitudes in this limit can be expressed as convolutions that can easily be computed using Stokes’ theorem. We apply this framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove that at L loops all MHV amplitudes are determined by amplitudes with up to L + 4 external legs. We also investigate non-MHV amplitudes, and we show that they canmore » be obtained by convoluting the MHV results with a certain helicity flip kernel. We classify all leading singularities that appear at LLA in the Regge limit for arbitrary helicity configurations and any number of external legs. In conclusion, we use our new framework to obtain explicit analytic results at LLA for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to eight external legs and four loops.« less
Efficient numerical evaluation of Feynman integrals
NASA Astrophysics Data System (ADS)
Li, Zhao; Wang, Jian; Yan, Qi-Shu; Zhao, Xiaoran
2016-03-01
Feynman loop integrals are a key ingredient for the calculation of higher order radiation effects, and are responsible for reliable and accurate theoretical prediction. We improve the efficiency of numerical integration in sector decomposition by implementing a quasi-Monte Carlo method associated with the CUDA/GPU technique. For demonstration we present the results of several Feynman integrals up to two loops in both Euclidean and physical kinematic regions in comparison with those obtained from FIESTA3. It is shown that both planar and non-planar two-loop master integrals in the physical kinematic region can be evaluated in less than half a minute with accuracy, which makes the direct numerical approach viable for precise investigation of higher order effects in multi-loop processes, e.g. the next-to-leading order QCD effect in Higgs pair production via gluon fusion with a finite top quark mass. Supported by the Natural Science Foundation of China (11305179 11475180), Youth Innovation Promotion Association, CAS, IHEP Innovation (Y4545170Y2), State Key Lab for Electronics and Particle Detectors, Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y4KF061CJ1), Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA-EXC 1098)
Ground Source Heat Pumps vs. Conventional HVAC: A Comparison of Economic and Environmental Costs
2009-03-26
of systems are surface water heat pumps (SWHPs), ground water heat pumps (GWHPs), and ground coupled heat pumps ( GCHPs ) (Kavanaugh & Rafferty, 1997...Kavanaugh & Rafferty, 1997). Ground Coupled Heat Pumps (Closed-Loop Ground Source Heat Pumps) GCHPs , otherwise known as closed-loop GSHPs, are the...Significant confusion has arisen through the use of GCHP and closed-loop GSHP terminology. Closed-loop GSHP is the preferred nomenclature for this
Higher-Loop Amplitude Monodromy Relations in String and Gauge Theory.
Tourkine, Piotr; Vanhove, Pierre
2016-11-18
The monodromy relations in string theory provide a powerful and elegant formalism to understand some of the deepest properties of tree-level field theory amplitudes, like the color-kinematics duality. This duality has been instrumental in tremendous progress on the computations of loop amplitudes in quantum field theory, but a higher-loop generalization of the monodromy construction was lacking. In this Letter, we extend the monodromy relations to higher loops in open string theory. Our construction, based on a contour deformation argument of the open string diagram integrands, leads to new identities that relate planar and nonplanar topologies in string theory. We write one and two-loop monodromy formulas explicitly at any multiplicity. In the field theory limit, at one-loop we obtain identities that reproduce known results. At two loops, we check our formulas by unitarity in the case of the four-point N=4 super-Yang-Mills amplitude.
Closed-loop fiber optic gyroscope with homodyne detection
NASA Astrophysics Data System (ADS)
Zhu, Yong; Qin, BingKun; Chen, Shufen
1996-09-01
Interferometric fiber optic gyroscope (IFOG) has been analyzed with autocontrol theory in this paper. An open-loop IFOG system is not able to restrain the bias drift, but a closed-loop IFOG system can do it very well using negative feedback in order to suppress zero drift. The result of our theoretic analysis and computer simulation indicate that the bias drift of a closed-loop system is smaller than an open- loop one.
Low Speed and High Speed Correlation of SMART Active Flap Rotor Loads
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi B. R.
2010-01-01
Measured, open loop and closed loop data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. One open loop high-speed case and four closed loop cases are considered. The closed loop cases include three high-speed cases and one low-speed case. Two of these high-speed cases include a 2 deg flap deflection at 5P case and a test maximum-airspeed case. This study follows a recent, open loop correlation effort that used a simple correction factor for the airfoil pitching moment Mach number. Compared to the earlier effort, the current open loop study considers more fundamental corrections based on advancing blade aerodynamic conditions. The airfoil tables themselves have been studied. Selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the closed loop condition, the effect of the flap actuator is modeled by increased flap hinge stiffness. Overall, the open loop correlation is reasonable, thus confirming the basic correctness of the current semi-empirical modifications; the closed loop correlation is also reasonable considering that the current flap model is a first generation model. Detailed correlation results are given in the paper.
Eggert, Corinne; Moselle, Kenneth; Protti, Denis; Sanders, Dale
2017-01-01
Closed Loop Analytics© is receiving growing interest in healthcare as a term referring to information technology, local data and clinical analytics working together to generate evidence for improvement. The Closed Loop Analytics model consists of three loops corresponding to the decision-making levels of an organization and the associated data within each loop - Patients, Protocols, and Populations. The authors propose that each of these levels should utilize the same ecosystem of electronic health record (EHR) and enterprise data warehouse (EDW) enabled data, in a closed-loop fashion, with that data being repackaged and delivered to suit the analytic and decision support needs of each level, in support of better outcomes.
Millimeter scale robots for the nanofactory
NASA Astrophysics Data System (ADS)
Murthy, Rakesh
The top down approach is a commonly employed miniaturization pathway into micro and nanomanufacturing. Its popularity is due to the fact that it adapts traditionally engineered macro scale positioning, manipulation and processing technology with micro and nano scale precision and part sizes. However, state of the art top down systems such as the Atomic Force Microscope (AFM) span four to five orders of magnitude larger than the parts being handled. This dissertation addresses the need for creating millimeter size robotic positioning technology that closes the size gap between equipment and part sizes. Such microrobot manufacturing methodology comprising of micro component-level design, fabrication and high yield assembly, system-level packaging, modeling, precision evaluation and control is presented and exemplified using two classes of microrobots. Both microrobots incorporate Micro Electro Mechanical Systems (MEMS) to combine high precision and low foot-print. The first microrobot type, the "ARRIpede" is a multi legged autonomous crawler, and is designed to operate as a mobile unit enabling parts transfer in a nanoassembly environment. An embodiment of this microrobot is demonstrated for planar motions with three degrees of freedom (XYtheta). The microrobot consists of a MEMS die "belly" spanning 10mm x 10mm x 1mm with in-plane electrothermal actuators and vertically assembled legs, and an electronic "backpack" spanning 15mmx15mmx10mm to generate a leg gait sequence. By incorporating bulk micromachined parts and precise epoxy dispensing at the assembled leg joint, the microrobot has a high payload bearing capacity (at least 9g). Simulations with a nonholonomic robot predict microcrawler velocities of a few mm/s under realistic assumptions. The open loop crawling velocity is experimentally characterized for various actuator frequencies and a close match with simulations is observed. A Linear Quadratic Regulator (LQR) based controller consisting of a high magnification camera and a laser displacement sensor for feedback is implemented. The open/closed loop positioning repeatabilities are evaluated and compared. The second micro robot called the "AFAM" (Articulated Four Axes Micro Robot) is a fixed base articulated design targeting micro and nano scale manipulation and probing applications. An embodiment of this microrobot is constructed incorporating four degrees of freedom (X, Y, Pitch and Yaw), occupying a total volume of 3mm x 2mm x 1mm, and operating within a workspace envelope of 50mum x 50mum x 75mum. This is by far the largest operating envelope of any other independent MEMS positioner with non-planar dexterity. A cable based transmission and motion amplification mechanism is designed to achieve the pitch and yaw degrees of freedom. The de-coupled motion of the microrobot is achieved by kinematic identification of the Jacobian and using a 3D flexure based kinematic model of the microrobot. By using the derived kinematics, the microrobot is driven to create nanoindents on a polymer surface. The end-effector positioning accuracy, repeatability and resolution are characterized using the nanoindents.
Real-time control of walking using recordings from dorsal root ganglia
NASA Astrophysics Data System (ADS)
Holinski, B. J.; Everaert, D. G.; Mushahwar, V. K.; Stein, R. B.
2013-10-01
Objective. The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. Approach. In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the DRG. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modelled from recorded neural firing rates. These models were then used for closed-loop feedback. Main results. Overall, firing-rate-based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48 ± 13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Significance. Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development.
Three Degree of Freedom Parallel Mechanical Linkage
NASA Technical Reports Server (NTRS)
Adelstein, Bernard D. (Inventor)
1998-01-01
A three degree of freedom parallel mechanism or linkage that couples three degree of freedom translational displacements at an endpoint, such as a handle, a hand grip, or a robot tool, to link rotations about three axes that are fixed with respect to a common base or ground link. The mechanism includes a three degree of freedom spherical linkage formed of two closed loops, and a planar linkage connected to the endpoint. The closed loops are rotatably interconnected, and made of eight rigid links connected by a plurality of single degree of freedom revolute joints. Three of these revolute joints are base joints and are connected to a common ground. such that the axis lines passing through the revolute joints intersect at a common fixed center point K forming the center of a spherical work volume in which the endpoint is capable of moving. 'Me three degrees of freedom correspond to the spatial displacement of the endpoint, for instance. The mechanism provides a new overall spatial kinematic linkage composed of a minimal number of rigid links and rotary joints. The mechanism has improved mechanical stiffness, and conveys mechanical power bidirectionally between the human operator and the electromechanical actuators. It does not require gears, belts. cable, screw or other types of transmission elements, and is useful in applications requiring full backdrivability. Thus, this invention can serve as the mechanical linkage for actively powered devices such as compliant robotic manipulators and force-reflecting hand controllers, and passive devices such as manual input devices for computers and other systems.
Real-time control of walking using recordings from dorsal root ganglia
Holinski, B J; Everaert, D G; Mushahwar, V K; Stein, R B
2013-01-01
Objective The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. Approach In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the dorsal root ganglia. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modeled from recorded neural firing rates. These models were then used for closed-loop feedback. Main Results Overall, firing-rate based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48±13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Significance Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development. PMID:23928579
On genera of curves from high-loop generalized unitarity cuts
NASA Astrophysics Data System (ADS)
Huang, Rijun; Zhang, Yang
2013-04-01
Generalized unitarity cut of a Feynman diagram generates an algebraic system of polynomial equations. At high-loop levels, these equations may define a complex curve or a (hyper-)surface with complicated topology. We study the curve cases, i.e., a 4-dimensional L-loop diagram with (4 L-1) cuts. The topology of a complex curve is classified by its genus. Hence in this paper, we use computational algebraic geometry to calculate the genera of curves from two and three-loop unitarity cuts. The global structure of degenerate on-shell equations under some specific kinematic configurations is also sketched. The genus information can also be used to judge if a unitary cut solution could be rationally parameterized.
Strain actuated aeroelastic control
NASA Technical Reports Server (NTRS)
Lazarus, Kenneth B.
1992-01-01
Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.
2016-10-01
ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop ...ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory...Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory Radio Frequency (RF) Propagation Section 5a. CONTRACT NUMBER
Ruan, Yue; Bally, Lia; Thabit, Hood; Leelarathna, Lalantha; Hartnell, Sara; Tauschmann, Martin; Wilinska, Malgorzata E; Evans, Mark L; Mader, Julia K; Kojzar, Harald; Dellweg, Sibylle; Benesch, Carsten; Arnolds, Sabine; Pieber, Thomas R; Hovorka, Roman
2018-03-25
Glucose excursion was assessed prior to and post hypoglycaemia to increase understanding of hypoglycaemia incidence and recovery during hybrid closed-loop insulin delivery. We retrospectively analysed data from 60 adults with type 1 diabetes who received, in a crossover randomized design, day-and-night hybrid closed-loop insulin delivery and insulin pump therapy, the latter with or without real-time continuous glucose monitoring. Over 4-week study periods, we identified hypoglycaemic episodes, defined as sensor glucose <3.0 mmol/L, and analysed sensor glucose relative to the onset of hypoglycaemia. We identified 377 hypoglycaemic episodes during hybrid closed-loop intervention vs 662 during control intervention (P < .001), with a predominant reduction of nocturnal hypoglycaemia. The slope of sensor glucose prior to hypoglycaemia was steeper during closed-loop intervention than during control intervention (P < .01), while insulin delivery was reduced (P < .01). During both day and night, participants recovered from hypoglycaemia faster when treated by closed-loop intervention. At 120 minutes post hypoglycaemia, sensor glucose levels were higher during closed-loop intervention compared to the control period (P < .05). In conclusion, closed-loop intervention reduces the risk of hypoglycaemia, particularly overnight, with swift recovery from hypoglycaemia leading to higher 2-hour post-hypoglycaemia glucose levels. © 2018 John Wiley & Sons Ltd.
A limit-cycle self-organizing map architecture for stable arm control.
Huang, Di-Wei; Gentili, Rodolphe J; Katz, Garrett E; Reggia, James A
2017-01-01
Inspired by the oscillatory nature of cerebral cortex activity, we recently proposed and studied self-organizing maps (SOMs) based on limit cycle neural activity in an attempt to improve the information efficiency and robustness of conventional single-node, single-pattern representations. Here we explore for the first time the use of limit cycle SOMs to build a neural architecture that controls a robotic arm by solving inverse kinematics in reach-and-hold tasks. This multi-map architecture integrates open-loop and closed-loop controls that learn to self-organize oscillatory neural representations and to harness non-fixed-point neural activity even for fixed-point arm reaching tasks. We show through computer simulations that our architecture generalizes well, achieves accurate, fast, and smooth arm movements, and is robust in the face of arm perturbations, map damage, and variations of internal timing parameters controlling the flow of activity. A robotic implementation is evaluated successfully without further training, demonstrating for the first time that limit cycle maps can control a physical robot arm. We conclude that architectures based on limit cycle maps can be organized to function effectively as neural controllers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu
2016-06-25
A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.
Load balancing and closed chain multiple arm control
NASA Technical Reports Server (NTRS)
Kreutz, Kenneth; Lokshin, Anatole
1988-01-01
The authors give the general dynamical equations for several rigid link manipulators rigidly grasping a commonly held rigid object. It is shown that the number of arm-configuration degrees of freedom lost due to imposing the closed-loop kinematic constraints is the same as the number of degrees of freedom gained for controlling the internal forces of the closed-chain system. This number is equal to the dimension of the kernel of the Jacobian operator which transforms contact forces to the net forces acting on the held object, and it is shown that this kernel can be identified with the subspace of controllable internal forces of the closed-chain system. Control of these forces makes it possible to regulate the grasping forces imparted to the held object or to control the load taken by each arm. It is shown that the internal forces can be influenced without affecting the control of the configuration degrees of freedom. Control laws of the feedback linearization type are shown to be useful for controlling the location and attitude of a frame fixed with respect to the held object, while simultaneously controlling the internal forces of the closed-chain system. Force feedback can be used to linearize and control the system even when the held object has unknown mass properties. If saturation effects are ignored, an unconstrained quadratic optimization can be performed to distribute the load optimally among the joint actuators.
Virtual grasping: closed-loop force control using electrotactile feedback.
Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario
2014-01-01
Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.
Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties.
Peng, Jinzhu; Yu, Jie; Wang, Jie
2014-07-01
In this paper, mobile manipulator is divided into two subsystems, that is, nonholonomic mobile platform subsystem and holonomic manipulator subsystem. First, the kinematic controller of the mobile platform is derived to obtain a desired velocity. Second, regarding the coupling between the two subsystems as disturbances, Lyapunov functions of the two subsystems are designed respectively. Third, a robust adaptive tracking controller is proposed to deal with the unknown upper bounds of parameter uncertainties and disturbances. According to the Lyapunov stability theory, the derived robust adaptive controller guarantees global stability of the closed-loop system, and the tracking errors and adaptive coefficient errors are all bounded. Finally, simulation results show that the proposed robust adaptive tracking controller for nonholonomic mobile manipulator is effective and has good tracking capacity. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Bandwidth controller for phase-locked-loop
NASA Technical Reports Server (NTRS)
Brockman, Milton H. (Inventor)
1992-01-01
A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.
Iterative LQG Controller Design Through Closed-Loop Identification
NASA Technical Reports Server (NTRS)
Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.
1996-01-01
This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.
Closed-loop carrier phase synchronization techniques motivated by likelihood functions
NASA Technical Reports Server (NTRS)
Tsou, H.; Hinedi, S.; Simon, M.
1994-01-01
This article reexamines the notion of closed-loop carrier phase synchronization motivated by the theory of maximum a posteriori phase estimation with emphasis on the development of new structures based on both maximum-likelihood and average-likelihood functions. The criterion of performance used for comparison of all the closed-loop structures discussed is the mean-squared phase error for a fixed-loop bandwidth.
Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.
2009-01-01
Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.
A comparative approach to closed-loop computation.
Roth, E; Sponberg, S; Cowan, N J
2014-04-01
Neural computation is inescapably closed-loop: the nervous system processes sensory signals to shape motor output, and motor output consequently shapes sensory input. Technological advances have enabled neuroscientists to close, open, and alter feedback loops in a wide range of experimental preparations. The experimental capability of manipulating the topology-that is, how information can flow between subsystems-provides new opportunities to understand the mechanisms and computations underlying behavior. These experiments encompass a spectrum of approaches from fully open-loop, restrained preparations to the fully closed-loop character of free behavior. Control theory and system identification provide a clear computational framework for relating these experimental approaches. We describe recent progress and new directions for translating experiments at one level in this spectrum to predictions at another level. Operating across this spectrum can reveal new understanding of how low-level neural mechanisms relate to high-level function during closed-loop behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.
Spatial curvilinear path following control of underactuated AUV with multiple uncertainties.
Miao, Jianming; Wang, Shaoping; Zhao, Zhiping; Li, Yuan; Tomovic, Mileta M
2017-03-01
This paper investigates the problem of spatial curvilinear path following control of underactuated autonomous underwater vehicles (AUVs) with multiple uncertainties. Firstly, in order to design the appropriate controller, path following error dynamics model is constructed in a moving Serret-Frenet frame, and the five degrees of freedom (DOFs) dynamic model with multiple uncertainties is established. Secondly, the proposed control law is separated into kinematic controller and dynamic controller via back-stepping technique. In the case of kinematic controller, to overcome the drawback of dependence on the accurate vehicle model that are present in a number of path following control strategies described in the literature, the unknown side-slip angular velocity and attack angular velocity are treated as uncertainties. Whereas in the case of dynamic controller, the model parameters perturbations, unknown external environmental disturbances and the nonlinear hydrodynamic damping terms are treated as lumped uncertainties. Both kinematic and dynamic uncertainties are estimated and compensated by designed reduced-order linear extended state observes (LESOs). Thirdly, feedback linearization (FL) based control law is implemented for the control model using the estimates generated by reduced-order LESOs. For handling the problem of computational complexity inherent in the conventional back-stepping method, nonlinear tracking differentiators (NTDs) are applied to construct derivatives of the virtual control commands. Finally, the closed loop stability for the overall system is established. Simulation and comparative analysis demonstrate that the proposed controller exhibits enhanced performance in the presence of internal parameter variations, external unknown disturbances, unmodeled nonlinear damping terms, and measurement noises. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Multiday Fully Closed Loop Insulin Delivery in Monitored Outpatient Conditions
2014-04-29
To Demonstrate That the Closed Loop System Can be Used Safely Over a Few Consecutive Days.; To Assess Effectiveness in Maintaining Patients' Glucose Levels in the Target Range of 70 to 180 mg/dl, Measured by Blood Glucose Sensor.; To Evaluate the User Experience With a Closed Loop System
Closed Loop Vibrational Control: Theory and Applications
1993-10-01
the open loop system dynamics will be close to that of Bit. However, in general, in a closed loop system with a specified feedback co-’ - oller , for...Juang, and G. Rodriguez , "Formulations and Applications of Large Structure Actuator and Sensor Placements," Second VPI & SU/AIAA Symposium on Dynamics
The QCD form factor of heavy quarks at NNLO
NASA Astrophysics Data System (ADS)
Gluza, J.; Mitov, A.; Moch, S.; Riemann, T.
2009-07-01
We present an analytical calculation of the two-loop QCD corrections to the electromagnetic form factor of heavy quarks. The two-loop contributions to the form factor are reduced to linear combinations of master integrals, which are computed through higher orders in the parameter of dimensional regularization epsilon = (4-D)/2. Our result includes all terms of order epsilon at two loops and extends the previous literature. We apply the exponentiation of the heavy-quark form factor to derive new improved three-loop expansions in the high-energy limit. We also discuss the implications for predictions of massive n-parton amplitudes based on massless results in the limit, where the quark mass is small compared to all kinematical invariants.
A magnetohydrodynamic theory of coronal loop transients
NASA Technical Reports Server (NTRS)
Yeh, T.
1982-01-01
The physical and geometrical characteristics of solar coronal loop transients are described in an MHD model based on Archimedes' MHD buoyancy force. The theory was developed from interpretation of coronagraphic data, particularly from Skylab. The brightness of a loop is taken to indicate the electron density, and successive pictures reveal the electron enhancement in different columns. The forces which lift the loop off the sun surface are analyzed as an MHD buoyancy force affecting every mass element by imparting an inertial force necessary for heliocentrifugal motion. Thermal forces are responsible for transferring the ambient stress to the interior of the loop to begin the process. The kinematic and hydrostatic buoyancy overcome the gravitational force, and a flux rope can then curve upward, spiralling like a corkscrew with varying cross section around the unwinding solar magnetic field lines.
NASA Astrophysics Data System (ADS)
Peterson, Zachary W.
Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.
Whipple, G. H.; Stone, H. B.; Bernheim, B. M.
1913-01-01
Closed duodenal loops may be made in dogs by ligatures placed just below the pancreatic duct and just beyond the duodenojejunal junction, together with a posterior gastro-enterostomy. These closed duodenal loop dogs die with symptoms like those of patients suffering from volvulus or high intestinal obstruction. This duodenal loop may simulate closely a volvulus in which there has been no vascular disturbance. Dogs with closed duodenal loops which have been washed out carefully survive a little longer on the average than animals with unwashed loops. The duration of life in the first instance is one to three days, with an average of about forty-eight hours. The dogs usually lose considerable fluid by vomiting and diarrhea. A weak pulse, low blood pressure and temperature are usually conspicuous in the last stages. Autopsy shows more or less splanchnic congestion which may be most marked in the mucosa of the upper small intestine. The peritoneum is usually clear and the closed loop may be distended with thin fluid, or collapsed, and contain only a small amount of pasty brown material. The mucosa of the loop may show ulceration and even perforation, but in the majority of cases it is intact and exhibits only a moderate congestion. Simple intestinal obstruction added to a closed duodenal loop does not modify the result in any manner, but it may hasten the fatal outcome. The liver plays no essential role as a protective agent against this poison, for a dog with an Eck fistula may live three days with a closed loop. A normal dog reacts to intraportal injection and to intravenous injection of the toxic substance in an identical manner. Drainage of this loop under certain conditions may not interfere with the general health over a period of weeks or months. Excision of the part of the duodenum included in this loop causes no disturbance. The material from the closed duodenal loops contains no bile, pancreatic juice, gastric juice, or split products from the food. It can be formed in no other way than by the activity of the intestinal mucosa and the growth of the intestinal bacteria. This material after dilution, autolysis, sterilization, and filtration produces a characteristic effect when introduced intravenously. When in toxic doses it causes a profound drop in blood pressure, general collapse, drop in temperature, salivation, vomiting, and profuse diarrhea, which is often blood-stained. Splanchnic congestion is the conspicuous feature at autopsy and shows especially in the villi of the duodenal and jejunal mucosæ. Adrenalin, during this period of low blood pressure and splanchnic congestion, will cause the usual reaction when given intravenously, but applied locally or given intravenously it causes no bleaching of the engorged intestinal mucosa. Secretin is not found in the duodenal loop fluid, and the loop material does not influence the pancreatic secretion. Intraportal injection of the toxic material gives a reaction similar to intravenous injection. Intraperitoneal and subcutaneous injections produce a relatively slow reaction which closely resembles the picture seen in the closed duodenal loop dog. In both cases there is a relatively slow absorption, but the splanchnic congestion and other findings, though less intense, are present in both groups. There seems, therefore, to be no escape from the conclusion that a poisonous substance is formed in this closed duodenal loop which is absorbed from it and causes intoxication and death. Injection of this toxic substance into a normal dog gives intoxication and a reaction more intense but similar to that developing in a closed-loop dog. PMID:19867644
78 FR 58535 - Hydropower Regulatory Efficiency Act of 2013; Supplemental Notice of Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... license for hydropower development at non-powered dams and closed-loop pumped storage projects in... for licensing hydropower development at non-powered dams and closed-loop pumped storage projects... closed- loop pumped storage) affect the steps included in a two-year process? 3.9 Should there be a...
Kellmeyer, Philipp; Cochrane, Thomas; Müller, Oliver; Mitchell, Christine; Ball, Tonio; Fins, Joseph J; Biller-Andorno, Nikola
2016-10-01
Closed-loop medical devices such as brain-computer interfaces are an emerging and rapidly advancing neurotechnology. The target patients for brain-computer interfaces (BCIs) are often severely paralyzed, and thus particularly vulnerable in terms of personal autonomy, decisionmaking capacity, and agency. Here we analyze the effects of closed-loop medical devices on the autonomy and accountability of both persons (as patients or research participants) and neurotechnological closed-loop medical systems. We show that although BCIs can strengthen patient autonomy by preserving or restoring communicative abilities and/or motor control, closed-loop devices may also create challenges for moral and legal accountability. We advocate the development of a comprehensive ethical and legal framework to address the challenges of emerging closed-loop neurotechnologies like BCIs and stress the centrality of informed consent and refusal as a means to foster accountability. We propose the creation of an international neuroethics task force with members from medical neuroscience, neuroengineering, computer science, medical law, and medical ethics, as well as representatives of patient advocacy groups and the public.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-19
..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...
Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.
1984-01-01
The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.
Preliminary demonstration of a robust controller design method
NASA Technical Reports Server (NTRS)
Anderson, L. R.
1980-01-01
Alternative computational procedures for obtaining a feedback control law which yields a control signal based on measurable quantitites are evaluated. The three methods evaluated are: (1) the standard linear quadratic regulator design model; (2) minimization of the norm of the feedback matrix, k via nonlinear programming subject to the constraint that the closed loop eigenvalues be in a specified domain in the complex plane; and (3) maximize the angles between the closed loop eigenvectors in combination with minimizing the norm of K also via the constrained nonlinear programming. The third or robust design method was chosen to yield a closed loop system whose eigenvalues are insensitive to small changes in the A and B matrices. The relationship between orthogonality of closed loop eigenvectors and the sensitivity of closed loop eigenvalues is described. Computer programs are described.
NASA Astrophysics Data System (ADS)
Dong, Gangqi; Zhu, Z. H.
2016-04-01
This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.
Ly, Trang T; Weinzimer, Stuart A; Maahs, David M; Sherr, Jennifer L; Roy, Anirban; Grosman, Benyamin; Cantwell, Martin; Kurtz, Natalie; Carria, Lori; Messer, Laurel; von Eyben, Rie; Buckingham, Bruce A
2017-08-01
Automated insulin delivery systems, utilizing a control algorithm to dose insulin based upon subcutaneous continuous glucose sensor values and insulin pump therapy, will soon be available for commercial use. The objective of this study was to determine the preliminary safety and efficacy of initialization parameters with the Medtronic hybrid closed-loop controller by comparing percentage of time in range, 70-180 mg/dL (3.9-10 mmol/L), mean glucose values, as well as percentage of time above and below target range between sensor-augmented pump therapy and hybrid closed-loop, in adults and adolescents with type 1 diabetes. We studied an initial cohort of 9 adults followed by a second cohort of 15 adolescents, using the Medtronic hybrid closed-loop system with the proportional-integral-derivative with insulin feed-back (PID-IFB) algorithm. Hybrid closed-loop was tested in supervised hotel-based studies over 4-5 days. The overall mean percentage of time in range (70-180 mg/dL, 3.9-10 mmol/L) during hybrid closed-loop was 71.8% in the adult cohort and 69.8% in the adolescent cohort. The overall percentage of time spent under 70 mg/dL (3.9 mmol/L) was 2.0% in the adult cohort and 2.5% in the adolescent cohort. Mean glucose values were 152 mg/dL (8.4 mmol/L) in the adult cohort and 153 mg/dL (8.5 mmol/L) in the adolescent cohort. Closed-loop control using the Medtronic hybrid closed-loop system enables adaptive, real-time basal rate modulation. Initializing hybrid closed-loop in clinical practice will involve individualizing initiation parameters to optimize overall glucose control. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Direct-contact closed-loop heat exchanger
Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael
1984-01-01
A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.
Closed-Loop Control of Complex Networks: A Trade-Off between Time and Energy
NASA Astrophysics Data System (ADS)
Sun, Yong-Zheng; Leng, Si-Yang; Lai, Ying-Cheng; Grebogi, Celso; Lin, Wei
2017-11-01
Controlling complex nonlinear networks is largely an unsolved problem at the present. Existing works focus either on open-loop control strategies and their energy consumptions or on closed-loop control schemes with an infinite-time duration. We articulate a finite-time, closed-loop controller with an eye toward the physical and mathematical underpinnings of the trade-off between the control time and energy as well as their dependence on the network parameters and structure. The closed-loop controller is tested on a large number of real systems including stem cell differentiation, food webs, random ecosystems, and spiking neuronal networks. Our results represent a step forward in developing a rigorous and general framework to control nonlinear dynamical networks with a complex topology.
DC servomechanism parameter identification: a Closed Loop Input Error approach.
Garrido, Ruben; Miranda, Roger
2012-01-01
This paper presents a Closed Loop Input Error (CLIE) approach for on-line parametric estimation of a continuous-time model of a DC servomechanism functioning in closed loop. A standard Proportional Derivative (PD) position controller stabilizes the loop without requiring knowledge on the servomechanism parameters. The analysis of the identification algorithm takes into account the control law employed for closing the loop. The model contains four parameters that depend on the servo inertia, viscous, and Coulomb friction as well as on a constant disturbance. Lyapunov stability theory permits assessing boundedness of the signals associated to the identification algorithm. Experiments on a laboratory prototype allows evaluating the performance of the approach. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Neural network-based optimal adaptive output feedback control of a helicopter UAV.
Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani
2013-07-01
Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.
Closing the Feedback Loop Is Not Enough: The Assessment Spiral
ERIC Educational Resources Information Center
Wehlburg, Catherine M.
2007-01-01
For quite some time, the call to close the feedback loop has been heard throughout higher education. Faculty and administrators have paid attention, and now they can more easily than ever point to the fact that at their institution, the feedback loop is almost always closed. As reviewers from accreditation teams visit campuses, they often hear…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-16
... at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the... process for licensing hydropower development at non-powered dams and closed-loop pumped storage projects...-powered dam versus closed- loop pumped storage) affect the steps included in a two-year process? 3.9...
Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.
Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart
2015-04-21
Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation.
Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat
Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart
2015-01-01
Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892
Performance constraints and compensation for teleoperation with delay
NASA Technical Reports Server (NTRS)
Mclaughlin, J. S.; Staunton, B. D.
1989-01-01
A classical control perspective is used to characterize performance constraints and evaluate compensation techniques for teleoperation with delay. Use of control concepts such as open and closed loop performance, stability, and bandwidth yield insight to the delay problem. Teleoperator performance constraints are viewed as an open loop time delay lag and as a delay-induced closed loop bandwidth constraint. These constraints are illustrated with a simple analytical tracking example which is corroborated by a real time, 'man-in-the-loop' tracking experiment. The experiment also provides insight to those controller characteristics which are unique to a human operator. Predictive displays and feedforward commands are shown to provide open loop compensation for delay lag. Low pass filtering of telemetry or feedback signals is interpreted as closed loop compensation used to maintain a sufficiently low bandwidth for stability. A new closed loop compensation approach is proposed that uses a reactive (or force feedback) hand controller to restrict system bandwidth by impeding operator inputs.
Wilinska, Malgorzata E; Budiman, Erwin S; Taub, Marc B; Elleri, Daniela; Allen, Janet M; Acerini, Carlo L; Dunger, David B; Hovorka, Roman
2009-09-01
Hypoglycemia and hyperglycemia during closed-loop insulin delivery based on subcutaneous (SC) glucose sensing may arise due to (1) overdosing and underdosing of insulin by control algorithm and (2) difference between plasma glucose (PG) and sensor glucose, which may be transient (kinetics origin and sensor artifacts) or persistent (calibration error [CE]). Using in silico testing, we assessed hypoglycemia and hyperglycemia incidence during over-night closed loop. Additionally, a comparison was made against incidence observed experimentally during open-loop single-night in-clinic studies in young people with type 1 diabetes mellitus (T1DM) treated by continuous SC insulin infusion. Simulation environment comprising 18 virtual subjects with T1DM was used to simulate overnight closed-loop study with a model predictive control (MPC) algorithm. A 15 h experiment started at 17:00 and ended at 08:00 the next day. Closed loop commenced at 21:00 and continued for 11 h. At 18:00, protocol included meal (50 g carbohydrates) accompanied by prandial insulin. The MPC algorithm advised on insulin infusion every 15 min. Sensor glucose was obtained by combining model-calculated noise-free interstitial glucose with experimentally derived transient and persistent sensor artifacts associated with FreeStyle Navigator (FSN). Transient artifacts were obtained from FSN sensor pairs worn by 58 subjects with T1DM over 194 nighttime periods. Persistent difference due to FSN CE was quantified from 585 FSN sensor insertions, yielding 1421 calibration sessions from 248 subjects with diabetes. Episodes of severe (PG < or = 36 mg/dl) and significant (PG < or = 45 mg/dl) hypoglycemia and significant hyperglycemia (PG > or = 300 mg/dl) were extracted from 18,000 simulated closed-loop nights. Severe hypoglycemia was not observed when FSN CE was less than 45%. Hypoglycemia and hyperglycemia incidence during open loop was assessed from 21 overnight studies in 17 young subjects with T1DM (8 males; 13.5 +/- 3.6 years of age; body mass index 21.0 +/- 4.0 kg/m2; duration diabetes 6.4 +/- 4.1 years; hemoglobin A1c 8.5% +/- 1.8%; mean +/- standard deviation) participating in the Artificial Pancreas Project at Cambridge. Severe and significant hypoglycemia during simulated closed loop occurred 0.75 and 17.11 times per 100 person years compared to 1739 and 3479 times per 100 person years during experimental open loop, respectively. Significant hyperglycemia during closed loop and open loop occurred 75 and 15,654 times per 100 person years, respectively. The incidence of severe and significant hypoglycemia reduced 2300- and 200-fold, respectively, during stimulated overnight closed loop with MPC compared to that observed during open-loop overnight clinical studies in young subjects with T1DM. Hyperglycemia was 200 times less likely. Overnight closed loop with the FSN and the MPC algorithm is expected to reduce substantially the risk of hypoglycemia and hyperglycemia. 2009 Diabetes Technology Society.
Topics in Nonsupersymmetric Scattering Amplitudes in Gauge and Gravity Theories
NASA Astrophysics Data System (ADS)
Nohle, Joshua David
In Chapters 1 and 2, we introduce and review the duality between color and kinematics in Yang-Mills theory uncovered by Bern, Carrasco and Johansson (BCJ). In Chapter 3, we provide evidence in favor of the conjectured duality between color and kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by constructing a form of the one-loop four-point amplitude of this theory that makes the duality manifest. Our construction is valid in any dimension. We also describe a duality-satisfying representation for the two-loop four-point amplitude with identical four-dimensional external helicities. We use these results to obtain corresponding gravity integrands for a theory containing a graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with specified diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop in four, six, and eight dimensions, and at two loops in four dimensions. In Chapter 4, we extend the four-point one-loop nonsupersymmetric pure Yang-Mills discussion of Chapter 3 to include fermions and scalars circulating in the loop with all external gluons. This gives another nontrivial loop-level example showing that the duality between color and kinematics holds in nonsupersymmetric gauge theory. The construction is valid in any spacetime dimension and written in terms of formal polarization vectors. We also convert these expressions into a four-dimensional form with explicit external helicity states. Using this, we compare our results to one-loop duality-satisfying amplitudes that are already present in literature. In Chapter 5, we switch from the topic of color-kinematics duality to discuss the recently renewed interest in the soft behavior of gravitons and gluons. Specifically, we discuss the subleading low-energy behavior. Cachazo and Strominger recently proposed an extension of the soft-graviton theorem found by Weinberg. In addition, they proved the validity of their extension at tree level. This was motivated by a Virasoro symmetry of the gravity S-matrix related to BMS symmetry. As shown long ago by Weinberg, the leading soft behavior is not corrected by loops. In contrast, we show in Chapter 6 that with the standard definition of soft limits in dimensional regularization, the subleading behavior is anomalous and modified by loop effects. We argue that there are no new types of corrections to the first subleading behavior beyond one loop and to the second subleading behavior beyond two loops. To facilitate our investigation, we introduce a new momentum-conservation prescription for defining the subleading terms of the soft limit. We discuss the loop-level subleading soft behavior of gauge-theory amplitudes before turning to gravity amplitudes. In Chapter 7, we show that at tree level, on-shell gauge invariance can be used to fully determine the first subleading soft-gluon behavior and the first two subleading soft-graviton behaviors. Our proofs of the behaviors for n-gluon and n-graviton tree amplitudes are valid in D dimensions and are similar to Low's proof of universality of the first subleading behavior of photons. In contrast to photons coupling to massive particles, in four dimensions the soft behaviors of gluons and gravitons are corrected by loop effects. We comment on how such corrections arise from this perspective. We also show that loop corrections in graviton amplitudes arising from scalar loops appear only at the second soft subleading order. This case is particularly transparent because it is not entangled with graviton infrared singularities. Our result suggests that if we set aside the issue of infrared singularities, soft-graviton Ward identities of extended BMS symmetry are not anomalous through the first subleading order. Finally, in Chapter 8, we conclude this dissertation with a discussion of the evanescent effects on nonsupersymmetric gravity at two loops. Evanescent operators such as the Gauss- Bonnet term have vanishing perturbative matrix elements in exactly D = 4 dimensions. Similarly, evanescent fields do not propagate in D = 4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this chapter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (non-evanescent) R3 counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D = 4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop conformal anomaly---the coefficient of the Gauss-Bonnet operator---changes under p-form duality transformations. We concur, and also find that the leading R3 divergence changes under duality transformations. Nevertheless, in both cases the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. Its renormalization-scale dependence is unaltered. (Abstract shortened by UMI.).
System for computer controlled shifting of an automatic transmission
Patil, Prabhakar B.
1989-01-01
In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determine from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.
2010-02-16
field. Techniques utilizing this design use an open- loop control and no flow monitoring sensors are required. Conversely, reactive (or closed - loop ...and closed (dashed line) configuration. 38 closed configuration described above, the ambiguity in the critical limits of the transition...flow; a new vortex is then shed from the cavity leading edge, closing the feedback loop .[31] Open cavities with an L/D approximately greater than
Direct-contact closed-loop heat exchanger
Berry, G.F.; Minkov, V.; Petrick, M.
1981-11-02
A high temperature heat exchanger is disclosed which has a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.
Rinehart, Joseph; Chung, Elena; Canales, Cecilia; Cannesson, Maxime
2012-10-01
The authors compared the performance of a group of anesthesia providers to closed-loop (Learning Intravenous Resuscitator [LIR]) management in a simulated hemorrhage scenario using cardiac output monitoring. A prospective cohort study. In silico simulation. University hospital anesthesiologists and the LIR closed-loop fluid administration system. Using a patient simulator, a 90-minute simulated hemorrhage protocol was run, which included a 1,200-mL blood loss over 30 minutes. Twenty practicing anesthesiology providers were asked to manage this scenario by providing fluids and vasopressor medication at their discretion. The simulation program was also run 20 times with the LIR closed-loop algorithm managing fluids and an additional 20 times with no intervention. Simulated patient weight, height, heart rate, mean arterial pressure, and cardiac output (CO) were similar at baseline. The mean stroke volume, the mean arterial pressure, CO, and the final CO were higher in the closed-loop group than in the practitioners group, and the coefficient of variance was lower. The closed-loop group received slightly more fluid (2.1 v 1.9 L, p < 0.05) than the anesthesiologist group. Despite the roughly similar volumes of fluid given, the closed-loop maintained more stable hemodynamics than the practitioners primarily because the fluid was given earlier in the protocol and CO optimized before the hemorrhage began, whereas practitioners tended to resuscitate well but only after significant hemodynamic change indicated the need. Overall, these data support the potential usefulness of this closed-loop algorithm in clinical settings in which dynamic predictors are not available or applicable. Published by Elsevier Inc.
Hovorka, Roman; Nodale, Marianna; Haidar, Ahmad; Wilinska, Malgorzata E
2013-01-01
We investigated whether continuous glucose monitoring (CGM) levels can accurately assess glycemic control while directing closed-loop insulin delivery. Data were analyzed retrospectively from 33 subjects with type 1 diabetes who underwent closed-loop and conventional pump therapy on two separate nights. Glycemic control was evaluated by reference plasma glucose and contrasted against three methods based on Navigator (Abbott Diabetes Care, Alameda, CA) CGM levels. Glucose mean and variability were estimated by unmodified CGM levels with acceptable clinical accuracy. Time when glucose was in target range was overestimated by CGM during closed-loop nights (CGM vs. plasma glucose median [interquartile range], 86% [65-97%] vs. 75% [59-91%]; P=0.04) but not during conventional pump therapy (57% [32-72%] vs. 51% [29-68%]; P=0.82) providing comparable treatment effect (mean [SD], 28% [29%] vs. 23% [21%]; P=0.11). Using the CGM measurement error of 15% derived from plasma glucose-CGM pairs (n=4,254), stochastic interpretation of CGM gave unbiased estimate of time in target during both closed-loop (79% [62-86%] vs. 75% [59-91%]; P=0.24) and conventional pump therapy (54% [33-66%] vs. 51% [29-68%]; P=0.44). Treatment effect (23% [24%] vs. 23% [21%]; P=0.96) and time below target were accurately estimated by stochastic CGM. Recalibrating CGM using reference plasma glucose values taken at the start and end of overnight closed-loop was not superior to stochastic CGM. CGM is acceptable to estimate glucose mean and variability, but without adjustment it may overestimate benefit of closed-loop. Stochastic CGM provided unbiased estimate of time when glucose is in target and below target and may be acceptable for assessment of closed-loop in the outpatient setting.
Lilot, Marc; Bellon, Amandine; Gueugnon, Marine; Laplace, Marie-Christine; Baffeleuf, Bruno; Hacquard, Pauline; Barthomeuf, Felicie; Parent, Camille; Tran, Thomas; Soubirou, Jean-Luc; Robinson, Philip; Bouvet, Lionel; Vassal, Olivia; Lehot, Jean-Jacques; Piriou, Vincent
2018-01-27
An intraoperative automated closed-loop system for goal-directed fluid therapy has been successfully tested in silico, in vivo and in a clinical case-control matching. This trial compared intraoperative cardiac output (CO) in patients managed with this closed-loop system versus usual practice in an academic medical center. The closed-loop system was connected to a CO monitoring system and delivered automated colloid fluid boluses. Moderate to high-risk abdominal surgical patients were randomized either to the closed-loop or the manual group. Intraoperative final CO was the primary endpoint. Secondary endpoints were intraoperative overall mean cardiac index (CI), increase from initial to final CI, intraoperative fluid volume and postoperative outcomes. From January 2014 to November 2015, 46 patients were randomized. There was a lower initial CI (2.06 vs. 2.51 l min -1 m -2 , p = 0.042) in the closed-loop compared to the control group. No difference in final CO and in overall mean intraoperative CI was observed between groups. A significant relative increase from initial to final CI values was observed in the closed-loop but not the control group (+ 28.6%, p = 0.006 vs. + 1.2%, p = 0.843). No difference was found for intraoperative fluid management and postoperative outcomes between groups. There was no significant impact on the primary study endpoint, but this was found in a context of unexpected lower initial CI in the closed-loop group.Trial registry number ID-RCB/EudraCT: 2013-A00770-45. ClinicalTrials.gov Identifier NCT01950845, date of registration: 17 September 2013.
Dynamic simulation of perturbation responses in a closed-loop virtual arm model.
Du, Yu-Fan; He, Xin; Lan, Ning
2010-01-01
A closed-loop virtual arm (VA) model has been developed in SIMULINK environment by adding spinal reflex circuits and propriospinal neural networks to the open-loop VA model developed in early study [1]. An improved virtual muscle model (VM4.0) is used to speed up simulation and to generate more precise recruitment of muscle force at low levels of muscle activation. Time delays in the reflex loops are determined by their synaptic connections and afferent transmission back to the spinal cord. Reflex gains are properly selected so that closed-loop responses are stable. With the closed-loop VA model, we are developing an approach to evaluate system behaviors by dynamic simulation of perturbation responses. Joint stiffness is calculated based on simulated perturbation responses by a least-squares algorithm in MATLAB. This method of dynamic simulation will be essential for further evaluation of feedforward and reflex control of arm movement and position.
Perception as a closed-loop convergence process.
Ahissar, Ehud; Assa, Eldad
2016-05-09
Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception.
Perception as a closed-loop convergence process
Ahissar, Ehud; Assa, Eldad
2016-01-01
Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception. DOI: http://dx.doi.org/10.7554/eLife.12830.001 PMID:27159238
Open-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer
NASA Technical Reports Server (NTRS)
Koppen, Daniel M.
1997-01-01
During the third quarter of 1996, the Closed-Loop Systems Laboratory was established at the NASA Langley Research Center (LaRC) to study the effects of High Intensity Radiated Fields on complex avionic systems and control system components. This new facility provided a link and expanded upon the existing capabilities of the High Intensity Radiated Fields Laboratory at LaRC that were constructed and certified during 1995-96. The scope of the Closed-Loop Systems Laboratory is to place highly integrated avionics instrumentation into a high intensity radiated field environment, interface the avionics to a real-time flight simulation that incorporates aircraft dynamics, engines, sensors, actuators and atmospheric turbulence, and collect, analyze, and model aircraft performance. This paper describes the layout and functionality of the Closed-Loop Systems Laboratory, and the open-loop calibration experiments that led up to the commencement of closed-loop real-time flight experiments.
Competition and quality in health care markets: a differential-game approach.
Brekke, Kurt R; Cellini, Roberto; Siciliani, Luigi; Straume, Odd Rune
2010-07-01
We investigate the effect of competition on quality in health care markets with regulated prices taking a differential game approach, in which quality is a stock variable. Using a Hotelling framework, we derive the open-loop solution (health care providers set the optimal investment plan at the initial period) and the feedback closed-loop solution (providers move investments in response to the dynamics of the states). Under the closed-loop solution competition is more intense in the sense that providers observe quality in each period and base their investment on this information. If the marginal provision cost is constant, the open-loop and closed-loop solutions coincide, and the results are similar to the ones obtained by static models. If the marginal provision cost is increasing, investment and quality are lower in the closed-loop solution (when competition is more intense). In this case, static models tend to exaggerate the positive effect of competition on quality.
Analysis of a closed-kinematic chain robot manipulator
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.
1988-01-01
Presented are the research results from the research grant entitled: Active Control of Robot Manipulators, sponsored by the Goddard Space Flight Center (NASA) under grant number NAG-780. This report considers a class of robot manipulators based on the closed-kinematic chain mechanism (CKCM). This type of robot manipulators mainly consists of two platforms, one is stationary and the other moving, and they are coupled together through a number of in-parallel actuators. Using spatial geometry and homogeneous transformation, a closed-form solution is derived for the inverse kinematic problem of the six-degree-of-freedom manipulator, built to study robotic assembly in space. Iterative Newton Raphson method is employed to solve the forward kinematic problem. Finally, the equations of motion of the above manipulators are obtained by employing the Lagrangian method. Study of the manipulator dynamics is performed using computer simulation whose results show that the robot actuating forces are strongly dependent on the mass and centroid locations of the robot links.
Probing the closed-loop model of mRNA translation in living cells
Archer, Stuart K; Shirokikh, Nikolay E; Hallwirth, Claus V; Beilharz, Traude H; Preiss, Thomas
2015-01-01
The mRNA closed-loop, formed through interactions between the cap structure, poly(A) tail, eIF4E, eIF4G and PAB, features centrally in models of eukaryotic translation initiation, although direct support for its existence in vivo is not well established. Here, we investigated the closed-loop using a combination of mRNP isolation from rapidly cross-linked cells and high-throughput qPCR. Using the interaction between these factors and the opposing ends of mRNAs as a proxy for the closed-loop, we provide evidence that it is prevalent for eIF4E/4G-bound but unexpectedly sparse for PAB1-bound mRNAs, suggesting it primarily occurs during a distinct phase of polysome assembly. We observed mRNA-specific variation in the extent of closed-loop formation, consistent with a role for polysome topology in the control of gene expression. PMID:25826658
Closed-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1997-01-01
ABSTRACT Closed-loop HIRF experiments were performed on a fault tolerant flight control computer (FCC) at the NASA Langley Research Center. The FCC used in the experiments was a quad-redundant flight control computer executing B737 Autoland control laws. The FCC was placed in one of the mode-stirred reverberation chambers in the HIRF Laboratory and interfaced to a computer simulation of the B737 flight dynamics, engines, sensors, actuators, and atmosphere in the Closed-Loop Systems Laboratory. Disturbances to the aircraft associated with wind gusts and turbulence were simulated during tests. Electrical isolation between the FCC under test and the simulation computer was achieved via a fiber optic interface for the analog and discrete signals. Closed-loop operation of the FCC enabled flight dynamics and atmospheric disturbances affecting the aircraft to be represented during tests. Upset was induced in the FCC as a result of exposure to HIRF, and the effect of upset on the simulated flight of the aircraft was observed and recorded. This paper presents a description of these closed- loop HIRF experiments, upset data obtained from the FCC during these experiments, and closed-loop effects on the simulated flight of the aircraft.
Closed-Loop- and Decision-Assist-Guided Fluid Therapy of Human Hemorrhage.
Hundeshagen, Gabriel; Kramer, George C; Ribeiro Marques, Nicole; Salter, Michael G; Koutrouvelis, Aristides K; Li, Husong; Solanki, Daneshvari R; Indrikovs, Alexander; Seeton, Roger; Henkel, Sheryl N; Kinsky, Michael P
2017-10-01
We sought to evaluate the efficacy, efficiency, and physiologic consequences of automated, endpoint-directed resuscitation systems and compare them to formula-based bolus resuscitation. Experimental human hemorrhage and resuscitation. Clinical research laboratory. Healthy volunteers. Subjects (n = 7) were subjected to hemorrhage and underwent a randomized fluid resuscitation scheme on separate visits 1) formula-based bolus resuscitation; 2) semiautonomous (decision assist) fluid administration; and 3) fully autonomous (closed loop) resuscitation. Hemodynamic variables, volume shifts, fluid balance, and cardiac function were monitored during hemorrhage and resuscitation. Treatment modalities were compared based on resuscitation efficacy and efficiency. All approaches achieved target blood pressure by 60 minutes. Following hemorrhage, the total amount of infused fluid (bolus resuscitation: 30 mL/kg, decision assist: 5.6 ± 3 mL/kg, closed loop: 4.2 ± 2 mL/kg; p < 0.001), plasma volume, extravascular volume (bolus resuscitation: 17 ± 4 mL/kg, decision assist: 3 ± 1 mL/kg, closed loop: -0.3 ± 0.3 mL/kg; p < 0.001), body weight, and urinary output remained stable under decision assist and closed loop and were significantly increased under bolus resuscitation. Mean arterial pressure initially decreased further under bolus resuscitation (-10 mm Hg; p < 0.001) and was lower under bolus resuscitation than closed loop at 20 minutes (bolus resuscitation: 57 ± 2 mm Hg, closed loop: 69 ± 4 mm Hg; p = 0.036). Colloid osmotic pressure (bolus resuscitation: 19.3 ± 2 mm Hg, decision assist, closed loop: 24 ± 0.4 mm Hg; p < 0.05) and hemoglobin concentration were significantly decreased after bolus fluid administration. We define efficacy of decision-assist and closed-loop resuscitation in human hemorrhage. In comparison with formula-based bolus resuscitation, both semiautonomous and autonomous approaches were more efficient in goal-directed resuscitation of hemorrhage. They provide favorable conditions for the avoidance of over-resuscitation and its adverse clinical sequelae. Decision-assist and closed-loop resuscitation algorithms are promising technological solutions for constrained environments and areas of limited resources.
NASA Technical Reports Server (NTRS)
Changizi, Koorosh
1989-01-01
A nonlinear Lagrangian formulation for the spatial kinematic and dynamic analysis of open chain deformable links consisting of cylindrical joints that connect pairs of flexible links is developed. The special cases of revolute or prismatic joint can also be obtained from the kinematic equations. The kinematic equations are described using a 4x4 matrix method. The configuration of each deformable link in the open loop kinematic chain is identified using a coupled set of relative joint variables, constant geometric parameters, and elastic coordinates. The elastic coordinates define the link deformation with respect to a selected joint coordinate system that is consistent with the kinematic constraints on the boundary of the deformable link. These coordinates can be introduced using approximation techniques such as Rayleigh-Ritz method, finite element technique or any other desired approach. The large relative motion between two neighboring links are defined by a set of joint coordinates which describes the large relative translational and rotational motion between two neighboring joint coordinate systems. The origin of these coordinate systems are rigidly attached to the neighboring links at the joint definition points along the axis of motion.
Eye-hand coupling during closed-loop drawing: evidence of shared motor planning?
Reina, G Anthony; Schwartz, Andrew B
2003-04-01
Previous paradigms have used reaching movements to study coupling of eye-hand kinematics. In the present study, we investigated eye-hand kinematics as curved trajectories were drawn at normal speeds. Eye and hand movements were tracked as a monkey traced ellipses and circles with the hand in free space while viewing the hand's position on a computer monitor. The results demonstrate that the movement of the hand was smooth and obeyed the 2/3 power law. Eye position, however, was restricted to 2-3 clusters along the hand's trajectory and fixed approximately 80% of the time in one of these clusters. The eye remained stationary as the hand moved away from the fixation for up to 200 ms and saccaded ahead of the hand position to the next fixation along the trajectory. The movement from one fixation cluster to another consistently occurred just after the tangential hand velocity had reached a local minimum, but before the next segment of the hand's trajectory began. The next fixation point was close to an area of high curvature along the hand's trajectory even though the hand had not reached that point along the path. A visuo-motor illusion of hand movement demonstrated that the eye movement was influenced by hand movement and not simply by visual input. During the task, neural activity of pre-motor cortex (area F4) was recorded using extracellular electrodes and used to construct a population vector of the hand's trajectory. The results suggest that the saccade onset is correlated in time with maximum curvature in the population vector trajectory for the hand movement. We hypothesize that eye and arm movements may have common, or shared, information in forming their motor plans.
Wilson loops and QCD/string scattering amplitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makeenko, Yuri; Olesen, Poul; Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen O
2009-07-15
We generalize modern ideas about the duality between Wilson loops and scattering amplitudes in N=4 super Yang-Mills theory to large N QCD by deriving a general relation between QCD meson scattering amplitudes and Wilson loops. We then investigate properties of the open-string disk amplitude integrated over reparametrizations. When the Wilson-loop is approximated by the area behavior, we find that the QCD scattering amplitude is a convolution of the standard Koba-Nielsen integrand and a kernel. As usual poles originate from the first factor, whereas no (momentum-dependent) poles can arise from the kernel. We show that the kernel becomes a constant whenmore » the number of external particles becomes large. The usual Veneziano amplitude then emerges in the kinematical regime, where the Wilson loop can be reliably approximated by the area behavior. In this case, we obtain a direct duality between Wilson loops and scattering amplitudes when spatial variables and momenta are interchanged, in analogy with the N=4 super Yang-Mills theory case.« less
NASA Astrophysics Data System (ADS)
Nomura, Fumimasa; Hattori, Akihiro; Terazono, Hideyuki; Kim, Hyonchol; Odaka, Masao; Sugio, Yoshihiro; Yasuda, Kenji
2016-06-01
For the prediction of lethal arrhythmia occurrence caused by abnormality of cell-to-cell conduction, we have developed a next-generation in vitro cell-to-cell conduction assay, i.e., a quasi in vivo assay, in which the change in spatial cell-to-cell conduction is quantitatively evaluated from the change in waveforms of the convoluted electrophysiological signals from lined-up cardiomyocytes on a single closed loop of a microelectrode of 1 mm diameter and 20 µm width in a cultivation chip. To evaluate the importance of the closed-loop arrangement of cardiomyocytes for prediction, we compared the change in waveforms of convoluted signals of the responses in the closed-loop circuit arrangement with that of the response of cardiomyocyte clusters using a typical human ether a go-go related gene (hERG) ion channel blocker, E-4031. The results showed that (1) waveform prolongation and fluctuation both in the closed loops and clusters increased depending on the E-4031 concentration increase. However, (2) only the waveform signals in closed loops showed an apparent temporal change in waveforms from ventricular tachycardia (VT) to ventricular fibrillation (VF), which is similar to the most typical cell-to-cell conductance abnormality. The results indicated the usefulness of convoluted waveform signals of a closed-loop cell network for acquiring reproducible results acquisition and more detailed temporal information on cell-to-cell conduction.
Heavy-quark production in gluon fusion at two loops in QCD
NASA Astrophysics Data System (ADS)
Czakon, M.; Mitov, A.; Moch, S.
2008-07-01
We present the two-loop virtual QCD corrections to the production of heavy quarks in gluon fusion. The results are exact in the limit when all kinematical invariants are large compared to the mass of the heavy quark up to terms suppressed by powers of the heavy-quark mass. Our derivation uses a simple relation between massless and massive QCD scattering amplitudes as well as a direct calculation of the massive amplitude at two loops. The results presented here together with those obtained previously for quark-quark scattering form important parts of the next-to-next-to-leading order QCD corrections to heavy-quark production in hadron-hadron collisions.
ERIC Educational Resources Information Center
McCaul, Jennifer Lee
2015-01-01
"Closing the loop" is a commonly used phrase in discussing cyclical processes, such as the area of outcomes assessment in higher education. Increased interest in accountability and a shift in accreditation focus have necessitated that higher education institutions are closing the assessment loop and creating a culture of evidence to…
Jarque-Bou, N; Gracia-Ibáñez, V; Sancho-Bru, J L; Vergara, M; Pérez-González, A; Andrés, F J
2016-09-01
The kinematic analysis of human grasping is challenging because of the high number of degrees of freedom involved. The use of principal component and factorial analyses is proposed in the present study to reduce the hand kinematics dimensionality in the analysis of posture for ergonomic purposes, allowing for a comprehensive study without losing accuracy while also enabling velocity and acceleration analyses to be performed. A laboratory study was designed to analyse the effect of weight and diameter in the grasping posture for cylinders. This study measured the hand posture from six subjects when transporting cylinders of different weights and diameters with precision and power grasps. The hand posture was measured using a Vicon(®) motion-tracking system, and the principal component analysis was applied to reduce the kinematics dimensionality. Different ANOVAs were performed on the reduced kinematic variables to check the effect of weight and diameter of the cylinders, as well as that of the subject. The results show that the original twenty-three degrees of freedom of the hand were reduced to five, which were identified as digit arching, closeness, palmar arching, finger adduction and thumb opposition. Both cylinder diameter and weight significantly affected the precision grasping posture: diameter affects closeness, palmar arching and opposition, while weight affects digit arching, palmar arching and closeness. The power-grasping posture was mainly affected by the cylinder diameter, through digit arching, closeness and opposition. The grasping posture was largely affected by the subject factor and this effect couldn't be attributed only to hand size. In conclusion, this kinematic reduction allowed identifying the effect of the diameter and weight of the cylinders in a comprehensive way, being diameter more important than weight. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tonic accommodation predicts closed-loop accommodation responses.
Liu, Chunming; Drew, Stefanie A; Borsting, Eric; Escobar, Amy; Stark, Lawrence; Chase, Christopher
2016-12-01
The purpose of this study is to examine the potential relationship between tonic accommodation (TA), near work induced TA-adaptation and the steady state closed-loop accommodation response (AR). Forty-two graduate students participated in the study. Various aspects of their accommodation system were objectively measured using an open-field infrared auto-refractor (Grand Seiko WAM-5500). Tonic accommodation was assessed in a completely dark environment. The association between TA and closed-loop AR was assessed using linear regression correlations and t-test comparisons. Initial mean baseline TA was 1.84diopter (D) (SD±1.29D) with a wide distribution range (-0.43D to 5.14D). For monocular visual tasks, baseline TA was significantly correlated with the closed-loop AR. The slope of the best fit line indicated that closed-loop AR varied by approximately 0.3D for every 1D change in TA. This ratio was consistent across a variety of viewing distances and different near work tasks, including both static targets and continuous reading. Binocular reading conditions weakened the correlation between baseline TA and AR, although results remained statistically significant. The 10min near reading task with a 3D demand did not reveal significant near work induced TA-adaptation for either monocular or binocular conditions. Consistently, the TA-adaptation did not show any correlation with AR during reading. This study found a strong association between open-loop TA and closed-loop AR across a variety of viewing distances and different near work tasks. Difference between the correlations under monocular and binocular reading condition suggests a potential role for vergence compensation during binocular closed-loop AR. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohutova, P.; Verwichte, E., E-mail: p.kohutova@warwick.ac.uk
Coronal rain composed of cool plasma condensations falling from coronal heights along magnetic field lines is a phenomenon occurring mainly in active region coronal loops. Recent high-resolution observations have shown that coronal rain is much more common than previously thought, suggesting its important role in the chromosphere-corona mass cycle. We present the analysis of MHD oscillations and kinematics of the coronal rain observed in chromospheric and transition region lines by the Interface Region Imaging Spectrograph (IRIS) , the Hinode Solar Optical Telescope (SOT), and the Solar Dynamics Observatory ( SDO) Atmospheric Imaging Assembly (AIA). Two different regimes of transverse oscillationsmore » traced by the rain are detected: small-scale persistent oscillations driven by a continuously operating process and localized large-scale oscillations excited by a transient mechanism. The plasma condensations are found to move with speeds ranging from few km s{sup −1} up to 180 km s{sup −1} and with accelerations largely below the free-fall rate, likely explained by pressure effects and the ponderomotive force resulting from the loop oscillations. The observed evolution of the emission in individual SDO /AIA bandpasses is found to exhibit clear signatures of a gradual cooling of the plasma at the loop top. We determine the temperature evolution of the coronal loop plasma using regularized inversion to recover the differential emission measure (DEM) and by forward modeling the emission intensities in the SDO /AIA bandpasses using a two-component synthetic DEM model. The inferred evolution of the temperature and density of the plasma near the apex is consistent with the limit cycle model and suggests the loop is going through a sequence of periodically repeating heating-condensation cycles.« less
Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
Zhu, Yanhe; Zheng, Tianjiao; Jin, Hongzhe; Yang, Jixing; Zhao, Jie
2015-01-01
Unlike traditional rigid actuators, the significant features of Series Elastic Actuator (SEA) are stable torque control, lower output impedance, impact resistance and energy storage. Recently, SEA has been applied in many exoskeletons. In such applications, a key issue is how to realize the human-exoskeleton movement coordination. In this paper, double closed-loop cascade control for lower limb exoskeleton with SEA is proposed. This control method consists of inner SEA torque loop and outer contact force loop. Utilizing the SEA torque control with a motor velocity loop, actuation performances of SEA are analyzed. An integrated exoskeleton control system is designed, in which joint angles are calculated by internal encoders and resolvers and contact forces are gathered by external pressure sensors. The double closed-loop cascade control model is established based on the feedback signals of internal and external sensor. Movement experiments are accomplished in our prototype of lower limb exoskeleton. Preliminary results indicate the exoskeleton movements with pilot can be realized stably by utilizing this double closed-loop cascade control method. Feasibility of the SEA in our exoskeleton robot and effectiveness of the control method are verified.
Reconciling threshold and subthreshold expansions for pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Siemens, D.; Ruiz de Elvira, J.; Epelbaum, E.; Hoferichter, M.; Krebs, H.; Kubis, B.; Meißner, U.-G.
2017-07-01
Heavy-baryon chiral perturbation theory (ChPT) at one loop fails in relating the pion-nucleon amplitude in the physical region and for subthreshold kinematics due to loop effects enhanced by large low-energy constants. Studying the chiral convergence of threshold and subthreshold parameters up to fourth order in the small-scale expansion, we address the question to what extent this tension can be mitigated by including the Δ (1232) as an explicit degree of freedom and/or using a covariant formulation of baryon ChPT. We find that the inclusion of the Δ indeed reduces the low-energy constants to more natural values and thereby improves consistency between threshold and subthreshold kinematics. In addition, even in the Δ-less theory the resummation of 1 /mN corrections in the covariant scheme improves the results markedly over the heavy-baryon formulation, in line with previous observations in the single-baryon sector of ChPT that so far have evaded a profound theoretical explanation.
Reconciling threshold and subthreshold expansions for pion–nucleon scattering
Siemens, D.; Ruiz de Elvira, J.; Epelbaum, E.; ...
2017-04-21
Heavy-baryon chiral perturbation theory (ChPT) at one loop fails in relating the pion–nucleon amplitude in the physical region and for subthreshold kinematics due to loop effects enhanced by large low-energy constants. Studying the chiral convergence of threshold and subthreshold parameters up to fourth order in the small-scale expansion, we address the question to what extent this tension can be mitigated by including the Δ(1232) as an explicit degree of freedom and/or using a covariant formulation of baryon ChPT. We find that the inclusion of the Δ indeed reduces the low-energy constants to more natural values and thereby improves consistency betweenmore » threshold and subthreshold kinematics. In addition, even in the Δ-less theory the resummation of 1/m N corrections in the covariant scheme improves the results markedly over the heavy-baryon formulation, in line with previous observations in the single-baryon sector of ChPT that so far have evaded a profound theoretical explanation.« less
Closed-loop analysis and control of a non-inverting buck-boost converter
NASA Astrophysics Data System (ADS)
Chen, Zengshi; Hu, Jiangang; Gao, Wenzhong
2010-11-01
In this article, a cascade controller is designed and analysed for a non-inverting buck-boost converter. The fast inner current loop uses sliding mode control. The slow outer voltage loop uses the proportional-integral (PI) control. Stability analysis and selection of PI gains are based on the nonlinear closed-loop error dynamics incorporating both the inner and outer loop controllers. The closed-loop system is proven to have a nonminimum phase structure. The voltage transient due to step changes of input voltage or resistance is predictable. The operating range of the reference voltage is discussed. The controller is validated by a simulation circuit. The simulation results show that the reference output voltage is well-tracked under system uncertainties or disturbances, confirming the validity of the proposed controller.
McEwan, Thomas E.
1997-01-01
A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.
McEwan, T.E.
1997-08-26
A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.
Structural robustness with suboptimal responses for linear state space model
NASA Technical Reports Server (NTRS)
Keel, L. H.; Lim, Kyong B.; Juang, Jer-Nan
1989-01-01
A relationship between the closed-loop eigenvalues and the amount of perturbations in the open-loop matrix is addressed in the context of performance robustness. If the allowable perturbation ranges of elements of the open-loop matrix A and the desired tolerance of the closed-loop eigenvalues are given such that max(j) of the absolute value of Delta-lambda(j) (A+BF) should be less than some prescribed value, what is a state feedback controller F which satisfies the closed-loop eigenvalue perturbation-tolerance requirement for a class of given perturbation in A? The paper gives an algorithm to design such a controller. Numerical examples are included for illustration.
Closed-loop endo-atmospheric ascent guidance for reusable launch vehicle
NASA Astrophysics Data System (ADS)
Sun, Hongsheng
This dissertation focuses on the development of a closed-loop endo-atmospheric ascent guidance algorithm for the 2nd generation reusable launch vehicle. Special attention has been given to the issues that impact on viability, complexity and reliability in on-board implementation. The algorithm is called once every guidance update cycle to recalculate the optimal solution based on the current flight condition, taking into account atmospheric effects and path constraints. This is different from traditional ascent guidance algorithms which operate in a simple open-loop mode inside atmosphere, and later switch to a closed-loop vacuum ascent guidance scheme. The classical finite difference method is shown to be well suited for fast solution of the constrained optimal three-dimensional ascent problem. The initial guesses for the solutions are generated using an analytical vacuum optimal ascent guidance algorithm. Homotopy method is employed to gradually introduce the aerodynamic forces to generate the optimal solution from the optimal vacuum solution. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body reusable launch vehicle. To verify the algorithm presented in this dissertation, a series of open-loop and closed-loop tests are performed for three different missions. Wind effects are also studied in the closed-loop simulations. For comparison, the solutions for the same missions are also obtained by two independent optimization softwares. The results clearly establish the feasibility of closed-loop endo-atmospheric ascent guidance of rocket-powered launch vehicles. ATO cases are also tested to assess the adaptability of the algorithm to autonomously incorporate the abort modes.
Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.
Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert
2015-01-01
Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.
Koczyk, Grzegorz; Berezovsky, Igor N.
2008-01-01
Domain hierarchy and closed loops (DHcL) (http://sitron.bccs.uib.no/dhcl/) is a web server that delineates energy hierarchy of protein domain structure and detects domains at different levels of this hierarchy. The server also identifies closed loops and van der Waals locks, which constitute a structural basis for the protein domain hierarchy. The DHcL can be a useful tool for an express analysis of protein structures and their alternative domain decompositions. The user submits a PDB identifier(s) or uploads a 3D protein structure in a PDB format. The results of the analysis are the location of domains at different levels of hierarchy, closed loops, van der Waals locks and their interactive visualization. The server maintains a regularly updated database of domains, closed loop and van der Waals locks for all X-ray structures in PDB. DHcL server is available at: http://sitron.bccs.uib.no/dhcl. PMID:18502776
Novel imaging closed loop control strategy for heliostats
NASA Astrophysics Data System (ADS)
Bern, Gregor; Schöttl, Peter; Heimsath, Anna; Nitz, Peter
2017-06-01
Central Receiver Systems use up to thousands of heliostats to concentrate solar radiation. The precise control of heliostat aiming points is crucial not only for efficiency but also for reliable plant operation. Besides the calibration of open loop control systems, closed loop tracking strategies are developed to address a precise and efficient aiming strategy. The need for cost reductions in the heliostat field intensifies the motivation for economic closed loop control systems. This work introduces an approach for a closed loop heliostat tracking strategy using image analysis and signal modulation. The approach aims at the extraction of heliostat focal spot position within the receiver domain by means of a centralized remote vision system decoupled from the rough conditions close to the focal area. Taking an image sequence of the receiver while modulating a signal on different heliostats, their aiming points are retrieved. The work describes the methodology and shows first results from simulations and practical tests performed in small scale, motivating further investigation and deployment.
Kinematically redundant robot manipulators
NASA Technical Reports Server (NTRS)
Baillieul, J.; Hollerbach, J.; Brockett, R.; Martin, D.; Percy, R.; Thomas, R.
1987-01-01
Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques.
Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A
2015-05-01
Goal-directed movements, such as reaching out to grasp an object, are necessarily constrained by the spatial properties of the target such as its size, shape, and position. For example, during a reach-to-grasp movement, the peak width of the aperture formed by the thumb and fingers in flight (peak grip aperture, PGA) is linearly related to the target's size. Suppressing vision throughout the movement (visual open loop) has a small though significant effect on this relationship. Visual open loop conditions also produce a large increase in the PGA compared to when vision is available throughout the movement (visual closed loop). Curiously, this differential effect of the availability of visual feedback is influenced by the presentation order: the difference in PGA between closed- and open-loop trials is smaller when these trials are intermixed (an effect we have called 'homogenization'). Thus, grasping movements are affected not only by the availability of visual feedback (closed loop or open loop) but also by what happened on the previous trial. It is not clear, however, whether this carry-over effect is mediated through motor (or sensorimotor) memory or through the interference of different task sets for closed-loop and open-loop feedback that determine when the movements are fully specified. We reasoned that sensorimotor memory, but not a task set for closed and open loop feedback, would be specific to the type of response. We tested this prediction in a condition in which pointing to targets was alternated with grasping those same targets. Critically, in this condition, when pointing was performed in open loop, grasping was always performed in closed loop (and vice versa). Despite the fact that closed- and open-loop trials were alternating in this condition, we found no evidence for homogenization of the PGA. Homogenization did occur, however, in a follow-up experiment in which grasping movements and visual feedback were alternated between the left and the right hand, indicating that sensorimotor (or motor) memory can operate both within and between hands when the response type is kept the same. In a final experiment, we ruled out the possibility that simply alternating the hand used to perform the grasp interferes with motor or sensorimotor memory. We did this by showing that when the hand was alternated within a block of exclusively closed- or open-loop trials, homogenization of the PGA did not occur. Taken together, the results suggest that (1) interference from simply switching between task sets for closed or open-loop feedback or from switching between the hands cannot account homogenization in the PGA and that (2) the programming and execution of grasps can borrow not only from grasping movements executed in the past by the same hand, but also from grasping movements executed with the other hand. Copyright © 2015 Elsevier B.V. All rights reserved.
Time delay compensation for closed-loop insulin delivery systems: a simulation study.
Reboldi, G P; Home, P D; Calabrese, G; Fabietti, P G; Brunetti, P; Massi Benedetti, M
1991-06-01
Closed loop insulin therapy certainly represents the best possible approach to insulin replacement. However, present limitations preclude wider application of the so-called artificial pancreas. Therefore, a thorough understanding of these limitations is needed to design better systems for future long-term use. The present simulation study was design: to obtain better information on the impact of the measurement delay of currently available closed-loop devices both during closed-loop insulin delivery and blood glucose clamp studies, and to design and test a time delay compensator based on the method originally described by O.J. Smith. Simulations were performed on a Compaq Deskpro 486/25 personal computer under MS-DOS operating system using Simnon rel. 3.00 software. There was a direct relationship between measurement delay and amount of insulin delivered, i.e., the longer the delay the higher the insulin dose needed to control a rise in blood glucose; the closed-loop response in presence of a time delay was qualitatively impaired both during insulin delivery and blood glucose clamp studies; time delay compensation was effective in reducing the insulin dose and improving controller stability during the early phase of clamp studies. However, the robustness of a Smith's predictor-based controller should be carefully evaluated before implementation in closed-loop systems can be considered.
Scholten, Kee; Meng, Ellis
2018-06-15
Closed-loop drug delivery promises autonomous control of pharmacotherapy through the continuous monitoring of biomarker levels. For decades, researchers have strived for portable closed-loop systems capable of treating ambulatory patients with chronic conditions such as diabetes mellitus. After years of development, the first of these systems have left the laboratory and entered commercial use. This long-awaited advance reflects recent development of chronically stable implantable biosensors able to accurately measure biomarker levels in vivo. This review discusses the role of implantable biosensors in closed-loop drug delivery applications, with the intent to provide a resource for engineers and researchers studying such systems. We provide an overview of common biosensor designs and review the principle challenges in implementing long indwelling sensors: namely device sensitivity, selectivity, and lifetime. This review examines novel advances in transducer design, biological interface, and material biocompatibility, with a focus on recent academic and commercial work which provide successful strategies to overcome perennial challenges. This review focuses primarily on the topics of closed-loop glucose control and continuous glucose monitoring biosensors, which make up the overwhelming majority of published research in this area. We conclude with an overview of recent advances in closed-loop systems targeting applications outside blood glucose management. Copyright © 2018 Elsevier B.V. All rights reserved.
Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sienicki, James J.; Grandy, Christopher
A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. Themore » various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.« less
NASA Astrophysics Data System (ADS)
Widge, Alik S.; Moritz, Chet T.
2014-04-01
Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.
Effect of closed-loop order processing on the time to initial antimicrobial therapy.
Panosh, Nicole; Rew, Richardd; Sharpe, Michelle
2012-08-15
The results of a study comparing the average time to initiation of i.v. antimicrobial therapy with closed-versus open-loop order entry and processing are reported. A retrospective cohort study was performed to compare order-to-administration times for initial doses of i.v. antimicrobials before and after a closed-loop order-processing system including computerized prescriber order entry (CPOE) was implemented at a large medical center. A total of 741 i.v. antimicrobial administrations to adult patients during designated five-month preimplementation and postimplementation study periods were assessed. Drug-use reports generated by the pharmacy database were used to identify order-entry times, and medication administration records were reviewed to determine times of i.v. antimicrobial administration. The mean ± S.D. order-to-administration times before and after the implementation of the CPOE system and closed-loop order processing were 3.18 ± 2.60 and 2.00 ± 1.89 hours, respectively, a reduction of 1.18 hours (p < 0.0001). Closed-loop order processing was associated with significant reductions in the average time to initiation of i.v. therapy in all patient care areas evaluated (cardiology, general medicine, and oncology). The study results suggest that CPOE-based closed-loop order processing can play an important role in achieving compliance with current practice guidelines calling for increased efforts to ensure the prompt initiation of i.v. antimicrobials for severe infections (e.g., sepsis, meningitis). Implementation of a closed-loop order-processing system resulted in a significant decrease in order-to-administration times for i.v. antimicrobial therapy.
Adams, Scott D; Kouzani, Abbas Z; Tye, Susannah J; Bennet, Kevin E; Berk, Michael
2018-02-13
Dynamic feedback based closed-loop medical devices offer a number of advantages for treatment of heterogeneous neurological conditions. Closed-loop devices integrate a level of neurobiological feedback, which allows for real-time adjustments to be made with the overarching aim of improving treatment efficacy and minimizing risks for adverse events. One target which has not been extensively explored as a potential feedback component in closed-loop therapies is mitochondrial function. Several neurodegenerative and psychiatric disorders including Parkinson's disease, Major Depressive disorder and Bipolar disorder have been linked to perturbations in the mitochondrial respiratory chain. This paper investigates the potential to monitor this mitochondrial function as a method of feedback for closed-loop neuromodulation treatments. A generic model of the closed-loop treatment is developed to describe the high-level functions of any system designed to control neural function based on mitochondrial response to stimulation, simplifying comparison and future meta-analysis. This model has four key functional components including: a sensor, signal manipulator, controller and effector. Each of these components are described and several potential technologies for each are investigated. While some of these candidate technologies are quite mature, there are still technological gaps remaining. The field of closed-loop medical devices is rapidly evolving, and whilst there is a lot of interest in this area, widespread adoption has not yet been achieved due to several remaining technological hurdles. However, the significant therapeutic benefits offered by this technology mean that this will be an active area for research for years to come.
Sensory feedback in prosthetics: a standardized test bench for closed-loop control.
Dosen, Strahinja; Markovic, Marko; Hartmann, Cornelia; Farina, Dario
2015-03-01
Closing the control loop by providing sensory feedback to the user of a prosthesis is an important challenge, with major impact on the future of prosthetics. Developing and comparing closed-loop systems is a difficult task, since there are many different methods and technologies that can be used to implement each component of the system. Here, we present a test bench developed in Matlab Simulink for configuring and testing the closed-loop human control system in standardized settings. The framework comprises a set of connected generic blocks with normalized inputs and outputs, which can be customized by selecting specific implementations from a library of predefined components. The framework is modular and extensible and it can be used to configure, compare and test different closed-loop system prototypes, thereby guiding the development towards an optimal system configuration. The use of the test bench was demonstrated by investigating two important aspects of closed-loop control: performance of different electrotactile feedback interfaces (spatial versus intensity coding) during a pendulum stabilization task and feedforward methods (joystick versus myocontrol) for force control. The first experiment demonstrated that in the case of trained subjects the intensity coding might be superior to spatial coding. In the second experiment, the control of force was rather poor even with a stable and precise control interface (joystick), demonstrating that inherent characteristics of the prosthesis can be an important limiting factor when considering the overall effectiveness of the closed-loop control. The presented test bench is an important instrument for investigating different aspects of human manual control with sensory feedback.
Rocket Propellant Ducts (Cryogenic Fuel Lines): First Cut Approximations and Design Guidance
NASA Technical Reports Server (NTRS)
Brewer, William V.
1998-01-01
The design team has to set parameters before analysis can take place. Analysis is customarily a thorough and time consuming process which can take weeks or even months. Only when analysis is complete can the designer obtain feedback. If margins are negative, the process must be repeated to a greater or lesser degree until satisfactory results are achieved. Reduction of the number of iterations thru this loop would beneficially conserve time and resources. The task was to develop relatively simple, easy to use, guidelines and analytic tools that allow the designer to evaluate what effect various alternatives may have on performance as the design progresses. "Easy to use" is taken to mean closed form approximations and the use of graphic methods. "Simple" implies that 2-d and quasi 3-d approximations be exploited to whatever degree is useful before more resource intensive methods are applied. The objective is to avoid the grosser violation of performance margins at the outset. Initial efforts are focused on thermal expansion/contraction and rigid body kinematics as they relate to propellant duct displacements in the gimbal plane loop (GPL). The purpose of the loop is to place two flexible joints on the same two orthogonal intersecting axes as those of the rocket motor gimbals. This supposes the ducting will flex predictably with independent rotations corresponding to those of the motor gimbal actions. It can be shown that if GPL joint axes do not coincide with motor gimbal axes, displacement incompatibilities result in less predictable movement of the ducts.
Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey.
Shi, Chaoyang; Luo, Xiongbiao; Qi, Peng; Li, Tianliang; Song, Shuang; Najdovski, Zoran; Fukuda, Toshio; Ren, Hongliang
2017-08-01
Continuum robots provide inherent structural compliance with high dexterity to access the surgical target sites along tortuous anatomical paths under constrained environments and enable to perform complex and delicate operations through small incisions in minimally invasive surgery. These advantages enable their broad applications with minimal trauma and make challenging clinical procedures possible with miniaturized instrumentation and high curvilinear access capabilities. However, their inherent deformable designs make it difficult to realize 3-D intraoperative real-time shape sensing to accurately model their shape. Solutions to this limitation can lead themselves to further develop closely associated techniques of closed-loop control, path planning, human-robot interaction, and surgical manipulation safety concerns in minimally invasive surgery. Although extensive model-based research that relies on kinematics and mechanics has been performed, accurate shape sensing of continuum robots remains challenging, particularly in cases of unknown and dynamic payloads. This survey investigates the recent advances in alternative emerging techniques for 3-D shape sensing in this field and focuses on the following categories: fiber-optic-sensor-based, electromagnetic-tracking-based, and intraoperative imaging modality-based shape-reconstruction methods. The limitations of existing technologies and prospects of new technologies are also discussed.
NASA Astrophysics Data System (ADS)
Voellmer, G. M.; Chuss, D. T.; Jackson, M.; Krejny, M.; Moseley, S. H.; Novak, G.; Wollack, E. J.
2006-06-01
We describe the design and construction of a Variable-delay Polarization Modulator (VPM) that has been built and integrated into the Hertz ground-based, submillimeter polarimeter at the SMTO on Mt. Graham in Arizona. VPMs allow polarization modulation by controlling the phase difference between two linear, orthogonal polarizations. This is accomplished by utilizing a grid-mirror pair with a controlled separation. The size of the gap between the mirror and the polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. The necessity of controlling the phase of the radiation across this device drives the two novel features of the VPM. First, a novel, kinematic, flexure is employed that passively maintains the parallelism of the mirror and the grid to 1.5 μm over a 150 mm diameter, with a 400 μm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. Second, the VPM uses a grid flattener that highly constrains the planarity of the polarizing grid. In doing so, the phase error across the device is minimized. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented.
Brain-computer interface control along instructed paths
NASA Astrophysics Data System (ADS)
Sadtler, P. T.; Ryu, S. I.; Tyler-Kabara, E. C.; Yu, B. M.; Batista, A. P.
2015-02-01
Objective. Brain-computer interfaces (BCIs) are being developed to assist paralyzed people and amputees by translating neural activity into movements of a computer cursor or prosthetic limb. Here we introduce a novel BCI task paradigm, intended to help accelerate improvements to BCI systems. Through this task, we can push the performance limits of BCI systems, we can quantify more accurately how well a BCI system captures the user’s intent, and we can increase the richness of the BCI movement repertoire. Approach. We have implemented an instructed path task, wherein the user must drive a cursor along a visible path. The instructed path task provides a versatile framework to increase the difficulty of the task and thereby push the limits of performance. Relative to traditional point-to-point tasks, the instructed path task allows more thorough analysis of decoding performance and greater richness of movement kinematics. Main results. We demonstrate that monkeys are able to perform the instructed path task in a closed-loop BCI setting. We further investigate how the performance under BCI control compares to native arm control, whether users can decrease their movement variability in the face of a more demanding task, and how the kinematic richness is enhanced in this task. Significance. The use of the instructed path task has the potential to accelerate the development of BCI systems and their clinical translation.
A Study on Micropipetting Detection Technology of Automatic Enzyme Immunoassay Analyzer.
Shang, Zhiwu; Zhou, Xiangping; Li, Cheng; Tsai, Sang-Bing
2018-04-10
In order to improve the accuracy and reliability of micropipetting, a method of micro-pipette detection and calibration combining the dynamic pressure monitoring in pipetting process and quantitative identification of pipette volume in image processing was proposed. Firstly, the normalized pressure model for the pipetting process was established with the kinematic model of the pipetting operation, and the pressure model is corrected by the experimental method. Through the pipetting process pressure and pressure of the first derivative of real-time monitoring, the use of segmentation of the double threshold method as pipetting fault evaluation criteria, and the pressure sensor data are processed by Kalman filtering, the accuracy of fault diagnosis is improved. When there is a fault, the pipette tip image is collected through the camera, extract the boundary of the liquid region by the background contrast method, and obtain the liquid volume in the tip according to the geometric characteristics of the pipette tip. The pipette deviation feedback to the automatic pipetting module and deviation correction is carried out. The titration test results show that the combination of the segmented pipetting kinematic model of the double threshold method of pressure monitoring, can effectively real-time judgment and classification of the pipette fault. The method of closed-loop adjustment of pipetting volume can effectively improve the accuracy and reliability of the pipetting system.
Analytical formulation of selected activities of the remote manipulator system
NASA Technical Reports Server (NTRS)
Zimmerman, K. J.
1977-01-01
Existing analysis of Orbiter-RMS-Payload kinematics were surveyed, including equations dealing with the two body kinematics in the presence of a massless RMS and compares analytical explicit solutions with numerical solutions. For the following operational phases of the RMS numerical demonstration, problems are provided: (1) payload capture; (2) payload stowage and removal from cargo bay; and (3) payload deployment. The equation of motion provided accounted for RMS control forces and torque moments and could be extended to RMS flexibility and control loop simulation without increasing the degrees of freedom of the two body system.
Antenna Linear-Quadratic-Gaussian (LQG) Ccontrollers: Properties, Limits of Performance, and Tuning
NASA Technical Reports Server (NTRS)
Gawronski, Wodek K.
2004-01-01
The LQG controllers significantly improve antenna tracking precision, but their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller, and the selection of weights of the LQG performance index. The paper selects the coordinates of the open-loop model that simplify the shaping of the closed-loop performance. and analyzes the impact of thc weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. Finally, it presents the LQG controller tuning procedure that rationally shapes the closed-loop performance.
A control system design approach for flexible spacecraft
NASA Technical Reports Server (NTRS)
Silverberg, L. M.
1985-01-01
A control system design approach for flexible spacecraft is presented. The control system design is carried out in two steps. The first step consists of determining the ideal control system in terms of a desirable dynamic performance. The second step consists of designing a control system using a limited number of actuators that possess a dynamic performance that is close to the ideal dynamic performance. The effects of using a limited number of actuators is that the actual closed-loop eigenvalues differ from the ideal closed-loop eigenvalues. A method is presented to approximate the actual closed-loop eigenvalues so that the calculation of the actual closed-loop eigenvalues can be avoided. Depending on the application, it also may be desirable to apply the control forces as impulses. The effect of digitizing the control to produce the appropriate impulses is also examined.
Geometrical criteria for characterizing open and closed states of WPD-loop in PTP1B
NASA Astrophysics Data System (ADS)
Shinde, Ranajit Nivrutti; Elizabeth Sobhia, M.
2012-06-01
Distinctive movement of WPD-loop occurs during the catalysis of phosphotyrosine by protein tyrosine phosphatase 1B (PTP1B). This loop is in the "open" state in apo-form whereas it is catalytically competent in the "closed" state. During the closure of this loop, unique hydrogen bond interactions are formed between different residues of the PTP1B. Present study examines such interactions from the available 118 crystal structures of PTP1B. It gives insights into the five novel hydrogen bonds essentially formed in the "closed" loop structures. Additionally, the study provides distance ranges between the atoms involved in the hydrogen bonds. This information can be used as a geometrical criterion in the characterization of conformational state of the WPD-loop especially in the molecular dynamics simulations.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... electricity from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small irrigation..., geothermal energy, solar energy, small irrigation power, municipal solid waste, qualified hydropower... from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and solar energy...
Enabling Medical Device Interoperability for the Integrated Clinical Environment
2016-02-01
Pajic M, Mangharam R, Sokolsky O, Arney D, Goldman JM, Lee I. Model-Driven Safety Analysis of Closed - Loop Medical Systems. IEEE Transactions on...Manigel J, Osborn D, Roellike T, Weininger S, Westenskow D, “Development of a Standard for Physiologic Closed Loop Controllers in Medical Devices...3 2010. 27. Arney D, Pajic M, Goldman JM, Lee I, Mangharam R, Sokolsky O, “Toward Patient Safety in Closed - Loop Medical Device Systems,” In
Closed Loop Control of Oxygen Delivery and Oxygen Generation
2017-08-01
AFRL-SA-WP-SR-2017-0024 Closed Loop Control of Oxygen Delivery and Oxygen Generation Dr. Jay Johannigman1, Richard Branson1...for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO...TITLE AND SUBTITLE Closed Loop Control of Oxygen Delivery and Oxygen Generation 5a. CONTRACT NUMBER FA8650-10-2-6140 5b. GRANT NUMBER
Closed-loop model identification of cooperative manipulators holding deformable objects
NASA Astrophysics Data System (ADS)
Alkathiri, A. A.; Akmeliawati, R.; Azlan, N. Z.
2017-11-01
This paper presents system identification to obtain the closed-loop models of a couple of cooperative manipulators in a system, which function to hold deformable objects. The system works using the master-slave principle. In other words, one of the manipulators is position-controlled through encoder feedback, while a force sensor gives feedback to the other force-controlled manipulator. Using the closed-loop input and output data, the closed-loop models, which are useful for model-based control design, are estimated. The criteria for model validation are a 95% fit between the measured and simulated output of the estimated models and residual analysis. The results show that for both position and force control respectively, the fits are 95.73% and 95.88%.
Sub-Poissonian light and photocurrent shot-noise suppression in closed opto-electronic loop
NASA Technical Reports Server (NTRS)
Masalov, A. V.; Putilin, A. A.; Vasilyev, Michael V.
1994-01-01
We examine experimentally photocurrent noise reduction in the opto-electronic closed loop. Photocurrent noise density 12.5 dB below the shot-noise was observed. So large suppression was not reached in previous experiments and cannot be explained in terms of an ordinary sub-Poissonian light in the loop. We propose the concept of anticorrelation state for the description of light in the loop.
40 CFR 63.166 - Standards: Sampling connection systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... defined in 40 CFR part 261. (c) In-situ sampling systems and sampling systems without purges are exempt..., closed-loop, or closed-vent system, except as provided in § 63.162(b) of this subpart. Gases displaced...-purge, closed-loop, or closed-vent system as required in paragraph (a) of this section shall: (1) Return...
Heavy-quark production in massless quark scattering at two loops in QCD
NASA Astrophysics Data System (ADS)
Czakon, M.; Mitov, A.; Moch, S.
2007-07-01
We present the two-loop virtual QCD corrections to the production of heavy quarks in the quark-anti-quark annihilation channel in the limit when all kinematical invariants are large compared to the mass of the heavy quark. Our result is exact up to terms suppressed by powers of the heavy-quark mass. The derivation is based on a simple relation between massless and massive scattering amplitudes in gauge theories proposed recently by two of the authors as well as a direct calculation of the massive amplitude at two loops. The results presented here form an important part of the next-to-next-to-leading order QCD contributions to heavy-quark production in hadron-hadron collisions.
The classification of two-loop integrand basis in pure four-dimension
NASA Astrophysics Data System (ADS)
Feng, Bo; Huang, Rijun
2013-02-01
In this paper, we have made the attempt to classify the integrand basis of all two-loop diagrams in pure four-dimensional space-time. The first step of our classification is to determine all different topologies of two-loop diagrams, i.e., the structure of denominators. The second step is to determine the set of independent numerators for each topology using Gröbner basis method. For the second step, varieties defined by putting all propagators on-shell has played an important role. We discuss the structures of varieties and how they split to various irreducible branches under specific kinematic configurations of external momenta. The structures of varieties are crucial to determine coefficients of integrand basis in reduction both numerically or analytically.
NASA Astrophysics Data System (ADS)
Levin, E.; Prygarin, A.
2008-02-01
In this paper we address two problems in pomeron calculus in zero transverse dimensions: the summation of the pomeron loops and the calculation of the processes of multiparticle generation. We introduce a new generating functional for these processes and obtain the evolution equation for it. We argue that in the kinematic range given by 1 ≪ln(1/α_{text{S}}
Hendrieckx, Christel; Poole, Lucinda A; Sharifi, Amin; Jayawardene, Dilshani; Loh, Margaret M; Horsburgh, Jodie C; Bach, Leon A; Colman, Peter G; Kumareswaran, Kavita; Jenkins, Alicia J; MacIsaac, Richard J; Ward, Glenn M; Grosman, Benyamin; Roy, Anirban; O'Neal, David N; Speight, Jane
2017-07-01
This qualitative study explored trial participants' experiences of four nights of in-home closed loop. Sixteen adults with type 1 diabetes, who completed a randomized crossover trial, were interviewed after four consecutive nights of closed-loop. Interviews were audio recorded, transcribed, and analyzed with a coding framework developed to identify the main themes. Participants had a mean age of 42 ± 10 years, nine were women; mean diabetes duration was 27 ± 7 years, and all were using insulin pumps. Overall, first impressions were positive. Participants found closed-loop easy to use and understand. Most experienced more stable overnight glucose levels, although for some these were similar to usual care or higher than they expected. Compared with their usual treatment, they noticed the proactive nature of the closed-loop, being able to predict trends and deliver micro amounts of insulin. Most reported technical glitches or inconveniences during one or more nights, such as transmission problems, problematic connectivity between devices, ongoing alarms despite addressing low glucose levels, and sensor inaccuracy. Remote monitoring by the trial team and their own hypoglycemic awareness contributed to feelings of trust and safety. Although rare, safety concerns were raised, related to feeling unsure whether the system would respond in time to falling glucose levels. This study provides relevant insights for implementation of closed-loop in the real world. For people with diabetes who are less familiar with technology, remote monitoring for the first few days may provide reassurance, strengthen their trust/skills, and make closed-loop an acceptable option for more people with type 1 diabetes.
Hazan, Hananel; Ziv, Noam E
2017-01-01
There is growing need for multichannel electrophysiological systems that record from and interact with neuronal systems in near real-time. Such systems are needed, for example, for closed loop, multichannel electrophysiological/optogenetic experimentation in vivo and in a variety of other neuronal preparations, or for developing and testing neuro-prosthetic devices, to name a few. Furthermore, there is a need for such systems to be inexpensive, reliable, user friendly, easy to set-up, open and expandable, and possess long life cycles in face of rapidly changing computing environments. Finally, they should provide powerful, yet reasonably easy to implement facilities for developing closed-loop protocols for interacting with neuronal systems. Here, we survey commercial and open source systems that address these needs to varying degrees. We then present our own solution, which we refer to as Closed Loop Experiments Manager (CLEM). CLEM is an open source, soft real-time, Microsoft Windows desktop application that is based on a single generic personal computer (PC) and an inexpensive, general-purpose data acquisition board. CLEM provides a fully functional, user-friendly graphical interface, possesses facilities for recording, presenting and logging electrophysiological data from up to 64 analog channels, and facilities for controlling external devices, such as stimulators, through digital and analog interfaces. Importantly, it includes facilities for running closed-loop protocols written in any programming language that can generate dynamic link libraries (DLLs). We describe the application, its architecture and facilities. We then demonstrate, using networks of cortical neurons growing on multielectrode arrays (MEA) that despite its reliance on generic hardware, its performance is appropriate for flexible, closed-loop experimentation at the neuronal network level.
Hazan, Hananel; Ziv, Noam E.
2017-01-01
There is growing need for multichannel electrophysiological systems that record from and interact with neuronal systems in near real-time. Such systems are needed, for example, for closed loop, multichannel electrophysiological/optogenetic experimentation in vivo and in a variety of other neuronal preparations, or for developing and testing neuro-prosthetic devices, to name a few. Furthermore, there is a need for such systems to be inexpensive, reliable, user friendly, easy to set-up, open and expandable, and possess long life cycles in face of rapidly changing computing environments. Finally, they should provide powerful, yet reasonably easy to implement facilities for developing closed-loop protocols for interacting with neuronal systems. Here, we survey commercial and open source systems that address these needs to varying degrees. We then present our own solution, which we refer to as Closed Loop Experiments Manager (CLEM). CLEM is an open source, soft real-time, Microsoft Windows desktop application that is based on a single generic personal computer (PC) and an inexpensive, general-purpose data acquisition board. CLEM provides a fully functional, user-friendly graphical interface, possesses facilities for recording, presenting and logging electrophysiological data from up to 64 analog channels, and facilities for controlling external devices, such as stimulators, through digital and analog interfaces. Importantly, it includes facilities for running closed-loop protocols written in any programming language that can generate dynamic link libraries (DLLs). We describe the application, its architecture and facilities. We then demonstrate, using networks of cortical neurons growing on multielectrode arrays (MEA) that despite its reliance on generic hardware, its performance is appropriate for flexible, closed-loop experimentation at the neuronal network level. PMID:29093659
Design and Implementation of an RTK-Based Vector Phase Locked Loop
Shafaati, Ahmad; Lin, Tao; Broumandan, Ali; Lachapelle, Gérard
2018-01-01
This paper introduces a novel double-differential vector phase-locked loop (DD-VPLL) for Global Navigation Satellite Systems (GNSS) that leverages carrier phase position solutions as well as base station measurements in the estimation of rover tracking loop parameters. The use of double differencing alleviates the need for estimating receiver clock dynamics and atmospheric delays; therefore, the navigation filter consists of the baseline dynamic states only. It is shown that using vector processing for carrier phase tracking leads to a significant enhancement in the receiver sensitivity compared to using the conventional scalar-based tracking loop (STL) and vector frequency locked loop (VFLL). The sensitivity improvement of 8 to 10 dB compared to STL, and 7 to 8 dB compared to VFLL, is obtained based on the test cases reported in the paper. Also, an increased probability of ambiguity resolution in the proposed method results in better availability for real time kinematic (RTK) applications. PMID:29533994
1979-04-01
tools, simplification of equipment interfaces involved in manual operations to provide simple system preparation, closing flight control inner loops ...alti- tude, and heading rate. The closed loops operate in three primary modes: cruise, dead reckoning, and approach. The aircraft is stabilized by...onboard closed loops , so the operator is not required to maintain hands-on operation to keep it in the air. The operator is able to command airspeed
Closed loop problems in biomechanics. Part II--an optimization approach.
Vaughan, C L; Hay, J G; Andrews, J G
1982-01-01
A closed loop problem in biomechanics may be defined as a problem in which there are one or more closed loops formed by the human body in contact with itself or with an external system. Under certain conditions the problem is indeterminate--the unknown forces and torques outnumber the equations. Force transducing devices, which would help solve this problem, have serious drawbacks, and existing methods are inaccurate and non-general. The purposes of the present paper are (1) to develop a general procedure for solving closed loop problems; (2) to illustrate the application of the procedure; and (3) to examine the validity of the procedure. A mathematical optimization approach is applied to the solution of three different closed loop problems--walking up stairs, vertical jumping and cartwheeling. The following conclusions are drawn: (1) the method described is reasonably successful for predicting horizontal and vertical reaction forces at the distal segments although problems exist for predicting the points of application of these forces; (2) the results provide some support for the notion that the human neuromuscular mechanism attempts to minimize the joint torques and thus, to a certain degree, the amount of muscular effort; (3) in the validation procedure it is desirable to have a force device for each of the distal segments in contact with a fixed external system; and (4) the method is sufficiently general to be applied to all classes of closed loop problems.
Closed-loop for type 1 diabetes - an introduction and appraisal for the generalist.
Bally, Lia; Thabit, Hood; Hovorka, Roman
2017-01-23
Rapid progress over the past decade has been made with the development of the 'Artificial Pancreas', also known as the closed-loop system, which emulates the feedback glucose-responsive functionality of the pancreatic beta cell. The recent FDA approval of the first hybrid closed-loop system makes the Artificial Pancreas a realistic therapeutic option for people with type 1 diabetes. In anticipation of its advent into clinical care, we provide a primer and appraisal of this novel therapeutic approach in type 1 diabetes for healthcare professionals and non-specialists in the field. Randomised clinical studies in outpatient and home settings have shown improved glycaemic outcomes, reduced risk of hypoglycaemia and positive user attitudes. User input and interaction with existing closed-loop systems, however, are still required. Therefore, management of user expectations, as well as training and support by healthcare providers are key to ensure optimal uptake, satisfaction and acceptance of the technology. An overview of closed-loop technology and its clinical implications are discussed, complemented by our extensive hands-on experience with closed-loop system use during free daily living. The introduction of the artificial pancreas into clinical practice represents a milestone towards the goal of improving the care of people with type 1 diabetes. There remains a need to understand the impact of user interaction with the technology, and its implication on current diabetes management and care.
NASA Technical Reports Server (NTRS)
Collins, J. J.; De Luca, C. J.; Pavlik, A. E.; Roy, S. H.; Emley, M. S.; Young, L. R. (Principal Investigator)
1995-01-01
Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes during undisturbed stance.
Inverse spin Hall effect in a closed loop circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omori, Y.; Auvray, F.; Wakamura, T.
We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.
Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
Zhang, Fuhai; Fu, Yili; Zhang, Qinchao; Wang, Shuguo
2015-01-01
Aiming at the hand rehabilitation of stroke patients, a wearable hand exoskeleton with circuitous joint is proposed. The circuitous joint adopts the symmetric pinion and rack mechanism (SPRM) with the parallel mechanism. The exoskeleton finger is a serial mechanism composed of three closed-chain SPRM joints in series. The kinematic equations of the open chain of the finger and the closed chains of the SPRM joints were built to analyze the kinematics of the hand rehabilitation exoskeleton. The experimental setup of the hand rehabilitation exoskeleton was built and the continuous passive motion (CPM) rehabilitation experiment and the test of human-robot interaction force measurement were conducted. Experiment results show that the mechanical design of the hand rehabilitation robot is reasonable and that the kinematic analysis is correct, thus the exoskeleton can be used for the hand rehabilitation of stroke patients.
Insulin delivery and nocturnal glucose control in children and adolescents with type 1 diabetes.
Tauschmann, Martin; Hovorka, Roman
2017-12-01
Nocturnal glucose control remains challenging in children and adolescents with type 1 diabetes due to highly variable overnight insulin requirements. The issue may be addressed by glucose responsive insulin delivery based on real-time continuous glucose measurements. Areas covered: This review outlines recent developments of glucose responsive insulin delivery systems from a paediatric perspective. We cover threshold-based suspend application, predictive low glucose suspend, and more advanced single hormone and dual-hormone closed-loop systems. Approaches are evaluated in relation to nocturnal glucose control particularly during outpatient randomised controlled trials. Expert opinion: Significant progress translating research from controlled clinical centre settings to free-living unsupervised home studies have been achieved over the past decade. Nocturnal glycaemic control can be improved whilst reducing the risk of hypoglycaemia with closed-loop systems. Following the US regulatory approval of the first hybrid closed-loop system in non-paediatric population, large multinational closed-loop clinical trials and pivotal studies including paediatric populations are underway or in preparation to facilitate the use of closed-loop systems in clinical practice.
Grant, Peadar F; Lowery, Madeleine M
2013-07-01
A new model of deep brain stimulation (DBS) is presented that integrates volume conduction effects with a neural model of pathological beta-band oscillations in the cortico-basal ganglia network. The model is used to test the clinical hypothesis that closed-loop control of the amplitude of DBS may be possible, based on the average rectified value of beta-band oscillations in the local field potential. Simulation of closed-loop high-frequency DBS was shown to yield energy savings, with the magnitude of the energy saved dependent on the strength of coupling between the subthalamic nucleus and the remainder of the cortico-basal ganglia network. When closed-loop DBS was applied to a strongly coupled cortico-basal ganglia network, the stimulation energy delivered over a 480 s period was reduced by up to 42%. Greater energy reductions were observed for weakly coupled networks, as the stimulation amplitude reduced to zero once the initial desynchronization had occurred. The results provide support for the application of closed-loop high-frequency DBS based on electrophysiological biomarkers.
Loop Quantum Gravity and Asymptotically Flat Spaces
NASA Astrophysics Data System (ADS)
Arnsdorf, Matthias
2002-12-01
Remarkable progress has been made in the field of non-perturbative (loop) quantum gravity in the last decade or so and it is now a rigorously defined kinematical theory (c.f. [5] for a review and references). We are now at the stage where physical applications of loop quantum gravity can be studied and used to provide checks for the consistency of the quantisation programme. Equally, old fundamental problems of canonical quantum gravity such as the problem of time or the interpretation of quantum cosmology need to be reevaluated seriously. These issues can be addressed most profitably in the asymptotically flat sector of quantum gravity. Indeed, it is likely that we should obtain a quantum theory for this special case even if it is not possible to quantise full general relativity. The purpose of this summary is to advertise the extension of loop quantum gravity to this sector that was developed in [1]...
Lidar-based wake tracking for closed-loop wind farm control
NASA Astrophysics Data System (ADS)
Raach, Steffen; Schlipf, David; Cheng, Po Wen
2016-09-01
This work presents two advancements towards closed-loop wake redirecting of a wind turbine. First, a model-based estimation approach is presented which uses a nacelle-based lidar system facing downwind to obtain information about the wake. A reduced order wake model is described which is then used in the estimation to track the wake. The tracking is demonstrated with lidar measurement data from an offshore campaign and with simulated lidar data from a SOWFA simulation. Second, a controller for closed-loop wake steering is presented. It uses the wake tracking information to set the yaw actuator of the wind turbine to redirect the wake to a desired position. Altogether, this paper aims to present the concept of closed-loop wake redirecting and gives a possible solution to it.
Closed-Loop and Activity-Guided Optogenetic Control
Grosenick, Logan; Marshel, James H.; Deisseroth, Karl
2016-01-01
Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. PMID:25856490
Study of the Open Loop and Closed Loop Oscillator Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imel, George R.; Baker, Benjamin; Riley, Tony
This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign tomore » measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.« less
Study of the open loop and closed loop oscillator techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Benjamin; Riley, Tony; Langbehn, Adam
This paper presents some aspects of a five year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques. The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this paper we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign tomore » measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems. (authors)« less
Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test
Kopman, Vladislav; Laut, Jeffrey; Polverino, Giovanni; Porfiri, Maurizio
2013-01-01
In this paper, we study the response of zebrafish to a robotic-fish whose morphology and colour pattern are inspired by zebrafish. Experiments are conducted in a three-chambered instrumented water tank where a robotic-fish is juxtaposed with an empty compartment, and the preference of live subjects is scored as the mean time spent in the vicinity of the tank's two lateral sides. The tail-beating of the robotic-fish is controlled in real-time based on feedback from fish motion to explore a spectrum of closed-loop systems, including proportional and integral controllers. Closed-loop control systems are complemented by open-loop strategies, wherein the tail-beat of the robotic-fish is independent of the fish motion. The preference space and the locomotory patterns of fish for each experimental condition are analysed and compared to understand the influence of real-time closed-loop control on zebrafish response. The results of this study show that zebrafish respond differently to the pattern of tail-beating motion executed by the robotic-fish. Specifically, the preference and behaviour of zebrafish depend on whether the robotic-fish tail-beating frequency is controlled as a function of fish motion and how such closed-loop control is implemented. PMID:23152102
A digital wireless system for closed-loop inhibition of nociceptive signals
NASA Astrophysics Data System (ADS)
Zuo, Chao; Yang, Xiaofei; Wang, Yang; Hagains, Christopher E.; Li, Ai-Ling; Peng, Yuan B.; Chiao, J.-C.
2012-10-01
Neurostimulation of the spinal cord or brain has been used to inhibit nociceptive signals in pain management applications. Nevertheless, most of the current neurostimulation models are based on open-loop system designs. There is a lack of closed-loop systems for neurostimulation in research with small freely-moving animals and in future clinical applications. Based on our previously developed analog wireless system for closed-loop neurostimulation, a digital wireless system with real-time feedback between recorder and stimulator modules has been developed to achieve multi-channel communication. The wireless system includes a wearable recording module, a wearable stimulation module and a transceiver connected to a computer for real-time and off-line data processing, display and storage. To validate our system, wide dynamic range neurons in the spinal cord dorsal horn have been recorded from anesthetized rats in response to graded mechanical stimuli (brush, pressure and pinch) applied in the hind paw. The identified nociceptive signals were used to automatically trigger electrical stimulation at the periaqueductal gray in real time to inhibit their own activities by the closed-loop design. Our digital wireless closed-loop system has provided a simplified and efficient method for further study of pain processing in freely-moving animals and potential clinical application in patients. Groups 1, 2 and 3 contributed equally to this project.
NASA Technical Reports Server (NTRS)
Gawronski, W.
2004-01-01
Wind gusts are the main disturbances that depreciate tracking precision of microwave antennas and radiotelescopes. The linear-quadratic-Gaussian (LQG) controllers - as compared with the proportional-and-integral (PI) controllers significantly improve the tracking precision in wind disturbances. However, their properties have not been satisfactorily understood; consequently, their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller model and the selection of weights of the LQG performance index. This article analyzes properties of an open- and closed-loop antenna. It shows that the proper choice of coordinates of the open-loop model simplifies the shaping of the closed-loop performance. The closed-loop properties are influenced by the LQG weights. The article shows the impact of the weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. The bandwidth and the disturbance rejection characterize the antenna performance, while the acceleration represents the performance limit set by the antenna hardware (motors). The article presents the controller tuning procedure, based on the coordinate selection and the weight properties. The procedure rationally shapes the closed-loop performance, as an alternative to the trial-and-error approach.
Quantitative Feedback Technique (QFT): Bridging the Gap
2003-05-01
with Eq. (2) illustrates: (a) the effect of changes of the uncertainty set P(s) upon the output of the closed -loop control system is reduced by the...Bridging the Gap root-locus technique the dominant closed -loop poles are determined for a ζ= 0.45. Table 3 presents the required value of Kx and...degree of decoupling will have been enhanced. Method 1 is then more readily applicable, with the additional benefit of reduced closed -loop BW. E.R.2
2004-03-01
2-15 2-10. Pitch Tracking Closed Loop System for Gap Criterion...................................... 2-16 2-11. Four Resulting Gap ...Level 1 Minimize Resonance Closed Loop Bode Diagram ( ) ( ) s sCommand θ θ ( ) ( ) s sCommand θ θ BWω 2-16 Gap Criterion...System for Gap Criterion In modern fly-by-wire aircraft, feedback is an integral part of obtaining more desirable closed loop flying qualities
NASA Technical Reports Server (NTRS)
Vanlunteren, A.; Stassen, H. G.
1973-01-01
Parameter estimation techniques are discussed with emphasis on unbiased estimates in the presence of noise. A distinction between open and closed loop systems is made. A method is given based on the application of external forcing functions consisting of a sun of sinusoids; this method is thus based on the estimation of Fourier coefficients and is applicable for models with poles and zeros in open and closed loop systems.
Kuntanapreeda, S; Fullmer, R R
1996-01-01
A training method for a class of neural network controllers is presented which guarantees closed-loop system stability. The controllers are assumed to be nonlinear, feedforward, sampled-data, full-state regulators implemented as single hidden-layer neural networks. The controlled systems must be locally hermitian and observable. Stability of the closed-loop system is demonstrated by determining a Lyapunov function, which can be used to identify a finite stability region about the regulator point.
Rationale for evaluating a closed food chain for space habitats
NASA Technical Reports Server (NTRS)
Modell, M.; Spurlock, J. M.
1980-01-01
Closed food cycles for long duration space flight and space habitation are examined. Wash water for a crew of six is economically recyclable after a week, while a total closed loop water system is effective only if the stay exceeds six months' length. The stoichiometry of net plant growth is calculated and it is shown that the return of urine, feces, and inedible plant parts to the food chain, along with the addition of photosynthesis, closes the food chain loop. Scenarios are presented to explore the technical feasibility of achieving a closed loop system. An optimal choice of plants is followed by processing, waste conversion, equipment specifications, and control requirements, and finally, cost-effectiveness.
DOT National Transportation Integrated Search
2014-10-01
The overarching goal of this research project was to investigate the potential for the NCDOT Central Office Signal Timing : (COST) Section to monitor and assess the quality of field deployed closed-loop signal system plans using the data inherent in ...
Kiani, Mehdi; Ghovanloo, Maysam
2009-01-01
This paper presents a standalone closed loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio frequency identification (RFID) transceiver (MLX90121) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop fashion. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either malfunction or excessive heat dissipation. RFID transceivers are often used open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 1.48 mW over a range of 6 to 12 cm, while the transmitter power consumption changed from 0.3 W to 1.21 W. The closed loop system can also oppose voltage variations as a result of sudden changes in load current.
An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications.
Kiani, Mehdi; Ghovanloo, Maysam
2010-04-01
This brief presents a standalone closed-loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader (TRF7960) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either a malfunction or excessive heat dissipation. RFID circuits are often used in an open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 11.2 mW over a range of 0.5 to 2 cm, while the transmitter power consumption changed from 78 mW to 1.1 W. The closed-loop system can also oppose voltage variations as a result of sudden changes in the load current.
Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro
NASA Astrophysics Data System (ADS)
Jin, Jing; Tian, Hai-Ting; Pan, Xiong; Song, Ning-Fang
2010-03-01
The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.
Closed Loop System Identification with Genetic Algorithms
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2004-01-01
High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.
Tauschmann, Martin; Allen, Janet M; Wilinska, Malgorzata E; Thabit, Hood; Acerini, Carlo L; Dunger, David B; Hovorka, Roman
2016-11-01
This study evaluated the feasibility, safety, and efficacy of day-and-night hybrid closed-loop insulin delivery in adolescents with type 1 diabetes under free-living conditions. In an open-label randomized crossover study, 12 suboptimally controlled adolescents on insulin pump therapy (mean ± SD age 14.6 ± 3.1 years; HbA 1c 69 ± 8 mmol/mol [8.5 ± 0.7%]; duration of diabetes 7.8 ± 3.5 years) underwent two 21-day periods in which hybrid closed-loop insulin delivery was compared with sensor-augmented insulin pump therapy in random order. During the closed-loop intervention, a model predictive algorithm automatically directed insulin delivery between meals and overnight. Participants used a bolus calculator to administer prandial boluses. The proportion of time that sensor glucose was in the target range (3.9-10 mmol/L; primary end point) was increased during the closed-loop intervention compared with sensor-augmented insulin pump therapy by 18.8 ± 9.8 percentage points (mean ± SD; P < 0.001), the mean sensor glucose level was reduced by 1.8 ± 1.3 mmol/L (P = 0.001), and the time spent above target was reduced by 19.3 ± 11.3 percentage points (P < 0.001). The time spent with sensor glucose levels below 3.9 mmol/L was low and comparable between interventions (median difference 0.4 [interquartile range -2.2 to 1.3] percentage points; P = 0.33). Improved glucose control during closed-loop was associated with increased variability of basal insulin delivery (P < 0.001) and an increase in the total daily insulin dose (53.5 [39.5-72.1] vs. 51.5 [37.6-64.3] units/day; P = 0.006). Participants expressed positive attitudes and experience with the closed-loop system. Free-living home use of day-and-night closed-loop in suboptimally controlled adolescents with type 1 diabetes is safe, feasible, and improves glucose control without increasing the risk of hypoglycemia. Larger and longer studies are warranted. © 2016 by the American Diabetes Association.
Standing balance tests for screening people with vestibular impairments.
Cohen, Helen S; Mulavara, Ajitkumar P; Peters, Brian T; Sangi-Haghpeykar, Haleh; Bloomberg, Jacob J
2014-02-01
To improve the test standards for a version of the Romberg test and to determine whether measuring kinematic variables improved its utility for screening. Healthy controls and patients with benign paroxysmal positional vertigo, postoperative acoustic neuroma resection, and chronic peripheral unilateral weakness were compared. Subjects wore Bluetooth-enabled inertial motion units while standing on the floor or medium-density, compliant foam, with eyes open or closed, with head still or moving in pitch or yaw. Dependent measures were time to perform each test condition, number of head movements made, and kinematic variables. Patients and controls did not differ significantly with eyes open or with eyes closed while on the floor. With eyes closed, on foam, some significant differences were found between patients and controls, especially for subjects older than 59 years. Head movement conditions were more challenging than with the head still. Significantly fewer patients than controls could make enough head movements to obtain kinematic measures. Kinematics indicated that lateral balance control is significantly reduced in these patients compared to controls. Receiver operator characteristics and sensitivity/specificity analyses showed moderately good differences with older subjects. Tests on foam with eyes closed, with head still or moving, may be useful as part of a screening battery for vestibular impairments, especially for older people. 3b. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.
Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A
2005-11-01
While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.
An Environmental for Hardware-in-the-Loop Formation Navigation and Control
NASA Technical Reports Server (NTRS)
Burns, Rich; Naasz, Bo; Gaylor, Dave; Higinbotham, John
2004-01-01
Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the inclusion of GPS receiver hardware in the simulation loop. Support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented.
Threshold resummation for top-pair hadroproduction to next-to-next-to-leading log
NASA Astrophysics Data System (ADS)
Czakon, Michal; Mitov, Alexander; Sterman, George
2009-10-01
We derive the threshold-resummed total cross section for heavy quark production in hadronic collisions accurate to next-to-next-to-leading logarithm, employing recent advances on soft anomalous dimension matrices for massive pair production in the relevant kinematic limit. We also derive the relation between heavy quark threshold resummations for fixed pair kinematics and the inclusive cross section. As a check of our results, we have verified that they reproduce all poles of the color-averaged qq¯→tt¯ amplitudes at two loops, noting that the latter are insensitive to the color-antisymmetric terms of the soft anomalous dimension.
Kinematical Correlations for Higgs Boson Plus High P_{T} Jet Production at Hadron Colliders.
Sun, Peng; Yuan, C-P; Yuan, Feng
2015-05-22
We investigate the effect of QCD resummation to kinematical correlations in the Higgs boson plus high transverse momentum (P(T)) jet events produced at hadron colliders. We show that at the complete one-loop order, the Collins-Soper-Sterman resummation formalism can be applied to derive the Sudakov form factor. We compare the singular behavior of resummation calculation to fixed order prediction in the case that a Higgs boson and high P(T) jet are produced nearly back to back in their transverse momenta, and find perfect agreement. The phenomenological importance of the resummation effect at the LHC is also demonstrated.
Kinematical Correlations for Higgs Boson Plus High PT Jet Production at Hadron Colliders
NASA Astrophysics Data System (ADS)
Sun, Peng; Yuan, C.-P.; Yuan, Feng
2015-05-01
We investigate the effect of QCD resummation to kinematical correlations in the Higgs boson plus high transverse momentum (PT) jet events produced at hadron colliders. We show that at the complete one-loop order, the Collins-Soper-Sterman resummation formalism can be applied to derive the Sudakov form factor. We compare the singular behavior of resummation calculation to fixed order prediction in the case that a Higgs boson and high PT jet are produced nearly back to back in their transverse momenta, and find perfect agreement. The phenomenological importance of the resummation effect at the LHC is also demonstrated.
Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik
Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less
Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy
Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...
2017-07-03
Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less
40 CFR 1048.110 - How must my engines diagnose malfunctions?
Code of Federal Regulations, 2011 CFR
2011-07-01
... engine-diagnostic requirements apply for engines equipped with three-way catalysts and closed-loop... malfunction whenever the air-fuel ratio does not cross stoichiometry for one minute of intended closed-loop...
Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics
NASA Technical Reports Server (NTRS)
Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.
1996-01-01
An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.
NASA Astrophysics Data System (ADS)
Zargarzadeh, H.; Nodland, David; Thotla, V.; Jagannathan, S.; Agarwal, S.
2012-06-01
Unmanned Aerial Vehicles (UAVs) are versatile aircraft with many applications, including the potential for use to detect unintended electromagnetic emissions from electronic devices. A particular area of recent interest has been helicopter unmanned aerial vehicles. Because of the nature of these helicopters' dynamics, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via output feedback control for trajectory tracking of a helicopter UAV using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic, virtual, and dynamic controllers and an observer. Optimal tracking is accomplished with a single NN utilized for cost function approximation. The controller positions the helicopter, which is equipped with an antenna, such that the antenna can detect unintended emissions. The overall closed-loop system stability with the proposed controller is demonstrated by using Lyapunov analysis. Finally, results are provided to demonstrate the effectiveness of the proposed control design for positioning the helicopter for unintended emissions detection.
Ghost-gluon vertex in the presence of the Gribov horizon
NASA Astrophysics Data System (ADS)
Mintz, B. W.; Palhares, L. F.; Sorella, S. P.; Pereira, A. D.
2018-02-01
We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon via the refined Gribov-Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the Gribov region is taken into account, the resulting gauge field propagators display a nontrivial infrared behavior, being very close to the ones observed in lattice gauge field theory simulations. In this work, we explore a higher correlation function in the refined Gribov-Zwanziger theory: the ghost-gluon interaction vertex, at one-loop level. We show explicit compatibility with kinematical constraints, as required by the Ward identities of the theory, and obtain analytical expressions in the limit of vanishing gluon momentum. We find that the RGZ results are nontrivial in the infrared regime, being compatible with lattice Yang-Mills simulations in both SU(2) and SU(3), as well as with solutions from Schwinger-Dyson equations in different truncation schemes, Functional Renormalization Group analysis, and the renormalization group-improved Curci-Ferrari model.
Design and control of a hand exoskeleton for use in extravehicular activities
NASA Technical Reports Server (NTRS)
Shields, B.; Peterson, S.; Strauss, A.; Main, J.
1993-01-01
To counter problems inherent in extravehicular activities (EVA) and complex space operations, an exoskeleton, a unique adaptive structure, has been designed. The exoskeleton fits on the hand and powers the proximal and middle phalanges of the index finger, the middle finger, and the combined ring and little finger. A kinematic analysis of the exoskeleton joints was performed using the loop-closure method. This analysis determined the angular displacement and velocity relationships of the exoskeleton joints. This information was used to determine the output power of the exoskeleton. Three small DC motors (one for each finger) are used to power the exoskeleton. The motors are mounted on the forearm. Power is transferred to the exoskeleton using lead screws. The control system for the exoskeleton measures the contact force between the operator and the exoskeleton. This information is used as the input to drive the actuation system. The control system allows the motor to rotate in both directions so that the operator may close or open the exoskeleton.
NASA Astrophysics Data System (ADS)
Yoo, Sung Jin
2016-11-01
This paper presents a theoretical design approach for output-feedback formation tracking of multiple mobile robots under wheel perturbations. It is assumed that these perturbations are unknown and the linear and angular velocities of the robots are unmeasurable. First, adaptive state observers for estimating unmeasurable velocities of the robots are developed under the robots' kinematics and dynamics including wheel perturbation effects. Then, we derive a virtual-structure-based formation tracker scheme according to the observer dynamic surface design procedure. The main difficulty of the output-feedback control design is to manage the coupling problems between unmeasurable velocities and unknown wheel perturbation effects. These problems are avoided by using the adaptive technique and the function approximation property based on fuzzy logic systems. From the Lyapunov stability analysis, it is shown that point tracking errors of each robot and synchronisation errors for the desired formation converge to an adjustable neighbourhood of the origin, while all signals in the controlled closed-loop system are semiglobally uniformly ultimately bounded.
Structure design of lower limb exoskeletons for gait training
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Zhang, Ziqiang; Tao, Chunjing; Ji, Run
2015-09-01
Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patients. Correlatively, in kinematics the exoskeletons are required to be compatible with human lower limbs and thereby to avoid the uncontrollable interactional loads at the human-machine interfaces. Such requirement makes the structure design of exoskeletons very difficult because the human-machine closed chains are complicated. In addition, both the axis misalignments and the kinematic character difference between the exoskeleton and human joints should be taken into account. By analyzing the DOF(degree of freedom) of the whole human-machine closed chain, the human-machine kinematic incompatibility of lower limb exoskeletons is studied. An effective method for the structure design of lower limb exoskeletons, which are kinematically compatible with human lower limb, is proposed. Applying this method, the structure synthesis of the lower limb exoskeletons containing only one-DOF revolute and prismatic joints is investigated; the feasible basic structures of exoskeletons are developed and classified into three different categories. With the consideration of quasi-anthropopathic feature, structural simplicity and wearable comfort of lower limb exoskeletons, a joint replacement and structure comparison based approach to select the ideal structures of lower limb exoskeletons is proposed, by which three optimal exoskeleton structures are obtained. This paper indicates that the human-machine closed chain formed by the exoskeleton and human lower limb should be an even-constrained kinematic system in order to avoid the uncontrollable human-machine interactional loads. The presented method for the structure design of lower limb exoskeletons is universal and simple, and hence can be applied to other kinds of wearable exoskeletons.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-10
...: The Loop Parkway Bridge, mile 0.7, across Long Creek has a vertical clearance in the closed position... deviation the Loop Parkway Bridge and the Meadowbrook Parkway Bridge may remain in the closed position... operation of the Loop Parkway Bridge, mile 0.7, across Long Creek, and the Meadowbrook Parkway Bridge, mile...
Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation
Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A.
2017-01-01
High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. PMID:28273176
Comparison of the Shack-Hartmann and plenoptic sensor in closed-loop adaptive optics system
NASA Astrophysics Data System (ADS)
Jiang, Pengzhi; Xu, Jieping; Liang, Yonghui; Mao, Hongjun
2016-03-01
The wavefront sensor is used in adaptive optics (AO) to detect the atmospheric distortion, which feeds back to the deformable mirror to compensate for this distortion. While the Shack-Hartmann sensor has been widely used, the plenoptic sensor was proposed in recent years. The two different wavefront sensing methods have different interpretations and numerical consequences, though they are both slope-based. The plenoptic sensor is compared with the Shack-Hartmann sensor in a closed-loop AO system. Simulations are performed to investigate their performances under closed-loop conditions. The plenoptic sensors both without and with modulation are discussed. The results show that the closed-loop performance of the plenoptic sensor without modulation is worse than that of the Shack-Hartmann sensor when the star for observation is brighter than magnitude 7, but better when the star is fainter. The closed-loop performance of the plenoptic sensor could be improved by modulation, except for the faint star. In summary, the limiting magnitude of the astronomical AO system may be improved by using the plenoptic sensor instead of the Shack-Hartmann sensor, and the modulation of the plenoptic sensor is more suitable for the bright star.
A closed-loop photon beam control study for the Advanced Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Portmann, G.; Bengtsson, J.
1993-05-01
The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared --more » a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.« less
Application of frequency domain handling qualities criteria to the longitudinal landing task
NASA Technical Reports Server (NTRS)
Sarrafian, S. K.; Powers, B. G.
1985-01-01
Three frequency-domain handling qualities criteria have been applied to the observed data to correlate the actual pilot ratings assigned to generic transport configurations with stability augmentation during the longitudinal landing task. The criteria are based on closed-loop techniques using pitch attitude, altitude rate at the pilot station, and altitude at the pilot station as dominating control parameters during this task. It is found that most promising results are obtained with altitude control performed by closing an inner loop on pitch attitude and closing an outer loop on altitude.
Full-Authority Fault-Tolerant Electronic Engine Control Systems for Variable Cycle Engines.
1981-12-01
Geometry or Fuel Flow Scheduled as a Function of Engine State, i.e. FIGV = f( N1 C2 ) Closed Loop - Geometry or Fuel Flow Modulated To Maintain an Engine...Low Pressure Turbine Inlet Area (A41) Closed Loop (Integral) N2, T22 Core Stream Exhaust Nozzle Area (AJE) Closed Loop (Integral) N1 , T2 Duct Stream...to remain at the breakpoint value while low rotor speed reference ( N1 reference) is scheduled to decrease as a function of power lever angle (PLA), to
Non-polynomial closed string field theory: loops and conformal maps
NASA Astrophysics Data System (ADS)
Hua, Long; Kaku, Michio
1990-11-01
Recently, we proposed the complete classical action for the non-polynomial closed string field theory, which succesfully reproduced all closed string tree amplitudes. (The action was simultaneously proposed by the Kyoto group). In this paper, we analyze the structure of the theory. We (a) compute the explicit conformal map for all g-loop, p-puncture diagrams, (b) compute all one-loop, two-puncture maps in terms of hyper-elliptic functions, and (c) analyze their modular structure. We analyze, but do not resolve, the question of modular invariance.
Closed-loop systems for drug delivery.
Fields, Aaron M; Fields, Kevin M; Cannon, Jeremy W
2008-08-01
To discuss closed-loop systems, the engineering behind them, and the application of these systems. The literature demonstrates that closed-loop systems can be used for controlling the depth of anesthesia, muscle relaxation, blood pressure, intravascular volume, and blood glucose levels. The future anesthesiologist may devote less time to easily delegated tasks when in the operating room. The ability of computers to maintain variables in a set range allows some tasks to be automated. Although monitoring of these systems will never be completely eliminated, the necessity for minute-to-minute intervention may.
Configuration control of seven-degree-of-freedom arms
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor); Long, Mark K. (Inventor); Lee, Thomas S. (Inventor)
1992-01-01
A seven degree of freedom robot arm with a six degree of freedom end effector is controlled by a processor employing a 6 by 7 Jacobian matrix for defining location and orientation of the end effector in terms of the rotation angles of the joints, a 1 (or more) by 7 Jacobian matrix for defining 1 (or more) user specified kinematic functions constraining location or movement of selected portions of the arm in terms of the joint angles, the processor combining the two Jacobian matrices to produce an augmented 7 (or more) by 7 Jacobian matrix, the processor effecting control by computing in accordance with forward kinematics from the augmented 7 by 7 Jacobian matrix and from the seven joint angles of the arm a set of seven desired joint angles for transmittal to the joint servo loops of the arm. One of the kinematic functions constraints the orientation of the elbow plane of the arm. Another one of the kinematic functions minimizes a sum of gravitational torques on the joints. Still another kinematic function constrains the location of the arm to perform collision avoidance. Generically, one kinematic function minimizes a sum of selected mechanical parameters of at least some of the joints associated with weighting coefficients which may be changed during arm movement. The mechanical parameters may be velocity errors or gravity torques associated with individual joints.
Configuration control of seven degree of freedom arms
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1995-01-01
A seven-degree-of-freedom robot arm with a six-degree-of-freedom end effector is controlled by a processor employing a 6-by-7 Jacobian matrix for defining location and orientation of the end effector in terms of the rotation angles of the joints, a 1 (or more)-by-7 Jacobian matrix for defining 1 (or more) user-specified kinematic functions constraining location or movement of selected portions of the arm in terms of the joint angles, the processor combining the two Jacobian matrices to produce an augmented 7 (or more)-by-7 Jacobian matrix, the processor effecting control by computing in accordance with forward kinematics from the augmented 7-by-7 Jacobian matrix and from the seven joint angles of the arm a set of seven desired joint angles for transmittal to the joint servo loops of the arms. One of the kinematic functions constrains the orientation of the elbow plane of the arm. Another one of the kinematic functions minimizing a sum of gravitational torques on the joints. Still another one of the kinematic functions constrains the location of the arm to perform collision avoidance. Generically, one of the kinematic functions minimizes a sum of selected mechanical parameters of at least some of the joints associated with weighting coefficients which may be changed during arm movement. The mechanical parameters may be velocity errors or position errors or gravity torques associated with individual joints.
Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals
NASA Astrophysics Data System (ADS)
Patel, Hiren H.
2017-09-01
This article summarizes new features and enhancements of the first major update of Package-X. Package-X 2.0 can now generate analytic expressions for arbitrarily high rank dimensionally regulated tensor integrals with up to four distinct propagators, each with arbitrary integer weight, near an arbitrary even number of spacetime dimensions, giving UV divergent, IR divergent, and finite parts at (almost) any real-valued kinematic point. Additionally, it can generate multivariable Taylor series expansions of these integrals around any non-singular kinematic point to arbitrary order. All special functions and abbreviations output by Package-X 2.0 support Mathematica's arbitrary precision evaluation capabilities to deal with issues of numerical stability. Finally, tensor algebraic routines of Package-X have been polished and extended to support open fermion chains both on and off shell. The documentation (equivalent to over 100 printed pages) is accessed through Mathematica's Wolfram Documentation Center and contains information on all Package-X symbols, with over 300 basic usage examples, 3 project-scale tutorials, and instructions on linking to FEYNCALC and LOOPTOOLS. Program files doi:http://dx.doi.org/10.17632/yfkwrd4d5t.1 Licensing provisions: CC by 4.0 Programming language: Mathematica (Wolfram Language) Journal reference of previous version: H. H. Patel, Comput. Phys. Commun 197, 276 (2015) Does the new version supersede the previous version?: Yes Summary of revisions: Extension to four point one-loop integrals with higher powers of denominator factors, separate extraction of UV and IR divergent parts, testing for power IR divergences, construction of Taylor series expansions of one-loop integrals, numerical evaluation with arbitrary precision arithmetic, manipulation of fermion chains, improved tensor algebraic routines, and much expanded documentation. Nature of problem: Analytic calculation of one-loop integrals in relativistic quantum field theory. Solution method: Passarino-Veltman reduction formula, Denner-Dittmaier reduction formulae, and additional algorithms described in the manuscript. Restrictions: One-loop integrals are limited to those involving no more than four denominator factors.
Tauschmann, Martin; Allen, Janet M; Wilinska, Malgorzata E; Thabit, Hood; Stewart, Zoë; Cheng, Peiyao; Kollman, Craig; Acerini, Carlo L; Dunger, David B; Hovorka, Roman
2016-07-01
To evaluate feasibility, safety, and efficacy of day-and-night hybrid closed-loop insulin delivery in adolescents with type 1 diabetes under free-living conditions without remote monitoring or supervision. In an open-label, randomized, free-living, crossover study design, 12 adolescents receiving insulin pump therapy (mean [±SD] age 15.4 ± 2.6 years; HbA1c 8.3 ± 0.9%; duration of diabetes 8.2 ± 3.4 years) underwent two 7-day periods of sensor-augmented insulin pump therapy or hybrid closed-loop insulin delivery without supervision or remote monitoring. During the closed-loop insulin delivery, a model predictive algorithm automatically directed insulin delivery between meals and overnight; prandial boluses were administered by participants using a bolus calculator. The proportion of time when the sensor glucose level was in the target range (3.9-10 mmol/L) was increased during closed-loop insulin delivery compared with sensor-augmented pump therapy (72 vs. 53%, P < 0.001; primary end point), the mean glucose concentration was lowered (8.7 vs. 10.1 mmol/L, P = 0.028), and the time spent above the target level was reduced (P = 0.005) without changing the total daily insulin amount (P = 0.55). The time spent in the hypoglycemic range was low and comparable between interventions. Unsupervised day-and-night hybrid closed-loop insulin delivery at home is feasible and safe in young people with type 1 diabetes. Compared with sensor-augmented insulin pump therapy, closed-loop insulin delivery may improve glucose control without increasing the risk of hypoglycemia in adolescents with suboptimally controlled type 1 diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Patel, Malhar P; Schettini, Priscille; O'Leary, Colin P; Bosworth, Hayden B; Anderson, John B; Shah, Kevin P
2018-05-01
Ideally, a referral from a primary care physician (PCP) to a specialist results in a completed specialty appointment with results available to the PCP. This is defined as "closing the referral loop." As health systems grow more complex, regulatory bodies increase vigilance, and reimbursement shifts towards value, closing the referral loop becomes a patient safety, regulatory, and financial imperative. To assess the ability of a large health system to close the referral loop, we used electronic medical record (EMR)-generated data to analyze referrals from a large primary care network to 20 high-volume specialties between July 1, 2015 and June 30, 2016. The primary metric was documented specialist appointment completion rate. Explanatory analyses included documented appointment scheduling rate, individual clinic differences, appointment wait times, and geographic distance to appointments. Of the 103,737 analyzed referral scheduling attempts, only 36,072 (34.8%) resulted in documented complete appointments. Low documented appointment scheduling rates (38.9% of scheduling attempts lacked appointment dates), individual clinic differences in closing the referral loop, and significant differences in wait times and distances to specialists between complete and incomplete appointments drove this gap. Other notable findings include high variation in wait times among specialties and correlation between high wait times and low documented appointment completion rates. The rate of closing the referral loop in this health system is low. Low appointment scheduling rates, individual clinic differences, and patient access issues of wait times and geographic proximity explain much of the gap. This problem is likely common among large health systems with complex provider networks and referral scheduling. Strategies that improve scheduling, decrease variation among clinics, and improve patient access will likely improve rates of closing the referral loop. More research is necessary to determine the impact of these changes and other potential driving factors.
2018-01-01
During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone. PMID:29342146
Buckley, Christopher L; Toyoizumi, Taro
2018-01-01
During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone.
Han, Fengtian; Wang, Wei; Zhang, Xiaoyang; Xie, Huikai
2016-10-03
A large piston-displacement electrothermal micromirror with closed-loop control of both piston scan and tilting of the mirror plate is demonstrated for use in a miniature Fourier transform spectrometer. Constant scan velocity in an ultra large piston scan range has been demonstrated by the proposed closed-loop piston control scheme which can be easily implemented without considerably increasing system complexity. The experimental results show that the usable linear scan range generated by the micromirror has been extended up to 505 μm. The measured spectral resolution in a compact spectrometer reaches 20 cm-1, or 0.57 nm at 532 nm wavelength. Compared to other presented systems, this microspectrometer will benefit from the closed-loop thermal actuator approach utilizing both the piston servo and tilt control to provide more consistent spectral response, improved spectral resolution and enhanced robustness to disturbances.
Robust fast controller design via nonlinear fractional differential equations.
Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong
2017-07-01
A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Control-oriented reduced order modeling of dipteran flapping flight
NASA Astrophysics Data System (ADS)
Faruque, Imraan
Flying insects achieve flight stabilization and control in a manner that requires only small, specialized neural structures to perform the essential components of sensing and feedback, achieving unparalleled levels of robust aerobatic flight on limited computational resources. An engineering mechanism to replicate these control strategies could provide a dramatic increase in the mobility of small scale aerial robotics, but a formal investigation has not yet yielded tools that both quantitatively and intuitively explain flapping wing flight as an "input-output" relationship. This work uses experimental and simulated measurements of insect flight to create reduced order flight dynamics models. The framework presented here creates models that are relevant for the study of control properties. The work begins with automated measurement of insect wing motions in free flight, which are then used to calculate flight forces via an empirically-derived aerodynamics model. When paired with rigid body dynamics and experimentally measured state feedback, both the bare airframe and closed loop systems may be analyzed using frequency domain system identification. Flight dynamics models describing maneuvering about hover and cruise conditions are presented for example fruit flies (Drosophila melanogaster) and blowflies (Calliphorids). The results show that biologically measured feedback paths are appropriate for flight stabilization and sexual dimorphism is only a minor factor in flight dynamics. A method of ranking kinematic control inputs to maximize maneuverability is also presented, showing that the volume of reachable configurations in state space can be dramatically increased due to appropriate choice of kinematic inputs.
Action Monitoring Cortical Activity Coupled to Submovements
Sobolewski, Aleksander
2017-01-01
Numerous studies have examined neural correlates of the human brain’s action-monitoring system during experimentally segmented tasks. However, it remains unknown how such a system operates during continuous motor output when no experimental time marker is available (such as button presses or stimulus onset). We set out to investigate the electrophysiological correlates of action monitoring when hand position has to be repeatedly monitored and corrected. For this, we recorded high-density electroencephalography (EEG) during a visuomotor tracking task during which participants had to follow a target with the mouse cursor along a visible trajectory. By decomposing hand kinematics into naturally occurring periodic submovements, we found an event-related potential (ERP) time-locked to these submovements and localized in a sensorimotor cortical network comprising the supplementary motor area (SMA) and the precentral gyrus. Critically, the amplitude of the ERP correlated with the deviation of the cursor, 110 ms before the submovement. Control analyses showed that this correlation was truly due to the cursor deviation and not to differences in submovement kinematics or to the visual content of the task. The ERP closely resembled those found in response to mismatch events in typical cognitive neuroscience experiments. Our results demonstrate the existence of a cortical process in the SMA, evaluating hand position in synchrony with submovements. These findings suggest a functional role of submovements in a sensorimotor loop of periodic monitoring and correction and generalize previous results from the field of action monitoring to cases where action has to be repeatedly monitored. PMID:29071301
Similarity Metrics for Closed Loop Dynamic Systems
NASA Technical Reports Server (NTRS)
Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.
2008-01-01
To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and hence system identification error metrics are not directly relevant. In applications such as launch vehicles where the open loop plant is unstable it is similarity of the closed-loop system dynamics of a flight test that are relevant.
Kovatchev, Boris P; Renard, Eric; Cobelli, Claudio; Zisser, Howard C; Keith-Hynes, Patrick; Anderson, Stacey M; Brown, Sue A; Chernavvsky, Daniel R; Breton, Marc D; Farret, Anne; Pelletier, Marie-Josée; Place, Jérôme; Bruttomesso, Daniela; Del Favero, Simone; Visentin, Roberto; Filippi, Alessio; Scotton, Rachele; Avogaro, Angelo; Doyle, Francis J
2013-07-01
To evaluate the feasibility of a wearable artificial pancreas system, the Diabetes Assistant (DiAs), which uses a smart phone as a closed-loop control platform. Twenty patients with type 1 diabetes were enrolled at the Universities of Padova, Montpellier, and Virginia and at Sansum Diabetes Research Institute. Each trial continued for 42 h. The United States studies were conducted entirely in outpatient setting (e.g., hotel or guest house); studies in Italy and France were hybrid hospital-hotel admissions. A continuous glucose monitoring/pump system (Dexcom Seven Plus/Omnipod) was placed on the subject and was connected to DiAs. The patient operated the system via the DiAs user interface in open-loop mode (first 14 h of study), switching to closed-loop for the remaining 28 h. Study personnel monitored remotely via 3G or WiFi connection to DiAs and were available on site for assistance. The total duration of proper system communication functioning was 807.5 h (274 h in open-loop and 533.5 h in closed-loop), which represented 97.7% of the total possible time from admission to discharge. This exceeded the predetermined primary end point of 80% system functionality. This study demonstrated that a contemporary smart phone is capable of running outpatient closed-loop control and introduced a prototype system (DiAs) for further investigation. Following this proof of concept, future steps should include equipping insulin pumps and sensors with wireless capabilities, as well as studies focusing on control efficacy and patient-oriented clinical outcomes.
Method for spinning up a three-axis controlled spacecraft
NASA Technical Reports Server (NTRS)
Vorlicek, Preston L. (Inventor)
1988-01-01
A three-axis controlled spacecraft (1), typically a satellite, is spun up about its roll axis (20) prior to firing a motor (2), i.e., a perigee kick motor, to achieve the requisite degree of angular momentum stiffness. Thrusters (21) for imparting rotation about the roll axis (20) are activated in open-loop fashion, typically at less than full duty cycle. Cross-axis torques induced by this rotational motion are compensated for by means of closed control loops for each of the pitch and yaw axes (30, 40, respectively). Each closed control loop combines a prebias torque (72) with torques (75, 74) representative of position and rate feedback information, respectively. A deadband (52) within each closed control loop can be widened during the spinup, to conserve fuel. Position feedback information (75) in each of the control loops is disabled upon saturation of the gyroscope associated with the roll axis (20).
NASA Astrophysics Data System (ADS)
Del Vescovo, D.; D'Ambrogio, W.
1995-01-01
A frequency domain method is presented to design a closed-loop control for vibration reduction flexible mechanisms. The procedure is developed on a single-link flexible arm, driven by one rotary degree of freedom servomotor, although the same technique may be applied to similar systems such as supports for aerospace antennae or solar panels. The method uses the structural frequency response functions (FRFs), thus avoiding system identification, that produces modeling uncertainties. Two closed-loops are implemented: the inner loop uses acceleration feedback with the aim of making the FRF similar to that of an equivalent rigid link; the outer loop feeds back displacements to achieve a fast positioning response and null steady state error. In both cases, the controller type is established a priori, while actual characteristics are defined by an optimisation procedure in which the relevant FRF is constrained into prescribed bounds and stability is taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuyang; Zhang, Qichun; Wang, Hong
To enhance the performance of the tracking property , this paper presents a novel control algorithm for a class of linear dynamic stochastic systems with unmeasurable states, where the performance enhancement loop is established based on Kalman filter. Without changing the existing closed loop with the PI controller, the compensative controller is designed to minimize the variances of the tracking errors using the estimated states and the propagation of state variances. Moreover, the stability of the closed-loop systems has been analyzed in the mean-square sense. A simulated example is included to show the effectiveness of the presented control algorithm, wheremore » encouraging results have been obtained.« less
An Environment for Hardware-in-the-Loop Formation Navigation and Control Simulation
NASA Technical Reports Server (NTRS)
Burns, Rich
2004-01-01
Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Testbed (FFTB) at NASA's Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the injection of GPS receiver hardware into the simulation loop, and support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described in detail. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described in detail. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented and results are analyzed.
Operation of a cascade air conditioning system with two-phase loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yinshan; Wang, Jinliang; Zhao, Futao
A method of operating a heat transfer system includes starting operation of a first heat transfer fluid vapor/compression circulation loop including a fluid pumping mechanism, a heat exchanger for rejecting thermal energy from a first heat transfer fluid, and a heat absorption side of an internal heat exchanger. A first conduit in a closed fluid circulation loop circulates the first heat transfer fluid therethrough. Operation of a second two-phase heat transfer fluid circulation loop is started after starting operation of the first heat transfer fluid circulation loop. The second heat transfer fluid circulation loop transfers heat to the first heatmore » transfer fluid circulation loop through the internal heat exchanger and includes a heat rejection side of the internal heat exchanger, a liquid pump, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough.« less
Dutta, Saheb; Kundu, Soumya; Saha, Amrita; Nandi, Nilashis
2018-03-01
Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri ( mk SerRS) and histidyl tRNA synthetases from Thermus thermophilus ( tt HisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1985-01-01
In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1987-01-01
In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
Rinehart, Joseph; Lilot, Marc; Lee, Christine; Joosten, Alexandre; Huynh, Trish; Canales, Cecilia; Imagawa, David; Demirjian, Aram; Cannesson, Maxime
2015-03-19
Goal-directed fluid therapy strategies have been shown to benefit moderate- to high-risk surgery patients. Despite this, these strategies are often not implemented. The aim of this study was to assess a closed-loop fluid administration system in a surgical cohort and compare the results with those for matched patients who received manual management. Our hypothesis was that the patients receiving closed-loop assistance would spend more time in a preload-independent state, defined as percentage of case time with stroke volume variation less than or equal to 12%. Patients eligible for the study were all those over 18 years of age scheduled for hepatobiliary, pancreatic or splenic surgery and expected to receive intravascular arterial blood pressure monitoring as part of their anesthetic care. The closed-loop resuscitation target was selected by the primary anesthesia team, and the system was responsible for implementation of goal-directed fluid therapy during surgery. Following completion of enrollment, each study patient was matched to a non-closed-loop assisted case performed during the same time period using a propensity match to reduce bias. A total of 40 patients were enrolled, 5 were ultimately excluded and 25 matched pairs were selected from among the remaining 35 patients within the predefined caliper distance. There was no significant difference in fluid administration between groups. The closed-loop group spent a significantly higher portion of case time in a preload-independent state (95 ± 6% of case time versus 87 ± 14%, P =0.008). There was no difference in case mean or final stroke volume index (45 ± 10 versus 43 ± 9 and 45 ± 11 versus 42 ± 11, respectively) or mean arterial pressure (79 ± 8 versus 83 ± 9). Case end heart rate was significantly lower in the closed-loop assisted group (77 ± 10 versus 88 ± 13, P =0.003). In this case-control study with propensity matching, clinician use of closed-loop assistance resulted in a greater portion of case time spent in a preload-independent state throughout surgery compared with manual delivery of goal-directed fluid therapy. ClinicalTrials.gov Identifier: NCT02020863. Registered 19 December 2013.
2012-01-01
Background During elongation, multi-subunit RNA polymerases (RNAPs) cycle between phosphodiester bond formation and nucleic acid translocation. In the conformation associated with catalysis, the mobile “trigger loop” of the catalytic subunit closes on the nucleoside triphosphate (NTP) substrate. Closing of the trigger loop is expected to exclude water from the active site, and dehydration may contribute to catalysis and fidelity. In the absence of a NTP substrate in the active site, the trigger loop opens, which may enable translocation. Another notable structural element of the RNAP catalytic center is the “bridge helix” that separates the active site from downstream DNA. The bridge helix may participate in translocation by bending against the RNA/DNA hybrid to induce RNAP forward movement and to vacate the active site for the next NTP loading. The transition between catalytic and translocation conformations of RNAP is not evident from static crystallographic snapshots in which macromolecular motions may be restrained by crystal packing. Results All atom molecular dynamics simulations of Thermus thermophilus (Tt) RNAP reveal flexible hinges, located within the two helices at the base of the trigger loop, and two glycine hinges clustered near the N-terminal end of the bridge helix. As simulation progresses, these hinges adopt distinct conformations in the closed and open trigger loop structures. A number of residues (described as “switch” residues) trade atomic contacts (ion pairs or hydrogen bonds) in response to changes in hinge orientation. In vivo phenotypes and in vitro activities rendered by mutations in the hinge and switch residues in Saccharomyces cerevisiae (Sc) RNAP II support the importance of conformational changes predicted from simulations in catalysis and translocation. During simulation, the elongation complex with an open trigger loop spontaneously translocates forward relative to the elongation complex with a closed trigger loop. Conclusions Switching between catalytic and translocating RNAP forms involves closing and opening of the trigger loop and long-range conformational changes in the atomic contacts of amino acid side chains, some located at a considerable distance from the trigger loop and active site. Trigger loop closing appears to support chemistry and the fidelity of RNA synthesis. Trigger loop opening and limited bridge helix bending appears to promote forward nucleic acid translocation. PMID:22676913
Phase-lock loop frequency control and the dropout problem
NASA Technical Reports Server (NTRS)
Attwood, S.; Kline, A. J.
1968-01-01
Technique automatically sets the frequency of narrow band phase-lock loops within automatic lock-in-range. It presets a phase-lock loop to a desired center frequency with a closed loop electronic frequency discriminator and holds the phase-lock loop to that center frequency until lock is achieved.
Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization
NASA Astrophysics Data System (ADS)
Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.
2012-12-01
Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not significantly alter the air density or constrain the sustained muscle contractile frequency. Instead, higher wingbeat frequencies likely incurred a higher metabolic cost with the possible benefit of allowing the birds to more rapidly escape from the visually disruptive plume.
Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization
NASA Astrophysics Data System (ADS)
Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.
2013-01-01
Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not significantly alter the air density or constrain the sustained muscle contractile frequency. Instead, higher wingbeat frequencies likely incurred a higher metabolic cost with the possible benefit of allowing the birds to more rapidly escape from the visually disruptive plume.
Shoemaker, Adam; Grange, Robert W.; Abaid, Nicole; Leonessa, Alexander
2017-01-01
Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection. PMID:28273101
Efficiently computing exact geodesic loops within finite steps.
Xin, Shi-Qing; He, Ying; Fu, Chi-Wing
2012-06-01
Closed geodesics, or geodesic loops, are crucial to the study of differential topology and differential geometry. Although the existence and properties of closed geodesics on smooth surfaces have been widely studied in mathematics community, relatively little progress has been made on how to compute them on polygonal surfaces. Most existing algorithms simply consider the mesh as a graph and so the resultant loops are restricted only on mesh edges, which are far from the actual geodesics. This paper is the first to prove the existence and uniqueness of geodesic loop restricted on a closed face sequence; it contributes also with an efficient algorithm to iteratively evolve an initial closed path on a given mesh into an exact geodesic loop within finite steps. Our proposed algorithm takes only an O(k) space complexity and an O(mk) time complexity (experimentally), where m is the number of vertices in the region bounded by the initial loop and the resultant geodesic loop, and k is the average number of edges in the edge sequences that the evolving loop passes through. In contrast to the existing geodesic curvature flow methods which compute an approximate geodesic loop within a predefined threshold, our method is exact and can apply directly to triangular meshes without needing to solve any differential equation with a numerical solver; it can run at interactive speed, e.g., in the order of milliseconds, for a mesh with around 50K vertices, and hence, significantly outperforms existing algorithms. Actually, our algorithm could run at interactive speed even for larger meshes. Besides the complexity of the input mesh, the geometric shape could also affect the number of evolving steps, i.e., the performance. We motivate our algorithm with an interactive shape segmentation example shown later in the paper.
Failure Analysis of Network Based Accessible Pedestrian Signals in Closed-Loop Operation
DOT National Transportation Integrated Search
2011-03-01
The potential failure modes of a network based accessible pedestrian system were analyzed to determine the limitations and benefits of closed-loop operation. The vulnerabilities of the system are accessed using the industry standard process known as ...
Analysis and design of a 3rd order velocity-controlled closed-loop for MEMS vibratory gyroscopes.
Wu, Huan-ming; Yang, Hai-gang; Yin, Tao; Jiao, Ji-wei
2013-09-18
The time-average method currently available is limited to analyzing the specific performance of the automatic gain control-proportional and integral (AGC-PI) based velocity-controlled closed-loop in a micro-electro-mechanical systems (MEMS) vibratory gyroscope, since it is hard to solve nonlinear functions in the time domain when the control loop reaches to 3rd order. In this paper, we propose a linearization design approach to overcome this limitation by establishing a 3rd order linear model of the control loop and transferring the analysis to the frequency domain. Order reduction is applied on the built linear model's transfer function by constructing a zero-pole doublet, and therefore mathematical expression of each control loop's performance specification is obtained. Then an optimization methodology is summarized, which reveals that a robust, stable and swift control loop can be achieved by carefully selecting the system parameters following a priority order. Closed-loop drive circuits are designed and implemented using 0.35 μm complementary metal oxide semiconductor (CMOS) process, and experiments carried out on a gyroscope prototype verify the optimization methodology that an optimized stability of the control loop can be achieved by constructing the zero-pole doublet, and disturbance rejection capability (D.R.C) of the control loop can be improved by increasing the integral term.
Camera Based Closed Loop Control for Partial Penetration Welding of Overlap Joints
NASA Astrophysics Data System (ADS)
Abt, F.; Heider, A.; Weber, R.; Graf, T.; Blug, A.; Carl, D.; Höfler, H.; Nicolosi, L.; Tetzlaff, R.
Welding of overlap joints with partial penetration in automotive applications is a challenging process, since the laser power must be set very precisely to achieve a proper connection between the two joining partners without damaging the backside of the sheet stack. Even minor changes in welding conditions can lead to bad results. To overcome this problem a camera based closed loop control for partial penetration welding of overlap joints was developed. With this closed loop control it is possible to weld such configurations with a stable process result even under changing welding conditions.
NASA Technical Reports Server (NTRS)
Baron, S.; Muralidharan, R.; Kleinman, D. L.
1978-01-01
The optimal control model of the human operator is used to develop closed loop models for analyzing the effects of (digital) simulator characteristics on predicted performance and/or workload. Two approaches are considered: the first utilizes a continuous approximation to the discrete simulation in conjunction with the standard optimal control model; the second involves a more exact discrete description of the simulator in a closed loop multirate simulation in which the optimal control model simulates the pilot. Both models predict that simulator characteristics can have significant effects on performance and workload.
A novel Cs-(129)Xe atomic spin gyroscope with closed-loop Faraday modulation.
Fang, Jiancheng; Wan, Shuangai; Qin, Jie; Zhang, Chen; Quan, Wei; Yuan, Heng; Dong, Haifeng
2013-08-01
We report a novel Cs-(129)Xe atomic spin gyroscope (ASG) with closed-loop Faraday modulation method. This ASG requires approximately 30 min to start-up and 110 °C to operate. A closed-loop Faraday modulation method for measurement of the optical rotation was used in this ASG. This method uses an additional Faraday modulator to suppress the laser intensity fluctuation and Faraday modulator thermal induced fluctuation. We theoretically and experimentally validate this method in the Cs-(129)Xe ASG and achieved a bias stability of approximately 3.25 °∕h.
Ruan, Yue; Thabit, Hood; Leelarathna, Lalantha; Hartnell, Sara; Willinska, Malgorzata E; Dellweg, Sibylle; Benesch, Carsten; Mader, Julia K; Holzer, Manuel; Kojzar, Harald; Evans, Mark L; Pieber, Thomas R; Arnolds, Sabine; Hovorka, Roman
2016-05-01
To quantify variability of insulin requirements during closed-loop insulin delivery. We retrospectively analyzed overnight, daytime, and total daily insulin amounts delivered during a multicenter closed-loop trial involving 32 adults with type 1 diabetes. Participants applied hybrid day-and-night closed-loop insulin delivery under free-living home conditions over 12 weeks. The coefficient of variation was adopted to measure variability of insulin requirements in individual subjects. Data were analyzed from 1,918 nights, 1,883 daytime periods and 1,564 total days characterized by closed-loop use over 85% of time. Variability of overnight insulin requirements (mean [SD] coefficient of variation 31% [4]) was nearly twice as high as variability of total daily requirements (17% [3], P < 0.001) and was also higher than variability of daytime insulin requirements (22% [4], P < 0.001). Overnight insulin requirements were significantly more variable than daytime and total daily amounts. This may explain why some people with type 1 diabetes report frustrating variability in morning glycemia. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Closed-Loop Neuromorphic Benchmarks
Stewart, Terrence C.; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris
2015-01-01
Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of “minimal” simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820
Renormalization of QCD in the interpolating momentum subtraction scheme at three loops
NASA Astrophysics Data System (ADS)
Gracey, J. A.; Simms, R. M.
2018-04-01
We introduce a more general set of kinematic renormalization schemes than the original momentum subtraction schemes of Celmaster and Gonsalves. These new schemes will depend on a parameter ω , which tags the external momentum of one of the legs of the three-point vertex functions in QCD. In each of the three new schemes, we renormalize QCD in the Landau and maximal Abelian gauges and establish the three-loop renormalization group functions in each gauge. For an application, we evaluate two critical exponents at the Banks-Zaks fixed point and demonstrate that their values appear to be numerically scheme independent in a subrange of the conformal window.
Perturbative quantum gravity as a double copy of gauge theory.
Bern, Zvi; Carrasco, John Joseph M; Johansson, Henrik
2010-08-06
In a previous paper we observed that (classical) tree-level gauge-theory amplitudes can be rearranged to display a duality between color and kinematics. Once this is imposed, gravity amplitudes are obtained using two copies of gauge-theory diagram numerators. Here we conjecture that this duality persists to all quantum loop orders and can thus be used to obtain multiloop gravity amplitudes easily from gauge-theory ones. As a nontrivial test, we show that the three-loop four-point amplitude of N=4 super-Yang-Mills theory can be arranged into a form satisfying the duality, and by taking double copies of the diagram numerators we obtain the corresponding amplitude of N=8 supergravity. We also remark on a nonsupersymmetric two-loop test based on pure Yang-Mills theory resulting in gravity coupled to an antisymmetric tensor and dilaton.
Polynomial reduction and evaluation of tree- and loop-level CHY amplitudes
Zlotnikov, Michael
2016-08-24
We develop a polynomial reduction procedure that transforms any gauge fixed CHY amplitude integrand for n scattering particles into a σ-moduli multivariate polynomial of what we call the standard form. We show that a standard form polynomial must have a specific ladder type monomial structure, which has finite size at any n, with highest multivariate degree given by (n – 3)(n – 4)/2. This set of monomials spans a complete basis for polynomials with rational coefficients in kinematic data on the support of scattering equations. Subsequently, at tree and one-loop level, we employ the global residue theorem to derive amore » prescription that evaluates any CHY amplitude by means of collecting simple residues at infinity only. Furthermore, the prescription is then applied explicitly to some tree and one-loop amplitude examples.« less
Physics and the New Games -- or Pretend You're an Atom.
ERIC Educational Resources Information Center
Edge, Ronald D.
1982-01-01
Describes several games in which physics principles are demonstrated using students. These include Pirates Treasure Game (vectors), Three-Meter Dash (kinematics), Knee-Bend Game (energy and power), Wave Game, Reaction Kinematics, Statics-People Pyramids, and games demonstrating nuclear reactions, collisions, electrons in a wire, close packing, and…
NASA Astrophysics Data System (ADS)
Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Chris
2017-01-01
The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experimental results are obtained from a novel spool valve actuated by a multi-layer piezoelectric ring bender. A generalised Prandtl-Ishlinskii model, fitted to experimental training data from the prototype valve, is used to model hysteresis empirically. This form of model is analytically invertible and is used to compensate for hysteresis in the prototype valve both open loop, and in several configurations of closed loop real time control system. The closed loop control configurations use PID (Proportional Integral Derivative) control with either the inverse hysteresis model in the forward path or in a command feedforward path. Performance is compared to both open and closed loop control without hysteresis compensation via step and frequency response results. Results show a significant improvement in accuracy and dynamic performance using hysteresis compensation in open loop, but where valve position feedback is available for closed loop control the improvements are smaller, and so conventional PID control may well be sufficient. It is concluded that the ability to combine state-of-the-art multi-layer piezoelectric bending actuators with either sophisticated hysteresis compensation or closed loop control provides a route for the creation of a new generation of high performance piezoelectric valves.
Muijres, Florian T; Bowlin, Melissa S; Johansson, L Christoffer; Hedenström, Anders
2012-02-07
Many small passerines regularly fly slowly when catching prey, flying in cluttered environments or landing on a perch or nest. While flying slowly, passerines generate most of the flight forces during the downstroke, and have a 'feathered upstroke' during which they make their wing inactive by retracting it close to the body and by spreading the primary wing feathers. How this flight mode relates aerodynamically to the cruising flight and so-called 'normal hovering' as used in hummingbirds is not yet known. Here, we present time-resolved fluid dynamics data in combination with wingbeat kinematics data for three pied flycatchers flying across a range of speeds from near hovering to their calculated minimum power speed. Flycatchers are adapted to low speed flight, which they habitually use when catching insects on the wing. From the wake dynamics data, we constructed average wingbeat wakes and determined the time-resolved flight forces, the time-resolved downwash distributions and the resulting lift-to-drag ratios, span efficiencies and flap efficiencies. During the downstroke, slow-flying flycatchers generate a single-vortex loop wake, which is much more similar to that generated by birds at cruising flight speeds than it is to the double loop vortex wake in hovering hummingbirds. This wake structure results in a relatively high downwash behind the body, which can be explained by the relatively active tail in flycatchers. As a result of this, slow-flying flycatchers have a span efficiency which is similar to that of the birds in cruising flight and which can be assumed to be higher than in hovering hummingbirds. During the upstroke, the wings of slowly flying flycatchers generated no significant forces, but the body-tail configuration added 23 per cent to weight support. This is strikingly similar to the 25 per cent weight support generated by the wing upstroke in hovering hummingbirds. Thus, for slow-flying passerines, the upstroke cannot be regarded as inactive, and the tail may be of importance for flight efficiency and possibly manoeuvrability.
Trajectory control of robot manipulators with closed-kinematic chain mechanism
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.; Premack, Timothy
1987-01-01
The problem of Cartesian trajectory control of a closed-kinematic chain mechanism robot manipulator, recently built at CAIR to study the assembly of NASA hardware for the future Space Station, is considered. The study is performed by both computer simulation and experimentation for tracking of three different paths: a straight line, a sinusoid, and a circle. Linearization and pole placement methods are employed to design controller gains. Results show that the controllers are robust and there are good agreements between simulation and experimentation. The results also show excellent tracking quality and small overshoots.
Microgyroscope with closed loop output
NASA Technical Reports Server (NTRS)
Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor); Cargille, Donald R. (Inventor)
2002-01-01
A micro-gyroscope (10) having closed loop operation by a control voltage (V.sub.TY), that is demodulated by an output signal of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis). The present invention provides wide-band, closed-loop operation for a micro-gyroscope (10) and allows the drive frequency to be closely tuned to a high Q sense axis resonance. A differential sense signal (S1-S2) is compensated and fed back by differentially changing the voltage on the drive electrodes to rebalance Coriolis torque. The feedback signal is demodulated in phase with the drive axis signal (K.sub..omega..crclbar..sub.x) to produce a measure of the Coriolis force.
Hippocampal closed-loop modeling and implications for seizure stimulation design
NASA Astrophysics Data System (ADS)
Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.
2015-10-01
Objective. Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main results. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.
Austin, Jodie A; Smith, Ian R; Tariq, Amina
2018-01-22
Closed-loop electronic medication management systems (EMMS) are recognised as an effective intervention to improve medication safety, yet evidence of their effectiveness in hospitals is limited. Few studies have compared medication turnaround time for a closed-loop electronic versus paper-based medication management environment. To compare medication turnaround times in a paper-based hospital environment with a digital hospital equipped with a closed-loop EMMS, consisting of computerised physician order entry, profiled automated dispensing cabinets packaged with unit dose medications and barcode medication administration. Data were collected during 2 weeks at three private hospital sites (one with closed-loop EMMS) within the same organisation network in Queensland, Australia. Time between scheduled and actual administration times was analysed for first dose of time-critical and non-critical medications located on the ward or sourced via pharmacy. Medication turnaround times at the EMMS site were less compared to the paper-based sites (median, IQR: 35 min, 8-57 min versus 120 min, 30-180 min, P < 0.001). For time-critical medications, 77% were administered within 60 min of scheduled time at the EMMS site versus 38% for the paper-based sites. Similar difference was observed for non-critical medications, 80% were administered within 60 min of their scheduled time at the EMMS site versus 41% at the paper-based facilities. The study indicates medication turnaround times utilising a closed-loop EMMS are less compared to paper-based systems. This improvement may be attributable to increased accessibility of medications using automated dispensing cabinets and electronic medication administration records flagging tasks to nurses in real time. © 2018 Royal Pharmaceutical Society.
Applying Computer Models to Realize Closed-Loop Neonatal Oxygen Therapy.
Morozoff, Edmund; Smyth, John A; Saif, Mehrdad
2017-01-01
Within the context of automating neonatal oxygen therapy, this article describes the transformation of an idea verified by a computer model into a device actuated by a computer model. Computer modeling of an entire neonatal oxygen therapy system can facilitate the development of closed-loop control algorithms by providing a verification platform and speeding up algorithm development. In this article, we present a method of mathematically modeling the system's components: the oxygen transport within the patient, the oxygen blender, the controller, and the pulse oximeter. Furthermore, within the constraints of engineering a product, an idealized model of the neonatal oxygen transport component may be integrated effectively into the control algorithm of a device, referred to as the adaptive model. Manual and closed-loop oxygen therapy performance were defined in this article by 3 criteria in the following order of importance: percent duration of SpO2 spent in normoxemia (target SpO2 ± 2.5%), hypoxemia (less than normoxemia), and hyperoxemia (more than normoxemia); number of 60-second periods <85% SpO2 and >95% SpO2; and number of manual adjustments. Results from a clinical evaluation that compared the performance of 3 closed-loop control algorithms (state machine, proportional-integral-differential, and adaptive model) with manual oxygen therapy on 7 low-birth-weight ventilated preterm babies, are presented. Compared with manual therapy, all closed-loop control algorithms significantly increased the patients' duration in normoxemia and reduced hyperoxemia (P < 0.05). The number of manual adjustments was also significantly reduced by all of the closed-loop control algorithms (P < 0.05). Although the performance of the 3 control algorithms was equivalent, it is suggested that the adaptive model, with its ease of use, may have the best utility.
Hippocampal closed-loop modeling and implications for seizure stimulation design.
Sandler, Roman A; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W; Marmarelis, Vasilis Z
2015-10-01
Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.
Hippocampal Closed-Loop Modeling and Implications for Seizure Stimulation Design
Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.
2016-01-01
Objective Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the Entorhinal Cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3→CA1, via the Schaffer-Collateral synapse, and CA1→CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (Principal Dynamic Modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main Results Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance DBS is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy. PMID:26355815
Hellenthal, Chris; Sotthewes, Kai; Siekman, Martin H; Kooij, E Stefan; Zandvliet, Harold J W
2015-01-01
We demonstrate the validity of using closed-loop z(V) conductance scanning tunneling spectroscopy (STS) measurements for the determination of the effective tunneling barrier by comparing them to more conventional open-loop I(z) measurements. Through the development of a numerical model, the individual contributions to the effective tunneling barrier present in these experiments, such as the work function and the presence of an image charge, are determined quantitatively. This opens up the possibility of determining tunneling barriers of both vacuum and molecular systems in an alternative and more detailed manner.
1980-04-01
specifications ... 3-10 25. Typical isolation curve ... 3-12 26. Servo amp/motor/load frequency response (inner gimbal) ... 4-3 27. Slave loop ( open loop...slave loop ( open loop) frequency response (inner gimbal) . . . 4-4 30. Slave loop (closed loop) frequency response (inner gimbal) ... 4-5 3 . Slave...loop inner gimbal time response ... 4-5 32. Servo amp/motor/load frequency response (outer gimbal) ... 4-6 33. Slave loop ( open loop) uncompensated
ERIC Educational Resources Information Center
California Integrated Waste Management Board, Sacramento.
Closing the Loop (CTL) is a science curriculum designed to introduce students to integrated waste management through awareness. This document presents five lesson plans focusing on developing an understanding of natural resources, solid wastes, conservation, and the life of landfills. Contents include: (1) "What Are Natural Resources?"; (2)…
Su, Fei; Wang, Jiang; Niu, Shuangxia; Li, Huiyan; Deng, Bin; Liu, Chen; Wei, Xile
2018-02-01
The efficacy of deep brain stimulation (DBS) for Parkinson's disease (PD) depends in part on the post-operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control method into the online adjustment of DBS amplitude and frequency. This approach was tested in a computational model of basal ganglia-thalamic network. The autoregressive Volterra model was used to identify the process model based on physiological data. Simulation results illustrated the efficiency of closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption. Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked network activity by the closed-loop frequency adjustment stimulation was closer to the normal state. Copyright © 2017 Elsevier Ltd. All rights reserved.
Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes
NASA Technical Reports Server (NTRS)
Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Martin, Richard E. (Inventor); Hafley, Robert A. (Inventor)
2013-01-01
A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.
Closed loop insulin delivery in diabetes.
Battelino, Tadej; Omladič, Jasna Šuput; Phillip, Moshe
2015-06-01
The primary goal of type 1 diabetes treatment is attaining near-normal glucose values. This currently remains out of reach for most people with type 1 diabetes despite intensified insulin treatment in the form of insulin analogues, educational interventions, continuous glucose monitoring, and sensor augmented insulin pump. The main remaining problem is risk of hypoglycaemia, which cannot be sufficiently reduced in all patient groups. Additionally, patients' burn-out often develops with years of tedious day-to-day diabetes management, rendering available diabetes-related technology less efficient. Over the past 40 years, several attempts have been made towards computer-programmed insulin delivery in the form of closed loop, with faster developments especially in the past decade. Automated insulin delivery has reduced human error in glycaemic control and considerably lessened the burden of routine self-management. In this chapter, data from randomized controlled trials with closed-loop insulin delivery that included type 1 diabetes population are summarized, and an evidence-based vision for possible routine utilization of closed loop is provided. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fiber-optic projected-fringe digital interferometry
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Beheim, Glenn
1990-01-01
A phase-stepped projected-fringe interferometer was developed which uses a closed-loop fiber-optic phase-control system to make very accurate surface profile measurements. The closed-loop phase-control system greatly reduces phase-stepping error, which is frequently the dominant source of error in digital interferometers. Two beams emitted from a fiber-optic coupler are combined to form an interference fringe pattern on a diffusely reflecting object. Reflections off of the fibers' output faces are used to create a phase-indicating signal for the closed-loop optical phase controller. The controller steps the phase difference between the two beams by pi/2 radians in order to determine the object's surface profile using a solid-state camera and a computer. The system combines the ease of alignment and automated data reduction of phase-stepping projected-fringe interferometry with the greatly improved phase-stepping accuracy of our closed-loop phase-controller. The system is demonstrated by measuring the profile of a plate containing several convex surfaces whose heights range from 15 to 25 micron high.
NASA Technical Reports Server (NTRS)
Mielke, R. R.; Tung, L. J.; Carraway, P. I., III
1984-01-01
The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The full state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system rmain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.
Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis
NASA Technical Reports Server (NTRS)
Thompson, P. M.
1979-01-01
Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.
NASA Technical Reports Server (NTRS)
Mielke, R. R.; Tung, L. J.; Carraway, P. I., III
1985-01-01
The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The fulll state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system remain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.
First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying
NASA Technical Reports Server (NTRS)
Gill, E.; Naasz, Bo; Ebinuma, T.
2003-01-01
A closed-loop system for the demonstration of formation flying technologies has been developed at NASA s Goddard Space Flight Center. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. A sample scenario has been set up where the autonomous transition of a satellite formation from an initial along-track separation of 800 m to a final distance of 100 m has been demonstrated. As a result, a typical control accuracy of about 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.
Edge-on dislocation loop in anisotropic hcp zirconium thin foil
NASA Astrophysics Data System (ADS)
Wu, Wenwang; Xia, Re; Qian, Guian; Xu, Shucai; Zhang, Jinhuan
2015-10-01
Edge-on dislocation loops with 〈 a 〉 -type and 〈 c 〉 -type of Burgers vectors can be formed on prismatic or basel habit planes of hexagonal close-packed (hcp) zirconium alloys during in-situ ion irradiation and neutron irradiation experiments. In this work, an anisotropic image stress method was employed to analyze the free surface effects of dislocation loops within hcp Zr thin foils. Calculation results demonstrate that image stress has a remarkable effect on the distortion fields of dislocation loops within infinite medium, and the image energy becomes remarkable when dislocation loops are situated close to the free surfaces. Moreover, image forces of the 1 / 2 〈 0001 〉 (0001) dislocation loop within (0001) thin foil is much stronger than that of the 1 / 3 〈 11 2 bar 0 〉 (11 2 bar 0) dislocation loop within (11 2 bar 0) thin foil of identical geometrical configurations. Finally, image stress effect on the physical behaviors of loops during in-situ ion irradiation experiments is discussed.
NASA Astrophysics Data System (ADS)
Farrahi, G. H.; Ghodrati, M.; Azadi, M.; Rezvani Rad, M.
2014-08-01
This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress-strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson-Cook law were applied to improve the estimation of the stress-strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.
Falcon: a highly flexible open-source software for closed-loop neuroscience.
Ciliberti, Davide; Kloosterman, Fabian
2017-08-01
Closed-loop experiments provide unique insights into brain dynamics and function. To facilitate a wide range of closed-loop experiments, we created an open-source software platform that enables high-performance real-time processing of streaming experimental data. We wrote Falcon, a C++ multi-threaded software in which the user can load and execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single thread and nodes communicate with each other through thread-safe buffers. The framework allows for easy implementation of new processing nodes and data types. Falcon was tested both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-loop TTL pulses were generated with a USB module for digital output. We characterized the round-trip latency of our Falcon-based closed-loop system, as well as the specific latency contribution of the software architecture, by testing processing graphs with up to 32 parallel pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection of population bursts recorded live from the hippocampus of a freely moving rat. On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 4-core workstations. Falcon was used successfully to detect population bursts online with ~40 ms average latency. Falcon is a novel open-source software for closed-loop neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community for implementing a wide variety of closed-loop experiments, including those requiring use of complex data structures and real-time execution of computationally intensive algorithms, such as population neural decoding/encoding from large cell assemblies.
Falcon: a highly flexible open-source software for closed-loop neuroscience
NASA Astrophysics Data System (ADS)
Ciliberti, Davide; Kloosterman, Fabian
2017-08-01
Objective. Closed-loop experiments provide unique insights into brain dynamics and function. To facilitate a wide range of closed-loop experiments, we created an open-source software platform that enables high-performance real-time processing of streaming experimental data. Approach. We wrote Falcon, a C++ multi-threaded software in which the user can load and execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single thread and nodes communicate with each other through thread-safe buffers. The framework allows for easy implementation of new processing nodes and data types. Falcon was tested both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-loop TTL pulses were generated with a USB module for digital output. We characterized the round-trip latency of our Falcon-based closed-loop system, as well as the specific latency contribution of the software architecture, by testing processing graphs with up to 32 parallel pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection of population bursts recorded live from the hippocampus of a freely moving rat. Main results. On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 4-core workstations. Falcon was used successfully to detect population bursts online with ~40 ms average latency. Significance. Falcon is a novel open-source software for closed-loop neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community for implementing a wide variety of closed-loop experiments, including those requiring use of complex data structures and real-time execution of computationally intensive algorithms, such as population neural decoding/encoding from large cell assemblies.
NASA Astrophysics Data System (ADS)
Sun, Lianming; Sano, Akira
Output over-sampling based closed-loop identification algorithm is investigated in this paper. Some instinct properties of the continuous stochastic noise and the plant input, output in the over-sampling approach are analyzed, and they are used to demonstrate the identifiability in the over-sampling approach and to evaluate its identification performance. Furthermore, the selection of plant model order, the asymptotic variance of estimated parameters and the asymptotic variance of frequency response of the estimated model are also explored. It shows that the over-sampling approach can guarantee the identifiability and improve the performance of closed-loop identification greatly.
Closed-Loop Analysis of Soft Decisions for Serial Links
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin A.; Steele, Glen F.; Zucha, Joan P.; Schlensinger, Adam M.
2012-01-01
Modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more overhead through noisier channels, and software-defined radios use error-correction techniques that approach Shannon s theoretical limit of performance. The authors describe the benefit of closed-loop measurements for a receiver when paired with a counterpart transmitter and representative channel conditions. We also describe a real-time Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in real-time during the development of software defined radios.
Moore, J H
1995-06-01
A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.
Development of closed loop roll control for magnetic balance systems
NASA Technical Reports Server (NTRS)
Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.
1982-01-01
This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.
On the feasibility of closed-loop control of intra-aortic balloon pumping
NASA Technical Reports Server (NTRS)
Clark, J. W., Jr.; Bourland, H. M.; Kane, G. R.
1973-01-01
A closed-loop control scheme for the control of intra-aortic balloon pumping has been developed and tested in dog experiments. A performance index reflecting the general objectives of balloon-assist pumping is developed and a modified steepest ascent control algorithm is utilized for the selection of a proper operating point for the balloon during its pumping cycle. This paper attempts to indicate the feasibility of closed-loop control of balloon pumping, and particularly its flexibility in achieving both diastolic augmentation of mean aortic pressure and control of the level of end-diastolic pressure (EDP) an important factor in reducing heart work.
Louw, Tyron; Markkula, Gustav; Boer, Erwin; Madigan, Ruth; Carsten, Oliver; Merat, Natasha
2017-11-01
This driving simulator study, conducted as part of the EU AdaptIVe project, investigated drivers' performance in critical traffic events, during the resumption of control from an automated driving system. Prior to the critical events, using a between-participant design, 75 drivers were exposed to various screen manipulations that varied the amount of available visual information from the road environment and automation state, which aimed to take them progressively further 'out-of-the-loop' (OoTL). The current paper presents an analysis of the timing, type, and rate of drivers' collision avoidance response, also investigating how these were influenced by the criticality of the unfolding situation. Results showed that the amount of visual information available to drivers during automation impacted on how quickly they resumed manual control, with less information associated with slower take-over times, however, this did not influence the timing of when drivers began a collision avoidance manoeuvre. Instead, the observed behaviour is in line with recent accounts emphasising the role of scenario kinematics in the timing of driver avoidance response. When considering collision incidents in particular, avoidance manoeuvres were initiated when the situation criticality exceeded an Inverse Time To Collision value of ≈0.3s -1 . Our results suggest that take-over time and timing and quality of avoidance response appear to be largely independent, and while long take-over time did not predict collision outcome, kinematically late initiation of avoidance did. Hence, system design should focus on achieving kinematically early avoidance initiation, rather than short take-over times. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A
2014-01-01
Previous research (Whitwell et al. in Exp Brain Res 188:603-611, 2008; Whitwell and Goodale in Exp Brain Res 194:619-629, 2009) has shown that trial history, but not anticipatory knowledge about the presence or absence of visual feedback on an upcoming trial, plays a vital role in determining how that feedback is exploited when grasping with the right hand. Nothing is known about how the non-dominant left hand behaves under the same feedback regimens. In present study, therefore, we compared peak grip aperture (PGA) for left- and right-hand grasps executed with and without visual feedback (i.e., closed- vs. open-loop conditions) in right-handed individuals under three different trial schedules: the feedback conditions were blocked separately, they were randomly interleaved, or they were alternated. When feedback conditions were blocked, the PGA was much larger for open-loop trials as compared to closed-loop trials, although this difference was more pronounced for right-hand grasps than left-hand grasps. Like Whitwell et al., we found that mixing open- and closed-loop trials together, compared to blocking them separately, homogenized the PGA for open- and closed-loop grasping in the right hand (i.e., the PGAs became smaller on open-loop trials and larger on closed-loop trials). In addition, the PGAs for right-hand grasps were entirely determined by trial history and not by knowledge of whether or not visual feedback would be available on an upcoming trial. In contrast to grasps made with the right hand, grasps made by the left hand were affected both by trial history and by anticipatory knowledge of the upcoming visual feedback condition. But these effects were observed only on closed-loop trials, i.e., the PGAs of grasps made with the left hand on closed-loop trials were smaller when participants could anticipate the availability of feedback on an upcoming trial (alternating trials) than when they could not (randomized trials). In contrast, grasps made with the left hand on open-loop trials exhibited the same large PGAs under all feedback schedules: blocked, random, or alternating. In other words, there was no evidence for homogenization. Taken together, these results suggest that in addition to the real-time demands of the task, such as the target's size and position and the availability of visual feedback, the initial (i.e., pre-movement) programming of right-hand grasping relies on what happened on the previous trial, whereas the programming of left-hand grasping is more cognitively supervised and exploits explicit information about trial order to prepare for an upcoming trial.
A Method for Precision Closed-Loop Irrigation Using a Modified PID Control Algorithm
NASA Astrophysics Data System (ADS)
Goodchild, Martin; Kühn, Karl; Jenkins, Malcolm; Burek, Kazimierz; Dutton, Andrew
2016-04-01
The benefits of closed-loop irrigation control have been demonstrated in grower trials which show the potential for improved crop yields and resource usage. Managing water use by controlling irrigation in response to soil moisture changes to meet crop water demands is a popular approach but requires knowledge of closed-loop control practice. In theory, to obtain precise closed-loop control of a system it is necessary to characterise every component in the control loop to derive the appropriate controller parameters, i.e. proportional, integral & derivative (PID) parameters in a classic PID controller. In practice this is often difficult to achieve. Empirical methods are employed to estimate the PID parameters by observing how the system performs under open-loop conditions. In this paper we present a modified PID controller, with a constrained integral function, that delivers excellent regulation of soil moisture by supplying the appropriate amount of water to meet the needs of the plant during the diurnal cycle. Furthermore, the modified PID controller responds quickly to changes in environmental conditions, including rainfall events which can result in: controller windup, under-watering and plant stress conditions. The experimental work successfully demonstrates the functionality of a constrained integral PID controller that delivers robust and precise irrigation control. Coir substrate strawberry growing trial data is also presented illustrating soil moisture control and the ability to match water deliver to solar radiation.
Relative stability of the open and closed conformations of the active site loop of streptavidin
NASA Astrophysics Data System (ADS)
Ignacio J., General; Meirovitch, Hagai
2011-01-01
The eight-residue surface loop, 45-52 (Ser, Ala, Val, Gly, Asn, Ala, Glu, Ser), of the homotetrameric protein streptavidin has a "closed" conformation in the streptavidin-biotin complex, where the corresponding binding affinity is one of the strongest found in nature (ΔG ˜ -18 kcal/mol). However, in most of the crystal structures of apo (unbound) streptavidin, the loop conformation is "open" and typically exhibits partial disorder and high B-factors. Thus, it is plausible to assume that the loop structure is changed from open to closed upon binding of biotin, and the corresponding difference in free energy, ΔF = Fopen - Fclosed in the unbound protein, should therefore be considered in the total absolute free energy of binding. ΔF (which has generally been neglected) is calculated here using our "hypothetical scanning molecular-dynamics" (HSMD) method. We use a protein model in which only the atoms closest to the loop are considered (the "template") and they are fixed in the x-ray coordinates of the free protein; the x-ray conformation of the closed loop is attached to the same (unbound) template and both systems are capped with the same sphere of TIP3P water. Using the force field of the assisted model building with energy refinement (AMBER), we carry out two separate MD simulations (at temperature T = 300 K), starting from the open and closed conformations, where only the atoms of the loop and water are allowed to move (the template-water and template-loop interactions are considered). The absolute Fopen and Fclosed (of loop + water) are calculated from these trajectories, where the loop and water contributions are obtained by HSMD and a thermodynamic integration (TI) process, respectively. The combined HSMD-TI procedure leads to total (loop + water) ΔF = -27.1 ± 2.0 kcal/mol, where the entropy TΔS constitutes 34% of ΔF, meaning that the effect of S is significant and should not be ignored. Also, ΔS is positive, in accord with the high flexibility of the open loop observed in crystal structures, while the energy ΔE is unexpectedly negative, thus also adding to the stability of the open loop. The loop and the 250 capped water molecules are the largest system studied thus far, which constitutes a test for the efficiency of HSMD-TI; this efficiency and technical issues related to the implementation of the method are also discussed. Finally, the result for ΔF is a prediction that will be considered in the calculation of the absolute free energy of binding of biotin to streptavidin, which constitutes our next project.
Sumi, Mayumi; Koga, Yoshiyuki; Tominaga, Jun-Ya; Hamanaka, Ryo; Ozaki, Hiroya; Chiang, Pao-Chang; Yoshida, Noriaki
2016-12-01
Most closing loops designed for producing higher moment-to-force (M/F) ratios require complex wire bending and are likely to cause hygiene problems and discomfort because of their complicated configurations. We aimed to develop a simple loop design that can produce optimal force and M/F ratio. A loop design that can generate a high M/F ratio and the ideal force level was investigated by varying the portion and length of the cross-sectional reduction of a teardrop loop and the loop position. The forces and moments acting on closing loops were calculated using structural analysis based on the tangent stiffness method. An M/F ratio of 9.3 (high enough to achieve controlled movement of the anterior teeth) and an optimal force level of approximately 250 g of force can be generated by activation of a 10-mm-high teardrop loop whose cross-section of 0.019 × 0.025 or 0.021 × 0.025 in was reduced in thickness by 50% for a distance of 3 mm from the apex, located between a quarter and a third of the interbracket distance from the canine bracket. The simple loop design that we developed delivers an optimal force and an M/F ratio for the retraction of anterior teeth, and is applicable in a 0.022-in slot system. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.
Mansouri, Misagh; Reinbolt, Jeffrey A
2012-05-11
Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB's variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1s (OpenSim) to 2.9s (MATLAB). For the closed-loop case, a proportional-integral-derivative controller was used to successfully balance a pole on model's hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
A platform for dynamic simulation and control of movement based on OpenSim and MATLAB
Mansouri, Misagh; Reinbolt, Jeffrey A.
2013-01-01
Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB’s variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1 s (OpenSim) to 2.9 s (MATLAB). For the closed-loop case, a proportional–integral–derivative controller was used to successfully balance a pole on model’s hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. PMID:22464351
NASA Astrophysics Data System (ADS)
Cao, Huiliang; Li, Hongsheng; Shao, Xingling; Liu, Zhiyu; Kou, Zhiwei; Shan, Yanhu; Shi, Yunbo; Shen, Chong; Liu, Jun
2018-01-01
This paper presents the bandwidth expanding method with wide-temperature range for sense mode coupling dual-mass MEMS gyro. The real sensing mode of the gyroscope is analyzed to be the superposition of in-phase and anti-phase sensing modes. The mechanical sensitivity and bandwidth of the gyroscope structure are conflicted with each other and both governed by the frequency difference between sensing and drive modes (min {Δω1, Δω2}). The sensing mode force rebalancing combs stimulation method (FRCSM) is presented to simulate the Coriolis force, and based on this method, the gyro's dynamic characteristics are tested. The sensing closed- loop controller is achieved by operational amplifier based on phase lead method, which enable the magnitude margin and phase margin of the system to reach 7.21 dB and 34.6° respectively, and the closed-loop system also expands gyro bandwidth from 13 Hz (sensing open-loop) to 102 Hz (sensing closed-loop). What's more, the turntable test results show that the sensing closed-loop works stably in wide-temperature range (from -40 °C to 60 °C) and the bandwidth values are 107 Hz @-40 °C and 97 Hz @60 °C. The results indicate that the higher temperature causes lower bandwidth, and verify the simulation results are 103 Hz @-40 °C and 98.2 Hz @60 °C. The new bottleneck of the closed loop bandwidth is the valley generated by conjugate zeros, which is formed by superposition of sensing modes.
Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.
Felt, Wyatt; Chin, Khai Yi; Remy, C David
2017-09-01
This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.
Cluster-based control of a separating flow over a smoothly contoured ramp
NASA Astrophysics Data System (ADS)
Kaiser, Eurika; Noack, Bernd R.; Spohn, Andreas; Cattafesta, Louis N.; Morzyński, Marek
2017-12-01
The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. The proposed closed-loop control framework addresses a key issue of model-based control: The actuation effect often results from slow dynamics of strongly nonlinear interactions which the flow reveals at timescales much longer than the prediction horizon of any model. Hence, we employ a probabilistic approach based on a cluster-based discretization of the Liouville equation for the evolution of the probability distribution. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a control-dependent Markov model. This Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is determined. We examine how the approach can be used to improve the open-loop actuation in a separating flow dominated by Kelvin-Helmholtz shedding. For this purpose, the feature space, in which the model is learned, and the admissible control inputs are tailored to strongly oscillatory flows.
Learning from ISS-modular adaptive NN control of nonlinear strict-feedback systems.
Wang, Cong; Wang, Min; Liu, Tengfei; Hill, David J
2012-10-01
This paper studies learning from adaptive neural control (ANC) for a class of nonlinear strict-feedback systems with unknown affine terms. To achieve the purpose of learning, a simple input-to-state stability (ISS) modular ANC method is first presented to ensure the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in finite time. Subsequently, it is proven that learning with the proposed stable ISS-modular ANC can be achieved. The cascade structure and unknown affine terms of the considered systems make it very difficult to achieve learning using existing methods. To overcome these difficulties, the stable closed-loop system in the control process is decomposed into a series of linear time-varying (LTV) perturbed subsystems with the appropriate state transformation. Using a recursive design, the partial persistent excitation condition for the radial basis function neural network (NN) is established, which guarantees exponential stability of LTV perturbed subsystems. Consequently, accurate approximation of the closed-loop system dynamics is achieved in a local region along recurrent orbits of closed-loop signals, and learning is implemented during a closed-loop feedback control process. The learned knowledge is reused to achieve stability and an improved performance, thereby avoiding the tremendous repeated training process of NNs. Simulation studies are given to demonstrate the effectiveness of the proposed method.
Demonstration of a vectorial optical field generator with adaptive close loop control.
Chen, Jian; Kong, Lingjiang; Zhan, Qiwen
2017-12-01
We experimentally demonstrate a vectorial optical field generator (VOF-Gen) with an adaptive close loop control. The close loop control capability is illustrated with the calibration of polarization modulation of the system. To calibrate the polarization ratio modulation, we generate 45° linearly polarized beam and make it propagate through a linear analyzer whose transmission axis is orthogonal to the incident beam. For the retardation calibration, circularly polarized beam is employed and a circular polarization analyzer with the opposite chirality is placed in front of the CCD as the detector. In both cases, the close loop control automatically changes the value of the corresponding calibration parameters in the pre-set ranges to generate the phase patterns applied to the spatial light modulators and records the intensity distribution of the output beam by the CCD camera. The optimized calibration parameters are determined corresponding to the minimum total intensity in each case. Several typical kinds of vectorial optical beams are created with and without the obtained calibration parameters, and the full Stokes parameter measurements are carried out to quantitatively analyze the polarization distribution of the generated beams. The comparisons among these results clearly show that the obtained calibration parameters could remarkably improve the accuracy of the polarization modulation of the VOF-Gen, especially for generating elliptically polarized beam with large ellipticity, indicating the significance of the presented close loop in enhancing the performance of the VOF-Gen.
Development of a closed-loop system for tremor suppression in patients with Parkinson's disease.
Xu, F L; Hao, M Z; Xu, S Q; Hu, Z X; Xiao, Q; Lan, N
2016-08-01
More than 70% of patients suffering Parkinson's disease (PD) exhibit resting tremor in their extremities, hampering their ability to perform daily activities. Based on our earlier studies on corticospinal transmission of tremor signals [10,11], we hypothesize that cutaneous afferents evoked by surface stimulation can produce an inhibitory effect on propriospinal neurons (PN), which in turn will suppress tremor signals passing through the PN. This paper presents the development of a closed-loop system for tremor suppression by transcutaneous electrical nerve stimulation (TENS) of sensory fibers beneath the skin. The closed-loop system senses EMGs of forearm muscles, and detects rhythmic bursting in the EMG signal. When a tremor is detected by the system, a command signal triggers a stimulator to output a train of bi-phasic, current regulated pulses to a pair of surface electrodes. The stimulation electrode is placed on the dorsal hand skin near the metacarpophalangeal joint of index finger, which is innervated by the superficial radial nerve that projects an inhibitory afferent to PNs of forearm muscles. We tested the closed-loop system in 3 normal subjects to verify the algorithm and in 2 tremor dominated PD subjects for feasibility of tremor detecting and suppression. Preliminary results indicate that the closed-loop system can detect tremor in all subjects, and tremor in PD patients was suppressed significantly by electrical stimulation of cutaneous afferents.
Investigating the Flow and Biomechanics of the Embryonic Zebrafish Heart
NASA Astrophysics Data System (ADS)
Johnson, Brennan; Garrity, Deborah; Dasi, Lakshmi
2010-11-01
Understanding flow and kinematic characteristics of the embryonic heart is a prerequisite to devise early intervention or detection methods in the context of congenital heart defects. In this study, the kinematics and fluid dynamics of the embryonic zebrafish heart were analyzed through the early stages of cardiac development (24-48 hours post-fertilization) in vivo using optical microscopy and high-speed video. Endocardial walls and individual blood cells were segmented from raw images and were tracked through the cardiac cycle. Particle tracking velocimetry analysis yielded quantitative blood cell velocity field, chamber volume, and flow rate information. It was seen that the pumping mechanism starts as a combined peristaltic and suction pump while the heart is in the tube configuration and transforms into a positive displacement pump after cardiac looping. Strong two-phase nature of the fluid is evident. This work provides us new understanding of the spatio-temporal characteristics of kinematics and blood cell velocity field inside the developing heart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, Francois G.; Love, Lonnie L.; Jung, David L.
2004-03-29
Contrary to the repetitive tasks performed by industrial robots, the tasks in most DOE missions such as environmental restoration or Decontamination and Decommissioning (D&D) can be characterized as ''batches-of-one'', in which robots must be capable of adapting to changes in constraints, tools, environment, criteria and configuration. No commercially available robot control code is suitable for use with such widely varying conditions. In this talk we present our development of a ''generic code'' to allow real time (at loop rate) robot behavior adaptation to changes in task objectives, tools, number and type of constraints, modes of controls or kinematics configuration. Wemore » present the analytical framework underlying our approach and detail the design of its two major modules for the automatic generation of the kinematics equations when the robot configuration or tools change and for the motion planning under time-varying constraints. Sample problems illustrating the capabilities of the developed system are presented.« less
Jastremski, M; Jastremski, C; Shepherd, M; Friedman, V; Porembka, D; Smith, R; Gonzales, E; Swedlow, D; Belzberg, H; Crass, R
1995-10-01
To test a model for the assessment of critical care technology on closed loop infusion control, a technology that is in its early stages of development and testing on human subjects. A computer-assisted search of the English language literature and reviews of the gathered data by experts in the field of closed loop infusion control systems. Studies relating to closed loop infusion control that addressed one or more of the questions contained in our technology assessment template were analyzed. Study design was not a factor in article selection. However, the lack of well-designed clinical outcome studies was an important factor in determining our conclusions. A focus person summarized the data from the selected studies that related to each of the assessment questions. The preliminary data summary developed by the focus person was further analyzed and refined by the task force. Experts in closed loop systems were then added to the group to review the summary provided by the task force. These experts' comments were considered by the task force and this final consensus report was developed. Closed loop system control is a technological concept that may be applicable to several aspects of critical care practice. This is a technology in the early stages of evolution and much more research and data are needed before its introduction into usual clinical practice. Furthermore, each specific application and each device for each application (e.g., nitroprusside infusion, ventilator adjustment), although based on the same technological concept, are sufficiently different in terms of hardware and computer algorithms to require independent validation studies. Closed loop infusion systems may have a role in critical care practice. However, for most applications, further development is required to move this technology from the innovation phase to the point where it can be evaluated so that its role in critical car practice can be defined. Each application of closed loop infusion systems must be independently validated by appropriately designed research studies. Users should be provided with the clinical parameters driving each closed loop system so that they can ensure that it agrees with their opinion of acceptable medical practice. Clinical researchers and leaders in industry should collaborate to perform the scientifically valid, outcome-based research that is necessary to evaluate the effect of this new technology. The original model we developed for technology assessment required the addition of several more questions to produce a complete analysis of an emerging technology. An emerging technology should be systematically assessed (using a model such as the model developed by the Society of Critical Care Medicine), before its introduction into clinical practice in order to provide a focus for human outcome validation trials and to minimize the possibility of widespread use of an unproven technology.
Fully probabilistic control design in an adaptive critic framework.
Herzallah, Randa; Kárný, Miroslav
2011-12-01
Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem; in particular, very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this paper. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cyclic softening based on dislocation annihilation at sub-cell boundary for SA333 Grade-6 C-Mn steel
NASA Astrophysics Data System (ADS)
Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.; Gupta, S. K.
2018-01-01
In this work, the response of SA333 Grade-6 C-Mn steel subjected to uniaxial and in-phase biaxial tension-torsion cyclic loading is experimented and an attempt is made to model the material behaviour. Experimentally observed cyclic softening is modelled based on ‘dislocation annihilation at low angle grain boundary’, while Ohno-Wang kinematic hardening rule is used to simulate the stress-strain hysteresis loops. The relevant material parameters are extracted from the appropriate experimental results and metallurgical investigations. The material model is plugged as user material subroutine into ABAQUS FE platform to simulate pre-saturation low cycle fatigue loops with cyclic softening and other cyclic plastic behaviour under prescribed loading. The stress-strain hysteresis loops and peak stress with cycles were compared with the experimental results and good agreements between experimental and simulated results validated the material model.
Technology transfer of operator-in-the-loop simulation
NASA Technical Reports Server (NTRS)
Yae, K. H.; Lin, H. C.; Lin, T. C.; Frisch, H. P.
1994-01-01
The technology developed for operator-in-the-loop simulation in space teleoperation has been applied to Caterpillar's backhoe, wheel loader, and off-highway truck. On an SGI workstation, the simulation integrates computer modeling of kinematics and dynamics, real-time computational and visualization, and an interface with the operator through the operator's console. The console is interfaced with the workstation through an IBM-PC in which the operator's commands were digitized and sent through an RS-232 serial port. The simulation gave visual feedback adequate for the operator in the loop, with the camera's field of vision projected on a large screen in multiple view windows. The view control can emulate either stationary or moving cameras. This simulator created an innovative engineering design environment by integrating computer software and hardware with the human operator's interactions. The backhoe simulation has been adopted by Caterpillar in building a virtual reality tool for backhoe design.
Siegmund, Gunter P; Blouin, Jean-Sébastien
2009-01-01
Recent studies have proposed that a high rate of acceleration onset, i.e. high jerk, during a low-speed vehicle collision increases the risk of whiplash injury by triggering inappropriate muscle responses and/or increasing peak head acceleration. Our goal was to test these proposed mechanisms at realistic jerk levels and then to determine how collision jerk affects the potential for whiplash injuries. Twenty-three seated volunteers (8 F, 15 M) were exposed to multiple experiments involving perturbations simulating the onset of a vehicle collision in eyes open and eyes closed conditions. In the first experiment, subjects experienced five forward and five rearward perturbations to look for the inappropriate muscle responses and ‘floppy’ head kinematics previously attributed to high jerk perturbations. In the second experiment, we independently varied the jerk (∼125 to 3 000 m s−3) and acceleration (∼0.65 to 2.6 g) of the perturbation to assess their effect on the electromyographic (EMG) responses of the sternocleidomastoid (SCM), scalene (SCAL) and cervical paraspinal (PARA) muscles and the kinematic responses of the head and neck. In the first experiment, we found neither inappropriate muscle responses nor floppy head kinematics when subjects had their eyes open, but observed two subjects with floppy head kinematics with eyes closed. In the second experiment, we found that about 70% of the variations in the SCM and SCAL responses and about 95% of the variations in head/neck kinematics were explained by changes in perturbation acceleration in both the eyes open and eyes closed conditions. Less than 2% of the variation in the muscle and kinematic responses was explained by changes in perturbation jerk and, where significant, response amplitudes diminished with increasing jerk. Based on these findings, collision jerk appears to have little or no role in the genesis of whiplash injuries in low-speed vehicle crashes. PMID:19237420
Wu, Ping; Zhang, Jian-Wu
2013-09-01
This paper discussed the management regulations and technical requirements of clinical investigational product for new drug of traditional Chinese medicine, analyzed some common problems on the management of them, and proposed the establishment of closed-loop management model and management requirements in various aspects.
Disaggregating Assessment to Close the Loop and Improve Student Learning
ERIC Educational Resources Information Center
Rawls, Janita; Hammons, Stacy
2015-01-01
This study examined student learning outcomes for accelerated degree students as compared to conventional undergraduate students, disaggregated by class levels, to develop strategies for then closing the loop with assessment. Using the National Survey of Student Engagement, critical thinking and oral and written communication outcomes were…
Flight Engineer Donald R. Pettit looks closely at Sodium Chloride within a 50-millimeter metal loop
2003-03-12
ISS006-E-39142 (12 March 2003) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, looks closely at a water bubble within a 50-millimeter metal loop. The experiment took place in the Destiny laboratory on the International Space Station (ISS).
Gluons and gravitons at one loop from ambitwistor strings
NASA Astrophysics Data System (ADS)
Geyer, Yvonne; Monteiro, Ricardo
2018-03-01
We present new and explicit formulae for the one-loop integrands of scattering amplitudes in non-supersymmetric gauge theory and gravity, valid for any number of particles. The results exhibit the colour-kinematics duality in gauge theory and the double-copy relation to gravity, in a form that was recently observed in supersymmetric theories. The new formulae are expressed in a particular representation of the loop integrand, with only one quadratic propagator, which arises naturally from the framework of the loop-level scattering equations. The starting point in our work are the expressions based on the scattering equations that were recently derived from ambitwistor string theory. We turn these expressions into explicit formulae depending only on the loop momentum, the external momenta and the external polarisations. These formulae are valid in any number of spacetime dimensions for pure Yang-Mills theory (gluon) and its natural double copy, NS-NS gravity (graviton, dilaton, B-field), and we also present formulae in four spacetime dimensions for pure gravity (graviton). We perform several tests of our results, such as checking gauge invariance and directly matching our four-particle formulae to previously known expressions. While these tests would be elaborate in a Feynman-type representation of the loop integrand, they become straightforward in the representation we use.
Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R
2002-11-01
In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.
Feasibility study on an energy-saving desiccant wheel system with CO2 heat pump
NASA Astrophysics Data System (ADS)
Liu, Yefeng; Meng, Deren; Chen, Shen
2018-02-01
In traditional desiccant wheel, air regeneration process occurs inside an open loop, and lots of energy is consumed. In this paper, an energy-saving desiccant wheel system with CO2 heat pump and closed loop air regeneration is proposed. The general theory and features of the desiccant wheel are analysed. The main feature of the proposed system is that the air regeneration process occurs inside a closed loop, and a CO2 heat pump is utilized inside this loop for the air regeneration process as well as supplying cooling for the process air. The simulation results show that the proposed system can save significant energy.
NASA Astrophysics Data System (ADS)
Sulyok, G.
2017-07-01
Starting from the general definition of a one-loop tensor N-point function, we use its Feynman parametrization to calculate the ultraviolet (UV-)divergent part of an arbitrary tensor coefficient in the framework of dimensional regularization. In contrast to existing recursion schemes, we are able to present a general analytic result in closed form that enables direct determination of the UV-divergent part of any one-loop tensor N-point coefficient independent from UV-divergent parts of other one-loop tensor N-point coefficients. Simplified formulas and explicit expressions are presented for A-, B-, C-, D-, E-, and F-functions.
Motor-sensory confluence in tactile perception.
Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud
2012-10-03
Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.
1981-05-01
made to provide mounting bosses for the closed loop conveyor chute . Ten small round bosses were welded onto the housing to provide this support...became necessary to depart from previous closed loop feeder designs . The original feed system consisted of a series of conveyor elements in a flexible...The flexible chuting has been replaced with rigid chuting forming a loop around the gun housing. This design affords the maximum stiffness and hence
The two-loop symbol of all multi-Regge regions
Bargheer, Till; Papathanasiou, Georgios; Schomerus, Volker
2016-05-02
Here, we study the symbol of the two-loop n-gluon MHV amplitude for all Mandelstam regions in multi-Regge kinematics in N=4 super Yang-Mills theory. While the number of distinct Mandelstam regions grows exponentially with n, the increase of independent symbols turns out to be merely quadratic. We uncover how to construct the symbols for any number of external gluons from just two building blocks which are naturally associated with the six- and seven-gluon amplitude, respectively. The second building block is entirely new, and in addition to its symbol, we also construct a prototype function that correctly reproduces all terms of maximalmore » functional transcendentality.« less
Model-Driven Safety Analysis of Closed-Loop Medical Systems
Pajic, Miroslav; Mangharam, Rahul; Sokolsky, Oleg; Arney, David; Goldman, Julian; Lee, Insup
2013-01-01
In modern hospitals, patients are treated using a wide array of medical devices that are increasingly interacting with each other over the network, thus offering a perfect example of a cyber-physical system. We study the safety of a medical device system for the physiologic closed-loop control of drug infusion. The main contribution of the paper is the verification approach for the safety properties of closed-loop medical device systems. We demonstrate, using a case study, that the approach can be applied to a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. We also describe system design that can provide open-loop safety under network failure. PMID:24177176
Model-Driven Safety Analysis of Closed-Loop Medical Systems.
Pajic, Miroslav; Mangharam, Rahul; Sokolsky, Oleg; Arney, David; Goldman, Julian; Lee, Insup
2012-10-26
In modern hospitals, patients are treated using a wide array of medical devices that are increasingly interacting with each other over the network, thus offering a perfect example of a cyber-physical system. We study the safety of a medical device system for the physiologic closed-loop control of drug infusion. The main contribution of the paper is the verification approach for the safety properties of closed-loop medical device systems. We demonstrate, using a case study, that the approach can be applied to a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. We also describe system design that can provide open-loop safety under network failure.
A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems
Wright, James; Macefield, Vaughan G.; van Schaik, André; Tapson, Jonathan C.
2016-01-01
It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability, and greater embodiment have all been reported in systems utilizing some form of feedback. However, the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well-established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems, and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems. PMID:27462202
Design and simulation of a sensor for heliostat field closed loop control
NASA Astrophysics Data System (ADS)
Collins, Mike; Potter, Daniel; Burton, Alex
2017-06-01
Significant research has been completed in pursuit of capital cost reductions for heliostats [1],[2]. The camera array closed loop control concept has potential to radically alter the way heliostats are controlled and installed by replacing high quality open loop targeting systems with low quality targeting devices that rely on measurement of image position to remove tracking errors during operation. Although the system could be used for any heliostat size, the system significantly benefits small heliostats by reducing actuation costs, enabling large numbers of heliostats to be calibrated simultaneously, and enabling calibration of heliostats that produce low irradiance (similar or less than ambient light images) on Lambertian calibration targets, such as small heliostats that are far from the tower. A simulation method for the camera array has been designed and verified experimentally. The simulation tool demonstrates that closed loop calibration or control is possible using this device.
Development of fault tolerant adaptive control laws for aerospace systems
NASA Astrophysics Data System (ADS)
Perez Rocha, Andres E.
The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov's direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov's direct method and Barbalat's Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers.
Cheng, Bo; Tobalske, Bret W; Powers, Donald R; Hedrick, Tyson L; Wang, Yi; Wethington, Susan M; Chiu, George T-C; Deng, Xinyan
2016-11-15
The superior manoeuvrability of hummingbirds emerges from complex interactions of specialized neural and physiological processes with the unique flight dynamics of flapping wings. Escape manoeuvring is an ecologically relevant, natural behaviour of hummingbirds, from which we can gain understanding into the functional limits of vertebrate locomotor capacity. Here, we extend our kinematic analysis of escape manoeuvres from a companion paper to assess two potential limiting factors of the manoeuvring performance of hummingbirds: (1) muscle mechanical power output and (2) delays in the neural sensing and control system. We focused on the magnificent hummingbird (Eugenes fulgens, 7.8 g) and the black-chinned hummingbird (Archilochus alexandri, 3.1 g), which represent large and small species, respectively. We first estimated the aerodynamic forces, moments and the mechanical power of escape manoeuvres using measured wing kinematics. Comparing active-manoeuvring and passive-damping aerodynamic moments, we found that pitch dynamics were lightly damped and dominated by the effect of inertia, while roll dynamics were highly damped. To achieve observed closed-loop performance, pitch manoeuvres required faster sensorimotor transduction, as hummingbirds can only tolerate half the delay allowed in roll manoeuvres. Accordingly, our results suggested that pitch control may require a more sophisticated control strategy, such as those based on prediction. For the magnificent hummingbird, we estimated that escape manoeuvres required muscle mass-specific power 4.5 times that during hovering. Therefore, in addition to the limitation imposed by sensorimotor delays, muscle power could also limit the performance of escape manoeuvres. © 2016. Published by The Company of Biologists Ltd.
Inadequate interaction between open- and closed-loop postural control in phobic postural vertigo.
Wuehr, M; Pradhan, C; Novozhilov, S; Krafczyk, S; Brandt, T; Jahn, K; Schniepp, R
2013-05-01
Phobic postural vertigo (PPV) is characterized by a subjective dizziness and postural imbalance. Changes in postural control strategy may cause the disturbed postural performance in PPV. A better understanding of the mechanisms behind this change in strategy is required to improve the diagnostic tools and therapeutic options for this prevalent disorder. Here we apply stabilogram diffusion analysis (SDA) to examine the characteristics and modes of interaction of open- and closed-loop processes that make up the postural control scheme in PPV. Twenty patients with PPV and 20 age-matched healthy controls were recorded on a stabilometer platform with eyes open and with eyes closed. Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed by means of SDA and complementary CoP amplitude measures. (1) Open-loop control mechanisms in PPV were disturbed because of a higher diffusion activity (p < 0.001). (2) The interaction of open- and closed-loop processes was altered in that the sensory feedback threshold of the system was lowered (p = 0.010). These two changes were comparable to those observed in healthy subjects during more demanding balance conditions such as standing with eyes closed. These data indicate that subjective imbalance in PPV is associated with characteristic changes in the coordination of open- and closed-loop mechanisms of postural control. Patients with PPV use sensory feedback inadequately during undisturbed stance, and this impairs postural performance. These changes are compatible with higher levels of anti-gravity muscle activity and co-contraction during the conscious concentration on control of postural stability.
Modulation of critical brain dynamics using closed-loop neurofeedback stimulation.
Zhigalov, Alexander; Kaplan, Alexander; Palva, J Matias
2016-08-01
EEG long-range temporal correlations (LRTCs) are a significant for both human cognition and brain disorders, but beyond suppression by sensory disruption, there are little means for influencing them non-invasively. We hypothesized that LRTCs could be controlled by engaging intrinsic neuroregulation through closed-loop neurofeedback stimulation. We used a closed-loop-stimulation paradigm where supra-threshold α-waves trigger visual flash stimuli while the subject performs the standard eyes-closed resting-state task. As a "sham" control condition, we applied similar stimulus sequences without the neurofeedback. Over three sessions, a significant difference in the LRTCs of α-band oscillations (U=89, p<0.028, Wilcoxon rank sum test) and their scalp topography (T=-2.92, p<0.010, T-test) emerged between the neurofeedback and sham conditions so that the LRTCs were stronger during neurofeedback than sham. No changes (F=0.16, p>0.69, ANOVA test) in the scalp topography of α-band power were observed in either condition. This study provides proof-of-concept for that EEG LRTCs, and hence critical brain dynamics, can be modulated with closed-loop stimulation in an automatic, involuntary fashion. We suggest that this modulation is mediated by an excitation-inhibition balance change achieved by the closed-loop neuroregulation. Automatic LRTC modulation opens novel avenues for both examining the functional roles of brain criticality in healthy subjects and for developing novel therapeutic approaches for brain disorders associated with abnormal LRTCs. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Space Station evolution study oxygen loop closure
NASA Technical Reports Server (NTRS)
Wood, M. G.; Delong, D.
1993-01-01
In the current Space Station Freedom (SSF) Permanently Manned Configuration (PMC), physical scars for closing the oxygen loop by the addition of oxygen generation and carbon dioxide reduction hardware are not included. During station restructuring, the capability for oxygen loop closure was deferred to the B-modules. As such, the ability to close the oxygen loop in the U.S. Laboratory module (LAB A) and the Habitation A module (HAB A) is contingent on the presence of the B modules. To base oxygen loop closure of SSF on the funding of the B-modules may not be desirable. Therefore, this study was requested to evaluate the necessary hooks and scars in the A-modules to facilitate closure of the oxygen loop at or subsequent to PMC. The study defines the scars for oxygen loop closure with impacts to cost, weight and volume and assesses the effects of byproduct venting. In addition, the recommended scenarios for closure with regard to topology and packaging are presented.
ERIC Educational Resources Information Center
Emmorey, Karen; Gertsberg, Nelly; Korpics, Franco; Wright, Charles E.
2009-01-01
Speakers monitor their speech output by listening to their own voice. However, signers do not look directly at their hands and cannot see their own face. We investigated the importance of a visual perceptual loop for sign language monitoring by examining whether changes in visual input alter sign production. Deaf signers produced American Sign…
Wang, Shengqian; Rao, Changhui; Xian, Hao; Zhang, Jianlin; Wang, Jianxin; Liu, Zheng
2011-04-25
The feasibility and performance of the pyramid wavefront sensor without modulation used in closed-loop adaptive optics system is investigated in this paper. The theory concepts and some simulation results are given to describe the detection trend and the linearity range of such a sensor with the aim to better understand its properties, and then a laboratory setup of the adaptive optics system based on this sensor and the liquid-crystal spatial light modulator is built. The correction results for the individual Zernike aberrations and the Kolmogorov phase screens are presented to demonstrate that the pyramid wavefront sensor without modulation can work as expected for closed-loop adaptive optics system.
Closed loop control of penetration depth during CO₂ laser lap welding processes.
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis In 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.
Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P.; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis in 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth. PMID:23112646
Fault Detection and Safety in Closed-Loop Artificial Pancreas Systems
2014-01-01
Continuous subcutaneous insulin infusion pumps and continuous glucose monitors enable individuals with type 1 diabetes to achieve tighter blood glucose control and are critical components in a closed-loop artificial pancreas. Insulin infusion sets can fail and continuous glucose monitor sensor signals can suffer from a variety of anomalies, including signal dropout and pressure-induced sensor attenuations. In addition to hardware-based failures, software and human-induced errors can cause safety-related problems. Techniques for fault detection, safety analyses, and remote monitoring techniques that have been applied in other industries and applications, such as chemical process plants and commercial aircraft, are discussed and placed in the context of a closed-loop artificial pancreas. PMID:25049365
A dynamic flare with anomalously dense flare loops
NASA Technical Reports Server (NTRS)
Svestka, Z.; Fontenla, J. M.; Machado, M. E.; Martin, S. F.; Neidig, D. F.
1986-01-01
The dynamic flare of November 6, 1980 developed a rich system of growing loops which could be followed in H-alpha for 1.5 hours. Throughout the flare, these loops, near the limb, were seen in emission against the disk. Theoretical computations of b-values for a hydrogen atom reveal that this requires electron densities in the loops to be close to 10 to the 12th per cu cm. From measured widths of higher Balmer lines the density at the tops of the loops was found to be 4 x 10 to the 12th per cu cm if no nonthermal motions were present. It is now general knowledge that flare loops are initially observed in X-rays and become visible in H-alpha only after cooling. For such a high density a loop would cool through radiation from 10 to the 7th K to 10 to the 4th K within a few minutes so that the dense H-alpha loops should have heights very close to the heights of the X-ray loops. This, however, contradicts the observations obtained by the HXIS and FCS instruments on board SMM which show the X-ray loops at much higher altitudes than the loops in H-alpha. Therefore, the density must have been significantly smaller when the loops were formed and the flare loops were apparently both shrinking and becoming denser while cooling.
NASA Astrophysics Data System (ADS)
Bruns, Tim M.; Wagenaar, Joost B.; Bauman, Matthew J.; Gaunt, Robert A.; Weber, Douglas J.
2013-04-01
Objective. Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach. We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results. Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance. This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability.
Bruns, Tim M; Wagenaar, Joost B; Bauman, Matthew J; Gaunt, Robert A; Weber, Douglas J
2013-01-01
Objective Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability. PMID:23503062
Detailed ADM-based Modeling of Shock Retreat and X-ray Emission of τ Sco
NASA Astrophysics Data System (ADS)
Fletcher, C. L.; Petit, V.; Cohen, D. H.; Townsend, R. H.; Wade, G. A.
2018-01-01
Leveraging the improvement of spectropolarimeters over the past few decades, surveys have found that about 10% of OB-type stars host strong (˜ kG) and mostly dipolar surface magnetic fields. One B-type star, τ Sco, has a more complex surface magnetic field than the general population of OB stars. Interestingly, its X-ray luminosity is an order of magnitude higher than predicted from analytical models of magnetized winds. Previous studies of τ Sco's magnetosphere have predicted that the region of closed field loops should be located close to the stellar surface. However, the lack of X-ray variability and the location of the shock-heated plasma measured from forbidden-to-intercombination X-ray line ratios suggest that the hot plasma, and hence the closed magnetic loops, extend considerably farther from the stellar surface, implying a significantly lower mass loss rate than initially assumed. We present an adaptation of the Analytic Dynamical Magnetosphere model, describing the magnetic confinement of the stellar wind, for an arbitrary field loop configuration. This model is used to predict the shock-heated plasma temperatures for individual field loops, which are then compared to high resolution grating spectra from the Chandra X-ray Observatory. This comparison shows that larger closed magnetic loops are needed.
A Null Space Control of Two Wheels Driven Mobile Manipulator Using Passivity Theory
NASA Astrophysics Data System (ADS)
Shibata, Tsuyoshi; Murakami, Toshiyuki
This paper describes a control strategy of null space motion of a two wheels driven mobile manipulator. Recently, robot is utilized in various industrial fields and it is preferable for the robot manipulator to have multiple degrees of freedom motion. Several studies of kinematics for null space motion have been proposed. However stability analysis of null space motion is not enough. Furthermore, these approaches apply to stable systems, but they do not apply unstable systems. Then, in this research, base of manipulator equips with two wheels driven mobile robot. This robot is called two wheels driven mobile manipulator, which becomes unstable system. In the proposed approach, a control design of null space uses passivity based stabilizing. A proposed controller is decided so that closed-loop system of robot dynamics satisfies passivity. This is passivity based control. Then, control strategy is that stabilizing of the robot system applies to work space observer based approach and null space control while keeping end-effector position. The validity of the proposed approach is verified by simulations and experiments of two wheels driven mobile manipulator.
Linked-List-Based Multibody Dynamics (MBDyn) Engine
NASA Technical Reports Server (NTRS)
MacLean, John; Brain, Thomas; Wuiocho, Leslie; Huynh, An; Ghosh, Tushar
2012-01-01
This new release of MBDyn is a software engine that calculates the dynamics states of kinematic, rigid, or flexible multibody systems. An MBDyn multibody system may consist of multiple groups of articulated chains, trees, or closed-loop topologies. Transient topologies are handled through conservation of energy and momentum. The solution for rigid-body systems is exact, and several configurable levels of nonlinear term fidelity are available for flexible dynamics systems. The algorithms have been optimized for efficiency and can be used for both non-real-time (NRT) and real-time (RT) simulations. Interfaces are currently compatible with NASA's Trick Simulation Environment. This new release represents a significant advance in capability and ease of use. The two most significant new additions are an application programming interface (API) that clarifies and simplifies use of MBDyn, and a link-list infrastructure that allows a single MBDyn instance to propagate an arbitrary number of interacting groups of multibody top ologies. MBDyn calculates state and state derivative vectors for integration using an external integration routine. A Trickcompatible interface is provided for initialization, data logging, integration, and input/output.
Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc
2015-06-01
Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.
Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc
2015-01-01
Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and ‘relaxed’ after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal. PMID:26089755
Anomalous low-temperature thermodynamics of QCD in strong magnetic fields
NASA Astrophysics Data System (ADS)
Brauner, Tomáš; Kadam, Saurabh V.
2017-11-01
The thermodynamics of quantum chromodynamics at low temperatures and in sufficiently strong magnetic fields is governed by neutral pions. We analyze the interacting system of neutral pions and photons at zero baryon chemical potential using effective field theory. As a consequence of the axial anomaly and the external magnetic field, the pions and photons mix with one another. The resulting spectrum contains one usual, relativistic photon state, and two nonrelativistic modes, one of which is gapless and the other gapped. Furthermore, we calculate the leading, one-loop contribution to the pressure of the system. In the chiral limit, a closed analytic expression for the pressure exists, which features an unusual scaling with temperature and magnetic field, T 3 B/ f π , at low temperatures, T ≪ B/ f π . Finally, we determine the pion decay rate as a function of the magnetic field at the tree level. The result is affected by a competition of the anisotropic kinematics and the enlarged phase space due to the anomalous mass of the neutral pion. In the chiral limit, the decay rate scales as B 3/ f π 5 .
Design of a Variable Stiffness Soft Dexterous Gripper
Nefti-Meziani, Samia; Davis, Steve
2017-01-01
Abstract This article presents the design of a variable stiffness, soft, three-fingered dexterous gripper. The gripper uses two designs of McKibben muscles. Extensor muscles that increase in length when pressurized are used to form the fingers of the gripper. Contractor muscles that decrease in length when pressurized are then used to apply forces to the fingers through tendons, which cause flexion and extension of the fingers. The two types of muscles are arranged to act antagonistically and this means that by raising the pressure in all of the pneumatic muscles, the stiffness of the system can be increased without a resulting change in finger position. The article presents the design of the gripper, some basic kinematics to describe its function, and then experimental results demonstrating the ability to adjust the bending stiffness of the gripper's fingers. It has been demonstrated that the fingers' bending stiffness can be increased by more than 150%. The article concludes by demonstrating that the fingers can be closed loop position controlled and are able to track step and sinusoidal inputs. PMID:29062630
Closing the Feedback Loop: Ensuring Effective Action from Student Feedback
ERIC Educational Resources Information Center
Watson, Sarah
2003-01-01
Feedback from students can inform improvement in higher education institutions and be part of the students' role in university management. To be effective it is important to"close the loop": from student views, through identifying issues and delegating responsibility for action, to informing students of the action resulting from their expressed…
Close-up view of sugar crystals in a water bubble within a metal loop on Expedition Six
2003-03-15
ISS006-E-39299 (15 March 2003) --- A close up view of sugar crystals in a water bubble within a 50-millimeter (mm) metal loop was photographed by an Expedition Six crewmember. The experiment took place in the Destiny laboratory on the International Space Station (ISS).
Closed-Loop Neuromodulation Systems: Next-Generation Treatments for Psychiatric Illness
Lo, Meng-Chen; Widge, Alik S.
2017-01-01
Despite deep brain stimulation’s positive early results in psychiatric disorders, well-designed clinical trials have yielded inconsistent clinical outcomes. One path to more reliable benefit is closed-loop therapy: stimulation that is automatically adjusted by a device or algorithm in response to changes in the patient’s electrical brain activity. These interventions may provide more precise and patient-specific treatments. In this article, we first introduce the available closed-loop neuromodulation platforms, which have shown clinical efficacy in epilepsy and strong early results in movement disorders. We discuss the strengths and limitations of these devices in the context of psychiatric illness. We then describe emerging technologies to address these limitations, including pre-clinical developments such as wireless deep neurostimulation and genetically targeted neuromodulation. Finally, we discuss ongoing challenges and limitations for closed-loop psychiatric brain stimulation development, most notably the difficulty of identifying meaningful biomarkers for titration. We consider this in the recently-released Research Domain Criteria (RDoC) framework and describe how neuromodulation and RDoC are jointly very well suited to address the problem of treatment-resistant illness. PMID:28523978
Alagoz, Baris Baykant; Deniz, Furkan Nur; Keles, Cemal; Tan, Nusret
2015-03-01
This study investigates disturbance rejection capacity of closed loop control systems by means of reference to disturbance ratio (RDR). The RDR analysis calculates the ratio of reference signal energy to disturbance signal energy at the system output and provides a quantitative evaluation of disturbance rejection performance of control systems on the bases of communication channel limitations. Essentially, RDR provides a straightforward analytical method for the comparison and improvement of implicit disturbance rejection capacity of closed loop control systems. Theoretical analyses demonstrate us that RDR of the negative feedback closed loop control systems are determined by energy spectral density of controller transfer function. In this manner, authors derived design criteria for specifications of disturbance rejection performances of PID and fractional order PID (FOPID) controller structures. RDR spectra are calculated for investigation of frequency dependence of disturbance rejection capacity and spectral RDR analyses are carried out for PID and FOPID controllers. For the validation of theoretical results, simulation examples are presented. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive optics for peripheral vision
NASA Astrophysics Data System (ADS)
Rosén, R.; Lundström, L.; Unsbo, P.
2012-07-01
Understanding peripheral optical errors and their impact on vision is important for various applications, e.g. research on myopia development and optical correction of patients with central visual field loss. In this study, we investigated whether correction of higher order aberrations with adaptive optics (AO) improve resolution beyond what is achieved with best peripheral refractive correction. A laboratory AO system was constructed for correcting peripheral aberrations. The peripheral low contrast grating resolution acuity in the 20° nasal visual field of the right eye was evaluated for 12 subjects using three types of correction: refractive correction of sphere and cylinder, static closed loop AO correction and continuous closed loop AO correction. Running AO in continuous closed loop improved acuity compared to refractive correction for most subjects (maximum benefit 0.15 logMAR). The visual improvement from aberration correction was highly correlated with the subject's initial amount of higher order aberrations (p = 0.001, R 2 = 0.72). There was, however, no acuity improvement from static AO correction. In conclusion, correction of peripheral higher order aberrations can improve low contrast resolution, provided refractive errors are corrected and the system runs in continuous closed loop.
Eigenvalue sensitivity of sampled time systems operating in closed loop
NASA Astrophysics Data System (ADS)
Bernal, Dionisio
2018-05-01
The use of feedback to create closed-loop eigenstructures with high sensitivity has received some attention in the Structural Health Monitoring field. Although practical implementation is necessarily digital, and thus in sampled time, work thus far has center on the continuous time framework, both in design and in checking performance. It is shown in this paper that the performance in discrete time, at typical sampling rates, can differ notably from that anticipated in the continuous time formulation and that discrepancies can be particularly large on the real part of the eigenvalue sensitivities; a consequence being important error on the (linear estimate) of the level of damage at which closed-loop stability is lost. As one anticipates, explicit consideration of the sampling rate poses no special difficulties in the closed-loop eigenstructure design and the relevant expressions are developed in the paper, including a formula for the efficient evaluation of the derivative of the matrix exponential based on the theory of complex perturbations. The paper presents an easily reproduced numerical example showing the level of error that can result when the discrete time implementation of the controller is not considered.
Liu, Ya-min; Qin, Hao; Zhang, Bo; Wang, Yu-jing; Feng, Jun; Wu, Xiang
2016-02-01
Both open and closed loop self-expandable stents were used in carotid artery stenting (CAS) for carotid bifurcation stenosis. We sought to compare the efficacy of two types of stents in CAS. The data of 212 patients treated with CAS (42 and 170 cases implanted with closed and open loop stents, respectively) for carotid bifurcation stenosis and distal filtration protection devices were retrospectively analyzed. Between closed and open loop stents, there were no significant differences in hospitalization duration, NIHSS score before and after the treatment, stenosis at 12th month, and cumulative incidence of primary endpoint events within 30 days or from the 31st day to the 12th month; while there were significant differences in hemodynamic changes and rate of difficulty in recycling distal filtration protection devices. Use of open vs. closed loop stents for carotid bifurcation stenosis seems to be associated with similar incidence of complications, except for greater rate of hemodynamic changes and lower rate of difficulty in recycling the distal filtration protection devices.
An estimator-predictor approach to PLL loop filter design
NASA Technical Reports Server (NTRS)
Statman, Joseph I.; Hurd, William J.
1990-01-01
The design of digital phase locked loops (DPLL) using estimation theory concepts in the selection of a loop filter is presented. The key concept, that the DPLL closed-loop transfer function is decomposed into an estimator and a predictor, is discussed. The estimator provides recursive estimates of phase, frequency, and higher-order derivatives, and the predictor compensates for the transport lag inherent in the loop.
Loop equations and bootstrap methods in the lattice
Anderson, Peter D.; Kruczenski, Martin
2017-06-17
Pure gauge theories can be formulated in terms of Wilson Loops by means of the loop equation. In the large-N limit this equation closes in the expectation value of single loops. In particular, using the lattice as a regulator, it becomes a well defined equation for a discrete set of loops. In this paper we study different numerical approaches to solving this equation.
Hardware-in-the-Loop Rendezvous Tests of a Novel Actuators Command Concept
NASA Astrophysics Data System (ADS)
Gomes dos Santos, Willer; Marconi Rocco, Evandro; Boge, Toralf; Benninghoff, Heike; Rems, Florian
2016-12-01
Integration, test and validation results, in a real-time environment, of a novel concept for spacecraft control are presented in this paper. The proposed method commands simultaneously a group of actuators optimizing a given set of objective functions based on a multiobjective optimization technique. Since close proximity maneuvers play an important role in orbital servicing missions, the entire GNC system has been integrated and tested at a hardware-in-the-loop (HIL) rendezvous and docking simulator known as European Proximity Operations Simulator (EPOS). During the test campaign at EPOS facility, a visual camera has been used to provide the necessary measurements for calculating the relative position with respect to the target satellite during closed-loop simulations. In addition, two different configurations of spacecraft control have been considered in this paper: a thruster reaction control system and a mixed actuators mode which includes thrusters, reaction wheels, and magnetic torqrods. At EPOS, results of HIL closed-loop tests have demonstrated that a safe and stable rendezvous approach can be achieved with the proposed GNC loop.
Automated Droplet Manipulation Using Closed-Loop Axisymmetric Drop Shape Analysis.
Yu, Kyle; Yang, Jinlong; Zuo, Yi Y
2016-05-17
Droplet manipulation plays an important role in a wide range of scientific and industrial applications, such as synthesis of thin-film materials, control of interfacial reactions, and operation of digital microfluidics. Compared to micron-sized droplets, which are commonly considered as spherical beads, millimeter-sized droplets are generally deformable by gravity, thus introducing nonlinearity into control of droplet properties. Such a nonlinear drop shape effect is especially crucial for droplet manipulation, even for small droplets, at the presence of surfactants. In this paper, we have developed a novel closed-loop axisymmetric drop shape analysis (ADSA), integrated into a constrained drop surfactometer (CDS), for manipulating millimeter-sized droplets. The closed-loop ADSA generalizes applications of the traditional drop shape analysis from a surface tension measurement methodology to a sophisticated tool for manipulating droplets in real time. We have demonstrated the feasibility and advantages of the closed-loop ADSA in three applications, including control of drop volume by automatically compensating natural evaporation, precise control of surface area variations for high-fidelity biophysical simulations of natural pulmonary surfactant, and steady control of surface pressure for in situ Langmuir-Blodgett transfer from droplets. All these applications have demonstrated the accuracy, versatility, applicability, and automation of this new ADSA-based droplet manipulation technique. Combining with CDS, the closed-loop ADSA holds great promise for advancing droplet manipulation in a variety of material and surface science applications, such as thin-film fabrication, self-assembly, and biophysical study of pulmonary surfactant.
Computing Maximally Supersymmetric Scattering Amplitudes
NASA Astrophysics Data System (ADS)
Stankowicz, James Michael, Jr.
This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at infinity for (L ≥ 4)-loops. Finally in Ch. 7, the current status of ultraviolet divergences in the five-loop four-point mSUGRA amplitude is addressed. This includes a discussion of ongoing work aimed at resolving the mSUGRA finiteness question. The following Mathematica scripts are submitted with this dissertation: • on shell diagrams and numerics.m with dependencies: -- all_trees *.m -- external_kinematics_*_point.m -- rational_external_*_point.m where "*" is a wild-card string of any set of characters of any length -- either an integer or a number spelled out.
Ward, W Kenneth; Castle, Jessica R; Youssef, Joseph El
2011-01-01
Patients with type 1 diabetes mellitus (T1DM) must make frequent decisions and lifestyle adjustments in order to manage their disorder. Automated treatment would reduce the need for these self-management decisions and reduce the risk for long-term complications. Investigators in the field of closed-loop glycemic control systems are now moving from inpatient to outpatient testing of such systems. As outpatient systems are developed, the element of safety increases in importance. One such concern is the risk for hypoglycemia, due in part to the delayed onset and prolonged action duration of currently available subcutaneous insulin preparations. We found that, as compared to an insulin-only closed-loop system, a system that also delivers glucagon when needed led to substantially less hypoglycemia. Though the capability of glucagon delivery would mandate the need for a second hormone chamber, glucagon in small doses is tolerated very well. People with T1DM often develop hyperglycemia from emotional stress or medical stress. Automated closed-loop systems should be able to detect such changes in insulin sensitivity and adapt insulin delivery accordingly. We recently verified the adaptability of a model-based closed-loop system in which the gain factors that govern a proportional-integral-derivative-like system are adjusted according to frequently measured insulin sensitivity. Automated systems can be tested by physical exercise to increase glucose uptake and insulin sensitivity or by administering corticosteroids to reduce insulin sensitivity. Another source of risk in closed-loop systems is suboptimal performance of amperometric glucose sensors. Inaccuracy can result from calibration error, biofouling, and current drift. We found that concurrent use of more than one sensor typically leads to better sensor accuracy than use of a single sensor. For example, using the average of two sensors substantially reduces the proportion of large sensor errors. The use of more than two allows the use of voting algorithms, which can temporarily exclude a sensor whose signal is outlying. Elements such as the use of glucagon to minimize hypoglycemia, adaptation to changes in insulin sensitivity, and sensor redundancy will likely increase safety during outpatient use of closed-loop glycemic control systems. PMID:22226254
Simulations of Solar Jets Confined by Coronal Loops
NASA Technical Reports Server (NTRS)
Wyper, P. F.; De Vore, C. R.
2016-01-01
Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an ideal kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that both the conditions for initiation and the subsequent dynamics are highly sensitive to the ratio L/N. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ratios, and share many of the features of open-field jets, while smaller L/N ratios produce shorter-duration, less energetic jets that are affected by reflections from the far-loop footpoint. We quantify the transition between these behaviors and show that our model replicates key qualitative and quantitative aspects of both quiet Sun and active-region loop jets. We also find that there connection between the closed dome and surrounding coronal loop is very extensive: the cumulative reconnected flux at least matches the total flux beneath the dome for small L/N, and is more than double that value for large L/N.
SIMULATIONS OF SOLAR JETS CONFINED BY CORONAL LOOPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyper, P. F.; DeVore, C. R., E-mail: peter.f.wyper@nasa.gov, E-mail: c.richard.devore@nasa.gov
Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an idealmore » kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that both the conditions for initiation and the subsequent dynamics are highly sensitive to the ratio L/N. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ratios, and share many of the features of open-field jets, while smaller L/N ratios produce shorter-duration, less energetic jets that are affected by reflections from the far-loop footpoint. We quantify the transition between these behaviors and show that our model replicates key qualitative and quantitative aspects of both quiet Sun and active-region loop jets. We also find that the reconnection between the closed dome and surrounding coronal loop is very extensive: the cumulative reconnected flux at least matches the total flux beneath the dome for small L/N, and is more than double that value for large L/N.« less
NASA Astrophysics Data System (ADS)
Choi, Junil; Love, David J.; Bidigare, Patrick
2014-10-01
The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI) feedback. To reduce the overhead of the downlink training phase, we propose practical open-loop and closed-loop training frameworks in this paper. We assume the base station and the user share a common set of training signals in advance. In open-loop training, the base station transmits training signals in a round-robin manner, and the user successively estimates the current channel using long-term channel statistics such as temporal and spatial correlations and previous channel estimates. In closed-loop training, the user feeds back the best training signal to be sent in the future based on channel prediction and the previously received training signals. With a small amount of feedback from the user to the base station, closed-loop training offers better performance in the data communication phase, especially when the signal-to-noise ratio is low, the number of transmit antennas is large, or prior channel estimates are not accurate at the beginning of the communication setup, all of which would be mostly beneficial for massive MIMO systems.
NASA Astrophysics Data System (ADS)
Wang, Qiushi; He, Yuping
2016-01-01
The Society of Automotive Engineers issued a test procedure, SAE-J2179, to determine the rearward amplification (RA) of multi-trailer articulated heavy vehicles (MTAHVs). Built upon the procedure, the International Organization for Standardization released the test manoeuvres, ISO-14791, for evaluating directional performance of MTAHVs. For the RA measures, ISO-14791 recommends two single lane-change manoeuvres: (1) an open-loop procedure with a single sine-wave steering input; and (2) a closed-loop manoeuvre with a single sine-wave lateral acceleration input. For an articulated vehicle with active trailer steering (ATS), the RA measure in lateral acceleration under the open-loop manoeuvre was not in good agreement with that under the closed-loop manoeuvre. This observation motivates the research on the applicability of the two manoeuvres for the RA measures of MTAHVs with ATS. It is reported that transient response under the open-loop manoeuvre often leads to asymmetric curve of tractor lateral acceleration [Winkler CB, Fancher PS, Bareket Z, Bogard S, Johnson G, Karamihas S, Mink C. Heavy vehicle size and weight - test procedures for minimum safety performance standards. Final technical report, NHTSA, US DOT, contract DTNH22-87-D-17174, University of Michigan Transportation Research Institute, Report No. UMTRI-92-13; 1992]. To explore the effect of the transient response, a multiple cycle sine-wave steering input (MCSSI) manoeuvre is proposed. Simulation demonstrates that the steady-state RA measures of an MTAHV with and without ATS under the MCSSI manoeuvre are in excellent agreement with those under the closed-loop manoeuvre. It is indicated that between the two manoeuvres by ISO-14791, the closed-loop manoeuvre is more applicable for determining the RA measures of MTAHVs with ATS.
Bally, Lia; Thabit, Hood; Kojzar, Harald; Mader, Julia K; Qerimi-Hyseni, Jehona; Hartnell, Sara; Tauschmann, Martin; Allen, Janet M; Wilinska, Malgorzata E; Pieber, Thomas R; Evans, Mark L; Hovorka, Roman
2017-04-01
Tight control of blood glucose concentration in people with type 1 diabetes predisposes to hypoglycaemia. We aimed to investigate whether day-and-night hybrid closed-loop insulin delivery can improve glucose control while alleviating the risk of hypoglycaemia in adults with HbA 1c below 7·5% (58 mmol/mol). In this open-label, randomised, crossover study, we recruited adults (aged ≥18 years) with type 1 diabetes and HbA 1c below 7·5% from Addenbrooke's Hospital (Cambridge, UK) and Medical University of Graz (Graz, Austria). After a 2-4 week run-in period, participants were randomly assigned (1:1), using web-based randomly permuted blocks of four, to receive insulin via the day-and-night hybrid closed-loop system or usual pump therapy for 4 weeks, followed by a 2-4 week washout period and then the other intervention for 4 weeks. Treatment interventions were unsupervised and done under free-living conditions. During the closed-loop period, a model-predictive control algorithm directed insulin delivery, and prandial insulin delivery was calculated with a standard bolus wizard. The primary outcome was the proportion of time when sensor glucose concentration was in target range (3·9-10·0 mmol/L) over the 4 week study period. Analyses were by intention to treat. This study is registered with ClinicalTrials.gov, number NCT02727231, and is completed. Between March 21 and June 24, 2016, we recruited 31 participants, of whom 29 were randomised. One participant withdrew during the first closed-loop period because of dissatisfaction with study devices and glucose control. The proportion of time when sensor glucose concentration was in target range was 10·5 percentage points higher (95% CI 7·6-13·4; p<0·0001) during closed-loop delivery compared with usual pump therapy (65·6% [SD 8·1] when participants used usual pump therapy vs 76·2% [6·4] when they used closed-loop). Compared with usual pump therapy, closed-loop delivery also reduced the proportion of time spent in hypoglycaemia: the proportion of time with glucose concentration below 3·5 mmol/L was reduced by 65% (53-74, p<0·0001) and below 2·8 mmol/L by 76% (59-86, p<0·0001). No episodes of serious hypoglycaemia or other serious adverse events occurred. Use of day-and-night hybrid closed-loop insulin delivery under unsupervised, free-living conditions for 4 weeks in adults with type 1 diabetes and HbA 1c below 7·5% is safe and well tolerated, improves glucose control, and reduces hypoglycaemia burden. Larger and longer studies are warranted. Swiss National Science Foundation (P1BEP3_165297), JDRF, UK National Institute for Health Research Cambridge Biomedical Research Centre, and Wellcome Strategic Award (100574/Z/12/Z). Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license. Published by Elsevier Ltd.. All rights reserved.
High-altitude closed magnetic loops at Mars observed by MAVEN
NASA Astrophysics Data System (ADS)
Xu, Shaosui; Mitchell, David; Luhmann, Janet; Ma, Yingjuan; Fang, Xiaohua; Harada, Yuki; Hara, Takuya; Brain, David; Webber, Tristan; Mazelle, Christian; DiBraccio, Gina A.
2017-10-01
With electron and magnetic field data obtained by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, we have identified closed magnetic field lines, with both footpoints embedded in the dayside ionosphere, extending up to 6200 km altitude (2.8 $R_m$) into the Martian tail. This topology is deduced from photoelectrons produced in the dayside ionosphere being observed in both parallel and anti-parallel directions along the magnetic field line. At perpendicular pitch angles, cases with either solar wind electrons or photoelectrons have been found, indicative of different formation mechanisms of these closed loops. These large closed loops are predicted by MHD simulations. The case with field-aligned photoelectrons mixed with perpendicular solar wind electrons is likely to be associated with reconnection, while the case with photoelectrons in all directions are probably due to closed field lines being pulled back down tail. We have developed an automated algorithm for distinguishing photoelectrons from solar wind electrons in pitch angle resolved energy spectra. This allows us to systematically analyze the MAVEN database and map the spatial distribution and occurrence rate of these closed magnetic loops, ranging from a few percent to a few tens percent outside of the optical shadow and less than one percent within the wake. These observations can be used to investigate the general magnetic topology in the tail, which is relevant to ion escape, reconnection, and flux ropes.
Closed Brayton cycle power conversion systems for nuclear reactors :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.
2006-04-01
This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors,more » reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.« less
Analytic Result for the Two-loop Six-point NMHV Amplitude in N = 4 Super Yang-Mills Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Lance J.; /SLAC; Drummond, James M.
2012-02-15
We provide a simple analytic formula for the two-loop six-point ratio function of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behavior, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parametersmore » uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two functions that are not of this type. One of the functions, the loop integral {Omega}{sup (2)}, also plays a key role in a new representation of the remainder function R{sub 6}{sup (2)} in the maximally helicity violating sector. Another interesting feature at two loops is the appearance of a new (parity odd) x (parity odd) sector of the amplitude, which is absent at one loop, and which is uniquely determined in a natural way in terms of the more familiar (parity even) x (parity even) part. The second non-polylogarithmic function, the loop integral {tilde {Omega}}{sup (2)}, characterizes this sector. Both {Omega}{sup (2)} and {tilde {Omega}}{sup (2)} can be expressed as one-dimensional integrals over classical polylogarithms with rational arguments.« less
Kellici, Tahsin F; Mavromoustakos, Thomas; Jendrossek, Dieter; Papageorgiou, Anastassios C
2017-07-01
An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3-hydroxybutyrate) depolymerase were identified in two high-resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281-295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3-hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favorable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281-295 in comparison to the apo (substrate-free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281-295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. Proteins 2017; 85:1351-1361. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Innovative hybrid pile oscillator technique in the Minerve reactor: open loop vs. closed loop
NASA Astrophysics Data System (ADS)
Geslot, Benoit; Gruel, Adrien; Bréaud, Stéphane; Leconte, Pierre; Blaise, Patrick
2018-01-01
Pile oscillator techniques are powerful methods to measure small reactivity worth of isotopes of interest for nuclear data improvement. This kind of experiments has long been implemented in the Mineve experimental reactor, operated by CEA Cadarache. A hybrid technique, mixing reactivity worth estimation and measurement of small changes around test samples is presented here. It was made possible after the development of high sensitivity miniature fission chambers introduced next to the irradiation channel. A test campaign, called MAESTRO-SL, took place in 2015. Its objective was to assess the feasibility of the hybrid method and investigate the possibility to separate mixed neutron effects, such as fission/capture or scattering/capture. Experimental results are presented and discussed in this paper, which focus on comparing two measurements setups, one using a power control system (closed loop) and another one where the power is free to drift (open loop). First, it is demonstrated that open loop is equivalent to closed loop. Uncertainty management and methods reproducibility are discussed. Second, results show that measuring the flux depression around oscillated samples provides valuable information regarding partial neutron cross sections. The technique is found to be very sensitive to the capture cross section at the expense of scattering, making it very useful to measure small capture effects of highly scattering samples.
Is the kinetoplast DNA a percolating network of linked rings at its critical point?
NASA Astrophysics Data System (ADS)
Michieletto, Davide; Marenduzzo, Davide; Orlandini, Enzo
2015-05-01
In this work we present a computational study of the kinetoplast genome, modelled as a large number of semiflexible unknotted loops, which are allowed to link with each other. As the DNA density increases, the systems shows a percolation transition between a gas of unlinked rings and a network of linked loops which spans the whole system. Close to the percolation transition, we find that the mean valency of the network, i.e. the average number of loops which are linked to any one loop, is around three, as found experimentally for the kinetoplast DNA (kDNA). Even more importantly, by simulating the digestion of the network by a restriction enzyme, we show that the distribution of oligomers, i.e. structures formed by a few loops which remain linked after digestion, quantitatively matches experimental data obtained from gel electrophoresis, provided that the density is, once again, close to the percolation transition. With respect to previous work, our analysis builds on a reduced number of assumptions, yet can still fully explain the experimental data. Our findings suggest that the kDNA can be viewed as a network of linked loops positioned very close to the percolation transition, and we discuss the possible biological implications of this remarkable fact.
Lepley, Casey R; Throckmorton, Gaylord S; Ceen, Richard F; Buschang, Peter H
2011-05-01
The purpose of this study was to explore the contributions of occlusion, maximum bite force, and chewing cycle kinematics to masticatory performance. A prospective cross-sectional study was performed on 30 subjects with Class I occlusion. Masticatory performance was measured with the test food Cuttersil (Heraeus Kulzer, South Bend, Ind) and the fractional-sieve technique. Blu-Mousse (Parkell Biomaterials, Farmingdale, NY) bite registrations were used to measure occlusal contact areas. The American Board of Orthodontics occlusal discrepancies were measured on the subjects' dental models. Maximum bite forces were recorded with a custom transducer, and 3-dimensional chewing cycle kinematics were tracked with an opto-electric computer system and Optotrak software (Northern Digital, Waterloo, Ontario, Canada). Masticatory performance was most closely correlated with occlusal contact area, indicating larger contact areas in subjects with better performance. Occlusal contact area and occlusal discrepancies were also related to bite force and chewing cycle kinematics. Maximum bite force was positively related with masticatory performance. Although masticatory performance is related, both directly and indirectly, to a number of morphologic and functional factors, it is most closely related to occlusal factors. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... surface evaporation. The canals are a closed recirculating loop that serves as the ultimate heat sink for...) for water discharges to an onsite closed-loop recirculation cooling canal system. The seasonal... to 90 [deg]F (21 [deg]C to 32 [deg]C). Additionally, the CCS water is hyper-saline (twice the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
... Charity Motorcycle Run. Under this temporary deviation the Loop Parkway Bridge may remain in the closed... operation of the Loop Parkway Bridge, mile 0.7, across Long Creek, and the Captree State Parkway (Robert... bridges listed above to remain in the closed position during this public event. DATES: This deviation is...
An error criterion for determining sampling rates in closed-loop control systems
NASA Technical Reports Server (NTRS)
Brecher, S. M.
1972-01-01
The determination of an error criterion which will give a sampling rate for adequate performance of linear, time-invariant closed-loop, discrete-data control systems was studied. The proper modelling of the closed-loop control system for characterization of the error behavior, and the determination of an absolute error definition for performance of the two commonly used holding devices are discussed. The definition of an adequate relative error criterion as a function of the sampling rate and the parameters characterizing the system is established along with the determination of sampling rates. The validity of the expressions for the sampling interval was confirmed by computer simulations. Their application solves the problem of making a first choice in the selection of sampling rates.
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Inventor)
1991-01-01
A spiral vane bioreactor of a perfusion type is described in which a vertical chamber, intended for use in a microgravity condition, has a central rotating filter assembly and has flexible membranes disposed to rotate annularly about the filter assembly. The flexible members have end portions disposed angularly with respect to one another. A fluid replenishment medium is input from a closed loop liquid system to a completely liquid filled chamber containing microcarrier beads, cells and a fluid medium. Output of spent medium is to the closed loop. In the closed loop, the output and input parameters are sensed by sensors. A manifold permits recharging of the nutrients and pH adjustment. Oxygen is supplied and carbon dioxide and bubbles are removed and the system is monitored and controlled by a microprocessor.
Closing the loops in biomedical informatics from theory to daily practice.
Gaudinat, A
2009-01-01
This article presents the 2009 selection of the best papers in the special section dedicated to biomedical informatics and cybernetics. Synopsis of the articles selected for the IMIA yearbook 2009 Five papers from international peer reviewed journals where selected for this section. Most of the papers have a strong practical orientation in clinical care. And this selection gives a good overview of what is done with "closing loop" approach, particularly during the year 2008. While quite mature for some clinical applications such as mechanical ventilation, it remains a challenge where rules for the decision system could be difficult to identify due to the number of variables. More complex systems with greater Artificial Intelligence approaches will certainly be the next trend for closed-loop applications.
Design of dissipative low-authority controllers using an eigensystem assignment technique
NASA Technical Reports Server (NTRS)
Maghami, P. G.; Gupta, S.; Joshi, S. M.
1992-01-01
A novel method for the design of dissipative, low-authority controllers has been developed. The method uses a sequential approach along with eigensystem assignment to compute rate and position gain matrices that assign a number of closed-loop poles of the system to desired locations. Because the feedback gain matrices are symmetric and nonnegative definite, the closed-loop stability is always guaranteed regardless of the model order or parameter inaccuracies. The resulting (nominal) closed-loop system can have specified damping ratios for m modes, which makes the plant amenable to high-authority controller design, using methods such as LQG/LTR or H-infinity. A numerical example is worked out for a flexible structure in order to demonstrate the proposed technique.
Automatic control of finite element models for temperature-controlled radiofrequency ablation.
Haemmerich, Dieter; Webster, John G
2005-07-14
The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100 degrees C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input.
Possibilities and limitations of novel in-vitro knee simulator.
Verstraete, Matthias A; Victor, Jan
2015-09-18
The ex-vivo evaluation of knee kinematics remains vital to understand the impact of surgical treatments such as total knee arthroplasty (TKA). To that extent, knee simulators have been developed. However, these simulators have mainly focused on the simulation of a squatting motion. The relevance of this motion pattern for patients' activities of daily living is however questionable as squatting is difficult for elderly patients. Walking, stairs and cycling are more relevant motion patterns. This paper presents the design and control of a simulator that allows to independently control the applied kinematic and kinetic boundary conditions to simulate these daily life activities. Thereby, the knee is left with five degrees of freedom; only the knee flexion is actively controlled. From a kinetic point of view, the quadriceps and hamstring muscles are loaded. Optionally, a varus/valgus moment can be applied, facilitating a dynamic evaluation of the knee's stability. The simulator is based on three control loops, whose synchronization appears satisfactory. The input for these control loops can be determined from either musculoskeletal simulations or in accordance to literature data for traditional knee simulators. This opens the door towards an improved understanding of the knee biomechanics and comparison between different applied motion and force patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kumar, Ritesh; Qi, Yifei; Matsumura, Hirotoshi; Lovell, Scott; Yao, Huili; Battaile, Kevin P.; Im, Wonpil; Moënne-Loccoz, Pierre; Rivera, Mario
2017-01-01
Previous characterization of hemophores from Serratia marcescens (HasAs), Pseudomonas aeruginosa (HasAp) and Yersinia pestis (HasAyp) showed that hemin binds between two loops, where it is axially coordinated by H32 and Y75. The Y75 loop is structurally conserved in all three hemophores and harbors conserved ligand Y75. The other loop contains H32 in HasAs and HasAp, but a noncoordinating Q32 in HasAyp. The H32 loop in apo-HasAs and apo-HasAp is in an open conformation, which places H32 about 30 Å from the hemin-binding site. Hence, hemin binding onto the Y75 loop of HasAs or HasAp triggers a large relocation of the H32 loop from an open- to a closed-loop conformation and enables coordination of the hemin-iron by H32. In comparison, the Q32 loop in apo-HasAyp is in the closed conformation and hemin binding occurs with minimal reorganization and without coordinative interactions with the Q32 loop. Studies in crystallo and in solution have established that the open H32 loop in apo-HasAp and apo-HasAs is well structured and minimally affected by conformational dynamics. In this study we address the intriguing issue of the stability of the H32 loop in apo-HasAp and how hemin binding triggers its relocation. We address this question with a combination of NMR spectroscopy, X-ray crystallography, and molecular dynamics simulations and find that R33 is critical to the stability of the open H32 loop. Replacing R33 with A causes the H32 loop in R33A apo-HasAp to adopt a conformation similar to that of holo-HasAp. Finally, stopped-flow absorption and resonance Raman analyses of hemin binding to apo-R33A HasAp indicates that the closed H32 loop slows down the insertion of the heme inside the binding pocket, presumably as it obstructs access to the hydrophobic platform on the Y75 loop, but accelerate the completion of the heme iron coordination. PMID:27074415
Design validation and performance of closed loop gas recirculation system
NASA Astrophysics Data System (ADS)
Kalmani, S. D.; Joshi, A. V.; Majumder, G.; Mondal, N. K.; Shinde, R. R.
2016-11-01
A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m2, with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C2H2F4), isobutane (iC4H10) and sulphur hexafluoride (SF6) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.
Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation
Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie
2016-01-01
Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844
Estimation of joint stiffness with a compliant load.
Ludvig, Daniel; Kearney, Robert E
2009-01-01
Joint stiffness defines the dynamic relationship between the position of the joint and the torque acting about it. It consists of two components: intrinsic and reflex stiffness. Many previous studies have investigated joint stiffness in an open-loop environment, because the current algorithm in use is an open-loop algorithm. This paper explores issues related to the estimation of joint stiffness when subjects interact with compliant loads. First, we show analytically how the bias in closed-loop estimates of joint stiffness depends on the properties of the load, the noise power, and length of the estimated impulse response functions (IRF). We then demonstrate with simulations that the open-loop analysis will fail completely for an elastic load but may succeed for an inertial load. We further show that the open-loop analysis can yield unbiased results with an inertial load and document IRF length, signal-to-noise ratio needed, and minimum inertia needed for the analysis to succeed. Thus, by using a load with a properly selected inertia, open-loop analysis can be used under closed-loop conditions.
Portable battery-free charger for radiation dosimeters
Manning, Frank W.
1984-01-01
This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.
NASA Technical Reports Server (NTRS)
Alvarez, R.; Mennessier, M.-O.; Barthes, D.; Luri, X.; Mattei, J. A.
1997-01-01
Hipparcos astrometric and kinematical data of oxygen-rich Mira variables are used to calibrate absolute near-infrared magnitudes and kinematic parameters. Three distinct classes of stars with different kinematics and scale heights were identified. The two most significant groups present characteristics close to those usually assigned to extended/thick disk-halo populations and old disk populations, respectively, and thus they may differ by their metallicity abundance. Two parallel period-luminosity relations are found, one for each population. The shift between these relations is interpreted as the consequence of the effects of metallicity abundance on the luminosity.
High-Performance Computing Data Center Cooling System Energy Efficiency |
approaches involve a cooling distribution unit (CDU) (2), which interfaces with the facility cooling loop and to the energy recovery water (ERW) loop (5), which is a closed-loop system. There are three heat rejection options for this IT load: When possible, heat energy from the energy recovery loop is transferred
Mobile satellite communications - Vehicle antenna technology update
NASA Technical Reports Server (NTRS)
Bell, D.; Naderi, F. M.
1986-01-01
This paper discusses options for vehicle antennas to be used in mobile satellite communications systems. Two types of antennas are identified. A non-steerable, azimuthally omnidirectional antenna with a modest gain of 3 to 5 dBi is suggested when a low cost is desired. Alternatively, mechanically or electronically steerable antennas with a higher gain of 10 to 12 dBi are suggested to alleviate power and spectrum scarcity associated with mobile satellite communications. For steerable antennas, both open-loop and closed-loop pointing schemes are discussed. Monopulse and sequential lobing are proposed for the mechanically steered and electronically steered antennas, respectively. This paper suggests a hybrid open-loop/closed-loop pointing technique as the best performer in the mobile satellite environment.
NASA Technical Reports Server (NTRS)
Keymeulen, Didier; Ferguson, Michael I.; Fink, Wolfgang; Oks, Boris; Peay, Chris; Terrile, Richard; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David
2005-01-01
We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation. We also report on the development of a hardware platform for integrated tuning and closed loop operation of MEMS gyroscopes. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). The hardware platform easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.
Laine, Christopher M.; Valero-Cuevas, Francisco J.
2018-01-01
Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,‘common drive’), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary ‘isometric’ force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease. PMID:29309405
Nagamori, Akira; Laine, Christopher M; Valero-Cuevas, Francisco J
2018-01-01
Involuntary force variability below 15 Hz arises from, and is influenced by, many factors including descending neural drive, proprioceptive feedback, and mechanical properties of muscles and tendons. However, their potential interactions that give rise to the well-structured spectrum of involuntary force variability are not well understood due to a lack of experimental techniques. Here, we investigated the generation, modulation, and interactions among different sources of force variability using a physiologically-grounded closed-loop simulation of an afferented muscle model. The closed-loop simulation included a musculotendon model, muscle spindle, Golgi tendon organ (GTO), and a tracking controller which enabled target-guided force tracking. We demonstrate that closed-loop control of an afferented musculotendon suffices to replicate and explain surprisingly many cardinal features of involuntary force variability. Specifically, we present 1) a potential origin of low-frequency force variability associated with co-modulation of motor unit firing rates (i.e.,'common drive'), 2) an in-depth characterization of how proprioceptive feedback pathways suffice to generate 5-12 Hz physiological tremor, and 3) evidence that modulation of those feedback pathways (i.e., presynaptic inhibition of Ia and Ib afferents, and spindle sensitivity via fusimotor drive) influence the full spectrum of force variability. These results highlight the previously underestimated importance of closed-loop neuromechanical interactions in explaining involuntary force variability during voluntary 'isometric' force control. Furthermore, these results provide the basis for a unifying theory that relates spinal circuitry to various manifestations of altered involuntary force variability in fatigue, aging and neurological disease.
Assisted closed-loop optimization of SSVEP-BCI efficiency
Fernandez-Vargas, Jacobo; Pfaff, Hanns U.; Rodríguez, Francisco B.; Varona, Pablo
2012-01-01
We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research. PMID:23443214
NASA Astrophysics Data System (ADS)
Wang, Jun-Song; Wang, Mei-Li; Li, Xiao-Li; Ernst, Niebur
2015-03-01
Epilepsy is believed to be caused by a lack of balance between excitation and inhibitation in the brain. A promising strategy for the control of the disease is closed-loop brain stimulation. How to determine the stimulation control parameters for effective and safe treatment protocols remains, however, an unsolved question. To constrain the complex dynamics of the biological brain, we use a neural population model (NPM). We propose that a proportional-derivative (PD) type closed-loop control can successfully suppress epileptiform activities. First, we determine the stability of root loci, which reveals that the dynamical mechanism underlying epilepsy in the NPM is the loss of homeostatic control caused by the lack of balance between excitation and inhibition. Then, we design a PD type closed-loop controller to stabilize the unstable NPM such that the homeostatic equilibriums are maintained; we show that epileptiform activities are successfully suppressed. A graphical approach is employed to determine the stabilizing region of the PD controller in the parameter space, providing a theoretical guideline for the selection of the PD control parameters. Furthermore, we establish the relationship between the control parameters and the model parameters in the form of stabilizing regions to help understand the mechanism of suppressing epileptiform activities in the NPM. Simulations show that the PD-type closed-loop control strategy can effectively suppress epileptiform activities in the NPM. Project supported by the National Natural Science Foundation of China (Grant Nos. 61473208, 61025019, and 91132722), ONR MURI N000141010278, and NIH grant R01EY016281.
Assisted closed-loop optimization of SSVEP-BCI efficiency.
Fernandez-Vargas, Jacobo; Pfaff, Hanns U; Rodríguez, Francisco B; Varona, Pablo
2013-01-01
We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.
Modeling of High Capacity Passive Cooling System
2009-03-01
Pulsating Heat Pipes : Closed Loop Pulsating Heat Pipes , which is also known as Meandering Capillary Tube Heat Pipe or Closed Loop Oscillating Heat ... Pipe , has emerged in the recent years as a new electronics cooling technology. The Pulsating Heat Pipe is an innovating technology that has gained...horizontal orientation, the operating temperatures are lower. Pulsating heat pipes are capable of higher heat
ERIC Educational Resources Information Center
Olaogun, Matthew O. B.
1986-01-01
J. Adams' application of the closed-loop theory (involving feedback and correction) on human learning and motor performance is described. The theory's applicability to behavioral kinesiology (the science of human movement) is discussed in the context of physical therapy, stressing the importance of knowledge of results as a motivating factor.…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... deviation the Loop Parkway and the Meadowbrook Parkway Bridges may remain in the closed position between 11... operation of the Loop Parkway Bridge, mile 0.7, across Long Creek, and the Meadowbrook Parkway Bridge, mile... remain in the closed position during this public event. DATES: This deviation is effective from 11 a.m...
NASA Technical Reports Server (NTRS)
Brown, R.
1982-01-01
Efforts are continued to develop digital filter compensation schemes for the correction of momentum gains observed in the closed loop simulation of the docking of two satellites using the 6 DOF motion system. Several filters that work well for small delays ( .100ms) and a non-preloaded probe are discussed.
Han, Nanyu; Mu, Yuguang
2013-01-01
Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.
Han, Nanyu; Mu, Yuguang
2013-01-01
Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147–150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus. PMID:23593372
Closed-loop motor control using high-speed fiber optics
NASA Technical Reports Server (NTRS)
Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)
1991-01-01
A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.
Closed-loop and robust control of quantum systems.
Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong
2013-01-01
For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
A direct method for calculating instrument noise levels in side-by-side seismometer evaluations
Holcomb, L. Gary
1989-01-01
The subject of determining the inherent system noise levels present in modem broadband closed loop seismic sensors has been an evolving topic ever since closed loop systems became available. Closed loop systems are unique in that the system noise can not be determined via a blocked mass test as in older conventional open loop seismic sensors. Instead, most investigators have resorted to performing measurements on two or more systems operating in close proximity to one another and to analyzing the outputs of these systems with respect to one another to ascertain their relative noise levels.The analysis of side-by-side relative performance is inherently dependent on the accuracy of the mathematical modeling of the test configuration. This report presents a direct approach to extracting the system noise levels of two linear systems with a common coherent input signal. The mathematical solution to the problem is incredibly simple; however the practical application of the method encounters some difficulties. Examples of expected accuracies are presented as derived by simulating real systems performance using computer generated random noise. In addition, examples of the performance of the method when applied to real experimental test data are shown.
Closed-Loop Control System for Friction Stir Welding Retractable Pin Tool
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Romine, Peter L.; Munafo, Paul M. (Technical Monitor)
2001-01-01
NASA invention disclosure, NASA Case No. MFS-31413, entitled "System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus", (Patent Pending) authored by Jeff Ding, Dr Peter Romine and Pete Oelgoetz, addresses the precision control of the friction stir welding process. The closed-loop control system automatically adjusts the spinning welding pin, real-time, to maintain a precise penetration ligament (i.e., distance between pin-tip and weld panel backside surface). A specific pin length can be maintained while welding constant thickness or tapered material thickness weld panels. The closed-loop control system provides operator data and information relative to the exact position of the welding pin inside the weld joint. This paper presents the closed-loop RPT control system that operates using the auto-feedback of force signals sensed by the tip and shoulder of the welding pin. Significance: The FSW process can be successfully used in a production environment only if there is a method or technique that informs the FSW operator the precise location of the welding pin inside the weld joint. This is essential for applications in aerospace, automotive, pressure vessel, commercial aircraft and other industries.
Closed-loop brain-machine-body interfaces for noninvasive rehabilitation of movement disorders.
Broccard, Frédéric D; Mullen, Tim; Chi, Yu Mike; Peterson, David; Iversen, John R; Arnold, Mike; Kreutz-Delgado, Kenneth; Jung, Tzyy-Ping; Makeig, Scott; Poizner, Howard; Sejnowski, Terrence; Cauwenberghs, Gert
2014-08-01
Traditional approaches for neurological rehabilitation of patients affected with movement disorders, such as Parkinson's disease (PD), dystonia, and essential tremor (ET) consist mainly of oral medication, physical therapy, and botulinum toxin injections. Recently, the more invasive method of deep brain stimulation (DBS) showed significant improvement of the physical symptoms associated with these disorders. In the past several years, the adoption of feedback control theory helped DBS protocols to take into account the progressive and dynamic nature of these neurological movement disorders that had largely been ignored so far. As a result, a more efficient and effective management of PD cardinal symptoms has emerged. In this paper, we review closed-loop systems for rehabilitation of movement disorders, focusing on PD, for which several invasive and noninvasive methods have been developed during the last decade, reducing the complications and side effects associated with traditional rehabilitation approaches and paving the way for tailored individual therapeutics. We then present a novel, transformative, noninvasive closed-loop framework based on force neurofeedback and discuss several future developments of closed-loop systems that might bring us closer to individualized solutions for neurological rehabilitation of movement disorders.
Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes
Trevitt, Sara; Simpson, Sue; Wood, Annette
2015-01-01
Background: Closed-loop artificial pancreas device (APD) systems are externally worn medical devices that are being developed to enable people with type 1 diabetes to regulate their blood glucose levels in a more automated way. The innovative concept of this emerging technology is that hands-free, continuous, glycemic control can be achieved by using digital communication technology and advanced computer algorithms. Methods: A horizon scanning review of this field was conducted using online sources of intelligence to identify systems in development. The systems were classified into subtypes according to their level of automation, the hormonal and glycemic control approaches used, and their research setting. Results: Eighteen closed-loop APD systems were identified. All were being tested in clinical trials prior to potential commercialization. Six were being studied in the home setting, 5 in outpatient settings, and 7 in inpatient settings. It is estimated that 2 systems may become commercially available in the EU by the end of 2016, 1 during 2017, and 2 more in 2018. Conclusions: There are around 18 closed-loop APD systems progressing through early stages of clinical development. Only a few of these are currently in phase 3 trials and in settings that replicate real life. PMID:26589628
Closed-loop Brain-Machine-Body Interfaces for Noninvasive Rehabilitation of Movement Disorders
Broccard, Frédéric D.; Mullen, Tim; Chi, Yu Mike; Peterson, David; Iversen, John R.; Arnold, Mike; Kreutz-Delgado, Kenneth; Jung, Tzyy-Ping; Makeig, Scott; Poizner, Howard; Sejnowski, Terrence; Cauwenberghs, Gert
2014-01-01
Traditional approaches for neurological rehabilitation of patients affected with movement disorders, such as Parkinson's disease (PD), dystonia, and essential tremor (ET) consist mainly of oral medication, physical therapy, and botulinum toxin injections. Recently, the more invasive method of deep brain stimulation (DBS) showed significant improvement of the physical symptoms associated with these disorders. In the past several years, the adoption of feedback control theory helped DBS protocols to take into account the progressive and dynamic nature of these neurological movement disorders that had largely been ignored so far. As a result, a more efficient and effective management of PD cardinal symptoms has emerged. In this paper, we review closed-loop systems for rehabilitation of movement disorders, focusing on PD, for which several invasive and noninvasive methods have been developed during the last decade, reducing the complications and side effects associated with traditional rehabilitation approaches and paving the way for tailored individual therapeutics. We then present a novel, transformative, noninvasive closed-loop framework based on force neurofeedback and discuss several future developments of closed-loop systems that might bring us closer to individualized solutions for neurological rehabilitation of movement disorders. PMID:24833254
NASA Astrophysics Data System (ADS)
Bocanegra-Bahamón, T. M.; Molera Calvés, G.; Gurvits, L. I.; Duev, D. A.; Pogrebenko, S. V.; Cimò, G.; Dirkx, D.; Rosenblatt, P.
2018-01-01
Context. Closed-loop Doppler data obtained by deep space tracking networks, such as the NASA Deep Space Network (DSN) and the ESA tracking station network (Estrack), are routinely used for navigation and science applications. By shadow tracking the spacecraft signal, Earth-based radio telescopes involved in the Planetary Radio Interferometry and Doppler Experiment (PRIDE) can provide open-loop Doppler tracking data only when the dedicated deep space tracking facilities are operating in closed-loop mode. Aims: We explain the data processing pipeline in detail and discuss the capabilities of the technique and its potential applications in planetary science. Methods: We provide the formulation of the observed and computed values of the Doppler data in PRIDE tracking of spacecraft and demonstrate the quality of the results using an experiment with the ESA Mars Express spacecraft as a test case. Results: We find that the Doppler residuals and the corresponding noise budget of the open-loop Doppler detections obtained with the PRIDE stations compare to the closed-loop Doppler detections obtained with dedicated deep space tracking facilities.
Spontaneously broken Yang-Mills-Einstein supergravities as double copies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik
Color/kinematics duality and the double-copy construction have proved to be systematic tools for gaining new insight into gravitational theories. Extending our earlier work, in this article we introduce new double-copy constructions for large classes of spontaneously-broken Yang-Mills-Einstein theories with adjoint Higgs elds. One gaugetheory copy entering the construction is a spontaneously-broken (super-)Yang-Mills theory, while the other copy is a bosonic Yang-Mills-scalar theory with trilinear scalar interactions that display an explicitly-broken global symmetry. We show that the kinematic numerators of these gauge theories can be made to obey color/kinematics duality by exhibiting particular additional Lie-algebraic relations. We discuss in detail explicitmore » examples with N = 2 supersymmetry, focusing on Yang-Mills-Einstein supergravity theories belonging to the generic Jordan family in four and five dimensions, and identify the map between the supergravity and double-copy elds and parameters. We also briefly discuss the application of our results to N = 4 supergravity theories. The constructions are illustrated by explicit examples of tree-level and one-loop scattering amplitudes.« less
Spontaneously broken Yang-Mills-Einstein supergravities as double copies
Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...
2017-06-13
Color/kinematics duality and the double-copy construction have proved to be systematic tools for gaining new insight into gravitational theories. Extending our earlier work, in this article we introduce new double-copy constructions for large classes of spontaneously-broken Yang-Mills-Einstein theories with adjoint Higgs elds. One gaugetheory copy entering the construction is a spontaneously-broken (super-)Yang-Mills theory, while the other copy is a bosonic Yang-Mills-scalar theory with trilinear scalar interactions that display an explicitly-broken global symmetry. We show that the kinematic numerators of these gauge theories can be made to obey color/kinematics duality by exhibiting particular additional Lie-algebraic relations. We discuss in detail explicitmore » examples with N = 2 supersymmetry, focusing on Yang-Mills-Einstein supergravity theories belonging to the generic Jordan family in four and five dimensions, and identify the map between the supergravity and double-copy elds and parameters. We also briefly discuss the application of our results to N = 4 supergravity theories. The constructions are illustrated by explicit examples of tree-level and one-loop scattering amplitudes.« less
Closed-loop, pilot/vehicle analysis of the approach and landing task
NASA Technical Reports Server (NTRS)
Anderson, M. R.; Schmidt, D. K.
1986-01-01
In the case of approach and landing, it is universally accepted that the pilot uses more than one vehicle response, or output, to close his control loops. Therefore, to model this task, a multi-loop analysis technique is required. The analysis problem has been in obtaining reasonable analytic estimates of the describing functions representing the pilot's loop compensation. Once these pilot describing functions are obtained, appropriate performance and workload metrics must then be developed for the landing task. The optimal control approach provides a powerful technique for obtaining the necessary describing functions, once the appropriate task objective is defined in terms of a quadratic objective function. An approach is presented through the use of a simple, reasonable objective function and model-based metrics to evaluate loop performance and pilot workload. The results of an analysis of the LAHOS (Landing and Approach of Higher Order Systems) study performed by R.E. Smith is also presented.
Jin, Qiang; Chen, Lei; Li, Aimin; Liu, Fuqiang; Long, Chao; Shan, Aidang; Borthwick, Alistair G L
2015-05-01
This study compared the solar energy utilization of a closed microalgae-based bio-loop for energy efficient production of biogas with fertilizer recovery against that of a stand-alone photovoltaic (PV) system. The comparison was made from the perspective of broad life cycle assessment, simultaneously taking exergy to be the functional unit. The results indicated that the bio-loop was more environmentally competitive than an equivalent stand-alone PV system, but had higher economic cost due to high energy consumption during the operational phase. To fix the problem, a patented, interior pressurization scheduling method was used to operate the bio-loop, with microalgae and aerobic bacterial placed together in the same reactor. As a result, the overall environmental impact and total investment were respectively reduced by more than 75% and 84%, a vast improvement on the bio-loop. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2005-08-01
Drivers last-second braking and last-second steering judgments have been studied extensively by the Crash Avoidance Metrics Partnership (CAMP) Forward Collision Warning (FCW) Requirements project. This previous work was conducted under closed-cour...
Functional Loop Dynamics of the Streptavidin-Biotin Complex
Song, Jianing; Li, Yongle; Ji, Changge; Zhang, John Z. H.
2015-01-01
Accelerated molecular dynamics (aMD) simulation is employed to study the functional dynamics of the flexible loop3-4 in the strong-binding streptavidin-biotin complex system. Conventional molecular (cMD) simulation is also performed for comparison. The present study reveals the following important properties of the loop dynamics: (1) The transition of loop3-4 from open to closed state is observed in 200 ns aMD simulation. (2) In the absence of biotin binding, the open-state streptavidin is more stable, which is consistent with experimental evidences. The free energy (ΔG) difference is about 5 kcal/mol between two states. But with biotin binding, the closed state is more stable due to electrostatic and hydrophobic interactions between the loop3-4 and biotin. (3) The closure of loop3-4 is concerted to the stable binding of biotin to streptavidin. When the loop3-4 is in its open-state, biotin moves out of the binding pocket, indicating that the interactions between the loop3-4 and biotin are essential in trapping biotin in the binding pocket. (4) In the tetrameric streptavidin system, the conformational change of the loop3-4 in each monomer is independent of each other. That is, there is no cooperative binding for biotin bound to the four subunits of the tetramer. PMID:25601277
PDCI Wide-Area Damping Control: PSLF Simulations of the 2016 Open and Closed Loop Test Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilches Bernal, Felipe; Pierre, Brian Joseph; Elliott, Ryan Thomas
To demonstrate and validate the performance of the wide-are a damping control system, the project plans to conduct closed-loop tests on the PDCI in summer/fall 2016. A test plan details the open and closed loop tests to be conducted on the P DCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the result s from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations usemore » the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases.« less
A Survey on Security and Privacy in Emerging Sensor Networks: From Viewpoint of Close-Loop.
Zhang, Lifu; Zhang, Heng
2016-03-26
Nowadays, as the next generation sensor networks, Cyber-Physical Systems (CPSs) refer to the complex networked systems that have both physical subsystems and cyber components, and the information flow between different subsystems and components is across a communication network, which forms a closed-loop. New generation sensor networks are found in a growing number of applications and have received increasing attention from many inter-disciplines. Opportunities and challenges in the design, analysis, verification and validation of sensor networks co-exists, among which security and privacy are two important ingredients. This paper presents a survey on some recent results in the security and privacy aspects of emerging sensor networks from the viewpoint of the closed-loop. This paper also discusses several future research directions under these two umbrellas.
A classical model for closed-loop diagrams of binary liquid mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnitzler, J.v.; Prausnitz, J.M.
1994-03-01
A classical lattice model for closed-loop temperature-composition phase diagrams has been developed. It considers the effect of specific interactions, such as hydrogen bonding, between dissimilar components. This van Laar-type model includes a Flory-Huggins term for the excess entropy of mixing. It is applied to several liquid-liquid equilibria of nonelectrolytes, where the molecules of the two components differ in size. The model is able to represent the observed data semi-quantitatively, but in most cases it is not flexible enough to predict all parts of the closed loop quantitatively. The ability of the model to represent different binary systems is discussed. Finally,more » attention is given to a correction term, concerning the effect of concentration fluctuations near the upper critical solution temperature.« less
A low power flash-FPGA based brain implant micro-system of PID control.
Lijuan Xia; Fattah, Nabeel; Soltan, Ahmed; Jackson, Andrew; Chester, Graeme; Degenaar, Patrick
2017-07-01
In this paper, we demonstrate that a low power flash FPGA based micro-system can provide a low power programmable interface for closed-loop brain implant inter- faces. The proposed micro-system receives recording local field potential (LFP) signals from an implanted probe, performs closed-loop control using a first order control system, then converts the signal into an optogenetic control stimulus pattern. Stimulus can be implemented through optoelectronic probes. The long term target is for both fundamental neuroscience applications and for clinical use in treating epilepsy. Utilizing our device, closed-loop processing consumes only 14nJ of power per PID cycle compared to 1.52μJ per cycle for a micro-controller implementation. Compared to an application specific digital integrated circuit, flash FPGA's are inherently programmable.
NASA Astrophysics Data System (ADS)
Udd, Eric
2016-05-01
On September 29, 1977 the first written disclosure of a closed loop fiber optic gyro was witnessed and signed off by four people at McDonnell Douglas Astronautics Company in Huntington Beach, California. Over the next ten years a breadboard demonstration unit, and several prototypes were built. In 1987 the fundamental patent for closed loop operation began a McDonnell Douglas worldwide licensing process. Internal fiber optic efforts were redirected to derivative sensors and inventions. This included development of acoustic, strain and distributed sensors as well as a Sagnac interferometer based secure fiber optic communication system and the new field of fiber optic smart structures. This paper provides an overview of these activities and transitions.
Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope.
Li, Yang; Bechhoefer, John
2007-01-01
Simple feedforward ideas are shown to lead to a nearly tenfold increase in the effective bandwidth of a closed-loop piezoelectric positioning stage used in scanning probe microscopy. If the desired control signal is known in advance, the feedforward filter can be acausal: the information about the future can be used to make the output of the stage have almost no phase lag with respect to the input. This keeps in register the images assembled from right and left scans. We discuss the design constraints imposed by the need for the feedforward filter to work robustly under a variety of circumstances. Because the feedforward needs only to modify the input signal, it can be added to any piezoelectric stage, whether closed or open loop.
A modular, closed-loop platform for intracranial stimulation in people with neurological disorders.
Sarma, Anish A; Crocker, Britni; Cash, Sydney S; Truccolo, Wilson
2016-08-01
Neuromodulation systems based on electrical stimulation can be used to investigate, probe, and potentially treat a range of neurological disorders. The effects of ongoing neural state and dynamics on stimulation response, and of stimulation parameters on neural state, have broad implications for the development of closed-loop neuro-modulation approaches. We describe the development of a modular, low-latency platform for pre-clinical, closed-loop neuromodulation studies with human participants. We illustrate the uses of the platform in a stimulation case study with a person with epilepsy undergoing neuro-monitoring prior to resective surgery. We demonstrate the efficacy of the system by tracking interictal epileptiform discharges in the local field potential to trigger intracranial electrical stimulation, and show that the response to stimulation depends on the neural state.
A closed-loop time-alignment system for baseband combining
NASA Technical Reports Server (NTRS)
Feria, Y.
1994-01-01
In baseband combining, the key element is the time alignment of the baseband signals. This article describes a closed-loop time-alignment system that estimates and adjusts the relative delay between two baseband signals received from two different antennas for the signals to be coherently combined. This system automatically determines which signal is advanced and delays it accordingly with a resolution of a sample period. The performance of the loop is analyzed, and the analysis is verified through simulation. The variance of the delay estimates and the signal-to-noise ratio degradation in the simulations agree with the theoretical calculations.
Closed-loop, pilot/vehicle analysis of the approach and landing task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.; Anderson, M. R.
1985-01-01
Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.
NASA Astrophysics Data System (ADS)
Wilby, W. A.; Brett, A. R. H.
Frequency set on techniques used in ECM applications include repeater jammers, frequency memory loops (RF and optical), coherent digital RF memories, and closed loop VCO set on systems. Closed loop frequency set on systems using analog phase and frequency locking are considered to have a number of cost and performance advantages. Their performance is discussed in terms of frequency accuracy, bandwidth, locking time, stability, and simultaneous signals. Some experimental results are presented which show typical locking performance. Future ECM systems might require a response to very short pulses. Acoustooptic and fiber-optic pulse stretching techniques can be used to meet such requirements.
NASA Technical Reports Server (NTRS)
Knox, J. C.; Mulloth, Lila; Frederick, Kenneth; Affleck, Dave
2003-01-01
Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The carbon dioxide removal assembly (CDRA) of ISS currently operates in an open loop mode without a compressor. This paper describes the integrated test results of a flight-like CDRA and a temperature-swing adsorption compressor (TSAC) for carbon dioxide removal and compression. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.
van Dongen, M J; Mooren, M M; Willems, E F; van der Marel, G A; van Boom, J H; Wijmenga, S S; Hilbers, C W
1997-01-01
The three-dimensional structure of the hairpin formed by d(ATCCTA-GTTA-TAGGAT) has been determined by means of two-dimensional NMR studies, distance geometry and molecular dynamics calculations. The first and the last residues of the tetraloop of this hairpin form a sheared G-A base pair on top of the six Watson-Crick base pairs in the stem. The glycosidic torsion angles of the guanine and adenine residues in the G-A base pair reside in the anti and high- anti domain ( approximately -60 degrees ) respectively. Several dihedral angles in the loop adopt non-standard values to accommodate this base pair. The first and second residue in the loop are stacked in a more or less normal helical fashion; the fourth loop residue also stacks upon the stem, while the third residue is directed away from the loop region. The loop structure can be classified as a so-called type-I loop, in which the bases at the 5'-end of the loop stack in a continuous fashion. In this situation, loop stability is unlikely to depend heavily on the nature of the unpaired bases in the loop. Moreover, the present study indicates that the influence of the polarity of a closing A.T pair is much less significant than that of a closing C.G base pair. PMID:9092659
Dressed Wilson loops as dual condensates in response to magnetic and electric fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruckmann, Falk; Endroedi, Gergely
2011-10-01
We introduce dressed Wilson loops as a novel confinement observable. It consists of closed planar loops of arbitrary geometry but fixed area, and its expectation values decay with the latter. The construction of dressed Wilson loops is based on chiral condensates in response to magnetic and electric fields, thus linking different physical concepts. We present results for generalized condensates and dressed Wilson loops on dynamical lattice configurations and confirm the agreement with conventional Wilson loops in the limit of large probe mass. We comment on the renormalization of dressed Wilson loops.
Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin
Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of a closed-loop DBS controller. A DBS controller based on a fuzzy expert system was devised to automatically control DBS according to the predicted physiological marker via a set of rules. The simulated experimental results demonstrate that the ceDBS based on the closed-loop control architecture not only reduced power consumption using the predictive physiological marker, but also achieved a desired level of physiological marker through the DBS controller. Copyright © 2017 Elsevier Inc. All rights reserved.
Multi-thermal observations of newly formed loops in a dynamic flare
NASA Technical Reports Server (NTRS)
Svestka, Zdenek F.; Fontenla, Juan M.; Machado, Marcos E.; Martin, Sara F.; Neidig, Donald F.
1987-01-01
The dynamic flare of November 6, 1980 (max at about 15:26 UT) developed a rich system of growing loops which could be followed in H-alpha for 1.5 hr. Throughout the flare, these loops, near the limb, were seen in emission against the disk. Theoretical computations of deviations from LTE populations for a hydrogen atom reveal that this requires electron densities in the loops close to, or in excess of 10 to the 12th/cu cm. From measured widths of higher Balmer lines the density at the tops of the loops was found to be 4 x 10 to the 12th/cu cm if no nonthermal motions were present, or 5 x 10 to the 11th/cu cm for a turbulent velocity of about 12 km/s. It is now general knowledge that flare loops are initially observed in X-rays and become visible in H-alpha only after cooling. For such a high density, a loop would cool through radiation from 10 to the 7th to 10 to the 4th K within a few minutes so that the dense H-alpha loops should have heights very close to the heights of the X-ray loops. This, however, contradicts the observations obtained by the HXIS and FCS instruments on board SMM which show the X-ray loops at much higher altitudes than the loops in H-alpha. Therefore, it is suggested that the density must have been significantly lower when the loops were formed, and that the flare loops were apparently both shrinking and increasing in density while cooling.
Kinematics of ram filter feeding and beat-glide swimming in the northern anchovy Engraulis mordax.
Carey, Nicholas; Goldbogen, Jeremy A
2017-08-01
In the dense aquatic environment, the most adept swimmers are streamlined to reduce drag and increase the efficiency of locomotion. However, because they open their mouth to wide gape angles to deploy their filtering apparatus, ram filter feeders apparently switch between diametrically opposite swimming modes: highly efficient, streamlined 'beat-glide' swimming, and ram filter feeding, which has been hypothesized to be a high-cost feeding mode because of presumed increased drag. Ram filter-feeding forage fish are thought to play an important role in the flux of nutrients and energy in upwelling ecosystems; however, the biomechanics and energetics of this feeding mechanism remain poorly understood. We quantified the kinematics of an iconic forage fish, the northern anchovy, Engraulis mordax , during ram filter feeding and non-feeding, mouth-closed beat-glide swimming. Although many kinematic parameters between the two swimming modes were similar, we found that swimming speeds and tailbeat frequencies were significantly lower during ram feeding. Rather than maintain speed with the school, a speed which closely matches theoretical optimum filter-feeding speeds was consistently observed. Beat-glide swimming was characterized by high variability in all kinematic parameters, but variance in kinematic parameters was much lower during ram filter feeding. Under this mode, body kinematics are substantially modified, and E. mordax swims more slowly and with decreased lateral movement along the entire body, but most noticeably in the anterior. Our results suggest that hydrodynamic effects that come with deployment of the filtering anatomy may limit behavioral options during foraging and result in slower swimming speeds during ram filtration. © 2017. Published by The Company of Biologists Ltd.
On the biomechanical analysis of the calories expended in a straight boxing jab
2017-01-01
Boxing and related sports activities have become a standard workout regime at many fitness studios worldwide. Oftentimes, people are interested in the calories expended during these workouts. This note focuses on determining the calories in a boxer's jab, using kinematic vector-loop relations and basic work–energy principles. Numerical simulations are undertaken to illustrate the basic model. Multi-limb extensions of the model are also discussed. PMID:28404871
Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo
NASA Astrophysics Data System (ADS)
Bolus, M. F.; Willats, A. A.; Whitmire, C. J.; Rozell, C. J.; Stanley, G. B.
2018-04-01
Objective. Controlling neural activity enables the possibility of manipulating sensory perception, cognitive processes, and body movement, in addition to providing a powerful framework for functionally disentangling the neural circuits that underlie these complex phenomena. Over the last decade, optogenetic stimulation has become an increasingly important and powerful tool for understanding neural circuit function, owing to the ability to target specific cell types and bidirectionally modulate neural activity. To date, most stimulation has been provided in open-loop or in an on/off closed-loop fashion, where previously-determined stimulation is triggered by an event. Here, we describe and demonstrate a design approach for precise optogenetic control of neuronal firing rate modulation using feedback to guide stimulation continuously. Approach. Using the rodent somatosensory thalamus as an experimental testbed for realizing desired time-varying patterns of firing rate modulation, we utilized a moving average exponential filter to estimate firing rate online from single-unit spiking measured extracellularly. This estimate of instantaneous rate served as feedback for a proportional integral (PI) controller, which was designed during the experiment based on a linear-nonlinear Poisson (LNP) model of the neuronal response to light. Main results. The LNP model fit during the experiment enabled robust closed-loop control, resulting in good tracking of sinusoidal and non-sinusoidal targets, and rejection of unmeasured disturbances. Closed-loop control also enabled manipulation of trial-to-trial variability. Significance. Because neuroscientists are faced with the challenge of dissecting the functions of circuit components, the ability to maintain control of a region of interest in spite of changes in ongoing neural activity will be important for disambiguating function within networks. Closed-loop stimulation strategies are ideal for control that is robust to such changes, and the employment of continuous feedback to adjust stimulation in real-time can improve the quality of data collected using optogenetic manipulation.
Automatic control of finite element models for temperature-controlled radiofrequency ablation
Haemmerich, Dieter; Webster, John G
2005-01-01
Background The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. Methods We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. Results We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100°C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. Discussion The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input. PMID:16018811
Maximized Gust Loads of a Closed-Loop, Nonlinear Aeroelastic System Using Nonlinear Systems Theory
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1999-01-01
The problem of computing the maximized gust load for a nonlinear, closed-loop aeroelastic aircraft is discusses. The Volterra theory of nonlinear systems is applied in order to define a linearized system that provides a bounds on the response of the nonlinear system of interest. The method is applied to a simplified model of an Airbus A310.
Closed-Loop Treatment of Electrolytic and Electroless Nickel Rinse Water by Point-Of-Use Ion Exchange: A Case Study.
Dave Szlag1, Joe Leonhardt2, Albert Foster1, Mike Goss1 and Paul Bolger1.
1 U.S. EPA, National Risk Management Research Laboratory, 26 W. M. L. King D...
ACOSS Six (Active Control of Space Structures)
1981-10-01
modes, specially useful simpler conditions for ensuring closed-loop asymptotic stability are also derived. In addition, conditions for robustness of...in this initial study of FOCL stability and robustness . Such a condition is strong but not unreasonable nor unrealistic. Many useful simple in- sights...smallest possible feedback gains) and many interesting numerical results on closed-loop stability and robustness of the modal-dashpot designs. The
Joint angle sensors for closed-loop control
NASA Astrophysics Data System (ADS)
Ko, Wen H.; Miao, Chih-Lei
In order to substitute braces that have built-in goniometers and to provide feedback signals for closed loop control of lower extremity Functional Neuromuscular System in paraplegics, a stretchable capacitive sensor was developed to accurately detect angular movement in joints. Promising clinical evaluations on the knee joints of a paraplegic and a volunteer were done. The evaluations show great promise for the possibility of implantation applications.
Interplanetary travel: Is gravity needed to close the loop
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, Joan
1988-01-01
Evidence has been accumulating from spaceflight and ground simulation studies suggesting that the normal relationship between neuroendocrine driving mechanisms and their respective target organs may become uncoupled; and that the sensitivity of the various components of the closed-loop systems may be altered. Changes in the regulation of the pituitary-adrenal system and the angioten-sinaldosterone system is discussed in support of this thesis.
NASA Technical Reports Server (NTRS)
Levison, W. H.; Baron, S.
1984-01-01
Preliminary results in the application of a closed loop pilot/simulator model to the analysis of some simulator fidelity issues are discussed in the context of an air to air target tracking task. The closed loop model is described briefly. Then, problem simplifications that are employed to reduce computational costs are discussed. Finally, model results showing sensitivity of performance to various assumptions concerning the simulator and/or the pilot are presented.
Fort Knox, KY Containment Berm Unit Installation
2013-02-01
There is interest from the range community in establishing a sustainable, closed loop small arms firing range (SAFR) bullet impact system or Containment... system . The metals from the bullets will be retained, stabilized, in the berm material with the addition of proper amendments. Following sufficient...replaced or placed back in the connex. This provides a closed loop containment system for sustainable range training purposes. The Containment Berm
[Research on the Clinical Alarm Management Mechanism Based on Closed-loop Control Theory].
Lin, Zhongkuan; Zheng, Kun; Shen, Yunming; Wu, Yunyun
2018-05-30
This paper proposes a clinical alarm management system based on the theory of the closed loop control. The alarm management mechanism can be divided into the expected standard, improving execution rule, rule execution, medical devices with alarm functions, results analysis strategy and the output link. And, we make relevant application and discussion. Results showed that the mechanism can be operable and effective.
Assurance of Learning and the MFT: Closing the Loops with an Online Review
ERIC Educational Resources Information Center
Middleton, Karen L.; Loveland, Karen A.
2014-01-01
The authors describe the four stages of the closing the loop process undertaken by a college of business (COB) over a 6-year period. The COB developed and offered an online, noncredit review course to help students prepare for the Major Field Test in Business (MFT). Early results demonstrated the efficacy of the course as student scores rose from…